
1

Adaptive Preprocessing for Streaming Data
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Abstract—Many supervised learning approaches that adapt to changes
in data distribution over time (e.g. concept drift) have been developed.
The majority of them assume that data comes already pre-processed
or that pre-processing is an integral part of a learning algorithm. In real
application tasks data that comes from, e.g. sensor readings, is typically
noisy, contains missing values, redundant features and very large part
of model development efforts are devoted to data pre-processing. As
data is evolving over time, learning models need to be able to adapt
to changes automatically. From practical perspective automating a pre-
dictor makes little sense if pre-processing requires manual adjustment
over time. Nevertheless, adaptation of pre-processing has been largely
overlooked in research. In this paper we introduce and address the
problem of adaptive pre-processing. We analyze when and under what
circumstances it is beneficial to handle adaptivity of pre-processing and
adaptivity of the learning model separately. We present three scenarios
where handling adaptive pre-processing separately benefits the final
prediction accuracy and illustrate them using computational examples.
As the result of our analysis we construct a prototype approach for
combining adaptive pre-processing with adaptive predictor online. Our
case study with real sensory data from a production process demon-
strates that decoupling the adaptivity of pre-processing and the predictor
contributes to improving the prediction accuracy. The developed refer-
ence framework and our experimental findings are intended to serve
as a starting point in systematic research of adaptive pre-processing
mechanisms for adaptive learning with evolving data.

1 INTRODUCTION

A lot of research effort has been dedicated to making
predictive models adapt to changing environment over
time and lately the attention to such learning scenarios
has been rapidly increasing [1]–[6]. As data evolves over
time, predictors need to have opportunities to update or
retrain themselves, otherwise they will become less ac-
curate. The majority of adaptive predictors assume that
data comes already pre-processed or that pre-processing
is an integral part of a learning algorithm.

In real applications pre-processing is a very impor-
tant step of data mining process, as real data often
comes from complex environments and is often noisy
and redundant. Data mining practitioners claim (e.g.
[7]) that data preparation takes 80 − 90% of a data
mining project time, which means that modeling can
take as little as 10%. In contrast, in adaptive learning
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research publications data pre-processing is surprisingly
understudied or gets low priority in comparison to de-
signing adaptive predictors. As changes in data happen,
adapting only predictor may not be enough to maintain
a good accuracy over time, as we will see from our
examples and the case study with a real production
data. Moreover, if we do not adapt pre-processing, our
adaptive predictor may fail and in some cases give
even worse results than non-adaptive predictors. Finally,
designing automatically adaptive predictors makes little
sense from practical perspective if pre-processing needs
to be adjusted manually as time passes.

The most obvious approach to automate pre-
processing in adaptive learning is to keep pre-processing
tied with adaptive predictors, which can be done in two
cases. The first option is to reserve a validation set at
the beginning, optimize the pre-processing parameters
on that validation set and keep the pre-processing fixed
for the lifetime of the model. Only the predictor itself
would adapt over time. The problem with this approach
is that the system may easily fail to notice changes that
happen in the raw data, and thus fail to adapt. Consider
a chemical production process where input data comes
from sensors and the goal is to predict the output quality.
When a sensor gets old its readings may become noisy
and non informative, thus the reading of this sensor
may not be selected during the feature selection step.
Suppose after some time this old sensor gets replaced,
and the readings become more relevant to prediction.
However, as we fixed the selection of features at the
beginning, we no longer have this sensor in our feature
space thus we lose an opportunity to adapt and improve
our predictions.

The second option is to redo all pre-processing from
scratch every time the predictor is retrained. This ap-
proach requires the retraining of pre-processing and a
predictor to be synchronized. That may be problematic
if, for instance, preparing an accurate pre-processing
requires more data than training a predictor. That may be
even infeasible in cases when an incrementally adaptive
predictor is used, which updates its parameters with
every new instance. Last but not least, redoing the pre-
processing on every data chunk may introduce unneces-
sary computational costs.

We investigate how to integrate adaptivity of pre-
processing with adaptivity of a predictor in evolving
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streaming data. We demonstrate that it may be bene-
ficial to handle adaptive pre-processing and adaptive
predictors separately. Our study makes a threefold con-
tribution. Firstly, we formulate the concept of adaptive
pre-processing that has been overlooked in developing
adaptive learning models. Pre-processing is an essential
step in developing real world applications and it also
needs to be adaptive. This paper is the first attempt
to provide a systematic view towards pre-processing
in adaptive learning. Secondly, we develop a reference
framework for adaptive pre-processing that connects
online learning scenarios with potential benefits from
adaptive pre-processing and approaches to make pre-
processing adaptive. Within this framework tailored
adaptive pre-processing approaches can be designed.
A prototype adaptive pre-processing approach, that we
develop following the reference framework and evaluate
with a real sensor data from production process, is the
third contribution.

The remainder of the paper is organized as follows.
Section 2 presents our reference framework for adaptive
pre-processing. In Section 3 we analyze three scenarios
of adaptive pre-processing resulting from our framework
employing synthetic toy examples. Section 4 introduces
a prototype system that is able to perform adaptive
pre-processing in separation from adaptive predictor.
We experimentally evaluate our prototype in Section 5.
Finally, Section 6 discusses related work and Section 7
concludes the study.

2 REFERENCE FRAMEWORK FOR ADAPTIVE
PRE-PROCESSING

To provide a motivation for decoupling adaptive pre-
diction and adaptive pre-processing, we examine what
types of adaptive learning are available and in what
ways they may interact with pre-processing. By adap-
tive pre-processing we mean that the adaptivity of pre-
processing is not tied to the adaptivity of the learn-
ing model. Our reference framework for adaptive pre-
processing includes four main elements: (1) categoriza-
tion of pre-processing techniques, (2) characterization of
changing environment, (3) characterization of adaptive
learning and (4) the scenarios for interaction between
adaptive predictors and adaptive pre-processing in a
changing environment, which is the connecting element.

We first define the setting of the study and then
introduce the elements of our reference framework.

2.1 Setting
This study of adaptive pre-processing is restricted to
supervised learning scenarios. Let X be an instance in d-
dimensional space and let y be its label (target variable).
The goal in traditional supervised learning is to learn a
model y = L(X) and use it for predicting the labels of
unseen data.

In adaptive learning the data arriving over time forms
a data stream X1, X2, . . . , Xt, . . .. We can use L for

all predictions. Alternatively, when the true labels ar-
rive shortly after we cast the prediction, we have an
opportunity to regularly update the model using the
new data. The model for time t can be represented as
Lt = f(Lt−1, Xt−1, yt−1). Note that an update is optional,
i.e. it may be that Lt = Lt−1 or Lt 6= Lt−1.

Pre-processing maps data into a format that can be
more effectively used in training and applying a predic-
tor. Let X represent our raw data. The preprocessing step
makes a mapping X ′ = G(X). Then the prediction step
makes a mapping y = L(X ′). Examples of pre-processing
include: outlier detection and removal, replacing missing
values, data normalization, data rotation, feature selec-
tion or/and extraction/generation. A pre-processor and
a predictor will be referred to as a learning component.

A predictor L maps data from multi-dimensional in-
put to one-dimensional output (target variable). A pre-
processor G maps data from a multidimensional input
to a multidimensional output (e.g. using dimensional-
ity reduction techniques, such as Principal Component
Analysis (PCA) [8]). For example, a Naive Bayes clas-
sifier can serve as a prediction function, and PCA can
serve as a pre-processing function.

2.2 Types of pre-processing [Element (1)]

Pre-processing actions can be characterized by several
properties which determine the feasibility and the need
for adaptive pre-processing.

Feedback. A pre-processor G may need to be learned
on a training dataset so that it could be applied to
unseen data. Learning a pre-processor G can be super-
vised, unsupervised or independent of the data. Supervised
learning of the pre-processor means that the original
data X with its true labels y are used in the learning
process, e.g. feature selection based on correlations of
the input variables with the label. Unsupervised learning
means that only the original data X is used for learning
the pre-processor, e.g. feature extraction using principal
component analysis. Independent learning means that
only the parameters of the data, but not the data itself
are fixed in the learning process, e.g. random projection
for feature extraction [9].

Operation. A pre-processor can operate in an eager
way meaning that the parameters of G are fixed in the
process of learning and G can be applied to new data,
or lazy way, meaning that the parameters are determined
from the actual incoming new data. For instance, feature
extraction using principal component analysis [8] is an
eager pre-processing procedure, a rotation matrix can be
learned on training data and fixed. On the other hand,
handling missing values can be seen as a lazy procedure,
where, for instance, a moving average of recent values
is used to impute the missing value.

Validation. Validation of an eager pre-processor can
be organized in a direct or indirect way. Direct validation
optimizes some criterion in the process of pre-processing
itself, e.g. in feature selection based on correlation with
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Fig. 1. Variable transformation.

the target variable, maximization of the correlation is
used as the chosen criterion. Indirect validation means
that a feedback from the actual predictor is needed, for
instance, random feature subsets are formed and the
subset that leads to the best final prediction accuracy is
selected. If the predictor is itself adaptive, the feedback
over time may be noisy as the evaluation mapping L is
evolving over time.

Feature transformation. A pre-processing procedure G
may transform or preserve the original variables. For in-
stance, data rotation using PCA would transform, while
feature selection would preserve the original variables,
as illustrated in Figure 1.

Coverage. Preprocessing procedures can be global in
a sense that the same treatment is applied to every
instance, or local in a sense that every instance is treated
individually. Variable normalization to zero mean and
unit variance is an example of global preprocessing,
while imputation of missing values is an example of local
pre-processing. Missing values are imputed not for every
instance, but only for the instances where the values are
missing.

Table 1 characterizes several examples of pre-
processing techniques in terms of the discussed prop-
erties. A reader is referred to e.g. [8] for more details on
pre-processing techniques.

Note that in case of instance based pre-processing
every instance is processed individually, thus there is
no need for centralized adaptivity of the pre-processor.
Thus, our further analysis focuses on trainable pre-
processing procedure, which use eager learning and are
of global applicability, as in such a case we learn global
models, which may need to be adapted later.

2.3 Making pre-processing adaptive
Pre-processing does not operate in isolation as it is a
part of adaptive system. As the system is adapting,
models that are used by the system change over time,
in line with changes in data over time. The objective
of an adaptive system is to adapt to changes in data.
However, having more than one adaptive component
in the system introduces an extra challenge, since in
addition to adapting to changes in data each component
may need to adapt to changes in other components.

A pre-processing component in adaptive prediction
system has two main connections, as illustrated in
Figure 2. First, the pre-processor may need feedback
from the predictor to decide upon adapting and/ or
re-training itself. Second, the pre-processor produces a

Pre-
processor Predictor

2 data 
mapping

1 feedback

raw 
data

prediction

Fig. 2. Pre-processing and prediction in adaptive system.

mapping that transforms the raw data, which is then
used by the predictor. Thus, when deciding whether to
decouple adaptivity of pre-processing and adaptivity of
the predictor the consistency of the two links needs to
be assessed and handled, i.e.:

1) consistency of feedback over time, and
2) consistency of feature mapping over time.
Handling the first issue is essential, since adaptivity

of the predictor may contaminate the feedback, based
on which the pre-processor decides whether and when
to adapt, and this feedback is needed for updating of
the pre-processor. As mentioned earlier, learning of the
pre-processor may be supervised, unsupervised or inde-
pendent from the actual data. Validation of the learning
can directly optimize a chosen criterion, or indirectly
use the prediction error for validation. Learning that is
independent from feedback (such as random projection
method [9]) is expected to be consistent and robust to
evolution of the predictor, thus changes in the link #1
would not cause problems to the system.

Unsupervised learning (such as PCA [8]) is expected to
be consistent and robust if it is learned using a direct val-
idation procedure and parameters are optimized directly.
In such cases evolution of the predictor would not cause
any problems for the pre-processor, as the link #1 will
not be active. However, if an unsupervised learning of
the pre-processor uses a predictor for indirect validation
(e.g. to decide how many principal components of PCA
to keep several options are tested with the actual predic-
tor and the option that minimizes the validation error is
selected), then due to the link #1 the performance of
the pre-processor may be affected by evolution of the
predictor and the pre-processing procedure may need
to be adapted to that. The same effect of an indirect
validation is expected for supervised learning of a pre-
processor.

The link #2 is essential for assessing consistency of
feature mapping over time, since the predictor takes as
an input the output of the pre-processor. If the mapping
of that input changes, the predictor may be forced to be
retrained and that restricts possibilities for decoupling of
the two components.

2.4 Changing environment [Element (2)]

We are considering adaptive learning mechanisms for
streaming data where changes in data distributions are
expected to happen over time. These changes may be of
different types and depending on the type of changes
different adaptivity may be necessary in pre-processing



4

TABLE 1
Examples of pre-processing techniques and their properties.

Feedback Operation Validation Feature transformation Coverage
Feature selection using correlation supervised eager direct preserve global
Feature extraction using PCA unsupervised eager direct/indirect transform global
Feature extraction using random projection independent eager indirect transform global
Moving average imputation of missing values unsupervised lazy direct preserve local

and prediction. In addition, changes in the data distri-
bution can affect the whole feature space or they can be
local affecting only particular features or only particular
ranges of particular features.

Suppose data comes from a distribution p(X, y), which
may change over time. Changes in data distribution
can be described as concept drift, data evolution or both.
Figure 3 (a-d) presents a toy example that illustrates
the main types of changes. The original data (a) forms
three classes. A (real) concept drift (b) does not affect
the data distribution p(X), only the joint distribution
p(X, y) changes. Data evolution (c) changes the input
data distribution p(X), at the same time the relation
between the input variables and the targets stays the
same. In reality a concept drift and data evolution often
happen together as illustrated in (d).

In the literature [10] (real) concept drift typically refers
to changing relation between the input data and the tar-
get variable (b). Since there is no data evolution, only the
labels change, such a drift typically would not require
adaptation of the pre-processing, adapting the predictor
would be sufficient. Data evolution, also referred to as
virtual drift, is likely to require adaptation of the pre-
processor since the input data representation changes
(c). This drift in isolation, however, may not require
adaptation of the predictor, if the relation between the
concepts (classes) does not change. In such cases it may
be sufficient to adjust the pre-processing so that new data
is repositioned to appear where the old data previously
was appearing (as we will illustrate in our analysis
in Section 3). In cases where both types of drift take
place (d) we may or may not need to adapt the pre-
processing, but typically we would need to adapt the
predictor. As we will demonstrate in our analysis in
Section 3, changes in data (d) may happen in such a
way that both adaptations are required, but it may be
optimal to execute those adaptations asynchronously, i.e.
at different times after the change.

So far we have discussed the situations where changes
happen in such a way that the data ‘moves’ and new con-
cepts replace the previous ones. Data may also evolve to
cover new regions in the instance space or represent new
concepts that have not been seen before. For example,
appearance of a new class is referred to as concept evo-
lution [11] in the literature. As time passes, we observe
new data that complements the previously observed
data and we may need additional pre-processing and
prediction mechanisms, which also requires adaptive
learning.

2.5 Adaptive learning [Element (3)]
For presenting meaningful scenarios of adaptive pre-
processing we need to characterize adaptive learning
approaches. These approaches describe mechanisms be-
hind adaptive predictors, but they can be directly trans-
lated for application to adaptive pre-processors.

Adaptation of predictive models can be incremental or
use replacement, as presented in Figure 4. Incremental
approaches incorporate new data into existing models,
while replacement approaches discard the old model and
learn a new one from scratch on the new data.

Incremental learning approaches can increment at an
instance level, at batch level or at an ensemble level.
At an instance level the parameters of the model are
updated with the information extracted from one incom-
ing data point. At a batch level the parameters of the
model can only be updated after a number of incoming
data points have been seen. For instance, more than one
new data point may be needed for estimating the current
accuracy. This approach is considered to be incremental,
since the old model is not discarded to be learned from
scratch, but only updated.

Incremental learning can happen at an ensemble level,
where a new model is built with the new data chunk,
while the old models stay the same. In this case individ-
ual models are not updated incrementally. Adaptivity
is achieved by manipulating the weights of individual
models to output the final prediction.

Replacement approaches can be described as full or par-
tial. Full replacement means that given a new chunk of
data the pre-processor and the predictor are learned from
scratch. Partial replacement means that some parts of
the model are fully replaced. Consider the Naive Bayes
(NB) classifier as an example. NB makes an assumption
that the input features are independent from each other.
Thus one feature can be completely replaced, with new

ADAPTIVE
LEARNING

INCREMENTAL
update model

INSTANCE
update with

every instance

BATCH
update

in batches

ENSEMBLE
add/ remove

classifiers

REPLACEMENT
replace model

FULL
replace

all

PARTIAL
replace part
of the model

Fig. 4. Approaches of adaptive learning over time.
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(a) original distribution (b) concept drift (c) data evolution (d) concept drift and data evolution

Fig. 3. Illustration of changes in data distribution.

probability counts (obtained after a new pre-processing),
while probability counts for the other features can be
preserved. Such approach can be beneficial if the drift
happens locally not affecting the whole feature space.

2.6 Adaptive pre-processing scenarios [Element (4)]

The last element of the reference framework character-
izes the interaction between pre-processing and predict-
ing in adaptive learning. At any given point in time there
may be a need to adapt the pre-processor, the predictor,
adapt both or none. Four scenarios of interaction that
may occur in a streaming data over time are described
in Table 2.

TABLE 2
Scenarios of interaction between pre-processing and

prediction in adaptive learning.

S0 S1 S2 S3

Need to adapt pre-processing no no yes yes
Need to adapt the predictor no yes no yes

Suppose both the pre-processor and the predictor
adapt in the replacement mode. In Scenario S1 there is
no need to adapt the pre-processor, but the predictor
needs to be adapted. Such situation may occur when
the input data does not change, but the relation between
the input and the target variables changes (Figure 3b
concept drift). For example, a reader is reading news
online, he has been interested in real estate prices, but
suddenly his interest changes and real estate articles are
no longer relevant. This scenario is valid if unsupervised
pre-processing is used.

In Scenario S3 there is a need to adapt both the pre-
processor and the predictor. This may occur when the in-
put data distribution changes (Figure 3c data evolution).
For instance, in streaming news example new words may
appear. As a result a new feature extraction needs to be
performed and the predictor retrained correspondingly.

In Scenario S2 there is no need to adapt the predic-
tor, but the pre-processor needs to be adapted. Such
situation may occur when the distribution of data does
not change, but the noise on data changes. It also may
occur when the concepts move, but the relation between
concepts does not change (a variant of (d) in Figure 3).
For example, as a sensor wears off, new types of outliers

appear (or missing values appear where they were not
present before). As a result we may want to change
a mechanism for outlier detection. But the cleaned in-
stances will represent the same concept. Therefore, the
same predictor can be applied.

Finally, in scenario S0 the data is stationary and there
is no need to adapt.

When the pre-processor and the predictor adapt in
an incremental mode both models are updated at every
time step, thus we always encounter scenario S3. An
interesting situation may occur if one of the components
adapts in an incremental mode, while the other adapts
via replacement. It is not expected to be that challenging
if the pre-processing adapts in an incremental mode, but
the predictor adapts via retraining, as in such a case the
predictor would treat incremental changes in the pre-
processing output as it would treat raw changing data.
This setting would present scenarios S2 or S3 where
the pre-processor always adapts. On the other hand, the
situation where pre-processor adapts via replacement
and the predictor adapts incrementally is potentially
more challenging, since the predictor would be exposed
to a sudden concept drift induced by replacing the pre-
processor, that is not necessarily present in the real
data. Thus the systems in such situations would require
well thought through design to exploit the benefits of
adaptive pre-processing. This setting would result in
scenarios S1 or S2, where the predictor always adapts.
We will investigate this situation as one of the analytical
experiments in the next section.

Ideally an adaptive learning system should be able to
handle all the scenarios. Current approaches typically
can handle only S0 and S1. Even in those cases there
is a constant pressure on developing better performing
adaptive methods. With a little modification (online pre-
processing) some of the systems would also be able to
handle S3. However, they would be able to handle either
S1 or S3, but not both. We will explore this situation
experimentally in our next section. We are not aware of
approaches that could handle or would consider S2, and
we will also explore this scenario in the next section.

3 ANALYSIS OF DECOUPLING ADAPTIVE PRE-
PROCESSORS AND ADAPTIVE PREDICTORS
Now as we described the elements of the adaptive pre-
processing framework, let us take a closer look at situ-
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ations in which decoupling adaptivity of pre-processing
and adaptivity of the predictor in the same system makes
sense. We investigate the situations when pre-processing
needs to be adapted, but the predictor does not need
to be adapted, as represented by the scenario S2, and
the situations where there is a need for adaptivity, but
not at the same time in both components, as a part of
the scenario S3. The following situations may require
decoupled adaptivity.
Situation A: the two components require different

amount of data for training - this happens within
Scenario S3. For instance, a Naive Bayes can be
trained from a small number of data points, while
to execute PCA we will need more data.

Situation B: changes in data do not change the relation
between the concepts (classes) in data (e.g. change
in noise of data or data evolution without change
in the decision boundary), Scenario S2.

Situation C: in the incremental learning scenario (no
re-access to the historical data) changes in pre-
processing need to be introduced while the incre-
mental updates to the predictor are continuously
executed, Scenario S3 .

Next we present and analyze three classification exam-
ples that correspond to each situation. The goal of our
simulation is to demonstrate in what situations decou-
pling of adaptivity of the pre-processor and the predictor
may be beneficial to the prediction accuracy. Table 3
summarizes the settings of our analytical experiments.

We analyze the three situations with examples of syn-
thetic data. We use different pre-processing techniques to
demonstrate the scope and applicability of adaptive pre-
processing and we use the Naive Bayes classifier as the
predictor. Note that our focus is to demonstrate the situ-
ations, we are not designing algorithms for adaptive pre-
processing, thus to inspect the effects of pre-processing
alternatives these simulations use a simplifying assump-
tion that the time of a change is known.

3.1 Situation A: different amount of data is required
The first situation illustrates the case when different
amount of data is required to train the pre-processor and
to train the predictor. Consider the following example
of a binary classification task. Data points lie in 20-
dimensional space, where the first three dimensions are
relevant for classification. The classes are distributed as
Xi ∼ N (mi, C), where i is the class number and C20×20
is the covariance matrix. Details of the distribution are
given in Appendix A.

Experiment 1. Our first experiment with this scenario
demonstrates that the pre-processor and the predictor
require different amount of data for training in a static
case. Let us use PCA as pre-processing technique and
Naive Bayes as the predictor. We fix the number of
extracted principal components to four. For training
the pre-processor, training the predictor and testing the
performance we generate three independent datasets of
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Fig. 5. Effect of training set size to accuracy.

sizes nPCA, nNB and ntest respectively, that follow the
same distribution N . We fix ntest=10 000, and run two
cases: (1) nNB=10 000 is fixed, while nPCA varies in
[4 . . . 1000]; (2) nPCA=10 000 is fixed, while nNB varies
in [4 . . . 1000].

Figure 5 plots the dependence of the prediction ac-
curacy as a function of training set size averaged over
10 runs. The PCA line shows what happens if we in-
accurately learn the pre-processor due to lack of data,
and NB shows the same for the predictor. The results
suggest that in this situation more data is required to
train an accurate pre-processor than predictor. That is
explainable by the fact that the pre-processor needs to
be trained on much larger dimensional data (p = 20)
than the predictor (p = 4), thus may require more data
for accurate training. Therefore, in online learning we
may need to adapt the pre-processor and the predictor
at different times after change happens to achieve an
optimal result.

Experiment 2. Let us now consider what happens if a
change in data distribution happens over time. Let our
data come in a stream from a distribution Xi ∼ N (mi, C)
until time t, and then start to come from a distribution
Xi ∼ NII(m

′
i, C). The details of the two distributions are

given in Appendix A. Our second experiment compares
the accuracies of three learning systems assuming that
the point of change is known.

In the first system (‘old-old’) both the preprocessor
and the predictor are trained on the data (10 000 in-
stances) distributed as N . The second system (‘old-new’)
uses the old pre-processor, but retrains the predictor with
the new data that comes after the change, assuming that
the change point is known. The third system (‘new-new’)
retrains both the predictor and the pre-processor on the
same new data that comes after the change.

For every point in time we generate an independent
test set of 10 000 instances following the distribution NII

defined earlier and test the performance of the three
systems. Figure 6 presents the results averaged over 10
runs. The ‘old-old’ plot represents a fixed model that
does not get updated over time, therefore, as the data
distribution remains fixed after the drift, the accuracy of
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TABLE 3
Summary of the experimental setting.

Feedback Features Adapt pre-pro Adapt predictor
Situation A unsupervised transform replace/increment replace/increment
Situation B unsupervised preserve replace/increment replace/increment
Situation C supervised preserve replace increment
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Fig. 6. Effect of re-training to accuracy.

the performance stays at the same level. We can see from
the figure that there is a time period where it is beneficial
to retrain only the predictor, but not the pre-processor
(‘old-new’). Later it becomes beneficial to retrain both.

These experiments illustrate that decoupling adap-
tivity of pre-processor and predictor may be beneficial
in cases when the two components require different
amounts of data for learning an accurate model. A ques-
tion for further research is how to determine online what
should be the optimal training history for each adaptive
component. In the last part of this paper we will develop
and demonstrate a simple prototype technique based
on cross validation that sets different training windows
for pre-processing and prediction when learning from
real data stream where different types of changes can
happen.

3.2 Situation B: data evolution with no effect on the
decision boundary

The previous experiment illustrated the situation where
pre-processing and predictor were adapting at different
phases. The next experiment presents a surprising case
where we need to adapt only the pre-processor, while the
predictor stays untouched. In such a case retraining the
predictor not only unnecessarily increases computational
costs, but also may harm the prediction accuracy.

Such a situation may occur when the data evolves in
such a way that the relations between the input variables
and the target variable is not affected (e.g., the type of
noise or missing values on the input variables change).
In such a case there may be no need to change the
predictor, but the pre-processor would need to adapt.
The next experiment demonstrates how withholding

from retraining the predictor may be beneficial to the
final accuracy.

This experiment presents a classification problem
where given a 10-dimensional input vector the goal is
to predict a target, that is a linear combination of noisy
input variables. We generate a data stream where a
change in data distribution happens at time t =10 000
and report the testing errors (the root mean square error)
from the change point onwards. The details of the two
distributions are given in Appendix A. We assume again
that the change point is known. Change happens only in
one of the dimensions and we assume that we know in
which. Knowing that, we retrain the pre-processor only
for that particular variable where the change happens.
Such a situation may occur in chemical production pro-
cess, e.g. when one sensor is replaced. We know when
it was replaced and which variables were affected, but
we don’t know what the effect was.

We use normalization (subtract the mean, divide by
the standard deviation) as the pre-processor and the
Naive Bayes classifier as the predictor. We compare the
performance of four systems: ‘old-old’, ‘old-new’, ‘new-
old’ and ‘new-new’. The baseline ‘old-old’ does not
retrain either the pre-processing or the predictor after
the change. The tied system ‘new-new’ retrains both
components on the same training sets. In every step
it uses all the data after the change until the current
time for retraining. ‘old-new’ does not retrain the pre-
processor, but retrains the predictor. Finally, ‘new-old’ is
the system of interest, which retrains the pre-processing,
but leaves the predictor untouched.

Figure 7 presents the results averaged over 10 runs.
It can be clearly seen that right after the change ‘new-
new’ (and ‘old-new’) is suboptimal, because there is too
little new data to train an accurate model. Gradually it
starts to improve, but our system of interest ‘new-old’
performs better. The old predictor has been trained on
a large old dataset (10 000), it is sufficient to make a
tiny adjustment to the pre-processing and the old model
becomes suitable for the new situation. We can observe
a slight upward inclination at the beginning in the error
of ‘new-old’, which is the price paid for estimating a
new pre-processor from a small amount of new data.
The performance of ‘new-old’ is superior, as, in contrast
to Situation 1, in this case training an accurate pre-
processor requires much less data than to accurately
retrain the 10-dimensional predictor.
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Fig. 7. Benefits of no retraining.

3.3 Situation C: incremental and replacing adaptiv-
ity together
The two situations that we discussed concerned the
learning scenarios where adaptivity is achieved by re-
placing old models. This final section discusses the
situation when at least one component adapts in an
incremental manner. Recall that incremental adaptivity
means that a model is not replaced, but the parameters of
the existing model are updated with the latest incoming
data. Thus in the replacement mode the model at time t
is

Lt = f [(Xi, yi), (Xi+1, yi+1), . . . , (Xt−1, yt−1)] ,

while in the incremental mode the model can be repre-
sented as

Lt = f [Lt−1, (Xt−1, yt−1)] .

Four combinations of interactions between pre-
processing and prediction in terms of adaptivity mode
are possible as specified in Table 4. We already analyzed
examples where both components are adapted immedi-
ately by replacement. When both components adapt in
the incremental mode, adaptivity is achieved in small
steps and there is not much room for decoupling. The
case when the pre-processor adapts in the incremental
mode is not that challenging either as here pre-processor
acts as a filter and the predictor can provide all the
adaptivity that is required.

TABLE 4
Combinations of retraining and incremental adaptivity.

adaptivity of Sit. A,B X
pre-processing replace increment replace increment
predictor replace replace increment increment

Our main interest in this setting is to investigate the
case when the pre-processor adapts immediately and
the following predictor adapts in the incremental mode.
This case is not trivial, as discussed in Section 2.3, since
in addition to adapting to changes in data, adapting
to changes in the other component may be necessary.
Due to replacement of pre-processing, suddenly we may
have completely new mapping of data. The incremental

predictor may perceive the replacement of pre-processor
as a sudden change that may not necessarily be optimal
at all times. The question for research is what to do in
such a case. One could start new predictor from scratch
or keep the old model, or maybe switch the predictor to
the replacement mode. Our next experiment illustrates
the situation.

To analyze the impact of changes in the feature space
to adaptivity of the predictor we return to classification
example and perform the following experiment. Suppose
our data lies in the 8-dimensional input space with an
associated binary classification task. The input variables
are noisy, but the level of noise on each feature varies.
We use feature selection as the pre-processing step and
to simplify the setting we do feature selection based on
our knowledge of the underlying data model. We use
the Naive Bayes and the incremental predictor.

Suppose a change in data distribution happens at time
t. At that point the level of noise on certain features
changes and, as a result, the relevance of certain fea-
tures to the classification problem changes. Thus the
pre-processing needs to change in order to maintain
the optimal accuracy of the final prediction. The main
restriction comes from the incremental learning setting
since the historical data is not stored in memory. There-
fore we cannot go back and retrain our classifier with
the historical data while applying the newly selected
features. We have three main options how to proceed
with training:

1) (old-old) We can continue incrementally updating
the existing classifier; however, the current feature
subset will remain suboptimal.

2) (new-old) We can continue updating the same
model but use the newly selected features. Intu-
itively, the applicability of this strategy will depend
on how many of the old features stay in place
and ability of the prediction model to operate in
changing input space.

3) (new-new) We can start training a new model with
new features from scratch.

Our experiments compare the accuracies of the three
strategies. The details of the data distributions are pre-
sented in Appendix A. In the pre-processing step we
select four features that later are used for training a
classifier. Figure 8 presents the accuracies when one, two
or three features are replaced as a result of the change
in data distributions.

We see that in all situations right after the change
’new-old’ approach, which updates the old classifier
with newly selected features performs better than the
one that uses the old features (’old-old’) and the one
that starts training from scratch (’new-new’). As it
can be expected, the benefits to the accuracy are more
substantial when fewer features get affected by the
change. The results show that even under incremental
learning (where we have no access to historical data)
there is a room for decoupling adaptivity of pre-
processing and adaptivity of the predictor that may
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Fig. 8. Incremental learning with changing relevance of features.

benefit the final accuracy.

To summarize, we identified the gap in existing adap-
tive learning approaches, as they do not consider pre-
processing to be adaptive on its own. We systemati-
cally analyzed possibilities and challenges to integrate
adaptive pre-processing and adaptive predictor into one
system. We identified and experimentally illustrated
three situations in which decoupling the two adaptive
components may be beneficial to the final accuracy. This
study opens a list of important research questions to
be answered in order to be able to apply adaptive pre-
processing along with adaptive learning. The following
problems for further research can be identified.
• How to decide when to adapt pre-processor and

when to adapt the predictor?
• How to integrate adaptivity of the two components

when pre-processing completely transforms the in-
put space (e.g. PCA)?

• How to handle the ‘shock’ of new pre-processing
output in the incremental learning mode?

• How to monitor and detect the need for adapting
the pre-processor in very high dimensional spaces?

Our experimental analysis with toy examples followed
simplified scenarios, for instance, they assumed that the
change point is known. The aim of this analysis was to
demonstrate a set of motivating cases where decoupling
may be beneficial. From application point of view we
are interested if need for the decoupled adaptivity can
be captured and utilized in an online learning scenario
where changes happen unexpectedly. Therefore, in the
next section we introduce and experimentally investigate
a prototype solution that falls into the first of the above
identified research questions. The proposed system uses
cross-validation to decide online whether we need to
adapt the pre-processing. It can be seen as the first step
towards adaptive pre-processing design.

4 PROTOTYPE SYSTEM FOR ADAPTIVE PRE-
PROCESSING

In this section we explore a simple prototype system for
deciding between ‘old-old’, ‘old-new’, ‘new-new’, and

potentially ‘new-old’ strategies online. This prototype
system can be considered as the first step towards adap-
tive pre-processing and is designed to experimentally
investigate potential benefits of decoupling two adaptive
components in an online setting. The system is designed
to handle scenarios S1 and S3 simultaneously.

We first describe individual training window strate-
gies and then introduce the mechanism that selects the
most appropriate strategy dynamically. The main pur-
pose of introducing this prototype system is to formulate
the first principles of how adaptive pre-processing can
be handled and experimentally illustrate the need for
and potential benefits of the decoupling. Developing
specific algorithms and optimizing their performance
for different predictors and pre-processing methods is
out of the scope and shall remain the subject of further
investigations.

4.1 Strategies with fixed training windows
Fixed training window is the simplest adaptive learn-
ing strategy [12], which does not require any change
detection or online monitoring of the performance. This
strategy periodically retrains the predictor using a fixed
number of the latest historical instances so that the
latest concepts are represented in the latest models. The
windows are chosen as an input by a user or offline
validation on an initial data chunk.

The fixed training window strategy can be applied to
pre-processing as well. Suppose now we are at time t. We
retrain our pre-processor with the historical data from
the time interval [t−wpp + 1, t], where wpp is the length
of the training window for the pre-processor. Then we
retrain the predictor with the historical data from the
time interval [t − wpr + 1, t], where wpr is the length of
the training window for the predictor. Decoupling of the
two adaptive components implies that the two training
windows do not need to be equal. As demonstrated in
this study, there may be situations where keeping wpp 6=
wpr may be beneficial to the prediction accuracy. The
system for the predictions at time t is updated as defined
in Algorithm 1.

Our prototype system uses four individual fixed win-
dow strategies:
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Algorithm 1: Fixed window strategies
input : pre-processing window wpp, predictor

window wpr, pre-processing model G,
prediction model L, training data with
labels (X,y), data for prediction
(Xt, . . . , Xt+step)

output : predictions ŷ = (ŷt, . . . , ŷt+step)

1 Train Gt with data (X,y) from interval
[t− wpp + 1, t];

2 Train Lt with data (Gt(X),y) from interval
[t− wpr + 1, t];

3 Predict ŷ = Lt (Gt(X)) for (Xt, . . . , Xt+step)

time
pre-training

set

t
window new

window old
testing

set
validation

set

step
t+1

...

fixed at 
the begining moving forward

Fig. 9. Setting of the selective windows strategy.

• ‘old-old’: wpp = wold and wpr = wold,
• ‘old-new’: wpp = wold and wpr = wnew,
• ‘new-new’: wpp = wnew and wpr = wnew, and
• ‘new-old’: wpp = wnew and wpr = wold,

where wold and wnew are two user input fixed training
windows where wold > wnew.

4.2 Online strategy selection

In real online prediction tasks changes are likely to
happen irregularly and unexpectedly, therefore, different
length of training windows may be optimal at different
times [13]. Our prototype system allows variable lengths
of training windows by choosing at every time step one
of the four strategies for the final prediction. The idea
is to train the four strategies ‘old-old’, ‘old-new’, ‘new-
new’, and ‘new-old’ simultaneously and evaluate them
on a validation set before making the final predictions.
We use the newest historical data for validation, assum-
ing that this data closely reflects what we can expect in
the nearest future. Figure 9 illustrates the setting. The
procedure for selective window is defined in Algorithm
2. All four strategies are simultaneously trained, tested
on the validation set, then the strategy that has the
minimum validation error is selected and the models re-
trained with this strategy to include the validation data,
since we would not like to ‘throw away’ this newest
labeled data after validation. The validation set changes
continuously to reflect the latest data distribution. Next
section presents experimental evaluation of this system.

The idea of the model selection using cross validation
is not new. Such strategies have been used in online
learning with adaptive classifier ensembles [14], [15].
The novel part in this study is handling two adaptive
components in the same prediction system.

Algorithm 2: Selective window strategy
input : wold, wnew, wval, pre-processing model G,

prediction model L, training data with labels
(X,y), data for prediction (Xt, . . . , Xt+step)

output: predictions ŷt..t+step

1 Train Gold with (X,y) from
[t− wval − wold + 1, t− wval] and Gnew with (X,y)
from [t− wval − wnew + 1, t− wval];

2 Train Loldold with (Gold(X),y) from
[t− wval − wold + 1, t− wval];

3 Loldnew with (Gold(X),y) from
[t− wval − wnew + 1, t− wval];

4 Lnewold with (Gnew(X),y) from
[t− wval − wold + 1, t− wval];

5 Loldold with (Gnew(X),y) from
[t− wval − wnew + 1, t− wval];

6 Test Loldold, Lnewold(X), Loldnew(X), Lnewnew(X) on
validation data from [t− wval + 1, . . . , t];

7 Pick Lstrategy with min. validation error ;
8 Retrain Gt with (X,y) from [t−wppstrategy

+ 1, t] and
Lt(X) with (Gt(X),y) from [t− wprstrategy

+ 1, t];
9 Predict ŷ = Lt (Gt(X)) for (Xt, Xt+step)

5 CASE STUDY WITH INDUSTRIAL DATA

We present a case study from chemical production do-
main where we experimentally analyze the role of adap-
tive pre-processing in online prediction systems. The
purpose of our case study is to investigate the need and
demonstrate the benefits of adaptive pre-processing. Our
experiments have two goals. The first goal is to analyze
and demonstrate the need for adaptive pre-processing to
be decoupled from adaptive learning. The second goal is
to assess a potential impact of adaptive pre-processing
to the accuracy of an adaptive prediction system.

We do not claim that different training windows will
always lead to more accurate results. Instead we argue
and demonstrate with our numerical experiments and
the case study that there may be algorithmic reasons why
learning components in an adaptive system may need
different phases of adaptation, even though they are a
part of the same adaptive system, use data coming from
the same source where changes happen at the same time.

5.1 Data
Existing benchmark data streams are not suitable for our
study, as typically they are already pre-processed. For
our experiments we need data that is as close to raw data
as possible. Thus, we explore chemical production data
(sensor readings), which are potentially noisy, changing
and contain redundant variables, therefore they require
acute pre-processing.

Our sensor reading data originates from a real chem-
ical production process within Evonik Industries AG.
The dataset covers nearly three years and consists of
records of 85 real valued input variables measured every
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Fig. 10. The need for adaptive feature selection.

5 minutes - 189 193 instances in total. The target variable
is a real valued concentration of the production output.
Minimizing concentration is the desired outcome of the
production process. We formulate a classification task
with this data, where the goal is to predict an increase
or decrease in concentration as compared to the last
observed period. The class balance is 50% : 50%.

Our data is not strictly raw data as it comes from a
historical database which uses a lossy compression. The
same compression algorithm is applied to all variables,
thus the variables are not biased with respect to pre-
processing we are applying in our experiments.

The following data exploration experiment motivates
the need for adaptive pre-processing. We split our orig-
inal data into four consecutive blocks (3 × 50 000 in-
stances the first three blocks and the last 39 193 ) and
run a supervised feature selection within each block sep-
arately and then on the full dataset. Supervised feature
selection first computes correlation between the target
variable and each of the features, and then selects the
features that have higher absolute correlation than a
fixed threshold. Figure 10 indicates the selected features.
If the same features were selected in all blocks, then we
would see continuous vertical lines (like feature #40).
We see that the optimal set of features changes from
block to block of consecutive data, thus there is clearly
a need for adaptive feature selection.

5.2 Experimental protocol

We perform three experiments that correspond to the
situations A, B, C, described in Section 3, that motivate
decoupling of adaptive pre-processing from adaptive
predictor. For each experiment we test four fixed win-
dow strategies ‘old-old’, ‘old-new’, ‘new-old’ and ‘new-
new’ (Algorithm 1), the selective strategy (Algorithm
2) and a non adaptive strategy ‘all’, which trains the
pre-processor and the predictor at the beginning on a
fixed chunk of data (2000 instances) and never updates
later. The ‘all’ strategy serves as the baseline to verify if
adaptive learning is needed at all. We expect this strategy
to perform worse than the adaptive strategies.

Following the experiments in Section 3 we use the
principal component analysis (situation A), feature nor-
malization (situation B) and feature selection (situation
C) as the pre-processor respectively. Since in our sce-
narios we focus on training sample sizes for estimating
the model parameters, we use a parametric classifier
Naive Bayes as the main predictor. We complement

our experiments with Decision Tree as a non-parametric
classifier and support vector machine (SVM) classifier as
semi-parametric classifier.

In our data we do not know the change points or
relevance of features in advance, the system needs to
learn and fully adapt in an online mode. In Situation B
we reduce the dimensionality of the problem from 86 to
21 by selecting every 4th feature and run the experiment
with four datasets that differ in sets of features (A:
features #1, 5, 9, . . . are selected, B: features #2, 6, 10, . . .,
C: features #3, 7, 11, . . ., D: features 4, 8, 12, . . .).

In Situation C training is incremental. The old data
is not accessible, thus we cannot retrain the predictor
with the old data pre-processed in the new way. As pre-
processing we select 10 features that have the highest
absolute correlation with the target variable in the last
wnew instances. If some of the selected features remain
the same as before, we keep them in the same positions
in the pre-processed mapping of the data (i.e. if it was
the second feature, it will stay the second feature). We
update the models incrementally every 10 data points.
At any point in time a new classifier may be started, but
it cannot be trained with more than 10 latest historical
data points. A new classifier can be used for prediction
when it has been trained on wnew data points. We can
pass the pre-processed data to this predictor using the
old pre-processor (‘old-new’) or the new pre-processor
(‘new-new’). For completeness we also test with ‘new-
old’, where we feed the data pre-processed in the new
way to the old predictor.

For evaluation we employ the test-then-train scenario,
which processes data in the time order and simulates
online arrival of data. First we test our strategies on a
new incoming data chunk and record the testing results.
Then we receive the true labels of this data chunk and
use this data to update our learning components. We
continue until the end of the data. We fix the size of
chunk to 10 instances. If there is a tie in validation, the
older model is used. We set wold = 600, wnew = 300.

The statistical significance of the differences in accu-
racies was assessed using a non-parametric McNemar
paired test, which does not require the assumption that
the data is iid, therefore it is suitable for evolving data.

5.3 Analysis of accuracies

We first explore in depth the results with Naive Bayes
as the base classifier and then complement the analysis
with experiments using SVM and Decision Tree.

5.3.1 Results with Naive Bayes

Table 5 presents the results. The absolute accuracies are
not very high, which is partially explainable by presence
of compression in the dataset. Our primary interest in
this case study is in analyzing the differences in accu-
racies resulting from decoupled pre-processing rather
than optimizing absolute accuracies. All the pairwise
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differences are statistically significant except ‘all’ vs.
‘new-old’ in Situation B(1).

Overall, we observe that the non-adaptive ‘all’
achieves only around 50% accuracy that is not better than
the majority class classifier would achieve, that would
assign all the instances to the same class. These results
support the need for adaptive methods. The results ‘all’
are not equal across the situations as we use different
pre-processing models for each situation.

TABLE 5
Accuracies (in %) with Naive Bayes.

Sit. all old-old old-new new-old new-new select
A 50.11 56.37 57.36 54.40 58.25 58.49
B(1) 49.56 49.56 56.69 50.67 56.69 58.15
B(2) 50.14 50.14 56.33 51.29 56.33 58.06
B(3) 50.19 50.19 56.73 51.58 56.73 58.89
B(4) 50.12 50.12 57.26 51.49 57.26 58.87
C 49.74 49.74 55.55 50.07 54.03 58.04

In Situation A the best performance is achieved by
‘select’, closely followed by ‘new-new’, which used short
fixed windows. Further analysis, however, suggests that
the best performing ‘select’ strategy did not rely on the
shortest windows, quite the opposite, 58% of times it
selected ‘old-old’ to make the final decision, 15% ‘old-
new’, 17% ‘new-old’, and 10% ‘new-new’. These results
confirm that selective handling of strategies is better than
the fixed strategies. We also observe that the strategies
which use decoupled training windows (‘old-new’ and
‘new-old’) are found to be optimal for more than 30% of
data points, therefore the idea of decoupling contributes
substantially to the final superior accuracy.

Recall from Section 3 that in Situation B we do not
update the old models. Therefore, in Situation B ‘old-old’
is the same as ‘all’. ‘old-new’ updates only the predictor,
‘new-old’ updates only the pre-processor and ‘new-
new’ updates both. In Situation B the ‘select’ strategy
outperforms the fixed window strategies as well. Table
6 provides the counts of how many times a particular
strategy was selected for the final decision making. The
fixed strategy ‘new-old’ can be expected to perform
well if the changes take place in such a way that the
concepts move together. Such situation is not likely to
hold over long period of time. We see that even though
the fixed ‘new-old’ does not perform well when it is
applied regularly, it is selected as the best performing
strategy for 13− 18% of data points. The results confirm
that situations in which this strategy appears to be the
most accurate happen in the data, therefore the idea
of decoupling is beneficial for improving the overall
accuracy of the system.

In Situation C the ‘select’ strategy again performs the
best and ‘old-new’ is the runner up. The performance of
‘old-new’ can be explained by the fact that the old pre-
processing keeps the feature space stable and familiar
for the old predictor. Even though retraining the pre-
processing alters the feature space and the old pre-
processing may be sub-optimal for the new data, in

TABLE 6
Counts of selections in the ‘select’ strategy.

Sit. old-old old-new(=new-new) new-old
B(1) 55% 30% 15%
B(2) 57% 30% 13%
B(3) 53% 29% 18%
B(4) 55% 29% 16%

many cases the new pre-processing does not fit well with
the existing predictor. The ‘select’ strategy overcomes
this issue. The results confirm that even in our simple
setting the system can make use of all combinations of
old and new models. 59% of times ‘old-old’ model was
selected, 28% of times ‘old-new’ model, while ‘new-old’
and ‘new-new’ models were selected 3% and 10% of
times respectively. The fact that for 13% of data points
the model that uses the new pre-processing was selected
suggests that decoupling may be beneficial even in this
situation where it seems at first that such a strategy may
harm the incremental predictor rather than help.

In summary, Table 7 presents the ranking of the
strategies from the best performing to the worst. The
‘select’ strategy is leading in our prototype system. It
demonstrates a great potential for further research of
adaptive pre-processing in adaptive prediction systems.
Our closer analysis of which strategies have been se-
lected within the ‘select’ strategies confirms that the
decoupled adaptivity in all three situation substantially
contributes to improving the final accuracy.

TABLE 7
Ranking from the best to the worst.

Situation A Situation B Situation C
select select select

new-new new-new/old-new old-new
old-new new-old new-new
old-old all/old-new new-old
new-old all/old-new

all

5.3.2 Results with other base classifiers
In our experimental analysis the need for decoupled
pre-processing was motivated by different learning rates
of the pre-processors and the predictors. One could
reasonably expect that the need for decoupling would
manifest stronger when using parametric learning mod-
els, since they need to accurately estimate their param-
eters for optimizing the performance. In this section we
experimentally analyze to what extent the learners that
estimate the decision boundary directly can benefit from
decoupling in our example cases. We investigate the
performance of the prototype strategy with SVM (RBF
kernel) and Decision Tree (Gini’s diversity index) as the
predictors. The accuracies are presented in Table 8.

With SVM the following pairwise differences are not
statistically significant: in Situation A ‘old-old’ vs. ‘old-
new’, Situation B(2) ‘all’ vs. ‘new-old’ and ‘new-old’
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TABLE 8
Accuracies (in %) with SVM and Decision Tree.

SVM
Sit. all old-old old-new new-old new-new select
A 50.11 61.63 61.61 60.49 61.30 62.17
B(1) 50.11 50.11 53.81 50.09 53.81 55.93
B(2) 50.11 50.11 56.97 50.12 56.97 57.33
B(3) 50.11 50.11 57.79 50.13 57.79 57.79
B(4) 50.12 50.12 56.51 50.16 56.51 57.16
C 50.11 50.11 60.37 50.11 53.45 58.75

Decision Tree
Sit. all old-old old-new new-old new-new select
A 50.30 60.27 61.06 60.54 61.15 60.95
B(1) 50.97 50.97 63.96 50.08 63.96 60.96
B(2) 50.69 50.69 63.79 49.83 63.79 61.01
B(3) 50.09 50.09 64.07 49.76 64.07 61.03
B(4) 50.06 50.06 64.14 49.89 64.14 61.34
C 50.43 50.43 64.11 49.93 59.90 61.46

vs. ‘old-old’, in Situation B(3) ‘all’ vs. ‘new-old’, ‘old-
old’ vs. ‘new-old’, ‘old-new’ vs. ‘selective’ and ‘new-
new’ vs. ‘selective’, in Situation C ‘all’ vs. ‘new-old’ and
‘old-old’ vs. ‘new-old’. With the Decision Tree only two
differences are not statistically significant: in Situation
B(4) ‘all’ vs. ‘new-old’ and ‘old-old’ vs. ‘new-old’.

In all situations the non-adaptive ‘all’ performs much
worse than the adaptive strategies which confirms the
need for adaptivity. To support the need for decoupling
‘select’, ‘old-new’ or ‘new-old’ needs to outperform ‘old-
old’ and ‘new-new’. We see that this happens in the
results with SVM. Although in Situation C the ‘select’
strategy is not the best, even in this case the strategy that
uses different adaptivity modes for the pre-processor
and the predictor (‘old-new’) wins. In the Decision Tree
experiments, however, we see the ‘new-new’ strategy
performing equally well. That can be attributed to the
non-parametric nature of the Decision Tree classifier, in
that case the training sample size does not matter that
much for accurate estimation of the parameters, as mat-
ters the learning from the newest data. In Situation C we
observe that the decoupled adaptivity (‘old-new’) gives
the most accurate results. Overall, the results justify
that even for non-parametric learning model there are
situations in which decoupled adaptive pre-processing
is beneficial towards the final accuracy.

6 RELATED WORK

To the best of our knowledge this work is the first
to address the issue of adaptive pre-processing when
learning from evolving streaming data. It is also the first
to raise the issue of synchronizing multiple adaptive
components in one online learning system when the
components adapt at different phases.

Several studies address the problem of adaptive fea-
ture space (but not pre-processing in general). A few
works on adaptive feature selection tackle specific prob-
lems. Several works originating from different research
groups relate to classifying textual streams [16]–[18].
Learning from textual data online requires adaptive

feature space, since in the TF-IDF representation of
textual data the attributes relate to words, while the
number of words (and so the attributes) is potentially
unlimited. New attributes may appear and of course the
relevance of attributes changes over time. These works
study how to incorporate new features incrementally,
which is straightforward for classifiers that deal with
individual attributes separately, such as Naive Bayes.
These approaches can be considered as a special case
in our reference framework, namely Scenario S3 under
incremental learning mode.

Another series of works [19], [20] consider dynamic
feature selection in data streams. They specifically work
with regression problems. These works relate via chang-
ing environment and dynamic feature selection key-
word; however, the setting is different there. These
works can be considered as active learning in attribute
space, where the approaches actively select which at-
tributes to observe next. Thus, the resulting historical
data has a lot of values missing on purpose and these
works focus on how to handle that.

Adaptive pre-processing has been addressed in sta-
tionary online learning [21] for another specific problem,
namely, normalization of the input variables in online
learning for neural networks so that they fall into range
[−1, 1]. The proposed approach links scaling of features
with scaling of weights. In this case, however, the pre-
processor is not adaptive. This study rather investigates
the environment in which the neural network itself as a
predictor can or cannot be adaptive.

7 CONCLUSION

We raised the issue of adaptive pre-processing in evolv-
ing data. We challenged one of the major assumptions
in adaptive learning research, which assumes that data
comes already pre-processed or that pre-processing is an
integral part of a learning algorithm implying that there
is no need for adaptive pre-processing.

We identified three scenarios where decoupling adap-
tive pre-processing and adaptive learning may be ben-
eficial. We demonstrated that the situations in which
decoupling the adaptivity of pre-processing and the
predictor may benefit the final accuracy.

We presented a prototype approach that handles adap-
tivity of pre-processing and adaptivity of predictor sepa-
rately. Our case study with real production data demon-
strated that the proposed prototype approach may help
to improve the prediction accuracy.

We identified practically important directions for fur-
ther research to be addressed in the forthcoming re-
search. Firstly, it is urgent to investigate how to properly
integrate the adaptivity of two components in a single
system to exploit the benefits of the decoupled adaptivity
of the two. Secondly, it is important to investigate how to
monitor and detect the need for adapting pre-processor
in very high dimensional spaces under constraints im-
plied by the computational resources.
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[13] I. Žliobaitė, “Adaptive training set formation,” Ph.D. dissertation,
Vilnius University, 2010.

[14] R. Klinkenberg, “Learning drifting concepts: Example selection vs.
example weighting,” Intell. Data Anal., vol. 8, pp. 281–300, 2004.

[15] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen,
“Dynamic integration of classifiers for handling concept drift,”
Inf. Fusion, vol. 9, pp. 56–68, 2008.

[16] M. M. Q. Chen, J. Gao, L. Khan, J. Han, and B. Thuraisingham,
“Classification and novel class detection of data streams in a dy-
namic feature space,” in Proceedings of the 2010 European conference
on Machine learning and knowledge discovery in databases: Part II, ser.
ECML PKDD’10. Springer-Verlag, 2010, pp. 337–352.

[17] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Dynamic feature space
and incremental feature selection for the classification of textual
data streams,” in Proceedings of ECML/PKDD-2006 International
Workshop on Knowledge Discovery from Data Streams. Springer
Verlag, 2006, pp. 107–116.

[18] B. Wenerstrom and C. Giraud-Carrier, “Temporal data mining in
dynamic feature spaces,” in Proceedings of the Sixth International
Conference on Data Mining, ser. ICDM ’06. IEEE Computer Society,
2006, pp. 1141–1145.

[19] C. Anagnostopoulos, D. Tasoulis, D. Hand, and N. Adams,
“Online optimization for variable selection in data streams,” in
Proceeding of the 2008 conference on ECAI 2008: 18th European
Conference on Artificial Intelligence. IOS Press, 2008, pp. 132–136.

[20] C. Anagnostopoulos, N. Adams, and D. Hand, “Deciding what
to observe next: adaptive variable selection for regression in mul-
tivariate data streams,” in Proceedings of the 2008 ACM symposium
on Applied computing, ser. SAC ’08. ACM, 2008, pp. 961–965.

[21] H. Ruda, “Adaptive preprocessing for on-line learning with adap-
tive resonance theory (art) networks,” in Proc. of the 1995 IEEE
Workshop on Neural Networks for Signal Processing (NNSP.
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APPENDIX A
DETAILS OF THE SYNTHETIC DATASETS

This appendix describes the data used in Section 3.

A.1 Situation 1
In example 1 the data comes from the Normal distribu-
tion N (mi, C), where i denotes class. The mean of class
1 is set to m1 = (−a,−a,−a, 0, 0, . . . , 0)T , where a = 0.4,
the mean of class 2 is m2 = −m1. The dimensionality of
the data is p = 20. The elements of the covariance matrix
C are: cii = 1 and cij = 0.3, where i 6= j.

In example 2 the data before change comes from
the distribution N (mi, C), at time t = 10000 a change
happens and data starts to come from the distribution
NII(m

′
i, C). Before the change the data is distributed the

same as in Example 1. After a change the means become:
m′1 = (−a,−a− 1.2, 0, a/3, 0, 0, . . . , 0)T and m′2 = m′1.

A.2 Situation 2
The data is modeled as xi = zi+ε. The component zi fol-
lows the Normal distribution N (mi, I), where i denotes
class and zi is different before and after the change. The

class means before the change are: m1 = (0, 0, . . . , 0)T

and m1 = (1, 1, . . . , 1)T . The means after the change
are: m1 = (1, 1, . . . , 1)T and m1 = (2, 2, . . . , 2)T The
dimensionality of the data is p = 10, the features are
not correlated. The noise component ε is the same for
both classes: ε ∼ N (0, 0.1).

A.3 Situation 3
The data is modeled as xi = zi + ε. The component
zi follows the Normal distribution N (mi, Iδ), where i
denotes class. The features are not correlated, the covari-
ance matrix I is the identity matrix. We fix δ = 0.5. The
mean of class 1 is set to m1 = (2, 10, 4, 5, 3, 8, 7, 1)T , the
mean of class 2 is m2 = m1 + 1. The noise component ε
is the same for both classes, but different for different
features: ε ∼ N (0, E), where E8×8 : ejj = v1 or
ejj = v2, and ejk = 0 for j 6= k. Before the change
e1...8 = (v1, v1, v1, v1, v2, v2, v2, v2), after the change if
one feature changes e1...8 = (v1, v1, v1, v2, v1, v2, v2, v2), if
two features change e1...8 = (v1, v1, v2, v2, v1, v1, v2, v2), if
three features change e1...8 = (v1, v2, v2, v2, v1, v1, v1, v2),
if all features change e1...8 = (v2, v2, v2, v2, v1, v1, v1, v1).
We use v1 = 0.2 and v2 = 1.


