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Abstract 

A major challenge in modern eye movement research is to statistically map where observers are 

looking, by isolating the significant differences between groups and conditions. Compared to 

signals of contemporary neuroscience measures, such as M/EEG and fMRI, eye movement data 

are sparser with much larger variations in space across trials and participants. As a result, the 

implementation of a conventional linear modeling approach on two-dimensional fixation 

distributions often returns unstable estimations and underpowered results, leaving this 

statistical problem unresolved (Liversedge, Gilchrist, & Everling. 2011). 

Here, we present a new version of the iMap toolbox (Caldara and Miellet, 2011) which tackles 

this issue by implementing a statistical framework comparable to those developped in state-of-

the-art neuroimaging data processing toolboxes. iMap4 uses univariate, pixel-wise Linear Mixed 

Models (LMM) on the smoothed fixation data, with the flexibility of coding for multiple 

between- and within- subject comparisons and performing all the possible linear contrasts for 

the fixed effects (main effects, interactions, etc.). Importantly, we also introduced novel non-

parametric tests based on resampling to assess statistical significance. Finally, we validated this 

approach by using both experimental and Monte Carlo simulation data. 

iMap4 is a freely available MATLAB open source toolbox for the statistical fixation mapping of 

eye movement data, with a user-friendly interface providing straightforward, easy to interpret 

statistical graphical outputs. iMap4 matches the standards of robust statistical neuroimaging 

methods and represents an important step in the data-driven processing of eye movement 

fixation data, an important field of vision sciences. 
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Introduction 

Human beings constantly move the eyes to redirect their gaze in order to sample visual 

information of interest from the environment. Eye fixations deliver visual inputs with the 

highest precision from the location falling in the fovea to the human visual cortex, as well as 

blurry, low spatial frequency information from peripheral vision (Rayner, 1998). Thus, isolating 

statistically where and how long fixations are deployed to process visual information is of 

particular interested to behavioral researchers, psychologists and neuroscientists. Moreover, 

fixation mapping has a wide range of practical applications in fields such as commercial and 

consumer industry (Duchowski, 2002). 

Conventional eye movement data analyses rely on the probability of occurrence of fixations and 

saccades (or their characteristics such as duration or length) within predefined Regions of 

Interest (ROIs), at best defined a priori but often also a posteriori based on data exploration, 

which inflates the type one error rate. Another issue with ROI is of course that other important 

information not included in the ROI are discarded. In a continuous effort to circumvent 

limitations in the use of ROI approach (for a detailed discussion on this point, see Caldara & 

Miellet, 2011), we previously developped an unbiased data-driven approach to compute 

statistical fixation maps of eye movements: the iMap toolbox (Caldara & Miellet, 2011). From 

the very first version, the toolbox was developed as a Matlab open-source toolbox freely 

available for download online. The previous versions (1 and 2) made use of Gaussian smoothing 

and the Random field theory as a statistical engine (Caldara & Miellet, 2011), which is one of the 

standard methods applied in statistical analyses for functional Magnetic Resonance Imaging 

data (Penny, Friston, Ashburner, Kiebel, & Nichols, 2011). Version 3 introduced pixel-wise t-test 

and bootstrap clustering in order to generate self-contained statistical maps (Miellet, Lao, & 

Caldara, 2014). However, all of the previous versions of iMap were suffering from a major 

limitation: they could only contrast two conditions at a time. 

A major revision of the toolbox was necessary in order to allow the analysis of the more 

complex experimental designs routinely used in the field. One of the most suitable and obvious 

statistical solutions to overcome this problem is to implement a General linear model, a wide 

spread approach both in behavioral and neural imaging data analyses. In fact, many modern 

hypotheses testing, such as the t-test, ANOVA, regression, etc. belong to the family of general 

linear models. However, eye movement data are a sparse production of visual perceptual 

sampling. Contrary to neuroimaging data, there are many empty cells with little to no data 

points across the tested space (e.g., all the pixels in the image). This caveat engenders a 

statistical problem when the same statistical inference procedure is applied on each pixel 

regardless or whether there are missing data or not. To account for the sparseness and the high 
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variation of spatial eye movement data, we develop a specific novel approach for smoothed 

fixation maps, which was inspired by the statistical framework implemented in diverse state-of-

the-art neuroimaging data processing toolboxes: Statistical Parametric Mapping (SPM, Penny et 

al., 2011), Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) and LIMO EEG (Pernet, 

Chauveau, Gaspar, & Rousselet, 2011). In the simplest case, the users can apply a massive 

univariate, pixel-wise Linear Mixed Model on the smoothed fixation data with the subject 

considered as a random effect, which offers the flexibility to code for multiple between- and 

within- subject comparisons. Our approach allows the users to perform all the possible linear 

contrasts for the fixed effects (main effects, interactions, etc.) from the resulting model 

coefficients and the estimated covariance. Importantly, we also introduced a novel non-

parametric statistical test based on resampling (permutation and bootstrap spatial clustering) 

to assess the statistical significance of the linear contrasts (Pernet et al., 2014; Winkler et al., 

2014). 

In the next section, we briefly describe the key concepts of the Linear Mixed Model (LMM) 

approach. We then introduce the novel non-parametric statistical approach on the fixed effects 

we implemented in iMap4, which uses a resampling procedure and spatial clustering. We also 

report a validation of the proposed resampling procedures. We then illustrate how iMap4 can 

be used, with a subset of data from a previous study and computer-simulated data. Finally, we 

give an overview of future development and discuss technical insights on eye fixation mapping.  

Linear Mixed Models 

In this part, we will outline the key elements and concepts of Linear Mixed Models in 

comparison with General Linear Models (GLM) and Hierarchical Linear Models (HLM). Mixed 

models are a complex subject and many underlying details are beyond the scope of this paper. 

For a general thoughtful introduction to mixed models, users of the toolbox should refer to 

Raudenbush & Bryk (2002) and McCulloch, Searle & Neuhaus (2011). The users may also wish 

to consult the documentation and the help files of the LinearMixedModel class in Matlab 

Statistics Toolbox™ for details about parameter estimation and available methods 

(http://www.mathworks.com/help/stats/linearmixedmodel-class.html). 

Statistical hypothesis testings that make use of the analysis of variance (regression, t-test, 

ANOVA, ANCOVA, etc.) are the most popular methods of data analysis in many fields of research. 

Commonly used in psychology and neuroimaging studies, these methods could all be written as 

particular cases of the GLM:  

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑡𝑥𝑡𝑖 + 𝜀𝑖                   (1) 
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ε𝑖 ~ Ν (0, 𝜎
2) 

where yi is the ith experiment measure and β1, β2 ,…, βt are the model coefficients. The error term 

εi is normally distributed with mean of zero and variance of σ2. Alternatively, the general linear 

models (Eq. 1) could be expressed in matrix form: 

𝒀 = 𝑿𝜷+ 𝜺                  (2)  

𝜺 ~ 𝚴 (𝟎, 𝝈𝟐𝑰)  

where matrix X = [x1, x2, … , xt] is the design matrix, and I is an n-by-n identity matrix (n being 

the total number of observation). Usually, one of the columns in X is 1 so that the model 

including a constant or intercept coefficient that represents the overall mean. It is worth noting 

that the design matrix could be parameterized in different way. In conventional psychology or 

behavioral researches, a sigma-restricted parameterization is often applied. In a sigma-

restricted design matrix, X is full rank and invertible, and the degrees of freedom is equal to the 

number of columns. In comparison, many neuroimaging analysis software prefer a cell-mean 

model or an over-parameterized design matrix in single subject level (Penny et al., 2011; Pernet 

et al., 2011). In these software, they use an over-parameterized design matrix and its solution to 

Eq. (2) is given by projecting the response vector Y to the pseudoinverse of the design matrix X. 

The form of design matrix is important as it codes different experiment design and the intended 

statistics testing. In iMap4, the design matrix of the fixed effect can be cell-mean model, sigma-

restricted model (for the Type III ANOVA) or the offset from reference model (for the Type I 

ANOVA).  

The coefficient estimations 𝜷̂ could be found easily by Ordinary Least Squares or other more 

robust methods. Finally, statistical inferences on the model estimations could be expressed in 

different forms depending on the types of design matrix. In the case of sigma-restricted 

parameterization, we can separate the design matrix Xsr and the vector of parameters βsr into 

two parts (Kherad-Pajouh & Renaud, 2010):  

𝐗𝐬𝐫 = [𝐗𝟏 𝐗𝟐] , 𝜷
𝐬𝐫 = [

𝜷𝟏
𝜷𝟐
] 

where X1 and β1 are the components of interest with the corresponding hypotheses: 

H0 ∶  𝜷𝟏  =  𝟎  vs.  H1 ∶  𝜷𝟏  ≠  𝟎             (3)  

Given the Gaussian distribution of the error ε and the existence of the inverse or general inverse 

of design matrix Xsr, we can get the statistics for the F-test in ANOVA with the following 

equations (for simplicity, in Eq. 4 - 8 we denote X = Xsr): 
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𝐇 = 𝐗(𝐗𝐓𝐗)−𝐗𝐓                                       (4)  

𝐗𝐫𝐞𝐬𝐢𝐝 = (𝑰 − 𝐗𝟐(𝐗𝟐
𝐓𝐗𝟐)

−
𝐗𝟐
𝐓) 𝐗𝟏               (5)  

𝐇𝐫𝐞𝐬𝐢𝐝 = 𝐗𝐫𝐞𝐬𝐢𝐝(𝐗𝐫𝐞𝐬𝐢𝐝
𝐓 𝐗𝐫𝐞𝐬𝐢𝐝)

−
𝐗𝐫𝐞𝐬𝐢𝐝
𝐓          (6)  

dfe = Number of observation − rank(𝐗)                             (7)   

𝐹 = 
𝐘𝐓 𝐇𝐫𝐞𝐬𝐢𝐝 𝐘 / rank(𝐗𝟏)

𝐘𝐓 (𝑰 − 𝐇) 𝐘 / (dfe)
                              (8)   

where H represents the hat matrix of the linear model (2); it projects the response vector Y onto 

the column space of X. Hresid is the hat matrix of the hypothesis (3) and dfe is the model degrees 

of freedom. F has a Fisher–Snedecor distribution ℱ (rank(X1) , dfe). 

As comparison, in an over-parameterized design matrix or cell-mean model design matrix with 

design matrix Xcm and the vector of parameters βcm, the statistics of various effects is performed 

by linear combinations of the coefficient βcm. For example, the equivalent hypothesis of (3) 

could be expressed as: 

H0 ∶  𝐜 ∗ 𝜷
𝒄𝒎  =  𝟎  vs.  H1 ∶  𝐜 ∗ 𝜷

𝒄𝒎  ≠  𝟎             (9)  

where rank(c) = rank(X1) and c*βcm = β1 in the sigma-restricted parameterization model. The 

related F-test is then given by the quartic form of the linear contrast matrix c and the inverse of 

covariant matrix of βcm (for simplicity, in Eq. 10 and 11 we denote X = Xcm): 

MSE = 𝐘𝐓 (𝑰 −  𝐇) 𝐘 / (dfe)               (10)  

𝐹 =
(𝐜∗𝜷𝒄𝒎)𝐓(MSE∗𝐜(𝐗𝐓𝐗)−𝐜𝐓) −(𝐜∗𝜷𝒄𝒎)     

rank(c)
                     (11)   

where H and dfe are computed using Eq. (4) and (7), respectively. Moreover, it could be proved 

that Eq. (8) and (11) are equivalent. The related details and mathematical proofs could be found 

in many textbooks (e.g., Christensen 2011). 

The GLM 𝒀 = 𝑿𝜷+ 𝜺 could be easily extended into a generalized form with 𝜺 ~ 𝚴 (𝟎, 𝝈𝟐𝑽) 

where V is some known positive definite matrix. Moreover, if a more specific structure of the 

error ε is available, the GLM (2), which has one random effect term (the error ε), could be 

further extended into a mixed-model. Mixed-models include additional random-effect term that 

can represent the clusters or classes. In a typical neuroimaging study, it could be the subjects or 

groups. In the following example, we consider a simplified case where only the subject is 
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considered as the additional random effect. This type of model is one of the most widely used 

models in fMRI and EEG.  

As demonstration, here we consider a random intercept and slope model, with both the 

intercept (i.e., overall mean of each subject) and slope (i.e., differences among conditions within 

each subject) varying independently. This type of HLM or so-called two-level linear models 

takes the form as an expansion of Eq. (1) into: 

𝑦𝑖𝑗 = 𝛽1𝑗𝑥1𝑖𝑗 + 𝛽2𝑗𝑥2𝑖𝑗 +⋯+ 𝛽𝑡𝑗𝑥𝑡𝑖𝑗 + ε𝑖𝑗,    ε𝑖𝑗 ~ Ν (0, 𝜎
2)                    

 𝛽1𝑗 =  𝛽10 + 𝑏1𝑗 ,    𝑏1𝑗 ~ Ν (0, 𝜎1
2)    

⋮  

 𝛽𝑡𝑗 =  𝛽𝑡0 + 𝑏𝑡𝑗 ,      𝑏𝑡𝑗 ~ Ν (0, 𝜎𝑡
2)        (12)   

where j stand for the jth subject. After substituting the subject-level parameters in the first-level 

model, Eq. (12) becomes 

𝑦𝑖𝑗 = (𝛽10 + 𝑏1𝑗)𝑥1𝑖𝑗 + (𝛽20 + 𝑏2𝑗)𝑥2𝑖𝑗 +⋯+ (𝛽𝑡0 + 𝑏𝑡𝑗)𝑥𝑡𝑖𝑗 + ε𝑖𝑗   

       =  𝛽10𝑥1𝑖𝑗 + 𝛽20𝑥2𝑖𝑗 +⋯+ 𝛽𝑡0𝑥𝑡𝑖𝑗⏟                    
𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

+ 𝑏1𝑗𝑥1𝑖𝑗 + 𝑏2𝑗𝑥2𝑖𝑗 +⋯+ 𝑏𝑡𝑗𝑥𝑡𝑖𝑗⏟                    
𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

+ ε𝑖𝑗  

If we express the subject-level predictor xtij in the random-effects by the term ztij, we get the 

LMM: 

𝑦𝑖𝑗 = 𝛽10𝑥1𝑖𝑗 + 𝛽20𝑥2𝑖𝑗 +⋯+ 𝛽𝑡0𝑥𝑡𝑖𝑗⏟                    
𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

+ 𝑏1𝑗𝑧1𝑖𝑗 + 𝑏2𝑗𝑧2𝑖𝑗 +⋯+ 𝑏𝑡𝑗𝑧𝑡𝑖𝑗⏟                    
𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

+ ε𝑖𝑗   

which corresponds to the standard form of Linear Mixed Models: 

𝒀 = 𝑿𝜷+ 𝒁𝒃 + 𝜺                  (13)  

𝒃 ~ 𝚴 (𝟎, 𝝈𝟐𝑫), 𝜺 ~ 𝚴 (𝟎, 𝝈𝟐𝑰), 𝒃 𝑎𝑛𝑑 𝜺 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟   

where σ2D is the covariance matrix for the random effects. In the example here D would be a j-

by-j identity matrix. Alternative form of the Eq. (12) as applied in LIMO EEG or SPM could be 

found in Friston, Stephan, Lund, Morcom, & Kiebel (2005, Eq. 1).  

HLM are specific cases of LMM. In a mixed model, factors are not necessarily hierarchical. 

Moreover, crossed factors between fixed effects and random effects are much easier to model in 

mixed models compare to hierarchical models. In additions, the fixed effects and the random 
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effects are estimated simultaneously in mixed models, which is not always the case in 

hierarchical models. 

Parameter estimation in mixed models is much more complicated than in GLM or HLM.  

Assumed that model (13) has the error covariance matrix R: 𝑣𝑎𝑟(𝒀|𝒃) = 𝑹, model (13) is 

equivalent to 𝑦 ~ 𝐍 (𝑿𝜷, 𝑽), 𝑽 = 𝒁𝑫𝒁𝑻 + 𝑹. The estimation of the fixed effects β requires prior 

knowledge of V, which is usually unavailable. In practice, the variance component V is 

commonly replaced by an estimation 𝑽̂ from several approaches such as ANOVA, maximum 

likelihood (ML) estimation, restricted maximum likelihood (ReML) estimation, or Monte Carlo 

approximation (McCulloch, Searle & Neuhaus, 2011; Pinheiro & Bates, 2000). In general, model 

fitting procedure of LMM is implemented in major statistical packages (e.g., R and Stata) by 

solving the Henderson’s mixed model equation. iMap4 called Matlab class LinearMixedModel 

from Statistics Toolbox ™ (R2013b or above) to estimate the coefficients (fixed effect β and 

random effect b) and the covariance matrix V with various options (key concepts in regarding to 

parameter estimations could be found in Matlab documentation: 

http://www.mathworks.com/help/stats/estimating-parameters-in-linear-mixed-effects-

models.html). In brief, model coefficients are estimated by ML or ReML, and the pattern of the 

covariance matrix of the random effects (D) could take the form of full covariance matrix, 

diagonal covariance matrix, or other symmetry structure. 

Statistical inferences in LMM are also much more complex compared to GLM. In a balanced 

design, or with the variance component V known, hypothesis testing of the fixed effect follow Eq. 

8 or 11 as an exact test. However, in an unbalanced design with random effect, no exact F-

statistics is available, as there are biases in the estimation that usually result in an unknown 

distribution of F (Kherad-Pajouh & Renaud, 2014). Although F- and t- values are available as 

approximate test in most statistical package, Baayen et al (2008) discouraged the usage of t- or 

F- statistics and especially the report of p-value in mixed models. Other approaches have also 

been proposed. For example, likelihood ratio tests could be performed to test composite 

hypotheses by comparing the desired model with the reduced model. However, there are many 

constraints of the application of likelihood ratio test (e.g., method of model fitting, selection of 

the reduced model). Moreover, running multiple copies of similar LMM is computationally 

expensive, especially in the context of pixel-wise testing such as in iMap4. 

Besides the practical problem in statistical inferences of LMM, another main challenge in the 

application of LMM to spatial eye movement data is the Type I error from multiple comparisons. 

To resolve these issues, we adopted resampling technique for null hypothesis of statistical test 

(NHTS) as suggested in the neuroimaging analysis for GLM or HLM (Pernet, et al., 2014; Winkler, 
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et al., 2014). Nonparametric statistics using Monte Carlo simulation are ideal both for parameter 

estimation and hypothesis testing (Baayen et al, 2008; Kherad-Pajouh & Renaud, 2014). In 

iMap4, we adapted a simplified version of the permutation test suggested by Winkler et al (2014) 

and a bootstrap clustering method similar to the one applied in LIMO EEG (Pernet, et al., 2011). 

Details of the proposed algorithm and preliminary validation result are described in the 

following section. 

Pixel-Wise Modeling and Spatial Clustering 

Although the generation mechanism of eye movement data is still largely under debate, recent 

theories and applications suggest that a spatial model is the most appropriate to consider the 

statistical analysis of fixation especially its location distribution. For example, Barthelmé, 

Trukenbrod, Engbert, & Wichmann, (2013) recommend using the point process framework to 

inference how fixations are distributed in space. While we endorse this fruitful approach and its 

Bayesian nature, here we aim to resolve this problem from an opposite perspective. Instead of 

inferring from the spatial distribution of the fixation, we infer on each location in the search 

space (i.e., each pixel of within the eye tracker recordable range or each pixel in the visible 

stimuli). In other words, we try to answer the question: “How long is this pixel being fixated (or 

what is the probability of this pixel to be fixated) in the function of the experimental conditions?”. 

Formally, by applying mixed models independently on each pixel, we have: 

𝒀(𝑠) = 𝑿𝜷(𝑠) + 𝒁𝒃(𝑠) + 𝜺(𝑠)                  (14) 

𝑓𝑜𝑟 𝑠 ∈ 𝑫 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒  

The complete procedure as implemented in iMap4 is explained in Figure 1. Eye movement data 

for each participant is concatenated into one input data matrix. iMap4 first partition the data 

matrix into a fixation characteristic matrix (red box) and an experiment condition information 

matrix (green box). The fixation characteristic matrix contains fixation spatial location (x and y), 

fixation duration, and order index of each fixation. The experiment condition matrix contains 

index of each subject, index of each trial/item, and different levels of each experimental 

condition. Fixation durations are then projected into the two-dimensional space according to 

their x and y coordinates at the single-trial level. iMap4 then smooths the fixation duration map 

by convoluting it with a two-dimension Gaussian Kernel function: 

𝐾𝑒𝑟𝑛𝑒𝑙 ~ 𝛮 (0 , 𝜎2𝛪) , where I is a two by two identity matrix and the full width at half maximum 

(FWHM) of the Kernel is 1° visual angle as the default setting.  
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This step is essential to account for the spatial uncertainty of eye movement recording (both 

mechanical and physiological) and the sparseness of the fixation locations. The Gaussian kernel 

could also be replaced by other 2D spatial filters to best suit the research question.  

The resulting smoothed fixation map is a 3D matrix. The last two dimensions of the fixation 

matrix are the size of the stimuli/search space. Information of each entry in the first dimension 

is stored in a predictor table, which is generated from the experiment condition matrix. Each 

experiment condition can be coded at the single trial level in the predictor table, or as one entry 

by taking the average map across trials.  

In addition, iMap4 provides robust estimation option by applying Winsorization in order to 

limit extreme values in the smoothed fixation matrix. The goal here is to reduce the effect of 

potentially outliers. Additional options include: spatial normalization (z-scored map or 

probability map), spatial down-sampling (linear transformation using imresize in Matlab) to 

optimize computing speed, and mask creation to exclude irrelevant pixels.   

The resulting 3D fixation matrix is then modeled in a LMM as the response variable. The results 

are saved as a Matlab structure (LMMmap as in the examples below). The fields of LMMmap are 

nearly identical to the output from LinearMixedModel class. For each modeled pixel, iMap4 saves 

the model criterion, variances explained, error sum of squares, coefficient estimates and their 

covariance matrix for both fixed and random effects, and the ANOVA results on the LMM. 

Additional modeling specifications, as well as other model parameters including LMM formula, 

design matrix for fixed and random effect, and residual degrees of freedom, are also saved in 

LMMmap. Linear contrasts and other analyses based on variance or covariance can be 

performed afterward from the model fitting information. Any other computation on the 

LinearMixedModel output can also be replicated on LMMmap.  

One of the crucial assumptions of pixel-wise modeling is that all pixels are independent and 

identically distributed. Of course, this assumption is never satisfied neither before nor after 

smoothing. To ensure valid inferences on activity patterns in large 2D pixel space, we applied 

non-parametric statistics to resolve the biases in parameter estimation and problems arising 

from multiple comparisons. We developed two resampling-based statistical hypothesis testing 

methods for the fixed effect coefficients: a universal permutation test and a universal bootstrap 

clustering test.  

The resampling tests on the model coefficient for fixed effects β are operated on the fixed effect 

related variances. To do so, we simply removed the variance associated with the random effects 

from the response matrix: 
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𝒀𝒇𝒊𝒙𝒆𝒅(𝑠) = 𝑿𝜷(𝑠) + 𝜺(𝑠) = 𝒀(𝑠) − 𝒁𝒃(𝑠)                 (15) 

𝑓𝑜𝑟 𝑠 ∈ 𝑫 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒  

For any permutation test, iMap4 performs the following algorithms on 𝒀𝒇𝒊𝒙𝒆𝒅 for each pixel: 

Algorithm 1: 

For a given hypothesis or linear contrast c (as in Eq. 9), iMap4 

- Performs a linear transformation on the design matrix 𝑿 to get a new design matrix 𝑴 

so that the partitioning of 𝑴 = [𝑴𝟏,𝑴𝟐]. Then iMap4 computes the new coefficients by 

projecting 𝒀𝒇𝒊𝒙𝒆𝒅 to the pseudoinverse of 𝑴. The design matrix 𝑴 is created so that the 

original hypothesis testing is equivalent to the hypothesis regarding 𝑴𝟏 coefficients. 

The matrix transformation and partition are the same as the algorithm described in 

Winkler et al (2014, appendix A) 

- Computes the residuals related to the hypothesis by subtracting the variance accounted 

by 𝑴𝟐 from 𝒀𝒇𝒊𝒙𝒆𝒅 to get 𝒀𝒓𝒓 

- Fits 𝒀𝒓𝒓 to 𝑴 by solving 𝒀𝒓𝒓 = 𝑴𝜷𝒎 + 𝜺, and get the statistics value 𝑭𝒓𝒓 of 𝑴𝟏 according 

to Eq. (10) and (11). Note that to replicate the original hypothesis testing on the fixed 

effect, the new contrast c’ is just to partition 𝑴 into 𝑴𝟏 and 𝑴𝟐 

- Permutes the rows of the design matrix 𝑴 to obtain the new design matrix 𝑴∗ 

- Fits 𝒀𝒓𝒓 to 𝑴∗ and gets the 𝑭𝒓𝒓
∗ of 𝑴𝟏∗  

- Repeats the previous two steps for a large number of times (k resamplings/repetitions), 

the p-value is then defined as Eq. (16). Importantly, the FWER corrected p-value is 

computed by comparing the largest 𝑭𝒓𝒓
∗ across all tested pixels in one resampling with 

the original 𝑭𝒓𝒓. 

𝑝 =
(# 𝑭𝒓𝒓

∗ ≥ 𝑭𝒓𝒓)

𝑘
               (16)

Algorithm 1 is a simplified version of Winkler et al (2014, Algorithm 1): the resampling table 

includes permutation but not sign-flipping. Sign-flipping assumes the errors to be independent 

and symmetric. Thus, the underlying assumptions are stronger than with classical permutations, 

which require only exchangeable errors (Winkler et al, 2014). 

Importantly, this test is exact only under a balance design with no missing value and only 

subject as the random effect. As previously shown in Kherad-Pajouh and Renaud (2014), a 

general and exact permutation approach for mixed-model designs should be performed on 

modified residuals that have up to second moment exchangeability. This is done to satisfy the 
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important assumptions for repeated measures ANOVA: normality and sphericity of the error. 

However, there are strict requirements in order to achieve this goal: careful transformation and 

partition of both fixed and random effects design matrices, and removal of the random effects 

related to 𝑴𝟐 (Kherad-Pajouh and Renaud, 2014). In iMap4, we perform an approximation 

version by removing all random effects to increase the efficiency and the speed of the huge 

amount of resampling computation in our pixel-wise modeling algorithm. Validation and 

simulation data set indeed showed that the sensitivity and the false alarm rate of the purposed 

algorithm are not compromised. 

iMap4 performs the following algorithm on 𝒀𝒇𝒊𝒙𝒆𝒅 for each pixel as the bootstrap clustering 

approach: 

Algorithm 2: 

- For each unique categorical variable, iMap4 removes the conditional expectations from 

𝒀𝒇𝒊𝒙𝒆𝒅 for each pixel. A random shuffling is then performed on the centered data to 

acquire 𝒀𝒄, so that any potential covariance is also disrupted. This is done to construct 

the true empirical null hypothesis distribution in which all elements and their linear 

combinations in 𝒀𝒄 have expected values equal to zero. 

- Randomly draws with replacement from {𝑿, 𝒁, 𝒀𝒄}  an equal number of subjects 

{𝑿∗, 𝒁∗, 𝒀𝒄
∗}  

- Fits 𝒀𝒄
∗ to 𝑿∗ by solving 𝒀𝒄

∗  = 𝑿∗𝜷∗ + 𝜺. For a given hypothesis or linear contrast c (as 

in Eq. 9), iMap4 computes the statistics value 𝑭∗ according to Eq. (10) and (11) and their 

parametric p-value under the GLM framework. 

- Thresholds statistical maps 𝑭∗ at  𝑝∗ ≤ .05 and records the desired maximum cluster 

characteristics across all significant clusters. Cluster characteristics considered are: 

cluster mass (summed F value within a cluster), cluster extent (size of the cluster), or 

cluster density (mean F value). 

- The previous three steps are repeated a large number of times to get the cluster 

characteristic distribution under the null hypothesis. 

- Thresholds the original statistics map 𝑭 at  𝑝 ≤ .05 and compares the selected cluster 

characteristic with the value of the null distribution corresponding to the 95th percentile. 

Any cluster with the chosen characteristic larger than this threshold is considered 

significant.  

The bootstrap clustering approach is identical to the bootstrap procedure described by Pernet 

et al. (2011; 2014) if only subject intercept is considered as the random effect. In addition, 
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Algorithm 2 extents the philosophy and approach presented by Pernet et al. (2011; 2014) to 

non-hierarchical mixed-effect models. 

It is worth noting that we implemented in iMap4 a high-performance algorithm to minimize the 

computational demands for the large amount of resampling. Model fitting in both resampling 

approaches makes use of Ordinary Least Squares. The inversion of the covariance matrixes (as 

required for Eq. 11) is computed on the upper triangular factor of the Cholesky decomposition. 

Calculation of the quartic form (as in Eq. 11) for all pixels is optimized by constructing a sparse 

matrix of the inversion of the covariance matrix. More details of these algribra simplifications 

could be found in the imapLMMresample function in iMap4. 

Other multiple comparison correction methods such as Bonferroni correction, False Discovery 

Rate (FDR), or Random Field Theory (RFT) could also be applied. A Threshold-Free Cluster 

Enhancement (TFCE) algorithm could also be applied on the statistical (F-value) maps as an 

option after the permutation and bootstrap clustering procedure (Smith & Nichols, 2009).  

We performed a validation study to access the type I error rate when applying the permutation 

and bootstrap clustering approach for hypothesis testing. We used a balanced repeated 

measurement ANOVA design with a two-level between-group factor and a three-level within-

group factor. A total population of 134 observers (67 each group) was drawn from previous face 

viewing eye-movement studies. We centered the cell means for the whole dataset to obtain the 

validation dataset under the null hypothesis (similar to the step 1 in Algorithm 2). Thus, we 

used real data to warrant realistic distributions and centered them to ensure that H0 was 

confirmed. Any significant output from iMap4 performed on this dataset is considered as false 

alarm (Type I error). 

The validation procedure follows the steps below: we first randomly sampled without 

replacement a balanced number of subjects from both groups. We then ran iMap4 under the 

default setting and perform hypothesis testing on the two main effects and the interaction. To 

estimate the Family-wise error rate (FWER), we computed the frequency of significant output 

under different statistics and MCC setting.  Preliminary results based on 1000 randomizations 

on a sample size of n ∊ [8, 16, 32, 64] showed that with an alpha of .05, the family-wise error 

rates are indeed all under .05 using non-parametric statistics (see Figure 2b for permutation 

test, 2c & 2d for bootstrap clustering test). More simulations considering a wider range of 

scenarios will be required to understand fully the behavior of the proposed approaches, 

although cluster stats are likely to behave as in Pernet et al. (2014). 

Graphical User Interface and Command Line Handling  
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iMap4 runs on Matlab 2013b and above, as it requires some essential function and class in these 

versions of Image Processing Toolbox™ and Statistics Toolbox™. iMap4 will execute in parallel 

on multi-cores or distributed workers when available.  

We recommend users to install iMap4 as a Matlab Application. The users can call iMap4 directly 

in the Matlab command window after installation. A general graphical user interface (GUI) will 

open upon >>iMAP called in the command window or launching the app (Figure 3a). The users 

can then import the fixation data, load preprocessed data matrix for LMM, or display the 

modeling results and perform statistical hypothesis testing. These main steps have their own 

independent GUIs: Prepare Fixation Map (Figure 3b), Linear Mixed Model (Figure 3c), and 

Display Results (Figure 3d). Although most features of iMap4 could be obtained via GUI, we 

encourage the advanced users to use command lines especially for the additional options 

specification of the LinearMixedModel class. A short example of the command lines handling of 

the main functions is shown in Figure 3e. A user guidebook containing the instructions for each 

step can be accessed via the help button. We also provided datasets with tutorial files to explain 

practically how to use iMap4. As a demonstration, two examples based on real and simulation 

data are given in the next section. Matlab scripts of the examples are part of the iMap4 

installation package. 

Application to Real and Simulation Data 

In the following, we illustrate iMap4 flexibility and power with two real data sets and a 

computer simulation. All material and codes presented here are available in the iMap4 

installation package.  

Example 1 

We consider first a subset of participants from Bovet,J., Lao, J., Bartholomée, O., Caldara, R., and 

Raymond, M., (2016) Mapping females’ bodily features of attractiveness as a demonstration of the 

analysis procedure in iMap4. A step-by-step demonstration is available in the user guidebook 

and example code. 

In short, the dataset consists of eye movement data from twenty male observers during a gaze-

contingent study. Observers viewed computer rendered female bodies in different conditions 

and performed a behavioral task (i.e., subjective rating of bodily attractiveness). This is a 

within-subject design with two experimental manipulations: the viewing condition (three level: 

2° spotlight, 4° spotlight, or natural viewing) and body orientation (two level: front view or back 

view). The aim of the study is to evaluate the visual information use for bodily attractiveness 

evaluation in the male observers. Other details of the experiment can be found in the paper.  
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Fixation durations were projected into the two-dimensional space according to their 

coordinates at the single-trial level. Fixation duration maps were first smoothed at 1° of visual 

angle. We used the “estimated” option by taking the expected values across trial within the same 

condition independently for each observer. To reduce the computational time, we down-

sampled the fixation map to 256*205 pixels, and applied a mask to only model the pixels with 

average duration larger than half of the minimum fixation duration input.  

Before proceeding to the modeling step, we visualized the preprocessed fixation maps and the 

descriptive statistics to get a sense of the data. For each of the categorical conditions, iMap4 

outputs the mean fixation map for each level. Descriptive statistics for the following eye 

movement measures are saved in a matrix and will be plot in a histogram or boxplot: number of 

fixations, sum of fixation durations (total viewing time), mean fixation duration, total path 

length (total eye-movements distance in pixel) and mean path length. See Figure 4 as an 

example of the descriptive results output. 

We applied a full model on the fixation duration map without any spatial normalization: 

𝑃𝑖𝑥𝑒𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥,𝑦) ~ 𝑉𝑖𝑒𝑤𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝐵𝑜𝑑𝑦 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑉𝑖𝑒𝑤𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

∗ 𝐵𝑜𝑑𝑦 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 + (𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡)       

𝑥, 𝑦 ∈ 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

Notices that mean fixation duration for each condition and subject were treated as random 

effects to control for the variation across individuals. The parameters were fitted with restricted 

maximum likelihood estimation (ReML).   

We encourage the users to interpret the result from iMap4 as the following. First, check the 

model fitting by displaying the model criterions. For example, Figure 5a shows the R-squared 

values or multiple correlation coefficients, which represents the proportion of variability in the 

fixation matrix explained by the fitted model. Interpretation of the result should be drawn with 

caution if the R-squared values are too low. The users can then proceed to test their hypotheses, 

such as ANOVA or linear contrast, and perform multiple comparisons correction (Figure 5b and 

5c). A post-hoc analysis is applicable if any interaction presented, or any condition contains 

multiple levels. The user can select one or more significant area(s) as data-driven ROI(s) for the 

post-hoc. iMap4 performs t-tests between any pairs of categorical conditions within this ROI 

using the raw input values from the non-smoothed fixation matrix (Figure 5d). In addition, the 

users can compute the above average or above chance fixation intensity for each categorical 

predictor (Figure 5e).  
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Example 2 

As a second demonstration, we reanalysed the full dataset from one of our previous paper 

Miellet, S., He, L., Zhou, X., Lao, J. & Caldara, R. (2012). When East meets West: gaze-contingent 

Blindspots abolish cultural diversity in eye movements for faces. 

Previous studies testing Western Caucasian (WC) and East Asian (EA) observers showed that 

people deploy different eye movement strategy during free-viewing of faces. Western Caucasian 

observers fixate systematicly towards the eyes and mouth, following a triangular pattern, 

whereas East Asian observers perfominatly fixated at the center of the face (Blais, Jack, 

Scheepers, Fiset, & Caldara, 2008; Caldara, Zhou, & Miellet, 2010). Moreover, human observers 

can flexibly adjust their eye movment strategy to adapt to the environmental constraints, as 

shown using different gaze-contingent paradigm (Caldara, Zhou, & Miellet, 2010; Miellet, He, 

Zhou, Lao, & Caldara, 2012). In our 2012 study, we tested two groups of observers in a face task 

where their foveal vision were restricted by a blindspot. This is a mixed design with the culture 

of the observers as the between-subject factor (WCs or EAs) and the blindspot size as the 

within-subject factor (four level: natural viewing, 2° blindspot, 5° blindspot, or 8° blindspot). For 

more details of the experiment, please find Miellet, et al (2012). 

Using iMap4, we created the single-trial 2D fixation duration map and smoothed at 1° of visual 

angle. Importantly, to keep in line with Miellet, et al (2012), spatial normalization was 

performed by Z-scoring the fixation map across all pixels independently for each trial (the result 

is identical without spatial normalization in this example). We also applied a mask generated 

with the default option. No down sampling was performed. We then applied a full model on the 

single-trial fixation duration map made used of the “single-trial” option in iMap4: 

𝑃𝑖𝑥𝑒𝑙𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥,𝑦) ~ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 + 𝐵𝑙𝑖𝑛𝑑𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒 + 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑟 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 ∗ 𝐵𝑙𝑖𝑛𝑑𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒

+ (1| 𝑠𝑢𝑏𝑗𝑒𝑐𝑡)      𝑥, 𝑦 ∈ 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

Only the predictor of subject was treated as random effects and the model was fitted with 

maximum likelihood estimation (ML).   

After model fitting, we perform ANOVA to test the two main effects and their interactions. We 

applied a bootstrap clustering test using cluster dense as criteria with 1000. We found a 

significant interaction and the main effect of Blindspot size, but not the main effect of culture 

(see Figure 6a). This result replicates the finding in Miellet, et al (2012). Moreover, by 

performing linear contrast of the model coefficients, we reproduced the figure 2 as in Miellet, et 

al (2012). The result using iMap4 is shown in Figure 6b. 
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Example 3 

We also used simulated data to illustrate iMap4 usage in the single-trial approaches. We created 

a dataset and manually introduced an effect between the numbers of fixations and the 

subjective rating on a single-trial level. Moreover, to maximize the simulation efficiency, 

different linear relationships were introduced simultaneously. For each subject, we generated a 

data matrix following the two following steps: 

- In a 4*4 grid, we introduced a different linear relationship in each cell between fixation 

number and subjective rating. Figure 7a shows the linear relationships we introduced 

for one subject. We varied the slope and the strength of the linear association. The 

correlation was the strongest on the top row (r = 0.9) and there was no correlation on 

the bottom row (r = 0). The slope varied among [1, 0.4, -0.2, -0.8] across the columns. 

Note that each dot on a scatter plot represents one trial, and the dots with the same 

rating (value on the x-axis) across subplots belong to the same trial. The resulting matrix 

after this step was a one dimension array Rating and a two dimension matrix P (matrix 

size: 16 * number of trials) 

- The spatial locations of fixations were generated using linear Gaussian random fields. 

For each trial, we created a Gaussian mixture model gm using the gmdistribution class in 

Matlab. The Gaussian mixture model gm contains sixteen (4*4) 2d Gaussian distribution 

components. The center of each component aligned with the center of each grid, while 

the covariance was an identity matrix with 1° of visual angle on the diagonal. Crucially, 

the mixing proportion of each component was decided by the column of the specific trial 

in P. A number of random fixations were then generated from this Gaussian mixture 

model gm. See figure 7b for a realization of one random trial for one subject. 

The data set contained 20 subjects performing 100 trials each with an average fixation number 

of 58.02. Figure 7c shows the average map for fixation number. We fitted a simple model with 

restricted maximum likelihood estimation (ReML): 

𝑃𝑖𝑥𝑒𝑙_𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥,𝑦) ~ 1 + 𝑅𝑎𝑡𝑖𝑛𝑔 + (1 | 𝑠𝑢𝑏𝑗𝑒𝑐𝑡)      𝑥, 𝑦 ∈ 𝑠𝑐𝑟𝑒𝑒𝑛 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

The significant regression coefficients of Rating are shown in Figure 7d. iMap4 accurately 

rejected the null hypothesis for most conditions when there was a significant relationship. For 

the most robust effect (r= 0.9), iMap4 accurately estimated the coefficients. It also correctly 

reported null result for r = 0. Moreover, iMap4 did not report any significant effect for the 

weakest relationship (slope = -0.2, r = 0.3) due to the lack of power. Indeed, further simulations 
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showed that increasing either the number of fixations, trials, or subjects would lead to 

significance. 

Discussion and Future developments 

In the present paper we reported a major update of iMap, a toolbox for statistical fixation 

mapping of eye movement data. While keeping unchanged the general philosophy of iMap, we 

significantly improved the underlying statistical engine, by incorporating pixel-wise Linear 

Mixed Models and a variety of robust non-parametric statistics. Crucially, the new analysis pipe-

line allows the testing of complex designs while controling for a wide range of random factors. 

We also implemented a full graphical user interface to make this approach more accessible to 

Matlab beginners. Examples from empirical and computer simulated datasets showed that this 

approach has a slightly conservatively controlled family-wise error rate under H0, while 

remaining highly sensitive to actual effects (e.g., Figure 6d). The current method represents a 

significant advance in eye movement data analysis, particularly for experimental designs using 

normalized visual stimuli. In fact, iMap4 uses a similar statistical inference as in fMRI and 

M/EEG analysis. The interpretation of the statistical maps is simply done by looking at which 

stimuli features/pixels relate to the significant areas (after multiple comparison correction). 

This procedure is similar to the interpretation of fMRI results: after a significant region is 

revealed, we can use its spatial coordinate to check which part of the cortex the region activated 

above chance level is located. 

As a powerful statistical tool, LMM are gaining popularity in psychological research and have 

previously been applied in eye movement studies (e.g., Kliegl, Masson, & Richter, 2010). 

Similarly, particular cases of LMM such as HLM or two-level models are now a standard data 

processing approach in neuroimaging studies. As a general version of HLMs, LMMs are much 

more flexible and powerful than other multi-level models. Most importantly, an exact same 

LMM could be applied to behavior, eye movement, and neuroimaging data, bridging these 

different measures together to draw more direct and complete conclusions. 

However, there are both theoretical and practical challenges in using LMM for the statistical 

spatial mapping of fixation data. Firstly, the fixation locations are too sparse to apply pixel-wise 

modeling directly. Similarly to previous versions of iMap, we used spatial smoothing of the 

fixation locations, a preprocessing step necessary to account for the measurement error of the 

eye-trackers and the imprecision of the physiological system (i.e., the human eye). The second 

issue is the appropriate hypothesis testing for LMM and the multiple comparison problems 

caused by modeling massive number of pixels in non-balanced designs. We addressed this issue 

by applying non-parametric statistics based on resampling and spatial clustering. Another 
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important challenge is the constraint of computational resources. Parameter estimations using 

LMM, the pixel-wise modeling approach, and resampling techniques are very computationally 

demanding and time-consuming. To produce a useful but also usable tool, we adapted many 

advanced and novel algorithms such as parallel computing. Preprocessing details like down-

sampling and applying a mask also significantly help to decrease the computational time of 

iMap4. 

The comparison among ROI/AOI, iMap 2.0, and the current version 

In classical eye movement data analyses, particularly those considering fixation locations, the 

main challenge lies in the fact that we are facing a high-dimensional data space. Mathematically, 

each pixel represents one dimension that could potentially be important. However, it is trivial to 

say that many of these dimensions are redundant and could be reduced to a particular set of 

representations or features. In other words, eye fixation data points are embedded in high-

dimensional pixel space, but they actually only occupy a subspace with much lower 

dimensionality (Belkin & Niyogi, 2003). Indeed, in similar high dimensional datasets a low 

dimensional structure is often assumed and naturally the main focus for investigation. Thus, by 

arbitrarily choosing one or multiple ROIs, one can represent the high dimensional dataset as a 

low-dimensional manifold. The fixation map thus projects into this manifold, and all the pixels 

within the same ROI are then considered as in the same dimension. In this case, each ROI is 

representing one feature. Such a method is comparable to early neural network and many other 

linear dimension reduction methods in machine learning literature with hand-coded features 

(LeCun, Haffner, Bottou, & Bengio, 1999; Sorzano, Vargas, & Montano, 2014). 

The early versions of iMap (1 and 2) adopted a similar logic, but relied on the Random Field 

Theory to isolate data-driven features. Therefore, the fixation bias in each pixel was projected 

into a lower-dimensional subspace, resulting in fixation clusters. The second level statistics 

were then computed at the cluster level instead of the pixel level to perform statistical inference 

(Miellet, Lao, & Caldara, 2014).  

From iMap 3 onward, we took a very different approach. We used spatial clustering and 

multiple comparison correction to avoid the use of second level statistics in order to perform 

statistical inference. In iMap4, the fixation bias is similarly modeled on each pixel using a 

flexible yet powerful statistical model: the Linear mixed model. The LMM, in combination with 

non-parametric statistics and a spatial clustering algorithm, directly isolate the significant pixels. 

As a result, the iMap4 outputs can be interpreted intuitively and straightforwardly at the map 

level (i.e., by visualizing the areas reaching significance from the tested hypothesis).  
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Parameter settings and statistical choices 

Our aim was and still is the development of a data-driven and fully automatized analysis tool. 

However, even in iMap4 there are still some parameters in the analysis that rely on user’s 

expertise and subjective choices, which thus should be considered carefully before use. These 

parameters include: the Kernel size for the smoothing procedure, the spatial down-sampling 

and masking, the spatial normalization, and the choice of statistics.  

The rationale in the determining the Kernel size for the smoothing procedure has been 

previously discussed (Caldara & Miellet, 2011), and the majority of the arguments we put 

forward in this previous article still hold. Here, we would like to remind users that the spatial 

smoothing procedure mainly resolves the sparseness of fixation data. It also partially accounts 

for the spatial covariance that is ignored in univariate pixel-wise modeling. Finally, it accounts 

for the recording errors from the eye trackers, such as drift during the calibration, pupil-size 

variations, etc.  

We also recommend users to perform down-sampling and apply a mask before modeling their 

data. This step is important to reduce the computational demands (time, memory, etc.). In 

general, we recommend that the down-sampling factor is not bigger than half of the smoothing 

kernel size. In another word, if the FWHM of the Gaussian kernel is 10 pixels, the rescale factor 

should be less than 5. We are currently running further simulations and validations to 

investigate the best parameters under different settings, and hopefully provide a statistical 

data-driven solution for this choice in future updates. 

Spatial normalization (Z-scored map or probability map) is available as an option in iMap4. 

Spatial normalization used to be a standard preprocessing procedure in previous versions of 

iMap. However, the hypotheses testing on raw fixation duration/number maps are 

fundamentally different compared to their spatially normalized version. Importantly, after 

spatial normalization, the results interpretation should be drawn on the spatially relative bias 

instead of the absolute differences. Of course, if the viewing duration in each trial is constant 

within an experiment, spatial normalization will not make any difference. 

iMap4 developed two main non-parametric statistics based on resampling techniques. It is 

worth noting that different applicability comes with the choice of permutation tests vs. 

bootstrap spatial clustering tests. In our own experience during empirical and simulation 

studies, permutation tests are more sensitive for studies with small sample sizes; the bootstrap 

clustering approach usually gives more homogenous results, but is biased toward bigger 

clusters. We suggest the users to adopt a “wisdom of the crowd” approach and look at the 
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agreement among different approaches before concluding on the data analysis (Marbach et al., 

2012). Non-convergent results should be interpreted carefully.   

Alternative to pixel-wise approaches 

In recent years, other frameworks have been also developed to model eye tracking data 

(Boccignone, 2015). One of such approach is the aforementioned Poisson point process model 

(Barthelmé et al., 2013). It is a well-established statistical model when the point (fixation) 

occurrence is the main concern. Under some transformation, the Poisson point processes model 

of fixation occurrence could be expressed and modeled as a logistic regression, making it 

straightforward to apply using conventional statistical software (Barthelmé & Chopin, 2015). 

For example, Nuthmann & Einhauser (2015) made use of logistic mixed model to show the 

influence of low and high visual features in scene image on fixation selection. Moreover, smooth 

effect and spatial covariant could be captured by applying regression splines in a generalized 

additive model, as demonstrated in Barthelmé & Chopin (2015).  

Importantly, the point process model address different questions compare to iMap. It is the 

most appropriate when the effect of spatial location is considered as irrelevant, nuisance effect, 

or a fixed intercept (e.g., see Barthelmé & Chopin, 2015; Nuthmann & Einhauser, 2015). As 

comparison, in iMap the parameters of interested are conditioned on some pixels/regions of the 

image. In another word, the differences or effects among different conditions are location 

specific, forming a complex pattern in 2D. These high dimension effects are more natural and 

easy to model using a pixel-wise model as in iMap4. Conclusion and future development 

In conclusion, we have presented an advanced eye-movement analysis approach using LMM and 

non-parametric statistics: iMap4. This method is implemented in Matlab with a user-friendly 

interface. We aim to provide a framework for analyzing spatial eye-movement data with the 

most sophisticated statistical modeling to date. The procedure described in the current paper is 

our best current attempt to keep in line with the conventional null-hypothesis testing, while 

providing options for robust statistics. There are still many improvements we are currently 

working on, including functions to compare different fitted models, statistics on the random 

effect coefficients, and replacing LMM with a Generalized Linear Mixed Model (GLMM) for 

modeling fixation numbers. In the future, we will also switch our focus to Bayesian statistics and 

the generative model (such as the Gaussian process) in an effort to develop a unified model of 

statistical inference for eye movement data (Jaynes & Bretthorst, 2003).  
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Supplemental material 

The full iMap4 toolbox and the data sample as shown in this paper are freely available for 

download (http://ibmlab.github.io/iMap4/).  A full user guidebook could be downloaded 

separately from https://github.com/iBMLab/iMap4/blob/master/iMap4%20Guidebook.pdf  
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Figure Legend 

Figure 1, Illustration of the procedure in iMap4. The input data matrix is partitioned into eye 

movement matrix and predictor matrix. Fixation durations are projected into the two-

dimensional space according to their x and y coordinates at the single trial level for each 

participant. The experimental information of each trial is also summarized in a predictor table. 

Subsequently, the sparse representation of the fixation duration map is smoothed by 

convoluting it with a two dimensions Gaussian Kernel function 𝐾𝑒𝑟𝑛𝑒𝑙 ~ 𝛮 (0 , 𝜎2𝜤). After 

estimating the fixation bias of each condition independently for all the observers (by taking the 

expected values across trial within the same condition), iMap4 models the 3D smoothed fixation 

map (item*xSize*ySize) independently for each pixel using a LMM. The result is saved as a 

Matlab structure in LMMmap. iMap4 offers many parametric and non-parametric methods for 

hypothesis testing and multiple comparison correction. 

Figure 2, Validation result of the proposed resampling procedure as statistical inference. a) The 

family-wise error rate using the uncorrected parametric p-value. All FWER are significantly 

above .05. b) The family-wise error rate using the permutation approach (Algorithm 1). c) The 
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family-wise error rate using the proposed bootstrap clustering approach (Algorithm 2) 

thresholds on cluster mass. d) The family-wise error rate using the proposed bootstrap 

clustering approach (Algorithm 2) thresholds on cluster extent. Notice that the FWER of a) and 

b) are computed at pixel level (i.e., the proportion of false positive pixels across simulations), 

while the FWER of c) and d) are calculated at test level (i.e., the percentage of any false positive 

per test for the 1000 simulation). Error bar shows the standard error. 

Figure 3, The main GUI of iMap4 (a - d) and example command lines handling of the core 

functions (e). For more details please refer to the online guidebook and the demonstration 

codes. 

Figure 4, Descriptive results from iMap4 on the real data set. a) Five eye movement measures 

plot in a histogram. In this case, fixation duration is in millisecond and path length is in pixel. b) 

Mean fixation map of all levels of the categorical conditions 

Figure 5, iMap4 results of Bovet et al. (2015) with different output styles. a) Ordinary R-squared 

value for the fitted model. b) ANOVA results of the main effects and interaction. Here the 

intensity represents the F-values. iMap4 only displays significant maps. c) The statistical results 

of the linear contrast [2° spotlight - natural viewing] in back view condition. Here the F-value is 

represented on a contour map. d) The post-hoc analysis in the selected mask. The mask is 

generated from the significant region of Body Orientation effect (left panel). The t-test results 

are shown in the matrix in the right panel (labeled condition in the Y-axis minus those labeled 

on the X axis). Only significant results are shown (p<.05 Bonferroni corrected). e) One-tailed t-

tests against the average over all fixation intensities for condition 2° spotlight front view and 2° 

spotlight back view. The solid black line circles the significant region for all the above figures. 

Figure 6, iMap4 results of Miellet et al. (2012). a) ANOVA result of the linear mixed model. b) 

Replication of figure 2 in Miellet et al. (2012) using linear contrast of the model coefficients. The 

solid black line circles the significant region for all the above figures. 

Figure 7, iMap4 results on the simulation data set. a) The linear relationships being introduced 

into the 4*4 grid. The x-axis shows the Z-scored rating and the y-axis shows the expected 

number of fixations. The slope between y and x are the same within each column ([1, 0.4, -0.2, -

0.8] respectively), while the correlation rho is the same within each row ([0.9, 0.6, 0.3, 0] 

respectively). b) One realization of a random trial for one subject. The left panel shows the raw 

fixation location; right panel shows the smoothed fixation number map. c) The average fixation 

map across all trial for the 20 subjects. d) Estimated relationship between rating and fixation 

number (regression coefficient). The black circles indicate statistical significance. 
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>>   opt.singlepredi = 1; opt.parallelname = 'grid2';
>>   [LMMmap,lmexample] = imapLMM(FixMap, PredictorM, Mask, opt, ... 
 'PixelIntensity ~ BetweenSbj + WithinSbj + BetweenSbj:WithinSbj + (fixDur|Subject)', ...
 'DummyVarCoding', 'effect', 'FitMethod', 'REML');   % model fitting
>>
>>   opt1.type = 'model';   % display model fitting
>>   [StatMap] = imapLMMcontrast(LMMmap, opt1);
>>   imapLMMdisplay(StatMap, 0, 'Backgroundimage.jpg');   % output figure
>>
>>   opt2.type = 'fixed'; opt2.alpha = .05;   % display ANOVA result for the fixed effect
>>   [StatMap] = imapLMMcontrast(LMMmap, opt2);  
>>   imapLMMdisplay(StatMap, 0, 'Backgroundimage.jpg');   % output figure
>>   mccopt.methods = 'bootstrap'; mccopt.grouping = 'BetweenSbj'; mccopt.nboot = 1000; 
 mccopt.bootopt = 2; % multiple comparison correction on cluster using bootstrap
>>   [StatMap_mcc] = imapLMMmcc(StatMap, LMMmap, mccopt, FixMap);
>>   imapLMMdisplay(StatMap_mcc, 0, 'Backgroundimage.jpg');   % output figure
>>   
>>   [PostHoc]=imapLMMposthoc(StatMap_mcc, RawMap, LMMmap);     % perform post-hoc
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