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Abstract
Among various traditional art forms, brush stroke
drawing is one of the widely used styles in mod-
ern computer graphic tools such as GIMP, Pho-
toshop and Painter. In this paper, we develop
an AI-aided art authoring (A4) system of non-
photorealistic rendering that allows users to au-
tomatically generate brush stroke paintings in a
specific artist’s style. Within the reinforcement
learning framework of brush stroke generation pro-
posed by Xie et al. [Xie et al., 2012], our con-
tribution in this paper is to learn artists’ drawing
styles from video-captured stroke data by inverse
reinforcement learning. Through experiments, we
demonstrate that our system can successfully learn
artists’ styles and render pictures with consistent
and smooth brush strokes.

1 Introduction
Artistic stylization in non-photorealistic rendering enables
users to stylize pictures with the appearance of traditional art
forms, such as pointillism painting, line sketching, or brush
stroke drawing. Among them, brush stroke drawing is one of
the widely used art styles across different cultures in history.
In computer-generated painterly rendering, stroke placement
is a big challenge and significant efforts have been made to
investigate how to draw a stroke with realistic brush texture
in a desired shape and how to organize multiple strokes [Fu
et al., 2011].

The goal of this paper is to develop an AI-aided art author-
ing system for artistic brush stroke generation. In this section,
we first review backgrounds in computer graphics and artifi-
cial intelligence, and then give an overview of our proposed
system.

1.1 Background in Computer Graphics
The most straightforward approach for painterly rendering
would be physics-based painting, i.e., giving users an intu-
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itive feeling just like drawing with a real brush. Some works
modeled physical virtual brushes including its 3D structure,
dynamics, interaction with paper surface [Chu and Tai, 2004]
and simulating the physical effect of the ink dispersion [Chu
and Tai, 2005]. These virtual brushes can be used to draw var-
ious styles of strokes with a digital pen or mouse. However, it
is very complex to control a virtual brush. Furthermore, since
the computational cost is often very high to achieve satisfac-
tory visual effects to human eyes, some physics-based paint-
ing approaches rely on graphics processing units (GPUs) for
obtaining reasonable performance [Chu et al., 2010].

To address these issues associated with physics-based
painting, the stroke-based rendering approach was proposed
to directly simulate rendering marks (such as lines, brush
strokes, or even larger primitives such as tiles) on a 2D can-
vas. This stroke-based rendering [Hertzmann, 2003] under-
pins many artistic rendering algorithms, especially on those
emulating traditional brush-based artistic styles such as oil
painting and watercolor.

Although physics-based painting and stroke-based render-
ing are useful for (semi-)professional usage, often users who
have no painting expertise are only interested in final results
rather than the painting process itself [Kalogerakis, 2012].
To make the painterly rendering system more accessible to
novice users, several researchers investigated beautification.
The early work [Theodosios and Van, 1985] explored auto-
matic techniques to beautifying geometric drawings by en-
forcing various relations such as the collinearity of lines and
the similarity of their lengths. The approach by Igarashi et
al. [T.Igarashi et al., 1997] offered users several choices in
the beautifying process.

Filter-based methods are also widely used for building
artistic rendering algorithms applied in the image manipula-
tion software such as Photoshop and Gimp. The main task is
to find out the nice or beautiful outlines/edges based on novel
filters, such as bilateral filter [Pham and Vliet, 2005], DoG
filter [Sýkora et al., 2005], morphological filter [Bousseau et
al., 2007], shock filter [Kang and Lee, 2008] and Kuwahara
filters [Kyprianidis et al., 2009]. These techniques are usually
based on heuristics developed through hands-on experience,
showing that certain combinations of filters produce an artis-
tic look, more precisely, called stylized cartoon rendering,
pen-and-ink illustration, or watercolor painting. However, the
connection between the edge-preserving image simplification



Figure 1: Overview of our AI-aided art authoring (A4) system.

and the artistic rendering is less obvious, because the signif-
icant artistic look is often achieved or further reinforced by
taking the local image structure and brush stroke details into
account, rather than the global image abstraction. In practice,
the designers usually firstly apply the painting style filter on
the real photo in order to imagine the whole art authoring in
terms of the entire layout. Then, another layer is created on
the top to emphasize the local parts of the image that are im-
portant to the users by hand or stroke-based methods.

More recently, methods that attempt not only to beautify
generated artistic images, but also to maintain users’ personal
styles are pursued. Studies of style imitation in artistic render-
ing focused on ink sketching. Baran et al. [Baran et al., 2010]
proposed a method to draw smooth curves while maintain-
ing the details. The sketch beautification approach by Orbay
et al. [Orbay and Kara, 2011] used the model that automati-
cally learns how to parse a drawing. Zitnick [Zitnick, 2013]
proposed a general purpose approach to handwriting beauti-
fication using online input from a stylus. Since techniques of
line sketching style imitation are not suitable to synthesizing
brush strokes, quite a few previous works [Xu et al., 2006;
Zeng et al., 2010; Lu et al., 2012] tried to reproduce brush
stroke texture as reference samples.

1.2 Background in Artificial Intelligence
Differently from the above approaches developed in com-
puter graphics, the system we propose in this paper trains
a virtual brush agent to learn the stroke drawing model ac-
cording to particular artists’ styles using their stroke drawing
videos. The problem on truncated fault texture can be solved
by using our learned stroke drawing behavior model. Since
the brush agent is trained locally with the data set of basic
stroke shapes, we can create strokes in new shapes even when
they are quite different from an artist’s examples. This is emi-
nently suitable for the artistic stylization of images when non-
expert users try to render their favorite photos into a particular
artist’s style with just a few button clicks.

Our proposed system is based on the reinforcement learn-
ing (RL) method to artistic brush stroke generation [Xie et al.,
2012], which allows users to automatically produce consis-
tent and smooth brush strokes. In this RL approach, the task

of synthesizing the texture of each individual stroke is formu-
lated as a sequential decision making problem based on the
Markov decision process, where a soft-tuft brush is regarded
as an RL agent. Then, to sweep over the shape closed by
the contour, the agent is trained by a policy gradient method
[Williams, 1992] to learn which direction to move and how
to keep the stable posture while sweeping over various stroke
shapes provided as training data. Finally, in the test phase,
the agent chooses actions to draw strokes by moving a vir-
tual inked brush within a newly given shape represented by a
closed contour.

In this paper, we extend this RL-based approach to be able
to incorporate personal artistic stylization. More specifically,
we propose to use a method of inverse RL [Abbeel and Ng,
2004] to learn the reward function from stroke data video-
captured from artists: we first invite artists to draw strokes us-
ing our handcrafted device for recording the brush movement.
The brush footprint in each key frame of the captured stroke-
drawing video is then extracted, and time series data are ob-
tained by assembling the extracted posture configuration of
each footprint including the motion attitude, pose, and loco-
motion of the brush. The data are used to mimic the artist’s
stroke drawing style through the reward function learned by
inverse RL (IRL).

1.3 Overview of Our Proposed System
An overview of our system, called AI-aided art authoring
(A4) system for artistic brush stroke generation, is illustrated
in Figure 1. Our system consists of two phases: an online
synthesis phase and an offline training phase.

In the online synthesis phase, A4 provides a fast and easy-
to-use graphical-user interface so that users can focus on de-
veloping art work concepts just by sketching the position and
attitude of desired strokes. Given an input picture or photo,
even non-expert users can sketch the shapes of desired strokes
using either closed contours or simple curves.

In the offline training phase, the main task is to train the
virtual agent so as to synthesize strokes in an artist’s draw-
ing style. Instead of the classical policy gradient method
[Williams, 1992], we use the state-of-the-art policy gradient
algorithm called importance-weighted policy gradients with



Figure 2: Brush agent with style learning ability. Our system
is an extension of the existing approach, marked in yellow, to
capture artists’ drawing for learning feature-based style-critic
reward function.

parameter-based exploration [Zhao et al., 2013], which al-
lows stable policy update and efficiently reuse of previously
collected data.

Through experiments, we demonstrate that the proposed
system is promising in producing stroke placement with a
personalized style.

2 Reinforcement Learning Formulation of
Brush Agent

In order to synthesize the painting imagery of an artist’s per-
sonal style, we construct our brush agent equipped with the
style learning ability by extending the existing RL-based ap-
proach [Xie et al., 2012] as illustrated in Figure 2.

We assume that our stroke drawing problem is a discrete-
time Markov decision process. At each time step t, the agent
observes a state st ∈ S, selects an action at ∈ A, and
then receives an immediate reward rt resulting from a state
transition. The state space S and action space A are both
defined as continuous spaces in this paper. The dynamics
of the environment is characterized by unknown conditional
density p(st+1|st, at), which represents the transition proba-
bility density from current state st to next state st+1 when
action at is taken. The initial state of the agent is deter-
mined following unknown probability density p(s1). The
immediate reward rt is given according to the reward func-
tion R(st, at, st+1). The agent’s decision making procedure
at each time step t is characterized by a parameterized pol-
icy p(at|st,θ) with parameter θ, which represents the condi-
tional probability density of taking action at in state st.

A sequence of states and actions forms a trajectory denoted
by

h := [s1, a1, . . . , sT , aT ],

where T denotes the number of steps called the horizon
length. Given policy parameter θ, trajectory h follows

p(h|θ) = p(s1)

T∏
t=1

p(st+1|st, at)p(at|st,θ).

Figure 3: Illustration of our brush dynamic behavior captur-
ing device. The picture on the left side shows the whole pro-
file of the footprint capturing device. The picture on the top
right shows the digital single-lens reflex camera. The pic-
ture at the bottom right is the glass panel for capturing stroke
drawing.

The discounted cumulative reward along h, called the return,
is given by

R(h) :=

T∑
t=1

γt−1R(st, at, st+1),

where γ ∈ [0, 1) is the discount factor for future rewards.
The goal is to optimize the policy parameter θ so that the

expected return is maximized:

θ∗ := arg max
θ

J(θ), (1)

where J(θ) is the expected return for policy parameter θ:

J(θ) :=

∫
p(h|θ)R(h)dh.

In the previous work [Xie et al., 2012], the reward func-
tion was manually designed to produce “nice” drawings. On
the other hand, we aim to learn the reward function from an
artist’s drawing data D in this paper. We assume that data
D = {τ1, . . . , τN} is generated following optimal policy π∗,
where the n-th trajectory τn is a T -step sequence of state-
action pairs τi = {(si,1, ai,1), . . . , (si,T , ai,T )}. In Section 3,
we describe our device to capture an artist’s drawing to ob-
tain D and explain an inverse RL method [Abbeel and Ng,
2004]. Then in Section 4, a policy learning method [Zhao et
al., 2013] is introduced.

3 Reward Function Learning from Artist
To learn a particular artist’s stroke drawing style, we collect
stroke data from brush motion and drawings on the canvas
and then learn the reward function from the collected data. In
this section, we first describe the details of the data collection
procedure and then introduce our reward function.



(a) (b) (c)

Figure 4: Data collection. (a) A stroke is generated by moving the brush with three actions: Action 1 is regulating the direction
of the brush movement, Action 2 is pushing down/lifting up the brush, and Action 3 is rotating the brush handle. (b) Real data
collected from six artists. Each picture corresponds to each artist, where difference in their drawing styles can be observed. (c)
Footprint capturing process. Our 2D brush model with tip Q and a circle with center C and radius r are illustrated.

3.1 Data Collection
We designed a device shown in Figure 3 to video-record brush
motion. A digital single-lens reflex camera is mounted at the
bottom of the frame of the device. Data collection is carried
out under normal in-door lighting and thus there is no need for
automatic camera calibration in real-time. A traditional Asian
calligraphy paper is placed on the transparent glass panel on
the top of the device. In each data-collection session, an artist
is asked to draw a panda with various strokes on the glass
panel. The brush motion of an artist is captured when they dip
the brush into the traditional calligraphy ink and start drawing
strokes.

We split the recorded video of the stroke drawing into
frames to analyze brush movement (Figure 4 (c)). To each
frame, we apply the model-based tracking technique [Davies,
2005] and detect the posture configuration of brush footprints
such as the brush movement information (the velocity, head-
ing direction and pose) and the relative location information
to the target desired shape over time. We then apply principal
component analysis [Jolliffe, 2002] to compute the principal
axis of the footprint which defines the direction of the foot-
print. Finally, the configuration of the footprint is determined
by matching the template of the footprint which consists of a
tip Q and a circle with center C and radius r.

3.2 Reward Function Design
We design the reward function to measure the quality of
the brush agent’s stroke drawing movement. First of all, a
smoother movement should yield a higher immediate reward
value. We calculate the immediate reward value by consider-
ing (i) the distance between the center of the brush agent and
the nearest point on the medial axis of the shape at the current
time step, and (ii) the change of the local configuration of the
brush agent after an action:
R(st, at, st+1)

=

{
0 if ft = ft+1 or l = 0

1/C(st, at, st+1) otherwise,
where ft and ft+1 are footprints at time steps t and t + 1,

respectively. This reward design means that the immediate

reward is zero when the brush is blocked by a boundary as
ft = ft+1 or the brush is going backward to a region that
has already been covered by previous footprints fi for i <
t + 1. C(st, at, st+1) calculates the cost of the transition of
footprints from time t to t+ 1 as

C(st, at, st+1) =α1|ωt+1| + α2|dt+1|
+ α3∆ωt,t+1 + α4∆φt,t+1 + α5∆dt,t+1,

where the first two terms measure the cost regarding the loca-
tion of the agent, while the last three terms measure the cost
regarding the posture when the agent moves from time t to
t + 1. More specifically, ∆ωt,t+1,∆φt,t+1, and ∆dt,t+1 are
normalized changes in angle ω of the velocity vector, heading
directions φ, and ratios d of the offset distance between time
t and time t+ 1:

∆ωt+1 =

{
1 if ωt = ωt+1 = 0,
(ωt−ωt+1)

2

(|ωt|+|ωt+1|)2 otherwise.

∆φt,t+1 and ∆dt,t+1 are defined in the same way. To
set the values of five parameters α1, α2, . . . , α5, we
use the maximum-margin inverse reinforcement learning
method [Abbeel and Ng, 2004]. This allows us to learn
the artist’s personal style based on an his/her drawing data
through inferring appropriate values for α1, α2, . . . , α5.

4 Policy Learning
The previous work [Xie et al., 2012] learned policies by the
classical policy gradient method [Williams, 1992]. However,
this algorithm is often unreliable due to the large variance of
the policy gradient estimator [Zhao et al., 2011].

To mitigate the large variance problem, an alternative
method called policy gradients with parameter based explo-
ration (PGPE) was proposed [Sehnke et al., 2010]. The basic
idea of PGPE is to use a deterministic policy and introduce
stochasticity by drawing parameters from a prior distribution.
More specifically, parameters are sampled from the prior dis-
tribution at the start of each trajectory, and thereafter the con-
troller is deterministic. Thanks to this per-trajectory formu-
lation, the variance of gradient estimates in PGPE does not
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Figure 5: (a) Footprints extracted from the video in different
water dispersion conditions. From the top left to the lower
right corners, the ink content of hollow strokes is decreasing
continuously. (b) A dry rendering result without water disper-
sion. (c) A rendering result with water dispersion using more
ink.

increase with respect to trajectory length [Zhao et al., 2011].
The gradient estimation of PGPE can be further stabilized by
subtracting a baseline [Zhao et al., 2011].

However, (baseline-subtracted) PGPE still requires a rel-
atively large number of samples to obtain accurate gradient
estimates, which can be a critical bottleneck for our appli-
cation due to the large costs and time in data collection. To
cope with this problem, we use a variant called importance-
weighted policy gradients with parameter-based exploration
(IW-PGPE) [Zhao et al., 2013], which allows efficient reuse
of previously collected data. In the online synthesis phase
illustrated in Figure 1, the user is allowed to choose one or
several learned policies to control the drawing behavior for
each input shape.

5 Stroke Texture Rendering
We use both the raster brush texture mapping and the physical
pigment dispersion simulation to generate both dry and wet
textures. Rendering is carried out by capturing single foot-
prints of a brush and then stamping them along the trajectory
obtained by the brush agent’s learned policy. The scanned
footprint images are used as the reference texture of brush
footprints and sampled with different contents of ink of hol-
low strokes for rendering the change of the stroke texture.
Then, we save them into raster textures to create our brush
footprint texture libraries as shown in Figure 5(a). For the
drying stroke rendering, given the parameters of the brush ink
style, footprint texture images with different ink contents are
affinely transformed and then mapped onto the optimal se-
quential collection of footprints according to the shapes and
orientations of the footprints.

Discrete series of footprint images need to be interpolated
to render strokes with smooth textures. To do so, each in-
termediate pixel on the resulting stroke texture is linked by
a pair of points on the two nearest footprints using the inter-
val piecewise Bézier splines. Figure 5 (b) illustrates a dry
stroke. Wet stroke rendering is carried out by adding ink and
pigment dispersion into the brush texture mapping. We adopt
the water-based paint flow physical simulation [Chu and Tai,
2005]. The quantity of ink and pigment on the paper canvas
is initialized according to the current sampled brush texture
images. Figure 5 (c) illustrates a wet stroke where its shape
and trajectory is the same as those in Figure 5 (b).

Figure 6: Policy iteration. The error bars denote the standard
deviation over 16 runs.

6 Experiments and Results

Figure 6 plots the average return over 16 trials as the function
of policy update iterations, obtained by the policies learned
by our approach. Returns at each trial are computed over 300
training episode samples. This graph shows that the average
return sharply increases in an early stage and then converges
at about the 20th iteration.

Stroke drawing results by an artist, the agent trained with
the learned reward function, and the agent trained with the
manually designed reward function [Xie et al., 2012] are
compared in Figure 7. The results show that the proposed
method imitates the real artist’s stroke drawing better than the
previous method. More specifically, the two results marked
with red in the right-most column show that our rendered
stroke texture is much smoother than the one obtained with
the manually designed reward function.

Finally, we applied the policy obtained by our method to
photo artistic conversion system [Xie et al., 2011] (Figure 8),
where we manually sketched contours from the original pic-
tures that represent the boundaries of desired strokes. The
results in Figure 8 (c) show that shapes are filled with smooth
strokes by our IRL method and visually reasonable drawings
are obtained.

To further investigate our IRL-based method, we per-
formed the user study on the aesthetic assessment of the tradi-
tional oriental ink painting simulation between the proposed
A4 system and the brush stroke (Sumie) filter of the state-
of-the-art commercial software (Adobe Photoshop CC 2014).
We invited 318 individuals to take the online questionnaire
survey. We conducted a quantitative user study following the
same approach as in [Xu et al., 2008]. We asked the partic-
ipants to tell which one is more like the oriental ink paint-
ing style for each pairs (shown as (b) and (c) in Figure 8)
among four pairs of paintings. We include this question in
the user study to directly compare subjective aesthetic assess-
ment of the viewer by selecting which images they like. The
aesthetic scores are given by participants shown in Figure 9.
Obviously, our results obtained higher aesthetic scores than
Photoshop.
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Figure 7: Comparison of stroke-drawing processes. (a) Artist’s real data. (b) Trained with the learned reward function by our
proposed method. (c) Trained with the manually designed reward function in the previous work. Green boxes show brush
trajectories, while red boxes show rendered details.

(a) Original image (b) Photoshop (c) IRL

Figure 8: Results of photo conversion into the brush stroke
drawings. (a) Original images. (b) Sumie filter in Photoshop.
(c) Our proposed IRL.

7 Conclusion and Future Work

We have proposed an AI-aided art authoring system (A4) so
as to fast and easy creation of stylized stroke-based paintings.
Our main contributions in this papers are (i) we developed
a device to capture artists’ brush strokes, (ii) we collected
training data in various styles, (iii) we applied inverse rein-
forcement learning to learn the reward function from the data
provided by artists, (iv) we applied the state-of-the-art rein-

Figure 9: User study of the aesthetic assessment over 318
candidates. PS means the Sumie filter in Photoshop. IRL is
our proposed method.

forcement learning method, IW-PGPE (importance-weighted
policy gradients with parameter-based exploration), to accu-
rately learning the policy function by efficiently reusing pre-
viously collected data, and (v) we demonstrated through ex-
periments the effectiveness of our proposed approach in con-
verting photographs into stroke drawings.

In the future, an automatic contour extraction from pictures
may be explored to simplify the process of photo stylization
for non-expert users to both learn and detect local contour-
based representations for mid-level feature information in the
form of hand drawn contours in images.
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