
I 

 

 

 

 

Ecological consequences of non-native parasites for native 

UK fishes 

 

Josephine Pegg 

 

This thesis has been submitted in partial fulfilment of the 

requirements of the degree of Doctor of Philosophy 

 

Bournemouth University 

October 2015 

   

  



II 

 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and due 

acknowledgement must always be made of the use of any material contained in, or 

derived from, this thesis.    

   

  



III 

 

Josephine Pegg 

Ecological consequences of non-native parasites for native UK fishes 

 

Abstract 

Introductions of non-native species can result in the release of their parasites. 

Although the majority of parasites are lost during the introduction process, those that 

do get released can spill over to native species and potentially result in pathological, 

physiological and ecological impacts. Whilst it is increasingly recognised that native 

parasites can play important ecological roles, the ecological consequences of non-

native parasites remain unclear. Consequently, through study of three host-parasite 

models, this research investigated the ecological consequences of non-native 

parasites in UK freshwater fish communities through assessment of their effects on 

hosts (individuals to populations), and on food web structure. 

  

The three non-native parasite: host systems were Ergasilus briani and roach Rutilus 

rutilus and common bream Abramis brama, Bothriocephalus acheilognathi and 

common carp Cyprinus carpio, and Anguillicoides crassus and the European eel 

Anguilla anguilla. These parasites were chosen as they reflect a range of life cycle 

complexity in parasites. The pathology of each parasite was identified using 

histology, with E. briani having substantial effects on host gill structure, B. 

acheilognathi impacted the intestinal structure of their hosts, and A. crassus 

substantially altered the structure and functioning of the host swimbladder.  Whilst 

infections of E. briani and A. crassus had minimal effects on the body size, growth 

and condition of their hosts, chronic infections of B. acheilognathi did impact the 

growth and condition of C. carpio when measured over a 12 month period.  
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Differences in the trophic ecology of the infected and uninfected components of the 

host populations were identified using stable isotope analysis and associated metrics, 

and revealed considerable differences in the trophic niche breadth of the infected and 

uninfected fish. In the component infected with E. briani, their trophic niche was 

constricted, indicating diet specialisation and a shift to feeding on less motile food 

items. For C. carpio infected with B. acheilognathi, their niche shifted away that of 

uninfected fish as they fed on higher proportions of planktonic prey resources. 

Whilst differences in the trophic ecology of infected and uninfected A. anguilla were 

apparent, this related to differences in their functional morphology that enabled the 

infected eels to prey upon greater proportions of fish paratenic hosts that resulted in 

their higher rates of infection.  

 

The wider ecological consequences of the introduced parasite were then investigated 

using topological and weighted food webs. The topological webs revealed that 

lifecycle and host specificity were important factors in how each parasite impacted 

the food web metrics, but in all cases the combined effects of including native 

parasites in food web structure exceeded that of adding the non-native parasite. 

However, weighting these food webs by using the dietary data outlined above 

revealed that these infections were predicted to have greater consequences than 

predicted topologically, and enabled scenarios of differing parasite prevalence and 

environmental change to be tested on food web metrics. These revealed that under 

increasing nutrient enrichment, infected individuals generally benefit via having 

access to greater food resources, a counter-intuitive resulting from increased algal 

biomass.  
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Thus, this research revealed that introductions of non-native parasites have 

pathological and ecological consequences for their host populations that have 

measurable effects at the food web level. These outputs have important implications 

for the management of non-native parasites and their free-living hosts, and should be 

incorporated into risk-management and policy frameworks.  
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1.  Introduction 

 

This thesis studies how non-native parasites alter food web structure through their 

interactions with free-living species and their modifications to host foraging 

behaviour. It uses fish and their parasite fauna as the model species and the UK as 

the study area. It doing so, the research covers topics including introduced species 

generally and introduced fishes specifically, their parasite fauna, and the 

consequences of parasites, including non-native parasites and at individual, 

population and community levels.  

 

1.1  Introductions of non-native fish 

The rate of introductions of species worldwide has more than doubled compared 

with estimates nearly three decades ago (Gozlan 2008; Gozlan et al. 2010b). These 

introductions of non-native species have principally been the result of human 

activity, usually associated with enhancing ecosystem services such as aquaculture, 

and can be both deliberate or accidental (Vitousek et al. 1996; Koo and Mattson 

2004; Gozlan et al. 2010a; Gozlan et al. 2010b). Despite this large volume of 

introductions, the majority of introduced species fail to establish sustainable 

populations; of those that do, many only cause minor ecological consequences 

(Gozlan 2008). However, a small proportion cause more substantial impacts 

(Manchester and Bullock 2000). These range from genetic consequences through to 

changes in ecosystem functioning (Cucherousset and Olden 2011). Examples in 

freshwater fish include habitat alteration, such as increased water turbidity caused by 

benthic foraging species such as the Common carp Cyprinus carpio and goldfish 

Carassius auratus (Richardson and Whoriskey 1992; Britton et al. 2007); genetic 



2 

 

contamination, such as through hybridization between native crucian carp Carassius 

carssius with C. carpio and C. auratus in England that has resulted in the 

introgression of gene pools and the loss of pure-strain populations of C. carassius 

(Hanfling et al. 2005), and the introduction of non-native parasites with their free-

living hosts, the subject of this research.  

 

Both aquaculture and recreational angling provide important introduction pathways 

for introduced species, with these responsible for a number of introduced fishes 

attaining almost global distribution (De Silva et al. 2006; Gozlan et al. 2010b). 

Cyprinus carpio, originally from Southeast Asia, is now commonplace wherever 

temperatures allow their survival, due to their use in aquaculture and angling 

(Zambrano et al. 2006; Britton et al. 2007). Nile tilapia Oreochromis niloticus has 

achieved similar distribution levels as a result of intensive pond aquaculture, being 

prevalent in Asian and South American aquaculture systems (Zambrano et al. 2006; 

Orsi and Britton 2012). There are, however, a number of other pathways by which 

fish can be introduced into new ranges, including the ornamental fish trade that is 

responsible for the introduction of many smaller species of low economic value, with 

these introductions often being accidental, such as the topmouth gudgeon 

Pseudorasbora parva into Europe from China (Gozlan et al. 2010a).  

 

Introduction pathways for non-native fish parasites tend to echo those of their free-

living hosts (Britton 2013). Aquaculture is thus arguably the pathway responsible for 

the introduction of the majority of non-native fish parasites, with examples including 

the eel parasite Anguillicoloides crassus (Kirk 2003), the Asian tapeworm 

Bothriocephalus acheilognathi (Andrews et al. 1981) and the crustacean copepod 
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parasite Ergasilus briani (Alston and Lewis 1994). These parasites are all now 

present in the UK following their release into the wild with introduced free-living 

hosts, and infect fish species which are considered native and naturalised.  

 

1.2  Arrival of parasites with introduced free-living species 

When free-living species are moved from their natural range into a new range, they 

are likely to be host to a number of parasites and other disease causing agents that 

will be introduced with them. If these pathogens are able to infect new, native hosts 

in their extended range then the consequences for these hosts are often severe. For 

example, in the UK, the invasive grey squirrel Sciurus carolinensis is the host of the 

squirrel poxvirus, which is relatively benign in greys, but on transmission to the 

native red squirrel Sciurus vulgaris can cause high mortality rates (Rushton et al. 

2006; Bruemmer et al. 2010) and has thus driven the decline of the native squirrel in 

the UK (Chantrey et al. 2014). The movement of fish around the world for 

aquaculture purposes has also resulted in the transfer of a number of pathogens that 

have then gone on to cause considerable issues in the new range. For example, in 

fish of the Salmonidae family, the pathogen Yersinia ruckeri, which causes enteric 

red mouth disease, has extended its geographic range from North America to Europe 

with the import of live fathead minnow Pimephales promelas. Likewise infectious 

hematopoietic necrosis virus that causes haematopoietic necrosis was spread along a 

similar geographic route by the eggs of rainbow trout Oncorhynchus mykiss. In the 

case of both diseases, mortality rates in infected populations can be high (Bovo et al. 

1987; Furones et al. 1993).  

Moreover, it was the transfer of a fish parasite into a new range that was responsible 

for one of the most notorious examples of how an introduced pathogen can impact a 
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naïve host population. Gyrodactylus salaris is a monogenean ectoparasite native to 

the Karelian part of Russia, and the Baltic parts of Finland and Sweden area, where it 

occurs naturally on fins and skin of Atlantic and Baltic salmon Salmo salar when 

they are in their freshwater phase. It was introduced into Norway through the 

movement in aquaculture of Rainbow trout Oncorhynchus mykiss and was then 

moved throughout the country via this industry and then through infected fish 

migrating through rivers and in brackish water in fiords (Hansen et al. 2007). On 

transmission to wild salmon in Norwegian waters, it subsequently caused disease 

epidemics that incurred high mortality rates as this strain of salmon had never 

experienced the pathogen previously (Johnsen 1978; Heggberget and Johnsen 1982; 

Johnsen and Jensen 1986,  1991). The mortality rates reduced the abundance of 

juvenile salmon by an average of 86 % and the angler catch of salmon in infected 

rivers by an average of 87% (Heggberget and Johnsen 1982). Further, these losses of 

salmon have had cascading effects in the freshwater pearl mussel Margaritifera 

margaritifera, depleting their populations as they depend on juvenile salmon for an 

important part of their lifecycle (Karlsson et al. 2014). To date, the economic losses 

to G. salaris in Norway are estimated in the region of US $500,000,000 (Hansen et 

al. 2003). 

 

1.3  How many non-native parasites arrive with free-living non-native hosts?  

In Section 1.1 and 1.2, it was outlined that an issue associated with introduced free-

living fish is the introduction of their parasite fauna and potentially results in naïve 

native fish hosts becoming infected and incurring serious consequences. 

Notwithstanding the potential seriousness of this, a number of studies have 

suggested that introduced free-living species are host to a much reduced parasite 
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fauna in their new range compared to their native range (Colautti et al. 2004; Liu and 

Stiling 2006; Sheath et al. 2015) . This is termed ‘enemy release’ (Colautti et al. 

2004). Whilst this is beneficial from the perspective of fewer novel disease causing 

agents being released with the introduced fish, it is theorised as providing 

considerable benefit to that fish as it assists its survival and establishment in the new 

range (hence the term) (Colautti et al. 2004; Sih et al. 2010). This benefit arises from 

the reduced population regulatory pressures from their natural enemies experienced 

by the introduced fish in the new range (Torchin et al. 2001; Torchin et al. 2003).  

 

A number of studies on aquatic communities provide strong evidence for enemy 

release. For example, the invasive European green crab Carcinus maenas has 

significantly reduced parasite diversity and prevalence in its invasive range 

compared with its natural range, with their greater population biomasses in the 

invasive range attributed to this (Torchin et al. 2001). Several amphipod species that 

have invaded British waters host a lower diversity, prevalence and burden of 

parasites than the native amphipod Gammarus duebeni celticus (MacNeil et al. 2003; 

Prenter et al. 2004b). Of the five parasite species that have been detected, three are 

shared by both the native and invasive amphipod species, but two are restricted to 

Gammarus duebeni celticus (Dunn and Dick 1998; MacNeil et al. 2003). Torchin et 

al. (2005), found a similar pattern in mud-snail communities in North America; 

whilst the native snail Cerithidea californica was host to 10 trematode species, the 

invader Batillaria cumingi was host to only one. These specific examples are 

supported by meta-analyses of native and invasive animals and plants which have 

revealed a higher-than-average parasite diversity in native populations; for example 

of 473 plant species naturalized in the United States that had originated from Europe 
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had, on average, 84% fewer fungal pathogens and 24% fewer virus species than 

native fauna (Mitchell and Power 2003), whilst introduced fishes in England and 

Wales had on average less than 9% of the number of macro-parasites they had in 

their native range (Sheath et al. 2015). Consequently, whilst their impacts are 

potentially severe in the new range, only a small proportion of non-native parasites 

are actually likely to be introduced with their hosts (Torchin et al. 2003).   

 

1.4  Infections by non-native parasites in their new range 

Despite the reduced number of parasites being present in non-native free-living 

species in their extended range, it is still likely some will be introduced and it is 

these which are the focus of this research. These parasites may then persist within 

the non-native fish population that act as a ‘reservoir’ of potential disease 

transmission for the native fish populations as they ensure continual source of 

infection. This source of infection and subsequent transmission to native hosts is 

referred to as parasite ‘spillover’ (Prenter et al. 2004a). For example, in squirrel pox 

(Section 1.2), the mortality rates of native red squirrels was so high that the virus 

was predicted to die out through lack of new hosts, but it persists because grey 

squirrels are asymptomatic and act as a reservoir for ‘spillover’ opportunities as they 

arise (Tompkins et al. 2002). 

 

In addition to parasite ‘spillover’, parasite ‘spillback’ also occurs in introduced free-

living species. This is where the introduced species become infected with native 

parasites and then act as ‘reservoirs’ of infection for the subsequent spillback of 

these parasites to their native hosts (Kelly et al. 2009). For example, in Australia, the 

invasive Cane toad Bufo marinus played an important spillback role in the 
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emergence of two myxosporean parasites of native frogs, the Green and golden bell 

frog Litoria aurea and the Southern bell frog Litoria raniformis, facilitating parasite 

dispersal and transmission, and the consequent population declines of the frogs 

(Hartigan et al. 2011). The invasive crayfish Pacifastacus leniusculus displays both 

spillover and spillback. For spillover, it is an asymptomatic host for the introduced 

fungus Aphanomyces astaci - crayfish plague - that is subsequently transmitted to 

white-clawed crayfish Austropotamobius pallipes (Kelly et al. 2009). For spillback, 

it hosts the native microsporidian Thelohania contejeani where it acts as a reservoir 

of infection for A. pallipes which then tends to also cause mortality (Dunn et al. 

2009).  

 

1.5  Parasites in infectious food webs 

In order to determine how an introduced parasite might impact food webs and their 

structure, the role of native parasites in food webs needs to be ascertained. In the last 

decade, there has been a strong focus on how the addition of parasites to food web 

structure changes web properties (Lafferty et al. 2006). Infectious food webs 

represent food web structure with parasites included and tend to be compared to their 

structure when parasites are omitted (the traditional approach). Studies have 

demonstrated that the infectious food webs tend to have increased chain length, 

linkage density, nestedness and connectedness (Hudson et al. 2006; Lafferty et al. 

2006; Lafferty 2008). These results suggest that food webs are very incomplete 

unless parasites are included. Thus, just the mere inclusion of parasites in food web 

topology has had significant effects on understandings of their structure, with the 

realization that native parasites are integral to the structuring and functioning of 

ecosystems (Hudson et al. 2006; Lafferty 2008).   
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Parasites in food webs result in modifications to food web structure in a number of 

different ways: 

 

1. Parasites contribute significant proportions of the biomass of ecosystems 

(Johnson et al. 2010). For example, parasites in three estuaries on the Pacific 

coast of California and Baja California contributed similar amounts of 

biomass as major free-living groups of animals such small arthropods and 

polychaetes, and a greater amount of biomass than all the vertebrate apex 

predators, of fish and birds (Kuris et al. 2008). The Parasite grouped as 

‘parasitic castrators’ contributed the greatest biomass, 1 - 10 kg ha
-1

, or 

around 1% of the total biomass of the system. Thus influencing the 

ecosystems energetics and significantly contributing to the productivity of the 

system (Kuris et al. 2008). 

 

2. Parasites can induce behavioural changes in their hosts in order to complete 

their lifecycles, which then modifies the foraging behaviour of the host and 

so the composition of their diet (Barber et al. 2000). For example, Ligula 

intestinalis infects cyprinid species, altering their swimming behaviour by 

decreasing the swimming depth of infected individuals (Bean and Winfield 

1989; Loot et al. 2001). This benefits the parasite as it increases the chances 

of the fish being depredated by the final host, a piscivourous bird (Bean and 

Winfield 1989). The consequence to the fish is that its diet can shift from 

benthic to pelagic items as a result of its altered swimming behaviour (Bean 

and Winfield 1989; Loot et al. 2001). 
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3. Parasites mediate competitive interactions, which will have consequences for 

the quantitative food web (Hatcher et al. 2006). For example, on St Maarten 

Island in the Caribbean, two species of Anolis lizard coexist, Anolis 

gingivinus and Anolis wattsi. On other Caribbean islands, A. gingivinus is 

larger and more competitive, but on St Maarten, the malarial parasite 

Plasmodium azurophilum is present. This rarely infects A. wattsi but is very 

common in A. gingivinus. Wherever infected A. gingivinus occur, A. wattsi is 

also present, but wherever uninfected A. gingivinus is present then A. wattsi 

is absent  (Schall 1992). This has important consequences in terms of lizard 

community structure, their feeding relationships and competitive interactions, 

and ultimately, the structure of the topological and quantitative food web. 

 

4. Finally, native parasites often also act as moderators of host populations that 

will subsequently have important implications for moderating their cascading 

effects further down the food web. For example, the reproduction of reindeer 

Rangifer tarandus in Svalbard, is regulated by the parasitic nematode 

Osteragaia gruehneri which decreases the fecundity of the reindeer but not 

their survival (Albon et al. 2002). A feedback loop was detected of a density-

dependent parasite-mediated reduction in calf production. As population 

sizes increased, so the prevalence and abundance of O. gruehneri increased 

in the reindeer and prevented the reindeer populations from achieving very 

high numbers (Albon et al. 2002). Similarly, the caecal worm 

Trichostrongylus tenuis is a strong regulator of the population cycles of their 

host the red grouse Lagopus lagopus scoticus in northern England (Hudson 
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1986; Dobson and Hudson 1992). The parasite is transmitted via the heather 

which is the preferred food of adult birds, whilst young chicks which feed 

primarily on insects tend to avoid infection. The parasite accumulates in 

adults and high levels can cause mortality, loss of condition and can reduce 

the grouse’s ability to control its scent, making it vulnerable to predation. 

Eggs and larvae of T. tenuis cannot survive hot dry conditions but thrive in 

warm humid ones, therefore their abundance and impact is related to 

prevailing weather patterns (Hudson 1986; Dobson and Hudson 1992; 

Dobson and Hudson 1995). 

 

1.6  Parasites affect ecosystem structure 

Section 1.5 discussed the substantial consequences of parasites on food web 

topology and the quantitative food web through their actions on individuals and 

populations. However, parasite-mediated effects on individual hosts can also 

influence ecosystem structure and function. For example, trematode parasites that 

infect the foot tissue of the Austrovenus stutchburyi cockle modify how the cockle 

uses its foot to move and burrow after it has been dislodged (Mouritsen and Poulin 

2003). The net consequence of this is changes in the structure and functioning of 

soft-bodied animal communities, as epifauna benefit from the increased surface 

structure and the infauna are influenced by changes in the hydrodynamics that 

determine the particle composition in the upper sediment (Mouritsen and Poulin 

2003). The herbivourous snail Littorina littorea is parasitized by the digenean 

trematode parasite Cryptocotyle lingua in its native European range.   Infection by 

C.lingua reduces the consumption rate of individual L.littorea by 40 % and this 

decrease in grazing pressure results in significantly increased abundance of the 



11 

 

macroalgal communities (Wood et al. 2007). The result is that in ecosystems where 

the parasite has high prevalence in L. littorea, ecosystem structure tends to be more 

dominated by algal communities. Both species have been introduced to North 

America (Blakeslee et al. 2008), where L. littorea has been demonstrated to 

significantly disrupt native communities by its voracious herbivory (Lubchenco, 

1978). Thus in this case the co-introduced parasite appears to moderate the 

ecological impact of its invasive host.   

 

1.7  Parasites: consequences from individual hosts to ecosystems 

Native parasites thus can have substantial consequences for individual hosts that can 

have additive consequences as levels of biological organisation scale up to 

population and community levels. The completion of complex parasite lifecycles, 

their mediation of population abundance, and alterations in the symmetry of 

competitive interactions, habitat utilisation and acquisition of food resources, all 

have substantial consequences for food web structure. Nevertheless, it has only been 

in the last decade that parasites have routinely been considered as integral 

components of food webs and their structuring role in ecosystems is still often 

overlooked.  

 

It was also outlined in Sections 1.1 to 1.4 that whilst only a small number of non-

native parasites might get introduced with their free-living hosts (enemy release 

hypothesis), these parasites might then be transmitted to native hosts (parasite 

spillover). The non-native fish might then act as a reservoir of native parasites and 

cause subsequent disease outbreaks in the native hosts (parasite spillback). 

Transmission of non-native parasites to naïve hosts (including the same species as 
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the introduced host but an inexperienced strain that has yet to encounter the parasite) 

can then have substantial consequences at the individual level (e.g. G. salaris). What 

is less known (certainly compared with native parasites) is how these host 

consequences of infection by non-native parasites translate into population, 

community, food web and ecosystem consequences. It is this that is the basis of this 

research. 

 

1.8  Focal Parasites 

This research utilises three non-native fish parasites to test their influences on food 

web topology and host trophic niche size in wild conditions. The parasites were 

selected on the basis of the following criteria: 

 

1. They were classed as ‘Category 2’ parasites by the Environment Agency 

(EA) (Williams 2013; Environment Agency 2015). This means their natural 

range does not include England and Wales but they have been introduced, 

usually with their fish host. This categorisation also means that the EA (who 

have delegated responsibilities from Department of Environment, Food and 

Rural Affairs (DEFRA) for regulating the movement of fishes between inland 

waters in England and Wales) have assessed the parasites as having 

significant disease potential for native fishes. However, their potential for 

economic disruption to aquaculture is sufficiently low to not warrant their 

categorisation as a ‘notifiable disease’.  

2. The three selected parasites differed in their life cycles, ranging from simple 

lifecycles (host-to-host) to complex lifecycles involving multiple stages and 

intermediate hosts (including paratenic hosts). This enabled testing of the 
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hypothesis that as the parasite life cycle increases in complexity it will 

increase food web connectivity and linkage density.  

 

Consequently, the three non-native parasites being used are: 

 Ergasilus briani , a copepod crustacean from South-east Asia with a direct 

lifecycle, with roach Rutilus rutilus and common bream Abramis brama 

being typical fish hosts;  

 Bothriocepahlus acheilognathi, the ‘Asian tapeworm’ that has a two stage 

lifecycle involving a copepod intermediate host and fish final host, usually 

carp Cyprinus carpio; and  

 Anguillicoloides crassus, a nematode parasite that has as a complex lifecycle 

with multiple intermediate hosts (copepods and small fish) and the European 

eel Anguilla anguilla as the final host, plus numerous other fish paratenic 

hosts.  

 

These parasites were introduced into England and Wales via either the fish 

movement industry for angling (E. briani, B. acheiloganthi) or the aquaculture 

industry (A. crassus). The following paragraphs outline some of the key 

characteristics of each parasite.  

 

 

Ergasilus briani is a crustacean parasite of the family Ergasilidae that can infect a 

wide range of freshwater fish species, with over 20 recorded fish host species in 

England and Wales (Alston and Lewis 1994; Williams 2007). The parasite prefers 

hosts of below 100 mm in length, particularly cyprinid fish (e.g. roach Rutilus 
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rutilus, rudd Scardinius erythropthalmus and common bream Abramis brama) 

(Alston and Lewis 1994). Ergasilus briani was first recorded in England and Wales 

in 1982  (Fryer and Andrews 1983). The direct lifecycle means it only requires fish 

hosts for its completion (Abdelhalim et al. 1991; Figure 1.1). It is the adult female 

that is parasitic and it attaches to its host via the gill filaments where it feeds on 

mucus, blood and epithelial cells within the gill tissue. Consequently, a heavy 

infection on a host can cause respiratory distress through loss of gill function, and 

decreased tolerance to environmental stressors.  This can result in loss of condition, 

reduced growth, and in extreme cases, death, particularly in juvenile fish (Alston et 

al. 1996; Dezfuli et al. 2003).  

 

Figure 1.1 Lifecycle of Ergasilus briani (adapted from Environment Agency, 

2015) 
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Bothriocephalus acheilognathi is a parasitic flatworm of the class Cestoda. 

Originally from Asia, it has been spread around the world via the global aquaculture 

trade in Asian grass carp Ctenopharyngodon idella. It is non-host specific, having 

been recorded in over 200 fish hosts across the world, although its more severe 

consequences tend to occur in fishes of the Cyprinidae family (Williams et al. 2011; 

Linder et al. 2012). It has a complex lifecycle (Figure 1.2) involving an intermediate 

copepod host and one or more definitive fish hosts. In the final fish host, the mature 

cestodes are within the intestinal tract where they release partially embryonated eggs 

which then pass out of the fish in their faeces. The eggs settle onto the substrate 

where they develop into ciliated larvae - coracidium - which then exits the egg shell 

and swims in the water column until eaten by a copepod. There, it sheds its ciliated 

outer and burrows into the copepod body cavity where it develops into the proceroid, 

the first larval stage. A copepod heavily infected with proceroids will move more 

slowly and be more susceptible to predation by fish (Nie and Kennedy 1993), thus 

facilitating their transfer to the final fish host. Should a piscivorous fish then 

consume the final host then this can also result in infection (Linder et al. 2012). 
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Figure 1.2 Lifecycle of Bothriocephalus acheilognathi (adapted from 

Environment Agency, 2015) 

 

 

Effects on fish final hosts include damage to the intestinal tract (cf. Figure 2.4), 

physical disturbance, loss of condition, impacts of foraging behaviours and even 

death (Britton et al. 2011). Reports of 100% mortality in hatchery reared C. carpio 

highlight the pathogenic potential of this parasite (Scholz et al. 2012)  

    

Anguillicoides crassus is a roundworm of the phylum Nematoda that, in its final 

host A. anguilla, infects the swim-bladder. It was introduced into Europe through the 

importation of infected Japanese eels in the early 1980 and was first recorded in the 

UK in 1987 (Kirk 2003).  Their infections of A. anguilla are hypothesised as a 

contributory factor in their population decline in recent years, as A. anguilla make 

transatlantic spawning migrations, for which it would be expected a functioning 
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swimbladder is required (Kirk 2003). The lifecycle is complex, involving multiple 

intermediate and paratenic hosts, plus A. anguilla as the final host (Figure 1.3).  

Whilst juvenile (glass) eels can become infected from feeding on infected copepods, 

it is the larger eels (> 200 mm) that are more likely to be become infected from their 

predation of a paratenic host (Kennedy 2007). Indeed, these paratenic hosts are 

integral to the proliferation of A. crassus in European eels, despite there being no 

record of paratenic hosts in the parasite natural range (Thomas and Ollevier 1992; 

Kirk 2003). 

 
Figure 1.3 Lifecycle of Anguillicoides crassus (adapted from Kirk, 2003)  
 
 

In A. anguilla, adult A. crassus accumulate in the swim-bladder and as their numbers 

increase (typically over 50; cf. Figure 2.5). The swim bladder becomes thickened as 

a result of fibrosis (Székely et al. 2009). This damage may remain even after 

parasites have died or left the eel, with those eels which have experienced high 

parasite loads previously being left with heavily scarred swim-bladders. The lumen 

of the swim-bladder is often filled with dead or encapsulated parasites, and in the 
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most extreme cases, the lumen of the swim-bladder collapses (Székely et al. 2009. 

Infection has been shown to produce a reduction in swimming speed (Thomas and 

Ollevier 1992).  Nevertheless, the primary cause of A. crassus induced mortality is 

decreased resistance to secondary infections (Szekely 1994). Whilst parasite-induced 

mortality in wild populations is rare, significant mortalities have occurred in 

association with adverse environmental stressors (Kirk 2003).   

 

1.9  Definitions of terminology 

• Non-native species: A species, subspecies or lower taxon, introduced by 

human action outside its natural past or present distribution; includes any part, 

gametes, seeds, eggs, or propagules of such species that might survive and 

subsequently reproduce. 

• Non-native invasive species: Any non-native animal or plant that has the 

ability to spread, causing damage to the environment, the economy, our health and 

the way we live. 

• Parasite: An organism that lives and feeds on or in an organism of a different 

species and causes harm to its host. 

• Host: An organism that harbours a parasite. 

• Intermediate host: A host that harbours the parasite only for a short transition 

period, during which (usually) some developmental stage is completed. 

• Definitive host: A host in which the parasite reaches maturity and, if 

possible, reproduces sexually. 

• Paratenic host: A host that is not necessary for the development of a 

particular species of parasite, but nonetheless may happen to serve to maintain the 

life cycle of that parasite. In contrast to its development in an intermediate, a parasite 
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in a paratenic host does not undergo any changes into the following stages of its 

development 

• Naïve host species: A native species having no co-evolutionary history to the 

non-native parasite.  

• Direct lifecycle (of a parasite): Lifecycle is completed on a single host (may 

have a free-living stage). 

• Complex lifecycle (of a parasite): Lifecycle is completed on multiple hosts, 

including one or more intermediate host in addition to a definitive host.   

• Parasite prevalence: The proportion of infected hosts among all the potential 

hosts examined of a single species. 

• Parasite abundance: This is the mean number of parasites found in all the 

individual infected hosts.  
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1.10  Research aim and objectives 

The research aim is to determine how infection of naïve fish hosts by a non-native 

parasite impacts individual fish, their populations, their interactions within the 

community and the food web topology and trophic structure. Using three non-native 

fish parasites present in the UK, the research objectives are to: 

 

O1. Determine the prevalence and abundance and pathology of Ergasilus briani in 

Rutilus rutilus and Abramis brama (Chapter 2), Bothriocephalus acheilognathi in 

Cyprinus carpio (Chapter 3), and Anguillicoides crassus in Anguilla anguilla 

(Chapter 4), and assess the respective impact of each parasite on their host’s growth 

and condition.  

  

O2. Identify how infection by the three focal non-native parasites affects the trophic 

ecology of their respective host fish populations. Specifically whether parasitism 

alters their trophic niche size (Chapter 2, 3, 4) and trophic position (Chapters 2, 3, 4); 

whether there is a temporal component to the ecological impact of parasitism 

(Chapter 3) and whether trophic ecology can be a predictor to parasitism (Chapter 4)  

 

O3. Assess how infections by native and the three focal non-native parasites modify 

the topology of aquatic food webs through comparison with the topology when 

parasites are omitted (Chapter 5); 

   

O4. Identify changes in the functioning of infectious foobwebs caused by the non-

native parasites E. briani and B. acheilognathi (Chapter 6). 
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1.11 Thesis structure 

The structure of the thesis is as follows: 

 

Chapter 1: Introduction. This has provided the rationale for the study and the 

overall aim and objectives. 

Chapter 2: Consistent patterns of trophic niche specialisation in host population 

infected with a non-native parasite. This chapter provides data on parasite 

prevalence and abundance of infected with Ergasilus briani in Rutilus rutilus and 

Abramis brama, the consequences of infection for host fishes and how infection 

impacts their trophic ecology. 

Chapter 3: Temporal changes in growth, condition and trophic niche in juvenile 

Cyprinus carpio infected with a non-native parasite. This chapter provides data on 

parasite prevalence and abundance of Bothriocephalus acheilognathi in C. carpio, 

the consequences of infection for host fish and how infection impacts their trophic 

ecology. 

Chapter 4: Head morphology and piscivory of European eels, Anguilla anguilla, 

predict their probability of infection by the invasive parasitic nematode 

Anguillicoloides crassus. This chapter provides data on parasite prevalence and 

abundance of A. crassus in A. anguilla, the consequences of infection for host fish 

and the interaction of eel functional morphology and parasite infection. 

Chapter 5: Consequences of non-native parasites for topological food webs. This 

chapter quantifies how infections by native and non-native parasites modify the 

topology of aquatic food webs. 

Chapter 6: Weighted food webs to predict the outcomes of interactions of non-

native parasite infection and environmental change. This chapter quantifies how 
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infections by native and non-native parasites modify the structure and energy flux of 

aquatic food webs, and uses food web models predictively to determine the outcome 

of specific scenarios on parasite dynamics and food web structure. 

Chapter 7: Discussion: This summarises the outputs of the data chapters (Chapters 

2 to 6) and discusses conclusions in relation to the initial aims and objectives. 
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2. Consistent patterns of trophic niche specialisation in host 

populations infected with a non-native parasite  

 

2.1 Abstract  

Populations of generalist species often comprise smaller sub-sets of relatively 

specialised individuals whose niches comprise small sub-sets of the overall 

population niche. Although the ecological drivers of individual trophic specialisation 

are generally well established, the role of parasitism remains unclear, despite 

infections potentially altering host foraging behaviours and diet composition. This 

role was tested here using five wild populations of roach Rutilus rutilus and common 

bream Abramis brama infected with the non-native parasite Ergasilus briani, a 

copepod parasite that has a direct lifecycle (i.e. it is not trophically transmitted) that 

infects gill tissues. Parasite prevalence ranged between 16 and 67 %, with parasite 

abundances of up to 66 per individual. Pathological impacts included hyperplasia 

and localised haemorrhaging of gill tissues. There were, however, no differences in 

the length, weight and condition of infected and uninfected fishes. Stable isotope 

analyses (
13

C, 
15

N) revealed that across all populations, the trophic niche width of 

infected fishes was consistently and substantially reduced compared to uninfected 

conspecifics. The trophic niche of infected fishes always sat within that of uninfected 

fish, revealing trophic specialisation in hosts, with predictions of diet composition 

indicating this resulted from greater proportions of less motile items in host diets that 

appeared sufficient to maintain their energetic requirements.  The results here 

suggest trophic specialisation is a potentially important non-lethal consequence of 

parasite infection that results from impaired functional traits of the host.  
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2.2 Introduction   

Infections by parasites can have considerable consequences for their free-living 

hosts, including alterations in habitat utilisation, and foraging and anti-predator 

behaviours (Barber et al. 2000; Lefevre et al. 2009; Dianne et al. 2014). There 

remains relatively limited knowledge regarding the mechanistic basis of these 

alterations (Clerc et al. 2015), with this also reflected in aspects of their ecological 

consequences (Lefevre et al. 2009). It is, however, well established that parasites can 

have considerable consequences for food web ecology (e.g. Marcogliese and Cone, 

1997; Lafferty et al. 2006; Wood et al. 2007), with the trophic consequences of 

infections resulting from both manipulative parasites affecting the strength of trophic 

links involved in transmission, and from non-manipulative parasites that impair the 

functional traits of hosts (Miura et al. 2006; Hernandez and Sukhdeo, 2008). For 

example, sticklebacks Gasterosteus aculeatus infected with Schistocephalus solidus 

preferentially ingest smaller prey items of lower quality compared with uninfected 

sticklebacks (Milinski 1984; Jakobsen et al. 1988; Cunningham et al. 1994). Thus, 

parasite infections can restrict the prey handling and ingestion abilities of hosts and/ 

or reduce the ability of hosts to compete for larger prey items with uninfected 

individuals due to factors including energetic constraints that result in shifts in 

competition symmetry between the infected and uninfected individuals (Barber et al. 

2000; Britton 2013).  

  

Populations of generalist species are increasingly recognised as comprising smaller 

sub-sets of relatively specialised individuals whose niches are then small sub-sets of 

the overall population niche (Bolnick et al. 2003; Bolnick et al. 2007; Quevedo et al. 

2009). Empirical studies and foraging models suggest intraspecific competition 
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increases individual trophic specialisation (Svanback and Persson 2004; Huss et al. 

2008). Whilst other drivers of trophic specialisation include increased interspecific 

competition, the exploitation of new ecological opportunities, and the direct and 

indirect consequences of predation, there has been little consideration of how natural 

enemies, such as parasites, affect the magnitude of individual trophic specialisation 

(Araujo et al. 2011). This is despite the evidence already outlined that infections can 

alter host foraging behaviours and diet composition. Correspondingly, should 

parasite infections increase levels of competition for infected individuals then the 

niche variation hypothesis predicts that their sub-set of the population would become 

more specialised in their diet (Van Valen 1965). Conversely, under increasing 

resource competition, a shift to a larger trophic niche by these infected individuals 

might maintain their energy requirements (Svanback and Bolnick 2007).   

  

Consequently, the aim of this study was to identify how the infection of a model 

parasite species affects host populations in relation to their trophic niche size and the 

magnitude of individual trophic specialisation. The objectives were to: (1) quantify 

the parasite prevalence, abundance, histopathology and energetic consequences of 

the model parasite on two fish species over five populations; (2) assess the trophic 

niche size of each fish population, and those of the two sub-sets of each population: 

uninfected and infected with the parasite; and (3) assess these outcomes in relation to 

niche theory and individual trophic specialisation. The model species were the 

copepod parasite Ergasilus briani in the host fish species roach Rutilus rutilus and 

common bream Abramis brama. Populations in the UK were used; E. briani was 

only introduced in 1982 (Alston and Lewis 1994) and so the parasite and fishes 

shared little evolutionary history, meaning infections had the potential to produce 
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pronounced consequences in naïve hosts (Taraschewski 2006). It was predicted that 

the trophic niche of infected individuals differ from that of uninfected con-specifics 

due to the consequences of E. briani infection, with infected individuals having 

impaired growth rates and energetics.   

 

2.3 Materials and Methods  

2.3.1 Sample collection and initial data collection  

Three freshwater study sites were selected in Southern England where E. briani 

infections were known to be present in the fish community. The sites were chosen 

which best represented the range of habitats occupied by the parasite and it’s hosts in 

the UK, and thus represented the differing conditions that an infected host would be 

exposed to as well as the different food webs that the parasite could potentially 

impact. 

The Basingstoke canal (Site 1; 51.276414N, 0.820642W) was historically 

supplemented with cyprinid fish through stocking but now has a self-sustaining fish 

community; it is of 6 to 10 m in width and maximum depth 2.5 m (Figure 2.1). 

Henleaze Lake (Site 2; 51.49763N, 2.603867W) is a narrow lake in a former quarry 

of 450 m in length, and is up to 8 m in width and with depths to 6 m (Figure 2.2). It 

had been previously stocked with C. carpio, A.brama and R. rutilus, with the latter 

two species now self-sustaining. Darwell reservoir (Site 3; 50.963617N, 0.440719E) 

is a water supply reservoir of approximately 63 hectares where the fish community is 

dominated by R. rutilus, perch Perca fluviatilis and pike Esox lucius (Figure 2.3). It 

was the stocking activities on each site in the 1980s and 1990s that resulted in E. 

briani introduction.   
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Figure 2.1 Site 1, Section of the Basingstoke canal. (Photograph by Ronn Strutt). 
 
 

  

Figure 2.2 Site 2, Henleaze Lake, October 2013.  In the foreground are the 

swimming platforms and diving boards used by swimmers, the portion of the lake 

reserved for angling starts beyond the large willow on the right. 
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Figure 2.3 Site 3, Darwell Reservoir, October 2013. 

 

The sampling methodology used at each site varied according to the physical habitat. 

At Site 1, samples of A. brama were collected in October 2012 and samples of R. 

rutilus in October 2014 using a combination of use of a 25 x 2.7 m micromesh seine 

net and electric fishing. Samples of R. rutilus and A. brama were collected from Site 

2 in October 2013 using the micromesh seine net. At Site 3, samples of R. rutilus 

were available from a stock assessment exercise completed in October 2013 that 

captured these fish using a gill net of 30 x 2.5 m and mesh size 33 mm (knot to 

knot). Logistical constraints meant samples could not be collected from all waters in 

the same year, although care was taken to ensure sampling took place at the same 

time at each one (i.e. October) in order to ensure seasonal patterns in the growth and 

condition of the fishes were similar. The sampling procedure was carried out in such 

a way as to include all available potential habitats, including marginal and open 

water environments, to ensure the fish collected were representative of the entire 

population and any behavioural effect resulting from parasitism that could 

potentially alter their habitat utilisation did not result in biased samples. Following 

their capture at all sites, all fish were initially retained in water-filled containers and 
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for R. rutilus and A.brama, a random sub-sample of a minimum of 30 individuals per 

species was taken and transported to the laboratory for processing. Concomitant to 

the collection of each fish sample, their putative food items were also sampled, 

including macro-invertebrates (kick-sampling and sweep netting), zooplankton 

(filtering 10 l of water through a 250 μm filter) and phytoplankton (filtering 10 l of 

water through a 53 μm filter). Triplicate samples of macro-invertebrate species were 

taken, where a sample represented between 5 and 20 individuals of that species.   

  

In the laboratory, all fish were euthanized (anaesthetic overdose; MS-222), with 

weight (W; to 0.01 g), and fork length (L; nearest mm) recorded. A detailed post-

mortem was then conducted on each individual R. rutilus and A. brama for detecting 

the presence of infections of native and non-native parasites using a standard 

protocol adapted from Hoole et al. (2001; Appendix 1). Skin scrapes and internal 

organs were examined with aid of low and high power microscopy to enable parasite 

identification. Gill arches from both gill cavities were removed and examined under 

low power for parasite presence, including E. briani. Where E. briani was present, 

their intensity of infection was recorded (number of individual parasites). Hereafter, 

where an individual R. rutilus or A. brama is referred to as either infected or non-

infected, it refers to the presence/ absence of E. briani in that individual during this 

process. Gill tissue from infected and uninfected individuals was retained and 

prepared for histopathology. On completion of the post-mortem, a sample of dorsal 

muscle was taken from a random proportion of the fish samples (sample sizes 6 to 15 

per sub-set of fish per population). These, and the macro-invertebrate, zooplankton 

and phytoplankton samples, were then dried at 60ºC to constant weight before being 

analysed for their stable isotopes of 
13

C and 
15

N at the Cornell Stable Isotope 
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Laboratory (New York, USA). At this laboratory, each sample was prepared by 

grinding and then weighing approximately 0.5 mg into a tin cup, with the actual 

weight recorded accurately using a Sartorius MC5 microbalance. The samples were 

then analysed for their carbon and nitrogen isotopes using a Thermo Delta V 

Advantage Isotope Ratio Mass Spectrometer. The outputs from the spectrometer 

included data on the carbon and nitrogen stable isotope ratios that could be then be 

expressed relative to conventional standards as δ
13

C and δ
15

N, respectively (Section 

1.4), where δ
13

C or δ
15

N = [Rsample/Rstandard-1] x 1000, and R is δ
13

C/ δ
12

C or 

δ
15

N/d
14

N. Standards references were Vienna Pee Dee Belemnite for δ
13

C and 

atmospheric nitrogen for δ
15

N. A standard of animal (mink) was run every 10 

samples to calculate an overall standard deviation for both δ
15

N and δ
13

C to ascertain 

the reliability of the analyses. The overall standard deviation of the animal standard 

was not more than 0.23 ‰ for δ
15

N and 0.14 ‰ for δ
13

C. 

  

2.3.2 Histopathology  

Histopathology of gill tissues was completed to assess the pathological changes 

associated with E. briani infection. Sections of gill from infected and uninfected fish 

were fixed in Bouin’s fixative for 24 hours before transferring to 70% Industrial 

Methylated Spirit. The tissues were trimmed, dehydrated in alcohol series, cleared 

and then embedded in paraffin wax. Transverse and longitudinal sections of 3 µm 

were cut on a microtome. These were dried at 50°C, stained using Mayer's 

haematoxylin and eosin, and examined microscopically for pathological changes and 

described accordingly.  
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2.3.3  Data analyses  

Infection levels of E. briani in R. rutilus and A. brama were described as their 

prevalence (number of infected individuals/total number of individuals x 100) and 

abundance (number of E. briani per host). The stable isotope data of R. rutilus and A. 

brama were used to assess their trophic niche size and predict their diet composition 

from the putative food resource data. Trophic niche size was calculated using the 

metric standard ellipse area (SEAc) in the Stable Isotope Aanalysis in R (SIAR) 

package (Parnell et al. 2010) in R (R Core Development Team, 2013). SEAc is a 

bivariate measure of the distribution of individuals in trophic space, where each 

ellipse encloses ~ 40% of the data and thus represents the core dietary niche of 

species and so indicates their typical resource use (Jackson et al. 2011; Jackson et al. 

2012). It has been widely applied to describing the dietary niche of a wide range of 

species in recent years (e.g. Grey and Jackson 2012; Guzzo et al. 2013; Abrantes et 

al. 2014), highlighting its utility. The subscript ‘c’ in SEAc indicated that a small 

sample size correction was used here due to limited sample sizes. For each 

population of R. rutilus and A. brama in each site, SEAc was calculated for two sub-

sets of individuals: those infected with E. briani and those uninfected. Where SEAc 

overlapped between the sub-sets, or the SEAc of the sub-set overlapped with another 

species or sub-set of another species in the community, then the extent of this 

overlap (as a %) was calculated to identify the extent to which the trophic niches 

were shared.   

  

To then predict the diet composition of each sub-set of fish, their stable isotope data, 

plus those of their putative food resources, were applied to Bayesian mixing models 

that estimated the relative contribution of each putative food resource to the diet of 
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each individual R. rutilus or A. brama per site (Moore and Semmens 2008). The 

models were run using the MixSIAR GUI package in the R computing programme 

(R Core Development Team 2013). Given that excessive putative food resources can 

cause mixing models to underperform, the data for resources with similar isotope 

values were combined a priori, whilst respecting the taxon and functional affiliation 

of the individual species (Phillips et al. 2005). Correspondingly, at Sites 1 and 2, the 

groups used in the models were Arthropoda, Chironomidae and zooplankton. At Site 

3, they were macrophyte, zebra mussel Dreissena polymorpha, zooplankton and 

phytoplankton. Isotopic fractionation factors between resources and consumers in the 

models were 3.4 ‰ (± 0.98 ‰) for δ 
15

N and 0.39 ‰ (± 1.3 ‰) for δ
13

C (Post, 

2002). Outputs were the predicted proportion of each resource to host diet (0 to 1).   

  

2.3.4 Statistical analyses  

For each fish species and population infected with E. briani, differences between the 

infected and uninfected hosts were tested for length using ANOVA, and their stable 

isotopes of δ
13

C and δ
15

N using Mann Whitney U tests. Condition was calculated as 

Fulton’s Condition Factor K, where K= 100 x W/L
3
, where L was measured in cm, 

with differences between infected and uninfected fishes also tested using Mann 

Whitney U tests. Differences in weight between the infected and uninfected fish per 

population and species were then tested in a generalized linear model (GLM), where 

the effect of length on weight was controlled as a co-variate; outputs included 

estimated marginal means of weight controlled for length for each sub-set of fish and 

the significance of their differences were identified by pairwise comparisons with 

Bonferroni correction for multiple comparisons. Differences between the predicted 

proportions of each putative food source to the diet of infected and uninfected fish 
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were tested by Mann Whitney U tests. Other than the stable isotope mixing models, 

all analyses were completed in SPSS v. 22.0. In all analyses, where parametric tests 

were used, the assumptions of normality of residuals and homoscedasticity were 

checked, and response variables were log-transformed to meet the assumption if 

necessary.   

  

2.4 Results   

2.4.1 Parasite prevalence and abundance, and effect on fish length and weight  

Prevalence and mean parasite abundance was highest at Site 1 for both fishes, with 

the maximum abundance recorded being 66 E. briani in an individual R. rutilus 

(Table 2.1). Other parasites recorded were native species that would be considered as 

the expected parasite fauna of these fishes in a UK community and were recorded at 

levels that were considered as not high enough to cause clinical pathology (Hoole et 

al. 2001) These species are listed in Appendix 2. At Site 1, the non-native parasite 

Ergasilus sieboldi was also detected in the gills of two A. brama. Due to the 

potential for this parasite to confound subsequent analyses, these fish were omitted 

from the dataset.   
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 Table 2.1 Prevalence and abundance of Ergasilus briani per site and species 

Site Species n 

Prevalence 

(%) 

Mean abundance 

of parasites (± SE) 

Range of parasite 

abundance  

1 A. brama
1
 45 67 5.71 ± 0.89 0 - 21 

1 R. rutilus
2
 40 63 6.20 ± 2.09 0 - 66 

2 A. brama 32 19 1.63 ± 0.85 0 - 16 

2 R. rutilus 44 16 0.89 ± 0.46 0 - 21 

3 R. rutilus 64 17 0.40 ± 0.13 0-6 

1
Sampled October 2012 

2
Sampled October 2014 

 

Differences in fish lengths between the infected and uninfected fish were not 

significant at any site (ANOVA: Site 1: R. rutilus F1,19 = 0.11, P > 0.05; A.brama 

F1,29 = 0.01, P > 0.05, Site 2: R. rutilus F1,14 = 0.84, P > 0.05; A.brama F1,15 = 0.42, P 

> 0.05, Site 3: R. rutilus F1,19 = 0.01, P > 0.05; Table 2.2). Similarly, there were no 

significant differences between the body weight of infected and uninfected fish at 

any site when the effect of total length was controlled (GLM: Site 1: A. brama: Wald 

χ 
2
 = 1.27, P > 0.05; R. rutilus Wald χ

2
 = 0.91, P > 0.05; Site 2: A. brama: Wald χ

 2
 = 

0.001, P > 0.05; R. rutilus: Wald χ
2
 = 0.67, P > 0.05), or in Fulton’s condition factor, 

K (Mann Whitney U tests: Site 1: A. brama: Z = 1.16, P > 0.05; R. rutilus Z = 0.83, 

P > 0.05; Site 2: A. brama: Z = 0.82, P > 0.05; R. rutilus: Z = 0.48, P > 0.05).  
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Table 2.2  Sample sizes, mean lengths of subsampled fish and mean stable 

isotope data of the fish species and putative food resources at each study site.  

Site Species n 

Mean length 

(mm) 

Mean δ
13

C 

(‰) 

Mean δ
15 

N 

(‰) 

1 Uninfected A. brama 15 39.6 ± 3.0 -35.25 ± 0.46 16.06 ± 0.93 

Infected A. brama 15 39.5 ± 2.4 -35.40 ± 0.67 16.46 ± 0.81 

Arthropoda  3 
 

-32.30 ± 0.56 11.44 ± 0.74 

Chironomidae 3 
 

-34.56 ± 0.86 9.95 ± 0.78 

Zooplankton 3   -32.64 ± 0.76 8.74 ± 0.56 

Uninfected R. rutilus 10 64.4 ± 23.9 -35.73 ± 1.66 14.44 ± 0.82 

Infected R. rutilus 6 69.0 ± 24.0 -35.54 ± 0.61 13.92 ± 0.35 

Arthropoda  4 
 

-34.65 ± 1.50 11.71 ± 1.17 

Chironomidae 3 
 

-34.52 ± 0.91 10.25 ± 0.30 

Zooplankton 3   -29.15 ± 0.50 6.81 ± 0.49 

2 Infected A. brama 6 102.7 ± 50.2 -33.08 ± .020 16.09 ± 0.17 

 
Arthropoda  4 

 
-29.93 ± 2.1 10.67 ± 1.65 

 
Chironomidae 3 

 
-27.95 ± 0.9 12.52 ± 0.99 

  Zooplankton 3   -34.92 ± 1.50 9.32 ± 0.30 
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(Cont.) 

Site Species n 

Mean length 

(mm) 

Mean δ
13

C 

(‰) 

Mean δ
15 

N 

(‰) 

2 Uninfected R. rutilus 10 100.1 ± 22.1 -32.23 ± 1.44 15.37 ± 0 .78 

 Infected R. rutilus 7 94.3 ± 14.9 - 31.10 ± 1.87 14.64 ± 1.37 

 Arthropoda  4 
 

-29.93 ± 2.1 10.67 ± 1.65 

 Chironomidae 3 
 

-27.95 ± 0.9 12.52 ± 0.99 

  Zooplankton 3   -34.92 ± 1.50 9.32 ± 0.30 

3 Infected R. rutilus 10 122.7 ± 23.4 -22.43 ± 1.08 12.94 ± 0.34 

 Macrophyte 3 
 

-19.17 ± 037 8.72 ± 0.29 

 Phytoplankton 3 

 

-29.47 ± 0.89 11.37 ± 0.90 

 Zooplankton  3 

 

-30.58 ± 0.90 13.54 ± 0.99 

  D. polymorpha 3   -15.30 ± 0.89 7.20 ± 0.40 

 

2.4.2 Histopathology  

Histopathological examinations revealed consistent pathological changes associated 

with E. briani infection when infected and uninfected tissues were compared. 

Parasites attached to the ventral surface of the gill filament, between the 

hemibranchs, tight to the interbranchial spetum. Whilst dissection of the gill was 

needed to confirm the presence of E. briani, their egg strings were often visible prior 

to removal of the gills (Figure 1a). During attachment, the parasite’s antennae 

(Figure 1b) were used to engulf the base of the gill filaments, bringing the head of 

the parasite tight to the gill septum (Figure 1c,d). This frequently led to displacement 

and distortion of filaments to accommodate the body of the parasite (Figure 1c-e). 

Parasite attachment led to compression of the gill tissue, with flattening of the 
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epithelium (Figure 1d,e). This was often accompanied by hyperplasia, localised 

haemorrhaging, epithelial erosion and compression of blood vessels underlying the 

body of the parasite (Figure 1e). Although no direct evidence for parasite feeding 

was observed, localised loss and compression of gill epithelium was often apparent 

adjacent to the mouth (Figure 1f).   
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Figure 2.4  Pathology of Rutilus rutilus infected with Ergasilus briani. a) 

Presence of two E. briani (arrows) attached between the gill filaments following 

removal of the operculum. b) Whole E. briani following dissection of the gill tissue, 

showing antennae used for attachment (arrows). c) Histopathology of R. rutilus gill, 
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with attachment of two E. briani (*) tight to interbranchial septum with displacement 

of filaments. The antennae can been seen engulfing multiple filaments (arrow). d) 

Compression and distortion of gill tissue (arrow) adjacent to E. briani, indicative of 

forceful attachment to the base of the gill filaments. e) Transverse section through 

infected gill arch, with multiple E. briani (*) attached between the hemibranchs, with 

compression and erosion of epithelium, localised haemorrhage (**) and 

displacement of filaments. f) Gill tissue adjacent to E. briani, showing epithelial loss 

and compression, with constriction of blood vessel underlying the parasite (arrow). 

Normal vessel shown away from the immediate site of parasite attachment (*). 

 

2.4.3 Stable isotope metrics  

The differences in the mean values of δ
13

C and δ
15

N between the infected and 

uninfected fish were not significant for any of the species at any site (Mann Whitney: 

δ
13

C: Site 1: A. brama Z = 0.57, P > 0.05; R. rutilus Z = 0.23, P > 0.05 Site 2: A. 

brama Z = 1.19, P > 0.05; R. rutilus Z = 1.80, P > 0.05; Site 3: R. rutilus Z = 0.01, P 

> 0.05; δ 15N: Site 1: A. brama Z = 0.57, P > 0.05; R. rutilus Z = 0.16, P > 0.05; Site 

2: A. brama Z = 1.30, P > 0.05; R. rutilus Z = 1.03, P > 0.05; Site 3: R. rutilus Z = 

1.48, P > 0.05) (Table 2.2). There was, however, a consistent pattern of trophic niche 

size (as SEAc) being considerably higher in the uninfected sub-set of fish when 

compared to their infected conspecifics (Table 2.3), with very few outliers sitting 

outside of these core niches. The extent of the overlap between the tropic niches of 

each sub-set of the populations was high, with infected A.brama sharing 95 and 100 

% of trophic space with uninfected A. brama in Sites 1 and 2 respectively, and 

infected R. rutilus shared 91, 69 and 73 % of trophic niche space with uninfected R. 

rutilus in Sites 1, 2 and 3 respectively. Where R. rutilis and A. brama were present in 
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sympatry at Site 2, there was minimal overlap in the trophic niches of their 

uninfected individuals (16.7 %), but this increased between their infected subs-sets 

of individuals (89.2 %) (Figure 2.5). 

 

Table 2.3  Trophic niche width (as standard ellipse area, SEAc) of the 

uninfected and infected sub-sets of fish per site, and their relative size and extent of 

trophic overlap between the infected and uninfected sub-sets of fish.  

 Site Species 

SEAc uninfected 

(‰
2
) 

SEAc infected 

(‰
2
) 

Trophic overlap 

(%) 

1 A. brama 1.63 0.67 94.70 

1 R. rutilus 4.71 0.47 90.88 

2  A. brama 1.18 0.12 99.99 

2 R. rutilus 4.52 3.23 69.31 

3 R. rutilus 1.99 1.26 73.25 
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Figure 2.5 Trophic niche width (as standard ellipse area, SEAc) of infected and 

uninfected Abramis brama and Rutilus rutilus from Site 1. a) A. brama sampled May 

2012, b) R. rutilus sampled October 2014. The black ellipse represents the infected 

individuals and the grey ellipse represents uninfected individuals.  
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Figure 2.6 Trophic niche width (as standard ellipse area, SEAc) of infected and 

uninfected Abramis brama and Rutilus rutilus from Site 2. The black ellipse 

represents the infected individuals and the grey ellipse represents uninfected 

individuals. 
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Figure 2.7 Trophic niche width (as standard ellipse area, SEAc) of infected and 

uninfected Abramis brama and Rutilus rutilus from Site 3. The black ellipse 

represents the infected individuals and the grey ellipse represents uninfected 

individuals. 

 The outputs of the mixing models predicting the diet compositions of the uninfected 

and infected fish per species and per site revealed some significant differences 

between the subsets of fish (Table 2.4). At Site 1, infected fish of both species had 

significantly higher proportions of chironomid larvae in their diet (R. rutilus: Z = 

3.99, P < 0.01, A. brama Z = 4.08, P < 0.01; Table 2.4) than their uninfected 

conspecifics. This was also apparent in infected R. rutilus in Site 2 (Z = 3.03, P < 

0.05), where infected A. brama had significantly decreased proportions of 

zooplankton in their diet (Z = 3.87, P < 0.01). At Site 3, infected fish consumed 

greater proportions of macrophyte material (Z = 3.59, P < 0.01) and reduced 

proportions of phytoplankton (Z = 3.87, P < 0.01) than uninfected R. rutilus (Table 

2.4).    
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Table 2.4 Summary of the Bayesian mixing models outputs predicting the 

proportions of each major food item to the diet of infected and uninfected fish per 

species and sites, and the significance of the differences according to Mann Whitney 

U Tests (Z), where * P < 0.05; **P < 0.01. Values of the modelled proportions 

represent their mean and standard error. 

      Modelled diet proportion 

 

Site Species Food item Uninfected Infected Z 

1 A. brama Arthropoda 0.40 ± 0.14 0.35 ± 0.13 4.59** 

  

Chironomidae 0.45 ± 0.14 0.51 ± 0.13 4.08** 

 

  Zooplankton 0.15 ± 0.10 0.10 ± 0.08 4.59** 

 

R. rutilus Arthropoda 0.59 ± 0.19 0.40 ± 0.19 3.99** 

  

Chironomidae 0.38 ± 0.19 0.57 ± 0.19 3.99** 

    Zooplankton 0.03 ± 0.03 0.03 ± 0.03 0.53 

2 A. brama Arthropoda 0.37 ± 0.33 0.40 ± 0.37 0.74 

  

Chironomidae 0.25 ± 0.17 0.27 ± 0.20 0.35 

 

  Zooplankton 0.38 ± 0.18 0.30 ± 0.19 3.87** 

 

R. rutilus Arthropoda 0.51 ± 0.27 0.45 ± 0.31 2.84* 

  

Chironomidae 0.21 ± 0.16 0.16 ± 0.16 3.03* 

    Zooplankton 0.27 ± 0.17 0.31 ± 0.21 3.42** 

3 R. rutilus Macrophyte 0.31 ± 0.14 0.36 ± 0.17 3.59** 

  

Phytoplankton 0.18± 0.01 0.14 ± 0.01 3.87** 

  

Zooplankton 0.26 ± 0.11 0.28 ± 0.11 0.81 

    D. polymorpha 0.24 ± 0.11 0.24 ± 0.12 1.9 
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2.5 Discussion  

Infection of R. rutilus and A. brama by E. briani resulted in gross pathological 

changes characterised by displacement of gill filaments, loss and compression of 

epithelium, hyperplasia, and localised haemorrhaging within the filaments as a 

consequence of parasite attachment. This is consistent with pathological changes 

associated with other Ergasilid parasites (Alston and Lewis 1994; Dezfuli et al. 

2003). When the trophic niche widths of infected and uninfected fishes were 

compared, these differed as per the prediction and revealed a general and consistent 

pattern of trophic niche constriction in the infected fishes, suggesting that rather than 

switching to alternative food items, the infected fishes consumed specific food items 

that were also within the dietary range of uninfected individuals. Despite this diet 

specialisation resulting in the trophic niche of infected individuals overlapping with 

the niche width of the subset of the infected individuals of the other species, this 

dietary specialisation appeared sufficient to maintain their energetic requirements, 

given that infection did not adversely affect their individual condition, contrary to 

the prediction.   

  

Optimum foraging theory models typically assume that individuals rank alternative 

resources according to their energetic value per unit handling time, with this 

dependent on the resource traits and phenotypic capacity of individuals to capture, 

handle and to digest those resources (Araujo et al. 2011). This suggests individuals 

will feed on the most valuable resources, ignoring lower-value resources when 

search and handling time could be better spent searching for more valuable ones 

(Bolnick et al. 2003). Thus, niche variation between individuals is largely dependent 

on the diversity and abundance of available resources versus the phenotypic traits of 
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the individual (Crowden and Broom 1980; Stephens and Krebs 1986). The outputs 

here, revealing that infected fishes had increased specialisation in their trophic niche, 

were therefore likely to be associated with the phenotypic changes resulting from the 

infection pathology.   

  

The outputs of this study provided strong evidence from field studies that parasitism 

can be a driver of trophic niche specialisation. However, in the absence of 

experimental study, the actual causal mechanisms involved beyond the infections 

were unable to be tested. Nevertheless, parasites are recognised as impacting host 

foraging efficiency through a variety of physiological, pathological and behavioural 

mechanisms, resulting in, for example, altered time budgets through increased time 

spent foraging (Giles 1983; Barber et al. 1995), and alterations in diet composition 

compared with non-infected individuals (Milinski 1984). Moreover, in other animals 

infected with gill parasites, shifts in heart rate and oxygen consumption have been 

recorded (Schuwerack et al. 2001), along with reduced haemoglobin levels (Montero 

et al. 2004), which impact swimming efficacy (Duthie and Hughes 1987) and the 

ability to maintain normal intestinal function while swimming (Thorarensen et al. 

1993). In other Ergasilid parasites, gill damage also results in respiratory 

dysfunction, osmoregulatory failure, and haematological disruption (e.g. Hogans 

1989; Abdelhalim et al. 1991; Alston and Lewis 1994; Dezfuli et al. 2003). 

Consequently, it is speculated that the infected fishes in this study increased their 

predation of prey that were highly abundant and/ or relatively slow moving, and thus 

required relatively low energy expenditure to capture and handle during foraging, as 

a consequence of some energetic costs associated with infection that were not 

quantified experimentally and thus require further investigation.   
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 Where there are sufficient numbers of predators focusing on specific prey items then 

this predation pressure can impact these prey populations. Although items such as 

chironomid larvae tend to ubiquitous and numerous in freshwaters (Cranston et al. 

1995), increased predation pressure by infected fishes could result in reduced 

abundances, potentially invoking cascading effects, particularly if the infected 

individuals have to increase their food intake to maintain their condition. This is 

because parasitism can significantly increase predation pressure on prey populations 

with, for example, Gammarus pulex infected with the acanthocephalan parasite 

Echinorhynchus truttae consuming significantly more Asellus aquaticus than 

uninfected conspecifics, enabling them to maintain their condition despite the 

infection (Dick et al. 2010). For predator populations containing infected individuals, 

whilst specialisation may be beneficial at the population level as it appears to 

facilitate the survival of infected individuals despite the pathological impacts 

incurred (Lomnicki 1988), the sub-set of specialised individuals might be at greater 

risk from external pressures (Durell 2000). For example, the increased time spent 

foraging and/ or the utilisation of different habitats to preferentially forage on 

specific prey items, allied with the potential for their anti-predator behaviours being 

modified, might result in increased predation risk (Lafferty, 1999; Barber et al. 2000; 

Ward et al. 2002). Indeed, when infected with Schistocephalus solidus, three-spined 

stickleback Gasterosteus aculeatus spend more time foraging as a compensatory 

mechanism (Giles, 1987), resulting in a trade-off with anti-predator behaviours 

(Giles, 1983), and thus incurring a greater likelihood of being predated by a 

piscivorous bird (Milinski, 1985). Similarly, infected banded killifish Fundulus 

diaphanous are more likely to occupy the front of shoals, a position that optimises 
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feeding opportunities but also carries the greatest risk of predation (Ward et al. 

2002).   

  

The focal parasite of this study, E. briani, is an introduced parasite to the UK, 

arriving as a consequence of fish being moved within aquaculture and fisheries 

(Fryer and Andrews, 1983). It thus represents a parasite that was successfully 

introduced into the UK, despite such movements often resulting in non-native 

parasites failing to establish through, for example, enemy release (Sheath et al. 

2015). The consequences of introduced parasites within native communities can be 

varied, but can result in disease outbreaks resulting in high fish losses. For example, 

the rosette agent Sphareothecum destruens, spread via the invasive topmouth 

gudgeon Pseudorasbora parva, can cause high mortality rates in naïve fishes 

(Andreou et al. 2012) and the impact of the introduced parasitic crustacean 

Gyrodactylus salaris in Norway was the collapse of wild salmon populations in 45 

Norwegian rivers (Peeler and Thrush 2004) with an economic cost the in excess of 

US $500,000,000 (Hansen et al. 2003). Whilst the impact of E. briani here was much 

less dramatic, our outputs suggested that ecological alterations did occur as a 

potential cost of infection, with modification of host diet composition that 

constricted the trophic niche of the host component of the population.  

 

Studies on trophic niche specialisation have identified a range of causal factors, 

particularly inter- and intra-specific competitive processes, predation pressure and 

impact and the exploitation of new ecological opportunities (Araujo et al. 2011). The 

role of parasitism in trophic niche specialisation has, conversely, received very little 

attention. Consequently, our findings that the trophic niches of individuals infected 
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with E. briani were consistently constricted and specialised across five fish 

populations are important. They strongly suggest that the host consequences of 

infection, including pathological impacts, could also be an important driver of niche 

constriction that has been largely overlooked and thus should be incorporated into 

future studies on the ecological drivers of trophic niche specialisation. They also 

suggest infection could have some consequences for food web structure (Chapters 5 

and 6). 
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3. Temporal changes in growth, condition and trophic niche in 

juvenile Cyprinus carpio infected with a non-native parasite  

 

This chapter is based on the published article which is presented in Appendix 6: 

Pegg, J., Andreou, D., Williams, C. F. and Britton, J. R., 2015. Temporal changes in 

growth, condition and trophic niche in juvenile Cyprinus carpio infected with a non-

native parasite. Parasitology. doi:10.1017/S0031182015001237 
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3.1 Abstract 

In host-parasite relationships, parasite prevalence and abundance can vary over time, 

potentially impacting how hosts are affected by infection. Here, the pathology, 

growth, condition and diet of a juvenile Cyprinus carpio cohort infected with the 

non-native cestode Bothriocephalus acheilognathi was measured in October 2012 

(end of their first summer of their life), April 2013 (end of first winter) and October 

2013 (end of second summer). Pathology revealed consistent impacts, including 

severe compression and architectural modification of the intestine. At the end of the 

first summer, there was no difference in lengths and condition of the infected and 

uninfected fish. However, at the end of the winter period, the condition of infected 

fish was significantly reduced and by the end of their second summer, the infected 

fish were significantly smaller and remained in significantly reduced condition. 

Their diets were significantly different over time; infected fish consumed 

significantly higher proportions of food items <53 μm than uninfected individuals, a 

likely consequence of impaired functional traits due to infection. Thus, the sub-lethal 

impacts of this parasite, namely changes in histopathology, growth and trophic niche 

were dependent on time and/or age of the fish. 

 

3.2 Introduction 

Parasite infections often negatively impact the fitness of their hosts, can modulate 

the dynamics of host populations, and can have consequences for non-host 

populations through changes in the strength of interspecific competitive relationships 

(Power & Mitchell 2004). Host responses to infection include altering their life-

history traits prior to maturity when individuals allocate more resources to 

reproduction than growth and survival, as this ensures reproduction before resource 
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depletion and/or castration (Michalakis & Hochberg 1994; Agnew et al. 2000). This 

can affect their reproductive effort (Christe et al. 1996; Sorci et al. 1997) and body 

size (Arnott et al. 2000). Understanding these infection consequences for hosts at the 

individual level then enables understanding of infection impacts at the population 

and community levels (Pagan et al. 2008).  

 

In freshwaters, the opportunity for fish parasites to be moved between localities is 

high due to the introduction pathways of aquaculture, the ornamental fish trade and 

sport angling (Gozlan et al. 2010; Section 1.1). Bothriocephalus acheilognathi is a 

cestode that is originally from Asia (Xiang-Hua 2007) that has been introduced 

around the world through the global aquaculture trade in Asian grass carp 

Ctenopharyngodon idella and common carp Cyprinus carpio (Salgado-Maldonado 

& Pineda-López 2003). Whilst the parasite has a broad host range, having been 

recorded in over 200 fish species, pathological consequences appear to be more 

severe in fishes of the family Cyprinidae (Williams et al. 2011; Linder et al. 2012; 

Section 1.8). It has a complex lifecycle involving an intermediate copepod host and a 

definitive fish host (Linder et al. 2012) (Figure 1.2). While fish are normally infected 

by consuming infected copepods, there is some evidence that adult worms can 

additionally be transmitted directly to piscivorous fish that prey on infected fish 

(Hansen et al. 2007). Consequences for fish hosts include damage to the intestinal 

tract, loss of condition, impacts on foraging behaviours and mortality (Britton et al. 

2011), with high rates of mortality recorded in hatchery reared C. carpio (Scholz et 

al. 2011). Non-lethal consequences of B. acheilognathi infection also include 

changes in trophic ecology. For example, in a population of juvenile C. carpio, 

application of stable isotope analysis on infected and uninfected individuals 
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suggested infected fish were feeding on items lower in the food web, resulting in 

energetic consequences (Britton et al. 2011).  

  

To date, studies on the trophic ecology of fish infected with B. acheilognathi have 

focussed on single samples taken during a single growth season (e.g. Britton et al. 

2011). This provides limited knowledge on how their trophic niches vary seasonally 

and in relation to parasite prevalence and abundance, and how this affects metrics 

such as growth and condition over longer time periods. This is important, as for 

many host populations, parasite incidence varies seasonally due to factors including 

the interactions of shifts in the abundance of intermediate hosts, the feeding and/ or 

reproductive activities of final hosts, the reproductive activity of parasites, and the 

immune response to infection (Altizer et al. 2006). For example, seasonal changes in 

levels of B. achileognathi infections, stimulated by changes in water temperature, 

have been recorded in Gambusia affinis and Pimephales promelas (Granath & Esch 

1983; Riggs et al. 1987). Similar seasonal changes have been observed in other 

parasite/host systems, for example Öztürk and Altunel (2006) observed seasonal and 

annual changes in Dactylogyrus infections across four host species. In chub Squalius 

cephalus, higher condition factors and seasonal variations in gonado-somatic indices 

(GSI) were associated with decreased immune function and corresponding increases 

in parasite loads, suggesting differences in the seasonal energy allocation between 

immune function and somatic and/ or reproductive investment (Lamkova et al. 

2007).  

 

Given the recorded trophic consequences of B. acheilognathi infection for juvenile 

C. carpio (Britton et al. 2011), the aim of this study was to assess how their sub-
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lethal consequences of infection varied over a 12 month period through tracking a 

single cohort. The objectives were to: (i) quantify temporal changes in parasite 

prevalence, abundance, histopathology and the energetic consequences of infection 

of B. acheilognathi in juvenile C. carpio; and (ii) assess the temporal changes in the 

trophic ecology and diet of juvenile C. carpio infected and uninfected with B. 

acheilognathi through stable isotope analysis.  

 

3.3 Methods 

3.3.1 Sample collection and initial data collection 

The study population was located in the Greater London area of the UK and where 

B. acheilognathi had been recorded previously. The site was a small pond of 50 m 

length, 20 m width and maximum depth 1.5 m (Figure 3.1). The sampling 

programme covered two summer periods and an over-wintering period, with the 

initial sample collected in early October 2012 (end of the summer period and end of 

the 2012 growth season), April 2013 (end of the over-wintering period) and October 

2013 (end of the summer period and end of the 2013 growth season). The pond 

contained a mixed population of carp C. carpio, rudd Scardinius erythropthalmus, 

and perch Perca fluviatilis. Due to fishery management operations, the mature 

component of the C. carpio population was removed from the lake after spawning in 

2012, thus all remaining carp were young-of-the-year. Consequently, all fish 

captured in October 2012 were age 0+ and by October 2013 were 1+ years, i.e. the 

captured fish throughout the study were of the same cohort, with this verified by age 

analysis of their scales. 
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Figure 3.1 The study site, with the Greater London conurbation in the 

background. 

 

The fish were sampled using traps that had a circle alloy frame of length 107 cm, 

width and height 27.5 cm, mesh diameter 2 mm and with funnel shaped holes of 6.5 

cm diameter at either end to allow fish entry and hence their capture. They were each 

baited with 5 fishmeal pellets of 21 mm diameter were placed in the trap as an 

attractant (Dynamite Baits 2010). Alternative sampling methods were trialled 

initially (seine nets and electric fishing), but were unsuccessful due to the presence 

of underwater structures (nets) and heavy growth of Phragmites australis in the 

littoral zone (electric fishing). On each sampling occasion, 10 traps were set in the 

littoral zone at approximately 18.00 hours and lifted at 09.00 hours the next morning.  

After the traps were lifted, all the juvenile C. carpio were removed and transferred to 

water-filled containers and a random sub-sample of 25 individuals was taken and 

transported to the laboratory for processing. As the fish were sampled from a private 

fishery, the numbers were limited in order to minimise the impact on the future 
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angling stock, as agreed with the fishery managers. In April 2013 and October 2013, 

samples of the putative food resources of the fish were also taken, covering macro-

invertebrates (through kick sampling and sweep netting with a handnet of 0.25 mm 

mesh), zooplankton (through filtering 10 l of water through a net and filter of 250 

μm) and phytoplankton (filtering 10 l of water through a net and filter of 53 μm). For 

macro-invertebrates, triplicate samples were taken, where a sample represented 

between 5 and 20 individuals of that species. Putative food resource samples were 

not able to be collected in October 2012 due to logistical constraints. 

 

In the laboratory, all fish were euthanized (anaesthetic overdose; MS-222), with 

weight (W; to 0.01 g), and fork length (L; nearest mm) recorded. A detailed post-

mortem was then conducted on each individual for detecting the presence of 

infections of native and non-native parasites using a standard protocol adapted from 

Hoole et al. (2001; Appendix 1). Skin scrapes and internal organs were examined 

with aid of low and high power microscopy to enable parasite identification. The 

entire digestive tract was removed and examined under low power for detecting the 

presence of intestinal parasites, including B. acheilognathi. When B. acheilognathi 

was recorded, their abundance was recorded (by number, and mass to nearest 0.001 

g). Hereafter, where an individual C. carpio is referred to as either infected or non-

infected, it refers to the presence/absence of B. acheilognathi in that individual 

during this process. Intestinal tissue from infected and uninfected individuals was 

retained and prepared for histopathology.  

 

On completion of the post-mortem, a sample of dorsal muscle was taken from a 

proportion of the fish samples (sample sizes 6 to 15 per sub-set of fish per 
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population). These, and the macro-invertebrate, zooplankton and phytoplankton 

samples, were then dried at 60ºC to constant weight before being analysed for their 

stable isotopes of 
13

C and 
15

N at the Cornell Stable Isotope Laboratory (New York, 

USA) (Section 2.3.1). The initial stable isotope data outputs were in the format of 

delta (δ) isotope ratios expressed per mille (‰).  

 

3.3.2 Histopathology 

Histopathology of the intestinal tract was completed to assess the pathological 

changes associated with B. acheilognathi infection. Sections of intestine were 

sampled from infected as well as uninfected fish. These sections were fixed in 

Bouin’s fixative for 24 hours before transferring to 70% Industrial Methylated Spirit. 

The tissues were trimmed, dehydrated in alcohol series, cleared and then embedded 

in paraffin wax. Transverse and longitudinal sections of 3 µm were cut using a 

microtome and dried at 50°C. These sections were stained using Mayer's 

haematoxylin and eosin, and examined microscopically for pathological changes and 

described accordingly. 

 

3.3.3 Data analyses 

Infection levels of B. acheilognathi in C. carpio were described as their prevalence 

(number of infected individuals/total number of individuals  100) and abundance 

(number of B. acheilognathi per host). The mass of parasite was also expressed as a 

proportion of host weight to represent the parasite burden. The stable isotope data of 

C. carpio were used to assess their trophic niche size and predict their diet 

composition from the putative food resource data. Trophic niche size was calculated 

using the metric standard ellipse area (SEAc) in the SIAR package (Parnell et al. 
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2010) in R (R Core Development Team, 2013). SEAc is a bivariate measure of the 

distribution of individuals in trophic space, where each ellipse encloses ~ 40% of the 

data and thus represents the core dietary niche of species and so indicates their 

typical resource use (Jackson et al. 2011; Jackson et al. 2012). The subscript ‘c’ in 

SEAc indicated that a small sample size correction was used due to limited sample 

sizes (< 30). For each population of C. carpio on each survey date, SEAc was 

calculated for two sub-sets of individuals: those infected with B. acheilognathi and 

those uninfected, and the extent of the overlap of their niches determined (%).  

 

To then predict the diet composition of each sub-set of fish, their stable isotope data, 

plus those of their putative food resources, were applied to Bayesian mixing models 

that estimated the relative contribution of each putative food resource to the diet of 

each individual C. carpio (Moore & Semmens 2008). The models were run using the 

MixSIAR GUI package in the R computing programme (R Core Development Team 

2013; Stock & Semmens 2013). Given that excessive putative food resources can 

cause mixing models to underperform, the data for resources with similar isotope 

values were combined a priori, whilst respecting the taxon and functional affiliation 

of the individual species (Phillips et al. 2005). The groups used in the models were 

arthropods, zooplankton (i.e. samples captured in the net of mesh size 250 μm) and 

phytoplankton (i.e. samples captured in the net of mesh size 53 μm). Isotopic 

fractionation factors between resources and consumers in the models were 3.4 ‰ (± 

0.98 ‰) for 
15

N and 0.39 ‰ (± 1.3 ‰) for 
13

C (Post 2002). Outputs were the 

predicted proportion of each resource to host diet (0 to 1).  

 

 



59 
 

3.3.4 Statistical analyses 

For each fish species and population infected with B. acheilognathi, differences 

between the infected and uninfected hosts were tested using ANOVA  for length, and 

their stable isotopes of 
13

C and 
15

N. Condition was calculated as Fulton’s 

Condition Factor (K, 100  W/L
3
) where L was measured in cm, with differences 

between infected and uninfected fishes also tested using ANOVA. Differences 

between the predicted proportions of each putative food source to the diet of infected 

and uninfected fish were also tested using ANOVA. Other than the stable isotope 

mixing models, all analyses were completed in SPSS v. 22.0. In all analyses, the 

assumptions of normality of residuals and homoscedasticity were checked prior to 

use. Where error is expressed around the mean, it represents standard error. 

 

3.4 Results 

3.4.1 Parasite prevalence and abundance 

Across the three sampling periods, parasite prevalence remained relatively constant 

(61, 58 and 60 % in October 2012, April 2013 and October 2013, respectively; Table 

1). Parasite abundance was greatest in October 2012 (mean 10.7 ± 2.3) and lowest in 

April 2013 (mean 5.4 ± 1.5) (Table 3.1). Parasite abundance was significantly 

different between October 2012 and April 2013 (ANOVA: F1,45 = 9.38, P < 0.01) but 

not between April 2013 and October 2013 (ANOVA: F1,45 = 1.22, P > 0.05), and 

October 2012 and October 2013 (ANOVA: F1,45 = 4.05, P > 0.05). Mean parasite 

burden was greatest in October 2012 (3.9 ± 0.8 %) and lowest in October 2013 (1.7 

± 0.5 %). There was a significant difference between the parasite burden in October 

2012 and October 2013 (ANOVA: F1,45 = 5.85, P < 0.05), but not between October 

2012 and April 2013 (ANOVA: F1,45 = 1.92, P > 0.05), and April 2013 and October 
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2013 (ANOVA: F1,45 = 0.22, P > 0.05) (Table 1). Of other parasites recorded, these 

were all native species that would be considered as the expected parasite fauna of 

these fishes in a UK community and were recorded at levels that were considered as 

not high enough to cause clinical pathology (Hoole et al. 2001).  
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Table 3.1 Prevalence and abundance of Bothriocephalus acheilognathi in Cyprinus carpio by sampling date 

Date n Prevalence (%) 

Mean abundance of 

parasites (± SE) 

Range  

Mean weight of parasite burden (percentage 

of hosts weight ± SE) 

Range 

(%) 

Oct 12 23 61 10.7 ± 2.3 0 - 35 3.9 ± 0.8 0 - 9.5 

Apr 13 24 58 3.4 ± 0.9 0 - 14 2.2 ± 0.9  0 - 19.4 

Oct 13 25 60 5.4 ± 1.5 0 - 26 1.7 ± 0.5 0 - 8.8 

 

 

 

 

  

6
1
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3.4.2 Histopathology 

Histopathological examinations revealed consistent pathological changes associated 

with B. acheilognathi infection. The presence of B. acheilognathi within the gut of 

infected carp was usually evident prior to dissection of the intestine, with the mass of 

pale tapeworms visible through the distended gut wall (Figure 3.2a). Dissection of 

the intestinal tract revealed attachment sites of B. acheilognathi within the anterior 

region of the tract with mass of proglottids filling a large proportion of the gut lumen 

(Figure 3.2b, c). Heavy infections caused near complete occlusion of the intestinal 

tract. Histopathological observations confirmed thinning and compression of the gut 

wall with displacement of internal organs, including the swim bladder (Figure 3.2c). 

During attachment, the scoleces of B. acheliognathi engulfed the intestinal folds, 

leading to marked compression of the epithelium (Figure 3.2d). At the point of 

attachment, the intestine was severely compressed, with loss of normal gut 

architecture, loss of epithelium and near exposure of the basement membrane (Figure 

3.2e, f). Infection was frequently accompanied by an increase in lymphocytes 

throughout the epithelium and lamina propria (Figure 3.2e) compared to uninfected 

fish. In very heavy infections, pressure exerted by the mass of parasites within the 

intestine caused thinning of the musculature and forced the gut wall against the 

inside of the body cavity (Figure 3.2f). 
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Figure 3.2  Pathology of Cyprinus carpio infected with Bothriocephalus 

acheilognathi.  

a) B. acheilognathi infection in juvenile common carp, with resulting pale distended 

intestine. b) Attachment of multiple B. acheilognathi within the intestine, many with 

mature proglottids. c) Transverse section through juvenile carp showing B. 

acheilognathi occupying the anterior intestine (*), with compression of the gut wall 

and displacement of internal organs, including the swim bladder. d) B. acheilognathi 

attachment site showing the scolex (*) pinching the gut wall and flattening of normal 

intestinal folds throughout infected regions of the gut. e) Pronounced compression of  

epithelium at the apex of scolex attachment, with loss of epithelium, thinning of 

8
9
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musculature and near exposure of the basement membrane (arrow)> Lymphocytes 

may be seen within the lamina propria f) Flattening of intestinal folds with epithelial 

erosion (arrow) as a consequence of pressure exerted by the body of tapeworms (*) 

within the intestine. 

 

3.4.3 Effect of infection on fish length and condition 

There was no significant difference in lengths of the uninfected and infected fish 

sampled in October 2012 and April 2013 (ANOVA: Oct 12: F1,21 = 1.04, P > 0.05; 

April 13: F1,22 = 2.31, P > 0.05; Fig. 3.3). In October 2013, however, the uninfected 

fish were significantly larger than infected fish (ANOVA: Oct 13: F1,23 = 14.38, P < 

0.01; Figure 3.3). Whilst there were no significant differences in the condition (K) of 

infected and uninfected C. carpio in October 2012 (ANOVA: F1,21 =0.00, P > 0.05), 

there was in April 2013 (ANOVA: F1,22 =11.68, P < 0.01) and this significant 

difference remained in October 2013 (ANOVA: F1,23 =6.57, P < 0.05) (Figure 3.4). 
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Figure 3.3 Length frequency histograms of infected (black) and uninfected 

(white) Cyprinus carpio, in: (a) October 2012, n = 23; (b) April 2013, n = 24; and (c) 

October 2013, n = 25.  

a 

c 

b 
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Figure 3.4 Fulton’s condition factor (K) of infected (black circles) and 

uninfected (white circles) Cyprinus carpio over the study period. Error bars represent 

standard error.  

 

3.4.4 Stable isotope metrics 

The mean values of 
13

C and 
15

N of the infected and uninfected fish were 

significantly different in April 2013 (ANOVA 
13

C: F1,22 =10.62, P < 0.01, 
15

N: 

F1,22 =10.94, P < 0.01) and October 2013 (ANOVA 
13

C: F1,23 =20.88, P < 0.01, 


15

N: F1,23 =21.77, P < 0.01) (Table 3.2). By contrast, in October 2012, only 
13

C 

was significantly different between the groups (ANOVA 
13

C: F1,21 =13.83, P < 

0.01, 
15

N: F1,21 = 3.39, P > 0.05) (Figure 4). In all cases where differences between 

the isotopes of the groups were significant, the infected fish had enriched 
15

N and 

depleted 
13

C. 
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Table 3.2 Sample size, mean lengths of sub-sampled fish and mean stable isotope data. 

Date Species n Mean length (mm) Mean δ
13

C (‰) Mean δ
15 

N (‰) 

 

Uninfected C. carpio 9 66.1 ± 3.32 -32.31 ± 0.59 17.79 ± 1.19 

Oct-12 Infected C. carpio 14 58.7 ± 4.57 -33.14 ± 0.48 18.60 ± 0.90 

 

Uninfected C. carpio 6 64.6 ± 1.92 -32.44 ± 0.67 18.00 ± 1.11 

Apr-13 Infected C. carpio 10 60.4 ± 1.91 -33.69 ± 0.78 19.61 ± 0.84 

 

Arthropoda  11 

 

-33.65 ± 1.39 13.42 ± 0.37 

 

Plankton < 250μm 3 

 

-36.54 ± 0.76 18.68 ± 1.24 

  Plankton > 250μm 3   -30.63 ± 1.25 17.42 ± 0.47 

 

Uninfected C. carpio 9 78.7 ± 2.84 -32.07 ± 0.94 17.93 ± 1.31 

Oct-13 Infected C. carpio 14 64.67 ± 2.35 -34.03 ± 1.12 20.02 ± 0.93 

 

Arthropoda  8 

 

-34.33 ± 0.99 10.13 ± 0.41 

 

Plankton < 250μm 2 

 

-36.37 ± 0.15 19.38 ± 0.74 

  Plankton > 250μm 2   -30.09 ± 0.97 17.16 ± 1.16 

6
7
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The outputs of the mixing models predicting the diet composition of the uninfected 

and infected fish revealed some significant differences between the two groups 

(Table 3). In both April and October 2013, infected fish were predicted to have a 

significantly higher proportion of plankton less than 250 μm in their diet compared 

with uninfected fish (mean 41  6% in April and 57  2% in October; ANOVA 

April: F1,22 = 863.33, P < 0.01, October: F1,23 =372.70, P < 0.01). Arthropoda were 

predicted to comprise a significantly higher proportion of the diets of uninfected fish 

on both sampling dates (mean 50  4% in April and 32  3% in October; ANOVA 

April: F1,22 = 874.04, P < 0.01, October: F1,23 = 173.33, P < 0.01). Plankton greater 

than 250 μm made up a smaller proportion of the diet of uninfected fish than infected 

fish in April (29  4% vs 33 6%; ANOVA F1,22 = 143.43, P < 0.01) and a larger 

proportion in October (45 2% vs 24 2%; ANOVA F1,23 = 448.76, P < 0.01) (Table 

3.3). 
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Table 3.3 Summary of the Bayesian mixing models outputs predicting the proportions of each major food item to the diet of infected and 

uninfected fish on each sample occasion, and the F value from ANOVA, where **P < 0.01. Values of the predicted proportions represent their 

mean and standard error. Sample sizes as Table 3.2 

    Modelled diet proportion (± SE) 

 

Date Food item Uninfected Infected F 

Apr-13 Arthropoda 0.50 ± 0.04 0.26 ± 0.04 874.0** 

 

Plankton < 250μm 0.21 ± 0.03 0.41 ± 0.06 863.3** 

  Plankton > 250μm 0.29 ± 0.04 0.33 ± 0.06 143.4** 

Oct-13 Arthropoda 0.32 ± 0.03 0.18 ± 0.02 173.3** 

 

Plankton < 250μm 0.23 ± 0.03 0.57 ± 0.02 372.7** 

  Plankton > 250μm 0.45 ± 0.02 0.24 ± 0.02 448.7** 

6
9
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Figure 3.5 Trophic niche width (as standard ellipse area, SEAc) of infected and 

uninfected Cyprinus carpio sampled in a) October 2012, b) April 2013 and c) 

October 2013. The black circles mark the infected individuals and the black line the 

SEAc of infected individuals. The white circles represent data from uninfected 

individuals and the grey line represents the SEAc of uninfected individuals. 
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3.5 Discussion 

Sampling of the juvenile fish over the 12 month period revealed that infection by B. 

acheilognathi resulted in the development of long-term pathological and ecological 

consequences. Although the hosts sampled at the end of their first summer revealed 

little difference in lengths and condition compared with their uninfected 

conspecifics, the outputs of stable isotope analysis revealed they already had a 

significantly different diet composition. The condition of infected fish was 

significantly reduced after their first winter and by the end of their second summer, 

they were significantly smaller than uninfected fish and remained in significantly 

reduced condition. The diet of these two sub-sets of fish also remained significantly 

different over this time.  

 

Other studies on B. acheilognathi have also suggested that infection causes a range 

of foraging consequences for hosts, including impairment of their ability to capture 

prey (Scott & Grizzle 1979; Britton et al. 2011; Britton et al. 2012; Scholz et al. 

2012). The shift towards foraging on less motile, more easily available food sources 

by hosts has also been observed in other parasitized populations. For example, the 

freshwater amphipod Gammarus roeseli infected with the acanthocephalan 

Polymorphus minutus (as an intermediate host) consumed equivalent numbers of 

dead isopods as uninfected conspecifics, but fewer live isopods (Medoc et al. 2011). 

In stickleback Gasterosteus aculeatus, parasitism by the cestode Schistocephalus 

solidus tends to lead to selection of smaller prey items (Barber et al. 1995). Shifts in 

host feeding behaviours arise through a variety of mechanisms; for example, 

parasites utilise energy reserves of their hosts, infection may increase metabolic costs 

or be associated with increases in energetically demanding immune functions 
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(Barber et al. 2000). Hosts infected with strongly debilitating parasites may also 

exhibit reduced activity levels that impact foraging behaviours (Britton et al. 2011; 

Britton 2013). Thus, infection consequences frequently manifest as changes in 

energy budgets expenditure and, subsequently, appetite, foraging and diet 

composition (Barber et al. 2000). Moreover, in fish populations, the frequency 

distribution of phenotypic trait values often follows a normal distribution, reflecting 

genotypic differences and environmental noise, but parasitic infection can shift the 

mean value of traits, increasing their variance at the population level (Poulin & 

Thomas 1999). This was apparent in the C. carpio of this study where the increase in 

the trophic niche size of the host population was related to it comprising two, almost 

discrete niches that corresponded with uninfected and infected carp.  

 

Over the study period, temporal changes were also detected in parasite burden. These 

tended to reduce over time, despite being sufficient to incur pathological and 

ecological consequences. Although this reduction might relate to the mortality of 

hosts with high parasite abundances, seasonal shifts in aspects of fish parasite 

infections are often apparent in temperate regions due to its influence on the 

behaviours, habitat utilisation and immune responses of potential hosts (Bromage et 

al. 2001; Bowden et al. 2007). Given these can vary between host species then 

parasite prevalence and abundance can show considerable variability across species 

within communities. For example, in reservoirs in North Carolina, USA, B. 

acheilognathi abundance was highest in fathead minnow Pimephales promelas and 

red shiner Notropis lutrensis in autumn, whereas it was highest in winter in mosquito 

fish Gambusia affinis (Riggs et al. 1987). For parasites whose transmission to final 

hosts is through trophic links, the phenology of intermediate hosts is also important, 
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with seasonal changes in copepod communities identified as a driver of the different 

infection levels of B. acheilognathi observed in fish host communities (Riggs et al. 

1987). Temporal and spatial changes in definitive host infection level that result 

from varying transmission success due to shifts in the dynamics of intermediate host 

populations have also been recorded across a range of fishes and their parasites 

(Amundsen et al. 2003; Jiménez-Garcia & Vidal-Martínez 2005). 

 

The divergence in the lengths of the infected and uninfected fish that developed over 

time has the potential to restrict host fitness, as in most fish species, maturation is 

associated with size and thus faster growing individuals will mature earlier in life 

(Scott 1962; Bagenal 1969; Ali & Wootton 1999). Furthermore, larger fish are more 

fecund, and thus contribute more to the population (Hislop 1988; Beldade et al. 

2012;). Whilst a reduction in growth associated with parasitism has been recorded in 

a variety of species, such as the rainbow smelt Osmerus mordax infected by 

protocephalid parasites (Sirois & Dodson 2000), and farmed and wild salmonids 

infected with sea lice (e.g. Lepeophtheirus salmonis) (Costello 2006), it is not the 

universal response to parasitism (Loot et al. 2001). Indeed, rapid growth aligned with 

parasitic castration in hosts is the response recorded in other cestode parasites, such 

as Ligula intestinalis (Thompson & Kavaliers 1994; Loot et al. 2001) and 

Schistocephalus solidus (Arnott et al. 2000; Barber et al. 2000). 

 

In summary, significant differences in the condition and body lengths of infected and 

uninfected populations developed over the course of the study, with histopathology 

revealing substantial local damage in the intestine of hosts. Analyses then revealed 

the diet composition of the infected fish was predicted to comprise of a significantly 
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higher proportion of smaller items (< 53 μm) than uninfected fish. Thus, it was 

demonstrated that in this cohort of juvenile C. carpio, sub-lethal impacts of 

parasitism included substantial histopathological consequences that resulted in 

significant growth and trophic impacts whose development could have been 

overlooked had the temporal context of the study been lacking. It is thus especially 

important to investigate the temporal influence of parasitism in any evaluation of 

potential parasite impacts on trophic niche and condition of the host. These outputs 

also suggest some modifications to food webs infected with B.acheilognathi, as their 

hosts forage on different prey taxa (Chapters 5 and 6).  
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4. Head morphology and piscivory of European eels, Anguilla 

anguilla, predict their probability of infection by the invasive 

parasite parasitic nematode Anguillicoloides crassus 

 

This chapter is based on the published article which is presented in Appendix 6: 

Pegg, J., Andreou, D., Williams, C. F. and Britton, J. R., 2015, Head morphology 

and piscivory of European eels, Anguilla anguilla, predict their probability of 

infection by the invasive parasitic nematode Anguillicoloides crassus. Freshwater 

Biology, 60: 1977–1987.  
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4.1 Abstract 

The morphology of animal body structures influences their function; intra-population 

plasticity in diet composition can occur where head morphology limits gape size. 

The European eel, Anguilla anguilla, a critically endangered catadromous fish, 

shows significant intra-population variations in head width, with broader-headed 

individuals being more piscivorous. Infection of eels during their freshwater phase 

by Anguillicoloides crassus, an invasive nematode parasite, involves paratenic fish 

hosts. Here, the relationship between their infection status and head functional 

morphology (as head width/total length ratio; HW:TL) was tested across three 

populations and the proportion of fish in diet (estimated by stable isotope mixing 

models) across three populations.  

 

In all populations the extent of piscivory in the diets of individual eels increased 

significantly as their HW:TL ratios increased. There were no significant differences 

between infected and uninfected eels in their total lengths and hepatic-somatic 

indices. However, the HW:TL ratios of infected eels were significantly higher than 

those of uninfected eels and, correspondingly, their diet comprised a higher 

proportion of fish. Logistic regression revealed head morphology and diet were 

significant predictors of infection status, with models correctly assigning up to 78 % 

of eels to their infection status. Thus, eel head functional morphology significantly 

influenced their probability of being infected by invasive A. crassus, most likely 

through increased exposure to fish paratenic hosts. Accordingly, the detrimental 

consequences of infections are likely to be focused on those individuals in 

freshwater populations whose functional morphology enables greater specialisation 

in piscivory. 
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4.2 Introduction 

Phenotypic differences in morphology, physiology and behaviour are frequently 

observed between parasitized and non-parasitized individuals (Lafferty 1999; Krist 

2000; Miura et al. 2006). Although often considered in the context of parasite-

induced changes to the host post-infection (Blanchet et al. 2009), some traits 

increase the susceptibility of individuals to infection, resulting in a small number of 

hosts harbouring the majority of parasites (Viljoen et al. 2011). These traits include 

host body size, where increased size favours the development of larger parasite loads 

(Lindenfors et al. 2007); social behaviours, where increased social interactions 

increase parasite transmission (Viljoen et al. 2011); and sex, as oestrogens can 

stimulate immunity whereas testosterone can act as an immuno-suppressant (Folstad 

and Karter 1992), so that males often have higher parasite loads (Schalk and Forbes 

1997; Moore and Wilson 2002). Functional traits that enable the development of 

specialized feeding behaviours in individuals can also increase the risk of infection 

by trophically transmitted parasites through increased exposure to intermediate hosts 

(Bolnick et al. 2003). For example, different feeding specializations of individuals 

within Arctic charr (Salvelinus alpinus) populations result in aggregations of 

helminth parasites in those individuals that persistently forage on the pelagic 

copepods that act as intermediate hosts (Knudsen et al.2004).  

 

Paratenic hosts can play important roles in the transmission of trophically 

transmitted parasites (Ewald 1995; Galaktionov 1996), as they increase parasite 

fitness and ensure that larvae that would otherwise be ‘lost’ in unsuitable hosts are 

recovered (Morand et al. 1995). They can assist transmission when obligate 

intermediate hosts are not represented strongly in the diet of final hosts (Medoc et al. 
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2011; Benesh et al. 2014; Moehl et al. 2009), and thus facilitate parasite transfer 

along food chains and across trophic levels (Marcogliese 2007). For example, Alaria 

trematode parasites, whose obligate amphibian intermediate hosts are rarely 

consumed by their canine final host, also have mammalian and bird paratenic hosts 

that substantially increase their transmission rates (Moehl et al. 2009). Paratenic 

hosts also increase the time over which potential hosts are vulnerable to infection. 

For example, because the obligate intermediate hosts of Bothriocephalus barbatus 

and Bothriocephalus gregarious are copepods, their flatfish final hosts are 

vulnerable to infection during their planktonic juvenile stages (Robert et al. 1988). 

However, as B. gregarious also has a gobiid fish paratenic host, the predaceous adult 

stages of potential hosts continue to be exposed to the parasite, resulting in higher 

prevalence rates than for B. barbatus (Robert et al. 1988; Morand et al. 1995).  

 

The nematode parasite Anguillicoloides crassus was introduced from Asia into 

Europe in the 1980s, where it infects the freshwater lifestages of the European eel, A. 

anguilla, (Kirk 2003), now a critically-endangered species (Jacoby and Gollock 

2014). A number of factors have been suggested as contributing to the decline of 

European eel populations, including A. crassus infections as these affect swim-

bladder function (Lefebvre et al. 2013). This parasite has a complex life cycle; in the 

native range, infection of Japanese eel is via ingestion of crustacean intermediate 

hosts (Nagasawa at al. 1994), but in Europe a wide range of species, primarily fishes, 

also act as paratenic hosts (Szekely 1994; Kennedy 2007). Although not evident in 

the native range (Thomas and Ollevier 1992), studies suggest that the consumption 

of paratenic fish hosts has contributed to increased transmission rates and prevalence 
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in A. anguilla (Szekely 1994; Sures and Streit 2001; Kirk 2003; Knopf and Mahnke 

2004).  

 

Within populations, A. anguilla exhibits considerable variation in head width, with 

‘broad-headed individuals’ and ‘narrow-headed individuals’ (Lammens and Visser 

1989; Proman and Reynolds 2000; Tesch 1977; Tesch 2003), although a recent study 

suggests that there is continuous morphological variation rather than a dichotomy 

(Cucherousset et al. 2011). As with other species where head morphology limits 

energy acquisition (Smith and Skulason 1996; Bulte, Irschick and Blouin-Demers 

2008), these differences in head morphology have been related to individual 

specialisation, with broader-headed A. anguilla individuals being more piscivorous 

(Cucherousset et al. 2011). This chapter investigated how A. anguilla head 

morphology, diet and trophic ecology influence the infection status and parasite load 

with A. crassus over three river populations. It was predicted that variation in the 

functional head morphology of A. anguilla leads to significant differences in 

individual diet composition and trophic niche, significantly influencing the 

probability of infection by A. crassus in broader-headed individuals through their 

increased parasite exposure via fish paratenic hosts.  
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4.3 Methods 

4.3.1 Sample collection and initial data collection 

The three study sites were all lowland rivers in England where A. anguilla was 

known to be infected with A. crassus, and the eel population was abundant and thus 

destructive sampling would not be detrimental to their status. The sites were the 

River Huntspill (Site 1; 8 to 12 m width, maximum depth 3 m; Lat: 51.198440N 

Long: 2.993181W), the St. Ives Chub stream (Site 2; 4 to 8 m width, maximum 

depth 1.5 m; 52.331143N Long: 0.061219E), and a side channel of the River Frome 

(Site 3; 4 to 8 m width, maximum depth 1.5 m; Lat: 50.679668N Long: 2.181917W). 

 

Figure 4.1 River Huntspill study site: a typical section showing the river’s 

uniform channel. 
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Figure 4.2 The survey site on the St Ives chub stream. 
 

 

Figure 4.3 The study section of the River Frome (Photograph by Phil Williams). 
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Sampling was completed in August 2013 (Sites 1 and 2) and August 2014 (Site 3), 

and methods were dependent on site characteristics. At Site 1, a series of fyke nets 

(6.5mm mesh, 50cm D front hoop, 3m leader) was placed across the width of the 

river and all captured eels removed after 24 hours. At Sites 2 and 3, sampling was by 

electric fishing, using a back-mounted Smith-Root LR-24 Backpack (50 MHz pulsed 

DC at approximately 2 Amps). At all sites, silver eels (sexually mature, pre-

spawning eels) were returned without processing. Yellow eels were retained in 

water-filled containers and a maximum of 24 individuals were selected randomly 

and taken back to the laboratory for processing. This sample size avoided removal 

from small river populations of excessive numbers of a critically endangered apex 

predator. Samples of putative food items were also collected from each site, 

including samples of small prey fishes (Phoxinus phoxinus, Cottus gobio and 

Gymnocephalus cernua, presence dependent on site, maximum 10 individuals per 

species) and macro-invertebrates, collected using a combination of electric fishing, 

kick-sampling with a hand net of 6 mm mesh and a 40 m micro-mesh seine net. 

Triplicate samples were taken of each macro-invertebrate species where possible. 

Thus, these samples comprised either a single individual (fish) or were pooled 

samples of single species (macro-invertebrates; n = 5 to 20 individuals per sample).  

 

In the laboratory, all fish were euthanized through an anaesthetic overdose (MS-

222), with weight, total length and head width of the eels measured (Cucherousset et 

al. 2011). A detailed post-mortem was then conducted on the eels and other fishes 

using a standard protocol (Hoole et al. 2001; Appendix 1) to detect infections by 

native and non-native parasites. Skin scrapes and internal organs were examined 

with the aid of low and high power microscopy to enable parasite identification. Eel 
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swim bladders were removed and the numbers of male, female and juvenile A. 

crassus counted. As A. crassus exhibits marked sexual dimorphism, with females at 

least 10 times larger than males and it is the female parasites that primarily cause the 

gross pathological damage of the swim bladder (Figure 4.4; Lefebvre et al. 2013), 

only counts of the large, female nematodes were used in subsequent analyses as the 

measure of parasite abundance. These female parasites were also the dominant form 

of A. crassus encountered in the swim bladders. In addition, as the lifecycle of the 

parasite is relatively short (a few months) compared with the duration of the 

freshwater life phase of eels (minimum 3 years), then the absence of A. crassus at 

post-mortem does not preclude that an eel has been repeatedly infected and severely 

affected in the past. Consequently, uninfected eels were identified by both an 

absence of A. crassus in combination with a swimbladder wall of transparent-

yellowish colouration (i.e. undamaged, indicating no previous infection), as per 

Lefebvre et al. (2002). The liver was also removed and weighed, and a sample of 

dorsal muscle taken for stable isotope analysis. The muscle samples, along with 

samples from other fishes and the putative food resources, were then oven dried at 

60ºC until they achieved constant weight, before processing and analysis at the 

Cornell Isotope Laboratory New York, USA. Note that due to financial constraints, 

only 60 of the 86 eels were analysed. The initial stable isotope data were in the 

format of delta (δ) isotope ratios expressed per mille (‰).  
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Figure 4.4 Adult female Anguillicoides crassus in a swim bladder. The white 

patches on the parasite’s body are gonads. (Photograph by Chris Williams, 

Environment Agency). 

 

4.3.2 Data analysis 

Infection levels of A. crassus in A. anguilla were described as their prevalence 

(number of infected individuals/total number of female A. crassus x 100) and 

abundance (number of mature female A. crassus per eel). Hereafter, where an A. 

anguilla individual is referred to as either infected or non-infected, it refers to the 

presence/ absence of A. crassus in that individual during the post-mortem. Ratios of 

head width to total length (HW:TL) in the A. anguilla populations were determined 

(Proman and Reynolds 2000), and were used as a morphological index 

(Cucherousset et al. 2011). To standardise HW:TL ratios across the sites, their values 

within each site were expressed as their standardized residual values from their 
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population mean. Hepato-somatic index (HSI), a measure of energy storage, was 

then calculated for each individual A. anguilla using the formula: HSI = liver weight 

(g)/ total bodyweight (g). Note this could not be completed for A. anguilla from Site 

3. 

 

Anguilla anguilla diet composition and trophic niche size was investigated at each 

site using the stable isotope data. Diet composition was assessed using Bayesian 

mixing models that estimated the relative contribution of each putative food resource 

to the diet of each individual A. anguilla per site (Moore and Semmens 2008). The 

models were run using the MixSIAR GUI package in the R computing programme 

(Stock and Semmens 2013; R Development Core Team 2013). Given that excessive 

putative food resources can cause mixing models to underperform, the data for 

resources with similar isotope values were combined a priori, whilst respecting the 

taxon and functional affiliation of the individual species, as per Phillips et al. (2005). 

Accordingly, models at each site always included ‘prey fishes’. At Site 1, they also 

included one macro-invertebrate group, ‘Arthropoda’ (Gammarus pulex, 

Hydropsychidae and Simuliidae spp.). At Site 2, differences in stable isotope data 

within the Arthropoda enabled inclusion of two groups in the mixing model (1: 

Gammarus pulex and Asellus aquaticus, 2: other Arthropoda), and at Site 3, two 

groups of Arthropoda (as Site 2), plus Lymnaea sp. Isotopic fractionation factors 

between resources and consumers in the models were 3.4 ‰ (± 0.98 ‰) for 
15

N and 

0.39 ‰ (± 1.3 ‰) for 
13

C (Post 2002). Outputs were the predicted proportion of 

each resource to eel diet (0 to 1), with the predicted proportion of fish used as a 

measure of the extent of piscivory in each individual A. anguilla. The stable isotope 

data were then used to calculate the standard ellipse area (SEAc) for the infected and 
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uninfected eels at each site using the SIAR package (Parnell et al. 2010) in the R 

computing program (R Development Core Team 2013) (as per Section 2.3.3).  

 

4.3.3 Statistical analysis 

Differences in δ
13

C and δ
15

N between infected and uninfected A. anguilla at each 

site were tested using generalized linear models (GLM); the stable isotope data were 

dependent variables and infection status was the independent variable. The effect of 

total A. anguilla length was included in initial models but removed if its effect was 

not significant. In subsequent analyses, as the data used were standard for all sites, 

they were combined and used in linear mixed models. In all cases, to correct for the 

inflated number of residual degrees of freedom that would have occurred in the 

model if the data of individual A. anguilla were used as true replicates, models were 

fitted with site as a random effect on the intercept. Thus, the model testing for 

difference in A. anguilla weight according to A. crassus infection used weight as the 

dependent variable, infection status as the independent variable, site as the random 

effect and total length as the covariate (Garcia-Berthou 2001). The significance of 

the difference in weight between the groups was determined by pairwise 

comparisons of estimated marginal means, adjusted for multiple comparisons 

(Bonferroni). Differences in hepatic-somatic index, mean HW:TL ratios, total 

lengths and the extent of piscivory in diet between infected and uninfected A. 

anguilla were then tested using the same model structure, but without length as a 

covariate. Finally, the effect of HW:TL ratios on the extent of piscivory in eel diet 

was tested across the sites using linear regression. 
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As infection status was binomial (0 = uninfected, 1 = infected), binary logistic 

regression was used to build probability of infection (PoI) models that determined 

PoI from the data of each individual eel on their (i) HW:TL ratio, and (ii) estimated 

proportion of fish in their diet, using equation 1: e
(a+bx)

/ 1+e
(a+bx)

, where a and b were 

the regression coefficients, and x either HW:TL ratio or proportion of fish in diet. A 

final PoI model used both HW:TL ratios and estimated proportion of fish in their 

diet (D) in equation 2: e
(a+bHW:TL+cD)

 / 1+ e
(a+bHW:TL+cD)

, where a, b and c were the 

regression coefficients. Predicted group membership and its probability (infected or 

uninfected) were stored as model outputs, with differences in probabilities tested 

between groups using Mann Whitney U tests. Predicted group membership was 

compared with the actual data set and expressed as the proportion that were correctly 

assigned.  

 

The relationships of parasite abundance (as number of mature female A. crassus) 

with total length, body mass, hepatic-somatic index, HW:TL ratios and extent of 

piscivory were then tested in two ways. Firstly, the abundances were grouped by the 

number of mature female parasites present in the swim bladder, where low = 1 to 3 

parasites, medium = 4 to 6 and high > 7. These groups were then used in linear 

mixed models using the same model structures as already described for infected and 

uninfected eels. The abundance data were then used as the continuous variable in 

multiple regression, where total length, body mass, hepatic-somatic index, HW:TL 

ratios and extent of piscivory were used as explanatory variables. Outputs were 

assessed according to the values of the standardised β coefficients (higher values 

indicate a greater contribution to the variance of the data) and the significance of the 

explanatory variables.  
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Other than the stable isotope mixing models, all analyses were completed in SPSS v. 

21.0. In all analyses, the assumptions of normality of residuals and homoscedasticity 

were checked, and response variables were log-transformed to meet the assumption 

if necessary.  

 

4.4 Results 

Across the three A. anguilla populations, prevalence of A. crassus ranged between 

58 and 70 % per population, with abundance between 1 and 13 mature female 

parasites per infected individual (Table 4.1). Of the 86 eels sampled across all the 

sites, 54 were infected with A. crassus (63 %). Nine native parasites were also 

recorded on the eels across the sites, all at minor levels of infection, and thus were 

considered inconsequential (Hoole et al. 2001). Gymnocephalus cernua was 

recorded as a paratenic host of A. crassus at Sites 1 and 2. The application of stable 

isotope mixing models to the stable isotope data (Table 4.2) revealed a significant 

increase in the proportion of fish in diet as HW:TL ratio increased (R
2
 = 0.28, F1,58 = 

4.82, P = 0.03; Figure 4.4). 

 

Table 4.1 Prevalence and abundance of Anguillicoloides crassus in the Anguilla 

anguilla populations 

Site n Prevalence 

(%) 

Mean abundance of female parasites  

(± SE) 

Range  

 

1 30 70  2.61 ± 0.52 0 - 8 

2 30 63 2.05 ±0.54 0 - 5 

3 26 58  2.66 ± 0.70  0 - 13 
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Table 4.2 Sample sizes and mean total lengths, and 
13

C and 
15

N, of infected 

and uninfected Anguilla anguilla at each site, plus the mean 
13

C and 
15

N values of 

their putative food resources used in mixing models. Error around the mean is 

standard error. 

 

Site Species n Mean 

length (mm) 

Mean δ
13

C 

(‰) 

Mean δ
15

N 

(‰) 

1 Infected A. anguilla 9 467 ± 73 -31.14 ± 0.29 21.48 ± 0.23 

 Uninfected A. anguilla 9 460 ± 81 -32.28 ± 0.36 20.54 ± 0.74 

 Prey fishes   -32.33 ± 0.10 22.72 ± 0.66 

 Arthropoda   -30.66 ± 0.18 19.88 ± 0.22 

2 Infected A. anguilla 10 422 ± 143 -29.22 ± 0.16 21.00 ± 0.28 

 Uninfected A. anguilla 9 433 ± 152 -30.27 ± 0.41 20.68 ± 0.21 

 Prey fishes   -29.93 ± 0.30 20.00 ± 0.45 

 Arthropoda 1   -31.61 ± 0.43 14.94 ± 0.14  

 Arthropoda 2   -31.62 ± 0.13 16.33 ± 0.17 

3 Infected A. anguilla 9 363 ± 86 -30.18 ± 0.53 13.65 ± 0.20 

 Uninfected A. anguilla 14 321 ± 102 -29.48 ± 0.28 13.06 ± 0.08 

 Prey fish   -30.53 ± 0.31 12.30 ± 0.24 

 Arthropoda 1   -32.44 ± 0.09 8.34 ± 0.18 

 Arthropoda 2   -29.92 ± 0.33 8.72 ± 0.23 

 Lymnaea   -21.96 ± 0.11 7.73 ± 0.01 
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Figure 4.5 Relationship between head width and total length (HW:TL) ratio and 

estimated extent of piscivory in the diet of Anguilla anguilla in all sites (×), where 

the solid line represents the significant relationship between the variables according 

to linear regression, and for Sites 1 to 3 according to their infection status by 

Anguillicoloides crassus (infected: ●; uninfected: ○).  

 

Differences in the stable isotope values for infected and uninfected A. anguilla were 

significant for δ
13

C from Sites 1 and 2 (GLM: Site 1: Wald 
2
 = 6.84, mean 

difference 1.14 ± 0.30 ‰, P < 0.01; Site 2: Wald 
2
 = 6.13, mean difference 1.05 ± 

0.42 ‰, P < 0.01) and for δ
15

N from Site 3 (GLM: Wald 
2
 = 8.49, mean difference 

0.59 ± 0.21 ‰, P < 0.01) (Table 4.2; Fig. 4.5). Across all sites, infected eels had 

significantly larger HW:TL ratios and higher estimated proportions of fish in their 
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diet compared with uninfected eels (P < 0.01; Table 4.3, 4.4; Fig. 4.5). There were, 

however, no significant differences between infected and uninfected eels in their 

total lengths, body mass and hepatic somatic index (P > 0.05; Table 4.4). Trophic 

niche size, as SEAc, was higher in infected A. anguilla than uninfected A. anguilla 

from Site 1 (3.11 vs. 2.61 ‰
2
) and 3 (3.10 vs. 1.10 ‰

2
), with the converse for Site 2 

(2.65 vs. 1.63 ‰
2
). The amount of overlap in the trophic niches of the uninfected and 

infected A. anguilla was relatively low, with infected A. anguilla sharing 34.8, 15.4 

and 9.2 % of trophic niche space with uninfected A. anguilla in Sites 1, 2 and 3 

respectively (Fig. 4.6).  

 

Table 4.3 Mean head width/ total length ratios (HW:TL) and mean proportion 

of fish in the diet of Anguilla anguilla uninfected and infected with Anguillicoloides 

crassus in the three study sites. Error around the mean is standard error. 

Site A. anguilla infection status HW:TL  Proportion of fish in diet 

1 Uninfected 0.042 ± 0.002 0.31 ± 0.05 

 Infected 0.049 ± 0.001 0.61 ± 0.06 

2 Uninfected 0.044 ± 0.002 0.53 ± 0.04 

 Infected 0.048 ± 0.001 0.69 ± 0.02 

3 Uninfected 0.046 ± 0.001 0.45 ± 0.01 

 Infected 0.049 ± 0.001 0.58 ± 0.01 
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Table 4.4 Outputs of linear mixed models testing the significance of (a) 

Anguilla anguilla total length, (b) A. anguilla body mass, (c) hepatic-somatic index 

(HSI), (d) standardised ratio of head width to total length, and (e) extent of piscivory 

in diet on the infection status of A. anguilla from three populations. Site was the 

random effect on the y intercept. 

 

(a) Infection status ~ total length: AIC = 721.0; log likelihood = 717.0 

Pairwise comparison Mean difference (estimated marginal means) 

Infected vs. uninfected 11.2 ± 28.1 mm, P > 0.05 

(b) Infection status ~ body mass: AIC = 634.7; log likelihood = 630.7 

Pairwise comparison Mean difference (estimated marginal means) 

Infected vs. uninfected 1.5 ± 13.1 g, P > 0.05  

(c) Infection status ~ HSI: AIC = -138.6; log likelihood = -142.6 

Pairwise comparison Mean difference (estimated marginal means) 

Infected vs. uninfected 0.01 ± 0.01, P > 0.05 

(d) Model: Infection status ~ HW:TL: AIC = -447.1; log likelihood = -451.1  

Pairwise comparison Mean difference (estimated marginal means) 

Infected vs. uninfected 0.002 ± 0.001, P = 0.003 

(e) Model: Infection status ~ Extent of piscivory: AIC = -57.8; log likelihood = -61.8.  

Pairwise comparison Mean difference (estimated marginal means) 

Infected vs. uninfected 0.18 ± 0.04, P < 0.001 
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Figure 4.6 Stable isotope bi-plots of infected (●) and uninfected Anguilla 

anguilla (○) at each site. Black ellipses represent the trophic niche size (as standard 

ellipse area) of infected eels and grey ellipses represent those of uninfected eel. Note 

different X and Y axes values for the sites.  
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The binary logistic regression models were all significant, revealing both HW:TL 

ratios and the extent of piscivory had significant effects on A. crassus infection 

(Table 4.5). Comparison of predicted group membership revealed that HW:TL ratio 

correctly assigned 72 % of A. anguilla to their observed infection status, HW:TL 

ratio and extent of piscivory correctly assigned 76 %, and extent of piscivory 78 %. 

In the latter model, the difference in the mean probability of infection between 

uninfected and infected A. anguilla was significant (uninfected: 0.34 ± 0.05; 

infected: 0.71 ± 0.04; Mann Whitney U test Z = -4.72, P < 0.01) (Table 4.5).  
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Table 4.5 Binary logistic regression coefficients (Equation 1) and their 

statistical significance for the probability of infection of Anguilla anguilla by 

Anguillicoloides crassus according to (a) ratio of head width to total length 

(HW:TL), (b) predicted proportion of fish in A. anguilla diet and (c) both variables. 

(a) 

Parameter Symbol in equation 1 Coefficient Standard error P 

Constant a 0.15 0.28 0.58 

HW:TL x 176.10 7.37 <0.01 

 

(b) 

Parameter Symbol in equation 1 Coefficient Standard error P 

Constant a -8.49 2.47 <0.01 

Diet  x 18.61  .33 <0.01 

 

(c) 

Parameter Symbol in equation 2 Coefficient Standard error P 

Constant a -8.50 2.60 <0.01 

HW:TL b 169.85 81.57 0.03 

Diet  c 18.57 5.54 <0.01 
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The linear mixed models testing the significance of differences in biometrics 

according to light, medium and heavy A. crassus infections across the 32 infected A. 

anguilla revealed some significant differences in lengths between these groups 

(Table 4.6). However, there were no significant differences in HW:TL ratios, extent 

of piscivory in diet, hepatic-somatic index and weight (Table 6), where the effect of 

length as a covariate was significant in the latter model (P < 0.01). When these 

variables were used in a multiple regression with parasite abundance used as a 

continuous variable, the overall model was not significant (R
2
 = 0.17; F4,27 = 1.19, P 

> 0.05), and none of the variables had significant effects on parasite abundance (P > 

0.05 in all cases). Total length had the highest standardised β coefficient (β = 0.39, P 

> 0.05) 
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Table 4.6 Outputs of linear mixed models testing the significance of 

Anguillicoloides crassus abundance (low, medium, heavy infections) on (a) total 

length, (b) body mass, (c) hepatic-somatic index (HSI), (d) standardised ratios of 

head width to total length and (e) extent of piscivory. Site was the random effect on 

the y intercept. 

 

(a) Parasite abundance ~ total length: AIC = 355.5; log likelihood = 351.5, P = 0.01 

Pairwise comparison Mean difference (estimated marginal means) 

Low/ medium 121.9 ± 37.7 mm, P = 0.01 

Low/ high 87.8 ± 45.6 mm, P > 0.05  

Medium/ high 34.0 ± 46.0 mm, P > 0.05 

(b) Parasite abundance ~ body mass: AIC = 315.2; log likelihood = 311.2, P > 0.05 

Pairwise comparison Mean difference (estimated marginal means) 

Low/ medium 15.3 ± 21.1 g, P > 0.05 

Low/ high 7.9 ± 23.5 g, P > 0.05 

Medium/ high 7.4 ± 22.0 g, P > 0.05 

(c) Parasite abundance ~ HSI: AIC = -102.9; log likelihood = -106.9, P > 0.05 

Pairwise comparison Mean difference (estimated marginal means) 

Low/ medium 0.01 ± 0.01, P > 0.05 

Low/ high 0.01 ± 0.01, P > 0.05 

Medium/ high 0.01  ± 0.01, P > 0.05 
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(Cont.) 

(d) Model: Parasite abundance ~ HW:TL: AIC = -229.0; log likelihood = -233.0, P > 

0.05  

Pairwise comparison Mean difference (estimated marginal means) 

Low/ medium 0.01 ± 0.01, P > 0.05 

Low/ high 0.01 ± 0.01, P > 0.05 

Medium/ high 0.01 ± 0.01, P > 0.05 

(e) Model: Parasite abundance ~ piscivory: AIC = -59.89; log likelihood = -63.86; P 

> 0.05 

Pairwise comparison Mean difference (estimated marginal means) 

Low/ medium 0.03 ± 0.03, P > 0.05 

Low/ high 0.03 ± 0.03, P > 0.05 

Medium/ high 0.06 ± 0.04, P > 0.05 

 

4.5 Discussion 

Anguilla anguilla head morphology is related to intra-population diet specialisation 

whereby broader-headed fish are more piscivorous (Cucherousset et al. 2011). 

Consequently, that head width: total length ratios were significantly higher in eel 

infected by A. crassus in the three populations suggests this was associated with their 

increased piscivory. This then infers that the consumption of paratenic fish hosts by 

A. anguilla was important for A. crassus transmission in these populations. This 

inference was also supported by the outputs of the stable isotope mixing models. 

Whilst these indicated that all of the eels were facultative piscivores, individuals 

with higher estimated proportions of fish in their diet had greater probabilities of 
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being infected with A. crassus. Thus, both head width: total length ratios and the 

estimated proportion of fish in diet were significant predictors of infection status, 

with up to 78 % of eels correctly assigned by the models. 

 

The trophic fractionation between the eels and their prey fishes was often low and 

highly variable, but generally below the 3.4 ‰ δ
15

N that would be expected had their 

diet been based entirely on fish, i.e. one trophic level (Grey 2006). This variability in 

fractionation was then reflected in the predictions from the mixing models of the 

proportions of fish in the diet of individual eels, where the mean for all eels was 0.53 

(± 0.02 SE) and range 0.08 to 0.84. It should be noted that the mixing models 

provided estimates of diet composition based on standard isotopic fractionation 

factors and given that mixing models are sensitive to the fractionation factors used 

(Phillips et al. 2014) then these might have influenced their outputs. Had species-

specific fractionation factors been available then some absolute differences in the 

dietary proportions might have resulted (Bond and Diamond 2011; Phillips et al. 

2014). Whilst this suggests some uncertainty in the extent of the actual differences in 

piscivory between the infected and infected eels, it remains that broader headed eels 

tend to be more piscivorous (e.g. Cucherousset et al. 2011) and the study outputs 

revealed that the probability of infection increased significantly as head width 

increased, irrespective of diet predictions. An alternative approach to providing 

robust estimates of the extent of piscivory in A. anguilla diet would have been 

stomach contents analysis, although this was not feasible with the low A. anguilla 

sample numbers available. Indeed, the sample sizes used per population in the study 

were relatively low compared with other recent studies on A. crassus (e.g. Lefebvre 

et al. 2013), but this was unavoidable given the endangered status of eel populations 
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generally allied with the sampled populations being from small rivers. Consequently, 

although the study outputs were unambiguous across the sites with consistent 

infection patterns apparent, the use of small sample sizes and the diet estimates being 

derived from mixing models does introduce some inherent uncertainties in the 

overall output.  

 

The recent study in Southern France of Lefebvre et al. (2013) revealed that A. 

anguilla with severe swim bladder damage due to A. crassus infections had greater 

body lengths and mass compared to non-infected individuals of the same age. The 

authors postulated that their findings were most likely due to the most active foragers 

growing faster and having a greater probability of becoming repeatedly infected via 

trophic-transmission and with infection having a low energetic burden. Here, the 

research did not reveal a similar significant difference in body length and mass 

between infected and non-infected individuals, or any effect of parasite abundance 

on biometrics, although the mean infection levels we recorded (< 3.0) were lower 

than those (4.1 ± 4.4) reported by Lefebvre et al. (2013). Whilst it cannot be 

discounted this being a potential effect of a smaller sample size used here, these 

findings are consistent with other studies (Koops and Hartmann 1989; Wuertz et al. 

1998). Irrespective, it can be argued argue that these outputs provide empirical 

support for the interpretations of Lefebvre et al. (2013). However, rather that the 

most active foragers are most vulnerable to the parasite, as the more piscivorous 

individuals that are repeatedly exposed to the parasite, most likely via increased 

consumption of paratenic fish hosts, facilitated by their head functional morphology. 

It is speculated that the consequent greater energetic intake associated with piscivory 

would then facilitate the faster growth rates observed by Lefebvre et al. (2013). 
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Notwithstanding these significant relationships between functional morphology, diet 

and A. crassus infections, it is acknowledged that the extent of piscivory of 

individual A. anguilla at the time of infection could not be determined. 

Consequently, it cannot definitively be concluded that infection was a causal 

consequence of head functional morphology. Moreover, in some fishes, parasitism 

causes shifts in feeding behaviour and trophic position through mechanical processes 

and/ or changes in energy demand (Barber et al. 2000; Britton et al. 2011), and can 

induce changes in habitat utilisation that can influence foraging behaviours (Blanchet 

et al. 2009; Britton et al. 2009). Thus, it cannot be discounted that the shift to 

piscivory in A. anguilla occurred post-infection. However, this scenario was 

considered unlikely, as A. anguilla head morphology is a well-recognised functional 

trait known to enable greater individual specialisation in piscivory (Proman and 

Reynolds 2000; Cucherousset et al. 2011), and was documented in their populations 

prior to the introduction of A. crassus into Europe (Moriarty 1974; Tesch 1977). In 

addition, the development of the trait of ‘broad-headedness’ is apparent throughout 

the life of individual eels (from glass eel to maturity; Proman and Reynolds 2000) 

and thus is unlikely to be a parasite-induced trait (Decharleroy et al. 1990; Moravec 

et al. 1994). As such, it is proposed that the higher extent of piscivory that was 

apparent through this functional morphology in infected A. anguilla at the time of 

sampling was most likely a causal factor in their infection, with their increased 

consumption of fish paratenic hosts at least partially responsible. However, we also 

recognise that other factors, such as individual differences in MHC genes and 

differences in cytokine regulation, might have also influenced the host qualities of 

these eels, so that vulnerability to A. crassus infection is likely to depend on more 
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complex factors than diet and functional morphology alone (Knopf and Lucius 

2008).  

 

Several studies of A. crassus in A. anguilla have suggested that body size is a strong 

predictor of infection, with larger A. anguilla having higher levels of prevalence and 

abundance than smaller A. anguilla (Barus and Prokes 1996; Schabuss et al. 2005; 

Lefebvre et al. 2013). In German populations, however, there was no correlation 

between infection status and A. anguilla length and weight (Wuertz et al. 1998), as 

with here. Overall, it is suggested that body length and mass are relatively crude 

metrics to test against A. crassus infection, as A. anguilla growth rates in their 

freshwater life-stage can be extremely variable (e.g. 14 to 152 mm per year 

(Aprahamian 2000)), and the duration of the freshwater lifestage can be as low as 3 

to 5 years (Camargue Lagoon, France; Melia et al. 2006) and as high as 33 to 57 

years (Burrishole, Ireland; Poole and Reynolds 1996). Therefore, assessing infection 

levels using a metric that is subject to such variability over time and space might be 

limited in its utility for understanding infection dynamics. We suggest that 

measurements that incorporate head functional morphology are a more appropriate 

metric due to its influence on diet composition and the apparent importance of 

paratenic hosts in A. crassus transmission.  

 

Whilst the actual role of A. crassus in the decline of A. anguilla populations remains 

unclear, the pathology associated with infections has been related to increased 

freshwater mortality in populations exposed to additional environmental stressors 

(Kirk 2003). Additionally, the damage to the swim bladder severely impacts on 

swimming performance (Palstra et al. 2007), and can thus potentially disrupt 
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spawning migrations (Barry et al. 2014; Pelster 2015). Thus, in conclusion, it is 

suggested these consequences of parasitism in A. anguilla are focused on those 

individuals in populations whose functional morphology enables greater 

specialisation in piscivory, through a mechanism of greater parasite exposure via 

higher consumption of paratenic fish hosts. It also means that the effect of the 

parasite, whilst potentially important for food web topology (Chapter 5) is less likely 

to result in food web alterations when weighting is applied. Thus A.crassus is only 

assessed in food web topology (Chapter 5) and is not considered thereafter. 
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5. Consequences of non-native parasites for topological food 

webs 

 

5.1 Abstract 

Infectious food webs (food webs where parasites are included) tend to have distinct 

properties from those where parasites are excluded, having increased chain length, 

linkage density, nestedness and connectedness. Parasite inclusion in topological food 

webs has highlighted that parasites are integral to the structuring and functioning of 

ecosystems. However, how non-native parasites alter food web topology and metrics 

remains uncertain. Here, topological food webs were built for each focal non-native 

parasite to test their influence on food web structure and metrics. The metrics used 

were food chain length, connectance and nestedness, the latter two being measures of 

the web stability and robustness. At all sites, food web connectance was greatest in 

the free-living species web, and chain length was highest in the fully infected web. 

Two main factors were identified as important in determining the extent of alteration 

when the addition of a non-native parasite to a topological web was completed: the 

complexity of the extant food web and the complexity of the lifecycle of the non-

native parasite. When a non-native parasite with a complex lifecycle was added to a 

complex web (Anguillicoides crassus), it had less effect on food web connectivity 

and nestedness than when than a complex non-native parasite was added to a simpler 

extant food web (Bothriocephalus acheilognathi). Thus, whilst the consequences of 

non-native parasites for food web topology and associated metrics appeared context 

dependent, all had less effect on food web topology than the addition of the native 

parasite fauna.  
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5. 2 Introduction 

5.2.1  Topological food webs and parasites 

Food webs represent ecological communities via networks of trophic relationships, 

and the structure and complexity of these networks influence community dynamics 

and stability (Bascompte et al. 2003; Dunne et al. 2005). Analysis of food webs can 

be used to investigate ecosystem changes and address general ecological questions. 

For example, food-web analyses of species additions and deletions can be used to 

understand the impact of invasions and extinctions (Dunne et al. 2002a; Petchey et 

al. 2008a). In particular, species introductions - in addition to increasing species 

richness - can alter food-web topology because a new species might act as a 

consumer of, or a new resource for, existing species, or provide the critical resource 

needed for other consumers to invade the web (Amundsen et al. 2013). 

 

The case for including parasites in food webs has been well established in recent 

years (Lafferty et al. 2006b; Marcogliese 2007; Hatcher and Dunn 2011; Hatcher et 

al. 2012). The inclusion of parasites in topological food webs affects network 

structure (Amundsen et al. 2003; Hudson et al. 2006; Lafferty et al. 2006a; Lafferty 

et al. 2006b; Hernandez and Sukhdeo 2008; Lafferty 2008; Amundsen et al. 2009; 

Amundsen et al. 2013), increases food-web complexity (Hudson et al. 2006) and 

alters ecosystem stability (Dobson et al. 2006; Wood et al. 2007). Thus, it has been 

realized through these studies that including parasites in food webs, i.e. building 

infectious food webs, is fundamental to understanding food web structure and energy 

flux. For example, along the Pacific coast of North America, the invasive Japanese 

mud snail Batillaria cumingi has competitively excluded the native mud snail 

Cerithidea californica (Torchin et al. 2005). This replacement would appear to have 
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minimal consequences for the topology of the food-web as one species is being 

replaced directly with another with similar functional traits. However, once parasites 

are considered then the topology of the food web is altered substantially, as B. 

cumingi is host to only one trematode parasite whilst C. californica hosted eleven 

(Lafferty and Kuris 2009) Thus, this loss of 10 species from the food web has 

repercussions reflected in a range of food web metrics, including reduced 

complexity, robustness and connectedness which occurred with the arrival of the 

invasive snail. 

 

When introduced species do not extirpate native species then parasite diversity could 

increase as for every introduced free-living species, two parasite species are, on 

average, also introduced (Torchin et al. 2003). Direct empirical evidence for shifts in 

food web topology arising from the introduction of free living species with their 

parasites is provided by invasive fishes in the pelagic food web of Lake Takvatn, 

Norway (Amundsen et al. 2013). Introductions into this subarctic lake of Arctic charr 

Salvelinus alpinus and three-spined stickleback, and their co-introduced parasites, 

strongly altered the pelagic food web structure through increasing species richness 

from 39 to 50 species (the two fishes plus nine parasites). This increased the number 

of nodes and trophic links in the topological food web, the food-chain length and the 

total number of trophic levels in the food web (Amundsen et al. 2013).  Food web 

complexity also increased, as revealed through increased linkage density, degree 

distribution, vulnerability to natural enemies, and nestedness, all of which may have 

consequences for network functioning and stability (Dunne et al. 2002a; Hatcher and 

Dunn 2011; Amundsen et al. 2013).  
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When parasites are co-introduced with their free-living hosts, substantial alterations 

in the structure of the qualitative food web can thus result, highlighting the 

importance of accounting for native and introduced hosts and parasites in food-web 

studies (Britton 2013).  Furthermore, these changes in structure result not simply 

from increases in diversity and complexity when parasites are included, but are 

instead attributable to the unique roles that parasites play in food webs (Dunne et al. 

2013). In their roles as resources, parasites have close physical intimacy with their 

hosts, and thus are concomitant resources for the same predators. In their roles as 

consumers, they can have complex life cycles and inverse consumer–resource body-

size ratios, different from many free-living consumers (Dunne et al. 2013). These 

unique roles of parasites in food webs result in differing patterns of connection 

compared to free-living species in the case of their roles as resources, and differences 

in the breadth and contiguity of trophic niches between parasites and free-living 

species in the case of their roles as consumers (Dunne et al. 2013). 

 

Nevertheless, there remains a lack of studies examining how non-native parasites 

affect food web topology in relation to different parasite lifecycles and assessing 

how the additive effect of firstly native parasites and then the non-native parasite 

modify food web structure. It is this that is being addressed here.  

 

5.2.2  Food web metrics to measure ecological parameters 

Food webs have long been used to visualise and describe ecological communities 

through analysis of their networks. A number of metrics, of which some of the most 

important and widely used are described below, describe aspects of food web 

topology that can be calculated in order to explore the relationship of community 
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properties. These methods complement more conventional dynamical modelling, 

experimental and comparative approaches that are traditionally used to explore 

questions in stability-diversity and species richness-ecosystem function research 

(Dunne et al. 2002a). Consequently, the utility of food web models is not just their 

visual representation of food web structure but also their ability to determine food 

web metrics that allow comparison between the food web in the presence or absence 

of certain species. Note, however, that differences in values will not be associated 

with a significance value; instead they are designed to reveal the scale of 

modification through their numerical output.  Theoretical work has demonstrated 

how these measures relate to community stability properties such as robustness and 

vulnerability to extinction and/ or invasion (Hatcher and Dunn 2011). The most 

useful metrics are used in this chapter and are described below: 

 

Food chain length. Food-chain length is an important food web property as it affects 

a variety of ecosystem functions, such as primary and secondary production, rates 

and stability of material cycling, and persistence of higher-order predators under 

human-exploitation (Post 2002b). Food chain length indicates the number of times 

chemical energy is transformed from a consumer’s diet into a consumer’s biomass 

along the food chains that lead to the species. Maximum food chain length is the 

maximum number of links between basal resources and top predator species 

(Hatcher and Dunn 2011), whereas characteristic chain length is the mean chain 

length for the web (Dunne et al. 2002a). Mean chain length is the metric used here. 

As a general rule, parasites tend to considerably increase food chain length 

(Thompson et al. 2012) with, for example, the addition of parasite species increasing 

the maximum chain length (or height) of the food webs of the Ythan Estuary, Wales, 
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from 9 to 10, and for Loch Leven, Scotland, from 4 to 5, with parallels increase in 

mean chain length (Huxham and Raffaelli 1995).  

 

Connectance. Connectance of a food web (also called web density) is the percentage 

of the possible links that are realized, i.e. it is the ratio of observed links to the total 

number of possible links. Traditionally for a web of F species, the possible links 

comprise a matrix of size F
2
 (Martinez 1991; Warren 1994). Here, however, the 

modification developed by (Lafferty et al. 2006b) is used that was specifically 

designed for parasitized webs. In this modified version, connectance (C) is 

calculated as C = Lo/[(F + P)
2
], where Lo is number of observed links, F the number 

of free-living species, and P the number of parasites. Including parasite species in a 

food web increases both the numerator and the denominator, i.e. number of observed 

and possible links (Lafferty et al. 2006b), however both need not change the same 

amount. For example the addition of a single parasite species with multiple hosts, 

would increase the numerator more than it would increase the denominator, thus 

connectance is a valuable metric as altered not just by the addition of parasite 

numbers but by the properties of those added species. A full description of 

connectance in the context of parasites is provided in lafferty at al (2006b). Overall 

inclusion of parasites tends to increase connectance (Lafferty et al. 2006b), for 

example, analysis of seven food webs with and without parasites revealed that 

including parasites always increased connectance (Dunne et al. 2013).  

 

Nestedness. Nestedness, also termed clustering coefficient when referring to webs in 

general, describes an aspect of how links are organised in a network. In a perfectly 

nested network, each species interacts with a strict subset of other species in order of 
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increasing generality. Nestedness has implications for community robustness 

(Hatcher and Dunn 2011) and is a relative measure of the cohesiveness of a network. 

This pattern of interactions occurs because both generalists (species with many 

interactions in the network) and specialists (species with few interactions in the 

network) tend to interact with generalists, whereas specialist-to-specialist 

interactions are rare (Bascompte et al. 2003). If perturbed, a highly nested 

community is predicted to recover because species are less likely to be isolated after 

the loss of other species (Bascompte et al. 2003). Previous studies have produced 

conflicting results when considering the addition of parasites in food webs. For 

example, relative nestedness increased in the Carpinteria salt marsh food web (USA) 

with the addition of parasites (Lafferty et al. 2006b), whilst adding parasites 

decreased nestedness in the food web of Muskingum Brook, New Jersey, USA 

(Hernandez and Sukhdeo 2008).  

 

5.2.3 Aims and objectives 

The aim of the chapter was thus to determine how the inclusion of native and 

introduced non-native macro-parasites modifies food web topology and associated 

metrics. The objectives were to: 

  

(i) assess the extent of topological food web modification caused by parasites by 

analysing food web topology under three states: (1) free-living species only; (2) free-

living species and their native macro-parasites; and (3) free-living species, their 

native macro-parasites and the non-native parasite. This objective was completed for 

each non-native parasite, i.e. E. briani, A. crassus and B. acheilognathi within a 

modelled environment; and 
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(ii) determine how parasite life-cycle (i.e. direct or complex) affects food-web 

topology, irrespective of its native or non-native status. This objective was 

completed using a simplified, theoretical food web. 

  

5. 3 Materials and methods 

5.3.1 Modelling the topological food web: data used to build food web  

The basis of the food webs was data on the fish community and their parasite fauna. 

These data were derived as per Chapters 2, 3 and 4. One series of food web models 

was constructed per non-native parasite species, using one of each study sites as the 

modelled environment. For the latter, the site selected was considered the most 

representative of the parasite’s invaded habitat (subjective of the author) and where 

the most information was available on the food web components. Consequently, the 

sites were: 

 

 Ergasilus briani, Site 1: Basingstoke canal (Section 2.3, Figure 2.1); 

 Bothriocephalus acheilognathi, Site 2: Greater London fishery (Section 3.3, 

Figure 3.1) 

 Anguillicoides crassus, Site 3: River Huntspill (Section 4.3, Figure 4.1).  

 

It was then necessary to include parasites for species at lower trophic levels than fish 

in order to provide a more comprehensive infectious food web model. However, 

logistical constraints had prevented the detailed analysis of the parasites of macro-

invertebrates from field samples. Consequently, a heuristic approach was adopted for 

parasites of macro-invertebrates, a common approach for topological food web 
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studies (Srinivasan et al. 2007; Petchey et al. 2008b; Amundsen et al. 2013). Data on 

the parasite fauna of the macro-invertebrate fauna were collated from a combination 

of literature review and from the Natural History Museum Host Parasite Database 

(Gibson et al. 2005). The actual macro-invertebrate species included in each food 

web were, however, determined from field survey data as described in Sections 2.3, 

3.3 and 4.3, with supplementary data also provided by the Environment Agency at 

Sites 1 and 3. For the trophically transmitted parasites that were detected in a fish 

species, their known intermediate and final (e.g. bird or mammal) host species were 

included in the food web model irrespective of their detection in field samples, on 

the assumption that their absence in samples was a false-negative recording due to 

their requirement for completion of the parasite lifecycle (Cooper and Cooper 2008).  

To avoid the construction of highly complex food webs involving substantial 

aquatic: terrestrial links then logical limits were placed on the models that 

constrained them to each focal aquatic system per non-native parasite species. This 

meant that birds and mammals were the end point of the aquatic food web and did 

not continue by including the terrestrial links associated with these species. This is 

standard convention in building topological food webs for aquatic systems and 

enables them to be of manageable size and of relevance to the ecological question(s) 

they address (Polis et al. 1997; Trebilcol et al. 2013).   

 

The parasite fauna of fish and macro-invertebrates was recorded from field data. 

Additionally samples were collected in the field of phyto- and zooplankton (Sections 

2.3, 3.3, 4.3), however data on species identifications were often relatively limited 

and not necessarily representative of species present on a seasonal basis. Where data 

were limited then functional groups of taxa were used instead and which shared the 
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same set of predators and prey within a food web. Again, this heuristic approach is a 

widely accepted convention in structural food-web studies that aims to reduce 

methodological biases related to uneven resolution of taxa within and among food 

webs (Dunne et al. 2002a).   Full lists of species/functional species for each network 

are available in Appendix 2.   

 

Following collation of all of the species (or functional groups) of the piscivorous 

birds and mammals, fish, macro-invertebrates, zooplankton and phytoplankton, and 

their parasites, their feeding relationships were determined. For those involving the 

fish species, these were constructed through analysis of their stomach contents and 

the outputs of mixing models in stable isotope analysis (Section 2.4, 3.4, 4.4). For 

the other species being modelled, their feeding relationships were derived 

heuristically from literature reviews based on their typical diet composition. This 

latter method is again the standard methodology used to reconstruct trophic 

relationships in similar food web studies (Amundsen et al. 2013).  

 

5.3.2 Preparing data for modelling 

Following collation of the species lists to be modelled and derivation of their feeding 

relationships, these data were then prepared for inputting into the food web models. 

This involved the construction of a binary matrix (completed in MS Excel 2010), 

where the relationship between each species included in the food web model was 

recorded as 0 (no feeding interaction) or 1 (feeding interaction). The direction of that 

relationship (i.e. which was the predator and which was the prey) was determined by 

their direction within the matrix, whereby the x-axis of the matrix listed all the 

species as predators and the y-axis of the matrix listed all the species as prey/ 
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producers. Thus, in Figure 5.1, Species A is a producer, species B predates A only, 

species C predates both species A and B and is cannibalistic. Species D predates 

species B and C. Species D may be a free-living predator or a parasite, as both would 

be represented in the same way. The food web matrices used for model construction 

are provided in Appendix 3.   

 A B C D 

A 0 0 0 0 

B 1 0 0 0 

C 1 1 1 0 

D 0 1 1 0 

 

Figure 5.1 Example of the structure of a network matrix as used in this study, 

where 0 represents no feeding interaction and 1 represents a feeding interaction. 

 

On their completion in MS Excel, the matrices were then transferred into R using the 

package gdata (Warnes et al. 2015). This package comprises of various tools for data 

manipulation, including the transformation of Excel spreadsheets into R readable 

formats.  

 

5.3.3 Food web modelling using igraph 

Following conversion into R of the matrices being used as the basis of the food web 

models, they were then converted into food webs (networks) using the network 

analysis package igraph (Csardi and Nepusz 2006).  This is an open source software 

package that is used to create, manipulate and analyse the properties of graphs and 

networks. It has the capability of specifying whole graph properties as well as those 
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of individual nodes (here, the species in the food web) and links (here, their feeding 

relationships). These properties represented the food web metrics outlined in Section 

5.2, i.e. connectedness, nestedness and food chain length. 

 

5.3.4 Model finalisation 

The parameterised food web models that were constructed in igraph, as outlined 

above, were only considered as final (i.e. complete) when the tests revealed they had 

small-world properties (Montoya and Sole 2002). This ‘small world’ attribute refers 

to a food web that has many loosely connected nodes, non-random dense clustering 

of a few nodes (i.e. keystone species), and small path length compared to a regular 

lattice (Montoya and Sole 2002; Williams et al. 2002; Montoya et al. 2006). As the 

webs were constructed heuristically (at least in part) then the small world test was 

applied as a quantitative step to assess whether the food web could be considered to 

have realistic structure and were comparable to other published food webs (Montoya 

and Sole 2002; Proulx et al. 2005; Montoya et al. 2006).  

 

This ‘small world’ procedure for model finalisation involved generating networks 

with equivalent numbers of nodes (species) and links using the random graph 

generator function in igraph. The connectance (C), number of links (L) and number 

of Nodes (species) (N) of the modelled food web were then compared with those of 

the random equivalent network (rand), i.e. Crand, Lrand, Nrand. As the networks in this 

study are small (<100 species) and small networks, whilst displaying small world 

properties fail to meet traditional mathematical criteria (Dunne et al. 2002a), a small 

network correction was applied (Humphries and Gurney 2008). This recognises the 

fact that small networks sit on a continuum of small world network attributes, whilst 
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having somewhat different mathematical properties and compensates for this. Thus, 

for a food web to be a small world network and this considered final, then:  

(C / Crand) / (L / Lrand) ≥ 0.012N
1.11

 

At their completion, no webs failed this test.   

5.3.5 Modelled scenarios  

For each modelled non-native parasite system, three food webs were created, (1) 

free-living species, native parasites and the focal non-native parasite; (2) free-living 

species and native parasites only, derived by deletion of the foci non-native parasite 

species from the data matrix prior to its running in i-graph; and (3) free-living 

species only, derived by deletion of the native parasites from the matrices prior to 

their running in igraph. This sequential method of deleting species to create new 

food webs follows the procedure of (Amundsen et al. 2013). For each of these food 

web scenarios, the graph metrics relating to the major ecological metrics of 

connectance, nestedness and mean shortest chain length were obtained using igraph 

functions and compared between them.  

  

5.3.6 Parasite life-history testing using a simple model   

To address the second objective of the Chapter regarding the consequences of 

parasites with differing lifecycle properties, a basic model based on a simple 

pyramid of free living species was constructed (Odum and Barrett 2005) that was 

equivalent to a highly simplified version of the real food web. The properties of this 

web were established as described in the steps above and then two directly- or two 

trophically-transmitted parasites were added, and the metrics recalculated to assess 

differences between parasite’s life-history on network metrics. The theoretical direct 

parasites were modelled as if they parasitised only one species of fish in one case, 
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and two species in the other case, whilst the trophically transmitted parasites were 

modelled to each infect multiple fish and invertebrate hosts and the single bird 

included in the model food web.  

 

5. 4  Results 

5.4.1 Site 1, Ergasilus briani 

The food web comprised of 42 species, of which 28 were free-living species, 13 

were native parasites and E. briani (Table 5.1). The removal of native parasites from 

the food web resulted in web properties that differed substantially from that in which 

they were included (Table 5.1; Figure 5.2b, c). The number of species decreased 

from 41 to 28, with 58 links removed from the web.  Nestedness was reduced in the 

web containing only free-living species, as was mean chain length, whilst 

connectance was greater. Differences between metrics of the web containing E. 

briani and all native parasites and free-living species were minor, with E. briani 

removal slightly increasing connectance and nestedness but reducing mean chain 

length (Table 5.1; Figures 5.2a and b). 
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Table 5.1 Summary of food web metrics for Site 1: (1) free-living species, 

native parasites and the Ergasilus briani; (2) free-living species and native parasites 

only; and (3) free-living species only. 

  1 2 3 

Species 42 41 28 

Links 241 239 181 

Nestedness 0.578 0.592 0.537 

Connectance 0.205 0.208 0.231 

Mean chain length 1.632 1.618 1.18 
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Figure 5.2a Food web of Site 1 free-living species (blue circles), native parasites 

(yellow circles) and the non-native parasite Ergasilus briani (red circle) 
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Figure 5.2b Food web of Site 1 free-living species (blue circles) and native 

parasites (yellow circles)  
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Figure 5.2c Food web of Site 1 free-living species. 
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5.4.2 Site 2, Bothriocephalus acheilognathi  

Site 2 had a relatively species-poor network when compared to the other sites, with 

only five native parasites and one non-native parasite used in the model. The 

removal of all native parasites resulted in the loss of twelve links, whilst the removal 

of B. acheilognathi removed eight links, thus its impact on the network metrics was 

relatively large compared to that of the native species (Figure 5.3a, b and c, Table 

5.2). The removal of both native parasites and B. acheilognathi resulted in a decrease 

mean chain length and an increase in nestedness. The removal of B. acheilognathi 

decreased connectance but increased nestedness (Table 5.2).  

 

Table 5.2 Summary of web metrics for Site 2. (1) free-living species, native 

parasites and Bothriocephalus acheilognathi; (2) free-living species and native 

parasites only; and (3) free-living species only 

 

  1 2 3 

Species 38 37 32 

Links 215 207 195 

Nestedness 0.37 0.394 0.417 

Connectance 0.183 0.175 0.19 

Mean chain length 1.852 1.649 1.415 
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Figure 5.3a Food web of Site 2 free-living species (blue circles), native parasites 

(yellow circles) and the non-native parasite Bothriocephalus acheilognathi (red 

circle) 
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Figure 5.3b Food web of Site 2 free-living species (blue circles) and native 

parasites (yellow circles) 
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Figure 5.3c Food web of Site 2 free-living species 
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5.4.3  Site 3, Anguillicoides crassus   

Site 3 had the highest number of species used in the food web models, with 55 free-

living species, 19 native parasites and A. crassus (Table 5.3). The removal of native 

parasites from the food web increased nestedness and connectance, but decreased 

mean chain length (Table 5.3; Figures 5.4a,b). The number of links decreased by 

166, with each native parasite contributing, on average, less than 9 of those links. By 

contrast, removal of A. crassus decreased the number of links by 25 and resulted in a 

decrease of all three metrics (nestedness, connectance and mean chain length) (Table 

5.3; Figures 5.4a and b). However, in all metrics, as the network was relatively 

complex then the extent of the change was small when compared to the combined 

impact of the native parasite species, and the overall values for the metrics of 

nestedness and connectance were still lower in the infected web than in the free-

living species web (Table 5.3). 

 

Table 5.3 Summary of web metrics for site 3. (1) free-living species, native 

parasites and the Anguillicoides crassus; (2) free-living species and native parasites 

only; and (3) free-living species only 

  1 2 3 

Species 75 74 55 

Links 772 747 581 

Nestedness 0.408 0.403 0.438 

Connectance 0.187 0.184 0.192 

Mean chain length 1.743 1.737 1.415 
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Figure 5.4a Food web of Site 3 free-living species (blue circles), native parasites 

(yellow circles) and the non-native parasite Anguillicoides crassus (red circle) 
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Figure 5.4b Food web of Site 3 free-living species (blue circles) and native 

parasites (yellow circles) 
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Figure 5.4c Food web of Site 3 free-living species 
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5.4.4  Model web with theoretical parasites 

Comparison of the theoretical food webs revealed marked differences when two 

directly transmitted parasites were added versus two trophically-transmitted 

parasites. The metrics nestedness and connectance were lower in the network 

containing the directly transmitted parasites when compared with free-living species 

only (Table 5.4). Conversely these metrics were then greater in the network with two 

trophically transmitted parasites added (Table 5.4). Both the infected webs had a 

greater mean chain length than the food web of only free-living species, although the 

magnitude of this difference was greater in the web containing the directly 

transmitted parasites (Table 5.4, Figures 5.5 a,b,c). 

 

Table 5.4 Summary of the simple model web metrics, where A: free-living 

species only, B: free-living species plus two directly transmitted parasites; and C: 

free-living species plus two trophically-transmitted parasites 

  Species Links Nestedness Connectance Mean chain length 

A 14 24 0.255 0.122 1.475 

B 16 27 0.234 0.121 1.725 

C 16 35 0.383 0.156 1.558 
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Figure 5.5a Basic theoretical model web of free-living species 

 

Figure 5.5b Basic model web with the addition of two parasites with direct 

lifecycles and high host specificity. 
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Figure 5.5c Basic model web with the addition of two trophically-transmitted 

parasites with complex lifecycles and multiple hosts  
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5. 5 Discussion 

The effects on the topological food web of adding native parasites to the free-living 

species followed by the addition of a non-native parasite were successfully modelled. 

Their effects varied at each site according to the complexity of the extant free-living 

communities and their parasite fauna. At Site 3, the most complex site, the inclusion 

of native parasites substantially altered the number of species and links in the food 

web, and impacted the food web metrics as a result, with only minor changes then 

caused by the inclusion of A. crassus.  At Site 1, the effect of E. briani on the food 

web was minimal, primarily because it is a directly-transmitted parasite that, 

consequently, only created two new links. Whilst Site 2 was the least complex, 

involving the lowest number of species and links, as the focal non-native parasite, B. 

acheilognathi, was trophically-transmitted then when compared with E. briani, it had 

a relatively large effect on the food web metrics, with the creation of 8 new links and 

markedly reduced nestedness. This comparison of topological changes incurred in 

the food web by directly-transmitted and trophically-transmitted parasites was also 

supported by the theoretical models that revealed similar patterns. 

  

The characteristics of the parasites used in the food web models were thus a large 

influence on the food web topology. This indicates that it is the ecology and biology 

of a parasite that will determine its influence on food web structure rather than, for 

example, its native/ non-native status. This also means there is likely to be 

considerable variability in the influences of different parasites on food web models 

due to issues including:  

Host specificity: Many parasite species are specific to only a single host, whereas 

others have multiple hosts, with examples of extreme generalists such as the 
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amphibian parasite Batrachochytrium dendrobatidis that infects over 500 species 

(Bielby et al. 2015). From a food web perspective, the larger the number of links that 

a parasite has potential to make, the stronger its effect on the food web metrics. From 

an invasion perspective, a generalist parasite has an increased chance of successful 

establishment due to a greater number of potential host species (Taraschewski 2006; 

Douda et al. 2012). The destabilization in the food web models incurred by the 

addition of direct, specific parasites is also consistent with empirical data, as 

parasites with high host specificity are particularly vulnerable to secondary 

extinctions (Lafferty and Kuris 2009).  

Lifecycle and strategy: Parasites differ widely in their life history strategy, and this 

variability is key both to their mode of life as well as their impact on a food web 

(Thompson et al. 2005). A direct lifecycle can be advantageous in that it only 

requires the definitive host for completion, whereas a parasite with a complex 

lifecycle might require a series of intermediate hosts prior to transmission to the final 

host. In the case of the latter, the use of paratenic hosts can increase the probability 

of transmission, as observed with A. crassus (Chapter 4).  

Parasite detection: A problem with infectious food web studies such as this is that 

discrepancies in parasite detection rates can have significant effects on the outcomes 

of food web construction and analysis. As Poulin (1992) notes, parasite species that 

have been observed more frequently are more likely to have a more complete record 

of their hosts and ecology simply as a result of chance. For example, there is a much 

higher prevalence of records for copepod parasites than monogeneans, despite these 

two groups of ecto-parasites sharing similar direct lifecycles (Poulin 1992), a result 

of copepods having received a greater amount of research effort. Another related 

factor likely to skew structure of any food web model incorporating parasites is the 
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extent of the scrutiny that the hosts have been subjected to. For example, parasites of 

commercially- and recreationally-important species are far more likely to have been 

identified and studied than those of other species (Henderson et al. 2003).  This was 

reflected here where there was extensive literature on the fish parasites but with 

substantially less available for macro-invertebrate species, other than those involved 

in parasite trophic-transmission.  

 

Comparison of the effects of parasites in food web metrics of this study with other 

studies revealed the following similarities and differences.  

Connectance: Here, in all three sites, connectance was reduced in the food webs 

with parasites compared with only free-living organisms. Whilst this is contrary to 

the majority of parasite-based food web studies (e.g. Martinez 1991; Huxham et al. 

1996; Memmott et al. 2000), it is in agreement with the recent study of Amundsen et 

al. (2013) of Lake Takvatn. This is of particular interest as this study considered the 

impact of non-native fish and their associated parasites on web characteristics, as 

opposed to the majority of other studies, which consider only native parasites. 

Connectance is important in biological systems as robustness, the ability of a system 

to resist cascading extinctions, increases with food-web connectance. In particular, 

food webs experience `rivet-like' thresholds past which they display extreme 

sensitivity to removal of highly connected species. Higher connectance delays the 

onset of this threshold (Dunne et al. 2002b). Thus, an observed reduction in 

connectance may signal an increase in the vulnerability of a system to extinctions.  

Nestedness:  The nestedness of the food web increased with the addition of parasites 

at Site 1, as also shown in the Carpinteria salt marsh food web (Lafferty et al. 

2006b), but decreased at Sites 2 and 3, as seen in the infectious food webs of 
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Muskingum Brook, New Jersey, USA (Hernandez and Sukhdeo 2008). Similar to 

connectance, nestedness is considered to increase ecological stability, as a nested 

system should recover better from perturbation as species are not isolated 

(Bascompte et al. 2003).  Reciprocal specialisation is the process that results in non-

nested patterns in networks and occurs, for example, when a parasite specialises on a 

particular host through co-evolutionary processes (Joppa et al. 2010). Whilst 

reciprocal specialisation is relatively rare in ecological networks (Joppa et al. 2009), 

it is more frequent in parasites (Pedersen et al. 2005).  Thus, the reduced nestedness 

in this Chapter was the result of the inclusion of highly specialised parasites in the 

food webs.  

Mean chain length: At all sites, the mean chain length increased with the addition of 

parasites, a trend consistent with all the studies cited above. Food chain length is of 

interest in that it can be an indicator of limiting factors to a system, such as resource 

availability and productive space, and it can modify key ecosystem functions such as 

nutrient cycling, primary productivity and atmospheric carbon exchange (Post 

2002a). Furthermore, food chain length can influence the concentration of 

contaminants in top predators (Kidd et al. 1998), and indeed parasites have been 

shown to play a role of sink to pollutants, for example Pomphorhynchus laevis has 

been shown to act as a bioaccumulator of the heavy metals, lead and cadmium (Sures 

and Siddall 1999; Thomas et al. 2000).  

 

Determining the sub-lethal and ecological consequences of parasites can be 

inherently difficult, and here a topological food web model approach was used in 

order to identify the wider ecological implications of parasite introductions. The use 

of network modelling was shown to provide a valuable analytical tool for 
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understanding how parasites can modify food web structure over multiple trophic 

levels, and highlighted how the unique properties of parasites may alter networks in 

a manner that differs from free-living species. From single host species to the case of 

B. dendrobatidis, with the ability to infect over 500 species (Bielby et al. 2015), 

there can be considerable variability in the parasite impact. Similarly, the properties 

of the receiving system are critical in mitigating or exacerbating their effect, as 

shown in comparisons of the effects of A. crassus, E. briani and B. acheilognathi in 

the selected freshwater food webs of this chapter.  
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6.  Weighted food webs to predict the outcomes of interactions of 

non-native parasite infection and environmental change 

 

6.1 Abstract 

Weighted topological food webs incorporate the strength of the predator-prey 

relationships into their network and thus have greater complexity and realism than 

unweighted webs, and can provide a strong predictive tool. Weighting can be 

completed via incorporating energy transfer between predators and prey that reflect 

their measured trophic interactions.  Here, the stable isotope data (Chapters 2 and 3) 

and topological food webs (Chapter 5) were integrated to provide weighted food web 

models for E. briani and B. acheilognathi that were then used to test scenarios of 

environmental change on food web structure using (i) the relative proportions of 

producers and primary consumers that contribute to diets of higher consumers (i.e. 

fish); and (ii) biomass of fish species that models of fixed biomass would be 

predicted to support. Models predicted that increasing parasite prevalence in host 

populations of E. briani would have little impact on food web structure, whereas 

increasing parasite prevalence in host C. carpio populations of B. acheilognathi 

would alter the overall structure of the food web and ratio of trophic levels to each 

other, with higher consumers directly consuming more primary producers and a 

lower biomass of primary consumers. Models then simulated how environmental 

disturbance affected the weighted food webs and suggested that shifts to more 

eutrophic conditions provided some net benefits for infected fishes via facilitating 

their increased biomass through the provision of increased food resources based on 

primary producers. Thus, where infection consequences of non-native parasites are 
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sub-lethal and include some constraints on host foraging performance, then 

eutrophication could provide these fishes with greater food availability and thus 

resilience to both the adverse effects of parasitism and environmental change.  

 

6.2 Introduction 

6.2.1 Weighted food webs 

The food webs developed in Chapter 5 provided a topological description of the 

complexity of the networks in the presence and absence of parasites, including the 

focal non-native parasites. They produced descriptive statistics from the networks 

that enabled, for example, comparison in food web metrics between infected and 

uninfected webs, and between webs constructed from different systems involving 

different parasites.  

 

A short-coming of the topological approach is, however, that all links are treated as 

equal, giving no indication of the strength of each relationship, such as whether a 

prey item was major food component of a predator, consuming it regularly, or rather 

just a minor component, preying upon it infrequently (Bersier et al. 2002). 

Consequently, when food webs can be ‘weighted’ by including a measure of the 

strengths of predator-prey relationships in the network, then the resultant food web 

model has greater complexity allied with more realism (Zhang and Guo 2010), thus 

improving its utility as a predictive tool (Thompson et al. 2012).  

 

Different metrics, such as strength of the trophic interaction (Emmerson and 

Raffaelli 2004), or the amount of energy flow (Amundsen et al. 2013), can be 

incorporated into ecological networks in order to weight the network dependent on 
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the question the network analysis aims to answer. In the case of the former, body 

size has been used in a number of studies (Woodward et al. 2005), such as the study 

of Emmerson and Raffaelli (2004) examining dynamics of food web stability in the 

Ythan estuary, whilst Dorresteijn et al. (2015) used the frequency of interaction to 

weight a terrestrial food web and investigate human impact on large mammal 

behaviours and predation patterns in Transylvania. More frequently, energy is 

incorporated into webs to create realistic simulations of trophic interactions in food 

webs, and where these steps have been taken to incorporate trophic data into 

weighted networks then important ecological attributes have been determined, for 

example, estimating food chain length from basal energy (Thompson and Townsend 

2005; Arim et al. 2007), or determining the importance of terrestrial input in aquatic 

systems (Kawaguchi et al. 2003).  

 

6.2.2 Stable isotopes as a means of gathering food web information 

Stable isotope analysis increasingly represents an effective ecological tool for 

elucidating trophic relationships in food webs (Peterson et al. 1985; Grey 2006; 

Semmens et al. 2009). The application of δ
13

C and δ
15

N to food web structure has 

enabled reconstructions of the trophic relationships between species (Sections 2.4, 

3.4, 4.4) and identified the basis of production, such as allochthonous versus 

autochthonous energy inputs (McCutchan et al. 2005; Grey 2006). They can be used 

to determine trophic niche sizes and associated relationships between species 

(Sections 2.4, 3.4, 4.4; (Layman et al. 2007; Jackson et al. 2011; Jackson et al. 

2012)), and estimate diet composition (Sections 2.4, 3.4, 4.4, Jackson et al. 2011). 

Thus, through stable isotope analysis, it is possible to establish not only if predator 

prey relationships exist between species, but also estimate the relative proportions of 
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each food item in the diet of each consumer species. In doing so, it provides a 

methodology that can be used as the basis for ‘weighting’ topological food webs. 

 

6.2.3 Maintaining food web equilibrium and impact of introducing non-native 

species 

Food webs are driven by a combination of bottom-up (from primary producers) and 

top-down (from consumers) processes (Reid et al. 2000). Shifts in this balance can 

have significant impacts on the web community. An example of a bottom-up process 

impacting food web structure is the shift from eelgrass (Zostera marina) to sea 

lettuce (Ulva lactuca) as a dominant producer in Canadian estuaries, the result of 

anthropogenic eutrophication that caused major shifts in the composition of major 

faunal and floral communities, and reduced fish species richness and abundance 

(Schein et al. 2012). There are multiple examples of trophic cascades resulting from 

top-down processes, where changes in predator-prey relationships alter the food web 

beyond the immediate prey populations. For example, experimental manipulations of 

fish in a Northern California river revealed removal of predatory fish, which 

consume predatory insects and fish fry, increased the survival of these species that in 

turn fed on chironomid larvae. In the presence of fish, filamentous green algae were 

very limited and were infested with chironomids. When the larger fish were absent, 

this released the predation pressure on the smaller predators that previously 

suppressed chironomids, resulting in substantially reduced algal grazing and 

increased algal biomass (Power 1990).  

 

Non-native invasive species can also have significant impacts when they invade food 

webs (Vitousek et al. 1996), for example, invasive zebra mussels Dreissena 
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polymorpha in the Hudson River estuary reduced phytoplankton densities by up to 

85%, with associated declines in planktonic grazers that drastically transformed the 

food web (Caraco et al. 1997; Strayer et al. 2014). The invasion of Pseudorasbora 

parva into ponds in the UK, induced multiple changes in the foodweb, with shifts to 

a cyanobacteria dominated phytoplankton community, and increased trophic overlap 

between cohabiting fish species, that reduced somatic growth in R. rutilus (Britton et 

al. 2010). In Topanga Creek, California, benthic macroinvertebrate abundance and 

species richness was lower in the presence of the invasive red swamp crayfish, 

Procambarus clarkii. This change in the structure of the web impacted the California 

newt Taricha torosa (endemic species) and the California steelhead trout 

Oncorhynchus mykiss irideus (endangered), which are predators of the depleted 

macroinvertebrate community (Garcia et al. 2015). Adding an additional species to a 

food web is, therefore, more than a simple topological addition, as it can potentially 

have multiple cascading trophic consequences throughout the entire foodweb. 

 

Due to their small size, parasites are rarely considered in a trophic context except 

when their total biomass is such that they represent a significant food resource (Kuris 

et al. 2008). Yet in Chapters 2 and 3, two ways were identified in which parasitism 

can alter trophic niche of hosts by causing them to become more specialised in their 

diet (as in the case of Ergasilus briani infected R. rutilus and A. brama; Chapter 2) 

or to shift their trophic niche, preying on different resources (as in Bothriochephalus 

acheilognathi infected C. carpio, Chapter 3). Although some examples of significant 

dietary changes induced by native parasites exist, for example cyprinids infected 

with Ligula intestinalis shift to exploiting prey items for which competition is less 

(Loot et al. 2001), the impacts of non-native parasites on naïve hosts are often more 
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severe as their hosts lack any co-evolved mechanisms of resistance or tolerance 

(Johnsen and Jensen 1986), and thus can provide excellent model species to study 

the whole foodweb consequences of opportunistic parasitism.  

 

Numerous factors, such as host density (Jansen et al. 2012), co-existence of other 

parasites (Cox 2001) or environmental abiotic variables (Sures 2008), affect parasite 

prevalence and abundance, yet levels of infection are critical to the impact of the 

parasite on its host population (MacKenzie and Abaunza 1998). Application of 

weighted models allows variability in infection level to be incorporated into the food 

web, and the scale of infection consequences to be investigated, which is very 

difficult to achieve empirically.  

 

6.2.4 Non-native parasites in a disturbed system 

Invasive species can cause habitat degradation with, for example, burrowing and 

foraging by the invasive crayfish Procambarus clarkii causing structural damage to 

river banks and increasing erosion (Angeler et al. 2001). However, many invasive 

species are opportunistic, taking advantage of other forms of ecosystem change, such 

as habitat disturbance, rather than being the drivers of change themselves (Gurevitch 

and Padilla 2004; MacDougall and Turkington 2005). Anthropogenic eutrophication 

is a major cause of degradation of freshwater systems (Carpenter et al. 1998), as the 

increase in biologically available nitrate and phosphate impacts aspects of the water 

chemistry and biota, and alters ecosystem structure and functioning (Smith et al. 

1999; Dodds et al. 2009). The effect is a shift from a system in which macrophytes 

are significant primary producers to ones in which phytoplankton are dominant, 

reducing water clarity and resulting in further declines in macrophyte biomass, 
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further releasing nutrients to drive the phytoplankton dynamics (Hough et al. 1989; 

Smith et al. 1999). Moreover, eutrophication often increases parasite prevalence in 

host populations (Lafferty 2008), especially those parasites that are generalists with 

local recruitment and short life cycles (Marcogliese 2001). Correspondingly, the 

consequences of the interactions of anthropogenic eutrophication and parasite 

prevalence on host populations are a key focus of this Chapter.   

 

6.2.5 Aim and objectives 

The aim here was to develop weighted food web models for each food web of 

Chapter 5 in order to provide an analysis of how food web structure was altered by 

parasites when the feeding relationships of the consumer species were accounted for. 

Objectives (O) were to: 

O1. Develop the method of weighting the topological food webs from Chapter 5 

using the outputs of stable isotope analysis outlined in previous data chapters; 

O2. Apply the weighting to the topological food web models to develop final models 

capable of predicting the impacts of the parasites on food web structure and energy 

flux; and 

O3. Use the final weighted webs to quantify the ecological consequences of parasites 

on infected fishes under scenarios of altered parasite prevalence and anthropogenic 

eutrophication, where the latter is represented by shifts in the proportions of 

phytoplankton and macrophytes. 

 

  



 145 

6.3  Materials and Methods 

6.3.1 Data used to build food web  

 Data from the stable isotope analyses from Sites 1 and 2 (cf. Chapter 5) were used in 

which the following non-native parasites were present:  

 Ergasilus briani, Site 1: Basingstoke canal (Section 2.3, Figure 2.1); 

 Bothriocephalus acheilognathi, Site 2: Greater London fishery (Section 3.3, 

Figure 3.1) 

 

The effect of Anguillicoides crassus on Anguilla anguilla was not included in this 

chapter as although significant differences in the trophic niche of infected and 

uninfected A.anguilla were observed, the differences were not necessarily due to 

infection by A. crassus but were instead related to eel functional morphology 

(Chapter 4).  

 

Data collection at each site was as per Sections 2.3 and 3.3. This provided data on 

the stable isotopes of δ
13

C and δ
15

N for the infected and uninfected fish in the host 

populations, the other fish species present, and their putative food resources. 

Bayesian mixing models were used to estimate the proportions of these food 

resources in the diets of all fish species, including the infected and uninfected 

components of the host populations (Sections 2.4 and 3.4). For the other species 

present in the food web but for which these dietary data were not collected and 

analysed (primarily the piscivorous birds and the macro-invertebrates), a heuristic 

approach was used, applying published information on their diet compositions to the 

food web calculations, as per (Vander Zanden et al. 1997; Vadeboncoeur et al. 

2002). 



 146 

6.3.2 Preparing the data for modelling 

The basis of the weighted food web modelling was the topological webs used in 

Chapter 5. However, as here they were being combined with the outputs of the stable 

isotope mixing models, the topological models were modified so they matched the 

way in which fish putative food resources were combined in the mixing models. For 

example, rather than including a number of arthropod species in the web, these were 

now combined into a single node as the mixing models had combined their data due 

to minimal differences in stable isotope values (Phillips et al. 2005). An advantage of 

weighting the foodweb in this manner was that as well as adding content, it 

eliminated an issue generally encountered in topological webs, whereby the level of 

taxonomic sensitivity of the data can skew their metrics (Williams and Martinez 

2000) 

 

The next step was to construct a matrix that described the feeding relationships 

between each species (or species grouping) in the food web. As per Chapter 5, this 

was completed in MS Excel 2010 but whereas there it was based on binary relations 

(0 and 1), here they were based on the dietary proportions (scale of 0 to 100) that 

were estimated from the mixing models and the heuristic analysis that quantified the 

strengths of the relationships between the consumers and prey species/ groups; 95% 

confidence intervals were calculated from the standard error of the mixing models 

and also incorporated into the matrix. As per Section 5.3, the direction of that 

relationship (i.e. which was the predator and which was the prey) was determined by 

their direction within the matrix, whereby the y-axis of the matrix listed all the 

species as predators and the x-axis of the matrix listed all the species as prey/ 

producers. Thus, in the example of Figure 6.1, Species A is a producer, species B 
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predates A only, species C’s diet comprises 20-30% of species A and 70-80% of B. 

The diet of species D comprises approximately equal amounts of species B and C. 

The diets of infected and uninfected fish were estimated in Sections 2.4 and 3.4, and 

diets of the total population with varying infection prevalences were calculated by 

combining appropriate proportions of these (Section 6.2.5). The food web matrices 

used for model construction are provided in the results section. 

 

 A B C D 

A 0 0 0 0 

B 100 0 0 0 

C 20-30 70-80 0 0 

D 0 45-55 40-60 0 

 

Figure 6.1 Example of the structure of a proportional network matrix 

 

Note that whilst the purpose of this Chapter was to investigate the quantitative 

changes in energy flow and trophic interactions caused by parasite infections, only 

the free-living species were presented in the weighted webs. This was because the 

contribution of the parasites to the diet of any consumer was always < 1 %. 

Therefore, it was the impact of the parasite on the hosts that was modelled through 

modelling the effects on host diet according to different prevalence levels, rather 

than including the parasite itself in the weighted models. On their completion in MS 

Excel, the matrices were then transferred into R using the package gdata (Warnes et 

al. 2015).  
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6.3.3 Food web modelling using igraph 

Following conversion of the matrices into R, they were then converted into food 

webs (networks) using the network analysis package igraph (Csardi and Nepusz 

2006), as described in Section 5.3. The model networks had the following two 

simple rules: 

 The total diet of all consumers had to equal 100% of any other food source at 

the start of the model. Unless this was met, then consumers were unable to 

switch diets during predictions of environmental change. 

 If the proportion of an item being consumed by an organism or group 

increased, then it was assumed the consumer eats proportionally more of that 

item, and as a consequence, the biomass of that consumer will increase.  

 

For example, a consumer with a diet comprising items x, y and z, and where n is the 

starting proportion of diet at time t, then:  

nt = nx + ny + nz = 100 

If the biomass of x is doubled the diet of the consumer would be  

nt = 2nx + ny + nz > 100 

and the biomass (b) of that consumer would increase proportionally and where 

overall biomass per trophic level is determined as diminishing to 10 % of the 

previous trophic level at each trophic level (Pauly and Christensen 1995). 

 

When ‘top-down’ changes occur, if the proportion of an item consumed increases 

then it is assumed that that item must exist in that proportion, and thus its prey must 

increase proportionally also, i.e. there is a cascading effect in the model. For 
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comparison, the web can then be recalculated with fixed starting quantities, using the 

new proportions.  

 

6.3.4 Metrics measured  

This study measured two primary metrics: 

1. The relative proportions that producers and primary consumers contributed to 

the diets of the focal higher consumers (i.e. fish). 

2. The biomass of fish species that a model of fixed biomass but differing 

weighting and topology (i.e. different proportions of producers or differing 

diets of consumers) would be predicted to support.  

 

These are measured as proportional changes on a scale of 0 to 1 from an original 

web, i.e. one that contains no fish infected with the focal parasite (E. briani or B. 

acheilognathi) and with a community of primary producers at their proportions 

originally measured at the study sites (Chapters 2 and 3).  

 

6.3.5 Predictive modelling of scenarios  

The development of the initial food web was based on the dietary proportions of the 

host fish population according to the stable isotope analysis, i.e. they reflected the 

differences measured between the infected and uninfected individuals. Thus, the 

modelled diet of the infected fish was initially as per their observed parasite 

prevalence, with the relative proportions of the remainder of the food web calculated 

accordingly. This final model was then used as the basis for predicting the 

consequences of scenarios on the food web structure according to the following 

scenarios (S): 
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S1. Shifts in parasite prevalence of the host populations (using 0, 25, 50, 75, 100 %).  

S2. Shifts in the proportion of primary producers, with increasing proportions of 

phytoplankton to macrophyte, simulating the outcomes of increasing anthropogenic 

eutrophication. 

S3. The interaction of (1) and (2) above. 

 

For S1 at Site 1 where two fishes (R. rutilus and A. brama) were present that were 

host to E. briani, the infection level was kept the same for both species in the model, 

as this generally reflected the observed similarity in their infection levels (Table 2.1) 

and is consistent with the preferred size of fish that the parasite infects, which does 

not differ significantly between these two host species (Alston and Lewis 1994).  

 

For S2, the scenario of anthropogenic eutrophication centred on the resultant shift 

that tends to occur in eutrophic freshwaters, i.e. from macrophyte to phytoplankton 

domination (Hough et al. 1989). The infected and uninfected food webs were 

adjusted by decreasing the proportion of macrophyte in the foodweb, to 75%, 50%, 

25% and 0% of the starting macrophyte biomass and increasing the phytoplankton 

by the same amount so the total biomass remained constant. 

 

For S3, the scenarios combined all those completed in S1 with those completed in 

S2. All tested scenarios are summarised in Table 6.1 and 6.2.  
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Table 6.1 Scenarios modelled, to test the combined impact of disturbance 

(removal of macrophyte and replacement with phytoplankton) and differing levels of 

infection with Ergasilus briani.  

    E.briani infection level in host population. 

    0 25% 50% 75% 100% 

Percentage of 

Macrophyte 

depleted 

0     

25%     

50%     

75%     

100%     

 

 

Table 6.2 Scenarios modelled, to test the combined impact of disturbance 

(removal of macrophyte and replacement with phytoplankton) and infection differing 

levels of with B. acheilognathi.  

    B.acheilognathi infection level in host population. 

    0 25% 50% 75% 100% 

Percentage of 

Macrophyte 

depleted 

0     

25%     

50%     

75%     

100%     
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6.4  Results 

6.4.1 Site 1: Ergasilus briani 

Creating the weighted web 

The simplified food web comprised of 10 nodes and 19 weighted links (Figure. 6.2). 

Of these 19 links, the majority were weighted empirically and the remaining links 

were weighted heuristically. Table 6.3 summarises the mixing model outputs used in 

the completion of the initial food web model, with the additional data supplied in 

Appendix 4. 

 

Table 6.3 Summary of the Bayesian mixing models outputs predicting the 

proportions of each major food item to the diet of infected and uninfected A. brama 

and R. rutilus. 

Species Food item Modelled diet proportion (± SE) 

  Uninfected Infected 

A. brama Arthropoda 0.40 ± 0.14 0.35 ± 0.13 

 

Chironomidae 0.45 ± 0.14 0.51 ± 0.13 

  Zooplankton 0.15 ± 0.10 0.14 ± 0.08 

R. rutilus Arthropoda 0.59 ± 0.19 0.40 ± 0.19 

 

Chironomidae 0.38 ± 0.19 0.57 ± 0.19 

  Zooplankton 0.03 ± 0.03 0.03 ± 0.03 

 

The matrices created using the stable isotope proportions are supplied in Appendix 5. 

These were used to construct simple weighted models (e.g. Figure 6.2) in which each 

link in the model represents 1% of the organism/ group’s diet. Thus, in Figure 6.2, 

the shift between the diet of both infected and uninfected R. rutilus and A. brama 
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from one favouring arthropods to one favouring Chironomidae can be observed 

though the change in the link density.  

 

Scenario 1: Changing parasite prevalence under constant environmental conditions 

The scenario modelled here was maintaining the biomass of all fish at the original 

level whilst differing the levels of parasite prevalence in the host populations, 

specifically 0%, 25%, 50%, 75% and 100% prevalence. The major component of the 

diet of uninfected R. rutilus was arthropods, whilst chironomid larvae were the major 

component of the diet of A. brama, with arthropods comprising lower dietary 

proportions (Table 6.3). In infected individuals of both species, the diet shifted to 

having chironomid larvae as the major constituent. So whilst some changes occurred 

within trophic levels, as neither species fed (in a measurable quantity) upon primary 

producers, no structural changes were observed in the food web as regards the 

relative contribution of producers and consumers to the higher trophic levels, and 

there were negligible changes in the biomass of the two fish species (Figure 6.3).  
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Figure 6.2 Example of weighted food webs created based on stable isotope feeding niche data. a) is a food web in which no Rutilus rutilus 

and Abramis brama, are infected with Ergasilus briani b) is a food web in which 100% of both R. rutilus and A. brama are infected with E. 

briani. Each line represents 1% of the species’ or group’s diet.  

1
5

4
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Figure 6.3 Changes in the proportion of the total biomass of the food web 

contributed by the first (producers) (dark grey bars) and second (primary consumers) 

(pale grey bars) trophic levels. Error bars represent 95% confidence intervals. 

 

Scenario 2 environmental change with fixed numbers of parasites. 

The scenario modelled here was a shift  from the original system where macrophytes 

contributed 14% of the primary production, to one dominated by phytoplankton. 

This was achieved by deleting 25%, 50%, 75% and 100% of the macrophyte 

biomass from the original model web (i.e. the modelled system comprised 14%, 

10.5%, 7%, 3.5% and 0% of the biomass provided by macrophyte, with this lost 

biomass replaced by phytoplankton biomass, ensuring the total biomass of the 

system remained constant). 
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Two initial food webs were developed, one in which no fish were infected with E. 

briani (i.e. 0% parasite prevalence) and a second with both A. brama and R. rutilus 

infected at the levels recorded in the field, 67% and 63% respectively (Section 2.4). 

The biomass of uninfected and infected fish of both species decreased with 

decreasing proportions of macrophytes (Figure 6.4 and, b), with a proportionally 

greater decline in R. rutilus biomass than A. brama biomass, and the reduction in 

both species being less in the infected populations than in the uninfected populations 

(Figure 6.4). This biomass reduction occurred due to a bottom-up change in the 

proportion of arthropods available to the fish, as their availability reduced as the 

macrophytes proportion reduced. As the uninfected fish consumed proportionally 

more arthropoda than the infected  fishes, then their biomass was more impacted by 

the arthropod reduction. The infected fish fed more on chironomid larvae that fed 

upon detritus, and thus was less impacted by changes in macrophyte proportions. 
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Figure 6.4 Proportional change (0-1) in species’ biomass of a) uninfected 

Abramis brama (dark grey) and infected with levels of Ergasilus briani encountered 

in the study site on which the model is based (light grey); and b) uninfected R. 

rutilus (dark bars) and nfected with observed levels of E. briani encountered (light 
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grey) with changing macrophyte proportions. Error bars are 95% confidence 

intervals.  

 

Scenario 3 - effects of changing environmental conditions versus changing parasite 

prevalence. 

The scenario modelled here was a combination of Scenario 1 and Scenario 2, with 

reductions in macrophyte allied with changes in parasite prevalence, resulting in 25 

modelled permutations (Table 6.2). 

 

The predictions resulting from the scenario testing are similar to the pattern observed 

in the outputs of Scenario 2 (Figure 6.5). The eventual elimination of the macrophyte 

biomass results in declines in the A. brama and R. rutilus populations, but for both 

species the decline in biomass was less in parasitised fish, due to their greater 

reliance on chironomid larvae that were less affected by the changes in the primary 

producers.  
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Figure 6.5 Proportional changes (0 to 1) of species’ biomass, for Abramis brama 

and Rutilus rutilus populations with differing parasite prevalences and increasing 

proportions of macrophytes removed from the model. Error bars represent 95% 

confidence intervals. 
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6.4.2 Site 2: Bothriocephalus acheilognathi 

Creating the weighted web 

The simplified food web comprised of 8 nodes and 13 weighted links (Figure 6.6), of 

which the majority of links were weighted empirically, using the outputs of the 

stable isotope mixing models (Chapter 3). The remaining links were developed 

heuristically from published data. Table 6.4 summarises the mixing model outputs 

used in the completion of this web, with additional data supplied in Appendix 4. 

 

Table 6.4 Summary of the Bayesian mixing models outputs predicting the 

proportions of each major food item to the diet of Scardinius erythrophthalmus, and 

infected and uninfected Cyprinus carpio.  

Species Food item 

Modelled diet proportion (± 

SE) 

S. erythrophthalmus Arthropoda 0.46 ± 0.04 

 

Plankton < 250μm 0.24 ± 0.04 

  Plankton > 250μm 0.11 ± 0.03 

 Macrophyte 0.19 ± 0.02 

C. carpio 

 

Uninfected Infected 

 Arthropoda 0.50 ± 0.04 0.26 ± 0.04 

 Plankton <250μm 0.21 ± 0.03 0.41 ± 0.06 

 Plankton > 250μm 0.29 ± 0.04 0.33 ± 0.06 

 

The matrices created using the stable isotope proportions are supplied in Appendix 5. 

These were used to construct simple weighted models (e.g. Figure 6.6) in which each 

link in the model represents 1% of the organism/ group’s diet. Thus, in Figure 6.6, 
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the shift between the diet of an infected and uninfected C. carpio from one favouring 

arthropods, to one favouring phytoplankton, can be observed via the change in link 

density.  
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Figure 6.6 Example of weighted food webs created based on stable isotope feeding niche data. a) is a food web in which no Cyprinus carpio, 

are infected with Bothriocephalus acheilognathi b) is a food web in which 100% of C. carpio are infected with B. acheilognathi. Each line 

represents 1% of the species’ or group’s diet.  

1
6

2
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Scenario 1: Changing parasite prevalence under constant environmental conditions 

In this scenario, fish biomass was maintained at the original level whilst differing the 

levels of parasite prevalence in the population of C. carpio, specifically at 0%, 25%, 

50%, 75% and 100% prevalence. No changes were made to other higher consumers 

S. erythrophthalmus and Ardea cinerea, thus the biomass of fish and birds remained 

constant in the modelled scenarios. As empirical data had suggested infection by B. 

acheilognathi resulted in a dietary shift from arthropod dominated diet to 

phytoplankton being the most consumed item then, assuming a closed system, from 

a food web perspective this meant the structure shifted, with the first trophic level 

contributing an incrementally greater proportion of the total biomass as parasite 

prevalence increased (Figure 6.7). Concomitantly, the proportion contributed to total 

biomass by the second trophic level decreased.  

 

Figure 6.7 Changes in the proportion of the total biomass of the food web 

contributed by the first (producers) (dark grey bars) and second (primary consumers) 

(pale grey bars) trophic levels. Error bars represent 95% confidence intervals. 
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Scenario 2 environmental change with fixed numbers of parasites. 

The scenario modelled here was a shift in from the original system where 

macrophytes contributed 26% of the primary production, to one dominated by 

phytoplankton. This was achieved by deleting 25%, 50%, 75% and 100% of the 

macrophyte biomass from the original model web (i.e. 26%, 19.5%, 13%, 6.5% and 

0% of the biomass was provided by macrophyte). The impact these changes had on 

the rest of the food chain was calculated.  

 

Two initial food webs were developed, one in which no C. carpio were infected with 

B. acheilognathi (i.e. 0% parasite prevalence) and a second with 61% of C. carpio 

infected  -  the level recorded in the field (Section 3.4). The biomass of both 

uninfected and infected C. carpio increased with decreasing levels of macrophytes 

(Figure 6.8a), but increased more in infected fish than uninfected fish. This was 

because the infected fish fed to a greater extent on phytoplankton, which increased as 

macrophyte decreased, whilst the diet of uninfected fish had a smaller portion of 

macrophyte, and a larger portion of arthropods – a group which fed on macrophyte, 

and therefore declined as a consequence of the decline in macrophyte biomass. As 

arthropods comprised the majority of the diet of S. erythropthalmus then their 

population biomass decreased as macrophyte decreased.   
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Figure 6.8 Proportional changes in a) uninfected Cyprinus carpio population 

biomass (dark grey bars) and C. carpio population biomass where with 61% of fish 

were infected with Bothriocephalus acheilognathi (light grey bars), and b) S. 

erythropthalmus (clear bars), with increasing percentage of macrophyte removed 

from the model. Equal biomass of phytoplankton was added so total biomass of 

producers remained constant. Error bars represent 95% confidence intervals.  
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Scenario 3 - effects of changing environmental conditions versus changing parasite 

prevalence. 

The scenario modelled here combined Scenario 1 and Scenario 2, with reductions in 

macrophyte allied with changes in parasite prevalence, resulting in 25 modelled 

permutations (Table 6.2).  

 

Two distinct patterns were clear. Firstly, in all cases, reducing macrophyte and 

proportionally increasing phytoplankton increased the overall biomass of C. carpio 

(Figure 6.9). Secondly, this increase was proportionally greater in the infected 

populations. Thus, the scenario in which the highest biomass of C. carpio was 

predicted was one in which all fish were infected and all macrophyte was removed. 

In this case, the predicted total biomass of C. carpio was approximately 24% higher 

than that of the original system due to the higher reliance of the infected fish on 

phytoplankton in their diet (Table 6.4; Figure 6.9).  
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Figure 6.9 Proportional changes of species biomass, for Cyprinus carpio 

populations with differing infection levels and Scardinius erythrophthalmus, with 

increasing percentage of macrophyte removed from the model. Error bars represent 

95% confidence intervals. 
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6.5  Discussion 

Chapter 5 revealed that whilst the addition of native parasites to food webs greatly 

altered the food web topology, the addition of non-native parasites had a relatively 

minor effect, including when the non-native parasite was trophically transmitted. 

This, however, did not consider the effect of the non-native parasites on the trophic 

ecology of the host. Through incorporation of the information on how infection 

altered the trophic niche of the infected fishes, it was demonstrated here that the 

infections with non-native parasites can have more substantial consequences for the 

food web than demonstrated topologically. Building weighted food webs that utilised 

data on the parasite-mediated modified trophic niches of the host fishes 

demonstrated that parasites can have a substantial influence on how the fish 

population and community responds to environmental changes. Thus, the weighted 

models suggest that the host population and food web consequences of infection, that 

already include contributing biomass (Johnson et al. 2010), mediating competitive 

interactions (Hatcher et al. 2006) and moderating host populations (Dobson and 

Hudson 1995), also includes altering how hosts could respond to environmental 

changes.  

 

Altering the parasite prevalence in the host populations had relatively minor 

consequences for their population biomass, with the consequences of environmental 

changes through eutrophication (modelled as decreased proportions of macrophytes) 

being more pronounced on both the uninfected and infected individuals. Indeed, 

alterations in water quality can have pronounced implications for parasite ecology 

(Lafferty and Kuris 1999), often resulting in improved conditions for parasites 

should their host density increase, with generalist fish species such as R. rutilus 
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usually being favoured by eutrophic conditions (Beardsley and Britton 2012; Elliott 

et al. 2015). Eutrophic conditions also influence parasite prevalence through the 

associated increased productivity that increase the abundance of intermediate hosts. 

For example, Beer and German (1993) outlined that eutrophication improved 

conditions for snails (intermediate host) that, when combined with escapee farmed 

ducks (final host), accelerated the life cycle of the digenean Trichobilharzia ocellata. 

Valtonen et al. (1997) also discussed how increasing eutrophication in lakes over 

time was associated with greater overall parasite species richness in two fish species, 

including R. rutilus. Consequently, the scenario of increased parasite prevalence and 

anthropogenic eutrophication is realistic in the context of the host populations used 

and thus the model outputs should have relatively wide application to freshwaters 

and their fish communities. 

 

The interaction of environmental change with increased parasite prevalence for C. 

carpio infected with B. acheilognathi resulted in significantly increased biomass in 

infected individuals. Although counter-intuitive, the energetic effects of B. 

acheilognathi can be relatively minor to host fishes, particularly once they attain 

lengths at which they only act as reservoirs of infection (e.g. >100 mm (Britton et al. 

2012), with mortality incurred by the parasite being primarily in fishes < 50 mm 

(Britton et al. 2011). Moreover, whilst reduced condition in infected individuals was 

observed over time in this research, this only developed over a 12 month time frame. 

For E. briani, although all scenarios of eutrophication resulted in reduced biomass of 

the fish populations, this was reduced in the infected individuals. Again, whilst this 

parasite can cause mortality in hosts, this can be size-selective, with smaller hosts 

being more susceptible (Dezfuli et al. 2003; Linder et al. 2012), and thereafter, the 
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consequences of infection appeared relatively minor in this study, with no 

differences detected in condition between infected and uninfected fish. 

Consequently, this suggests that providing the infection by these parasites for host 

fishes is not at a life stage that results in their mortality, then the sub-lethal 

consequences of infection can actually result in increased biomass of infected 

individuals due to an increase in the availability of their preferred food types due to 

environmental changes.  

 

That infection was predicted to increase population biomass as environmental 

conditions degraded was a consequence of their parasite-mediated altered trophic 

niche, with fish infected with E. briani tending to consume food items of lower 

motility and those infected with B. acheilognathi selecting items small enough to 

either easily consume or to pass through their partially blocked intestine. The 

increased biomass of phytoplankton that occurs in lakes through eutrophication 

(Smith et al. 1999) thus provides the C. carpio infected with B. acheilognathi with a 

food resource that is likely to be unlimiting. For R. rutilus and A. brama infected 

with E. briani, their principal feeding on chironomid larvae, a food resource that was 

not impacted directly by the altered conditions and would most likely thrive in the 

eutrophic conditions (Langdon et al. 2006), resulted in their increased biomass. 

Thus, providing the hosts were able to survive and tolerate the parasite infections, 

they were able to then have some resilience to this aspect of environmental change. 

 

The models predicted that the uninfected fishes would either have increased declines 

in their biomass in eutrophic conditions (R. rutilus and A. brama) or increase in 

biomass but at a lesser rate than infected fish (C. carpio). The model could not, 
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however, incorporate diet switching in the uninfected fishes and so could not reflect 

any changes in their diet that would most likely occur as their food resources 

changed. Indeed, eutrophication is frequently associated with alterations in fish diet, 

such as through changes in prey size structure (Hayward and Margraf 1987) and prey 

species (Winfield et al. 2012). Consequently, it is likely that considerable alterations 

in the diet composition of the uninfected fish would occur with the onset of 

eutrophic conditions and it is likely that this would ensure that their responses to the 

altered conditions were as equal, if not higher, than for the infected fishes. Thus, 

whilst it can be argued that the predictions for the infected fishes were robust and 

ensured their survival in the face of the changes, some caution is needed when 

comparing their output to the uninfected fishes, especially given the plasticity in diet 

observed in generalist cyprinid species such as R. rutilus and C. carpio (Kahl and 

Radke 2006; Britton et al. 2007; Estlander et al. 2010). Nevertheless, these outcomes 

reveal the high utility in developing weighted models to predict the outcomes of 

changes in parasite prevalence and environmental change on fish populations and 

communities that are affected by introduced parasites, and indicate that their 

outcomes can be counter-intuitive, with the altered trophic niches of hosts caused by 

infection providing some subsequent benefits that ensure they are able to take 

advantage of the new conditions.  
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7. Discussion 

 

7.1 Introduced parasites  (Chapter 1)  

Introductions of free-living species are often accompanied with the release of their 

parasites (De Silva et al. 2006; Gozlan et al. 2006; Gozlan et al. 2010). In fisheries, 

this often occurs most commonly via the movement of fish or eggs for aquaculture 

purposes (De Silva et al. 2006; Peeler et al. 2011). Whilst many non-native parasites 

are lost during the introduction process (Colautti et al. 2004), those that are released 

into new environments have the potential to cause significant harm to their hosts 

(Poulin et al. 2011). Whilst infections are known to cause mortality and high 

morbidity in their hosts (Bovo et al. 1987; Gozlan et al. 2005; Johnson et al. 2010), 

there has been less attention paid to their sub-lethal ecological consequences, despite 

the important roles that native parasites are known to play as ecosystem engineers 

and within food webs (Mouritsen and Poulin 2003; Dobson et al. 2006; Hatcher et al. 

2006). Thus here, through use of three host-parasite models, with those three 

parasites having differing lifecycles from simple direct transmission to complex 

multi-host lifecycles, the ecological consequences of parasites introduced into the 

UK was investigated through their effects on hosts (from individual to population 

effects) and food web structure, the results are summarised in Table 7.1. 
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Table 7.1 Summary of impacts revealed in this study in infected hosts, and infected communities for the three focal parasites, related to the 

thesis’s research objectives (Section 1.10).  

  Objective 

Host/Parasite system 

O1 O1 O2 O2 O3 O4 

Pathology 

Host growth and 

condition 

Trophic niche 

width 

Trophic 

position 

Topological web 

impact 

Weighted web 

impact 

E. briani in R.rutilus and     

A. brama   ×  × × 

B. acheilognathi in C. carpio  * ×   

A. crassus in A. anguilla   × ×   - 

 

* Significant difference observed only after extended period of infection 

 

1
7

3
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7.2  Individual host consequences of non-native fish parasites (Chapters 2, 3 

and 4) 

7.2.1 Pathology  

Infections of all three parasites resulted in noticeable pathological effects on host 

fishes. In Chapter 2, R. rutilus and A. brama infected with E. briani were examined 

and the gross pathological changes included displacement of gill filaments, 

hyperplasia and localised haemorrhaging within the filaments as a consequence of 

parasite attachment, as well as localised loss and compression of gill epithelium 

attributed to parasite feeding. These findings were consistent with pathological 

changes associated with other Ergasilid parasites (Alston and Lewis 1994; Dezfuli et 

al. 2003). In Chapter 3, the pathology of B. acheliognathi infection in juvenile C. 

carpio was described. During dissections, the parasite was often visible as a large 

solid mass in the intestine prior to its opening. Within the intestine, at the point of 

attachment, the scolesces of the parasites pinched the intestinal folds, compressing 

the epithelium and, in places, almost exposing the basement membrane. Heavy 

infections caused near complete occlusion of the intestinal tract, thinning and 

compressing the gut wall, and displacing internal organs, including the swim 

bladder. These outcomes were consistent with reported impacts of B. acheliognathi 

(Britton et al. 2011b). In Chapter 4, the pathology of A. crassus in A. anguilla, two 

specific stages of infection were observed. The initial stage was where parasites were 

present, often in large numbers and occupying the swimbladder. The second stage 

was following the departure of the parasite when the swimbladder walls were left 

scarred and opaque, as also noted from other studies (Lefebvre et al. 2002; Kirk 

2003).  
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7.2.2 Host growth and condition  

Infection by the non-native parasites appeared to have only minor consequences for 

the growth (as differences in 0-group fish length) and condition of individual hosts in 

two of the three focal host/parasite systems. For R. rutilus and A. brama infected 

with E. briani (Chapter 2), and A. anguilla infected with A. crassus (Chapter 4), 

there were no significant differences in body length and condition, and 

hepatosomatic index (A. anguilla only), between the infected and uninfected 

individuals. In Chapter 4, by monitoring a cohort of juvenile C.carpio infected with. 

B. acheliognathi over a 12 month period, substantial and significant changes were, 

however, detected that developed over time. Whilst there were no significant 

differences in length of infected and uninfected fish on initial sampling, this altered 

after 12 months, with lengths of infected individuals now being significantly smaller 

than uninfected. Similarly, in initial samples, differences in condition (as Fulton’s 

condition factor, K) between infected and uninfected fish were not significantly 

different, but were by month 12. This highlights the potential requirement to measure 

infection consequences over long-time periods, and suggests that the lack of 

differentiation observed in the other parasite: host systems might have been related 

to only taking samples on discrete occasions.  

 

7.3 Trophic consequences of infection at the population level (Chapters 2 

and 3) 

Chapters 2 and 3 demonstrated how infection by non-native parasites could induce 

significant but differing changes in the trophic niche of the infected component of a 

host population. In Chapter 2, niche constriction was apparent in the infected 

components of the R. rutilus and A. brama populations, with this being consistent 



 176 

across the different sites studied. Chapter 3 revealed that the trophic niche of C. 

carpio infected with B. acheilognathi differed significantly from that of uninfected 

fish, with a distinct shift in resource utilisation that increased the trophic niche of the 

overall population. Stable isotope mixing models predicted these changes occurred 

through the diet of infected R. rutilus and A. brama becoming less diverse and more 

focused on less motile food items, whilst for infected C. carpio, their diet shifted 

from one with a high arthropod content to one more dependent on phytoplankton.  

 

Optimum foraging theory predicts that animals will feed on the most valuable 

resources, ignoring lower-value resources when search and handling time could be 

better spent searching for more valuable resources (Bolnick et al. 2003). The factors 

acting in this process are the resource traits and phenotypic capacity of individuals to 

capture, handle and to digest those resources (Araujo et al. 2011). Thus, niche 

variation between individuals is largely dependent on the diversity and abundance of 

available resources versus the phenotypic traits of the individual (Crowden and 

Broom 1980; Stephens and Krebs 1986). Here, it was suggested that the parasite 

infection was acting as a trait that exerted a strong influence on their niche variation. 

Moreover, the functional response of a consumer is the relationship between prey 

density and prey consumption (Holling 1959), thus is a useful descriptor of predator 

behaviour and their impacts on prey populations (Dick et al. 2010), with a previous 

study on young-of-year C. carpio detecting a reduced functional response in 

individuals infected with B. acheilognathi compared with uninfected individuals 

(Britton et al. 2011b). Infected fish had higher handling times and longer searching 

times for food, potentially providing some explanation for the patterns observed 

here. The determinants of these remain uncertain, but potentially relate to the 
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parasite blocking the intestine and in doing so, reducing feeding motivation, and 

food and energy intake (Scott and Grizzle 1979; Britton et al. 2011a). 

 

Although the causal mechanisms behind the niche constriction measured in R. rutilus 

and A. brama infected with E. briani can only be speculated as they were unable to 

be tested here, other studies suggest that infections by other Ergasilid parasites that 

result in similar gill damage have consequences of respiratory dysfunction, 

osmoregulatory failure and haematological disruption (Hogans 1989; Abdelhalim et 

al. 1991; Alston and Lewis 1994; Dezfuli et al. 2003). Thus, the reduced ability of 

infected fishes to access the same resources as uninfected ones might relate to their 

reduced foraging abilities caused by such issues. Irrespective of their underlying 

mechanisms, in both cases it was apparent that infected fishes increased their 

predation of prey items that were highly abundant and/ or relatively slow moving, 

and thus presumably required relatively lower energy expenditure to capture and 

handle during foraging. 

 

7.4 Does trophic niche impact the probability of infection? (Chapter 4) 

Phenotypic differences in behaviours are frequently reported between individual fish 

uninfected and infected with specific parasites (Barber et al. 2000; Loot et al. 2001). 

This, however, tends to be more in the context of parasite-induced changes to the 

host post-infection (Blanchet et al. 2009). Chapter 4 demonstrated an alternate 

scenario, whereby the host phenotype influenced their probability of infection. 

Within populations of A. anguilla, variation in head morphology is common, with 

individuals on a spectrum between broad-headed and narrow-headed (Lammens and 

Visser 1989; Proman and Reynolds 2000; Tesch 2003). These differences in head 
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morphology have been related to individual specialisation, with broader-headed A. 

anguilla individuals being more piscivorous (Cucherousset et al. 2011). The parasite 

A. crassus has multiple paratenic hosts in its invasive range resulting in elevated 

parasite exposure in piscivorous animals, including A. anguilla, the definitive 

European host. Thus, the eels with broader head widths have increased probability of 

infection by A. crassus, as they have greater exposure to the parasite through 

consuming higher proportions of paratenic fish hosts. Indeed, the logistic regression 

model revealed head morphology and diet were significant predictors of infection 

status, with up to 78 % of eels correctly assigned to their infection status in models 

(Section 4.4).  

 

7.5 Infectious food webs (Chapters 5 and 6) 

Chapter 5 and 6 illustrated the utility of food web structure to investigate the 

consequences of additions of new parasites into aquatic communities (Dunne et al. 

2002; Petchey et al. 2008; Amundsen et al. 2013). These chapters also illustrated 

how data derived for food webs can be applied in different ways with consequent 

contrasting outcomes, i.e. the topological versus weighting approaches. In Chapter 5, 

topological changes were modelled going from food webs including all parasites 

(including non-native) and free-living species, to ones where only free-living species 

were modelled. Several factors were identified as critical to the scale of impact 

caused by introduced parasites to web topology, including host specificity, 

complexity of lifecycle and the extant diversity of the communities being invaded. 

When A. crassus, a parasite with a complex lifecycle, was present in a relatively 

diverse fish and native parasite community, their effect on topological metrics were 

reduced compared to B. acheilognathi when their host population was within a 
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relatively simple fish community, despite a similarly complex lifecycle. Whilst the 

connectance, nestedness and chain length of the food webs were all altered by the 

addition of the non-native parasites, the magnitude of that change was, in all cases, 

far less than the change caused by the addition of native parasites to a non-

parasitised food web. 

  

In Chapter 6, the dietary data produced in Chapters 2 and 3 were incorporated into 

simplified versions of the topological webs from Chapter 5 to create weighted webs, 

and those weighted webs were then applied to test the outcomes of a series of 

scenarios that tested outcomes of changes in parasite prevalence and nutrient 

enrichment. In contrast to the food web topology, the weighted models revealed how 

even a single introduced parasite with a simple direct lifecycle can have substantial 

food web level effects. Where infection resulted in its host feeding at a lower trophic 

level, the entire structure of the web shifted, with the biomass of the first trophic 

level increasing proportionally to the second. Chapter 6 further demonstrated how 

the conditions of eutrophic systems could be beneficial to infected hosts, which 

tended to feed on abundant food items of lower nutritional status. Thus, providing 

that the hosts were able to survive and tolerate infections, they then had some 

resilience to this aspect of environmental disturbance. This interaction suggests that 

the effects of global changes, such as anthropogenic eutrophication and introduced 

species, could have counter-intuitive consequences for fish communities via their 

interactions that result in additive or synergistic outcomes. 
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7.6 Management of non-native parasites 

Freshwater fish in the UK are a valuable resource.  Considering specifically the 

species studied in this research, export figures from Britain for elvers and mature 

A.anguilla are £3.5 and £2.75 million per annum, respectively (Peirson et al. 2001). 

Meanwhile the value of recreational sport fishing, for species including C.carpio, 

R.rutilus and A.brama in the UK is valued in the region of £1 billion (Hickley and 

Chare 2004).  In addition, inland fisheries have great value in terms of existence 

value, rural economics and the social benefit of urban fisheries (Peirson et al. 2001). 

Thus there is considerable need to protect stocks against potentially harmful novel 

parasites. In practice this is balanced against the benefits of stock movement and 

enhancement, and the practicalities of management and enforcement of any 

restrictions (Hickley and Chare 2004). Whilst predicting the impact of a non-native 

species is difficult (Manchester and Bullock 2000), the findings of this study add 

new information to the body of evidence available for decision makers governing 

UK fisheries management. Previous to this study, risk assessments for non-native 

parasites considered the potential impact that parasite may have on its host (Williams 

2007; Williams et al. 2013). However this study has demonstrated that even in 

scenarios where infection may not appear to have marked consequences for the 

growth or condition of a host, and thus the parasite appears benign, this can be a 

superficial assessment, as there might be trophic consequences apparent that 

subsequently manifest as wider consequences at the food web or even ecosystem 

level. Thus, this research has highlighted that in considering the issues of non-native 

parasites, looking beyond immediate host pathological and energetic consequences 

and looking at wider ecological perspectives can provide contrasting evaluations of 

impact.  
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These aspects are important to consider in a management context given that 

controlling the distribution and spread of introduced parasites is inherently difficult 

in wild situations (Hoole et al. 2001). Unlike in aquaculture systems, treatment via 

medical interventions is not feasible (Ward 2007) and, irrespective, there would be a 

high risk of potentially serious side effects on native invertebrate fauna 

(Kolodziejska et al. 2013). Thus, in lentic situations at least, available options are 

limited to either dewatering and removing all fish to eliminate all the parasite life 

stages, or accepting a degree of parasitism and managing the infected stock 

(Simberloff 2009; Davies and Britton 2015). In lotic situations, arguably only the 

latter option is available in a disease context (Williams et al. 2013), although 

introduced G. salaris has been managed successfully in Norwegian rivers using a 

biocide approach (Johnsen and Jensen 1991; Cable et al. 2000). Under present 

legislation, the movement of fish infected with the three parasites used in this 

research to online waters in England and Wales is prohibited (Agency 2015). Any 

such prohibition has financial implications for the fish movement industry (Williams 

et al. 2013) and, therefore, ought not to be taken lightly. However, the results of this 

study tend to support the continued control of E.briani, B.acheilognathi and 

A.crassus. Furthermore, these results suggest that the consideration of wider, non-

lethal consequences of non-native parasites that move beyond individual pathology 

and condition assessments should be incorporated into the decision-making and risk-

assessment processes.  

 

For fishery managers, knowledge of parasite behaviour is already used in a disease 

management context, when spread of trophically transmitted parasites is controlled 
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by elimination of intermediate hosts. For example, infections of diplostomatid eye-

flukes are controlled in aquaculture situations by controlling snail populations 

(Chappell 1995) and prevention of contact between gulls and farmed fish can reduce 

the spread of the digenean Cryptocotyle lingua (Kristoffersen 1991). The research 

presented here provides evidence on how manipulation of the physical habitat and 

food resources could be manipulated in a way as to limit parasite transmission. For 

example, Chapter 6 highlighted how a eutrophic system suited the diet of infected 

hosts, thus it could be construed that a relatively undisturbed system would be less 

favourable, thus a simple measure of maintaining relatively high macrophyte 

abundances with a diverse macroinvertebrate fauna could create an environment that 

could potentially support a greater proportion of fish that remain uninfected by the 

non-native parasites.  

 

7.7 Potential short-comings of the research approach 

In all cases in this research, the number of fish populations studied per non-native 

parasite was limited and the sample sizes often relatively limited. This was the result 

of logistical and financial constraints, low numbers of known fish populations 

infected with some of the parasites, and problems in obtaining permissions to 

remove large sample sizes of fishes of unknown infection status at the time of 

collection, especially A. anguilla as these have recently been assessed in the IUCN 

Red List as critically endangered (Jacoby and Gollock 2014). The three model 

parasites were chosen as they were all introduced into the UK and have differing 

complexities in their lifecycles (Section 1.9), yet the fact that they all occupied 

different hosts and those hosts occupied different habitats could confound the ability 

to make strong comparisons between them. Furthermore, in terms of data collection, 
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only the consequences of B. acheilognathi on their hosts were able to be measured 

over an extended time period. Nevertheless, it can also be argued that this approach 

still provided some extremely insightful outcomes that were then used as the basis 

for modelling approaches that resulted in substantially increasing the extant 

knowledge on these parasite-host systems and their consequences for freshwater 

food webs.  

 

In this study, stable isotope analysis was used as the method to determine dietary 

differences in the fishes rather than more traditional dietary analytical tools, such as 

stomach contents analysis. The benefits of using stable isotope analysis are through 

its provision of a much longer temporal perspective on diet composition, with the 

timescale dependent on the tissues analysed (e.g. 4 to 6 months for muscle and fin-

tissue; Jackson et al. 2012). It avoids the requirement for completing stomach 

contents analysis on cyprinind fishes that are agastric, thus have relatively long 

intestinal tracts that are often full of material whose contents are sufficiently 

masticated by the action of the pharyngeal teeth to make their accurate identification 

extremely difficult (Grey 2006). Had stomach contents analysis been used, then it 

would also have meant much larger sample sizes would have required collecting 

over much longer timeframes and at different times of day in order to ensure that 

dietary comparisons between infected and uninfected fish reflect their actual 

differences and are not biased due to sampling issues. Notwithstanding these issues, 

it is acknowledged that the diet composition of the fishes were estimated from 

mixing models rather than from direct observations, and mixing model performance 

is dependent upon the quality of data and knowledge used to build them (Phillips et 

al. 2014; Busst et al. 2015). 



 184 

 

In addition, whilst infections by both B. acheilognathi and E. briani both resulted in 

differences in trophic niche between infected and uninfected fish, the mechanism by 

which these changes occurred were suggested but not tested further, and this remains 

an outstanding research requirement.  

 

7.8 Future directions 

As with any study based on wild population sampling, increasing the spatial and 

temporal replication of samples should ultimatly increase understandings of the 

results and identify where these have inherent context dependency versus general 

patterns that are ecologically relevant (Eberhardt and Thomas 1991; Kratzer and 

Warren 2012; Hadfield et al. 2014). In a regulatory context, there are currently seven 

‘Category 2’ non-native parasites (those considered harmful) and seven novel 

parasite species (introduced and of un-assessed impact) in England (summarised in 

Table 7.2), providing many options to expand the scope of the research in terms of 

model parasite: host systems. These parasites include species that parasitise different 

hosts, have different host specificity and different lifecycle complexities (Table 7.2). 

Whether these factors lead to any overarching themes in terms of parasite impact is 

unlikely, but from a risk management perspective attempting to establish if this is the 

case could lead to better management of non-native parasites in the UK.   
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Table 7.2 Non-native Category 2 and Novel fish parasites in England, the complexity of their lifecyles, and specificity of their final hosts 

(adapted from Environment Agency 2015).   

 

Fish host             Complexity of life cycle             Specificity of final host 

Pomphorhynchus laevis Complex Intermediate amphipod host Non-specific 

Salmonids and riverine cyprinid 

fish species 

Anguillicoloides crassus Complex 

Intermediate crustacean hosts, 

multiple paratenic hosts  

Specific Anguilla anguilla 

Monobothrium wagneri  Complex Intermediate copepod hosts Specific Tinca tinca 

Bothriocephalus acheilognathi  Complex Intermediate copepod hosts Specific Cyprinus carpio and variants 

Philometroides sanguineus  Complex Intermediate copepod hosts Specific 

Carassius carassius and Carassius 

auratus 

 

 

 

   

 

 

1
8

5
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 (Cont.) 

Fish host Complexity of life cycle Specificity of final host 

Ergasilus sieboldi Direct 

 

Non-specific Multiple salmonid and cyprinid fish species 

Ergasilus briani Direct 

 

Non-specific Multiple salmonid and cyprinid fish species 

Lernea cyprinacea Direct 

 

Non-specific Cyprinid species 

Tracheliastes polycolpus  Direct 

 

Non-specific Multiple salmonid and cyprinid fish species 

Tracheliastes maculates  Direct 

 

Non-specific Multiple salmonid and cyprinid fish species 

Ergasilus gibbus Direct 

 

Specific Anguilla anguilla 

Pellucidhaptor pricei  Direct 

 

Specific Abramis brama 

carp edema virus (CEV) Direct 

 

Specific Cyprinus carpio and variants 

Herpesvirus anguillae (HVA)  Direct   Specific Anguilla anguilla 

 

 

 

1
8

6
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Additionally, a major finding of Chapter 3 was the importance of repeated 

observation of parasite impact over an extended timescale, a feature which could be 

incorporated into future studies but one that has distinct resource and logistical 

implications.  

 

The decision to base the dietary analyses on stable isotope analysis was deliberate 

due to the reasons outlined in Section 7.8. When applied appropriately, it provides a 

powerful ecological tool that has been applied to a wide range of ecological 

questions, such as assessing the ecological impacts of non-native fishes 

(Cucherousset et al. 2012). Nevertheless, future studies could also incorporate some 

stomach content analyses to verify the outcomes. It should, however, be noted that 

studies that rely on both stable isotope analysis and stomach contents analysis often 

show contrasting outcomes, for example food items found in high abundance in 

stomach contents may in fact only be briefly temporally abundant therefore their 

overall contribution to the fishes diet may be over–represented,  so due to the 

different timescales the results of the two methods can be contradictory rather than 

complementary (Locke et al. 2013). 

 

As previous experimental studies have shown changes in functional response as a 

result of parasitism (Dick et al. 2010; Britton et al. 2012), then behavioural 

functional response models could be applied further to parasites, such as E. briani, in 

order to derive greater mechanistic understandings of the processes underlying the 

development of differences in trophic niche. This could then be supplemented by 

studies examining the physiological impacts of the parasite, for example by 

measuring haematocrit levels (e.g. Jones and Grutter 2005), or experimentally testing 
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the comparative excretion metabolites associated with stress such as ammonia 

(Buttle et al. 1996) and steroids (Pankhurst 2011).  

 

Finally, the weighted models have much potential for refinement, addition and 

expansion. For example, the survival of all infected fish is assumed, yet both of the 

parasites used in the weighted models are known to result in some host mortality 

(Alston and Lewis 1994; Scholz et al. 2012). Consequently, models could be 

developed that build in mortality rates, although this would require further 

information on how the parasite results in host death, e.g. directly via pathological 

damage and/ or indirectly via energetic consequences that result from heavy 

infections. Similarly, modelling reactive changes into the diet of uninfected fish, to 

capitalise on increased abundances of non-preferred items would enhance the realism 

of the model, and provide a more representative insight into the competitive 

interactions of infected and uninfected conspecifics. Furthermore, the model 

outcomes have yet to be validated by empirical study, with controlled experiments in 

mesocosm contexts potentially providing systems where this could be completed. An 

example is provided by (Buck et al. 2015) who successfully used mesocosm 

experiments to demonstrate the community impacts of an amphibian parasite, 

revealing that contrary to their predictions the effects of nutrient supplementation 

and infection were additive rather than interactive. Thus, testing the impacts of the 

focal parasites in their fish hosts in a similar fashion could corroborate the model 

outputs or suggest areas of improvement, such that the model could have ultimately 

have greater research and management value as a predictive tool for assessing the 

potential impact of these parasites in future scenarios of environmental change.  
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Appendix 1.  Post-mortem examination methodology 

 

Adapted from: 

Hoole, D., Bucke, D., Burgess, P. and Wellby, I., 2001. Diseases of carp and other 

cyprinid fishes. Oxford: Fishing News Books. 

 

Detailed internal examination 

The skin and body wall musculature is cut away to reveal the internal organs. The 

first incision is made parallel to the operculum from just dorsal to the lateral line, to 

below the pectoral fin-joint and round to the mid-line of the fish. Holding the 

pectoral fin with forceps, a second incision is made along the midline of the fish to a 

point between the opercula. Pulling the pectoral fin up and away from the body 

exposes the pericardial cavity and the heart. 

 

Heart removal and examination 

The heart is removed using forceps just in front of the bulbus arteriosus, and pulling 

the whole heart gently out of the pericardial cavity. The heart is then placed on a 

petri dish with phosphate buffered saline (PBS) and examined under a low power 

dissecting microscope. The organ is then cut longitudinally to reveal the interior; this 

procedure is done at x10 magnification.  

After removal of the heart a ventrolateral opening in the body of the fish is made by 

using blunt ended scissors from the top of the first incision along the flank just 

ventral to the lateral line, curving the cut ventrally to the vent. Remove the resulting 

flap from the fish, making sure that all internal organs remain intact. To gain access 

to the kidneys in cyprinids, the swimbladder is gently removed. 
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Visceral organs 

The spleen, liver and kidney are examined in situ, and any discolouration, 

haemorrhaging, tumours, abnormalities, parasites etc., noted. Small pieces of each 

organ (approximately 2mm size) are taken, placed on slide with a small amount of 

saline, squashed using the coverslip and examined under a compound phase contrast 

microscope at x100 and x400 magnification. 

 

Intestine 

The gastro-intestinal tract should be carefully removed from the body cavity, noting 

any discoloration, haemorrhaging, fluid retention, necrosis, tumours, fat deposition, 

etc. The intestine is opened using a longitudinal cut and examined in PBS under a 

low power microscope, noting the contents and any abnormalities and parasites. 

 

Gills 

Gills are removed intact, by cutting each end of the branchial arches separately, and 

their general appearance and any abnormalities, e.g. Necrosis clubbing or 

haemorrhaging, noted. Examination of the gills is carried out in PBS under a low 

power dissection microscope, teasing out the connective tissue between the gill 

filaments and examining for parasites. Squashes of gill tissue are made from a 

number of filaments and examined at magnification x100 and x400 in phase contrast, 

for parasites. 

 

Eyes and nasal cavity 

Following a general external examination of the eye in which any abnormalities, e.g. 

lens opacity, are noted, the organ is removed by slipping a pair of curved forceps 
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under the eyeball, and cutting the connective tissue below and around it. The lens 

and humour of the eye are examined in a petri dish containing PBS under a low 

power light microscope, taking care not to damage the lens during removal. 

Following removal of the nasal flaps, a brief examination of the nasal cavity can be 

made under low power dissection microscope, and any abnormalities and parasites 

noted.  

 

Brain 

A transverse cut is made vertically into the head of the fish, dorsal to the top of the 

operculum. The brain, which is located posterior-dorsally to the eyes, can be 

removed intact and examined for any obvious signs of disease, e.g. tumours, 

haemorrhaging and necrosis. 
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Appendix 2.  Lists of species and functional species used in 

topological food webs in Chapter 5 

 

Table A2.1 Site 1 Species list 

Free-living species Parasites 

Navicula sp. Ergasilus briani 

Scenedesmus sp. Diplozoan sp. 

Diatom spp. C. fennica 

Cladophora spp. Myxobilus sp. 

Marginal weed various spp. Myxidium sp. 

Detritus Philometra sp. 

Urotricha sp. Dactylogyrus sp. 

Paramena sp. Trypanoplasma sp. 

Khillomonas sp. C. laustrus  

Euglena sp. B. luciopercae 

Corixidae Triaenophalous sp. 

Annelida Myosporida sp. 

Chironomidae A.locii 

Cladocera Piscicola sp.  

Copepoda 

 Assellidae 

 Gammaridae 

 Hydrobidae 

 Valvatidae 

 P. leniusculus 

 A. cygnea 

 Aerial insects 

 Terrestrial insects 

 A. brama 

 R.rutilus 

 P. fluviatilis 

 E.lucius   
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Table A2.2 Site 2 Species list 

Free-living species Parasites  

Diatom spp A.platyrhynchos 

Marginal weed F.atra 

Cladophora spp. Apiosoma sp. 

Euglena spp Dactylogyrus sp. 

Amoeba  Tricodina sp. 

Rotifer  B. achaelognathi 

Cladocera  Diplostomum sp. 

Cyclopoda  Fasciolidae sp. 

Copepoda  

 Gastropoda 

 Chironomidae 

 Baetidae 

 Polycentropidae 

 Asellidae 

 C.carpio 

 S.erythropthalmus  

 A.cinerea   

 

  



vii 

 

Table A2.3 Site 3 Species list 

 

Free-living Species Parasites 

C.demersum A. crassus 

E.nuttallii Contraceacum sp. 

L.minor Dactylogyrus sp. 

P.australis Diplostomum sp. 

S.emersum Diplozoan sp. 

Diatom spp. Eustrongylides sp. 

Phytoplankton spp. Gyrodactylus sp. 

Ciliate sp.  Metorchris sp. 

Strombidium sp. Myxobolus sp. 

Peranema sp. P. abdominalis  

Dinoflagellate sp. Petersiger sp. 

Phacus spp. Philometra sp. 

Chilomonas sp. Rhapidicotyle sp. 

Euglena spp. T.clavata 

Copepoda Trichodina sp. 

Cyclopoda Myxidium sp. 

Valvatidae A.anguillae 

Hydrobiidae A.lucii 

Bithyniidae B.claviceps 

Physidae H.triloba 

Lymnaeidae 

 Planorbidae 

 Unionidae 

 Sphaeriidae 

 Oligochaeta 

 Glossiphoniidae 

 Hydracarina 

 Gammaridae 

 Assellidae 

 Baetidae 
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Caenidae 

 Coenagriidae 

 Corixidae 

 Haliplidae 

 Hydrophilidae 

 Leptoceridae 

 Chironomidae 

 A. anguilla 

 P. fluviatilis 

 E. lucius 

 A. brama 

 R. rutilus 

 R. rutilus x A.brama hybrids 

 S. erythropthalmus    

 B. bjoerkna 

 G. cernua 

 G. gobio 

 P. carbo 

 Larus sp. 

 T. ruficollis 

 L. lutra   
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Appendix 3. Food web matrices for topological webs in 

Chapter 5 

 

Table A3.1 Site 1 Binary matrix 
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Appendix 4. Additional data used to construct diet niches in 

Chapter 6 

 

Table A4.1 Summary of proportions of the proportion of major food items in the 

diet of consumers based on Bayesian mixing model outputs (this study) and 

published literature. 

Species Food item Diet proportion  Data source 

Chironomidae Detritus 0.95 ± 0.05 Armitage et al. 

2012   Phytoplankton 0.05 ± 0.05 

Arthropoda Macroalgae 0.40 ± 0.05 Williams and 

Feltmate 1992 

   

Detritus 0.40 ± 0.05 

  Zooplankton 0.20 ± 0.05 

Esox lucius Arthropoda 0.22 ± 0.04 This study 

 

A.brama 0.60 ± 0.05 

   R.rutilus 0.18 ± 0.02   

Perca fluviatus Chironomidae 0.15 ± 0.03 This study 

Arthropoda 0.19 ± 0.03 

 

 

A.brama 0.36 ± 0.04 

   R.rutilus 0.30 ± 0.03   

Ardea cinerea Arthropoda 0.10 ± 0.05 Draulans 1988 

 

C.carpio 0.20 ± 0.05 

   S.erythrophthalmus 0.50 ± 0.05   

 

 

 

 



xiii 

 

Appendix 5. Weighted start matrices used in Chapter 6 

 

Table A5.1 Site 1: Weighted matrices 

 

 
  

Infection: uninfected Low 95% confidence interval low High 95% confidence interval

macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus

macroalgae 0 0 0 0 0 0 0 0 0 0 macroalgae and detritus 0 0 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0 0 0

chironomidae 0 85 -5 0 0 0 0 0 0 0 chironomidae 0 105 15 0 0 0 0 0 0 0

arthropoda 30 30 0 10 0 0 0 0 0 0 arthropoda 50 50 0 30 0 0 0 0 0 0

A.brama 0 0 0 -12 18 24 0 0 0 0 A.brama 0 0 0 42 72 56 0 0 0 0

R.rutilus 0 0 0 -34 1 53 0 0 0 0 R.rutilus 0 0 0 40 75 65 0 0 0 0

E.lucius 0 0 0 0 0 12 50 8 0 0 E.lucius 0 0 0 0 0 32 70 28 0 0

P.fluviatus 0 0 0 0 5 9 26 20 0 0 P.fluviatus 0 0 0 0 25 29 46 40 0 0

Infection: 25%

macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus

macroalgae and detritus 0 0 0 0 0 0 0 0 0 0 macroalgae and detritus 0 0 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0 0 0

chironomidae 0 85 -5 0 0 0 0 0 0 0 chironomidae 0 95 5 0 0 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 0 0 arthropoda 40 40 0 20 0 0 0 0 0 0

A.brama 0 0 0 -13 19 23 0 0 0 0 A.brama 0 0 0 22 53 43 0 0 0 0

R.rutilus 0 0 0 -34 6 48 0 0 0 0 R.rutilus 0 0 0 12 52 56 0 0 0 0

E.lucius 0 0 0 0 0 12 50 8 0 0 E.lucius 0 0 0 0 0 22 60 18 0 0

P.fluviatus 0 0 0 0 5 9 26 20 0 0 P.fluviatus 0 0 0 0 15 19 36 30 0 0

Infection: 50%

macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus

macroalgae and detritus 0 0 0 0 0 0 0 0 0 0 macroalgae and detritus 0 0 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0 0 0

chironomidae 0 85 -5 0 0 0 0 0 0 0 chironomidae 0 95 5 0 0 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 0 0 arthropoda 40 40 0 20 0 0 0 0 0 0

A.brama 0 0 0 -13 19 23 0 0 0 0 A.brama 0 0 0 1 34 30 0 0 0 0

R.rutilus 0 0 0 -34 6 48 0 0 0 0 R.rutilus 0 0 0 -16 29 47 0 0 0 0

E.lucius 0 0 0 0 0 12 50 8 0 0 E.lucius 0 0 0 0 0 22 60 18 0 0

P.fluviatus 0 0 0 0 5 9 26 20 0 0 P.fluviatus 0 0 0 0 15 19 36 30 0 0

Infection: 75%

macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus

macroalgae and detritus 0 0 0 0 0 0 0 0 0 0 macroalgae and detritus 0 0 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0 0 0

chironomidae 0 85 -5 0 0 0 0 0 0 0 chironomidae 0 95 5 0 0 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 0 0 arthropoda 40 40 0 20 0 0 0 0 0 0

A.brama 0 0 0 -13 19 23 0 0 0 0 A.brama 0 0 0 -20 16 16 0 0 0 0

R.rutilus 0 0 0 -34 6 48 0 0 0 0 R.rutilus 0 0 0 -44 6 37 0 0 0 0

E.lucius 0 0 0 0 0 12 50 8 0 0 E.lucius 0 0 0 0 0 22 60 18 0 0

P.fluviatus 0 0 0 0 5 9 26 20 0 0 P.fluviatus 0 0 0 0 15 19 36 30 0 0

Infection: 100%

macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus macroalgae detritus phytoplanktonzooplanktonchironomidaearthropodaA.brama R.rutilus E.lucius P.fluviatus

macroalgae and detritus 0 0 0 0 0 0 0 0 0 0 macroalgae and detritus 0 0 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0 0 0

chironomidae 0 85 -5 0 0 0 0 0 0 0 chironomidae 0 75 -15 0 0 0 0 0 0 0

arthropoda 30 30 0 10 0 0 0 0 0 0 arthropoda 20 20 0 0 0 0 0 0 0 0

A.brama 0 0 0 -13 24 19 0 0 0 0 A.brama 0 0 0 -41 -4 4 0 0 0 0

R.rutilus 0 0 0 -34 20 34 0 0 0 0 R.rutilus 0 0 0 -71 -17 28 0 0 0 0

E.lucius 0 0 0 0 0 12 50 8 0 0 E.lucius 0 0 0 0 0 2 40 -2 0 0

P.fluviatus 0 0 0 0 5 9 26 20 0 0 P.fluviatus 0 0 0 0 -5 -1 16 10 0 0
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Table A5.2 Site 2: Weighted matrices  

 

 
 

 

  

Infection: Uninfected Low 95% confidence interval High 95%confidence interval

macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea

macroalgae 0 0 0 0 0 0 0 0 macroalgae 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 arthropoda 50 50 0 30 0 0 0 0

C.carpio 0 0 15 21 42 0 0 0 C.carpio 0 0 27 37 58 0 0 0

S.erythrophthalmus8 0 0 13 35 0 0 0 S.erythrophthalmus30 0 22 35 57 0 0 0

A.cinerea 0 0 0 0 0 10 40 0 A.cinerea 0 0 0 0 20 30 60 0

Infection: 25%

macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea

macroalgae 0 0 0 0 0 0 0 0 macroalgae 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 arthropoda 50 50 0 30 0 0 0 0

C.carpio 0 0 18 21 36 0 0 0 C.carpio 0 0 34 39 52 0 0 0

S.erythrophthalmus8 0 0 13 35 0 0 0 S.erythrophthalmus30 0 22 35 57 0 0 0

A.cinerea 0 0 0 0 0 10 40 0 A.cinerea 0 0 0 0 20 30 60 0

Infection: 50%

macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea

macroalgae 0 0 0 0 0 0 0 0 macroalgae 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 arthropoda 50 50 0 30 0 0 0 0

C.carpio 0 0 22 21 30 0 0 0 C.carpio 0 0 40 41 46 0 0 0

S.erythrophthalmus8 0 0 13 35 0 0 0 S.erythrophthalmus30 0 22 35 57 0 0 0

A.cinerea 0 0 0 0 0 10 40 0 A.cinerea 0 0 0 0 20 30 60 0

Infection: 75%

macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea

macroalgae 0 0 0 0 0 0 0 0 macroalgae 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 arthropoda 50 50 0 30 0 0 0 0

C.carpio 0 0 25 21 24 0 0 0 C.carpio 0 0 47 43 40 0 0 0

S.erythrophthalmus8 0 0 13 35 0 0 0 S.erythrophthalmus30 0 22 35 57 0 0 0

A.cinerea 0 0 0 0 0 10 40 0 A.cinerea 0 0 0 0 20 30 60 0

Infection: 100%

macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea macroalgae detritus phytoplanktonzooplanktonarthropodaC.carpio S.erythrophthalmusA.cinerea

macroalgae 0 0 0 0 0 0 0 0 macroalgae 0 0 0 0 0 0 0 0

detritus 0 0 0 0 0 0 0 0 detritus 0 0 0 0 0 0 0 0

phytoplankton 0 0 0 0 0 0 0 0 phytoplankton 0 0 0 0 0 0 0 0

zooplankton 0 0 100 0 0 0 0 0 zooplankton 0 0 100 0 0 0 0 0

arthropoda 30 30 0 20 0 0 0 0 arthropoda 50 50 0 30 0 0 0 0

C.carpio 0 0 29 21 18 0 0 0 C.carpio 0 0 53 45 34 0 0 0

S.erythrophthalmus8 0 0 13 35 0 0 0 S.erythrophthalmus30 0 22 35 57 0 0 0

A.cinerea 0 0 0 0 0 10 40 0 A.cinerea 0 0 0 0 20 30 60 0
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Chapter 3: 
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Chapter 4: 

Pegg, J., Andreou, D., Williams, C. F. and Britton, J. R., 2015, Head morphology 

and piscivory of European eels, Anguilla anguilla, predict their probability of 

infection by the invasive parasitic nematode Anguillicoloides crassus. Freshwater 

Biology, 60: 1977–1987.  
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