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Abstract

In process industry, chemical processes are controlled and monitored by using readings from multiple physical sensors across the
plants. Such physical sensors are also supplemented by soft sensors, i.e. adaptive predictive models, which are often used for
computing hard-to-measure variables of the process. For soft sensors to work well and adapt to changing operating conditions
they need to be provided with relevant data. As production plants are regularly stopped, data instances generated during shutdown
periods have to be identified to avoid updating these predictive models with wrong data. We present a case study concerned with a
large chemical plant operation over a 2 years period. The task is to robustly and accurately identify the shutdown periods even in
case of multiple sensor failures. State-of-the-art methods were evaluated using the first half of the dataset for calibration purposes
and the other half for measuring the performance. Results show that shutdowns (i.e. sudden changes) can be quickly detected in
any case but the detection delay of startups (i.e. gradual changes) is directly related with the choice of a window size.
c© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction and motivation

Chemical production processes are controlled both manually and automatically to achieve a desired product quality.
Physical sensors around the plants provide data streams such as temperature, pressure, humidity or flow, that are
essential to monitor plant operation in real time.

Historical data collected from plant sensors may be huge and can be used for different tasks like reporting (e.g.
monthly productivity of a plant) or building data-driven soft sensors (i.e. predictive models to support decision making
or as cover for physical sensors).

Soft sensors are usually built for predicting hard-to-measure values in real time1. This building process involves
data cleaning such as the removal of data from shutdown periods. We are studying the automation of shutdown
identification for speeding up these tasks.
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Adaptive soft sensors are often updated with new data for capturing well the underlying behaviour of the process
that evolves over time2. If the data from shutdowns are not removed, the predictive model can adapt to an undesirable
process state. Also, during these inactive periods of production the predicted values are not meaningful from the
process point of view. Therefore, an online method is necessary to automatically detect shutdowns in order to stop
model adaptation.

The decision to stop a plant is usually taken by an human operator. Despite the fact that shutdowns can be scheduled
for a year ahead, they may vary depending on the operating conditions (e.g. if heat suddenly increases to a dangerous
level the plant has to be stopped for safety reasons).

The problem is also challenging because there is usually no single variable that can accurately and unambiguously
identify the operating state of the chemical process. The solution starts from monitoring sensor values to detect
changes in the process. However, not all sensors react in the same way to a shutdown. Expert support is usually
needed to select the relevant sensors to monitor.

In addition, physical sensors can fail and as a result detection may be interrupted. Therefore, a shutdown detection
method that works by monitoring only one sensor is unreliable in an industrial environment. It is essential to build
robust methods that are able to monitor and combine several sensors at the same time.

As part of the ongoing evaluation studies aiming at identifying robust pre-processing methods and ultimately
developing of the automated data preprocessing framework (see Žliobaitė and Gabrys work3), in this paper we have
performed a comparative analysis of the state-of-the-art change-detection methods for a challenging case study.

The data of this case study has been provided by a chemical company and it has been collected from a chemical
plant over a period of 2 years of operation. Data from 11 flow sensors have been aligned by time-stamp in order to
form instances. The location of sensors in the plant causes delays between sensor signals during both shutdowns and
startups. These delays make the detection more challenging. Furthermore, the annotation of the shutdown periods as
ground truth for evaluation purposes has not been trivial.

The paper is organized as follows: Section 2 presents the problem setting; in the Section 3 we review the related
literature and we describe a new method based on control charts; Section 4 contains the dataset description and the
experimentation; finally, we conclude the paper in Section 5.

2. Problem setting

A shutdown is a period of time [tα, tω] during which a process is inactive but its duration is not defined a priori.
Process operation is monitored using a group of sensors. The visualization of the values of some sensors over time
makes possible a clear distinction of groups of out-of-control values that represent shutdown periods (see Figure 1).
However, other sensors are not showing any change during those periods. The selection of relevant sensors for
shutdown detection is not straightforward and usually domain experts select them manually.

We focus our work in an online scenario where data from sensors are continuously arriving to the system at fixed
time intervals (e.g. every second). Let Xt = (x1,t, ..., xN,t) be the vector of N sensor values at time t. The distribution
of a relevant sensor (i.e. sensitive to shutdowns) is given by a Gaussian mixture model such as

xn,t ∼

N(µn,0, σn,0
2), if t < [tα, tω]

N(µn,1, σn,1
2), if t ∈ [tα, tω]

(1)

The formulation of a change-point in a data stream is usually given by the stopping rule

T = inf{t : st(Xt) ≥ τ} (2)

where st(Xt) is the statistic computed over the input data and τ is the detection threshold.
Since sensors are physically located in different places of a plant, they will perceive the change of the process state

at different moments. As a consequence, when a shutdown takes place there is a time interval [tα, tβ] in which some
parts of the plant are still working while others are stopped. The same situation happens during a startup. In this
case, the time interval is [tψ, tω]. Figure 2 shows these time intervals in three flow sensor signals during both events.
Usually, tβ − tα � tω − tψ. That is, shutdowns are characterized by sudden changes while startups present gradual
changes in sensor values.
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Fig. 1. This plot shows how sensors values suddenly drop when a shutdown starts. After a period of inactivity, the values suddenly increase again
when shutdown ends.
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Fig. 2. Plot on the left shows the points tα and tβ which are chosen in annotation as the time interval of the beginning of the shutdown period. Plot
on the right shows the points tψ and tω which are annotated as the time interval of the end of the shutdown.

The statistic st will increase during the interval [tα, tβ] and it will decrease during [tψ, tω]. As a consequence,
different stopping rules have to be used according to the type of change that we would like to detect. That is, Equation 2
is suitable for detecting shutdowns, while the following stopping rule is more suitable for detecting startups:

T = inf{t : st(Xt) < τ} (3)

The right use of either stopping rules is associated with the process state since they are contradictory.
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In the case of a shutdown we would like to detect quickly its beginning, that is, in a time point ta ≥ tα as close as
possible to tα. On the other hand, in case of a startup we would like to detect the very end of the shutdown period, that
is, a time point tz ≥ tω as close as possible to tω.

Deployment of a method for detecting these periods can result in three different outcomes: a) correct detection;
b) false detection; and c) no detection. A good method should be able to maximize the number of correct detections
and to minimize the number of false detection/no detection cases. This requirement is directly related to the reduction
of the detection delay and the rate of false detections, which are the two most common metrics in the change-point
detection literature.

3. Multi-sensor change-point detection methods

The detection of abrupt changes in single-sensory data (i.e. one-dimensional) has been well studied and solved.
For example, the book of Basseville and Nikiforov4 is one of the main references for this problem. Lai5 surveys the
sequential change-point detection methods in quality control and dynamical systems. A more recent state-of-the-art
in single-sensor sequential change-point detection is presented by Polunchenko and Tartakovsky6 where methods of
main formulations are reviewed.

The extension of this problem to multiple-sensory data has been also addressed by several authors. Viswanathan et
al.7,8 present a two-part review of methods using different topologies and approaches. Classical methods use all the
data collected until the current time t. However, those approaches are not feasible for practical purposes where data
streams are continuously arriving to be processed. For this case study, we have selected and implemented a number
of window limited versions of the state-of-the-art methods in order to carry out a comparative performance study.

The first chosen method was proposed by Tartakovsky and Veeravalli9 where a likelihood ratio test is carried out
for each sensor and individual results are aggregated. The statistic to define the stopping rules of this method is
referred to TV in Table 1.

Mei10 proposes a family of scalable schemes for global online monitoring of data streams based on CUSUM
statistics from each individual data stream. The same author extends this work where the fact that the change point
may be different in each data stream is taking into account11. The statistic monitored by Mei’s method is referred to
MEI in Table 1.

Xie and Siegmund12 propose a mixture procedure based on the aggregation of the local generalized likelihood ratio
(GLR) statistic of each sensor. This method assumes that the pre- and post-change distributions are Gaussian with
pre-change mean being zero. This mixture includes a fraction of affected sensors by the change that has to be fixed
a priori. The statistics of two different stopping rules proposed by the authors can be found in Table 1 (as XS1 and
XS2).

Finally, we have implemented a method based on Shewhart’s control charts13. These charts are widely used in the
industry to distinguish between two states of a process (i.e. in-control and out-of-control). Section 3.1 provides more
detailed explanation of this method. The statistic monitored by this method is referred to SGZ in Table 1.

In the recent years, multi-sensor change-point detection methods have been applied for example to fault detection14

and intrusion detection15, but no works in shutdown periods detection are available so far to the best of our knowledge.
A common assumption in the literature is that a change has to be detected as soon as possible. This is also true in

the case of detecting the beginning of a shutdown. On the other hand, the pipeline structure of a big chemical plant
means that the re-initialization of the sensors after a startup is delayed according to their spatial location. Thus, the
detection of a startup should be deferred until all the parts of the chemical plant are working in a steady state which
makes the startup detection a much more challenging problem.

3.1. Multi-sensor change-point detection method based on control charts

In order to control a quality measure, an upper and lower thresholds are computed with historical data. It is
common to get these thresholds using the 3σ-rule, which state that for a normal distribution the 99.7% of values lies
in the interval (µ − 3σ, µ + 3σ) where µ is the mean and σ is the standard deviation of the sample.
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To extend this method to our case study, the limits for each sensor are computed as Ln = µ̃n−3σ̂n and Un = µ̃n+3σ̂n,
where µ̃n is the median and σ̂n ≈ 1.4826MAD is the estimation of the standard deviation using the median absolute
deviation computed over the historical data.

The presence of outliers in the data might lead to false detections. Therefore, to increase robustness of the method
we have introduced a window of out-of-control values for each sensor. Thus,

Cn,t = (B(xn,t−r), . . . ,B(xn,t)) (4)

is the window of r binary values for the sensor n where

B(xn,t) =

1, if xn,t < [Ln,Un]
0, otherwise

(5)

A window for each sensor is monitored and weighted according to its reliability. Binary weights are used to discard
those sensors which might be failing. A similar approach to identify faulty sensors is presented by Seron et al.16. Let

γn,t =
∑

ci, ∀ci ∈ Cn,t (6)

be the number of out-of-control values in the window Cn,t. Each weight is then updated in each time t as

wn =

1, if γn,t ∈ [L,U]
0, otherwise

(7)

where L andU are the thresholds of C1..N,t computed using the Hampel identifier17.
Final decision for detecting a change is taken by aggregating the weighted counters of all sensors. Therefore, using

st(Xt) = max
1≤n≤N

(wnγn,t) (8)

as a statistic (SGZ in Table 1) we ensure both quick detection during a shutdown and deferred detection during a
startup. This aggregation can therefore deal with the delays between sensors due to their spatial location. Pseudo-
code for this method is presented in Algorithm 1.

4. Experimental evaluation

The goal of this experimental evaluation is to compare the performance and reliability of different multi-sensor
change-point detection methods in our case study and to select the most suitable for a production environment. For
that purpose, we first have defined the evaluation measures and then we have established an experimental protocol.
Finally, we discuss the results of the conducted experiments.

4.1. Dataset of a chemical plant

The dataset is composed of 109,627 records, sampled every 10 minutes from the archive of readings of the chemical
plant. Each record contains 11 numerical values from flow sensors. The structure of the sensors is unknown. The
records have been aligned by time-stamp in order to form instances. Missing values have been interpolated to simplify
the procedures, but apart from that the dataset has not been preprocessed, so it contains outliers and noise as we would
expect from the online process.

The dataset is not publicly available but can be requested to the corresponding authors by email.

4.2. Evaluation measures

In change-point detection literature there is a trade-off between detection delay and false alarm rate. While the
objective is to minimize both measures, a threshold for a quick detection delay can increase the number of false
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Algorithm 1 Function processSample(Xt)
1: for n = 1→ N do
2: B = isOutlier(xn,t) . Eq. 5 equivalent
3: Cn.removeOldest() . Cn is a list of size r initialized as a global variable
4: Cn.append(B) . Eq. 4 equivalent
5: end for
6: [L,U] = getReliabilityThresholds(C1,...,N)
7: st = 0
8: for n = 1→ N do
9: γn = sum(Cn) . Eq. 6 equivalent

10: wn = inLimits(γn,L,U) . Eq. 7 equivalent
11: st = max(st,wn · γn) . Eq. 8 equivalent
12: end for
13: if processActive and st ≥ τ then . Eq. 2 equivalent
14: shutdownDetected()
15: processActive = false . processActive is defined as a global variable
16: else if ¬processActive and st < τ then . Eq. 3 equivalent
17: startupDetected()
18: processActive = true
19: else
20: continueProcessSample(Xt)
21: end if

alarms (i.e. incorrect detections). In our case study we want to avoid false detection at all cost but at the same time
we would not like to get long delays.

Although shutdowns and startups are both changes from the theoretical point of view, we distinguish between them
during the experiments because they are different in practice as we explained in Section 2. Therefore, we measure the
shutdown’s detection delay as ∆α = ta − tα and the startup’s detection delay as ∆ω = tz − tω where ta and tz are the
times of the detection for each case.

4.3. Experimental setting

The dataset has been split in two equally-sized parts. The first half is used for the calibration of parameters and the
second half for evaluating the methods. Each half contains 22 change-points (11 shutdowns and 11 startups) that have
been manually annotated.

Table 1 contains the distinctive formulas for calculating the time changing statistical values used in the stopping
rule of each method. In this table, t is the current time, r is the size of a temporal window,

`n(t, k, µn) =

t∑
i=k+1

(µnxn,i − µ
2
n/2) (9)

is the log-likelihood of observations accumulated by time t, µn is the mean of the data during a shutdown,

µ̂n,k,t =

t∑
i=k+1

xn,i

t − k
(10)

is the maximum likelihood estimator of the mean, and Pr(xt) is the posterior probability of xt in the distributionD0 or
D1, according to the process state.

The limits of the stopping rules for all the methods have to be chosen to minimize both the detection delay and

the rate of false alarms. In the case of XS1, XS2, MEI and TV this limit lies in 0 < τ .
N∑

n=1
r · µ2

n,1/2, and for SGZ
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Table 1. Formulas used for st(Xt) in Equations 2 and 3

Method st(Xt)

TV max
t−r≤k≤t

N∑
n=1

`n(t, k, µn)

MEI
N∑

n=1
max

t−r≤k≤t
`n(t, k, µn)

XS1 max
t−r≤k≤t

N∑
n=1

log(1 − p0 + p0 exp[`+
n (t, k, µn)])

XS2 max
t−r≤k≤t

N∑
n=1

log(1 − p0 + p0 exp[(µ̂+
n,k,t)

2/2])

SGZ max
1≤n≤N

(wnγn,t)

Table 2. Limit values τ for each method and window size r

r 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

TV 16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10
MEI 18 17 17 18 19 17 18 18 19 20 19 11 11 11 11 11 11
XS1 80 68 17 80 23 58 60 25 46 57 57 57 57 57 46 57 35
XS2 16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10
SGZ 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

in 0 < τ < r. Limits for each method have been automatically set using the first half of the dataset as input. Thus,
the computed limit is the minimum st value that avoids the false alarms and detects all the change-points. Table 2
contains these limits for each window size.

4.4. Experimental results

A sample of the st values computed for each method is shown in Figure 3. The statistics for TV, MEI, XS1 and
XS2 are very similar because they are all based on the likelihood. The flat signal of SGZ indicates that the windows
of out-of-control values is full (r = 25).

The left side of Figure 4 compares the median values of the detection delays during the shutdown phases. The
window size almost does not affect to the these types of detections because the st values quickly increase during the
shutdown phase and overcome the threshold τ. The MEI, TV and XS2 methods reported lower detection delays than
XS1 and SGZ.

On the other hand, the window size has a significant effect on the median values of the detection delays during the
startup phases as shown in the right part of Figure 4. A negative delay means that the change-point has been detected
before tω. In this case study, we are interested in keeping a small positive detection delay. In both XS1 and SGZ a
value of r = 30 satisfies that requirement. However, a value of r = 75 is needed for TV, MEI and XS2.

False alarms have only be reported for MEI with window sizes r = {20, 25, 30, 45, 50, 55, 60} and for SGZ with
window sizes r = {20, 65}. The rest of the methods have not raised any false alarms within the experimental setup.

After the experimentation we conclude that the methods behave similarly although selection of window size makes
a difference. The MEI method detects the changes quicker than the other methods but at the same time it raises false
alarms in some of the cases. Any of the following configurations would be suitable to be implemented in a production
environment: (TV, r = 70), (MEI, r = 75), (XS1, r = 30), (XS2, r = 70) and (SGZ, r = 30). If memory requirements
are costly, we would choose the XS1 method because its performance is better than the others with lower window
size.
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Fig. 3. Subset of the observed data and st values for all the methods for r = 25.
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5. Conclusions

We have presented a case study obtained from a chemical production company. The task has been to identify
the shutdown periods of a chemical plant using the information provided by 11 flow sensors. For that, we have
firstly stated the problem setting and then selected a number of state-of-the-art methods in multi-sensor change-point
detection. In addition, we have developed a robust method based on control charts which are very popular in the
industry.

We have conducted a series of experiments using a common framework in order to evaluate the performance of all
these methods for our case study. The results point to the XS1 method as the most suitable approach for our purposes
since it has a small detection delay both in shutdown and startup periods while keeping the memory requirements
lower than the other methods.

As indicated in the introduction of this paper the presented automatic shutdown/startup detection study, as well
as the evaluation and adaptation of existing methods, form a small part of the ongoing and future development of an
automated preprocessing framework for adaptive soft sensors.

In this context the most immediate future work includes a study of how the use of the evaluated methods in an online
preprocessing environment can affect the performance of adaptive the soft-sensors and their predictive accuracy.
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