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Abstract: Eye movements have been shown to lead hand movements in tracing tasks 

where subjects have to move their fingers along a predefined trace. The question 

remained, whether the leading relationship was similar when tracing with a pointing 

device, such as a mouse; more importantly, whether tasks that required more or less 

gaze-mouse coordination would introduce variation in this pattern of behaviour, in 

terms of both spatial and temporal leading of gaze position to mouse movement. A 

three-level gaze-mouse coordination demand paradigm was developed to address these 

questions. A substantial data set of 1350 trials was collected and analysed. The linear 

correlation of gaze-mouse movements, the statistical distribution of the lead time, as 

well as the lead distance between gaze and mouse cursor positions were all considered, 

and we proposed a new method to quantify lead time in gaze-mouse coordination. The 

results supported and extended previous empirical findings that gaze often led mouse 

movements. We found that the gaze-mouse coordination demands of the task were 

positively correlated to the gaze lead, both spatially and temporally. However, the 

mouse movements were synchronised with or led gaze in the simple straight line 

condition, which demanded the least gaze-mouse coordination. 

Keywords: Human-Computer Interaction; eye-hand coordination; gaze-mouse 

coordination; coordination demands; mouse tracing; eye tracking 

1. Introduction 

Eye-hand coordination describes the coherent control of eye movements and hand 

movements with visual input as well as proprioception feedback. Studies have shown a 

typical coordination mechanism that eye movements lead hand movements, which has been 

applied in many gaze-modulated human computer interaction techniques such as MAGIC 
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pointing (Zhai et al. 1999). In MAGIC pointing, the gaze is used to bring the mouse cursor 

next to the region of interest and fine adjustments are made using the hand. This type of 

technique is applicable to tasks such as point to point transitions, regardless of the transition 

path. When the transition path matters, such as tracing, it is interesting to apply similar gaze 

modulated techniques in these tasks. Tracing is as common as pointing and selecting tasks, 

for example, to digitise hand-drawn figures (Pfeuffer et al. 2015), but the underlying gaze-

mouse coordination can be more complicated. Surprisingly, there have been few studies that 

have investigated the coordinated relationship between pointing devices and gaze in tracing 

tasks, in comparison to several studies that have studied tracing within eye-hand 

coordination. Although line tracing applications that integrate gaze and pointing devices 

already exist, such as the digital pen tracing application designed by Pfeuffer et al. (2015) 

which was developed by discretising the drawing line into segments, so the gaze-integrated 

manipulations were still point based, similar to other gaze-facilitated interactive techniques. 

It is easy to assume that gaze always leads hand or mouse cursor but this is not 

absolute. Liebling and Dumais (2014) reported a study where the mouse cursor led gaze at 

times where the type of visual stimuli affected the leading or lagging between the two. This 

uncertainty may degrade the performance of applications that rely on the gaze lead. Imagine, 

in MAGIC pointing, the cursor warps to the gaze’s vicinity when the hand is leading; the 

cursor is actually warping away from the region of interest. Therefore, for interactive 

techniques,  designed with the premise of gaze leading, it is critical to distinguish whether 

gaze leads or the hand leads. 

We were interested to see if gaze lead effects also occur during tracing with pointing 

devices and, further, to quantify these effects, both temporally and spatially. In addition, the 

differences of lead time and gaze-mouse patterns in previous studies have shown a possible 

underlying variance due to task complexity. Simple tasks require limited gaze-mouse 
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coordination demands while complex tasks are more demanding. The coordination demands 

in the current paper are referred to as the perceptual complexity of the trace task. We, 

therefore, predicted that the degree to which the task required more or less gaze-mouse 

coordination demands would impact on the variance of gaze lead. Furthermore, the two 

would be positively correlated, that is, if the complexity of the task increased and gaze-mouse 

coordination demands increased, the lead time of gaze would increase. Therefore, we 

designed a task that required subjects to use the mouse cursor to pick up a sphere and move it 

along a trace under three conditions of complexity in a 2D virtual environment.  

In summary, the aim of this study was twofold; first, to test the hypothesises that 

gaze-mouse coordination would yield comparable behavioural patterns as eye-hand 

coordination, in as much as gaze would typically lead mouse movement, and second, that the 

spatial and temporal lead effect would differ between conditions due to differences in gaze-

mouse coordination demands. The findings serve as a preliminary foundation for future 

research on the factors that affect causality between gaze and mouse cursor positions, which 

can also provide a theoretical basis for further improvement of gaze-modulated input design. 

The paper proceeds as follows. In Section 2, we present the literature background. In 

Section 3, we describe the experiment methods. Section 4 is dedicated to data analysis results 

and discussion of limitations and implications. Section 5 concludes the paper. 

2. Background 

Eye-hand coordination has been studied in various human behavioural tasks, including object 

reaching and pointing (Biguer et al. 1982; Neggers and Bekkering 2000; Ariff et al. 2002; 

Crawford et al. 2004; Masia et al. 2009), web browsing (Chen et al. 2001; Rodden et al. 

2008; Guo and Agichtein 2010), goal-directed aiming (Binsted et al. 2001; Behan and Wilson 

2008), visually guided tracking (Gauthier et al. 1988; Vercher and Gauthier 1992; Xia and 
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Barnes 1999; Tramper and Gielen 2011), drawing (Reina and Schwartz 2003; Gowen and 

Miall 2006; Coen-Cagli et al. 2009; Tchalenko and Chris Miall 2009), and trajectory tracing 

(Gowen and Miall 2006; Tramper and Gielen 2011). Other more complex tasks or 

applications that combine sequential movements have also attracted growing research 

interests, such as object manipulation (Johansson et al. 2001; Bowman et al. 2009) and virtual 

laparoscopic surgery (Yamaguchi et al. 2007). It has been verified in these tasks that there is 

a direct relationship between eye movements and hand movements. In virtual reality, 

kinematic movements of the hand were typically transited to reflect the movements of 

pointing devices, such as a mouse or a haptic stylus, which were virtualised to present the 

interaction between users and the virtual environment.  

Previous research has focused on gaze-hand coordination (Biguer et al. 1982; Neggers 

and Bekkering 2000; Binsted et al. 2001; Johansson et al. 2001; Ariff et al. 2002; Reina and 

Schwartz 2003; Crawford et al. 2004; Gowen and Miall 2006; Coen-Cagli et al. 2009; Masia 

et al. 2009; Tchalenko and Chris Miall 2009; Tramper and Gielen 2011), studying user 

behaviour patterns where human computer interaction was not their primary concern. When a 

medium, such as pointing devices or haptic interfaces, is involved in human-computer 

interaction rather than direct use of physical hands, the users may behave differently from 

their natural habits in the interaction tasks. For instance, Wang and MacKenzie (1999) have 

found increasing orientation time for graphic-to-graphic matches and spatial errors for 

physical-to-graphic matches when haptic devices were involved. 

Existing investigations into physical visuomotor tasks have revealed evidence of 

spatiotemporal leading of gaze position to hand movement with a high correlation between 

the two. Johansson et al. (2001) designed an object reach and grasp task, and found that gaze 

provided visual guidance for hand movement by marking the critical position where the 

fingers were reaching or targeting the object. In a curve drawing task, Reina and Schwartz 
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(2003) noted that gaze position clustered into several groups along the trajectory of the hand 

movement; they found that gaze remained still while the hand was approaching the object or 

moving away from it, then the gaze saccaded ahead of the hand position onto the next cluster. 

The fixation clusters tended to be located near high curvature areas along the hand trajectory, 

and the saccades occurred when tangential hand velocity reached a local minimum.  

Various methods for quantifying the lead time have been developed based on the 

complexity of the tasks. In point-to-point tasks, goal-directed reaching, pointing, or tapping, 

these tasks normally require a single saccade or two. By calculating the difference in time 

between gaze on target and hand on target discretely, the lead time of gaze can be 

straightforwardly quantified. Ariff et al. (2002) designed a pointing task with unseen stimuli 

during hand movements on a horizontal plane. They reported that the saccades constantly 

occurred at the position where the hand needed an unbiased estimation of 196ms (on average) 

to catch up. It indicates that a saccade typically makes an estimation of the future position of 

the hand in point-to-point reaching tasks. 

Continuous tasks such as tracing and tracking typically involve a sequence of 

saccades, where the leading effect of gaze cannot be simply defined by a single discrete 

saccade. Delay found by cross-correlation on each component (horizontal, vertical and depth 

direction) has been widely used as a benchmark method (Mrotek et al. 2006; Gielen et al. 

2009; Tramper and Gielen 2011). This method normalises data by subtracting the statistical 

mean of the data and applies a Hann window before cross-correlation which helps to 

eliminate constant spatial noise. However, this method yields results in each component due 

to limits brought in by using cross-correlation. Typical values of gaze lead time found by this 

method are 23±38ms in azimuth, 42±28ms in elevation, and 266±175ms in depth for a 

tracking task; 220±125ms in azimuth, 230±125ms in elevation, and 390±180ms in depth for a 

tracing task (Gielen et al. 2009). Tramper and Gielen (2011) further analysed the total lead 
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time calculated by cross-correlation by modelling it as the sum of saccadic lead time and 

primary lead time. This work updated the average time that gaze led the hand in tracking 

tasks of 28±6ms for the frontal plane, and 95±39ms for changes of vergence, and in tracing 

tasks, lead time of 287±13ms for the frontal plane and 151±36ms for changes in depth. It also 

demonstrated a constant spatial lead of gaze of about 2.6cm in 3D visuomotor 

transformations, which corresponded to about 2° in visual eccentricity. 

Similarly, it has been proven that gaze and mouse cursor positions have a strong 

relationship in human-computer interaction tasks, with gaze leading mouse movements. Chen 

et al. (2001) have found in web browsing, 84% of the screen regions the mouse lingered were 

also visited by gaze; further, there was over a 75% chance that a mouse would move to a 

meaningful region that was very close to the gaze. This suggested that a mouse cursor could 

be an alternation to show regions of interest in web browsing. Moreover, active mouse 

movement patterns have been explained in browsing web search pages, which tended to 

follow the gaze position vertically, as well as marking a particular region of interest (Rodden 

et al. 2008). A preliminary study has been undertaken for predicting gaze positions by 

analysing mouse cursor positions based on a combination of findings from previous studies in 

web searching (Guo and Agichtein 2010).  

However, apart from the typical pattern that gaze leads mouse, additional patterns 

have also been reported. Smith et al. (2000) examined two simple target pointing tasks that 

required subjects to select two fixed targets alternately, and to select a target presented at 

random locations. They found there existed several different gaze-mouse coordination 

patterns that gaze not only led the mouse cursor but also directly followed the cursor, or 

switched between target and cursor. Bieg et al. (2010) studied three target search and 

selection tasks where the subjects were asked to find a single target, or a known target from a 

grid of targets, or an unknown target from a pile of randomly scattered targets. They found 
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that when the target was unknown, the subjects consistently followed their gaze with the 

mouse cursor rather than the other way around. Liebling and Dumais (2014) further inspected 

gaze-mouse coordination using a variety of target types and applications. They reported that 

the gaze led the mouse only about two-thirds of the time, and the leading or lagging effect of 

the gaze depended on the type of target and familiarity with the application. However, the 

cause remains unclear.   

3. Methods 

3.1. Participants 

Fifteen subjects (11 males and 4 females, age 28.5±1.8 (Mean ± SE) years) volunteered in the 

experiments. None of the participants had any motor or neurological abnormalities. The 

subjects reported they had either adequate natural visual acuity or corrected vision with 

glasses. All subjects reported to be right-handed and fluent with computer/mouse operations. 

All the experiments were conducted following the principles of the Declaration of Helsinki 

and Bournemouth University’s research ethics policy, and were approved by the Research 

Ethics Committee Panel at the Media School, Bournemouth University. Written consent was 

obtained from each subject after explanation of the experiment. 

3.2. Apparatus 

A desktop mount eye tracker EyeLink 1000 of SR Research was set up to record gaze 

movement with sampling rate at 1000Hz. The spatial resolution was 0.01° and the average 

accuracy was 0.25° - 0.5°. The desktop mount used a chin rest to minimise head movement. 

Although viewing was binocular, only the right gaze movements were recorded. Subjects sat 

66cm away from the display screen which was a 20” Formac ProNitron 21/750 monitor with 

a frame rate set to 120Hz. A mouse with a sampling rate of 120Hz and a keyboard was 
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provided for interaction within the experiment. All position data were recorded with respect 

to the pixel coordinates whose origin was set at the upper left corner of the screen. 

3.3. Stimuli  

The tailored task was programmed with C++ and OpenGL. The task scene was presented 

with a black background containing a small sphere with a diameter of 1.56°, a bordered 

square box with a side length of 5.64° and a border width of 0.1°, and a predefined trace with 

a width of 0.17°. The trace was generated by random hand drawing, and there were three 

conditions of different complexity levels that required low to high gaze-mouse coordination 

demands (see Figure 1 a-c):  

• Low gaze-mouse coordination demands (LD): a simple straight line, with a length of 

24.70°, no curves, and direction of 33.75° upwards from the horizontal line.  

• Moderate gaze-mouse coordination demands (MD): a simple curve, with a length of 

42.70° and two curves.  

• High gaze-mouse coordination demands (HD): a complex curve, with a length of 

94.14° and fourteen curves.  

The displays within each trial of the same condition were identical to those shown in 

Figure 1 a-c. The box was fixed at the upper left screen as the destination of the trace. The 

trace started from the lower right screen and ended at the box. Subjects needed to use a 

mouse to move the sphere from the starting end of the trace, and traverse it along the trace 

until it got into the box.  
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Figure 1. Stimuli for (a) LD the straight line, (b) MD the simple curve, and (c) HD the 

complex curve. (d) is the order of trial conditions in each trial set. 

3.4. Procedure 

There were nine trials in one trial set. Each condition appeared once in every group of three. 

The order of the trials was balanced to prevent the chance that the same trace showed up 

continuously. All data were recorded in the same order for every trial set as demonstrated in 

Figure 1d. Note that we did not use randomisation to balance the order because a 

randomisation among the nine trials may cause the same conditions showing up in a row; a 

randomisation within each group of three may result in the situation that the last condition of 

the previous group is the same as the first condition of the next group.  

Before each trial started, the screen was blank of background colour with only a little 

white cross in the middle. To eliminate bias introduced by the initial state, all subjects were 

asked to fix their gaze on the cross before moving onto each trial display. At the beginning of 

a trial, the sphere appeared at a random position on the screen. When the sphere was picked 

up, its colour changed to highlight the picked-up status. A trial ended when the subject 

released the sphere in the target box after following along the trace. Before data recording, 

each subject carried out one pre-trial of each condition to familiarise themselves with the 
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experiment procedure. Ten trial sets were recorded for each subject. During recording, if the 

subject veered off the trace, this trial would be discarded and the subject needed to redo it. 

3.4.1. Calibration 

Right eye calibrations were performed binocularly (e.g. during calibration participants 

viewed the stimuli with both the right and left eyes). The horizontal calibration range was 

29.45°, vertical calibration range was 21.05°. During calibration, the subject was instructed to 

stare at one of the nine point grid pattern fixation points. In this process, the initial fixation 

position was accepted by the experimenter when the pupil appeared stable; the remaining 

fixation positions were automatically recorded by the calibration system when a stable 

fixation was detected. The validation procedure was essentially identical to the initial 

calibration, and on the basis of the initial calibration and validation the discrepancy between 

these two data sets was computed. The calibration fixation points extended 0.6°, and a mean 

error of < 0.7° was accepted as an accurate calibration, and recalibration was performed if the 

validation error was > 0.7°. These calibration and validation procedures are standard. The 

experimental stimuli were presented when a successful calibration was completed. Following 

nine trials during the experiment, the calibration accuracy was verified, and at that point, 

recalibration was carried out if necessary. The mean ± SD of validation errors for all trial sets 

was 0.47 ± 0.14 degrees. 

3.5. Data pre-processing 

There were 1350 trials of 150 sets recorded in total (15 participants, each did 10 trial sets and 

nine trials in each trial set). By generally reading the trajectories visualised from the data, 9 

trials were eliminated from the data processing because of calibration and recording issues, 

which means 99.3% of the trials were successfully completed. Due to order effect that might 

be introduced into the data, the first three trials of each trial set were removed from the 
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analysis. 

All data were stored on a hard disk for offline analysis with MATLAB (MathWorks). 

Each trial generated a data file and a screen recording video of the experiment process. The 

file recorded gaze positions on the screen at 1 kHz, along with start and end time of gaze 

movement events including fixations, saccades, and blinks. Mouse cursor positions and 

relative events were also recorded at 120Hz with timestamps. For each trial, the start time 

was defined as when the target sphere was moved to the start position of the trace, and the 

end time was defined as when the sphere was moved into the destination box. Mouse 

movement data were interpolated linearly to match with the frequency of gaze movement 

data for computational convenience. A Savitzky-Golay filter (Savitzky and Golay 1964) 

(span = 2% of the total number of data points per trial, degree = 2) was applied for both gaze 

data and mouse data to remove drifts introduced by blinks and trembles.  

3.6. Analysis 

3.6.1. Distance between gaze and mouse cursor 

After pre-processing, a data matrix was generated for each trial. Each row represented one 

sample containing the following parameters: timestamp (t), gaze position x (gpx), gaze 

position y (gpy), mouse cursor position x (mpx), and mouse cursor position y (mpy). The 

Euclidian distance between gaze and mouse cursor positions on the screen (DGM) for the ith 

sample row of a certain time t could be calculated by Eq. (1): 

     ( 1 ) 

 The DGM was calculated in pixels then converted to degrees of visual angle. 

3.6.2. Lead time of gaze relative to mouse cursor 

The projection of a gaze position on instantaneous mouse cursor moving direction for a 



12 
 

certain gaze-mouse position pair is shown in Figure 2. The instantaneous lead time relative to 

the mouse movement could be defined by Eq. (2) where the velocity of the mouse cursor (vm) 

was obtained by the central differencing scheme as shown in Eq. (3). ∆t is the sampling 

interval, typically 1ms. During a fixation, the mouse cursor position would catch up with the 

gaze position, i.e., the displacement between gaze and mouse cursor (dgm) shortens. Note that 

DGM is the norm of dgm. Suppose vm is uniform, tlead will become smaller when dgm shortens 

according to Eq. (2). In this case, at the time when a fixation started, tlead had its maximum 

effect. Hence, only samples at the start point of fixations were examined for providing 

maximum leading availability. 

 

Figure 2. Illustration of all metrics needed for lead time calculation. 
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3.6.3. Linear regression 

To test dependency of gaze position and mouse cursor position, linear regression was applied 

on the x- and y-component of the gaze-mouse position pairs.  
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The coefficients of the fitted lines have been obtained for each qualified trial, as 

shown in Eq. (4) and Eq. (5), where gpx is gaze position x, gpy is gaze position y, mpx is 

mouse cursor position x, and mpy is mouse cursor position y. 

 xx bmpxkgpx +⋅=   ( 4 ) 

 yy bmpykgpy +⋅=   ( 5 ) 

In both equations, k is the slope of the fitted line and b is the intercept. Physically, k 

indicates the overall rate of change between gaze trajectory and mouse cursor trajectory. We 

define k as the tracing gain, which is the ratio of the length of gaze trajectory to mouse cursor 

trajectory. The other parameter b shows the average leading or delay distance. 

When k>1, gaze position changes faster than mouse cursor movement; it tends to 

overshoot while mouse cursor traverses the same amount of distance, and the overall length 

of gaze’s trajectory is longer than mouse cursor’s trajectory; when k<1, gaze position changes 

slower than mouse cursor movement; it tends not to cover as much distance as the mouse 

cursor covers, and the overall length of gaze’s trajectory is shorter than mouse cursor’s 

trajectory; when k=1, the overall length of the trajectories of gaze and mouse cursor should be 

the same. When b>0, gaze leads mouse movement; when b<0, mouse leads gaze; when b=0, 

the movements of gaze and mouse are synchronised. A typical case is that k=1 and b>0, 

where gaze position and mouse cursor position can be superimposed with gaze leading.  

Prior to applying linear regression, the data were normalised; this was due to the fact 

that the lead/delay relationship was highly related to the trace traversing direction. Here we 

consider the mouse cursor moving direction always conforms to the trace traversing direction. 

For example, in Figure 3a, when the x-component of the trace/mouse movement vx goes in 

the positive direction of the x-axis, if gaze is leading, the coordinate of the gaze will be larger 
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than the coordinate of the mouse cursor (gpx > mpx). However, when the x-component of the 

trace/mouse movement vx goes in the negative direction of the x-axis (as shown in Figure 3b), 

the coordinate of the gaze will be smaller than the coordinate of the mouse cursor if gaze is 

leading (gpx < mpx). If data of the first scenario as in Figure 3a are fed into the linear fitting, 

parameter b will remain positive; data of the second scenario as in Figure 3b will cause b to 

decrease instead. In this case, the lead/delay effect will be neutralised, leading to the failure 

of showing reliable results. It is similar for the y-component with respect to the y-axis. 

 

Figure 3. Example scenarios when (a) the gaze G is leading the mouse M movement and the 

x-component of the mouse movement conforms to the positive direction of the x-axis; (b) the 

gaze G is leading the mouse M movement and the x-component of the mouse movement 

conforms to the negative direction of the x-axis. 

Therefore, to normalise the data, we used the axis directions as the reference; if the x-

component (or y-component) of the current tracing/mouse direction conformed to the 

direction of the x-axis (or y-axis), the signs of both the gaze and mouse cursor x-coordinates 

(or y-coordinates) remained the same on the x-component (or y-component); otherwise, both 

signs were turned to the opposite. 

3.6.4. Statistics 

To test our initial hypothesis, which was whether there was a significant linear relationship 
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between gaze and mouse movements, a t-test (Paulson 2010) on the regression slope was 

applied on all sets of coefficients fitted. To test our second hypothesis of whether the level of 

gaze-mouse coordination demands impacted differentially on any relationship between gaze 

and mouse movements, a one-way ANOVA was applied for each coefficient, kx, bx, ky, and 

by, yielded from the linear regression, lead time tlead, and gaze-mouse distance DGM. Post 

hoc Bonferroni tests were used to establish differences among the three conditions with 

different gaze-mouse coordination demands. 

4. Results and discussion 

4.1. Overall gaze-mouse behaviour in tracing 

The overall performance of most subjects reflected the typical staircase-like gaze movement 

pattern (Type I) where the gaze position changed rapidly (saccades) then waited (fixations), 

forming an obvious staircase-like pattern in the plot of x or y coordinates with respect to time. 

Figure 4 shows a typical sample trial of Type I by presenting gaze movement (green solid 

line), fixation (blue circle), and mouse movement (red dashed line) for each condition: low 

level of gaze-mouse coordination demand (top row), moderate level of gaze-mouse 

coordination demand (middle row), and high level of gaze-mouse coordination demand 

(bottom row) in the frontal plane (left column), x-component (middle column), and y-

component (right column) relative to time, respectively. Another type (Type II) of a smoother 

gaze movement pattern was observed to occasionally happen in two subjects’ performance 

(see Figure 5). The time series of gaze movement (middle and right column) did not form the 

typical staircase-like pattern but continuously followed the stimulus trace more smoothly, 

where saccades and fixations were not significantly different in the plot. The fixations 

marked by blue circles are determined by the eye tracker software, where approximately 

equal counts of saccades were detected for both types in the same condition.  
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Figure 4. Type I gaze (green solid line) and mouse cursor (red dashed line) trajectories during 

tracing in low level of gaze-mouse coordination demand (top row), moderate level of gaze-

mouse coordination demand (middle row), and high level of gaze-mouse coordination 

demand (bottom row). The left column shows the gaze trajectory and the mouse cursor 

trajectory in the frontal plane, the middle column and the right column show the 

corresponding time series for the x- and y-directions, respectively. Blue circles show the 

mean position where fixation occurred.  
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Figure 5. Type II gaze (green solid line) and mouse cursor (red dashed line) trajectories 

during tracing in low level of gaze-mouse coordination demand (top row), moderate level of 

gaze-mouse coordination demand (middle row), and high level of gaze-mouse coordination 

demand (bottom row). The left column shows the gaze trajectory and the mouse cursor 

trajectory in the frontal plane, the middle column and the right column show the 

corresponding time series for the x- and y-directions, respectively. Blue circles show the 

mean position where fixation occurred. 

There is a possibility that Type II gaze movement was a combination of smooth 

pursuit and saccadic movement. Smooth pursuit usually occurs when the eyes closely follow 

a moving object (de Xivry and Lefevre 2007). Research has demonstrated that except for 

trained subjects (Purves et al. 2001), humans are not capable of smooth pursuit without a 

visible moving target. In this study, the moving object was the mouse-manipulated sphere. 
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Knowing that the subjects were not specially trained for that purpose, it suggested that the 

subjects’ eyes were more closely following the movement of the sphere. However, when the 

Type II gaze movements were observed, the gaze was not directly following the movement of 

the sphere but leading it with an extremely limited amount of distance. Therefore, the Type II 

movements could be due to the predictable movements of the target, the visible trace, and the 

self-manipulated hand movements. In fact, atypical patterns of saccades were also identified 

in the data. Specifically, when a fixation occurs following a saccade, instead of staying 

relatively still, the gaze keeps moving forward with a velocity that is slower and smoother 

than the saccade. This may explain why in Type II gaze still leads but by a very limited 

amount. However, it was not the dominant pattern of gaze behaviour observed in the data; so 

further discussion of the Type II gaze movement is beyond the scope of this study. 

4.2. Correlation in gaze-mouse coordination 

4.2.1. Linear dependency 

It is shown in the results that gaze and mouse movements are highly correlated in terms of 

position. To avoid the influence of the trace shape, linear fitting of the coordinates which is 

described in the section Linear regression was applied to provide a statistical mean of the 

gaze-mouse coupling of the x-component and the y-component, respectively. By analysing 

the t-score of the slope fitted from the linear regression and its corresponding p-value (p < 

.001) yielded from the t-distribution, it verified a spatial linear relationship of gaze-mouse 

coordination. 

Table 1 shows the mean and standard deviation (SD) of the coefficients of linear 

regression that were either generated from all trials or from each condition. The tests on the 

regression slope using t-statistics for the x- and y-components both indicated that there was a 

significant linear relationship between gaze and mouse movements at the significance level of 
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5%. Columns Rx
2 and Ry

2 show the goodness of fit using the residual variance from the fitted 

coefficients. An R2 with a value close to 1 indicates a good fit. 

Table 1. Mean (SD) results of linear regression coefficients for each condition and for all 

trials. 

Conditions kx bx (deg.) Rx
2 ky by (deg.) Ry

2 
LD 0.99 (0.10) -0.86 (1.34) 0.97 (0.04) 0.90 (0.14) 0.14 (0.47) 0.98 (0.03) 
MD 1.05 (0.07) 0.42 (0.59) 0.99 (0.01) 0.88 (0.13) 0.19 (0.36) 0.99 (0.01) 
HD 1.05 (0.07) 0.60 (0.38) 0.99 (<0.01) 0.90 (0.12) 0.33 (0.34) 0.99 (0.01) 

Overall 1.03 (0.09) 0.06 (1.09) 0.98 (0.02) 0.89 (0.13) 0.22 (0.40) 0.99 (0.02) 
The overall kx shows that in the horizontal direction gaze traverses about the same 

distance that mouse cursor traverses. However, in the vertical direction, gaze traverses about 

10% less than the distance that the mouse cursor does. The difference between kx and ky 

suggests that the vertical tracing gain is smaller than the horizontal tracing gain. The 

directional asymmetry of gaze movement has previously been reported in smooth pursuit 

where horizontal movements were more accurate and faster than vertical movements 

(Rottach et al. 1996). Our pattern of results suggests the possibility that such asymmetry also 

exists in saccadic eye movement. 

The low gaze-mouse coordination demands condition shows significance on kx (both 

post hoc Bonferroni tests with MD and HD showed p < .001). The results indicate that in the 

horizontal direction, the gaze covers slightly less distance than the mouse cursor when tracing 

with low gaze-mouse coordination demands; but when tracing with moderate to high gaze-

mouse coordination demands, the gaze tends to cover slightly more distance. No significance 

has been observed on ky for the three conditions (F(2, 891) = 0.65, p = .52), which indicates 

that the level of gaze-mouse coordination demands does not affect the tracing gain (k) in the 

vertical direction. 

The results of bx and by show that the gaze lead in both directions grows when gaze-

mouse coordination demands increase (bx: F(2, 891) = 248.87, p < .001; by: F(2, 891) = 18.67, 
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p < .001). Surprisingly, the bx value under the low gaze-mouse coordination demands 

condition is negative, indicating that the mouse leads the gaze. This suggests that when the 

task demands less gaze-mouse coordination, the mouse cursor can follow the gaze very 

closely, which is reflected in the small gaze lead in the vertical direction; or even lead gaze 

instead, as shown in the horizontal direction. This pattern of results is in line with and extends 

previous studies (Bieg et al. 2010; Liebling and Dumais 2014). Due to the simplicity of the 

straight line that requires low gaze-mouse coordination demands, it may be possible that hand 

motion can be planned at the same time as the trace is initially seen, so proprioception can 

play the main role in guiding movements of the hand with visual feedback only acting as an 

accuracy validator. When vision provides the main guiding information for hand movements, 

i.e. under moderate and high gaze-mouse coordination demands, it mostly relies on an eye-

brain-hand interaction. Under low gaze-mouse coordination demands, it seems to be a 

reversely hand-brain-eye interaction. This interplay can be essential in straightforward tasks 

or trained tasks when memory, other than real-time vision, stimulates the hand movement. 

During tasks that required moderate to high gaze-mouse coordination demands, bx is 

larger than by. It is assumed that the difference is caused by the shape of the trace. A 

supplement test was conducted to testify this assumption. We turned the stimuli traces 90° so 

that the horizontal and vertical movements were swapped. This supplement test data reflected 

that swap, in which by became greater than bx, but kx and ky still remained the same. Therefore, 

this indicates that b is related to trace shape but not k. In this case, we cannot conclude a 

general leading distance (b) because the trace shape affects its x and y components, but it 

gives a hint of the possible shape coefficient defined by the proportions of horizontal and 

vertical traces, for determining the leading distance on each directional component x and y. 

According to the fact that all three k values for each condition are similar on each directional 
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component, the tracing gain (k) is not significantly impacted by the trace shape, indicating 

that other untested trace shapes will share the same result in the same experimental setting. 

The standard deviation of the low gaze-mouse coordination demands condition is 

larger than the other two for all four coefficients. This was caused by the too small number of 

saccades in some trials of this condition, which was unable to provide enough training data 

for the linear regression and then led to difficulties in obtaining more robust results. 

4.2.2. Correlation between gaze speed and gaze-mouse distance 

Figure 6a shows a typical case of the corresponding relationship between the gaze speed 

(green solid line), the speed of the mouse movement (red dashed line), and the gaze-mouse 

distance (blue dash-dot line) during a moderate gaze-mouse coordination demanding trial. 

The peaks of the green solid line represent the saccades; in between the saccades are 

fixations. Each saccade has one shorter peak on both sides; in other words, at the beginning 

and at the end of a saccade, there is a small acceleration of the gaze movement (see Figure 

6b). Figure 6c gives a close-up of a single saccade. The backshoot at the right-hand side of 

the saccade, which is marked with a red circle, and the dynamic overshoot at the left-hand 

side of the saccade, which is also marked with a red circle, are clearly seen. The backshoot 

can be reflected by the first peak of speed in Figure 6b, and the dynamic overshoot can be 

reflected by the third peak of speed in Figure 6b. The overshoot could be evidently identified 

in the moderate and high gaze-mouse coordination demands conditions of every subject’s 

performance except for some trials of the low gaze-mouse coordination demands condition 

and those who have Type II gaze movements. The dynamic overshoot is usually a correction 

since the target of the initial saccade is not perfect (Kapoula and Robinson 1986). Most 

studies discussed dynamic overshoots but backshoots prior to the initiation of a saccade are 

rarely mentioned in the previous literature. Deubel and Bridgeman (1995) reported much 



22 
 

smaller backshoots than overshoots but in our specific tracing task, the backshoots are as 

evident as or only slightly smaller than the dynamic overshoots.  

 

Figure 6. A sample of the relationship between gaze speed, mouse cursor speed, and gaze-

mouse distance. 

The number of peaks in the blue dashed-dotted line is consistent with the number of 

saccades. It shows the positive correlation between the gaze-mouse distance and the speed of 

gaze movement in mouse tracing. It is apparent that the gaze-mouse distance reaches its local 

maximum at the end of one saccade and its local minimum at the beginning of the saccade, 

suggesting that the mouse cursor is generally catching up with the gaze position. 

4.3. Lead time in gaze-mouse coordination 

We have validated the gaze lead effect in the discussion of Linear dependency. In this 

section, a direct evaluation of the lead time for each condition is provided. Table 2 gives the 
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lead time obtained by the method explained in Eq. (2) for each condition. The positive values 

represent the gaze leading the mouse cursor. The significance test shows smaller average lead 

time on the low gaze-mouse coordination demands condition (both post hoc Bonferroni tests 

with MD and HD showed p < .001). It can be explained by two factors. One is that the 

velocity of straight line tracing is greater than that of curve tracing. Another is that in some 

straight line tracing cases the mouse cursor was leading in the horizontal direction but lagging 

in the vertical direction. This method integrates separate leading/lagging effects in the 

horizontal and vertical directions to one instantaneous mouse moving direction; so the results 

are neutralised by the lagging in the horizontal direction. Both factors can be testified in the 

current data. However, it is unclear to what extent each factor has impacted on the pattern of 

results. The lead time for moderate to high gaze-mouse coordination demands conditions is in 

agreement with the work of Gielen et al. (2009), indicating that the response time in the 

central nervous system during finger tracing is similar to mouse tracing. 

Table 2. Mean ± SD results of lead time calculated by Eq. (2) and DGM for each condition.  

Conditions LD MD HD 

Lead time (ms) 223 ± 154 283 ± 113 295 ± 87 

DGM (deg.) 2.95 ± 2.08 2.95 ± 1.95 2.97 ± 1.91 

Figure 7 provides an overview of lead time of all subjects across all conditions. It is 

noticeable that some subjects have very small lead time in the low gaze-mouse coordination 

demands condition. The minimum values represented by the bottom of the whiskers are even 

minus for these subjects. It is in accordance with the negative bx that has been explained in 

the Linear dependency section. Because the lead time is only calculated based on the samples 

at the end of each saccade where the distance is supposed to be the maximum during each 
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saccade and atypical saccadic movements still occur in Type II, the result of Type II still 

shows typical lead time. 

 

Figure 7. Average lead time for each subject grouped by different conditions. 

4.4. Distance between the gaze and the mouse cursor during tracing 

Figure 8 shows the distribution of the sampled distance of all gaze and mouse cursor position 

pairs. The mean ± SD of DGM is 2.96 ± 1.94 degrees for all sampled distances between gaze 

and mouse cursor position pairs, containing 72.04% of the samples. The mean (2.77°) is 

slightly larger but close to the lead distance of gaze found in Tramper and Gielen’s work 

(2011), which was ~2°. The percentage of DGM that falls inside the 10° range is 99.36%, 

which agrees with the findings presented in studies of Binsted et al. (2001) and Bowman et 

al. (2009). This reflected the observation that the mouse cursor was coupling with gaze by 

keeping a distance within the high visual acuity area of the retina (which will be explained in 

the next paragraph). It is worth noting that Type II data showed very small mean DGM that 

was ~1° because smooth pursuit eye movements keep gaze-mouse distance to the minimum 

while Type I mainly distributed between [2, 3] degrees. The fit of samples only at the 
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beginning of each fixation yields the mean ± SD of DGM to be 3.49 ± 2.22 degrees. Gaze-

mouse distance for each condition is given in Table 2 which shows no significant difference 

for the three levels of gaze-mouse coordination demands (F(2, 891) = 0.76, p = .47).  

 

Figure 8. Distribution of DGM of data from all subjects and all conditions. 

It is noticeable that the high spatial correlation between gaze trajectory and mouse 

trajectory does not perfectly guarantee superimposition of the two. For specific tasks like 

pointing to a specific position, a perfect overlap is possible (Neggers and Bekkering 2000). 

Previous work built the gaze lead model with the assumption that gaze and hand movements 

were perfectly superimposed (Tramper and Gielen 2011). However, in tasks like tracing, 

because it is a dynamic process, it is easier to introduce noise that affects the superimposition 

of gaze trajectory and trace stimuli, such as complexity of the trace, motor instability, 

attention shifts, distraction, the size of the motor tool, calibration noise, and personal habits 

amongst other factors. Our results suggest that the difference is related to the range of visual 

acuity area. It is well known that human vision achieves the highest acuity at the fovea which 

extends about 2° around the centre of the retina (Duchowski 2007). The region that 

circumscribes the fovea for 4° is parafovea. Combining the fovea and parafovea forms an 
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approximately 10° wide area of the retina which we call the visual acuity area. During a 

fixation, this area takes in the majority of visual information; furthermore, very limited 

amounts of visual information are taken in during a saccade as saccadic suppression limits the 

amount of moving information we are able to perceive, so that retinal smearing is not 

experienced (Irwin 1993). Therefore, fixations and saccades constantly occur in order that we 

build up a mental representation of the visual environment. The range of visual acuity is wide 

enough to tolerate the distance between the gaze and the mouse cursor, but the distance 

beyond this threshold is perhaps not tolerable during this task. The ky value is about 0.89 as 

presented in Table 1, indicating that gaze trajectory covers only 89% of cursor trajectory, 

which supports this assumption. Moreover, given that human peripheral vision is good at 

detecting dynamic movements (McKee and Nakayama 1984), and the only requirement of 

the task is to keep the sphere moving along the trace where too much detailed information is 

dispensable for completing the task, tracing accuracy in the task was not affected without 

looking directly at where the sphere and the mouse cursor were. 

4.5. Limitations and implications 

This study investigated the relationship between perceptual complexity and gaze-mouse 

coordination but various other factors could be taken into account, such as content saliency. 

While this is an initial investigation, strong conclusions cannot be formulated, so further 

investigations into other variables which may also influence the results need to be considered 

in the future.  

Although the order of trials in one trial set has been carefully designed so that the 

same conditions were not shown continuously, the same order of trials was still repeated in 

each trial set. As subjects repeated the trials ten times, there were practice effects where their 

performance on the task gradually improved; this was especially noticed in the first condition 
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(the straight line with low gaze-mouse coordination demands). We also found fluctuation of 

performance caused by the discontinuity between each trial set. However, by removing the 

first three trials of each trial set the practice effects and unstable performance became 

insignificant. A Latin square design (Anon. 2008) is suggested in this type of experiment to 

achieve randomisation without repetition.  

Occasionally the device lost tracking of eyes such as blinks. These data have been 

removed from the analysis, but there is a possibility that trivial bias has been introduced into 

the results due to the incomplete trial data and trace-shape sensitivity in lead effect evaluation.  

A very large gaze-mouse distance has been observed in several subjects’ experimental 

data, possibly because the visual trace and sphere were easy to detect within peripheral vision. 

According to Fitts’ Law (Fitts 1954) and its extension to trajectory-based tasks (Accot and 

Zhai 1997), shrinking the size of the sphere may increase the difficulty of the task and gaze-

mouse coordination demands, and correspondingly change the distance between gaze and 

mouse. Moreover, Jiang et al. (2015) studied the correlation between pupil dilation and 

continuous pointing task difficulty using Fitts’ law to quantitatively define the complexity of 

the motor task, which can be adopted in our future work to model the conditions in a more 

controlled way. 

This study serves as a preliminary work for future research to conduct more 

complicated tasks where a haptic interface may be involved. Haptic devices are used as 

pointing tools for interacting with 3D virtual reality. Therefore, we intend to extend this work 

into 3D environments, where we can explore the interaction of vision and haptic feedback. 

The performance of human computer interaction applications has the potential to be 

improved using gaze leading features, especially for visually stimulated applications that are 

mainly controlled by pointing devices, in which gaze can deliver a reliable prediction of 
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manipulation area. The prediction provides the possibility of pre-computation for real-time 

display of complex graphic and force feedback. A task with high gaze-mouse coordination 

demands would benefit more according to our results because high gaze-mouse coordination 

demanding tasks allow more lead time. Meanwhile, the gaze lead may not always be effective 

as the pointing device can be leading in low gaze-mouse coordination demanding tasks. 

The observed backshoot in the saccade data also provides potential directional 

information for saccadic movement prediction. Evidence shows that microsaccade direction 

can reveal the direction of covert attentional shifts by moving away from the visual cue 

(Engbert and Kliegl 2003). This mechanism may explain the observed backshoot oculomotor 

behaviour, but there is somewhat of a dispute regarding this in the literature (Tse et al. 2004).  

Arguments exist that gaze cannot always overtly represent attention or region of 

interest because of covert attentional orienting (Posner 1980). However, according to 

perceptual load theory (Lavie et al. 2004), which proposes that distractor interference can be 

reduced or excluded from perception when the level of cognitive load in processing task-

relevant stimuli is sufficiently high to exhaust perceptual capacity, gaze is more intensively 

linked to current attention in a task with high cognitive load.  

Finally, the strong correlation features between gaze and mouse movements can be 

extracted from the collected data for visuomotor behaviour modelling, which will, for 

example, benefit robotic implementation of trajectory-based tasks. The gaze-mouse 

correlation also forms unique patterns that distinguish it from gaze and mouse movements 

that are irrelevant to each other. This difference has the potential to be applied in attention 

decoding for telling whether the user is focusing on the gaze-mouse coordination task or not. 

Such techniques can be used in a wide range of applications such as adaptive virtual reality, 

smart mobile devices, and intelligent web applications. 
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5. Conclusion 

In the current study, our first aim was to investigate the spatiotemporal relationship between 

gaze and mouse movements in a tracing task. To summarise the findings, we showed that, 

similar to physical eye-hand coordination, there is linearity of gaze-mouse correlation and 

gaze typically leads the mouse cursor movement with comparable lead time to eye-hand 

coordination. We also showed a directional asymmetry of lead effect, i.e., leading distance 

varies if the proportion of horizontal components and vertical components of the trace 

changes; but the gaze-mouse tracing gain k in the horizontal or the vertical direction is 

consistent and irrelevant to the trace shape. In addition, the overall distribution of the distance 

between gaze and mouse cursor is constantly within a typical visual acuity range.  

The dependency of gaze-mouse coordination demands in the tracing tasks was then 

addressed. We validated the hypothesis of a positive correlation between gaze-mouse 

coordination demands and gaze lead. Clearly, a task with higher coordination demands yields 

greater lead distance and greater lead time for gaze-mouse coordination. In scenarios such as 

tasks with extremely low gaze-mouse coordination demands, we found the mouse cursor led 

the gaze position in the horizontal direction. Yet neither was the tracing gain related to gaze-

mouse coordination of the task, nor did overall distance distribution between the gaze and the 

mouse cursor.  Finally, we proposed a new method of lead time calculation, which provided 

results without directional disparity.  

To conclude, the current paper provided the theoretical and analytical explanation of 

gaze-mouse coordination based on experimental data and our research has provided a 

complete data set and a framework to analyse the gaze-mouse dependency. The pattern of 

data provided an indication for how we might improve the design of human-computer 

interactions with the possibility of more natural interaction based on eye tracking, as well as 

improve the user experience and alternation of user behaviour where the linear dependency of 
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the mouse and the gaze movements exist. Some applications are available already, e.g., 

MAGIC pointing technique which uses the gaze information to accelerate the cursor 

movement (Zhai et al. 1999; Fares et al. 2013), but future research should provide a more 

complex analysis of practical applications in real human-computer interaction interface 

designs.  
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