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The population trophic niche of free-living species can be subdivided into
smaller niches comprising individuals specialising on specific food items.
The roles of parasites in creating these specialised subgroups remain unclear.
Intrapopulation differences in parasite infections can develop from specialist
individuals within populations. Their differences in morphology and habitat can
increase their exposure to intermediate hosts via infected prey, altering their
parasite fauna. However, we also suggest that parasite infections can drive this
niche specialisation. Through mechanisms including parasite manipulation,
altered host phenotypes, and/ or parasite-mediated competition, parasites
can alter the resource availability of their hosts, altering their trophic niches.
Thus, trophic niche specialisations could result from parasitism via varying
influences on host traits, raising questions for future research.

Individual Trophic Niche Specialisation in Free-Living Species
The trophic niche of a population describes the extent of the food resources it exploits. It can
comprise a series of subgroups of smaller niches formed by individuals that specialise on specific
food items [1–3]. These subgroups might be focussed on consuming specific prey items that are
also being consumed by their more generalist conspecifics, such as larger salmonid fish in forest
streams that feed more on terrestrial insects compared with smaller conspecifics [4]. This
represents trophic niche constriction (see Glossary), with the size of the population trophic
niche remaining unaltered. Conversely, the specialist individuals might be exploiting alternative
resources; for example, where larger brown trout Salmo trutta in lentic environments switch from
insectivory to piscivory [5]. This results in trophic niche divergence and increases the
population niche size [4,5] (Figure 1). Identified drivers of individual trophic niche speciali-
sation include changes in the strength of inter- and intraspecific competitive interactions (e.g.,
following the introduction of a new free-living species [6]), the exploitation of new ecological
opportunities (e.g., the seasonal exploitation of terrestrial insects by stream fish [4]), and the
direct and indirect consequences of predation pressure that alter predator–prey relations [7,8].
Despite this extant knowledge of the ecological drivers of niche specialisation, there has been
little consideration of how natural enemies, such as parasitoids, parasites, or pathogens,
influence its development and subsequent magnitude [8].

Individual Trophic Niche Specialisation and Parasites
We suggest that there are two primary aspects to the role of parasites in trophic niche specialisa-
tion. First, infections by specific parasites can be a consequence of trophic niche specialisation. For
example, where there are intrapopulation differences in body and functional morphology, and
habitat and resource utilisation, individuals will be differentially exposed to prey populations that
comprise intermediate hosts of specific parasites, as observed in polymorphic Arctic charr
(Salvelinus alpinus) populations [9]. Second, infections by specific parasites can drive trophic niche
specialisation [10], such as via parasite-mediated competition [11,12]. This is where alterations
to the host phenotype can affect their interactions with their prey communities, uninfected
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conspecifics, and nonhost species, altering their diet composition and trophic niche [12] (Table 1).
For example, studies suggest that infections of the intestinal parasite Strongyloides robustus are at
least partially responsible for altering the competitive interactions between two species of flying
squirrel from the genus Gluacomys in the eastern USA [13].

In this opinion article, we explore these two aspects to identify the potential ecological roles and
evolutionary significance of parasites in the trophic niche specialisation of their free-living hosts
(Table 1). Outstanding research questions are highlighted that will enable relevant hypotheses to
be derived and tested, and more integrative approaches to be developed. Note that vertebrates,
especially freshwater fish, dominate the literature on trophic niche specialisation (e.g., [1,2,8])
and this will be generally reflected in our examples. Matthews et al. [14] suggested that niche
specialisation is most common in upper trophic levels, while Svanbäck et al. [15] suggested the
highest among-diet variation in Eurasian perch (Perca fluviatilis) was at intermediate trophic
positions. This means that our examples are often focussed at these intermediate and higher

Glossary
Complex lifecycle: the lifecycle of a
parasite that involves more than one
host stage, such as an intermediate
and final host stage
Food web: a representation of the
feeding interactions of species in an
ecosystem that are connected by
pairwise interactions.
Functional morphology: the
morphological adaptation of an
individual to a specialist function,
such as feeding.
Fundamental trophic niche: the
potential extent of the trophic niche
of a population as determined from
abiotic factors and independent biotic
factors, such as competitive
pressures.
Individual trophic niche
specialisation: where the population
trophic niche consists of subgroups
of trophically specialised individuals
that in entirety comprise the
population niche.
Intermediate host: a host of a
parasite with a complex lifecycle that
is important for an aspect of its
development but in which sexual
maturity does not occur.
Manipulative parasite: a parasite
that alters aspects of the phenotypic
traits and behaviours of its hosts,
such as their morphology, foraging
behaviour, and habitat use, which
either increases the probability of
their transmission from one host to
another and/or ensures that their
propagules are released in an
appropriate location.
Non-manipulative parasite: a
parasite whose infection alters
aspects of the phenotypic traits and
behaviours of their hosts, such as
their morphology, foraging behaviour,
and habitat use, due to, for example,
pathological impacts and energetic
costs, and is not associated with the
parasite manipulating the host to
increase its probability of
transmission.
Parasite-increased trophic
transmission: transmission of the
parasite from an intermediate stage
to the next stage occurs via
predation.
Parasite-mediated competition:
infection alters the competitive
dynamics between interacting
species via density and trait effects.
Where the otherwise superior
competitor species is heavily
influenced by the parasite, the
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Figure 1. Representations of the Trophic Niches of Infected and Uninfected Conspecifics of a Parasitised
Population. (A) Niche constriction. The infected niche (red) is within that of uninfected (blue) conspecifics, indicating
infected host specialisation on specific items already present in the diet of the population. (B) Partial trophic niche
divergence. The infected (red) niche has some overlap with uninfected (blue) conspecifics, but indicates some exploitation
of alternative resources. (C) Complete trophic niche divergence. The infected (red) niche has no overlap with uninfected
(blue) conspecifics, indicating exploitation of alternative resources. (D) The trophic niche breadths of Cyprinus carpio that are
uninfected (blue) and infected (red) with the tapeworm Bothriocephalus acheilognathi in a pond in southern England in
October 2013, indicating almost complete niche divergence between the population subgroups. In (D), the trophic niche
sizes were calculated as standard ellipse areas (SEAc) [62] using C. carpio stable isotope data (d13C and d15N) [10]. Adapted
from [10] (D).
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process is likely to favour co-
existence.
Population trophic niche: extent of
the food resources exploited by a
population as set by abiotic and
biotic constraints.
Realised trophic niche: the actual
trophic niche of a population that is
smaller than its fundamental niche
due to the limiting pressures of biotic
factors, such as competition.
Red Queen dynamics: the
abundance of host species and their
parasites exhibit alternating
dominance (such as year-to-year) to
provide population sustainability and
maintain fitness.
Trophic level: the feeding positions
within a food chain, such as primary
producer, primary consumer, and
secondary consumer, where a food
chain represents a succession of
species that consume the one(s)
before them in the chain.
Trophic niche constriction:
individuals in the population subgroup
consume a restricted range of food
items that are also present in the diet
of more generalist conspecifics.
Trophic niche divergence:
individuals in the population subgroup
consume different food items that are
not present in the diet of their
conspecifics.
Trophic vacuum: the difference in
trophic levels between free-living
propagules of a parasite and its final
host that, for trophically transmitted
parasites, is overcome by use of
intermediate hosts within their
lifecycle.

trophic levels. However, we suggest that the paradigms and principles described will have
applicability across aquatic and terrestrial ecosystems, and over a range of animal and parasite
taxa. Our focus is also primarily on the effects of macroparasites, especially those with complex
lifecycles involving intermediate hosts. Where the terms ‘infected’ and ‘uninfected’ are used,

Table 1. Processes, Mechanisms, and Influences of Parasites on Free-Living Species that Could Affect the
Trophic Niche Specialisation of Hosts

Influence on Hosts Potential Outcome for Trophic Niche
Specialisation

Refs

Ecological drivers of
trophic niche
specialisation

Heterogeneity in the morphology and
behaviour of individuals within
populations of free-living species results
in their spatial segregation and trophic
niche specialisation, irrespective of
parasites

Populations comprise subgroups of
individuals with contrasting parasite
communities through their differing
exposure to intermediate hosts

[9]

Parasite-mediated
competition

Sublethal infection consequences
affects competitive abilities of hosts,
resulting in increased asymmetry in their
intra- and interspecific competitive
interactions

Hosts exploit alternative prey resources
(niche divergence from conspecifics) or
increasingly specialise in extant
resources (niche constriction)

[11,12]

Manipulative
parasitism

Manipulated behaviours of hosts
influence their prey availability and
accessibility as infection alters their
behaviours via parasite-increased
trophic transmission

Spatial and prey resource segregation of
infected and uninfected conspecifics
results in their trophic niche divergence.

[35–41]

Parasite-modified
phenotype

Host functional traits are impaired
through sublethal impacts of infection,
altering their prey selectivity,
irrespective of competitive pressures

Hosts increasingly focus on specific
dietary items (niche constriction) or new
resources (niche divergence)

[10,26]

Novel trophic links Infection results in impaired functional
traits and/or modified behaviour of
hosts that provides a novel prey
opportunity for nonhost species to
exploit

Nonhost species exploit a novel prey
item, potentially resulting in a shift or
specialism in their trophic niche

[55]

Overdispersal of
parasite

Abundance of the focal parasite is only
relatively high in a low proportion of the
host population

Host phenotypic modifications are limited
to a few individuals with minimal influence
on the population trophic niche

[58]

Parasite spillover A parasite introduced with a free-living
species is transmitted to a native
species through host switching,
potentially resulting in modified traits
and behavioural shifts

New hosts exploit alternative prey
resources (niche divergence) or
increasingly specialise in extant
resources (niche constriction).

[58]

Parasite spillback An introduced free-living species
becomes either a competent host of
native parasites that acts as either an
infection reservoir for native host
species or an incompetent host acting
as an infection sink

Temporal changes in parasite prevalence
and abundance in host populations,
resulting in temporal shifts in their trophic
niche according to the variability in
infection consequences

[58]

Reciprocal effects
between host and
parasite

Current infections may increase host
vulnerability to new infections

New infections increase the extent of
modifications to the host phenotype,
potentially exacerbating current niche
divergence/constriction patterns

[56,57]

Habitat homogeneity Disturbed environmental conditions
results in homogeneity in habitat and
prey resources for host and uninfected
conspecifics

Intrapopulation spatial and resource
segregation is limited, resulting in
homogeneity in trophic niche of infected
and uninfected conspecifics, irrespective
of parasite burdens

n/a
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they refer to the infection status of an individual in relation to a particular parasite. We also
primarily refer to specialisations in the realised trophic niches of populations, rather than their
fundamental trophic niche.

Parasite Infections and Trophic Niche Variation
Contrasting parasite infections can develop between individuals in a population as a conse-
quence of existing trophic niche specialisations. These specialisations result from intrapopula-
tion variability in the morphology (e.g., body and gape size), habitat utilisation (e.g., littoral versus
open water), and foraging behaviours (e.g., time spent foraging) of individuals [16–20]. Traits that
enable specialised feeding behaviours to develop in individuals can elevate their exposure to
intermediate hosts of trophically transmitted parasites [2]. For example, the interactions of
habitat use, morphology, and diet composition of individual S. alpinus strongly influence their
parasite infections, resulting in subgroups of fish with homogenous traits, dietary specialisms,
and parasite infections that differ significantly with other subgroups [1,21–24]. In European eel
Anguilla anguilla, individuals with broader heads tend to be more piscivorous, because this
increases their gape size [25]. This difference in functional morphology leads to these specialist
individuals having increased probabilities of infection by the non-native nematode parasite
Anguillicoides crassus due to its transmission via paratenic fish hosts [26], a common mode
of transmission in this host–parasite system [27].

Of arguably greater ecological and evolutionary significance is how parasitism can be the driver
of trophic niche specialisation. This is because infections by certain parasites are known to have
considerable consequences for their free-living hosts, including alterations in habitat utilisation,
foraging, and antipredator behaviours [28–31]. These parasites can be grouped into manipu-
lative parasites, which alter the behaviour of their intermediate hosts to facilitate transmission
to the next host, and non-manipulative parasites, which can affect the trophic niche of
infected individuals via their impairment of host phenotypic traits, which is independent of
manipulation.

Host manipulation can assist parasites to fill the trophic vacuum. This is the distance between
the trophic levels of, for example, the parasite propagules of low trophic levels and their final
hosts at much higher trophic levels [32,33]. Parasites have evolved complex lifecycles to
overcome this vacuum, using intermediate hosts to navigate through the trophic levels, with
their manipulation of host behaviours increasing transmission rates. This aligns to the parasite-
increased trophic transmission hypothesis, where the manipulation of intermediate host
behaviours increases their probability of predation by the next host (Table 1) [17]. In combination,
this suggests that the strongest effects of manipulation on trophic niche specialisation will be in
species at intermediate trophic levels.

Amphipods provide strong examples of intermediate hosts that are manipulated by their
parasites to facilitate their predation by a fish or bird final host. For example, when Gammarus
roeseli are infected with Polymorphus minutus, they exhibit reverse geotaxis [34]. This substan-
tially lengthens the time they spend at the water surface, increasing their predation risk by avian
final hosts; it is also far from their usual benthic food resources [35,36]. Consequently, infected
individuals consume less epilithon than uninfected individuals, but more of the terrestrial detritus
that is encountered at the water surface [37], thus forming a population subgroup with a
diverged trophic niche that in turn increases the population trophic niche size. Populations
of Gammarus insensibilis are parasitically subdivided into two groups by the trematode Micro-
phallus papillorobustus [38]. Infected individuals inhabit the surface of salt marshes and unin-
fected conspecifics remain near the bottom [38]. This shift in habitat use again favours the
predation of hosts by bird final hosts and has similarly strong implications for the trophic niche of
the infected (pelagic) and uninfected (benthic) subgroups, and, thus, the population trophic
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niche. Parasite manipulation has also been detected in fish intermediate hosts, with the cestode
parasite Ligula intestinalis generally recognised as modifying the behaviour of its intermediate fish
hosts. Infected fish increasingly utilise habitats, such as the littoral zone, that increase their
predation by their definite host, a piscivorous bird [39,40]. These habitat shifts alter their access
to food resources with, for example, infected roach Rutilus rutilus in a reservoir in the Czech
Republic consuming fewer food items and ingesting less food than uninfected conspecifics, but
consuming more animal material [41], representing a substantial shift in their niche.

Parasite infections can also result in substantial modifications of the host phenotype that is
independent of manipulation. These include impaired traits and altered behaviours [22], which
can influence prey selectivity [10]. For example, common carp Cyprinus carpio is a final host of
the non-native intestinal cestode parasite Bothriocephalus acheilognathi, with infections impair-
ing the foraging ability of hosts [42–44]. This results in infected individuals increasingly special-
ising on less-motile food sources, resulting in a larger population trophic niche that is divided into
infected and uninfected subgroups [10] (Figure 1). Moreover, the infected subgroup consuming
alternative resources is likely to be exposed to new competitive and predatory pressures that
arise from its novel trophic interactions; these could further modify its niche and concomitantly
create new links within the food web [31].

The phenotypic modification of infected individuals results in these traits having a bi- or
multimodal distribution in the population, resulting in distinct population subgroups in which
individuals are grouped by their homogenous traits [45]. Where these traits affect their habitat
utilisation, foraging behaviours, and competitive abilities (Table 1), they will affect the prey
selectivity and predation abilities of individuals [10]. This was demonstrated in another amphipod
species, Gammarus pulex, when feeding on the isopod Asellus aquaticus. Individuals infected
by the acanthocephalan Echinorhyncus truttae killed significantly fewer A. aquaticus than their
uninfected conspecifics, with a tendency to only kill the smaller size classes [46]. Although this
specialisation might not necessarily affect the size of the population trophic niche, it could result
in infected individuals also predating more on alternative species, resulting in some niche
divergence. This selective removal of smaller prey size classes could also then impact the
population growth of A. aquaticus, resulting in further food web perturbations.

Parasite infections can also alter host foraging-time budgets and associated prey selectivity, with
three-spined sticklebacks Gasterosteus aculeatus infected with Schistocephalus solidus
increasing their time spent foraging at the expense of antipredator behaviour [47], and selecting
smaller prey items compared with their uninfected conspecifics [48,49]. Conversely, Ranta et al.
[50] suggested infected individuals selectively preyed on larger items than uninfected conspe-
cifics and this compensated for the energy costs of infection. Irrespective of these different
outcomes, these studies demonstrate that infections caused shifts in the prey selectivity of hosts
that could then influence their trophic niches and the size structure of the prey population.

The modification of the host phenotype can also depend on the consequences of specific
parasite infections, with different parasites potentially causing contrasting outcomes for host
habitat utilisation and, thus, access to food resources. In intertidal snail populations, infections by
different larval trematode parasites have distinct effects on host habitat utilisation. For example,
in Batillaria attramentaria, infections of Cercaria batillariae result in hosts having abnormally large
shells and they inhabit the lower areas of the intertidal zone [19,51]. When infected with renicolid
cercariae, the increase in host shell size is small and they inhabit the upper areas of the intertidal
zone. However, when infected by both parasites, hosts have an intermediate shell size and
inhabit the areas between the two extremes [19,51]. Thus, the host population becomes
parasitically divided, resulting in three subgroups of contrasting habitat utilisation that affects
resource access, thus potentially impacts their trophic niche.
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Finally, the parasite fauna of animal communities can also be impacted by anthropogenic
disturbances. Activities, such as fishing, that selectively harvest species in specific size classes
can decrease the abundance of trophically transmitted parasites in the exploited species, as
observed in the fish communities of the Line Islands in the equatorial Pacific [52]. The interaction
between fishing, compensatory responses in surviving fish, and parasite diversity can then
further modify the host phenotypes and their exposure to intermediate hosts [52], and so have
implications for the development of specialisations within the population trophic niche.

Parasite-Mediated Trophic Niche Shifts in Nonhost Species
The novel trophic interactions that can develop as a result of parasite-mediated effects could
also affect the trophic niche of nonhost species in the community that are otherwise unaffected
by the parasite [11] (Table 1). For instance, infections can substantially increase the accessibility
to prey populations that would otherwise be difficult to capture. Examples include cockles with
heavy trematode infections in their foot that prevents them from burying into mudflats, thus
creating a new feeding opportunity for a range of fish and birds, potentially diverging the trophic
niches of their populations [53]. Infections by acanthocephalan parasites in G. pulex can increase
their vulnerability to predation by a range of invertebrate species, despite these predators not
acting as hosts [54]. Parasite infections can also result in new feeding opportunities through the
creation of novel nutrient transfer between ecosystems, such as between terrestrial and
freshwater systems. Examples include fish of the Salmonidae family predating on crickets
and grasshoppers (e.g., Nemobius sylvestris), which act as novel dietary items when they
are parasitised by hairworm parasites (e.g., Paragordius tricuspidatus). Their manipulation
results in hosts jumping into the water; the parasite completes its lifecycle, while the fish are
presented with a novel feeding opportunity that should increase the extent of their trophic niche
[55].

Effects of Multiple Parasite Infections
Given that individuals are often infected by multiple parasites, the potential impact of co-
infections on the trophic niche must also be considered. Deciphering the influence of infections
by multiple parasites species can be challenging, because their effects could be synergistic,
antagonistic, or neutral [28]. Synergistic effects can lead to ‘vicious circles’ of infection, where,
following transmission of a new parasite, hosts are increasingly vulnerable to subsequent
infections [56,57] (Table 1). This could then lead to further modification of the host phenotype,
a potentially stronger shift in their foraging behaviours, and, thus, trophic niche specialisation
[58]. However, it could also result in greater energetic costs and, ultimately, the death of the host
[59]. In the case of B. attramentaria infected with both C. batillariae and renicolid cercariae,
antagonistic interactions between the parasites were suggested because they appeared to
compete for successful transmission to the final host, resulting in only moderate alterations of
host phenotypes compared with the more extreme alterations detected with single infections
[19,51]. In G. aculeatus, controlled co-infections at different levels of infectiveness of the
manipulative parasites S. solidus and Camallanus lacustris had substantial impacts on parasite
manipulation with, for example, infective S. solidus suppressing the manipulation caused by a
not-yet infective C. lacustris [60]. Given that parasite manipulation is a potentially key process for
driving trophic niche specialisations, the effects of these co-infections could have important
implications for its development.

Concluding Remarks
Future research can initially focus on empirically answering relevant questions (see ‘Outstanding
Questions’) and testing their associated hypotheses on the potential shifts that occur in the
foraging behaviours and trophic ecology of hosts following parasite infections. Outputs can
quantify the parasite-driven processes and mechanisms that result in the development of trophic
niche specialisations between infected and uninfected population subgroups (Table 1).

Outstanding Questions
Can trophic niche specialisations
caused by parasite manipulation be
decoupled from those caused by infec-
tion-driven modifications of host phe-
notypic traits?

What is the importance for population
trophic niches when trophically trans-
mitted parasites use free-living species
as intermediate hosts to overcome the
trophic vacuum?

How do temporal changes in parasite
prevalence (due to Red Queen
dynamics) affect the trophic niche of
the final host population and what is the
resulting influence on the population
dynamics of intermediate hosts?

Does parasite-mediated competition
lead to trophic niche specialisation
between infected and uninfected con-
specifics? How does this affect their tro-
phic interactions with nonhost species?

How does parasite-driven trophic
niche specialisation influence the fit-
ness of infected and uninfected con-
specifics and what are the selection
implications?

When new species and their associ-
ated parasites are introduced in new
communities, what are the consequen-
ces for the trophic niches of extant
species and food web structure?

What is the ecological significance of
short-term trophic links created by
heavily infected hosts before their
mortality?

What is the influence of parasite aggre-
gation on the phenotypic traits and
trophic niche of infected hosts?

What are the consequences of varying
parasite infection levels on trophic
niche specialisation at the individual
and population level?

How do multiple parasite infections
influence trophic niches at the individ-
ual and population level?
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Approaches should focus on decoupling the ecological drivers of parasite infections from their
ecological consequences. The role of parasite-mediated competition in driving the trophic niche
specialisation of hosts is also important, particularly in relation to the novel trophic links that this
can result in in the food web. These include the creation of new competitive interactions with
nonhost species, and the extent to which this alters energy flux in the food web. Evolutionary
perspectives may be informed by whether the interactions of parasitism and trophic niche
specialisations affect the fitness of individuals through additive or synergistic effects, and so can
identify the implications for selection (see Outstanding Questions).

Analytical approaches to quantify the role of parasites in trophic niche specialisations can
integrate the qualitative food web approaches that have dominated parasite food web research
[45,52] with stable isotope analyses that reveal more quantitative perspectives [58], such as the
trophic consequences of infections according to parasite burdens [43] and the parasite-
mediated modifications to energy flow between trophic levels [58]. Relatively recent develop-
ments in quantitative stable isotope metrics enable estimates of trophic niche breadth to be
calculated, often from relatively small sample sizes [61,62]. These comparisons of the trophic
niche size of the infected and uninfected components of parasitised populations enable their
assessment in respect of parasite-induced trophic niche constriction and divergence [10]
(Figure 1; Table 1). Integrated field and experimental approaches will then be important in
developing the underlying ecological and evolutionary theory that bridges the fields of trophic
and food web ecology with parasitology. Finally, we suggest that, because the emphasis here
has been on species within aquatic systems using macroinvertebrate- and fish-based examples,
there is a need to determine whether the patterns and research questions have more general
applicability across a wider range of taxa and systems.

Thus, the realised trophic niches of populations of generalist free-living species are increasingly
recognised as comprising small subgroups of relatively specialised individuals [1–3], with the
drivers of these trophic specialisations including competitive interactions and predation pressure
[8]. Here, we have argued that parasite infections can also strongly influence population trophic
niches due to the infection consequences of manipulative and non-manipulative parasites that
strongly influence host phenotypic traits (Table 1). We suggest that processes such as parasite-
mediated competition have large implications for intrapopulation trophic niche specialisation, as
well as other aspects of food web structure [11,12].

In closing, we emphasise that, in assessing the ecological significance of intrapopulation trophic
niche specialisation, there is a compelling requirement for a greater emphasis on the role of
natural enemies, especially parasites. This suggests that further empirical and theoretical
research is required to decouple the effects of parasitism on trophic niche specialisation from
those of other ecological interactions, with our ‘Outstanding Questions’ providing the basis for
such research.
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