Skip to main content

Fast Multiple-Fluid Simulation Using Helmholtz Free Energy.

Yang, T., Chang, J., Ren, B., Lin, M.C., Zhang, J. J. and Hunter, S., 2015. Fast Multiple-Fluid Simulation Using Helmholtz Free Energy. ACM Transactions on Graphics, 34 (6), 201.

Full text available as:

SIGA2015.pdf - Accepted Version


DOI: 10.1145/2816795.2818117


Multiple-fluid interaction is an interesting and common visual phenomenon we often observe. In this paper, we present an energybased Lagrangian method that expands the capability of existing multiple-fluid methods to handle various phenomena, such as extraction, partial dissolution, etc. Based on our user-adjusted Helmholtz free energy functions, the simulated fluid evolves from high-energy states to low-energy states, allowing flexible capture of various mixing and unmixing processes. We also extend the original Cahn-Hilliard equation to be better able to simulate complex fluid-fluid interaction and rich visual phenomena such as motionrelated mixing and position based pattern. Our approach is easily integrated with existing state-of-the-art smooth particle hydrodynamic (SPH) solvers and can be further implemented on top of the position based dynamics (PBD) method, improving the stability and incompressibility of the fluid during Lagrangian simulation under large time steps. Performance analysis shows that our method is at least 4 times faster than the state-of-the-art multiple-fluid method. Examples are provided to demonstrate the new capability and effectiveness of our approach.

Item Type:Article
Additional Information:Proceedings of ACM SIGGRAPH Asia 2015
Group:Faculty of Science & Technology
ID Code:22771
Deposited By: Symplectic RT2
Deposited On:26 Oct 2015 12:09
Last Modified:14 Mar 2022 13:53


Downloads per month over past year

More statistics for this item...
Repository Staff Only -