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Abstract Surface blending with tangential continuity is 
most widely applied in computer aided design, 
manufacturing systems, and geometric modeling. In this 
paper, we propose a new blending method to effectively 
control the shape of blending surfaces, which can also 
satisfy the blending constraints of tangent continuity 
exactly. This new blending method is based on the concept 
of swept surfaces controlled by a vector-valued fourth 
order ordinary differential equation (ODE). It creates 
blending surfaces by sweeping a generator along two 
trimlines and making the generator exactly satisfy the 
tangential constraints at the trimlines. The shape of 
blending surfaces is controlled by manipulating the 
generator with the solution to a vector-valued fourth order 
ODE. This new blending methods have the following 
advantages: 1). exact satisfaction of 1C  continuous 
blending boundary constraints, 2). effective shape control 
of blending surfaces, 3). high computing efficiency due to 
explicit mathematical representation of blending surfaces, 
and 4). ability to blend multiple (more than two) primary 
surfaces.  
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1 Introduction 
 
Surface blending is widely used in many applications such 
as computer-aided design, manufacturing systems, and 
geometric modeling to achieve a smooth transition between 
two or more separate primary surfaces for strength, 
manufacturing, aesthetic and usage purposes. Due to its 
wide range of applications, various surface blending 
approaches have been proposed. 
Among existing surface blending approaches, tangent 
continuous surface blending is most widely applied since it 
can meet the requirements of the majority of applications 
and is easy to create. For tangent continuous surface 
blending, an important issue is how to achieve both 
effective shape control and at the same time exact 
satisfaction of tangent continuity, since both requirements 
are extremely important as discussed below.  
Exact satisfaction of blending boundary constraints can 
guarantee a smooth transition between primary and 
blending surfaces. Such a smooth transition can lead to 
smooth movements and avoid undesirable impact. Here, we 
take a car as an example to demonstrate this. The car 
moves along a straight path consisting of two segments 

)(1 uC  and )(2 uC . If the transition between )(1 uC  and )(2 uC  
is 1C  continuous, we have uuCuuC ∂∂=∂∂ )()( 21 . It indicates 
that when the car moves from )(1 uC  to )(2 uC , the velocity 
of the car will not change which guarantees a smooth 
movement and avoids the impact caused by the abrupt 
velocity change. In contrast, if the transition between )(1 uC  
and )(2 uC  is not 1C  continuous, uuCuuC ∂∂≠∂∂ )()( 21 , when 
the car moves from )(1 uC  to )(2 uC , the velocity of the car is 
suddenly changed which causes an undesirable impact and 
an unsmooth movement.  
Shape control is required in many situations. Desirable 
shapes of blending surfaces can lead to a better 
performance such as a more uniform stress distribution in 
engineering applications or a more pleasing appearance for 
aesthetic purpose.   
In existing work, shape manipulation of blending surfaces 
is usually achieved by adjusting the magnitude of blending 
boundary tangents. In order to ensure the continuity of both 
the direction and magnitude of blending boundary tangents, 
new shape control handles have to be introduced which is 
not an easy task. In this paper, we will address this issue 
with a new blending method. It constructs 1C  continuous 
blending surfaces with a controllable shape by sweeping a 
three-dimensional curve called a generator along two three-
dimensional trajectories called the trimlines. Positional and 
tangential continuities at the trimlines will be satisfied 

mailto:lyou@bournemouth.ac.uk
mailto:jzhang@bournemouth.ac.uk
mailto:H.Ugail@Bradford.ac.uk
mailto:bptang@cqu.edu.cn
mailto:jin@cad.zju.edu.cn
mailto:lawrenceyoux@googlemail.com


2  

exactly. The shape of the generator is controlled by a 
vector-valued fourth order ODE.  
The rolling-ball blending is very popular in connecting two 
separate primary surfaces smoothly. With this blending 
method, shape control is achieved by changing the radius 
of the rolling ball. However it can fail when two boundary 
curves (trimlines) of a blending surface are specified. Our 
proposed method can solve this problem effectively by 
simply adjusting the values of shape control parameters 
involved in the vector-valued ODE. 
The partial differential equation (PDE) based surface 
blending is especially suitable for the smooth connection 
between two separate primary surfaces. However, such a 
blending method has two weaknesses: 1). it is difficult to 
blend more than two separate primary surfaces, 2). for 
complicated surface blending problems, analytical 
solutions of PDEs do not exist. Numerical solutions or 
approximate solutions of PDEs are the only choices which 
result in more computational cost. In contrast, ODE swept 
surface-based blending can blend multiple (more than two) 
primary surfaces and is very efficient in generating 
required blending surfaces.  
In what follows, we firstly review the related work in 
Section 2. Then, we investigate the mathematical model 
and an analytical solution of curve-based surface blending 
in Section 3 and give other analytical solutions in 
Appendix A. Next, we implement and validate our 
proposed analytical solutions in Section 4, and investigate 
shape control of blending surfaces in Section 5. Finally, we 
use an example to demonstrate the application of our 
proposed approach in blending more than two primary 
surfaces in Section 6, and conclude the work given in this 
paper in Section 7.  
 
 
2 Related work 
 
There are many publications on surface blending [1]. In 
this section, we only briefly review some popular 
approaches and those which are closely related to the work 
given in this paper. 
Rolling-ball blending is the most popular method. It was 
proposed by Rossignac and Requicha [2]. Rolling-ball 
blending can be used to blend both implicit and parametric 
surfaces. Depending on whether the radius of the rolling 
ball changes or not, rolling-ball blending can be divided 
into constant-radius [2-6] and variable-radius [7-9] blends. 
Recently, Whited and Rossignac introduced the concept of 
relative blending and a set theoretic formulation for 
variable-radius blending [10].   
Blending surfaces constructed with the rolling ball methods 
are circular. Some other blending methods can create 
noncircular blending surfaces such as branching blends 
with Pythagorean normal surfaces [11], vertex blending 
using S-patches [12, 13], N-sided hole filling [14-20], and 
the following partial differential equation-based blends. 
Surface blending using partial differential equations is an 
effective approach especially in dealing with various 
blending problems between two primary surfaces. With 
such an approach, a blending surface can be constructed 
from the solution to a vector-valued PDE which satisfies 
the positional, tangential or higher order continuities at 

trimlines. PDE-based surface blending was pioneered in 
[21]. Since analytical solutions to PDEs are difficult to 
obtain, numerical and approximate analytical solutions 
were investigated. Li [22, 23] and Li and Chang [24] 
proposed boundary penalty finite element methods of 
surface blending. Bloor and Wilson developed a 
perturbation method to generate blending surfaces [25]. 
They also investigated a pseudo-spectral method for the 
construction of regular 4-sided patches [26]. You et al. 
presented approximate analytical methods [27, 28]. In 
addition to partial differential equation-based surface 
blending, solid modelling using partial differential 
equations has also been investigated in [29, 30]. 
PDE-based surface blending methods involve two 
parametric variables. They are very difficult to solve and 
have low efficiency. In contrast, ODE-based approaches 
involve one parametric variable only. They are very easy to 
solve and have high efficiency. Due to this reason, ODE-
based approaches have been applied in shape manipulation 
[31] and skin deformation determination [32, 33].  
The work given in this paper will introduce ODE-based 
approaches into surface blending to develop a swept 
surface and use the surface to achieve surface blending 
with shape control and exact satisfaction of 1C  continuity. 
 
 
3 Mathematical model and solution 
 
For parametric representation of 1C  continuous blending 
surfaces, tangential continuity is defined by first partial 
derivatives of primary surfaces at the trimlines. Therefore, 
blending boundary constraints for surface blending with 
positional and tangential continuities can be written as, 

)(),(           )(),(          1

)(),(          )(),(         0

11

00

v
u

vuvvuu

v
u

vuvvuu

CSCS

CSCS 

=
∂

∂
==

=
∂

∂
==

             (1) 

where the vector-valued function 
[ ]Tzyx vuSvuSvuSvu ),(),(),(),( =S  is the mathematical 

representation of a blending surface, u  and v  are 
parametric variables, and [ ]Tzyx vCvCvCv )()()()( 0000 =C  

and [ ]Tzyx vCvCvCv )()()()( 1111 =C   are vector-valued 

positional functions, and [ ]Tzyx vCvCvCv )()()()( 0000 =C and 

[ ]Tzyx vCvCvCv )()()()( 1111 =C   are first partial derivatives of 
primary surfaces at the trimlines.  
The functions )(0 vC , )(0 vC , )(1 vC  and )(1 vC  in blending 
boundary constraints (1) can be determined below.  
If the trimline )(viC   ( i = 0 or 1) is an isoparametric line of 
a primary surface ),( vuiP  where u  and v  are two 
parametric variables, )(viC  can be easily determined by 
taking the parametric variable u  to be the parametric value 

mu  of the isoparametric line, i.e., ),()( vuv mii PC = . Similarly, 
the first partial derivative of the primary surface at the 
isoparametric line can be formulated as uvuv mii ∂∂= ),()( PC  
( i = 0 or 1).  
If the trimline is not an isoparametric line of a primary 
surface ),( tsiP  where s  and t  are two parametric variables, 
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the trimline is determined by )())()(()( vv,tvsv iii PPC ==  and 
the tangent )()( vv ii TC = on the trimline is determined by 

[ ]( ) [ ]( )dvdstvtvsdvdtsvtvsv iii ∂∂+∂∂−= ))(,)(())(,)(()( PPT  where v  
is a curve parameter [34].  
In order to manipulate the shape of blending surfaces, the 
parameters which affect the shape but have no influence on 
the blending boundary constraints should be introduced 
into the mathematical representation of the blending 
surfaces. A vector-valued ODE provides an effective way 
of introducing such parameters due to the following reason. 
The geometric representation of the solution to a vector-
valued ODE is a three-dimensional curve and a blending 
surface can be created by sweeping the curve (generator) 
along two trimlines and exactly satisfying the boundary 
tangent at the trimlines at the same time. The parameters 
involved in the ODE have an influence on the shape of the 
curve and can be used as shape control handles of the 
blending surface. In this paper, blending surfaces created 
with this approach are called ODE blending surfaces.   
Since fourth order ODEs involve four unknown constants 
which can be used to satisfy the four positional and 
tangential functions in Eq. (1), we propose to use the 
following vector-valued equation for surface blending with 
positional and tangential continuities. 

0)()()(
2

2

4

4
=++ u

du
ud

du
ud GGG γβα                    (2) 

where [ ]Tzyx uGuGuGu )()()()( =G  is a vector-valued 
function defining a generator used to create swept surfaces, 
and α , β  and γ  are called shape control parameters used 
as shape control handles for the generator.   
The vector-valued ODE (2) can be changed into an 
algebraic equation by taking each component of the vector-
valued function of the generator to be  
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Substituting Eq. (3) and the second and fourth derivatives 
of )(uG  with respect to the parametric variable u  into Eq. 
(2) and deleting rue , the following algebra equation is 
reached, 

024 =++ γβα rr                            (4) 
Depending on different combinations of shape control 
parameters, Eq. (4) has different solutions. Here we only 
give the solution for αγβ 42 =  and 0/ <βα . All other 
solutions are given in Appendix A. 
For αγβ 42 =  and 0/ <βα , solving the nonlinear algebra 
equation (4), we obtain the following roots,  

14,3,2,1 qr ±=                              (5)   
where  

)2/(1 αβ−=q              (6) 
With the roots given in Eq. (5), the solution to Eq. (2) can 
be written as, 

uquququq ueeueeu 1111 4321)( −− +++= ddddG                 (7) 
where 1d , 2d , 3d  and 4d  are vector-valued unknown 
constants. 
In order to determine the unknown constants in Eq. (7), we 
substitute it into Eq. (1), conduct the sweeping operation by 

solving for the four vector-valued unknown constants 1d , 
2d , 3d  and 4d , and obtain, 

   

[ ]
[ ]

[ ]
[ ]

[ ] 0121211

021212210104

021212203

01212112

02121221

/)()(         
/)()(2)()(

/)()()(
/)()(
/)()(

avava
avavaqvqv

avavav
avava
avava

ff
ffCCd

ffCd
ffd
ffd

−−
−−+=

−−=
−=
−=

         (8) 

where, 
211222110 aaaaa −=                                      (9) 

and, 
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Substituting Eq. (8) back into Eq. (7), the mathematical 
equation of swept surfaces for αγβ 42 =  and 0/ <βα  can be 
written as, 

{
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where,  
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and,  
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With the same treatment, we derive other analytical 
solutions (A4), (A9) and (A15) of Eq. (2) in Appendix A. 
Using these obtained solutions (11), (A4), (A9) and (A15), 
we can tackle various surface blending problems with 
effective shape control and exact satisfaction of positional 
and tangential continuities at trimlines. We will 
demonstrate this with some examples given in the 
following sections. 
Since the boundary constraints )(0 vC , )(0 vC , )(1 vC  and 

)(1 vC  are explicitly incorporated in the mathematical 
expressions (11), (A4), (A9) and (A15) of the blending 
surfaces, the main task of surface blending is to determine 
the boundary curves )(0 vC  and )(1 vC  and first partial 
derivatives )(0 vC  and )(1 vC at the boundary curves which 
can be readily obtained from the primary surfaces as 
discussed at the beginning of this section. Therefore, our 
proposed surface blending method is easy to use.  
Once the blending boundary constraints at the trimlines are 
known, blending surfaces are analytically determined from 
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one of Eqs. (11), (A4), (A9) and (A15), leading to high 
computational efficiency. Even boundary constraints are 
represented at the discrete points at the trimlines, our 
proposed method can also construct blending surfaces 
quickly because of the explicit mathematical expressions of 
blending surfaces. 
 
 
4 Implementation and validation 
 
In this section, we implement our proposed method and 
validate it with various surface blending tasks.  
The first task is to create a blending surface between an 
open surface and a closed conic surface. This example is 
used to validate Eq. (11) in surface blending. Denoting 

[ ]Tyyx SSSvu == ),(SS , the boundary constraints for this 
blending task can be written as,   
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Substituting the vector-valued functions )(0 vC , )(0 vC , 
)(1 vC  and )(1 vC  determined by Eq. (14) into Eq. (11), and 

setting shape control parameters to: 1== γα , and 2−=β , 
the blending surface is obtained and depicted in Fig. 1 
where Fig. 1(b) and Fig. 1(c) are from different views of 
the blending surface in Fig. 1(a). The images given in 
Figure 1 clearly show that the upper and bottom primary 
surfaces are smoothly connected together through the in-
between blending surface which demonstrates successful 
applications of Eq. (11) in surface blending. 
The second blending task is to generate a blend between a 
circular torus and an elliptic hyperboloid. This blending 
task is used to validate Eq. (A4) in surface blending. The 
boundary constraints for this blending task are 

             
                        a                                           b                                

 
c 

Fig. 1 Blending surface constructed with Eq. (11) 
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For this blending task, we set the shape control parameters 
to: 1== γα  and 2=β . The obtained blending surface was 
depicted in Fig. 2 where Fig. 2(a) is from the front view 
and Fig. 2(b) is from the side view.  

    
                            a                                         b 

Fig. 2 Blending surface constructed with Eq. (A4) 
 
The third example is to construct a blending surface 
between two conic frustums: one has some wrinkles on its 
surface and the other has a circular cross section. This 
example is used to validate Eq. (A9) in surface blending. 
The boundary constraints for this blending task are,  
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                  a                                                      b 
Fig. 3 Blending surface constructed with a). Eq. (A9), and 
b). Eq. (A15) 
 
Setting the shape control parameters to: 1== γα  and 3=β , 
the obtained blending surface was depicted in Fig. 3a.  
The fourth example is to produce a blending surface 
between a circular cylinder and an elliptic cylinder of two 
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sheets. This example is used to validate Eq. (A15) in 
surface blending. The boundary constraints for this 
blending task can be written as, 
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With Eqs. (A15) and (17), and setting the shape control 
parameters to: 1=== γβα , the generated blending surface 
is given in Fig. 3b where the left one is from the front view 
and the right one is from the side view.  
The last example is to blend two intersecting cylinders. It is 
used to demonstrate the application of our proposed 
approach in complicated surface blending tasks. The 
boundary constraints for this blending task are 
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where 1ξ , 2ξ , 3ξ  and 4ξ  are the geometric parameters 
defining the two boundary curves. 

 
Fig. 4 Blending surface between two intersecting cylinders 

 
Using Eqs. (11) and (18), and setting the shape control 
parameters to: 1== γα  and 2−=β , the generated 
blending surface is shown in Fig. 4. This example 
indicates that our proposed approach solves the complex 
surface blending problem successfully. 
 
 
5 Shape control of blending surfaces  

The biggest advantage of our proposed blending 
approach is that it not only controls the shape of the 
blending surfaces effectively but also satisfies the same 
blending boundary constraints exactly. We will use an 
example below to demonstrate this. This example is to 
blend a petal-like surface to the frustum of an elliptic 
cone. The boundary constraints for this example are,   
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Inserting Eq. (19) into Eq. (A15), when we set the shape 
control parameters to: 1== γα , and 5.0=β , the obtained 
blending surface was indicated in Fig. 5(a). If we changed 
these shape control parameters to: 7.3=α , 5.2=β  and 1=γ , 
the blending surface given in Fig. 5(b) was produced. The 
blending surface shown in Fig. 5(c) was created by setting 
the shape control parameters to: 7.3=α , 2=β  and 18=γ , 
and that presented in Fig. 5(d) was achieved by setting the 
shape control parameters to: 2=α , 5.0=β , and 1=γ .  

             
                    a                                                  b 

                             
                   c                             d    

                                                 
e                                                                               

Fig. 5  Blending surfaces created with different shape 
control parameters (a)  1== γα , 5.0=β , (b) 7.3=α , 5.2=β , 

1=γ , (c) 7.3=α , 2=β , 18=γ , (d) 2=α , 5.0=β , 1=γ , (e) 
profile curves of Fig. 4(a)-4(d) 
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In order to demonstrate the shape changes of the blending 
surface depicted in Fig. 5(a)-5(d) more clearly, we gave the 
profile curves of the blending surface in Fig. 5(e) where the 
profile curves in blue, green, purple and red are from Fig. 
5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d), respectively. 
The images in Fig. 5(a)-5(e) indicate that shape control 
parameters are very effective in controlling the shape of 
blending surfaces. By manipulating these shape control 
parameters, the shape of blending surfaces is controlled 
effectively while the continuities at the trimlines between 
the blending surface and primary surfaces keep unchanged 
due to the same blending boundary constraints.  
Now, we investigate the relationships between shape 
control parameters and the shape of blending surfaces. In 
order to exclude the influence of blending boundary 
tangents on blending surfaces, we keep the blending 
boundary constraints (19) unchanged. 
First, we fix the second and third shape control parameters 

1== γβ , take the first shape control parameter 1=α , and 
obtain the red profile curve of the blending surface shown 
in Fig. 6(a). Next, we change the first shape control 
parameter to 2=α , the green profile curve of the blending 
surface is generated. Further raising the shape control 
parameter to 5.2=α , the blue profile curve of the blending 
surface is created. These profile curves indicate that raising 
the first shape control parameter, the whole blending 
surface becomes uniformly more concave. 

 
                      a                                                b  

 
                                                c                                                                                                    
Fig. 6  Relationships between shape control parameters and 
the shape of blending surfaces (a) 1== γβ , 1=α (red 
profile), 2=α (green profile), 5.2=α (blue profile), (b) 

1== γα , 1.0=β  (red profile), 5.1=β  (green profile), 3=β  
(blue profile), (c) 1== βα , 1.0=γ  (red profile), 3.0=γ  
(green profile), 5.0=γ (blue profile) 

 
Next, we fix the first and third shape control parameters 

1== γα . When the second shape control parameter is set to 
1.0=β , the red profile curve indicated in Fig. 6(b) is 

produced. Increasing the parameter to 5.1=β  and 3=β , 
respectively, the green and blue profile curves of the 
blending surface are obtained. These profile curves 
demonstrate that increasing the second shape control 
parameter, the blending surface becomes less concave. 
When the increase of the parameter is small ( 5.1=β ), the 
influence mainly occurs in the lower part of the blending 

surface. However, when the parameter is large ( 3=β ), the 
influence becomes more uniform.  
Finally, we fix the first and second shape control 
parameters 1== βα , and change the third shape control 
parameter only. When the third shape control parameter is 
set to 1.0=γ , the achieved red profile curve of the blending 
surface is depicted in Fig. 6(c). Changing the third shape 
control parameter to 0.3 and 0.5, respectively, the green 
and blue profile curves are created and shown in the same 
figure. These profile curves suggest that increasing the 
third shape control parameter, the blending surface 
becomes more concave. When the increase is not big (

3.0=γ ), the influence of the parameter on the top part of 
the blending surface is more significant. However, when 
the increase becomes larger ( 5.0=γ ), the influence changes 
to more uniform.      
Apart from its advantage of effective shape manipulation 
and exact satisfaction of 1C continuous boundary 
constraints, our method can also create blending surfaces 
quickly. On a laptop with a 1.66 GHz CPU and using 

100100×  uniformly distributed surface points, our approach 
took 0.063 second to generate the blending surface in Fig. 
5(a), suggesting that our proposed approach can create 
blending surfaces fast.   
 
 
6 Blending among more than two primary surfaces 
 
Our proposed approach is not only powerful in blending 
two primary surfaces, but also effective in constructing 
blending surfaces connecting more than two primary 
surfaces, which is usually a difficult task for existing 
surface blending approaches such as PDE-based surface 
blending. We demonstrate the effectiveness of our 
approach with an example below. 
In this example, we blend three planes shown in Fig. 7(a). 
The blending operation is divided into two steps. In the 
first step, we construct blending surfaces between the top 
and front planes, between the top and side planes, and 
between the front and side planes. In the second step, we 
create a blending surface between the three constructed 
blending surfaces.  
The boundary constraints for the surface blending between 
the top and front planes can be written in the following 
form, 
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The boundary constraints used to construct the blending 
surface between the top and side planes can be written as , 
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               a                               b                               c 
Fig. 7  Blending among more than two separate primary 
surfaces 
 
Similarly, the boundary constraints employed to construct 
the blending surface between the front and side planes take 
the form of, 
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In the above equation, 0y , 0z , xl , yl , zl  and r  are 
geometric parameters used to define the top, front and side 
planes. 
Taking the geometric parameters in the above equations to 
be: 10 === zx lly , 5.00 =z , 2.1=yl  and 25.0=r , and setting 
the shape control parameters to: ,1== γα  and 2=β , we 
constructed the blending surfaces between these planes 
using Eq. (A4) and depicted these blending surfaces in Fig. 
7(b). 
Finally, we generate the blending surface between the three 
constructed blending surfaces shown in Fig. 7(b). This 
blending surface is a 3-sided patch. The boundary 
constraints for this 3-sided patch were determined below.  
The top boundary at 0=u  for this blending problem is a 
point which is determined by setting 0=u  and 1=v  in Eq. 
(A4) of the blending surface between the top and front 
planes, i. e., )1,0(TFS  or by setting 0=u  and 0=v  in Eq. 
(A4) of the blending surface between the top and side 
planes, i. e., )0,0(TSS  where the superscripts TF and TS  
indicate the blending surface between the top and front 
planes and between the top and side planes, respectively. 
Although the top boundary of the 3-sided patch is a point, 
the boundary tangent changes continuously from that 

determined by ),( vuTFS  to the one determined by ),( vuTSS , 
i. e., from uTF ∂∂= )1,0(0 ST  to uTS ∂∂= )0,0(1 ST . The 
boundary tangent )(vtT  at any position v  can be obtained 
by interpolating 0T  and 1T  which is ( ) )()( 010 vlvt TTTT −+=  
where the superscript t  indicates the top boundary and )(vl  
is the normalized arc length of the bottom boundary curve.  
The normalized arc length of the bottom boundary curve 
can be determined as follows. First, we calculate the total 
length of the bottom boundary curve with the equation 
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222

)1,()1,()1,(  where 

)1,(uFSS  is the vector-valued representation of the bottom 
boundary curve and the superscript FS  indicates the 
blending surface between the front and side planes. Then, 
we calculate the length of the bottom boundary curve from 

0=u  to any position u  which is 

[ ] [ ] [ ] duduudSduudSduudSuL u FS
z

FS
y

FS
x∫ ++= 0

222
)1,()1,()1,()( . The 

normalized arc length )(vl  of the bottom boundary curve is 
determined by LvLvl )()( =  where the parametric variable u  
in )(uL  has been replaced by the parametric variable v . 
The bottom boundary is a curve represented by 

)1,()( uu FSb SC =  where the superscript b  indicates the 
bottom boundary of the 3-sided blending surface. The 
boundary tangent at the bottom boundary is determined by 

vuu FSb ∂∂= )1,()( ST .  
When constructing the 3-sided blending surface, the 
parametric direction u  for the bottom boundary is changed 
into the parametric direction v . Accordingly, the boundary 
curve and boundary tangent for the bottom boundary 
become )(vbC  and )(vbT .  
With the above treatment, the boundary constraints for the 
3-sided blending surface are represented by 
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    (23) 

Still using the same shape control parameters, we obtained 
the 3-sided blending surface and depicted it in Fig. 7(c). 
This example demonstrates that our proposed approach can 
blend more than two primary surfaces easily and 
effectively.  
 
 
7 Conclusions  
 
Based on swept surfaces controlled by a vector-valued 
fourth order ODE, we have developed a new surface 
blending method to achieve effective shape control of 
blending surfaces and exact satisfaction of both positional 
and tangential continuity constraints. With this method, the 
generator used to construct blending surfaces is created 
with the analytical solutions to the ODE and its shape is 
manipulated by the shape control parameters involved in 
the ODE. Blending surfaces are generated by sweeping the 
generator along two three-dimensional trajectories and 
making it exactly satisfy the positional and tangential 
constraints at the trimlines. A number of examples were 
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presented to demonstrate the applications of our proposed 
approach in surface blending. 
Due to the analytical nature of our approach, it can 
generate various blending surfaces very efficiently. Since 
blending boundary constraints are explicitly included in the 
mathematical expressions of the blending surfaces, our 
proposed approach is easy to use. By making blending 
surfaces exactly meet the constraints of boundary curves 
and first partial derivatives at the boundary curves, 1C  
continuous surface blending is achieved. The shape of the 
blending surfaces constructed with our proposed approach 
is controlled effectively by simply manipulating the shape 
control parameters while maintaining the same continuities 
at the trimlines. Apart from its capacity in creating a 
blending surface between two primary surfaces, it is also 
effective in blending more than two primary surfaces 
together.  
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Appendix A:  Other analytical solutions of Eq. (2)   
 
For αγβ 42 =  and 0/ >βα , solving the nonlinear algebra 
equation (4), the following roots are found,  

24,3,2,1 iqr ±=                         (A1) 

where i  is an imaginary unit and,  
)2/(2 αβ=q                         (A2) 

With the roots given in Eq. (A1), the analytical solution to 
Eq. (2) becomes, 

uquuquuququ 24232221 sincossincos)( ddddG +++=       (A3) 
where 1d , 2d , 3d  and 4d  are vector-valued unknown 
constants. 
In order to determine the unknown constants in Eq. (A3), 
we perform the same sweeping operation by substituting it 
into Eq. (1), and solving for the four unknown constants 1d

, 2d , 3d  and 4d . Then, we substitute the unknown 
constants back into Eq. (A3), and obtain, 
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For αγβ 42 > , solving the nonlinear algebra equation (4) 
gives the following roots, 
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where i  is an imaginary unit and,  
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With the roots given in Eq. (A7), the analytical solution to 
Eq. (2) takes the form of, 

uququququ 44433231 sincossincos)( ddddG +++=         (A8) 
where 1d , 2d , 3d  and 4d  are vector-valued unknown 
constants. 
Same as above, we substitute Eq. (A8) into Eq. (1), carry 
out the sweeping operation, and determine the four 
unknown constants 1d , 2d , 3d  and 4d . After substituting 
these unknown constants back to Eq. (A8), the 
mathematical equation of blending surfaces becomes, 
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For αγβ 42 < , solving the nonlinear algebra equation (4) 
generates the four roots below, 

654,3,2,1 iqqr ±±=               (A12) 

where i  is an imaginary unit and,  
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With the roots given in Eq. (A13), the solution to Eq. (2) is 
found to be, 
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where 1d , 2d , 3d  and 4d  are vector-valued unknown 
constants. 
Substituting Eq. (A14) into Eq. (1) and doing the sweeping 
operation, the 4 unknown constants are determined and 
blending surfaces satisfying Eqs. (1) and (2) are found to 
be, 
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and, 
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