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Abstract

Natural objects, such as bones and watermelons, often have a heteroge-

neous composition and complex internal structures. Material properties

inside the object can change abruptly or gradually, and representing

such changes digitally can be problematic. Attribute functions represent

physical properties distribution in the volumetric object. Modelling com-

plex attributes within a volume is a complex task. There are several

approaches to modelling attributes, but distance functions have gained

popularity for heterogeneous object modelling because, in addition to

their usefulness, they lead to predictability and intuitiveness.

In this thesis, we consider a unified framework for heterogeneous vol-

ume modelling, specifically using distance fields. In particular, we tackle

various issues associated with them such as the interpolation of volu-

metric attributes through time for shape transformation and intuitive

and predictable interpolation of attributes inside a shape. To achieve

these results, we rely on smooth approximate distance fields and interior

distances. This thesis deals with outstanding issues in heterogeneous

object modelling, and more specifically in modelling functionally graded

materials and structures using different types of distances and approxi-

mation thereof. We demonstrate the benefits of heterogeneous volume

modelling using smooth approximate distance fields with various applica-

tions, such as adaptive microstructures, morphological shape generation,

shape driven interpolation of material properties through time and shape

conforming interpolation of properties. Distance based modelling of

attributes allows us to have a better parametrization of the object vol-

ume and design gradient properties across an object. This becomes more

important nowadays with the growing interest in rapid prototyping and

digital fabrication of heterogeneous objects and can find practical appli-

cations in different industries.

Keywords: Scalar fields, heterogeneous volume modelling, signed dis-

tance fields, C1-continuity, volumetric interpolation
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Chapter 1

Introduction

Natural objects and some man-made objects are often heterogeneous in

their composition, including complex internal structures composed of di-

verse materials, and possess variable densities and other physical proper-

ties. Properties and internal structures may vary at various magnitudes

of scale. Heterogeneous object modelling is the process of describing

and defining those properties and structures. This type of modelling

has a vast range of applications, including bio-engineering, animation,

medical research, multi-material design and fabrication, geological and

physical simulations. Heterogeneous object design and fabrication has

become more prevalent in the recent years. For instance, modern 3D

printing processes allow for heterogeneous printing with various materi-

als and colours. Therefore, heterogeneous object modelling will become

more important in the coming years. Heterogeneous objects can be split

into two main categories; composite objects where the materials change

abruptly, such as a knife with a wood handle and a metallic blade, and

objects with functionally graded materials and structures, where there

are no clear boundaries between materials or properties, such as a water-

melon. While composite objects can be managed by traditional computer

aided design software systems, gradient materials are more challenging.

This thesis deals with outstanding issues in heterogeneous object mod-

elling, and more specifically in modelling functionally graded materials

and structures. Properties such as density, porosity, material colour and

1



temperature differ in physical nature and can be measured at any point

in the object. Attribute functions represent physical properties distri-

bution in the volumetric object. Modelling complex attributes within a

volume is a complex task. Using distances to the boundaries or object

features in modelling is a useful way of parametrizing space (Siu and Tan

2002b; Biswas et al. 2004; Fayolle et al. 2006). In this thesis, the notion

of distance is used to advance the field of heterogeneous object modelling

through the use of spatial distance fields, specifically, to model smoothly

varying object properties, with respect to the shapes being modelled.

The focus is placed on user-control of smooth variation of attributes

rather than modelling composite objects.

1.1 Context

1.1.1 Object representations

There are several geometric object representations, each with its own

pros and cons. Boundary representations describe an object through a

set of primitive surfaces such as triangles or free form surfaces. Bound-

ary representations are efficient and easy to use, however they often con-

tain defects as mentioned in Bøhn and Wozny (1992); Butlin and Stops

(1996); Campen et al. (2012); Jacobson et al. (2013); Rajab et al. (2013).

Boundary representations are most suitable for homogeneous object mod-

elling. On the contrary, volumetric representations clearly define the

interior of an object through either a set of elements or continuous func-

tions. Voxels are convenient to query and operate on thanks to their

simple explicit nature, and they are already popular in some fields such

as scientific visualisation. However, voxels and volume meshes are res-

olution dependent and are not exact representations. With 3D print-

ers quality improving every year, memory limitations are already an

issue for those representations. The Function Representation (FRep)

(Pasko et al. 1995) uses a real valued function of point coordinates to de-

fine an object, where the sign of the function value at any given point in

space indicates the point membership. For the purpose of heterogeneous
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object modelling, the function representation seems to be more suit-

able and robust. The constructive hypervolume framework (Pasko et al.

2001) extended the FRep model to support an arbitrary number of at-

tributes which can be defined by scalar functions. Indeed, scalar fields

seem to be better suited to represent both low and high frequency prop-

erties across the entire volume of the object. However, other object

representations can also be used in heterogeneous object modelling.

1.1.2 Heterogeneous object models

Aside from object representation, heterogeneous object modelling is par-

ticularly challenging. Providing users with precise and easy control of

the attributes throughout the volume can be difficult. In particular,

smoothly varying attributes throughout the object are not easily con-

trolled. A number of works focus on providing precise and user-friendly

control of volumetric attributes. These works can be split into two ma-

jor classes (Kou and Tan 2007). Evaluated models, such as voxels and

volumetric meshes, rely on discretization of the object. They are par-

ticularly well suited for simulation-based modelling but they can only

approximate the user’s intent and do not provide an easy control of the

field. The other class, unevaluated models, are based on a scalar function

of point coordinates that can be evaluated at the given point using its

closed form or procedural definition. This approach is more popular for

modelling attributes because it can provide precision while remaining

concise. In unevaluated models, two non mutually exclusive important

concepts are used: constructive methods (such as Kou and Tan (2005)

and Pasko et al. (2001)) and feature-based methods (such as Siu and Tan

(2002b) and Biswas et al. (2004)). Tree-based methods allow users to

build complex shapes from simple operations on primitive shapes and

construct the object attributes alongside its geometry. Feature based

modelling, on another hand, are user-friendly and provide the user with

a good control of the volumetric attributes.
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1.1.3 Feature based modelling

There are numerous techniques to model heterogeneous object based on

some features. In the majority of cases, the technique uses a function of

the distance to a feature (Kou and Tan 2007) or an approximation of it.

Distance fields are popular for heterogeneous object modelling because

they allow users to design and control the attributes directly rather than

rely on numerical simulations, without requiring a lot of work from the

user. Feature-based modelling with the transfinite interpolation method

is a powerful concept. A material feature defines a region of space where

the attribute value is known. Material features can be any geometric

primitives such as points, lines, surfaces or even solids. These features

can be defined by the user or automatically detected by some proce-

dures. The transfinite interpolation method (Rvachev et al. 2001) can

then be used to interpolate in between the material features (called ma-

terial gaps). As stated in Biswas et al. (2004), the transfinite interpo-

lation behaves more intuitively if distance fields are used. Attributes in

this case can be expressed with functions of distances.

1.2 Problem Statement

1.2.1 Distances and predictability

Feature-based modelling relies on distances to achieve satisfying results

(Biswas et al. 2004). First, almost any feature type can be represented

with a distance field, which allows for the model to be abstracted from

specific feature types such as curves, surfaces and polygonal meshes.

Secondly, the behaviour of these fields provide predictable and gradual

change of the attributes. The function representation uses scalar fields to

define the object and its surface, but most operations focus on the result-

ing surface rather than the overall field (Fayolle et al. 2008). However,

such scalar fields can behave unexpectedly and cause the interpolation to

be biased or simply incorrect (non monotonic with respect to distance)

if the scalar field does not have distance properties. Distance and signed
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distance fields are crucial for heterogeneous volumetric modelling to al-

low the users to use a wide range of geometric primitives and to keep

the system predictable. However, some issues persist, such as degree of

continuity and intuitiveness. This thesis deals with the distance-based

heterogeneous volumetric modelling and addresses several open research

issues in this area.

1.2.2 Approximate smooth distance fields

If an attribute function is based on a distance field, the C1 discontinu-

ities of the distance function will typically propagate to the attribute

function (Biswas et al. 2004). While this could be tolerable in some sys-

tem, it is often undesirable and may even be unacceptable in others. C1

discontinuities will cause ”stress concentrations and undesirable singu-

larities” (Biswas et al. 2004), and may perturb or even disqualify some

algorithms. For these reasons, the use of approximate smooth distance

fields are desirable. Such fields need to preserve the distance field zero-

level point set (object boundary surface), and maintain C1 continuity

away from the surface. The problem of the smooth approximate distance

field is tackled in this thesis. An exact, shape preserving convolution fil-

ter is applied to the distance function to remove C1 discontinuities away

from the surface.

1.2.3 Heterogeneous object modelling

Modelling heterogeneous objects and in particular the gradual changes

of their volumetric properties is limited to a few techniques such as the

transfinite interpolation and source-based modelling. Yet, those tech-

niques are not always suitable or sufficient. Only a few commercial soft-

ware tools are available for modelling heterogeneous objects, and often

concentrate on numerical simulation rather than design. Those limita-

tions prevent expressing material changes in respect to a shape or to

interpolate two material distributions through time for transformation
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between two given objects. In this thesis, both these problems are inves-

tigated.

1.2.3.1 Shape awareness and predictability

The transfinite interpolation method fails to provide intuitive and pre-

dictable results under certain circumstances. This global operation fails

to translate accessibility and perceived proximity of points in the object,

since the shape of the object is not taken into account. This issue means

that the results can be unpredictable, and in some cases it can be diffi-

cult to design the attributes for complex shapes. These seemingly simple

problems have not yet been solved and show the real absence of avail-

able tools and techniques for modelling heterogeneous objects. In this

thesis, this issue is tackled using interior distances and Voronoi diagrams

to perform an intuitive and predictable interpolation between material

features within an object.

1.2.3.2 Volumetric interpolation through time

The interpolation of two volumetric material distributions in time can

prove challenging with the set of tools and techniques available to date.

When a geometric metamorphosis or a shape deformation happens, vol-

umetric material properties may change. A naive linear interpolation of

the attributes is not sufficient, since the shapes have no influence over

the interpolation. To overcome the lack of existing techniques, this the-

sis introduces the concept of space time transfinite interpolation that

provides a shape aware solution to perform the interpolation of the vol-

umetric material distributions for objects changing their shape in time.

1.2.4 Modelling scalar fields, not point sets

There are many application areas, which benefit from heterogeneous vol-

umetric modelling. In fact, since the user designs and manipulates volu-

metric attributes, these attributes can be used to control parameters of
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geometric operations. Attribute modelling is concerned with modelling

scalar fields, which can also be used for geometric modelling. The im-

plication of this statement is that distance fields and smooth distance

fields are important not only for heterogeneous volumetric modelling,

but also geometric modelling. Modelling microstructures and internal

structure attributes are obvious applications. However, scalar fields can

also control operation parameters, which could alter the global shape of

an object. In this thesis, a group shape metamorphosis operation is used

to adaptively generate an object taking various features from a number

of given reference objects.

1.3 Solution Statement

Several problems were identified related to heterogeneous object mod-

elling. This thesis solves a number of problems highlighted above.

First, we propose an approximate smooth distance function from any

distance function by using convolution filtering. Convolution filtering

preserves the exact zero-level set, and is smooth away from the surface. It

can be controlled by the user for smoothness or distance variation. Unlike

the works presented in Biswas et al. (2004) and Fayolle et al. (2006),

it can be applied on arbitrary distance function so that any mesh or

other Boundary Representation (BRep) objects can be used as features,

given that a distance function to this object exists. Convolution filtering

will be evaluated for smoothness using edge filters on gradients, and

visually evaluated on a number of applications such as blending unions,

interpolation of material properties and smooth offsets.

Next, shape conforming volumetric interpolation is proposed to solve

the issues of predictability and intuitiveness for the transfinite interpo-

lation (Rvachev et al. 2001). The solution revolves around two indepen-

dent ideas: the use of interior distances for shape awareness, and the use

of Voronoi diagrams to control the influence of each feature in relation to

each other. This method will be evaluated by comparing it with the con-

ventional transfinite interpolation both visually and numerically. For the

7



numerical comparison, a curve along the medial axis will be evaluated

using both techniques, and the graphs of the weights will be compared

and discussed.

Then, for the interpolation of volumetric properties through time,

an extension of the transfinite interpolation to space time is proposed.

Unlike linear interpolation, space time transfinite interpolation is shape

driven. The success of the technique will be evaluated through a number

of applications to show that it fulfils its objectives.

Finally, morphological shape generation is investigated as a support-

ing element to the use of scalar field modelling for shape design. The

results of this method are compared with various other methods for

metamorphosis. Real applications, which were subsequently exhibited

in a leading museum, allowed us to conclude that this approach was

practical and had potential to be used in the creative industry.

1.4 Structure

This thesis is structured as outlined below.

In chapter 2, the related works are presented. The chapter is divided in

four main parts. First, different object representations in geometric mod-

elling are discussed, with a particular emphasis on their capabilities and

limitations for heterogeneous object modelling. Secondly, previous work

in heterogeneous object modelling is discussed. This discussion leads

to a complete survey of distance fields and their applications. Finally,

some particular geometric operations are reviewed. Those operations

are either instrumental to heterogeneous object modelling, or valuable

operations which may be used in heterogeneous object modelling. This

chapter will reveal several unresolved problems in the current literature.

In chapter 3, the theoretical contribution of this work is presented.

The general approach of this work is first introduced, where the prop-

erties of a heterogeneous object are described by functions of distances

and time. A number of problems introduced in the previous chapter will
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be investigated. First, a shape preserving, smooth approximate distance

field will be introduced. This is followed by solutions for several hetero-

geneous object modelling problems using distance fields and smooth ap-

proximate distance fields. First, interior distances and Voronoi diagrams

are used to provide a more intuitive and predictable interpolation of at-

tributes between features within shapes than the transfinite interpolation

in Biswas et al. (2004). Secondly, the interpolation of volumetric proper-

ties through time for the shape transformation are devised by extending

the transfinite interpolation to space-time. The last section shows how

heterogeneous volumetric modelling operations can find applications in

traditional shape modelling.

In chapter 4, several applications are described to illustrate the us-

ability and usefulness of the various techniques and methods introduced

in this thesis. First, several applications of convolution filtering are de-

veloped, including the shape preserving, smooth distance fields. Shape

conforming volumetric interpolation is supported with colour interpola-

tion and parametric design of volumetric microstructures within a shape.

Space time transfinite interpolation is showcased afterwards using shape

transformation between heterogeneous objects and microstructure con-

trol. Finally, morphological shape generation is shown with a specific

chair generation problem.

In chapter 5, a summary of the problems and solutions presented in

this thesis is given. The chapter concludes by outlining the contributions

and a non-exhaustive list of potential future research.
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Chapter 2

Background

In the introduction, we have highlighted the necessity of heterogeneous

object modelling and some of the current challenges. In this chapter,

we provide a quick overview of the different geometric (or shape) repre-

sentations and their limitations. The strengths and weaknesses of each

representation will help us understand how they carry over in heteroge-

neous object modelling.

We follow on with a survey on heterogeneous object modelling tech-

niques which will show that scalar fields, and in particular distance field

functions, are extremely useful for defining varying material and other

physical properties of an object. Distance fields also provide a flexible

solution to represent legacy objects with scalar fields.

Since heterogeneous volumetric modelling relies on distance fields, an

in depth survey of distance fields is presented. We use this survey to show

how such fields can be evaluated, but also show their more common uses

for various applications.

The objectives of this work will be identified in the conclusion to this

chapter. The problems tackled in this thesis will also be stated.
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2.1 Object representation

In computer graphics, objects can be represented by their boundaries or

their volume. This leads to two major classes of representation. Here,

we provide a brief overview of each representation and its strength and

weakness. While this section only deals with geometry, it will provide

the basic knowledge required for the discussion of the state of the art in

heterogeneous object modelling.

2.1.1 Boundary representation

Amongst Boundary Representations (BReps), parametric surfaces and

polygonal meshes are the most popular. Both define a solid object by

connecting several primitive elements of its boundary together. The

object is therefore defined by its boundary (surface).

2.1.1.1 Parametric surfaces

The parametric representation maps from parametric space to another

space, usually 3D Euclidean space. The parametric space is one dimen-

sional for curves, two dimensional for surfaces, and three dimensional

for volumes. For example, a curve in two dimensions can be defined as

follows:

C(u) = (x(u), y(u)) (2.1)

Here, u is the parameter, and (x(u), y(u)) is a point on the curve

in Euclidean space. There are numerous parametric curve models used

in computer graphics. Most of them use a set of control points, which

define a path to interpolate or approximate 1. The curve itself does not

necessarily go through the control points (in curves such as B-Splines and

Bézier curves). Amongst the many models, the most popular ones are

1In this case, interpolating means the curve passes through the control points,
while an approximating curve will not necessarily pass through these points
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(a) (b)

Figure 2.1: (a) A NURBS patch (green) with its control net (red) and
(b) The killeroo model is made of several NURBS patches. Killeroo model
courtesy of Headus Pty Ltd.

Bézier and Non-Uniform Rational B-Spline (NURBS) (Piegl and Tiller

1997). The latter one is a generalization of the former.

A NURBS surface can be constructed from a set of n × m control

points. The NURBS surface is a tensor product of two NURBS curves.

NURBS curves and surfaces have many useful properties and the

reader should refer to Piegl and Tiller (1997) and Farin (2002) for a

more complete introduction. However, several algorithms rely on a few

fundamental properties:

• The convex hull of the control points contains all the points on the

curve or surface.

• A NURBS curve or surface can be split into several rational Bézier

surfaces of the same degree.

• Multiple knots reduce the surface geometric continuity at that par-

ticular knot. The continuity at a knot is n − k where k is the

multiplicity of the knot and n the degree of the curve.

In order to create complex objects, several parametric surfaces (see

Figure 2.1a) are stitched together (see example in Figure 2.1b). They

are called parametric surface bounded solids. In order to define a valid

solid, the following is required:

• The surface is an orientable manifold. Orientable manifold surfaces

allow for T-junctions.
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Figure 2.2: The Stanford bunny model as a mesh

• The surface excludes open boundaries.

Unfortunately, parametric surfaces are difficult to operate on. Nu-

merous powerful operations are tedious or unstable, such as Boolean

operations (Biermann et al. 2001), blending Boolean operations and off-

sets (Piegl and Tiller 1999). Parametric surface bounded solids are also

subject to many common issues with boundary representations. Self-

intersections are particularly problematic as it is difficult to interac-

tively indicate self-intersections. T-junctions, while valid, are also a

source of issues. When the boundary curve Ca of a surface is in con-

tact with two boundary curves Cb,1 and Cb,2 equivalent to Ca, a T-

junction is created. T-Junctions are often problematic because numeri-

cal inaccuracies can cause gaps and tessellation of the surfaces will lead

to gaps and self-intersections. Fixing such issues often involves man-

ual work, and it is still an open problem in research (Rajab et al. 2012;

Pekerman et al. 2008; Krishnamurthy et al. 2008). Rendering paramet-

ric surface bounded solids often requires an intermediate step of con-

version to a polygonal mesh, which can only approximate the model

and can lead to additional defects, including self-intersections even if the

parametric surfaces do not intersect.
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(a) (b) (c) (d)

Figure 2.3: The Suzanne model (a) is subdivided iteratively (b,c,d).
Suzanne model courtesy of Blender Foundation

2.1.1.2 Polygonal mesh

A polygonal mesh is made of a set of vertices, a set of edges and a set of

faces (see figure 2.2). An edge connects two vertices together, and n edges

form a polygon. A triangle consists of three edges, and a quadrilateral

(quad) consists of four edges. Meshes are widely used in animation, visual

effects and video games. They have proven to be popular for numerous

reasons. They can be rendered efficiently, they are easy to manipulate or

animate and they all share a simple description (a list of vertices and a

list of triangles). However, they often require large amounts of memory,

and fail to produce smooth surfaces. To approximate smooth surfaces,

meshes require a considerable number of polygons. Furthermore, simi-

larly to NURBS bounded solids, polygonal meshes need to be manifolds.

Progressive meshes (Hoppe 1996) were introduced to adaptively change

the number of polygons according to the needs. However, it requires a

fine mesh first, and then creates coarser meshes. On the contrary, to get

smooth objects from coarse meshes, subdivision surfaces have been used

(Catmull and Clark 1998; Loop 1987; DeRose et al. 1998). Subdivision

surfaces are a bridge between parametric surfaces and meshes. The mesh

is used as a control grid, and faces are subdivided iteratively, as many

times as needed (see figure 2.3). Vertices are moved according to a par-

ticular function which mimics parametric surface subdivision. Recently,

T-Splines (Sederberg et al. 2003) have been introduced and permit T-

Junctions and less restrictive modelling rules while maintaining a smooth

surface.
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(a)

Figure 2.4: The Utah teapot model represented with voxels

Polygonal meshes are popular because they allow the designer or

artist to directly manipulate the surface. Nevertheless, polygonal meshes

and their numerous extensions often lead to non-manifold objects. Self-

intersections, holes and inconsistencies cause ambiguities in certain loca-

tions.

2.1.2 Volumetric representation

Boundary representations are convenient for designers who want to work

with the surface of the object rather than with its volume. Because of the

partial definition of the object, it often leads to problems such as holes,

self-intersections and inconsistencies. While a lot of research works in-

vestigated fixing individual issues with BReps, the overall problem with

BReps will always remain because a BRep does not describe a volumetric

object but rather a set of boundary surface sheets. Volumetric represen-

tations have also been explored and proved to be more robust, but come

with a different set of issues.

2.1.2.1 Voxels

The simplest volumetric representation is a discrete set of cells or voxels

(short for volume elements) representing the list of cells occupied by
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the volume. Typically, a voxel set is stored in a 3D array where each

cell is set to ”full” (inside) or ”empty” (outside). Sometimes, voxels can

contain more information such as density, colours or scalars. This is often

the case of data acquired through MRI or CT scans. The simplicity of

this representation makes it convenient for most geometric operations as

described in Payne and Toga (1992); Cohen-Or et al. (1998). It is very

robust, and volume rendering is a well investigated topic (Coat 2010).

However, this representation is resolution dependent, and as a conse-

quence, often memory consuming. To capture medium sized details, the

resolution has to be relatively high. A grid of 512 cells in each dimen-

sions yields 227 cells (more than 100 million cells). Additionally, if only

point membership in the Boolean form is stored, the geometry cannot

be smoothed and has a distinct boxlike aesthetic (see figure 2.4). Some

attempts have been made to improve voxel visual appearance, but these

techniques remove sharp features (Barthe et al. 2002).

2.1.2.2 Implicit surfaces

An implicit surface is a conventional term to designate a zero-level (or

another iso-level) point set defined by a continuous function of point

coordinates in three dimensional space. A volume object bounded by an

implicit surface is defined as follows:



















f(p) < t p is inside the object

f(p) = t p is on the surface

f(p) > t p is outside the object

(2.2)

where t is the iso-level, p is any point in space. The implicit surface is

not explicitly described, but instead the function f provides information

about the points belonging to the iso-surface with the given function

iso-level.

In Blinn (1982), the author introduces the summation of Gaussian

functions, which can be used to model electron density maps of molecu-
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(a)

Figure 2.5: Two metaballs blended together. Image from Wikipedia

lar structures and artistic shapes (see Figure 2.5). Wyvill et al. (1986)

extended the idea to introduce soft objects, which allow for local sup-

port and give smoother results. In Bloomenthal and Shoemake (1991),

a set of simple primitives such as points, lines, rectangles and trian-

gles are enveloped by using a simple bell curve function of the distance

function to the primitives. These techniques are often called skeletal im-

plicit surface primitives. The involved scalar field is called a compactly

supported field (bump function), because the function takes the prede-

fined value (iso-level) everywhere further away than a certain distance

from the surface. Several other techniques are detailed in Wyvill et al.

(1999). Metamorphosis is also a quite simple task with implicit surfaces

(Galin et al. 2000). More recently, implicit surfaces were used to support

a powerful sketch-based modelling tool in Schmidt et al. (2006). Their

focus is to provide an accessible interface to novice users.

2.1.2.3 Constructive Solid Geometry

Constructive Solid Geometry (CSG) is related to volume modelling as

it represents an entire object with its interior and surface points. CSG

can be used to build complex solid objects from simple primitives and

using simple operations. Primitives typically include the platonic solids,

revolutions and simple sweeps. The object is defined by a tree of prim-
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(a)

Figure 2.6: A CSG-tree

itives and operations. Each primitive defines a half space based on a

predicate (a point is either inside or outside of the solid). Typically, op-

erations are set regularized set-theoretic operations (union, intersection,

difference) and affine transformations, although a few others are possi-

ble (e.g., twist, taper). An example of a CSG tree is shown in figure

2.6. CSG is is restricted to homogeneous solids defined by the binary (or

ternary) point membership classification. A detailed study of the CSG

basics can be found in Requicha (1980).

This representation is user-friendly. Any part of the tree can be mod-

ified at any point of the modelling process which is important for the

design process as some decisions can be postponed. Additionally, CSG

models are unambiguous and are always valid manifold models. The ma-

jor issues with CSG are that CSG objects cannot be rendered directly

by means of standard graphics hardware, and the set of operations is

limited.

18



(a)

Figure 2.7: An FRep model, combining mechanical parts with sharp
features and organic looking parts. Image courtesy of A. Pasko,
(Pasko and Adzhiev 2004)

2.1.2.4 Function representation

FRep (Pasko et al. 1995) is a generalization of implicit surfaces and CSG.

It defines an object with a procedurally evaluated function. The func-

tion evaluation is done through traversal of a tree data structure with

operations as nodes and primitives as leaves. Operations can take any

number of arguments allowing us to mix several models of different di-

mensionality into a single object. Figure 2.7 shows an example of an

FRep tree, which incorporates sharp features and organic looking parts.

FRep is capable of incorporating several other representations such as

voxels, meshes and point clouds as primitives into the tree (Adzhiev et al.

2000). It also offers numerous advanced operations such as space time

blending (Pasko et al. 2004), bounded blending (Pasko et al. 2005) and

multi-scale cellular structures (Fryazinov et al. 2013). FReps are a pow-

erful modelling representation, because they allow us to parametrise a

range of models where the parameters of the operations can be adjusted

to create numerous diverse objects from a single template. The tree

also allows for modifying both operations and primitives at any time.

This also makes FRep objects compact and resolution independent. The

FRep was extended in Pasko et al. (2001) specifically for heterogeneous
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volumetric modelling. It will be discussed further in the next section

(section 2.2.5.1).

2.1.3 Discussion on object representations

Boundary representations are currently dominating and have clear ad-

vantages over volumetric representations. They are efficient to render,

many users are trained to use surfaces, and they offer exact control of

the surface. However, even some simple concepts such as Boolean opera-

tions are not trivial to implement, and most software packages allow for

defects and errors to creep in, further damaging the object integrity.

Any alternative representation needs to be capable of import existing

boundary representations (Adzhiev et al. 2000). The Function represen-

tation seems particularly suited for heterogeneous object modelling since

it is able to represent shapes exactly, and to mix features of scales of dif-

ferent orders of magnitude. The FRep is also robust and guarantees that

the object will be manifold, unlike BRep. However, with FRep it can be

difficult to control the surface precisely.

2.2 Heterogeneous objects modelling

A heterogeneous object is an object which has varying materials and

other physical properties across its volume. A material could abruptly

change (composite materials) or gradually change from one end to an-

other (gradient or functionally graded materials). While heterogeneous

volumetric modelling often refers to materials, it is not limited to materi-

als. Heterogeneous object modelling could be used to describe arbitrary

attributes which could feed back in the shape modelling process.

The object representations for heterogeneous object modelling are

classified in three major classes by Kou and Tan (2007): composite mod-

els, evaluated models and unevaluated models. Composite models are

made by combining several sub-objects and are made of both evaluated
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and unevaluated models. Evaluated models have a finite number of el-

ements providing information about the material properties in a point

or volume in space. Evaluated models are represented using voxels or

volume meshes (e.g. tetrahedral meshes).

The other representations, the unevaluated models, represent volu-

metric properties through an exact representation such as a continuous

scalar field. In Kou and Tan (2007), scalar fields are split into vari-

ous sub categories (explicit function, implicit function, control feature

based methods). In this section, we review the different representations

for heterogeneous object modelling and the methods available. A more

exhaustive review is presented in Kou and Tan (2007). The unevalu-

ated models are represented using control point based models (such as

B-Spline volumes) or scalar fields.

Composite models can combine evaluated and unevaluated models.

In Kumar et al. (1999) and Wang and Wang (2005), an object is split

into regions, and each region has a single ”material class”. A material

class can be evaluated or unevaluated.

2.2.1 Surface based heterogeneous object modelling

A single BRep object can only represent an object made of a single mate-

rial (homogeneous object) since only its boundary is defined. Composite

objects can be made by combining several parts to make a single object.

Some techniques have been used to alter the surface material attributes

through the use of textures but it is limited to the parametrization of

the object surface and does not extend easily to the rest of the volume.

Therefore, texturing an object cannot be considered true heterogeneous

object modelling technique since it does not precisely define attribute

values within the object volume.

As mentioned above, texture based methods are capable of creating

the illusion of heterogeneous objects. However, for a texture to be ap-

plied, a 2D parameterization of the surface has to be done, which can

be arduous (Lévy et al. 2002; Yoshizawa et al. 2004). The 2D parame-
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terization can be bypassed by the use of superposed patches (Pedersen

1995) and decals (de Groot et al. 2014), but once again, this technique

focuses only on surface information. The extension of the surface infor-

mation is also problematic. It can be done through Mean Value Coordi-

nates (MVC) (Ju et al. 2005) or Green coordinates (Lipman et al. 2008).

However, such solutions tend to extrapolate the information in an unin-

tuitive manner, and they do not provide user-directed control away from

the surface.

In Kumar and Dutta (1997), a framework to support heterogeneous

object modelling using boundary representation was introduced. The

model can only use a set of pre-defined materials (material palette). The

model becomes an aggregation of homogeneous solid components. The

Boolean operations are extended to operate on the material components

as well as the geometry. The material palette gives the illusion of grad-

ual change, but it is only able to represent a set of a number of layers.

Furthermore, maintaining such a complex set of objects as more opera-

tions are applied to the geometry and its attributes makes this method

unsuitable for complex heterogeneous objects.

2.2.2 Voxel based heterogeneous object modelling

Extending voxels to support heterogeneous object modelling is a straight-

forward task. Voxel lattices have been used to describe object internal at-

tributes as for instance in Nielson (1993). According to Chen and Tucker

(2000), the user can easily control the values of the attributes through

operations which are applied simultaneously to object geometry and its

attributes. The software tool Michalatos and Payne (2015) relies on vox-

els for both geometry and attributes. The users can control the geometry

and the object attributes through simple operations. Many of these op-

erations were inspired by image processing tools such as paint brushes.

Voxels are also a natural choice for medical applications, since MRI and

CT scans provide voxel data. MRI scans for instance, provide informa-

tion about magnetic properties.
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Voxels are popular because they are simple and efficient. This model

can represent any number of attributes (limited by memory only), and is

trivial to query. Additionally, it is straightforward to implement. There-

fore, voxels can provide smooth attribute changes. They are particu-

larly suitable for physical simulation. In Cho and Ha (2002), function-

ally graded materials were used to model the volume fraction attribute

to optimize the heat resistance. The simulation is performed on a reg-

ular lattice in 2D (pixels), and could be extended to 3D using voxels.

In Zhang et al. (2004), voxels are used in conjunction with numerical

simulation to define the optimal material properties such as material

microstructures and material constituent compositions. This simulation

based method leaves little room for user input and design. In Wu et al.

(2005), the user can define features (such as faces and edges) and use

those features to make gradual change in material attributes across the

voxel grid. However, the gradual change is performed on a relatively

small grid, while the geometry is represented by the mesh. The mesh

is kept for the slice accuracy, and the voxel are used to provide colour

information. Voxels are also gaining popularity in 3D printing since it

can easily be sliced or control the 3D printing process. A few printing

services and 3D printers are starting to accept voxels such as Shapeways

(Shapeways 2015).

However, the choice of the resolution (the size of a single voxel) can

be problematic. If the size of a voxel is too small, the memory required

to store such a grid might be too large. This also means a need for

a huge processing power. Wang et al. (2011) allows the user to create,

edit and visualize in real-time a complex heterogeneous object made of

voxel lattices of different scales at the cost of memory. In 3D printing,

for instance, Solidscape 3D printers print at a 0.00625 mm resolution,

on a 5 cm wide bed. To represent this print bed, 512.109 voxels would

be required. If the size of a voxel is too large, then accuracy is lost and

the voxels cannot represent high frequency attributes or thin geometric

features. In practice, it means large objects with small features or high

frequency attributes cannot be accurately represented. Crassin et al.

(2009) has introduced a method to reduce the memory footprint of voxels
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by storing a sparse octree of smaller voxel grids, but it only captures the

region around the surface, and therefore cannot store information except

close to the surface.

Voxels present a simple approach to heterogeneous volumetric mod-

elling but are found lacking in several areas. First, by its nature, a voxel

representation cannot define a continuous and exact gradual change of

an attribute. It also leads to approximations which accumulate and de-

teriorate as additional operations are performed. Secondly, the choice of

the resolution limits the difference in scale of the features of both the

object and of their material properties. Memory issues also rapidly arise.

2.2.3 Volumetric meshes

Volumetric meshes are polygonal meshes which can represent the interior

of the object. Volumetric meshes are commonly made of tetrahedrons.

There are numerous methods to generate tetrahedral meshes from polyg-

onal mesh surfaces (Shewchuk 1998; Si and TetGen 2006). Volumetric

meshes can be uniform or adaptive. An adaptive mesh can have denser

areas to better approximate topological events or attribute variations.

Volumetric meshes are often used for finite element analysis, which can

be used to evaluate the robustness of an object and many other physical

properties such as heat resistance. Commercial software tools such as

Autodesk (2015) often rely on volumetric meshes to perform physical

and mechanical analysis of the model. Xu et al. (2015) relied on volu-

metric meshes to design and optimize the internal elasticity of an object

to conform to the user defined constraints. Schumacher et al. (2015) fur-

ther explored the idea by blending various microstructures to match the

target elasticity, allowing users to print deformable objects with a single

material.

Jackson et al. (1998) used volumetric meshes to define functionally

graded materials, where some user-defined parts of the object are as-

signed values, and the nodes of the mesh are used to interpolate and

blend the known values. The mesh can be tessellated at a higher resolu-
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tion where needed. Representing heterogeneous objects with volumetric

meshes also has the benefit of allowing local edits by the user.

However, tetrahedral meshes have several major issues. First, the

memory requirements can be prohibitive. Furthermore, it is only an ap-

proximation of both the material distribution and the geometry. The

attribute can only be interpolated inside the tetrahedrons, and the qual-

ity of the interpolation depends on the meshing density. The points on

the surface of the object may not have a material distribution defined if a

volumetric mesh does not match the surface exactly. Finally, a change in

the material distribution functions, or in the geometry of the object will

require a new volumetric mesh generation, which is a time consuming

process. Adzhiev et al. (2002) used both cellular structures and scalar

fields to model heterogeneous objects. However, in order to move be-

tween representations, a conversion needs to happen, which can be time

consuming and often results in a loss of accuracy.

2.2.4 Parametric volumes

Parametric volumes can be used to represent arbitrary attributes with

true gradient materials, which can be controlled accurately. Martin and Cohen

(2001) used tri-variate NURBS models to represent a number of at-

tributes such as refraction and density. This method makes it easy to de-

fine exact values at user defined points, and provides controllable smooth

gradual changes of the attributes. However, it requires the model to have

a 3D parametrization of the object space.

In Qian and Dutta (2003b) and Hua et al. (2004), the geometry is

represented with a B-Spline model, and the volumetric attributes are

controlled at the surface. A B-Spline volume is fitted to the object,

and the interpolation is performed through diffusion. These method

lack control of the volumetric attributes, and they rely on the fitting

algorithm, which is not trivial to implement for arbitrary objects. How-

ever, Qian and Dutta (2003b) can represent time-dependent heteroge-

neous objects, where attributes are functions of time. In this case, the
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initial state is defined by the user. The diffusion process will then con-

verge towards a stable state. An example of this method applied to a

real-world problem for time dependent design of heterogeneous object

modelling was given in Qian and Dutta (2003a).

Samanta and Koc (2005) use B-Splines to interpolate geometry and

attributes. This partially helps with shape awareness, as the interpola-

tion seems to follow the shape and is directly linked with the geometry.

However, the entire process relies on a discretization step, and is also lim-

ited in complexity. The material features are automatically detected to

best respond to the physical requirements but user input is very limited

afterwards.

2.2.5 Scalar fields based methods

Numerous heterogeneous structures can be approximated using proce-

dural solid texturing (Perlin 1985). Solid texturing has been employed

to reproduce complex natural materials such as wood, marble and rust

(Ebert 2003). Most effects are achieved by layering different smooth noise

functions with varying amplitudes and frequencies. The produced scalar

field is then passed to a transfer function which converts the function

value into a colour or other material attribute. Worley (1996) introduced

a cellular noise function which allows the creation of skin or pebble rocks.

Solid texturing is resolution independent and cheap both in memory and

computation time. Its main drawback is in user control and intuitiveness.

It is particularly challenging to reproduce an exact pattern using only

solid texturing and it requires an advanced knowledge to reproduce the

composition of a specific object using solid texturing. This process was

simplified in Kopf et al. (2007), where a solid texture function was cre-

ated from 2D images. However, the resulting solid texture is computed

and stored in a discrete volume and involves an expensive optimization

step. Nonetheless, it remains state-of-the-art in solid texturing.

HyperFun (Adzhiev et al. 1999) is a language which enables advanced

users to create geometric models, including heterogeneous object models.
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The user can create an object using an explicit function of point coordi-

nates. However, modelling precise and complex models within HyperFun

requires skilled users who can program and provide the function for the

material distribution.

All the above methods are not user-friendly. Constructive methods of

material distributions and features based methods presented below have

been used to provide more user-friendly approaches. These methods are

not mutually exclusive.

2.2.5.1 Constructive methods

There is a clear need for more exact control from the user. In Kou and Tan

(2005), boundary representations are used for geometry, but the authors

introduce a Heterogeneous Feature Tree for material distribution which

is based on scalar fields and constructive geometry. For any point in

space, the material is a blend of all the material features of the tree. The

features are defined during the modelling process by the user.

A more general formulation was introduced in Schmitt et al. (2001)

and Pasko et al. (2001), and enabled FRep to support heterogeneous ob-

ject modelling for both composite and gradient materials. Constructive

Hypervolume modelling allows the user to model geometry along with

any other attribute. The object is defined by its geometric set and a

set of its pointwise attributes. The tree of each attribute, and the geo-

metric tree can be different and do not need to be similar. Formally, a

Constructive Hypervolume model was defined in Pasko et al. (2001) as

follows:

o = (G,A1, . . . , Ai) : (F (p), S1(p), . . . , Si(p)) (2.3)

where,

• p is a point in Euclidean space

• F is a real-valued function of point coordinates which represents

the geometry.
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(a)

Figure 2.8: A spring and a gradient material using sweeping. Image
from Shin and Dutta (2001)

• Si is a function of point coordinates representing an attribute.

• o is the object

• G is the geometry of the object

• Ai is an attribute of the object

It is important to note that while F requires at least C0-continuity, Si

can be discontinuous, since attributes could have discontinuities. This

solution is user-friendly because the object is built from simple primitives

and simple operations. Additionally, changes anywhere in the tree can

be made effortlessly at a later stage of the modelling process.

Shin and Dutta (2001) proposed a similar solution, using CSG as an

inspiration, and introduced new primitives and operations to construct a

tree for both geometry and material attributes. Blending of materials is

also supported. This method, and the other constructive methods allow

to build complex heterogeneous object where the material transitions are

performed with respect to the shape. The figure 2.8 shows a disk swept

along a curve. The material transition is based on the sweep curve.

Kou and Tan (2005), Pasko et al. (2001) and Shin and Dutta (2001)

enable the user to edit the geometry alongside the material attributes.

Both allow to create geometry dependent material distributions by build-
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(a) (b)

Figure 2.9: Feature based modelling and material gaps. (a) shows how
the features are set up, (b) shows a slice of the model, with the features
in blue and red, and the material gap in brown

ing trees or functions which are adapted to the shape.

2.2.5.2 Feature-based heterogeneous modelling

An important principle of heterogeneous volumetric modelling is fea-

ture-based heterogeneous modelling where geometric features are defined

within the volumes. Such features are often user-defined, and can be

polylines, curves, points, surfaces or even solids. These features have

prescribed material properties, and are called material features. The

point set of all the points which do not belong to any material feature is

called the material gap. Feature based methods are used to find values

in these material gaps. Figure 2.9 shows the material gap (in brown)

given two features (in blue and red).

Several authors introduced methods where colours or other attributes

would fall off depending on the distance to a feature such as an edge

or a line segment. Liu (2000) uses the distance to the boundary of the

object to gradually change colours between the surface of the object and

its interior. In Zhou et al. (2004), any surface, point or line can be used

as a feature, and a function of the distance is associated with a feature.

In Khoda et al. (2013), the medial axis of the shape is extracted, and
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then a gradient porosity from the medial axis (dense) to the boundary

of the object (sparse) is used to automatically control the following pro-

cess to generate a structure with adaptive porosity. In Liu et al. (2004),

two materials can be interpolated by letting the user define a feature

(such as a solid), and the interpolation is performed within the distance

to this feature. Kumar et al. (1998) also used distances to interpolate

between two materials. Some geometric features represent a material,

and the interpolation is based on a function of the ratio between the two

distances. Bhashyam et al. (2000) provides a list of functions to interpo-

late between various materials to optimize for some desired properties.

Park et al. (2001) introduced Volumetric Multi-Texturing (VMT) to de-

fine gradient materials. Some features are defined using implicit surfaces

such as algebraic surfaces, and then the values of the function are mapped

onto material or density values.

In Siu and Tan (2002b), the features controlling the gradient materi-

als are called grading sources. Siu and Tan (2002b) use any number of

arbitrary features, of any type or dimensionality such as line segments,

planes and points. Each feature provides a value for each modelled at-

tribute, and the material distribution is expressed in function of the

distance to those grading sources. The control of the graded materials

is made easier through these simple control features, and Siu and Tan

(2002b) extends the usual operators (union, intersection and difference)

with new capabilities for heterogeneous object modelling. The control

of the gradual change is user-friendly. Moreover, this solution can easily

be integrated into existing applications. However, it does not provide

a global method, since the sources have a limited influence in space.

Wu et al. (2005) provided a similar structure, where the material com-

position is successively built by providing material features with their

material values and distances to control the length of the fall-off.

In Rvachev et al. (2001), transfinite interpolation was used to inter-

polate material properties given any number of features. The prob-

lem of transfinite interpolation is to construct a function which ”takes

prescribed values and/or derivatives on some collection of point sets”

(Rvachev et al. 2001). The point sets with prescribed values can be any
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point set, such as points, lines, surfaces or spatial regions, each repre-

sented by a real valued function. The interpolation is performed by using

scalar fields generated from each material feature. The scalar fields can

be distance fields (a minimal Euclidean distance from any point in space

to the object boundary) as in Biswas et al. (2004), or scalar fields built

with R-Functions (Rvachev 1982) as in Rvachev et al. (2001). The R-

Functions are chosen to have C1 continuity, however, the R-Functions

need to be carefully selected to preserve the distance properties. In

fact, the authors used smooth R-functions to build ”smooth distance-like

functions”. Both Rvachev et al. (2001) and Biswas et al. (2004) argue

that distance approximation is necessary, and smoothness is desirable.

As stated in Biswas et al. (2004), the distance provides predictability,

and the smoothness provides smoothness to the attribute interpolation.

Hongmei et al. (2009) proposed a similar method which provides more

control over the rate of change of the attributes.

There are several interpolation schemes, however, inverse distance

weighting formulated in Rvachev et al. (2001) (eq. 2.4) is the most pop-

ular (Kou and Tan 2007).

wi(p) =

n
∏

j=1;j 6=i

dj(p)

n
∑

j=1

n
∏

k=1;k 6=j

dk(p)

(2.4)

where

• p a point in space

• di(p) is the unsigned distance of the point p to the i-th feature

• n is the number of features

• wi(p) is the weighting of the feature for the point p
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If only two features are used, this simplifies to:

wa(p) =
db(p)

da(p) + db(p)

wb(p) =
da(p)

da(p) + db(p)

(2.5)

The transfinite interpolation was applied in a similar fashion in Fryazinov et al.

(2013) in order to interpolate between parameters of two given volumet-

ric microstructures. This is a good example of the link between shape

modelling and the modelling process related to an arbitrary volumet-

ric attribute. Since distance properties are important to have intuitive

interpolations, Fayolle et al. (2006) provides FRep C1 continuous opera-

tions and primitives which approximate the distance. The continuity is

necessary to avoid ”undesirable singularities in the material distribution,

like stress or concentrations” (Fayolle et al. 2006).

2.2.6 Discussion

As Kou and Tan (2007) stated in their survey of the different repre-

sentations, evaluated models are not exact nor compact which can be

problematic. For instance, 3D printers are increasingly more and more

precise. The Connex 3D printers by Stratasys can print at 16-micron for

objects up to 25 centimetre wide. Evaluated models cannot simultane-

ously be compact, accurate and computationally efficient. Unevaluated

models are resolution independent, and scalar field based methods are

capable of representing complex material distributions at various scales

without loss of accuracy, and remains compact.

In the unevaluated representations, two scalar field approaches stand

out: constructive methods and feature-based methods, both of which

often rely on distances. As our survey shows, the use distance fields

and feature based modelling for representing gradient material and other

volumetric attributes is popular.

Feature-based methods provide a solution to easily set up features and
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let the users control the material distribution everywhere. Additionally,

feature based methods are easily integrated into existing CAD systems.

However, these methods rely upon functions of the distance to the fea-

tures, never taking into account the shape of the object being modelled.

Additionally, using exact distance functions can cause abrupt changes,

but building smooth functions is not always straightforward for arbitrary

features.

The constructive methods can build a complex heterogeneous object

where the gradient materials are ’following’ the shape. Additionally,

several authors have shown that constructive methods can build com-

plex heterogeneous objects alongside the object geometry. However, it

requires the user to build the functions carefully and cannot be easily

performed at a later stage of the modelling process. Additionally, the

scalar fields produced by FRep trees do not generally approximate dis-

tance fields, preventing the use of distance-based methods with FRep

trees.

2.3 Distance fields

In section 2.2, we mentioned that distances are a fundamental element of

heterogeneous volumetric modelling. Previously, several authors (Siu and Tan

2002a; Biswas et al. 2004; Fayolle et al. 2006) have supported this claim.

We can distinguish continuous distance fields from discrete distance

fields. The distance field is defined at any point in space and is a minimal

Euclidean distance from the given point to the given object boundary.

Distance fields can have different meanings throughout the literature. It

can be exact or approximate, discrete or continuous, and is used with

different sets such polylines, polygonal meshes, point clouds, NURBS

bounded solids, and voxels. A more exhaustive survey of distance fields,

discrete distance fields in particular, is presented in Jones et al. (2006).

In this thesis, we will employ the term distance field to mean a continuous

exact distance field by default.
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Distance fields can serve a dual role in heterogeneous volumetric mod-

elling. First, distance fields are a convenient way of representing various

BRep objects or geometric features with scalar fields. Distance fields are

also not limited to BRep objects and can also be created from simple ge-

ometric elements. Secondly, they can be used to define material features.

It is desirable to have distances to material features or approximations of

distances to avoid unexpected results in the attribute interpolations. The

smoothness of the various scalar fields (distance fields or approximations)

has to be considered, if some degree of smoothness of the interpolation is

required. Biswas et al. (2004) used interpolation across the voxel grid to

provide a smooth function, while Fayolle et al. (2006) built FRep objects

with distance field primitives and smooth operations which approximate

the distance. Biswas et al. (2004) however can only approximate the

material features, and Fayolle et al. (2006) cannot directly use BRep to

define material features.

In this section we will:

• define distance and signed distance fields,

• study how to efficiently evaluate the signed distance function,

• survey alternative solutions to represent BRep objects with scalar

fields and their drawbacks,

• survey some of the many applications of distance fields.

2.3.1 Definition & terms

The unsigned distance to a set Σ is the distance from the given point p

to the closest point x on Σ.

dist(p; Σ) = inf
x∈Σ
‖x− p‖ (2.6)

where inf defines the infimum operator, which returns the smallest el-

ement of a set. The distance to a set does not require a volume and

can be calculated against a set of lines. However, when the set defines a
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solid object S, a signed distance can be more interesting for many appli-

cations. The sign of the distance is used to indicate whether the point p

is inside or outside the solid object. We arbitrarily chose the sign to be

positive inside, and negative outside.

The sign is defined by:

sign(p;S) =







+1 p ∈ S

−1 p /∈ S
(2.7)

Therefore, the signed distance is written as follows:

f(p) = sign(p;S) · dist(p; Σ) (2.8)

Signed distance fields were first introduced in Rosenfeld and Pfaltz

(1966) where the points were sampled along a regular grid. In Payne and Toga

(1992), the definition is given first as a continuous function, although the

implementation is also based on a regular grid.

Signed distance fields have many notable properties. The gradient is

not defined everywhere, but where it is defined, the magnitude of the

gradient is one. However the gradient can be undefined if there are two

distinct points on the surface at the same distance of the query point p.

The point set of all the points which do not have a single closest point

is called the medial axis.

2.3.1.1 Discrete distance fields

A discrete distance field stores the shortest distance to a set of prim-

itives in a node of a voxel lattice. This naive approach was used in

Payne and Toga (1992). In Green (2007), a black and white image is

converted to a discrete signed distance. Each pixel provides the signed

distance to the first pixel of the opposite value.

The main advantage of voxel grids is that they can be computed once
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and then stored. If the distance needs to be evaluated in-between two

voxels, then a trilinear interpolation can be used. Despite this interpo-

lation, such a discrete field is considered exact if each voxel value stores

the exact distance. The quality of the field is affected by the resolution

of the grid, and certain features may be lost or incorrectly approximated.

Computing the distance on a regular grid can be vastly improved. In

Strain (1999), a quad-tree was used on a 2D binary image to compute

its corresponding distance field. Scanning methods Sigg et al. (2003);

Nguyen (2007) are also popular for discrete grids. They use Voronoi dia-

grams where the elements of the set cast a prism onto the grid. Such an

algorithm is easily parallelised and in particular suits graphics process-

ing units (GPU). The work Erleben and Dohlmann (2008) particularly

stands out because it can handle the distance field conversion for meshes

with defects, which is a common issue with boundary representations.

2.3.1.2 Approximate distance fields

The computation of distance field values on the voxel lattice is a time

consuming process at high resolution. Therefore, approximate solutions

can improve the computation times at the cost of reduced accuracy.

Most approaches to approximations of distance fields try to preserve

good accuracy in a narrow band around the boundaries. The first pass

fills the voxel cells, which intersect with the boundaries, the second

pass then propagates the values using various distance transforms (DT)

Rosenfeld and Pfaltz (1966).

Another alternative to reduce the amount of data is to use an octree

instead of a regular lattice. In Frisken et al. (2000), the distance field

is stored in an octree called Adaptively sampled Distance Field (ADF).

The nodes of the octree are only further subdivided if the node intersects

with the boundary of the object (see figure 2.10). The values in-between

the nodes are then interpolated. This provides a high accuracy field close

to the surface. However, the overall field is a crude approximation with

poor properties. Discontinuities can happen at the borders of nodes of

different resolution, and like any voxel lattice, some features can be lost.
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(a) (b)

Figure 2.10: The letter R as a binary image (a), and its Adaptively
sampled Sistance Field ADF (b). Images from Frisken et al. (2000)

2.3.1.3 Interior distances

The distance to the boundaries is useful for heterogeneous volumetric

modelling, however, other classes of distances can also be beneficial. For

instance, if a concave shape is used, and the transfinite interpolation

(Biswas et al. 2004) is applied with the distance fields of the features, it

is possible to have counter intuitive effects. One of the reasons is that

Euclidean distances do not take into account the shape of the object

when evaluating distances of each feature. This problem is well known

in shape deformation, and has been identified in Levi and Levin (2014).

Instead of Euclidean distances, interior distances are used.

The interior distance is the length of the shortest path between two

points within an object so that the path lies entirely inside the object.

Figure 2.11 shows the distance field (left) and the interior distance field

(right) side by side on a complex shape. Interior distances better reflect

the perceived distances within a shape. For this reason, interior distances

should also be considered for heterogeneous volumetric modelling.

The problem is closely related to the shortest path algorithms, which

leads to the Djikstra’s algorithm (Knuth 1977). The Dijkstra’s algo-

rithm can only work on a set of nodes however, and cannot be used

continuously. A discrete grid along with the interpolation can provide
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(a) (b) (c)

Figure 2.11: The difference between interior distances (b) and Eu-
clidean distances (a). Values range from zero (red) to one (dark blue),
see (c).

(a) (b) (c)

Figure 2.12: Euclidean distance to the origin (a) and Manhattan dis-
tance to the origin (b), and the values to colours correspondence map
(c)
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an approximation of the function, given that a point membership func-

tion exists. In three dimensions, the distance is propagated from the

source feature unless it crosses the boundary. The typical trilinear inter-

polation used on a regular lattice will introduce numerous undesirable

C1 discontinuities. This can be avoided using other interpolation meth-

ods such as the one used in Freytag et al. (2011). However, the distance

between two points on this lattice will lead to Manhattan distances. The

Manhattan distance is the travel distance along lattice lines, which often

leads to undesirable patterns (see figure 2.12b). It is possible to improve

on these results by using more connections between the voxels (including

diagonals) but this only reduces the problem.

The problem of finding interior distances within a shape is also known

as the boundary value problem of the Eikonal equation in other fields

such as computer vision. A numerical solution to this problem is the

fast marching method introduced by Tsitsiklis (1995) for 2D domains

and its generalization in Adalsteinsson and Sethian (1995). The fast

marching method runs on a lattice which has its boundaries marked, and

tracks the evolution of a curve in 2D and surface in 3D which expands

from the source. The surface is never explicitly defined, but instead

the lattice is filled with values following an advancing front. Recently,

Hassouna and Farag (2007) introduced a method which is accurate and

close to the analytical solution while maintaining the same complexity

as Adalsteinsson and Sethian (1995).

The shortest path between two points with polyhedral obstacles was

proven to be an NP-hard problem in Canny and Reif (1987) and re-

mains a challenging problem. Some approximate solutions were provided

in Papadimitriou (1985) and later in Choi et al. (1997). A continuous

function for interior distances within mesh boundaries was introduced

in Rustamov et al. (2009). The authors used barycentric coordinates to

calculate pseudo interior distances. The shortest path from the point

to all the vertices is first computed, using one of the previous methods,

and then mean value coordinates (Ju et al. 2005) are used to extrapolate

within the volume. Since this method uses MVC (Ju et al. 2005), it suf-

fers from the same efficiency issues (linear time complexity per query),
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but the field is smooth and is at least C1 continuous. The linear time

complexity is problematic since several millions samples will be required,

sometimes on very large meshes (several million polygons). For instance,

a 25 cm cube at a 600 dpi resolution would require approximately 60003

samples.

Another solution to finding approximate interior distances is based on

the diffusion distance between two points. This can be achieved through

heat diffusion (Coifman et al. 2005) or random walk distances (Yen et al.

2007). These solutions can be expensive and rely on a discretization of

the volume. More recently, Crane et al. (2013) introduced a method

based on heat diffusion to evaluate geodesic distances. This method

seems to extend easily to arbitrary surface representations and this sim-

ple yet powerful principle should extend to interior distances equally

using the boundary conditions. The heat diffusion method also allows

for smoothing resulting in C1 continuous fields, which is a desirable prop-

erty.

Most of the work in heterogeneous object modelling focused on Eu-

clidean distances. In most cases, Euclidean distances can be substituted

by interior distances in order to provide more intuitive and predictable

results for methods which rely on distances to features. Interior distances

are used in this thesis in section 3.3 to improve on the method presented

in Biswas et al. (2004). A simple method to calculate interior distances

is also provided in appendix.

2.3.2 Representation of boundaries by scalar fields

Although distance fields can be calculated for many types of features

and geometric representations, they were mostly studied in connection

to meshes and non-uniform rational B-Spline (NURBS) bounded solids.

We give a brief overview of the techniques used to query the distance to

objects in those two representations.
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2.3.2.1 Polygonal meshes

For polygonal meshes, many scalar field formulations have been investi-

gated. We first overview the scalar field representations and assess their

pros and cons, and then investigate more in depth exact distance fields.

Scalar field Methods for representing scalar fields of meshes can be

distinguished as exact and approximate ones. In the exact methods, the

iso-value is guaranteed with the finite machine precision to be zero only

on the surface of the initial mesh, meaning that all the features of the

initial models are preserved with the scalar field representation.

In the approximate methods, many techniques rely solely on the point

cloud generated from the mesh to approximate the polygonal mesh.

They often rely on a dense point cloud. Radial Basis Function (RBF)

(Savchenko et al. 1995; Carr et al. 2001; Morse et al. 2001; Yngve and Turk

2002) use a weighted sum of basis functions. The choice of the basis

function has a considerable impact on the shape and efficiency of the

function evaluation. If the basis function has a compact support, then

only a sparse linear system needs to be solved. Otherwise, the process

will result in a non-sparse system, making it impractical for large point

clouds. Most RBF-based methods produce smooth surfaces but are slow

to evaluate.

In the Multi-level Partition of Unity (MPU) (Ohtake et al. 2003) or

Moving Least Squares (MLS) (Turk and O’Brien 1999b), some given ap-

proximation error is allowed. In Turk and O’Brien (1999b), the con-

straints can be set so that it should interpolate the surface exactly, how-

ever, numerical instabilities make it impractical. All those approximate

methods only approximate the surface, and the field approximates the

distance poorly.

An exact field to a polygonal mesh can be obtained by represent-

ing the object with set-theoretic operations on the half-spaces bounded

by planes passing through polygonal faces (Fryazinov et al. 2011) while

keeping the distance property of the resulting function. These methods
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provide continuous functions, but the distance query can be slow and

numerically unstable especially for large input meshes. A smooth ap-

proximation of the distance field, called signed Lp distance fields, which

can preserve the exact surface was introduced in Belyaev et al. (2012).

This method is based on mean value coordinates (Ju et al. 2005). Lp dis-

tances have a linear complexity making them unsuitable for large meshes

as unevaluated methods often require a large number of samples.

Minimum distance to a mesh evaluation The most naive solution

of evaluating the distance to a mesh would be to iterate over every trian-

gle of the mesh in order to find the shortest distance. The distance from

a point to a triangle can be found through its barycentric coordinates

(Ericson 2004, p. 136), vector calculus (Eberly 2008) or by simplify-

ing the problem using affine transformations (Jones 1995). However,

the performance can be greatly improved using various data structures

such as octrees (Payne and Toga 1992) or bounding volume hierarchies

(Larsen et al. 2000, 1999).

A bounding volume hierarchy is a structure which bounds the surface

elements in a hierarchical manner. At the highest level (root), a bound-

ing volume bounds the entire object. The root stores two children, both

of which also bound the elements they contain. Each node in the tree

bounds only a subset of the elements of the original object. The elements

can be polygons for meshes, patches for parametric surfaces, or any ele-

ment which can be bounded. Typical bounding volumes are axis aligned

boxes (Havran 2000), oriented boxes (Gottschalk et al. 1996), or spheres

(Quinlan 1994). In Larsen et al. (2000), the bounding volume is a rect-

angular swept sphere volume. This is more efficient because it provides

tighter bounds for triangles than spheres or axis aligned boxes, and the

distance to the rectangle remains simple to evaluate. Larsen et al. (1999)

also uses rectangular swept sphere volume as bounding volumes. Such

structures are efficient for minimum separation distances and collisions.

In Guéziec (2001), the author uses progressive meshes Hoppe (1996)

to get a good approximation of the closest point early on. A progressive
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mesh is a hierarchical structure which provides different level of details

for the original mesh. The Meshsweeper algorithm uses the distance

from the coarse mesh and refines the results based on an early guess.

The advantage of this method is that it can provide an early bounded

estimate of the distance. However, the implementation can be quite

complicated, and its efficiency for exact distances compared to other

structures has not been evaluated. Progressive meshes could also lead to

unexpected results depending on the topology of the object.

In Lee et al. (2013), an octree was used to store the closest element

indices instead of the typical surface elements. The tree is called a prim-

itive tree. A query point therefore does not prune out branches, but

instead finds the smallest cell it lies in. This reduces the number of node

traversals for ambiguous points which are close to the medial axis.

Point membership for meshes In the general case, the distance

sign at the given point cannot be computed directly using the surface

normal because the mesh surface has C1 discontinuities. The sign is also

ambiguous, if the mesh is non-manifold. The common issues with non-

manifold meshes include self-intersections, degenerated faces, inverted

normals, cracks and holes.

The sign can be calculated using scan conversion, as detailed in Kaufman

(1988). The sign is computed on the lattice in a separate pass. The pro-

cess is very similar to the scan line rasterization for 3D. The scan con-

version is resilient to self-intersections and inverted normals but cannot

handle cracks. Unfortunately, this technique is limited to discrete grids.

The most natural extension of this techinique for continuous evalua-

tion at an arbitrary point is ray casting (Requicha 1996). The number

of intersections between the mesh and the ray which starts at the query

point and is cast towards the outside of the initial polygonal mesh can

provide a sign. If the number of intersections is odd, then the query

point is inside, otherwise it has an even number of intersections, and is

set to be outside the solid bounded by the mesh. Such a solution often

suffers from numerical issues. In particular, when a ray lies in the plane
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of a triangle it intersects, the ray could either cross to the other side,

or not. Ray casting also suffers from self-intersections and holes, but

tolerates inverted normals. The evaluation of the number of intersection

can also be time consuming for large meshes.

The most convenient method for determining the sign for a continuous

signed distance function is that of the angle-weighted pseudo normals

(Baerentzen and Aanaes 2005). Edges and vertices have pseudo normals

assigned, which can be used to accurately deduce the sign, provided that

the closest feature on the surface to the point p is available. This method

can only work with manifold meshes, otherwise sign flips will occur. It

is an efficient solution but lacks robustness.

Another solution to provide a more robust sign was introduced by

Rossignac et al. (2013) for self-intersecting surfaces. The objective was

to provide a real-time trimming solution for rendering. This means that

it will correctly choose between union (inside) or intersection (outside)

depending on the type of intersection. The normal orientation in this

case is crucial.

More recently, Jacobson et al. (2013) proposed a robust method to

find point membership from polygon soups. It generates the correct

sign if the object is manifold and a well behaved one if the object is

non-manifold. It behaves consistently regardless of the orientation of the

object making this solution robust and consistent. This method relies on

a generalization of the winding number. The winding number in a plane

is the number of times a curve circles counter clockwise around a point.

Its formulation is not limited to polygonal meshes only, but the extension

to NURBS surfaces is not straightforward. The major drawback of this

solution is its linear complexity. Since scalar field based applications

require a large number of samples (several million samples even for low

precision), linear complexity per query is not practical.
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2.3.2.2 Non-uniform rational B-Spline solids

There are two main ways to find the closest point from the given point

p to a NURBS curve or surface: tessellation based and numerical root

finding. An analytical solution can be achieved for low order (quadratic)

curves and surfaces relatively easily (Gludion 2009). However, if the

curve is cubic or of a higher degree, then numerical solutions need to be

employed to avoid numerical instabilities (Piegl 1991).

Numerical solutions rely on the following equations:

(C(t)− p) ·C′(t) = 0 (2.9)

where C is the parametric curve, p is the query point, and t is the

parametric coordinate of the closest point.

And similarly, for surfaces:

(S(u, v)− p) · (
∂S

∂u
×
∂S

∂v
) = 0 (2.10)

Note that in the case of NURBS, it is possible to have sharp edges, by

having multiple knots. In that case, the curve or surface has to be sub-

divided (split) and the resulting surfaces have to be treated separately.

A popular method for the point projection is the Newton-Raphson

algorithm, which is detailed in Piegl and Tiller (1997). This algorithm

iteratively approaches the root of a function by using derivatives. It re-

quires an initial guess, which has to be close to the root, and a close

search range. Unfortunately, this method suffers from numerical insta-

bilities and convergence issues. In Ma and Hewitt (2003), the surface

is first subdivided into Bézier patches, and the Newton-Raphson algo-

rithm is applied to the patches which could yield a minimum distance.

Dyllong and Luther (2000) allows for further subdivision, and includes

interval arithmetic to provide more robust results.

To accelerate the search, the convex hull property and subdivision

can be used to create a tree structure. Most such trees rely on axis
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aligned bounding boxes or oriented bounding boxes (Gottschalk et al.

1996). Such bounding volume hierarchies have been successfully ported

on the graphics processing unit (GPU) (Krishnamurthy et al. 2011).

Other bounding volumes have been examined such as rectangular swept

sphere volumes (Larsen et al. 2000) or Coons patch swept sphere vol-

umes (Kim et al. 2011). A patch is approximated by a Coons patch, and

the error is used for the radius of the swept sphere. The Coons bounding

volume hierarchy creates tighter bounds and fewer nodes. To evaluate

the distance from a point to the node, a tetrahedron is used as a convex

hull of the Coons patch. The distance to a tetrahedron is trivial, and

the radius of the sphere (the approximation error) can be removed from

the distance to the tetrahedron.

Bounding volume hierarchies focus on the spatial arrangement, but

cone hierarchies (Johnson and Cohen 2001) can be used to find the roots

and provide a tight parametric search range as in Johnson and Cohen

(2005). The work from Johnson and Cohen (2005) is extensible to sur-

faces, but requires particular care for the boundary curves. Cone hier-

archies rely on spheres for spatial bounding, and on cones for tangent

bounding. Such a structure provides a reliable way of culling out any

part of the curve or surface, which cannot satisfy equations 2.9 or 2.10.

To build the cones, this method relies on the convex hull property, and

the curve hodograph. The curve hodograph convex hull contains all the

tangents of the curve.

Despite all these efforts, numerical searches are still slow. While their

accuracy can be bounded, an exact result cannot be guaranteed. With

this in mind, tessellation of the surface becomes a viable solution and is

often preferred (Dyllong and Luther 2000). Tessellation of a curved sur-

face can only approximate its smoothness, but the error can be bounded.

A distance to a polygonal mesh can then be employed. Adaptive tes-

sellation is often based on a divide-and-conquer strategy (Cook et al.

1987). Abi-Ezzi and Shirman (1991) and Chhugani and Kumar (2001)

provide tessellation strategies which can ensure the quality of the ap-

proximation in the view space, or for any affine transformation. These

methods rely on the bounds on the second derivatives as described in
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Filip et al. (1986). The work by Fisher et al. (2009) also focused on gen-

erating a crack free mesh. Cracks usually occur at boundaries where the

tessellation level suddenly changes.

2.3.3 Main applications of distance fields

Distance fields have found many applications in robotics, physical sim-

ulation, animation, modelling and image processing. Descriptions of

more applications can be found in Erleben and Dohlmann (2008) and

Jones et al. (2006).

2.3.3.1 Collision detection

Distances have been used to help with collision detection for a long time.

In Cameron et al. (1986), the distance between two convex object is cal-

culated to determine if a collision occurred. Lin and Canny (1991) im-

proved the efficiency of the distance computation by reusing the results

from the previous frames. Lin and Gottschalk (1998) provide a more

in-depth survey of the methods for computing distances between objects

for the purpose of collision detection of rigid bodies.

Unlike the distance between two objects, distance fields can provide

more information about the collision normals, and can be used to solve

more complex problems. In Fuhrmann et al. (2003), distance fields are

used to perform collision detection between a rigid body and a dynamic

object (cloth, hair, fur). The rigid body is approximated by a discrete

distance field, and the particles of the dynamic object are tested against

the field for proximity (allowing for a threshold). The gradient of the

field provides the normal vector required for the collision response.

Discrete fields were also used to maintain non-penetrating flexible

bodies in Fisher and Lin (2001). A tetrahedral mesh is generated for

the original object, and each node in the 3D mesh is given a distance

value. When the object is deformed, the distance at the nodes can

be approximated. If a self-intersection occurs during animation, the
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distance values at the nodes can provide the penetration distance and

the first and second derivatives which are required for penalty based

methods.

In Krishnamurthy et al. (2011), the authors performed clearance dis-

tance queries by first finding potentially close surface pairs isolating the

surfaces to be tested. Then a minimum distance between two surfaces

was run against every pair. The distance between two surfaces can be

computed by an iterative process using the closest point from each other.

This procedure should converge if the parametric bounds on each surface

have been reduced to small enough regions.

2.3.3.2 Sweeping

Sweeping a solid along a trajectory can be a useful tool in Computer-

Aided Design (CAD). The swept object represents the union of the

object samples at all the positions along the curve. Some of the applica-

tions include removing (through the set-theoretic subtraction operation)

parts of an object that could obstruct a mechanical part from moving,

or checking for collision for path planning or robotic arm movements.

Because of the complexity of the problem, its simpler formulation uses a

planar cross-section template which moves along the curve orthogonally

to the tangent on the curve. This problem has been solved with vary-

ing degrees of success through the use of distance fields or distance-like

fields.

In Schroeder et al. (1994), a voxel representation of swept surfaces

and volumes is presented for any object for which a distance field can be

evaluated. This process performs several unions of the original model at

different positions over the voxel lattice. The step size along the curve

is bound to ensure an accuracy relative to the voxel size. In Pasko et al.

(1996), the sweep volume is created by finding the global extremum of the

sweep volume function. The sweep volume function is the infinite union

of the object samples at every affine transformation it passes through.

The function is approximated using polynomial extrapolation in-between

sample positions. Schmidt and Wyvill (2005) provide an analytical so-
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lution to sweeping a 2D template along a curve. A discrete approximate

smooth distance field of the template is generated first. Then, for any

point in space, the extrema of the distance to the curve function (see

equation 2.9) and the local frames are used to generate a set of 2D point

coordinates. The sweeping function is the union of the distance field

values at those coordinates. This solution introduces C0 discontinuities

because the number of cross sections of the union can change suddenly,

and the field values can vary greatly.

2.3.3.3 Modelling

Offset surfaces are trivial to achieve with distance fields (Farin 1987),

although the offset cannot be applied iteratively since the resulting field

after the first offset is not a distance field to the offset surface. Com-

bined with set-theoretic operations, this allows for the creation of exact

one-sided shells. Constant radius blending can also be achieved using dis-

tance fields as presented in Rossignac and Requicha (1984). As a subset

of the Function Representation, signed distance fields have numerous ap-

plications, some of which are mentioned in Pasko and Adzhiev (2004).

However, the C1 discontinuities rule out smooth blending unions and

intersections.

Often modelling operations applied to distance fields do not yield

distance fields as a result. Some research was conducted in this area for

simple set-theoretic operations in Fayolle and Pasko (2010).

2.3.3.4 Rendering

Geometric objects defined by distance fields can be rendered more effi-

ciently than iso-surfaces of arbitrary scalar fields. Hart (1996) introduced

sphere-tracing to improve on ray-marching. In ray-marching, values are

taken at constant step along the ray until the iso-surface is crossed. A

binary search can locate the iso-surface more accurately. With sphere

tracing, the step size is set equal to the distance to the surface. This al-

lows for larger steps when far from the surface. As the search approaches
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the surface, the step size is reduced. It is not necessary to have an exact

distance function, but the function must provide a value which is less

or equal to the distance. In Quilez (2008), the author uses iso-surfaces

to quickly generate a procedural world, and mimics global illumination

(ambient occlusion, soft shadows, and later on sub-surface scattering)

using the distance properties of the function (Evans 2006). The ambient

occlusion can be computed by sampling a line segment normal to the

surface, and comparing the actual values with the expected values.

Distance fields can also be useful in two dimensions. In Loop and Blinn

(2005), shapes (alphabetical characters) are defined as a closed set of

Bézier curve contours. This solution provides compact and resolution

independent images. Anti-aliasing is achieved by making the opacity a

function of the distance to the boundary. The thickness of the band

which alters opacity is directly dependent on the screen pixel size. This

narrow band is set to be 1
2
a pixel.

In a similar fashion, Green (2007) used signed distances to render crisp

text and binary images. However, they used a discrete field (a 2D image)

which could be loaded to the graphics processing unit easily, and did not

require Bézier curves. First, an image is created which classifies each

pixel as inside or outside the shape. A distance transform is then applied

which computes the shortest distance to a pixel of an opposite value. Bi-

linear interpolation is used to reconstruct a continuous function, and a

simple step function allows us to filter what should be rendered. It also

introduces various effects such as embossing.

2.3.4 Conclusions on distance fields

Distance fields have many applications in various areas. Since the needs

of these areas are different, several formats for distance fields have been

introduced. First, the original formulation is a continuous scalar field

defined in space, which provides an exact distance. Signed distances

can be used to represent volumes, where the sign is used to indicate

the interior and exterior of the volume. The most common and popular
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format however is a discrete set of voxels, which contains either an exact

or an approximate value. Regardless of what they contain, voxels are

approximations of the distance field function in-between the cells and

outside the boundaries of the voxel grid. Therefore, exact continuous

distance fields are more suitable for a function representation. Exact

distance fields preserve the exact shape unlike discrete solutions and the

sampling far from the mesh is more fitting to the overall shape of the

object. In this work, we will refer to exact continuous distance fields

simply as distance fields.

In the context of heterogeneous volumetric modelling, we cannot rely

on voxels and a continuous function is needed, which can preserve the ex-

act input boundaries for the material feature. At the same time, smooth-

ness of the exact distance function can be problematic. Alternatives such

as Lp-distances fulfil both continuity and boundary requirements, how-

ever the computational cost of Lp distances can be an issue. Furthermore,

signed Lp distances are restricted to meshes only. This section has shown

that a field which respects the boundary condition as well as the C1 con-

tinuity requirement while maintaining a low complexity is essential but

does not exist.

Aside from signed distance fields, other scalar fields have been pro-

posed, and interior distances seem particularly relevant to heterogeneous

volumetric modelling. Typical distance field evaluation algorithms as-

sume an unobstructed path from the point to its closest point on the

surface. This can be problematic for some operations.

2.4 Geometric operations

In this section, we focus on some essential operations which will be used

in the following chapters. While some references are given for the bound-

ary representation, the main focus is on the function representation of

those operations. Set-theoretic operations are commonly used in more

complex operations. However, there are more than one way of perform-

ing these operations in FRep. The first subsection introduces various
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ways present in literature and draws conclusions on the merits of each.

Metamorphosis has been studied thoroughly and this survey will serve

as a literature review for section 3.5 in which metamorphosis is used se-

lectively to mix and match parts of different models. Metamorphosis is

also an important part of section 3.4 where the properties of two objects

are interpolated across time. Finally, the survey of microstructures is

relevant since many applications rely on microstructures to showcase the

use of varying attributes across space.

2.4.1 Set theoretic operations in FRep

Solids defined by the FRep can easily undergo set theoretic operations.

There are several ways of performing those operations (Ricci 1973; Rvachev

1982; Shapiro 1991; Pasko et al. 1995; Fayolle et al. 2008) yielding the

same shape, but with various effects on the scalar field (compact support,

continuity, distance properties). Set theoretic operations are particularly

useful for modelling mechanical parts and man made objects.

For two given objects defined by the FRep functions f1 and f2, the

set-theoretic operations (of union, intersection and subtraction) can be

defined with R-functions. f1 and f2 are continuous real valued functions

of point coordinates, where the sign is used to indicate whether the point

is inside (positive) or outside (negative). The surface is the zero-level

point set. R-functions are real-valued functions for which their sign only

depends on the signs of their arguments. R-functions naturally extend

Boolean functions to real valued functions. The common operators are

defined as follows:

• f3 = f1 ∨ f2 defines a union

• f3 = f1 ∧ f2 defines an intersection

• f3 = f1 \ f2 defines a subtraction

There are many applications for R-functions, and therefore, the choice

of the right tool depends on the applications. There are a number of prop-

erties which can be desirable for R-functions. Some of these properties
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: An object made of 5 discs using unions. (a) shows the
actual distance to the surface of the union, reference (b) shows ∨1, (c)

shows ∨0, (d) shows
0
∨
2
, (e) shows SARDF union, (f) shows the adaptive

rounded union
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Different R-function unions of two planes. Black lines
represent the zero-set surface, and the white lines are uniformly spaced
iso-levels. (a) shows the actual distance to the surface of the union,

reference (b) shows ∨1, (c) shows ∨0, (d) shows
0
∨
2
, (e) shows SARDF

union, (f) shows the adaptive rounded union
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are discussed more in depth in Shapiro (2007).

• The distance properties. An exact distance can be essential for

applications like offsets, but usually, only approximate distance

properties are necessary. Distance properties can be defined as fol-

lows: if d(a) ≤ d(b) then f(a) ≤ f(b) where d is the exact distance

function, and f the function to be judged. The loss of distance

properties often leads to unstable fields and counter intuitive be-

haviours for some operations.

• C1 continuity. As highlighted in the previous section, C1 conti-

nuity is required by many applications for both the geometry of

an object and its attributes. C1 continuity is contradictory to the

nature of the exact distance function. With this in mind, it is

important to distinguish two types of C1 continuous R-functions,

those which bound the smoothing area and can be controlled by

the user (adaptive) and those which cannot (fixed).

• Symmetry. All R-functions are associative and commutative at

the surface level. But most fail to carry this property over the

entirety of the scalar field. This can lead to several issues and

counter intuitive behaviours. Symmetry is critical to preserve dis-

tance properties, and are necessary for predictability. For instance,

the order in which unions are performed before an offset should not

impact the resulting shape.

• Culling. Often numerous unions are performed to create the bulk

of an object. In this case, an efficient solution is to cull out some

of the primitives based on their positions and approximate the

distance, if the R-function allows it.

Figure 2.13 and figure 2.14 are used to illustrate the differences be-

tween a few R-functions. The colours indicate the values of the scalar

field. The black lines represent values close to the zero-level set. The

white lines indicate other iso-levels. Blue values indicate large positive

values, and yellow large negative values. For both pictures, the first sub-

figure (figure 2.13a and figure 2.14a) are the exact distance fields to the
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surface. In figure 2.13, a shape is built using five discs laid symmetrically.

In figure 2.14, a union between two perpendicular planes is performed.

The most popular solution is to use the minimum and maximum func-

tions (Ricci 1973) (shown in figure 2.14b).

• f1 ∨1 f2 = max (f1, f2)

• f1 ∧1 f2 = min (f1, f2)

• f1 \1 f2 = min (f1,−f2)

These operations have C1 discontinuities whenever f1 = f2. Also,

they do not approximate the distance well. The lower left quadrant in

figure 2.14b clearly shows the deviation from the distance field shown

in figure 2.14a. Their advantage is that if the smallest value can be

identified before sampling, only one of the two functions need to be

evaluated. This is possible if we are dealing with distance fields and use

the bounding boxes as an initial guess.

Another class of R-functions which may only introduce C1 disconti-

nuities at the intersection of the two surfaces was presented in Rvachev

(1982) (shown in figure 2.14c).

• f1 ∨0 f2 = f1 + f2 +
√

f 2
1 + f 2

2

• f1 ∧0 f2 = f1 + f2 −
√

f 2
1 + f 2

2

• f1 \0 f2 = f1 − f2 −
√

f 2
1 + f 2

2

However, such functions lose distance properties (shown in figure

2.14c). If used numerous times, the field becomes chaotic. These func-

tions also lack the associative and commutative properties, which implies

that the order of the application of an operation changes the field. A

symmetric shape gives an asymmetric field (see figure 2.13c). Regardless

of the fields, both arguments need to be evaluated, therefore culling one

of them is not possible.

Rvachev (1982) also introduced another class of R-functions called

the
0

R
2
class. The cross section of the union of two planes using this class

of R-functions is shown in figure 2.14d. The intersection formulation is
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shown below:

f1
0
∧
2
f2 =























f1f2(f1
2 + f2

2)−
1

2 if f1 > 0 and f2 > 0

f1 if f1 ≤ 0 and f2 ≥ 0

f2 if f1 ≥ 0 and f2 ≤ 0

(−1)2+1(f1
2 + f2

2)
1

2 if f1 < 0 and f2 < 0

(2.11)

These functions have very good distance properties while also maintain-

ing C1 continuity everywhere but at the surface intersection. These func-

tions are also commutative and associative, making them more suitable

for large FRep models which contain numerous operations (see figure

2.13d). These R-functions seem to approximate the distance function

well, as shown in figure 2.13a. Culling is also possible if the sampling

point is inside one solid, and not the other. This means some culling is

possible.

Another class of R-functions was introduced in Fayolle et al. (2008)

called Signed Approximate Real Distance Functions (SARDF) which

maintains C1-continuity everywhere except where the surfaces intersect.

These functions allow for an adaptive smoothness where the smooth-

ness is controlled by the users. This means that the function can closely

match the operators from Ricci (1973), or be as smooth as the
0

R
2
func-

tions. The function also bounds the distance approximation error given

that their arguments are distance approximations too (shown in figure

2.14e). Similarly to the
0

R
2
class functions, both functions do not need to

be evaluated in some cases.

In ImplicitCAD (2013), another function for rounded unions (similar

to blended unions) was introduced. The roundness is controllable and

blends the objects together.

f1 ∧rounded f2 =







min(f1, f2) if |f1 − f2| ≥ r

f2 + r · sin (Π
4
+ asin(f1−f2

r
√
2
))− 2 if |f1 − f2| < r

(2.12)

In this equation, r is the roundness radius. In this form, this function

is not an R-function. However, by varying the value of r in function of
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Method Distance C1 continuity User control Symmetric Culling
R1 Low No No Yes Yes
R0 Low Yes No No No
0

R
2

Good Yes No Yes Partial

SARDF Good Yes Yes No Partial
Adaptive rounded Medium Yes Yes No Yes

Table 2.1: A comparison R-functions desirable properties

its distance to the surface, it can become an R-function. The roundness

is set to zero at the surface, and is increased as the distance to the

surface increases. Its behaviour is very similar to the SARDF. SARDF

are shown in figures 2.14e and 2.13e, while adaptive rounded unions are

shown in figures 2.14f and 2.13f. This function is advantageous because

the smoothing area is bounded easily which can be useful for multiple

unions by evaluating fewer primitives and has a simpler implementation

than SARDF.

The table 2.1 summarizes the properties of the various R-functions

presented in this section. The distance column provides an evaluation of

how well the function approximates the distance function. The C1 conti-

nuity column deals with the C1 continuity of the scalar field everywhere

but at the surface. The user control column shows which functions allow

users to adjust the smoothness. Symmetry is important so that the order

of operations does not produce different scalar fields (e.g. A ∨B should

be equivalent to B ∨ A). Finally, some R-functions do not require both

values to be evaluated given some conditions. If we have two distance

fields to union, and one object is closer than the other to the sampling

point, then it may be possible to only sample the closest object.

Apart from the R0 functions, all those R-functions can be useful de-

pending on the desirable properties of the resulting field. The R1 class

is extremely efficient, but lacks the C1 continuity which is so critical

for many applications. The only proven commutative and associative

R-function is the
0

R
2
class but its smoothness cannot be controlled and

therefore it is difficult to control the smoothness of the field. SARDF and

adaptive rounded functions provide good distance approximations, and
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Figure 2.15: Metamorphosis from an armadillo to a gargoyle using
Pasko et al. (2004)

allow for controlled smoothness. However, both
0

R
2
and SARDF require

both values f1 and f2 in most cases, while R1 and adaptive rounded

functions can be evaluated without necessarily evaluating both values.

In the following chapters, the appropriate R-function will be selected

based on the desired properties. R-functions are used in section 3.3,

section 3.4 and in a number of applications in chapter 4. In each, distance

properties, continuity and culling are the main concerns.

2.4.2 Metamorphosis

Metamorphosis has often been used in animation, but also in modelling

as an artistic tool or a shape finding method. In Adzhiev et al. (2005),

group metamorphosis is used to generate a number of sculptures. The

metamorphosis work by Dutch artist M.C. Escher inspired Pasko et al.

(2011b), in Formnation (2014), a breeding process was applied to chairs

using metamorphosis. In McLoughlin et al. (2016), a simple metamor-

phosis tool was provided to children with disabilities to create original

objects which were later 3D printed.

In computer graphics and animation, metamorphosis is a continuous

transformation from one shape (source) into another (target) through

intermediate shapes. In Lazarus and Verroust (1998), at least three ap-

proaches were distinguished: based on polygonal meshes, based on scalar

fields and on conversion methods.

Most of the methods based on polygonal meshes assume that the given
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shapes have matching genus and number of components, and that a cor-

respondence between the meshes can be established (through indices or

texture coordinates). Meshes that have different topology can be used

in metamorphosis, however some additional knowledge about topolog-

ical changes and additional user intervention are required in this case

(DeCarlo and Gallier 1996; Takahashi et al. 2001).

Metamorphosis between two models represented by FRep (Pasko et al.

1995) or discrete scalar fields can be performed regardless of the ob-

jects topology or shape alignment (Hughes 1992; Yang and Jüttler 2007).

He et al. (1994) performed the interpolation in the wavelet domain to

improve the transition smoothness. However, there is almost no user

control which can lead to unsatisfactory results. For instance, the linear

interpolation of the values of the scalar fields representing the shapes

has a simple formulation but can produce poor results or even fail to

produce intermediate shapes (Pasko et al. 1995; Cohen-Or et al. 1998).

Turk and O’Brien (1999a) proposed a more sophisticated approach based

on interpolation of surface points with assigned time coordinates using

radial basis functions in 4D space. This method can handle non-aligned

surfaces with different topologies. However, the initial shapes (source

and target) need to be sampled and rely on radial basis functions, which

can be time-consuming to evaluate. Another method of shape metamor-

phosis called space time blending was introduced in Pasko et al. (2004)

(see figure 2.15). This method does not require shape alignment, how-

ever the user can only affect the entire metamorphosis process rather

than specific features of the shape and its parameters can be difficult to

adjust correctly.

More user control can be achieved by restricting the class of objects.

Thus, in Wyvill (1993) some control over the metamorphosis of skeletal

soft object was achieved by cellular matching or hierarchical matching

and the metamorphosis was performed by interpolating the positions

of the skeletons and the field intensities. The main drawback of this

method is the requirement for skeleton matching for two objects which

is similar to the shape matching problem defined for polygonal models.

Later in Galin et al. (2000) this limitation was partially lifted, however
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both shapes need to have a similar structure for the interpolation to be

possible.

Lerios et al. (1995) introduced a voxel-based metamorphosis with im-

proved user control, where the user can define object features such as

points, rectangles and boxes. Chen et al. (1996) also improved the user

control by providing a similar solution based on a number of pairs of

discs used to mark correspondences between the objects. The authors of

Lerios et al. (1995) and Chen et al. (1996) were inspired by the Beier and Neely

(1992) approach, which allows for creating smooth transitions between

two images. This technique allows the user to define pairs of correspond-

ing features in the source object and the target object and to interpolate

between the shapes of the source model and the target model by using

the information about these features. Features can be defined as a frame

with a bounding box, providing more user control than other existing

techniques. However, this technique heavily relies on the linear interpo-

lation between shapes which occasionally does not produce acceptable

results.

Group metamorphosis, where more than two objects are interpo-

lated, was addressed for limited groups of objects with simple weighting

schemes such as barycentric coordinates for three objects (Adzhiev et al.

2005) and the bilinear interpolation for four objects (Fausett et al. 2000).

As for transformation of volumetric attributes during the metamor-

phosis, two groups of solutions are available. Particle systems are used to

follow surface properties and flow from the source to the target object.

Drastic changes in topology tend to provide unrealistic or undesirable

effects. The work of Smets-Solanes (1996) improved on the above men-

tioned particle system technique to get good results for animated implicit

surfaces. A set of points on the surface of the initial shape (virtual skin),

parameterised in 2D, is transformed using different vector fields defining

the particle velocities. Several effects such as clay style texturing can

be achieved and splitting or merging objects are handled correctly. The

vector fields are however difficult to create and they often exhibit case

specific problems. The work of Tigges and Wyvill (1998) extended tex-
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turing through the use of particles to deal with gradient discontinuities

that may arise with constructive models and distance functions. The

force applied to the particle is a weighted sum of forces. The gradient

vector field is used to repel the particle, but the support shape also acts

as an attractor. Several operations are also extended to blend textures

and surface materials together.

Alternatively, PDE-based methods track surface changes. In Dinh et al.

(2005) a method was introduced to track surfaces with corresponding

attributes in time by solving PDEs. This solution gives consistent re-

sults with any topological changes including splits and holes. In the

work of Bojsen-Hansen et al. (2012), the authors used a similar method

to track properties (such as colours and displacement information) dur-

ing the shape transformation process in morphing or in fluid simulation

with heterogeneous fluids. This method is able to handle drastic topol-

ogy changes. However, solving the PDEs is time consuming and makes

this solution impractical for real time applications, in long animation

sequences or when applied to large meshes. Both groups of solutions are

limited to surface attributes (usually colours).

Metamorphosis is an important part of the work presented in section

3.5 and in section 3.4. In section 3.5, it is the starting point to generate

shapes from parts of various objects. Section 3.4 deals with the problem

of the interpolation of volumetric properties between two objects during

metamorphosis.

2.4.3 Microstructures

Microstructures are internal spatial geometric structures with size of de-

tail orders of magnitude smaller than the overall size of the object. They

could be used to reduce the amount of material in object fabrication,

or to change the composition of an object to allow for other properties

such as thermal insulation. Such structures can be classified as periodic

porous structures or irregular porous structures (Giannitelli et al. 2014).

Boundary representations are poorly suited for handling microstruc-
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Figure 2.16: Simple lattice microstructures inside a Buddha figurine

Figure 2.17: Microstructure parameters are interpolated across space.
Image from Fryazinov et al. (2013)

tures. First, microstructures can require a huge number of polygons,

even for simple lattices. The model size becomes even bigger, if the

lattice has smooth features such as blended intersections. If smooth sur-

faces are used, then accuracy also becomes an issue. Finally, handling

microstructures with various other objects can lead to self-intersections,

making the object non-manifold. Having some of the attributes of the

lattice change across space (based on the distance to the surface, or using

data from a numerical simulation, for instance) can lead to even more

issues. Crafting unit cells can also be tedious. This led Cheah et al.

(2003a,b) to create template parametric libraries of cellular structures.

However, the function representation can easily fill an arbitrary object

with various microstructures without having any of the above issues.

In Pasko et al. (2011a) a lattice microstructure is modelled where the
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(a) (b)

Figure 2.18: Multi-scale microstructures, where microstructure can
contain microstructures themselves. Image courtesy of Daniel Büning

intersections between rods are blended, as well as the connections be-

tween the microstructures and the shell of the object (see figure 2.16).

Additionally, the parameters of the microstructures, such as thickness

and spacing, are controlled by the distance to the boundary. The struc-

ture can also undergo space mappings (such as twisting, bending or ta-

pering). Arbitrary microstructures can be constructed using cell repli-

cation. The parameters can also be mixed with noise functions allowing

for natural looking porous objects. In Fryazinov et al. (2013), several

improvements are presented. The transfinite interpolation (Biswas et al.

2004) is applied to the parameters of the microstructure. Attributes in-

clude a morphing parameter between one type of cell and another (see

figure 2.17). Some features of the microstructures can also be made of

other microstructures, and further down several levels (see figure 2.18).

The function representation is capable of applying Boolean operations

to such objects regardless of their complexity, allowing the user to have

surface microstructures by intersecting the infinitely repeating structure

with a shell of the object. Typical microstructures which can be achieved

with such technique are the honeycomb structures and the sea sponge
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structures. In Gabbrielli et al. (2008); Melchels et al. (2010), the au-

thors introduced a list of functions for microstructures in order to re-

produce natural bone structures. Additionally, the user can select a

target volume fraction, providing a clear parameter to control the ob-

ject weight. Such microstructures rely on the cell replication (tiling),

although the cell attributes can change across space. Schumacher et al.

(2015) also used tiling of a structure to change the elasticity of a model

by changing the parameters of the microstructures across the object vol-

ume. Peytavie et al. (2009) procedurally generated rocks using aperiodic

tiling in order to break the undesirable repetitiveness of the pattern. This

can lead to more natural looking patterns similar to some of the irreg-

ular porous patterns introduced in Pasko et al. (2011a). The common

drawback shared by all the above methods is that they rely on intuitions

to provide robustness, or simply on aesthetics.

In material engineering, microstructures such as polymer foam are

popular for their robustness and light weight. In Wejrzanowski et al.

(2013) the Laguerre-Voronoi tessellation is used to reproduce similar

structures. The results are compared with foam structures found in

nature by the average number of faces per cell. A Laguerre-Voronoi

tessellation is a variation of Voronoi tessellations where a weighting is

applied per seed. The weighting can be interpreted geometrically as the

radius of a sphere. Some computer modelling systems reproduce solid

foams (Lal and Sun 2004) by using sphere packing. Sphere packing is

the process of fitting as many spheres as possible within a volume. Here

the radii of the spheres vary to fill gaps in-between the large spheres.

Heterogeneous object modelling methods are often applied to mi-

crostructures to demonstrate the usefulness of varying attributes. Mi-

crostructures can have varying properties across an object (such as den-

sity, elasticity, robustness). In chapter 4, many applications will show

how the microstructure properties can be controlled with the methods

presented in chapter 3.
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2.5 Conclusions

In this chapter, we reviewed various object representations for hetero-

geneous object modelling and various approaches to designing heteroge-

neous objects. There are two main models, evaluated and unevaluated

models. While evaluated models is more suitable for numerical simula-

tions, unevaluated models are interesting from a design stand point. In

the unevaluated models, feature based methods, which rely on distance

fields, have shown promising results. Distance fields were surveyed, and

it was shown that they have many beneficial properties.

In this survey, we highlighted a number of methods for heterogeneous

object modelling. For design purposes, the unevaluated methods are

more appropriate (Kou and Tan 2007). The challenge of unevaluated

methods is to make these methods easy-to-use and controllable. Feature-

based methods are user-friendly and easily integrated into existing CAD

systems. However, they are not as flexible as constructive methods. For

instance, feature based methods are not shape aware while constructive

methods can be shape aware and provide precise control.

As we have shown, distance fields are widely used for heterogeneous

object modelling, and many authors have argued that they were impor-

tant for heterogeneous object modelling (Rvachev et al. 2001; Biswas et al.

2004; Fayolle et al. 2006). Feature based methods rely on distance fields

for numerous reasons. One of these reasons is that distance fields make

interpolation in material gaps predictable. Additionally, most geometric

features can be represented using distance fields, and any object mod-

elled in traditional CAD systems can be represented by scalar fields.

A number of issues remain however. Distance fields are not smooth,

which can be problematic. Exact distances and smoothness are often ir-

reconcilable, however, approximate distances can be used to preserve the

predictability (Fayolle et al. 2006) and provide smoothness at the same

time. Another recurring issue in feature based methods is the issue of

shape awareness. Most feature based methods rely solely on the features

of the object and do not take into account the shape of the object. Fi-
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nally, as explained in Kou and Tan (2007) and Kravtsov (2011), most of

the research has been focused on static objects. Therefore, time depen-

dent heterogeneous object modelling has not received a lot of attention.

In this thesis, some of the issues discussed above are tackled. In the

next chapter, a smooth approximation of distance fields is proposed in

section 3.2. Section 3.3 tackles the issue of shape awareness for feature

based heterogeneous object modelling. Section 3.4 provides a method to

interpolation two volumetric material distributions of two objects during

metamorphosis.
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Chapter 3

Distance based heterogeneous

volumetric modelling

Heterogeneous volumetric modelling finds applications in many areas

such as bio-engineering, multi-material design and fabrication, geology

and physical simulations. In the previous chapter we have outlined the

state of the art for heterogeneous volumetric modelling and to which

extent it relies on distance fields. Heterogeneous volumetric modelling,

if considered mainly as object material modelling, can be divided in two

major types, composite materials and gradient materials. Composite

materials can be defined in several ways and are not as challenging as

gradient materials. Composite materials can be seen as a collection of

homogeneous parts. For gradient materials, feature-based methods are

the most prevailing thanks to the easiness of the configuration process.

However, several issues, highlighted in chapter 2 showed that improve-

ments could be made in this area. Additionally, some problems cannot

yet be solved using the currently available techniques.

In section 3.1, we will discuss a theoretical framework for distance

based heterogeneous volumetric modelling to help us solve some of the

problems indicated in chapter 2. In the following section, a new smooth,

approximate distance field will be introduced to alleviate the issues re-

lated to distance field discontinuities in heterogeneous volumetric mod-

elling and shape modelling. In section 3.3, interior distances will form
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the foundation of a novel method to interpolate material and other vol-

umetric properties across a shape based on the feature-based modelling

principle. In section 3.4, distance fields will be used to tackle the prob-

lem of the interpolation of volumetric object properties through time as

its shape changes. Finally, smooth distance fields will be used to support

a complex morphological shape generation technique allowing designers

to combine and mix different parts of various objects together.

3.1 General approach

A heterogeneous object is an object composed of diverse materials or

possessing other properties varying across its volume. Such properties

include colour, material types, temperature, density, structural patterns

and others. Heterogeneous objects are common in nature, such as fruits

and plants, and some man made objects can be considered heterogeneous

objects too. Two types of properties distribution across a volume can be

distinguished; composite with abrupt changes from one value to another;

gradient where a property gradually changes in the object. An object

may combine both composite and gradient properties.

As mentioned previously, there are several representations for hetero-

geneous objects, and a few techniques and frameworks have been intro-

duced for heterogeneous volumetric modelling. Some used a hybrid rep-

resentation to represent the geometry on one hand, and the values of the

properties on another hand. Voxels have been popular even though they

are limited by their resolution. The constructive hypervolume framework

allows to represent both geometry and properties using FRep, and the

focus of this thesis is on extending this framework.

In chapter 2, an object in the constructive hypervolume framework

was defined by equation 2.3. The object is defined by its geometry and

a number of attributes, which may represent physical properties.

o = (G,A1, . . . , Ai) (3.1)
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• o is the object

• G is the geometry of the object

• Ai is an attribute of the object

In Pasko et al. (2001), the heterogeneous object can be modelled using

a function for its geometry, and any number of attribute functions. An

attribute function can be a vector function (e.g., for colour) or a scalar

real-valued function (e.g., for temperature). An extension is proposed

to adapt this earlier formulation to support time variant attributes, and

attributes as functions of distances. The model of the heterogeneous

object can be considered a vector function. The equation 2.3 is extended

as follows:

Γ(p, t) =
(

F (p), S1(ψ1(φ̄), t), . . . , Si(ψi(φ̄), t)
)

(3.2)

where

• p is a point in Euclidean space

• t is the time instance

• Γ is the model of the heterogeneous object, a vector function. Each

component of Γ is a model of the corresponding component in the

tuple of equation 3.1.

• F is a real-valued function of point coordinates which represents

the object geometry G

• Si is a function representing an attribute, which depends on a num-

ber of distance functions and time. Each function Si represents an

attribute Ai

• ψi is a function of a number of distance functions

• φ̄ is a vector of distances

φ̄ = (φ1(p), φ2(p), . . . , φi(p)) (3.3)

where φi is a distance to either a space partition boundary, or to a feature
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such as a line, a point or a curve.

Equation 3.2 defines the procedure to evaluate the object at the given

point and time instance, we evaluate F , and if it is positive, then for

each attribute, we evaluate the functions Si. Equation 3.2 differs from

equation 2.3 because attributes are now functions of distances and time.

In simpler terms, the focus of this work is on attribute functions of

distances and time. While some attributes are not functions of distances

or time, we will show that numerous attributes can be expressed by

functions of distances. Aside from the more physically based methods,

distances can provide more intuitive fields for users to work with. It

can be relevant when modelling geometric objects (e.g., blending them)

but usually, the quality and distance properties of the scalar field have

a limited impact on the intuitiveness of the operations (e.g. Boolean

operations, twist). However, heterogeneous volumetric modelling and

gradient properties rely solely on the scalar field, and therefore distance

fields become imperative in order to avoid unexpected results as discussed

in chapter 1.

If φi is a function with distance properties, φi assumes a zero value

on the surface of the object, a positive value inside the object and a

negative value outside it. Also, the absolute value of the function grow

with the distance of a point from the surface. Thus, if d(p1) < d(p2),

then φi(p1) < φi(p2) where d is the distance function. Additionally,

modelling the object with functions of time allows for time-dependent

transitions of attribute distributions from one value to another or helps

express certain properties as functions of time. For instance, temperature

is a function of time and distance to a source.

On the basis of the introduced general approach to deal with attributes

expressed by functions of distances and time, several long-standing het-

erogeneous volumetric modelling problems were selected and in this chap-

ter we show how they can be addressed from the proposed theoretical

point of view. As stated in chapter 2, the continuity of the functions

Si(ψi(φ̄), t) is not essential. For instance, composite materials are in-

herently expressed by discontinuous functions at the boundary of two
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Figure 3.1: The blending union between a cube and a sphere can cause
a crease to appear. This is due to the C1 discontinuities of the cube
function, built using min/max. Image courtesy of Pierre-Alain Fayolle

materials. However, if such attributes are to be used for modelling pur-

poses afterwards (e.g., to model microstructure thickness controlled by

a function), C0 function continuity is required to maintain a valid FRep

object.

In most cases, a C1 continuous φ function is necessary for a smooth

volumetric attribute. Smooth transitions for volumetric attributes are

important to avoid the stress concentrations that can be caused by C1

discontinuous functions (Rvachev et al. 2001; Biswas et al. 2004; Fayolle et al.

2006). C1 continuity might also be useful, if the user desires smooth

blends, metamorphosis and other operations as function C1 discontinu-

ities can cause unexpected creases in the resulting surface (Fayolle 2006),

as shown in figure 3.1. Therefore, there is a need for a C1 continuous

function φ, with values close to the exact distances and exact bound-

aries to maintain the correct object definition. This problem is tackled

in section 3.2.

Transfinite interpolation for heterogeneous volumetric modelling is al-

ready a powerful technique to create gradient volumetric properties in

an object. It uses distances and distance approximations to produce an

interpolation between material features with known material attribute

values. These material features are defined by the user, and it can be any

kind of feature, as soon as its geometry is defined. However, transfinite

interpolation does not take into account the shape of the object nor the
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relative positions of the features. These issues are tackled in 3.3. Dis-

tances in this case are used at several levels to interpolate the volumetric

attributes in respect to the shape geometry G.

In chapter 2, the survey on metamorphosis showed that the geomet-

ric side of this operation was well understood and studied. However, the

metamorphosis changes the volumetric material properties through time.

This issue is a good example of an attribute Si(f(φ), t) which depends

on time. There are only a few available solutions to interpolate between

two volumetric material distributions, and most of these involve solv-

ing partial differential equations or tracking particles. This problem is

tackled in section 3.4, where distances are used to evaluate the material

distribution at a time t.

Finally, an example of attribute values used to support complex parametrized

operations is given in section 3.5. Several weighting attribute functions

Si are created to mix and deform various pieces of several objects.

The main contributions of this thesis in the area of heterogeneous

object modelling are:

• A general formulation of a distance-based time variant heteroge-

neous object model and the formulation of several specific user-

oriented operations within this model

• An approach to providing shape preserving, C1 continuous field ex-

cept at the boundaries, with convolution filtering of signed distance

fields in section 3.2

• A shape aware feature-based interpolation method for complex ob-

jects: shape conformal volumetric interpolation in section 3.3

• A shape aware time-dependent volumetric interpolation of two ma-

terial distributions: space time transfinite interpolation in section

3.4

• A method to mix several objects together selectively based on fea-

tures: morphological shape generation in section 3.5
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3.2 Convolution filtering

In chapter 2, the importance of C1 continuity for defining functions of

FRep objects was established. It is also important to remember that

such continuity is desirable for heterogeneous volumetric modelling and

gradient material properties. At the same time, exact boundaries need

to be preserved to comply with the user’s input. In this section, a novel

solution which relies solely on a distance function to produce an approx-

imate C1 continuous function, for points away from the surface, which

closely approximates the distance function is presented.

3.2.1 Problem description

Distance fields are important in heterogeneous volume modelling as they

can be used to represent both the object geometry and the material fea-

tures. As shown above, distances are also important in feature-based

heterogeneous volume modelling to have predictable transitions between

various materials. Distance fields prevent unexpected results in volu-

metric property interpolation, or when some operations are applied to

the field (such as offsets and blends). However, distance fields have C1

discontinuities, which can cause abrupt transitions when interpolating

volumetric properties causing stress concentrations (Biswas et al. 2004)

or unexpected creases on blends (Fayolle 2006). For the given mesh or

other surface model, we are looking for a function with the following

properties:

• represents the surface exactly to accurately define an object, in-

cluding its sharp features

• is as smooth as possible (except at the surface) to allow for smooth

transitions and avoid stress concentrations

• remains close to the distance function in order to keep predictabil-

ity

Additionally, the evaluation of this function needs to be relatively fast,

since typically several millions samples are evaluated per model, where
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the models can have several hundred thousand polygons.

3.2.2 Criteria of evaluation

To evaluate the quality of a function for this problem, the function needs

to satisfy the following criteria:

• Capability of representing the given object accurately

• Smoothness except at the surface

• Close approximation of the distance function

• Computationally fast evaluation at the given point

The smoothness can be evaluated visually using volume slices of the

function. Additionally, the selected functions can be compared in real

applications to judge the quality of the surface (for shape operations) or

volumetric property transitions (for property operations). The smooth-

ness can also be evaluated using edge filtering on the gradient field in

three dimensions on a volume slice. A successful method should reduce

the visible edges away from the surface.

3.2.3 Existing approaches

There are several ways of representing a mesh with a scalar function.

Signed distances (Payne and Toga 1992) are exact, but are not smooth.

BSP-fields (Fryazinov et al. 2011) and Lp distances (Belyaev et al. 2012)

are able to represent the mesh precisely, and both have at least C1 con-

tinuity everywhere except at the surface. However, BSP-fields cannot

guarantee distance properties, unless min-max operators are used, in

which case C1 discontinuities appear. Lp distances can have distance

properties and the deviation can be controlled through the parameter p.

However, a single evaluation of the function is of linear complexity with

respect to the number of polygons. Therefore, Lp are not practical for

meshes with a high polygon count. The evaluation of BSP-fields have a

linear complexity at best, making it impractical as well. Finally, Radial
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Basis Function (Savchenko et al. 1995; Carr et al. 2001; Yngve and Turk

2002), Multi-level Partition of Unity (Ohtake et al. 2003) and Compact

Support Radial Basis Function (Morse et al. 2001) only approximate the

shape. Additionally, there are no guarantees of the distance properties

of those functions. Voxels have been used to calculate the distances, and

then smoothing and interpolation is used. While it provides the best

performance per sample, and produces a C1 continuous function (given

an appropriate interpolation scheme), it cannot represent the objects

accurately. A more complete review is given in section 2.3.

3.2.4 Overview

The presented technique applies convolution filtering to the initial dis-

tance field, where the filtering region of p is reduced to a point if p

belongs to the surface. The filtering region increases as the distance to

the surface increases.

The exact signed distance field function f of the object is replaced by

the function g:

g(p) =

∫

R3 f(p− s h(p))w(s)ds
∫

R3 w(s)ds
(3.4)

where

• w is a smooth kernel function,

• h is a function that controls the kernel size, such that h(p) = 0

when f(p) = 0,

• s is a displacement vector over the whole space where the signed

distance field f is defined.

The function h is discussed in details in subsection 3.2.5, and the

function w is explained in subsection 3.2.6.

The scalar field defined by the function g preserves the same zero level

set as the function f since h(p) = 0 when f(p) = 0. Thus, p−s h(p) = p

and so f(p− s h(p)) = 0 if f(p) = 0.

If sh(p) is substituted by u, then du = h(p)ds and, providing that
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h(p) 6= 0, the parameterized family of functions wh(u) =
1

h(p)
w( u

h(p)
) is

introduced. Equation 3.4 can be rewritten as follows:

g(p) =

∫

R3 f(p− u)wh(u)du
∫

R3 wh(u)du
(3.5)

In order to maintain the same surface, g(p) = f(p) = 0 needs to be

true for all p lying on the surface of the object.

From the equation 3.5, it is clear that g is a convolution product if

the function wh is not a function of p. In subsection 3.2.5, we show that

past a user-defined value, h(p) is constant. Therefore, g is a convolution

of f and wh, when h(p) is constant. The properties of the convolution

integral defined by the equation 3.4 heavily depend on the definition of

the functions w and h, which are discussed below.

3.2.5 Kernel size function

The function h is introduced to smoothly interpolate values from 0 to 1 as

the distance to the surface increases. This function should be continuous

on R
+ and such that h(0) = 0 and h(pt) = 1, ∀pt|f(pt) ≥ fc, for a given

capping value fc.

There are three reasons to require that h(pt) remains constant for

points beyond the capping value fc:

• Only if wh is not a function of the point p the continuity is guar-

anteed. If the kernel size is a function of the distance, then a

discontinuity is introduced where the distance function is discon-

tinuous.

• The larger the kernel size is, the larger the difference between g

and f is. Capping the kernel size means the difference between g

and the distance can be bounded.

• If the maximum kernel size is kept small enough, packet sampling

can be employed to improve the sampling performance for the nu-

merical evaluation of g.
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One way to define such a function h is to use the smooth step function

defined by the GLSL Language Specification Version 1.40 (Kessenich et al.

2009) as:

h(p) = 3r(p)2 − 2r(p)3 (3.6)

where r(p) = min( |f(p)|
fc

, 1).

Note that this function does not depend on the sign of the scalar field,

as the unsigned distance value is used. Reducing the kernel size to zero

on the mesh surface provides the exact surface representation by the

convolution filter of the distance field.

3.2.6 Kernel function

The kernel function w should take its maximum at 0 and smoothly con-

verge to 0 as its argument vector goes to infinity with any of its coor-

dinates. Two obvious ways to define such a function is the Gaussian

distribution and a bump function. Two functions are illustrated and

discussed below in the one dimensional case, although the formulation is

also suitable for multidimensional vectors.

The Gaussian distribution is defined as wa(u) =
(

a
π

)
3

2 e−a||u||2, where

the parameter a ∈ R
+ controls the width of the Gaussian. The larger a

is, the closer g will approximate f . Gaussian curves for different values

of a are illustrated in figure 3.2.

The bump function used in the rest of this thesis is defined as:

wb(u) =







b−3e
1

||u
b
||2−1 if ||u

b
|| < 1,

0 otherwise.
(3.7)

where the parameter b controls the width of the bump function. The

smaller b is, the closer g will approximate f . Bump functions for various

values of b (0.15 in green, 0.2 in yellow, 0.5 in pink and 1 in blue) are

illustrated in figure 3.3. The bump function has the advantage of having
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Figure 3.2: Gaussian weight function for various values of the param-
eter a

compact support, unlike the Gaussian curve. This will be useful for its

implementation.

Regarding continuity, there are two cases for g:

• |f | > fc: wh behaves like w (i.e., wh does not rely on f); so for the

weighting functions proposed above g is smooth;

• |f | ≤ fc: wh has discontinuous partial derivatives whenever |f | ≤

fc and f has discontinuous partial derivatives, g is not guaranteed

to have derivative continuity.

3.2.7 Selection of parameters

The parameter fc controls the distance to the boundary of the object

represented by f outside of which g is guaranteed to be smooth. This

parameter needs to be small enough to exclude points where f is not

smooth, or set as small as possible otherwise. fc defines an envelope

around the surface of the shape defined by f , in which the kernel size

is not constant. While the kernel size is not constant, the function g is

only guaranteed to be C0 continuous.

The parameters a and b related to how the weight functions control
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Figure 3.3: Bump function for various values of the parameter b.

the width of the Gaussian or bump function. There is a trade off between

how close g is to the distance function and the shape of the level sets

of g. It should be selected based on the type of applications. If the

properties being modelled are closely related to the distance function,

then the parameters must be selected to keep g close to the distance

function. However, if smoothness is more important and slow transitions

are desired, a should be small and b large (e.g., a = 1 and b = 1).

Figure 3.4 shows the signed distance to the boundary of the interval

[0, 1]. The Gaussian function is used for wh with a = 50. First, fc is set

to one. Since the discontinuity of the signed distance function happens

at 0.5, and 0.5 ≤ fc, the derivatives will still be discontinuous. Figure

3.5 shows the plot of g(x) corresponding to this case. The derivative

discontinuity is visible in figure 3.5b at 0.5.

However, when fc = 0.25, g has derivative continuity (figure 3.6). For

this simplistic case, the derivatives of g can be evaluated analytically at

x = 0.5, and it can be shown that g′(x) = 0.0.

While g is continuous, it is possible to create extra zero level sets for

some selections of fc and a (or b). This occurs if the width is large and

the capping distance fc is small. The following subsection discusses the

necessary restrictions on the parameters. Figure 3.7 demonstrates this

behaviour. The width is set to a = 2.0 and the capping distance is set
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Figure 3.4: Plot of the distance to the segment [0, 1].

Figure 3.5: Plot of g using fc = 1.0. Right: zoom near the point
x = 0.5.

Figure 3.6: Plot of g using fc = 0.25. Right: zoom near the point
x = 0.5.
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Figure 3.7: By picking a large width for the Gaussian and a small fc,
it is possible to obtain unwanted extra zero level set.

to fc = 0.1. As explained above, the width needs to be reduced or the

capping distance increased to fix this issue.

3.2.8 Parameter restrictions

The Gaussian function does not have local support which means the pa-

rameters have to be selected carefully as described above. However, if

a bump function is used, a relationship between fc and b can be estab-

lished. In order to prevent additional zero level sets, the filtering region

must not cross the surface of the object otherwise the sign of f changes.

Therefore, if b is set, then fc has a lower bound depending on the value

of b. Similarly, a given value of fc implies an upper bound on b. In

order to avoid any non-zero weighted s to cross the surface, the following

inequality must hold for all p:

b h(p) ≤ |f(p)|

using equation 3.6, this inequality expands to:

b (3(min(
|f(p)|

fc
, 1))2 − 2(min(

|f(p)|

fc
, 1))3) ≤ |f(p)|

min( |f(p)|
fc

, 1) is substituted by X which leads to the following inequal-
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ity:

b(3X2 − 2X3)−Xfc ≤ 0 (3.8)

The highest point which could potentially cross h(x) is identified by

finding the maximum for X of the above function in the range [0, 1]. To

do so, the roots of derived function have to be solved:

s′(X) = −6RX2 + 6RX − fc (3.9)

After solving and substitution, in the original inequality, the following

relationship between b and fc is reached:

b ≤
8fc
9

fc ≥
9b

8

(3.10)

These parameter restrictions will guarantee that no additional zero

level set is introduced.

3.2.9 Numerical evaluation of the convolution inte-

gral

In this section, a simple method for evaluating the convolution inte-

gral of equation 3.4 is shown, based on importance sampling and Monte

Carlo integration as shown in Hastings (1970) and further explained in

Pharr and Humphreys (2004).

In the general case, the integral defined in equation 3.4 cannot be eval-

uated analytically and therefore a numerical approximation is required.

A discrete filter is applied to the scalar field to make it smooth. In or-

der to evaluate the convolution from equation 3.4, the following finite
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summation is used:

g(p) ≈

n
∑

i=1

f(p− si · h(p)) · wi (3.11)

where n is the number of samples, f(p) is the distance function being

filtered at the point p, si is the i-th sample position in a sampling volume,

wi = w(si) is the weight associated to the sample position si and h is

the function controlling the size of the kernel as discussed in section 3.2.

Equation 3.11 can be used when the samples si are on a regular grid

(or when they are sampled from a unit uniform distribution). This is the

most naive implementation of the Monte Carlo integration. It is possible

to get better results by sampling, for example, from the distribution with

density w (or w∫
w
if w is not normalized). In this case, an approximation

of equation 3.4 is obtained by:

g(p) ≈
1

n

∑

f(p− si · h(p)) (3.12)

where si are sampled from the distribution with the density w. This

corresponds to the standard Monte-Carlo approximation of integrals with

importance sampling (Hastings 1970).

The quality of the result depends on the number of samples, their

distribution and weights. If w is chosen to have compact support, and

the kernel size is small enough, then the samples will be located in small

region of space around the point being evaluated. If the samples are in

the same neighbourhood, then packet sampling can be used to evaluate

efficiently all the samples at once.

3.2.9.1 Sample distribution and weights

To accurately and efficiently evaluate the convolution integral numeri-

cally the samples should be distributed inside some volume. Equation

3.4 suggests sampling in the entire space, at least for the Gaussian ker-

nel, while for the bump function sampling a finite volume is sufficient.

For practical reasons, when equation 3.11 is used for the approximation,
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a finite volume is used (called a unit volume) near the evaluation point.

The choice of this volume is made by bounding a volume which bounds

all the non negligible weights. Two obvious ways to define a unit volume

are: a unit sphere centred at the query point and a unit cube. Therefore

all the samples are distributed inside a unit cube and defined by their

position and weight. As the number of samples increases, the closer the

approximation to the integral becomes, but at the same time the less

efficient the method becomes. So a balance has to be found.

To distribute the samples inside the unit cube, different approaches

can be used. The most naive solution is a regular pattern of a 33 lattice

and each sample point has a weight given by the function w. However,

the resulting field has many visible creases and discontinuities which

remain even if the number of samples is increased in a regular grid.

Instead, a non uniform sample distribution following the function w is

employed. This is the importance sampling method. In this case, more

samples are drawn where the weights are larger.

To draw a sample set of N points where N is variable, and the distri-

bution of the points follows the density function w, we rely on adaptive

rejection sampling (Gilks and Wild 1992). The sample set is drawn as

follows:

1. A sample points pi is generated in a unit cube using a uniform

distribution.

2. The weight value wi of the sample point pi is calculated.

3. A random number xi is generated in the range [min(w), max(w)].

4. The sample point is rejected if xi < wi. When a sample is rejected,

the process is repeated from step 1 until it passes the test.

The resulting fields can be seen in figure 3.8. The regular uniform

filter has visible C1 discontinuities just like the signed distance field.

The Gaussian distributed samples provide smooth fields. In practice,

numerical filters provide good results while preserving the efficiency of

the method. Figure 3.9 shows how the number of samples affects the

quality of the field.
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(a) (b)

(c)

Figure 3.8: Filtering the distance field: (a) shows the signed distance
field, (b) uses a regular grid with uniform weights, (c) use a random
Gaussian distribution of samples with Gaussian weights.

(a) (b) (c)

Figure 3.9: Filtering of distance fields with (a) 32 samples, (b) 64
samples, (c) 92 samples.
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Figure 3.10: Medial axis detection using the initial samples. Green
indicates low sampling rate while red means high sampling rate. When
the field is red, we are close to a discontinuity, and therefore require
high sampling rate. A small number of samples in the green areas are
sufficient to get a good approximation.

This method could possibly benefit from low discrepancy sequences

instead of the lattice used in figure 3.8b. Quasi-Monte Carlo integration

uses (Morokoff and Caflisch 1995) uniformly distributed sequences which

improve the convergence. Caflisch (1998) compares Monte Carlo with

importance sampling and quasi Monte Carlo integration, and concludes

that some techniques can be used to make quasi Monte Carlo integration

perform at least as well as importance sampling.

3.2.9.2 Adaptive quality

As mentioned before, the number of samples has an impact on the quality

of the result and the efficiency. To achieve good quality without sacrific-

ing efficiency in the computations, the number of samples is adaptively

changed across space. A low number of samples is able to approximate

the convolution reasonably well when far from the surface or the medial

axis. Therefore, the number of samples should be adaptively increased

around the surface and the medial axis.

Finding the distance to the medial axis is not a trivial task, as the me-

dial axis of the distance field is not defined explicitly. However it can be
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approximately determined by analysing the difference between the value

in the central point of the space and the values of the neighbourhood

of this point as observed in Gagvani and Silver (1999). The farther the

query point from the medial axis, the closer the neighbourhood average

to the central point value will be. Figure 3.10 shows the number of sam-

ples (green for Nmin, red for Nmax) when using the medial axis detection

field as introduced in Gagvani and Silver (1999). If the first samples are

the uniform 3 × 3 × 3 lattice, built around the sampling point, and as

wide as the kernel size, then they can be used to build a neighbourhood

average. Finally, a smooth step is used as a transfer function to control

the number of samples based on the distance. Both of those functions

are mixed together and interpolate between the minimum and maximum

number of samples.

na(p) = Nmin +
nmedial+ndistance

2
· (Nmax −Nmin)

The function na provides a real value to control the number of samples.

Note that using just the integer part of this value is not effective because

the change in the number of samples introduces noise in the resulting

field because of the discrete jumps. Instead, the fractional part is used

to weight the last sample in the summation.

3.2.10 Summary

In this section, a method for generating a scalar field which is close to the

exact distance and C1 continuous everywhere except at the surface was

introduced. The convolution filtering method provides good user control

on various demands on smoothness. The parameters adjustments and

dependencies were explained to show the impact that such parameter

values have on the field as well as the limitations and constraints that

parameters have on each other. The main advantages of convolution

filtering are:

• Any distance field can be used regardless of its source;

• The smoothness of the field is controllable;
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• It preserves the input zero level set.

Shape preserving smooth distance fields introduced in this section will

be preferred in section 3.4 and 3.5 to the exact distance fields. The

evaluation, applications and results of convolution filtering are shown in

section 4.2. The work on convolution filtering presented in this section

was published in Sanchez et al. (2015).

3.3 Shape Conformal Volumetric Interpo-

lation

In this section, a novel method for shape conformal volumetric inter-

polation to define functionally graded material is presented. In section

2.2, several limitations of the transfinite interpolation method presented

in Biswas et al. (2004) were shown. Biswas et al. (2004) can produce

counter-intuitive results which can be attributed to two reasons. First,

concave shapes lead to non-intuitive results because the interpolation

scheme relies on Euclidean distances. For the results to reflect the user’s

intention, the interpolation needs to be shape aware, which means the

distance measure needs to reflect the distance within the shape. Ad-

ditionally, to reflect the user’s intent, the accessibility of the points in

respect to the various material features have to be considered.

3.3.1 Problem description

As mentioned earlier, feature based heterogeneous volume modelling is a

powerful concept to define gradient material properties. The user defines

non overlapping features (point, line, curve, volume) with a known homo-

geneous properties. In areas where no feature has been defined (material

gaps), the properties of the features are interpolated smoothly. This is

an important technique because it allows non-technical users to easily

define gradient material properties. Biswas et al. (2004) uses the trans-

finite interpolation to interpolate material properties between a number
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(a) (b)

Figure 3.11: (a) A simple spiral, and two sources: one blue at the
centre, and one red at the end. (b) The weights generated by Biswas et al.
(2004) with Euclidean distances.

(a) (b)

Figure 3.12: (a) A simple spiral, and three sources: one blue at the
centre, one green in the middle and one red at the end. (b) The weights
generated by Biswas et al. (2004) with Euclidean distances.
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(a) (b)

Figure 3.13: (a) A simple spiral, and two sources: one third along the
curve, and one red at two third of the curve. (b) The weights generated
by Biswas et al. (2004) with Euclidean distances.

of features. However, this method does not take the shape of the object

into account and the relative positions of features within the shape. This

leads to counter-intuitive results. For instance, for a simple spiral and

some material sources (see figures 3.11a, 3.12a, 3.13a), the weights dis-

tribution along the medial axis of the spiral shape do not seem intuitive

(see figures 3.11b, 3.12b, 3.13b).

The two identified limitations of this method are:

• The method does not take into account the shape, and solely relies

on Euclidean distances to features, see figure 3.11b or figure 3.12b

• The method interpolates attributes at any point in the material

gaps. However the user may want to localize the interpolation of

the properties, and keep a sense of occlusion between the features.

See figure 3.13b for instance.

3.3.2 Criteria of evaluation

To evaluate the proposed method, we will compare it with the work

of Biswas et al. (2004) for several simple shapes showcasing the issues

mentioned above to confirm the differences between a shape conforming
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interpolation and the traditional distance-based interpolation. For each

shape, the visual results can be compared, however it can also be eval-

uated by plotting a graph for some of the simple shapes. For a spiral

in 2D or a spring in 3D, samples distributed along the centreline can

provide a good estimate of the expected results or highlight the issues.

Monotone behaviour of the obtained function along such a curve means

the interpolation is shape conforming, while some oscillations mean that

the interpolation is shape independent. For some shapes, a single curve

is not sufficient. In such cases, we can draw a number of curves along

the medial axis or parts of the skeleton.

We will introduce curves for each of object and analyse the weights

distribution along this curve produced by our method and by the trans-

finite interpolation with Euclidean distances.

3.3.3 Existing approaches

In section 2.2, several heterogeneous object modelling methods were

shown. In this section, we are interested solely in non-evaluated, scalar

field based methods. The work of Siu and Tan (2002b) introduced the

concept of source-based heterogeneous volumetric modelling. The user

can define several types of features (points, lines, planes). Those fea-

tures can then be used to blend materials based on the distance to

those features. A function maps the distance to the feature to a ma-

terial value. The work was extended to multiple features by using a

weighted sum. This solution has several limitations. First, it assumes

the object is made of a basic material, and then is enhanced through

some features. All the parameters have to be adjusted to the size of

the object, and the interpolation is local to the feature. Additionally,

it relies on the Euclidean distance, which does not take the shape into

account. Biswas et al. (2004) proposed a global interpolation, where the

user defines features (point, lines, solids) of known homogeneous prop-

erties, and then any point outside the material features interpolates all

of the feature properties smoothly. It is a significant improvement over

Siu and Tan (2002b) since it requires less parameters, and interpolates
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the values at any point in the shape, not just within a radius. How-

ever, this solution is independent of the object geometry. Additionally,

the global interpolation means that points far from all features take al-

most equal weights from each feature property, regardless of the shape

of the object. Khoda et al. (2013) acknowledged the issue, and used the

medial axis to provide a shape-aware internal structure. However, the

medial axis is often problematic to obtain for arbitrary models. Finally,

to define the features, all these techniques rely on Euclidean distances.

If the analytical function is used, then C1 discontinuities appear, and

can cause visible creases in the material transitions. Fayolle et al. (2006)

provided smooth approximations of min/max (Ricci 1973) operators to

construct features and maintain an approximate signed distance. How-

ever, the users need to construct features using Boolean operators on the

provided primitive shapes.

In conclusion, no existing method addresses shape conforming inter-

polation issues outlined above.

3.3.4 Overview

Shape conformal volumetric interpolation method relies on feature based

modelling, as described in section 2.2.5. First, interior distances to ma-

terial features are computed. The details are presented in subsection

3.3.5. We may want to partition the object to localize the influence

of each source in some cases. A Voronoi diagram is built using these

distance fields. The Voronoi sites are the features defined by the user.

These features can be any geometrical element from which an interior

distance can be calculated (such as points, curves, meshes). The de-

tails are presented in subsection 3.3.6. Various offsets are applied to

each Voronoi cell to move the cell boundaries to encompass the original

feature, but create adjustable material gaps where the interpolation is

performed, which is described in subsection 3.3.7.

Figure 3.14 shows the steps of our method. Four material features

are defined in an object (see figure 3.14e), and the interior distance field
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(a) (b) (c) (d)

(e) (f) (g)

(h)

Figure 3.14: Overview of the steps of our method: a,b,c and d) The
interior distance fields for each material feature are computed, e) The
Voronoi diagram is built based on those distance fields, f) The Voronoi
cells are shrunk to make gaps where the interpolation should happen, g)
The result of our interpolation
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to each material feature is calculated (figure 3.14a, 3.14b, 3.14c, 3.14d).

Next, these interior distance fields are used to create a Voronoi diagram

(figure 3.14f). Then, the cells of the diagram are shrunk to create a

material gap. The checker pattern in figure 3.14g show the material gap.

Finally, the interpolation is performed in the material gap (figure 3.14h).

For the following sections, the following notations will be used:

• fs is the function of the shape representing the object

• di is the interior distance function of the material feature i within

the shape represented by fs

• n is the number of material features

3.3.5 Interior distance field for material features

The exact interior distance is a NP-hard problem (Canny and Reif 1987),

and as stated in section 2.3.1.3, various approximation of the interior

distance have been proposed for meshes and other representations. For

FRep objects, there are not many choices. The approximation of the

interior distances can be computed on a voxel grid with a smooth inter-

polation in between the voxels.

To calculate the interior distance, Fast Marching Methods (FMM) can

be used as shown in Adalsteinsson and Sethian (1995). FMM are fast

and accurate. The only limitation, shared with any other voxel-based

method, is that it may not capture all the details of the source feature.

Alternative solution are provided in section 2.3.1.3. Additionally, we

provide a simple algorithm to calculate an approximation of the interior

distance based on Djikstra’s algorithm in appendix A, algorithm 1.

Interior distances are only defined within the shape. However, there

are some benefits to being able to provide a value at any point in space

for technical reasons.

• If a shape is made of several disconnected components, for any

point in the second component, interior distances are not defined.
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• The interior distances are calculated on voxel grids. It means that

thin features may not be captured. A point in a thin feature could

be missed. This is true if a thin feature connects two parts of the

same object, or if two thin features come close but do not connect.

• The interior distance is retrieved by performing an interpolation

of neighbour voxel values, but it is problematic for points near the

object surface.

For all these reasons, we need to be able to provide values anywhere

in space. Based on these issues, we propose to extrapolate the interior

distance field to the outside of the object to overcome these issues.

• When a point is close to the surface, its value should be close to

the interior distance at closest point to the surface.

• The distance needs to increase as the sample point is further from

the surface, so that we get an approximation of the Euclidean dis-

tance if the voxel grid fails to capture parts of the geometry.

• The field should be smooth to avoid unexpected behaviour during

interpolation.

Note that if the voxel grid is too coarse, we may misinterpret discon-

nected parts as connected, or connected parts as disconnected. Since

there is no clear solution, we assume that the grid may miss features,

but not topologically important features. That is, the rasterization can

miss features (such as pins and needles) but not features which connect

two parts of a shape together.

The objective here is to give intuitive values outside the object while

keeping the discontinuity as far from the surface as possible. Since the

values are computed on a lattice, there are two cases:

1. If the point lies inside the bounds of the lattice, a two-step proce-

dure is applied. First, the shortest path to the voxelized shape is

calculated, and then the interior distance from the surface point to

the material source is added. Secondly, a smoothing pass is applied

to the voxels outside the object.
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(a) (b) (c)

Figure 3.15: The interior distance field inside and outside the shape: a)
The interior distance field for the shape, and the voxel lattice in black, b)
the extrapolation without the last blurring step, c) the extrapolation with
blur. The distances are mapped to a colour ramp, where red represents
small distances and blue large distances. The white lines are uniformly
spaced iso-lines. The faded colours indicate values outside the voxel grid.

2. If the point lies outside the lattice, values are extrapolated to pre-

serve the rate of change at the boundaries of the lattice

For the first stage, a Euclidean distance transform is used. The val-

ues of the samples that lie within the bounds of the lattice but outside

the object can be found by using a distance transform. The bound-

ary is provided by the first propagation (O in algorithm 1). Once the

distance transform is complete, we carry over the values of the interior

distances to the voxels outside the shape. The distance transform keeps

the discontinuity as far from the surface as possible. This means that the

boundary cells on the outside of the shape have values close to the ones

on the inside. This is necessary to prevent the cubic interpolation from

creating noise near the surface or on the surface. The result of this stage

is shown in figure 3.15b. As shown, the resulting field is not smooth. In

the second stage, we apply a blur to the values outside the object, so that

the interior distance remain as precise as possible while the extrapolated

values are smooth. The resulting field is shown in figure 3.15.

To sample any point in space, an extrapolation is needed. For sim-

plicity, the discrete data is extrapolated on the fly from the boundary

values of the lattice. The extrapolation needs to maintain the rate of

change the boundary cells have and carry over their value. This simple
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formula fulfils all the requirements and provides good visual results:

V (x, y, z) = V (xb, yb, zb)

+V (xd, yb, zb)× d(x, xb)

+V (xb, yd, zb)× d(y, yb)

+V (xb, yb, zd)× d(z, zb)

(3.13)

where x, y, z are the integer sample coordinates and are not bounded

by the grid, xb, yb, zb are the bounded (closest) coordinates of x, y, z

within the grid, xd, yd, zd are bounded coordinates offset by one within

the grid. This means that if x is lower than xb, then xd = xb+1, otherwise

if x is greater than xb then xd = xb − 1. The function d simply returns

the distance between the two coordinates.

The results of the extrapolation of interior distances are shown in

figure 3.15c. The faded colours indicate that the values were outside the

voxel grid, and the object is shown in 3.15a for reference. Without the

smoothing (figure 3.15b), the field is not smooth. After the smoothing

pass, an acceptable field is obtained. The large value gap at the medial

axis is as far as possible from the surface, the values are reasonably

smooth everywhere outside.

3.3.6 Voronoi diagram using the interior distance

In this method, the Voronoi diagram is create from scalar fields. The

following definition is explained with points for simplicity. The minor

modification for more complex features will be explained afterwards.

Given a set of n points, which will be called Voronoi sites, vi, i = 1...n,

the Voronoi diagram V is the collection of subsets Vi, where each subset,

called Voronoi cells, can be defined by the following Levy and Bonneel

(2013):

Vi = {p ∈ R
3| ‖p− vi‖ ≤ ‖p− vj‖ ∀j} (3.14)
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(a) (b)

Figure 3.16: A Voronoi diagram of four sites (a) and of two volumes
(b)

Here ‖p−vi‖ is the Euclidean distance between the two points. Each

pair of Voronoi sites vi and vj defines a plane that is equidistant from

these sites (dashed lines in figure 3.16a):

{p ∈ R
3| ‖p− vi‖ = ‖p− vj‖} (3.15)

The Voronoi diagram can be generalised from points to volumes by

replacing the Euclidean distance ‖p−vi‖ in the equations 3.14 and 3.15

with the value of the distance field for the volume. Consequently, the

boundaries between Voronoi cells are not planar any more (red points in

figure 3.16b are equidistant from both features, but the boundaries are

not straight) and can be curved surfaces defined as:

di(p) = dj(p) (3.16)

di and dj represent the signed distance functions from the point p to the

volumes.

Each surface defined by equation 3.16 is a boundary of a half space

which is defined as follows:

hi,j(p) ≥ 0 where hi,j(p) = dj(p)− di(p) (3.17)
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Note that the functions dj and di are not necessarily Euclidean dis-

tances. In fact, di and dj are interior distances in our case. The formu-

lations require no modification to support interior distances.

A Voronoi cell i can be defined by the intersection of all the function

hi,j for any i 6= j.

vi(p) ≥ 0 where vi(p) = hi,1(p) ∧ . . . hi,j(p) ∧ · · · ∧ hi,n(p) with j 6= i

(3.18)

Here ∧ denotes any intersection R-function, however it is preferable

to maintain distance properties and have commutative and associative

properties. Distance properties are important since we will require the

distance to each Voronoi cell in the later stages, and commutative and as-

sociative properties are desirable so that the order of operations does not

affect the field. Finally, C1 continuity can be useful to provide smooth

transitions.

In section 2.4.1, we showed a comparison of various R-functions. Rvachev

(1982); Fayolle et al. (2008) fulfil the requirements, however Rvachev

(1982)’s simpler implementation makes it a better candidate.

Figure 3.17e shows the teapot model with five material features marked

by white stars, each given a constant colour. In this case, the material

features are just points, but this method works with any type of feature

such as curves, surfaces and volumes. Figure 3.17b and 3.17d show the

field for the Voronoi cells after an offset has been applied. The white lines

show iso-lines at constant interval, and the colours indicate the values of

the field. 3.17b uses the intersection R-function from Ricci (1973) and

3.17b the intersection R-function in Rvachev (1982). The benefits of
0

ℜ

function are the smoothness of the field, and better distance properties

for the cell functions.

3.3.7 Material interpolation between features

Since the Voronoi cells use interior distances, those cells are conformal to

the shape and do not create disconnected components within the shape
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(a) (b)

(c) (d)

(e)

Figure 3.17: Different R-functions influences the field for material in-
terpolation differently: a) Min-max functions (Ricci 1973), b) The field

for min-max functions (Ricci 1973), c) R-function
0

ℜ (Rvachev 1982),

d) The field for
0

ℜ (Rvachev 1982), e) Voronoi cells for each material
feature. Each feature is given a colour.
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(see justification in appendix B). Each cell is a single component solid

within the shape which cannot be guaranteed by Voronoi diagrams using

Euclidean distances.

However, to perform the interpolation, we need to create a gap be-

tween the cells. The cells will have the material properties of their seed

(material feature), and the attributes will be interpolated in the gaps in-

between the cells. The objective is to interpolate the attributes so that

the original material features provided by the user keep their attributes,

but the interpolation zone should be as large as possible.

In order to perform the interpolation, two subspaces are needed. The

Voronoi cells are adjusted with offsets to shrink the cells. Those shrunk

cells are called feature cells. The two subspaces are:

• The interpolation zones where the materials from different feature

cells are interpolated; transfinite interpolation can be applied to

the values of the feature cell.

• The interior of the feature cell for which the material attributes are

known.

The interpolation zone can be defined by applying an offsetting oper-

ation to the functions hi,j and hj,i in order to create gaps between the

cells i and j. The field for the interpolation zone between cells i and j

can be defined as follows:

bi,j(p) = −|hi,j(p)|+ si,j = −‖dj(p)− di(p)‖+ si,j (3.19)

Here si,j defines the offset value and hence the width of the interpo-

lation zone between two feature materials i and j. Different values for

the offset can be chosen but symmetry must be maintained (si,j = sj,i),

and si,j must be positive to avoid overlapping feature cells. The first and

simplest option is to choose the value of the offset uniformly, i.e. such

that si,j = s; ∀i, j, however this might lead to undesirable effects. For

example, in figure 3.18a, a small value for the offset was used so that the

interpolation would keep the material green and red features intact. As
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(a) (b) (c) (d)

Figure 3.18: Adjusting si,j offsets to sources: a) Small uniform offset
value leads to a large constant blue block at the bottom, b) Large uniform
offset value leads to washed out colors for close source features, c) Us-
ing an adaptive offset value based on distance between sources leads to
intuitive results, d) The adaptive value can be scaled to offset where the
interpolation starts.

a result, the transition between the green and blue material features is

short and the blue feature seems to expand more than it should. On the

other hand, increasing the uniform offset value causes the features near

to each other to blur (figure 3.18b). A wiser choice is to adjust the offset

for each pair of sources to the relative distance of two material sources,

such as the Euclidean or interior distance between these sources. Figure

3.18c shows offset values si,j adjusted to fit interior distances between

features. In figure 3.18d, the transition distances were scaled to give

more room for constant properties.

As feature cells cannot overlap, and all feature cells preserve good

distance properties, the general formulation of the transfinite interpo-

lation can be applied. The general inverse distance weighting function

described in Biswas et al. (2004) using the feature cells as material fea-

tures is applied to find the weight values wk. The weighting function is

defined as follows:

wk(x) =

n
∏

m=1;m6=k

bk,m(x)

n
∑

m=1

n
∏

p=1;p 6=m

bk,p(x)

(3.20)

The final value for the interpolated material is the weighted sum of
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the materials of the features for the given point p:

c(p) =

∑

n
k=1wk(p)c̃k
∑

n
k=1wk(p)

(3.21)

where

• n represents the number of material features for the given point,

• c̃k is the value of the kth material property,

• wk is the weight for the attribute c̃k

It is important to note that equation 3.21 uses a weighted sum. This

means that any arbitrary attribute can be interpolated and is not lim-

ited to just colours, however, some values do not necessarily behave well

with weighted sums. For instance, orientations cannot be interpolated

linearly, and weighted sums cannot be used. In such cases, the interpo-

lation scheme should be adjusted according to the attribute type.

3.3.8 Summary

In this section, a new method to interpolate volumetric attributes inside

an object was presented. Its objective was to remove two major issues

with the transfinite interpolation. This method enables designers to

intuitively create gradient materials regardless of the shape or topology

of the object. Shape conformal volumetric interpolation also can be

adjusted by designers to change the width of the interpolation. It is made

up of two parts which can be taken individually depending on cases. For

instance, the typical transfinite interpolation can be used with interior

distances if features are at corners of the shape, and Euclidean distances

can be used if the shape is convex. The evaluation, applications and

results are shown in section 4.3. The work presented in this section was

published in Fryazinov et al. (2015).
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3.4 Space time transfinite interpolation

In chapter 2, we showed that transformation of material properties in

metamorphosis is problematic with surface based solutions, while volu-

metric solutions are often discrete and time consuming. The problem

is that of interpolating two material distributions, with respect to the

shapes associated with each material distribution. In this section, the

transfinite interpolation is extended to space time in order to perform

this interpolation. Note that the proposed space time transfinite inter-

polation can be applied to interpolate either the material attribute field

values directly or the parameters influencing the fields. This technique

can work with any FRep object, but behaves more intuitively with dis-

tance fields, and the smoothness of the material properties is improved

by the convolution filtering technique introduced in the previous section.

3.4.1 Problem description

Changes of volumetric properties in time occur in various situations such

as object deformation, ageing, chemical evolution. Geometric metamor-

phosis from one volume object to another is an example of a time vari-

ant shape transformation that can also involve changes in volumetric

material properties. The geometric metamorphosis has been studied in

depth, for both BReps and scalar field based methods (Hughes 1992;

Cohen-Or et al. 1998; Turk and O’Brien 1999a; Galin et al. 2000) (re-

fer to section 2.4.2 for more details). However, the transformation of

material properties during the metamorphosis received less attention.

The interpolation of volumetric properties through time during meta-

morphosis should maintain the exact volumetric properties given at the

beginning and end of the metamorphosis. For the time in between, the

volumetric properties should be smoothly changing from the volumet-

ric properties at the beginning to the volumetric properties at the end

of the process. The initial and final shapes should have an impact on

the interpolation of the volumetric properties. For instance, the linear

interpolation would simply interpolate the material distributions regard-
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less of the object shapes and their transformation. This is problematic

especially for the points where one of the objects has no defined volumet-

ric properties. This means that features of an object that do not exist

in the target object could simply disappear instead of being smoothly

transformed. Finally, the transformation function should be evaluated

fast, so that a user can get immediate feedback. This also implies that

the function for an intermediate object can be sampled at any point in

time without requiring heavy numerical computations. In summary, the

requirements to this transformation are:

• Interpolation of arbitrary volumetric properties through time

• Interpolation driven by source and target shapes

• Fast queries at any point in space and time

• Easy to use and control

• Capable of interpolating small scale details.

3.4.2 Criteria of evaluation

The evaluation of different approaches can be based on the requirements

outlined above. The most critical criteria are the way initial shapes

influence the transformation process and the speed of the intermediate

values calculation to facilitate real-time applications.

3.4.3 Existing approaches

The most naive solution would be a linear interpolation of the material

distributions. The interpolation is independent of the shapes involved.

This means that the value of an attribute of a point in space and time

relies solely on attribute functions of the objects and the time. Ideally,

the value of the attribute would depend on the geometry of the objects.

Currently, there are two approaches for the interpolation of surface

properties in time: particle systems methods and PDE-based methods.
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Particle systems are used to follow surface properties and flow from

the source to the target object. Drastic changes in topology tend to

provide unrealistic or undesirable effects. The work of Smets-Solanes

(1996) improved on the above mentioned particle system technique to get

good results for animated implicit surfaces. A set of points on the surface

of the initial shape (virtual skin), parameterised in 2D, is transformed

using different vector fields defining the particle velocities. The work of

Tigges and Wyvill (1998) extended texturing through the use of particles

to deal with gradient discontinuities that may arise with constructive

models and distance functions. Particle system solutions are simple to

implement, however, they all share a number of issues. First, they cannot

be evaluated independently, and so the results rely on the previous state,

and on the number of steps. This means that there is a significant

computational cost to rewinding in time, and it also means that the

time steps need to be guessed or provided by the user, which will affect

the quality of the results. Changing the time step could also drastically

change the results too. Additionally, the finer the details are, the more

particles are needed. This can be problematic for properties with fine

details.

Alternatively, PDE-based methods track surface changes. In Dinh et al.

(2005) a method was introduced to track surfaces with corresponding

attributes in time by solving PDEs. This solution gives consistent re-

sults with any topological changes including splits and holes. In the

work of Bojsen-Hansen et al. (2012), the authors used a similar method

to track properties (such as colours and displacement information) dur-

ing the shape transformation process in morphing or in fluid simulation

with heterogeneous fluids. This method is able to handle drastic topol-

ogy changes. However, solving the PDEs is time consuming and makes

this solution impractical for real time applications, in long animation

sequences or when applied to large meshes.

Finally, both groups of solutions are limited to surface attributes (usu-

ally colours). As such, the interpolation of arbitrary volumetric prop-

erties through time remains an open problem. The linear interpolation

does not satisfy most of the requirements as discussed above in this sec-
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tion.

3.4.4 Overview

In subsection 3.4.5, we will first introduce the concept of space time

transfinite interpolation and provide its mathematical formulation, in

the simplest case of a single-partition object, with a constant colour or

attribute. Afterwards, in subsection 3.4.6, we will extend the formula-

tion to partitioned objects, without established correspondence between

the partitions. The method is extended to the case of attributes contin-

uously varying. Finally, better user control is provided through simple

parameters in subsection 3.4.7.

3.4.5 Single-partition objects

Let f1(p) and f2(p) be defining functions of the initial object G1 and

target object G2, and c1 and c2 be respective colours or other constant

material attributes assigned to each of the objects respectively. Here, f1

and f2 are signed distance fields or smooth signed approximate distance

fields as detailed in section 3.2.

Let G(t) be the shape transformation between objects G1 and G2 re-

spectively, and let c(t) be an attribute transformation between attributes

c1 and c2 on the interval of time t ∈ [0, 1] such that G(0) = G1 and

G(1) = G2, c(0) = c1 for all the points with f1 ≥ 0 (on the surface

and the interior of G1) and c(1) = c2 for all the points with f2 ≥ 0

(on the surface and the interior of G2). The pair (G(t), c(t)) consti-

tutes a function-based model of a volumetric metamorphosis where both

geometry and volumetric properties change in time as two interrelated

processes. This formulation leaves the time-variant shape transforma-

tion choice up to the user. Numerous scalar-field based metamorphosis

are suitable (see section 2.4.2). Shape transformations are used to get

an intermediate shape between G1 and G2, and any method can be used,

but the focus of this work is the function c(t).
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Figure 3.19: The half-cylinders g1 and g2 are the known material fea-
tures in space time. The time-interval is filled with intermediate mate-
rials according to an interpolation scheme called the transfinite interpo-
lation.

The basic formulation for the attribute interpolation is as follows:

c(t) = w1(t) · c1 + w2(t) · c2 (3.22)

where 0 ≤ t ≤ 1, and the constraints on the weighting functions

provide partition of unity:

• w1(0) = 1 and w2(0) = 0 for f1 ≥ 0 (on the surface and the interior

of G1)

• w1(1) = 0 and w2(1) = 1 for for f2 ≥ 0 (on the surface and the

interior of G2)

• w1 + w2 = 1.

The simplest linear interpolation is arrived at by assigning w1(t) =

1 − t and w2(t) = t, but this is a simplistic solution that does not take

any particular features of the geometry into consideration and results in

counter intuitive attributes in the transitional stages.

This problem is similar to material interpolation in space for feature-

based heterogeneous volumetric modelling of functionally graded materi-

als. The transfinite interpolation as presented in Biswas et al. (2004) was

applied to fill the gaps in an object with intermediate material properties

109



or attributes.

The transfinite interpolation is extended to the 4D case of space time

and applied in order to define time-variant volumetric material proper-

ties. Two space time material features are set where the gap is in the

time interval 0 ≤ t ≤ 1:

g1(p, t) = f1(p) ∧0 (−t) (3.23)

g2(p, t) = f2(p) ∧0 (t− 1) (3.24)

where ∧0 is an R-function for the set intersection. Here the function

g1 defines a space time half-cylinder (semi-infinite cylinder) with the

boundary t = 0. In the other words, the initial object G1 exists at

any time t ≤ 0 and then disappears. Similarly, the function g2 defines

a space time half-cylinder with the boundary t = 1, which means the

target object G2, appears at the time t = 1 and exists for any t ≥ 1

(see Figure 3.19). By analogy with the 3D weighting expressions of

Biswas et al. (2004), the transfinite interpolation is applied to these 4D

space time material features and thus define the weighting functions

w1(X) = w1(p, t) and w2(X) = w2(p, t) using a normalization of each of

the inverse defining functions:

w1(X) =

1
g1(X)

1
g1(X)

+ 1
g2(X)

=
g2(X)

g1(X) + g2(X)
(3.25)

w2(X) =

1
g2(X)

1
g1(X)

+ 1
g2(X)

=
g1(X)

g1(X) + g2(X)
(3.26)

Note that g1(X) = 0 for t = 0 on the surface and at internal points of

G1 and g2(X) = 0 for t = 1 on the surface and at internal points of G2,

thus the weighting functions w1 and w2 satisfy the above constraints of

partition of unity for the interval 0 ≤ t ≤ 1.

Figure 3.20 illustrates the application of the above technique to the
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Figure 3.20: Space time transfinite interpolation of colours during the
metamorphosis.

colour interpolation in the process of metamorphosis between two simple

shapes. The colours are constant for the initial objects and represent

their homogeneous material properties. From this figure it is apparent

that the intermediate colour behaviour of the metamorphosing object

is non-linear and geometry dependent in its nature. The colour of the

intermediate surface converges faster to the target colour (depicted in

blue) when this surface is closer to the target geometry. Similarly, source

features far from any of the target surface points remain closer to the

original source properties (depicted in red).

Note also that the presented formulation for the space time transfinite

interpolation can be easily extended to any material properties function

of space. c1 and c2 can be rewritten as c1(p) and c2(p). More precisely,

this means that solid texturing can be used, as well as any function

providing values of material property attributes at any point in space.

3.4.6 Partitioned objects

In this subsection, we extend the formulation to partitioned objects.

In the previous subsection, we assumed that c1 and c2 were constant

attributes.

Let one of the the objects Gi have multiple semi-disjoint partitions

with a constant attribute c̃j assigned to jth partition with the defining

function f̃j(x). Examples of partitioned objects are shown in Figure

3.21. The overall contribution of the object to the attribute value at a
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Figure 3.21: Two partitioned objects with multiple corresponding mate-
rial features (partitions) indicated by corresponding colours and the case
of the overlapping partitions at an intermediate stage.

given external point p can be represented by:

ci(p) =

∑

N
j=1w̃j(p)c̃j
∑

N
j=1w̃j(p)

(3.27)

where N is a number of partitions, and the weight of each partition

w̃j(p) =
1

f̃2

j (p)
.

For example, if Gi is represented by a voxel array with an attribute

such as color assigned to each voxel, then this expression defines a sum-

mation by all the voxels and f̃j represents the distance from the given

point to the voxel center.

If the number of partitions becomes infinite, i.e., an individual at-

tribute value c̃j(p̃) is assigned at each point p̃ of the object point set Ωj ,

the above finite summation is transformed into integration as follows:

ci(p) =

∫

Ωi
w̃i(p̃)c̃i(p̃)dΩ

W (p)
(3.28)

where

• W (p) =
∫

Ωi
w̃i(p̃)dΩ

• w̃i(p̃) =
1

d2(p,p̃)

112



(a)

(b)

Figure 3.22: Metamorphosis with time-variant volumetric materials
starting from a cartoon character to a cut watermelon, and then to a
banana using the proposed space time transfinite interpolation.

d(p, p̃) being the distance between the points p and p̃. The attribute

field ci(X) can be considered a volume potential with the given density

c̃i(p̃). In fact, the voxel array example mentioned above represents a

numerical implementation of this integral formulation.

If both given objects have multiple partitions and there is no estab-

lished correspondence between the partitions of the two objects, after

defining c1(x) and c2(x) using equation 3.27, one can apply equations

3.22-3.26 to interpolate this attribute over time. The volumetric meta-

morphosis from a cartoon character to a cut watermelon in figure 3.22 is

an example of objects with multiple partitions and no established corre-

spondence between them.

In the case when correspondences are established between partitions

of two objects as shown in figure 3.21, such that the shape transformation

starts with a partition of the initial object and finishes with the corre-

sponding partition of the target object, the equations 3.22-3.26 have to

be separately applied to each pair of partitions. In this case, when sev-

eral transformation processes happen for all the pairs of partitions, the

question remains open as to how to combine them into a single interme-

diate shape with attributes. In general, at intermediate steps partitions

may overlap (as shown in figure 3.21) or create disconnected components.

Volumetric attributes for the overlapping partitions can be selected fol-

lowing the user defined priorities or some averaging procedure.

113



3.4.7 User control

In this subsection, additional parameters are introduced to control the

effect by affecting the time-interval and the influence of each object. It

is important to provide intuitive parameters to control the effects so that

an artist or a designer can adjust the effect quickly and easily.

3.4.7.1 Shape driven against time driven interpolation

The previous formulation is not scale invariant. This is because we are

using space coordinates (x, y, z) and mix it with time (t). The units do

not match. Large objects will lead to a more shape driven interpolation:

this is because the distance to the object in 3D space will have a higher

impact on g1 and g2 than time. On the contrary, small objects will lead

to a more time driven interpolation. A shape driven interpolation puts

more emphasis on the attributes at the point p, while a time driven inter-

polation puts more emphasis on the time moment. This is undesirable if

it cannot be controlled by the artist. Both behaviours are valid, but the

artist needs to be able to control this behaviour. In this subsection we

introduce the parameter α to increase or decrease the time gap, which

allows the user to control the behaviour of the interpolation.

In order to control the influence of geometry or time for the attribute

distribution, the time gap is stretched or shrunk. g1 and g2 can be

rewritten as follows:

g1(x, y, z, t) = f1(x, y, z) ∧0 (−αt)

g2(x, y, z, t) = f2(x, y, z) ∧0 (αt− α)

When α is small, the geometry influences the material distribution

more than time. On the other hand, when α is large, then we achieve

results which are close to linear interpolation. In figure 3.20 the value of

α is set to one.

Figure 3.23 shows the material distribution in space at several in-

stances of time during the interpolation process between a blue cube and

a yellow torus using different α values. The top row uses α = 0.1 which
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Figure 3.23: Material distribution using a time gap of 0.1 (top row),
1 (middle row), 20 (bottom row), at time t = 0 (first column), t = 1

3

(second column), t = 2
3
(third column) and t = 1 (fourth column)

translates to clear geometric features. The interpolation is strongly shape

driven. We can see that at t = 0, the cube is still blue, but points closer

to the torus, elsewhere, are more influenced by the torus colours. The

middle row uses α = 1 where features are still visible, but the blending

happens faster. Finally, the last row uses α = 20, making the material

distribution almost equivalent to a linear interpolation.

Figure 3.24 shows the metamorphosis between the Stanford bunny

and the Utah teapot with two different values for α. The top row shows

a small time gap, and therefore, the influence of the geometry is clearly

visible. The bottom row shows a large time gap, which leads to a mostly

time driven interpolation, which is almost equivalent to a linear interpo-

lation.
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Figure 3.24: A metamorphosis with different time gap values. The top
transformation uses α = 0.5 and the bottom row α = 50

3.4.7.2 Object influence

In this subsection, we introduce an additional parameter to increase the

influence of one object material distribution or the other. It is a bounded

parameter, making it easy for the user to try and see the result.

The parameter β is given a real value in the range [0, 1] which is used

to scale the values of the object functions. The function g1 and g2 are

rewritten once more as:

g1(x, y, z, t) = (f1(x, y, z) · 2(1− β)) ∧0 (−αt)

g2(x, y, z, t) = (f2(x, y, z) · 2β) ∧0 (αt− α)

Figure 3.25 shows how the balance parameter can affect the colours.

The armadillo in brown is morphed with a gargoyle in grey (top row).

The bottom row shows the same intermediate shape, using different bal-

ance parameters. This process can be viewed as a scheduling task. The

first frame and last frame of the animation will match the source and

target object materials. However, the β parameter modifies the weight

curves to favour one object providing more artistic control to the anima-

tor in an intuitive way.
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Figure 3.25: The influence of the balance parameter on the metamor-
phosis between two objects. The parameters for the bottom row, from left
to right are β = 0.2, β = 0.4, β = 0.6, β = 0.8. The metamorphosis
parameter t is set to 0.5
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3.4.8 Summary

In this section, the problem of interpolation of volumetric material prop-

erties over time was investigated. Unlike most alternatives, this novel

method provides a closed form solution which is also shape driven. It

relies on an extension of transfinite interpolation to space time to pro-

vide a weighting of the attributes in function of space. This method

also provides intuitive parameters giving more control to the user. The

applications and results are shown in section 4.4. The work presented in

this section was published in Sanchez et al. (2014).

3.5 Morphological shape generation

In this section, morphological shape design is investigated as yet another

use of distance based modelling. The objective is to create new shapes

given a set of shapes which will take various parts of various objects and

mix them together. Here, several scalar fields are combined with various

weights. The weights are based on the distance to various parts of the

object.

3.5.1 Problem description

The problem of morphological shape design can be defined as a search

for new shapes from a particular application domain represented by a set

of selected shape instances. In this case, we would like to be able to take

any number of shapes, and breed them by selecting and mixing parts

of the object. The process is user-driven (i.e., the user defines which

parts of which objects should be mixed). As Bar-Zeev (2012) predicts,

real changes in design processes will come ”when we can take two models

and say, make A more like B, right here in this part but not that other

part. If we solve that, then we can imagine a real open ecosystem for 3D

designs that truly credits (and rewards) the creators of original designs

while allowing easy mashups of the results.” As the first step, being able
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to ’breed’ a new shape from two given objects, where the user can select

which traits of the parents are passed onto the child is acceptable, if

the breeding can be performed over several generations. This way, the

user can create a genealogy tree of a new shape. However, it would be

preferable if the designer would be able to select traits from an arbitrary

number of parents, and control the final shape through a single, simple

interface. This would permit the designer to directly input the desired

weights of each trait directly.

3.5.2 Criteria of evaluation

The method we seek should have several properties to enable the artists

or designers to achieve their visions. First, the method must be able

to produce objects in reasonable time to allow artists and designers to

quickly generate and adjust parameters. A lot of objects need to be

generated during the search, and so the process should not take much

time to show the results. Then, there should be no restrictions on the

number of initial shapes. As stated before, a binary tree is an acceptable

solution, provided that simple controls can be provided. The final shape

should be easily controlled by a non-technical person, therefore, it should

be done through simple and intuitive parameters. Next, the weighting of

each initial shape influence has to be provided when mixing the various

parts of the objects. Finally, the control must be provided to ensure a

single-component object as the result, not a set of disconnected compo-

nents (e.g., legs of a chair, seat, arm rests) so that it can be printed as a

single object.

We want to underline that in the application of this technique, the

designer makes the final decisions on which models to select and whether

the process is successful.
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3.5.3 Existing approaches

In computer graphics and shape modelling, morphological shape design

was approached through genetic algorithms applied to polygonal models

(Sims 1994), pre-segmented meshes (Xu et al. 2012), algebraic surfaces

(Bedwell and Ebert 1999), parametric surfaces (Lamas and Duro) and

procedural implicit models (Silva et al. 2005). Some of these methods

require the user to perform a tedious match of surfaces between shapes,

while others require the user to identify the best resulting shapes, as

the evolution process itself is completely automatic. The user also has

a limited control over the process through the parameters of the cross-

over and mutation. An alternative procedural approach was introduced

in Kalogerakis et al. (2012) for a collection of shapes from an identified

complex domain. A probabilistic shape synthesis procedure is applied

to a given set of models segmented into compatible components. In

Zheng et al. (2013), new objects are built from a set of objects in a

database, by creating graphs and connecting compatible parts. This

method is limited by the sub-structure graph, preventing some objects

to be used with others. Finally, those methods create models that usually

need to be repaired first before 3D printing, which leads to a manual and

time consuming process.

While metamorphosis has not been directly proposed for the purposes

of morphological shape modelling, it can be applied several times as a

family tree. Section 2.4.2 provides more details on the various methods

for metamorphosis. However, most metamorphosis algorithm based on

boundary representations often impose a lot of limitations on the shapes

that can be morphed together. There are some exceptions, but they re-

quire user interactions (DeCarlo and Gallier 1996; Takahashi et al. 2001).

Scalar field or voxel-based methods do not have such limitations. Out of

those, most can only be performed on two models at a time (Pasko et al.

1995; Cohen-Or et al. 1998; Turk and O’Brien 1999a; Pasko et al. 2004),

and do not allow for various parts to be interpolated at different speeds.

More user control can be achieved by restricting the class of objects.

Thus, in Wyvill (1993) some control over the metamorphosis of skeletal
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soft object was achieved by cellular matching or hierarchical matching

and the metamorphosis was performed by interpolating the positions

of the skeletons and the field intensities. The main drawback of this

method is the requirement of skeleton matching for two objects which

is similar to the shape matching problem defined for polygonal models.

Later in Galin et al. (2000) this limitation was partially lifted, however

the matching between the structure of two objects was still the issue.

Metamorphosis control was improved by Lerios et al. (1995), where the

user defines pairs of corresponding features in the source object and the

target object and to interpolate between the shapes of the source model

and the target model by using the information about these features. Fea-

tures were defined by the user, as an oriented bounding box, a rectangle,

a line or a point.

Group metamorphosis was addressed for limited groups of objects with

simple weighting schemes such as barycentric coordinates for three ob-

jects Adzhiev et al. (2005) and the bilinear interpolation for four objects

Fausett et al. (2000). Both of these methods do not perform component-

based interpolation of objects, preventing the user from choosing the

traits to interpolate, and sometimes leading to disappearing components.

3.5.4 Overview

In contrast to existing generative procedures, an approach based on a

user-controlled metamorphosis between functionally based shape models

is presented. A formulation of the pairwise metamorphosis is proposed

with a variety of functions described for the stages of deformation, mor-

phing and offsetting in section 3.5.5. This formulation is then extended

to the metamorphosis between groups of shapes with user-defined, dy-

namically correlated and weighted feature elements in section 3.5.6.
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3.5.5 User-controlled pairwise metamorphosis

Let A and B be the source and target objects respectively, and their real-

valued function representation be the functions fa(p) and fb(p). While

there are no restrictions on these functions apart from C0 continuity, it

is preferable that these functions have distance properties. A function

with distance properties decreases with the distance to the zero-level set

and increases with the distance. Amongst other reasons, offsetting and

metamorphosis will be used and generally behave better with distance

fields. C1 continuity can also improve the smoothness of the transition if

smoothness is required. In this section, convolution filtering of distance

fields (see section 3.2) or signed distance fields is used for fa and fb.

Lerios et al. (1995) defined the notion of feature elements, which are

used to establish the correspondence between parts of the objects. A

feature element can be described as follows:

• The feature element i is represented by a signed distance function

di(p);

• The feature element encloses the spatial area of the object which

is part of a feature of the object which has a correspondence, and

that will be deformed;

• Each feature element Ea of the object A corresponds to the feature

element Eb of the object B and there exists a bijective mapping T

that maps any point pA ∈ Ea to the point pB ∈ Eb and an inverse

mapping T I that maps the point pB back to pA.

The user is required to define n feature elements on the source object

and their corresponding n elements on the target object. The feature

elements do not need to be placed accurately and only need to roughly

describe the spatial area of the feature. Figure 3.26 illustrates the feature

matching process where the user defined eight features on both chairs.

Each feature i has an associated weight function wi(di(p, t)) which eval-

uates the importance of the feature’s function at time t for the given

point. The weighting function will be discussed in section 3.5.5.3.
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Figure 3.26: Matching features with different types of geometry for
feature elements: for legs cylinders are used, for spine a prism-like poly-
tope.

The metamorphosis function fm represents some type of smooth in-

terpolation between the function fa defining the initial shape at t=0

and the function fb defining the target shape at t = 1. The metamor-

phosis function fm(fa, fb, t) is chosen such that fm(fa, fb, 0) = fa and

fm(fa, fb, 1) = fb where t is a parameter to define the evolution of the

morphing object, t ∈ [0, 1]. Several scalar field based metamorphosis

functions can be used (see section 2.4.2). More details are provided in

section 3.5.5.1. Additionally, an offset function oi(t) defined for each

feature is introduced in section 3.5.5.4 to control the behaviour of the

features during the metamorphosis. This offset is used to balance a

common issue with scalar field based metamorphosis functions where

the shape disappears during the intermediate frames or undesired dis-

connected components appear. The general, pairwise, user-controlled
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metamorphosis function can be formalized as follows:

FM(p, t) =

n
∑

i=1

wi(di(p, t)) (fm(fa(p
i
a), fb(p

i
b), t) + oi(p))

n
∑

i=1

wi(di(p))
(3.29)

where:

• fm is a metamorphosis function. It can be a trivial linear interpo-

lation, but a more complete description is given in section 3.5.5.1

• di is a function providing a distance to the feature i at the given

time t. The details of this function are given in section 3.5.5.2

• wi is a weighting function which evaluates the importance of each

feature for the point p. Details are provided in section 3.5.5.3.

• oi is an offset function which locally grows parts of the object to

overcome disconnected components. Details are given in section

3.5.5.4

Here pi
a denotes the point in the object A and pi

b denotes the point

in the object B corresponding to the point p = (x, y, z) in the frame i

by using forward and inverse transformation mentioned above.

The function Fm represents the final object, where the surface is de-

fined by Fm = 0, and the interior of the object is defined by Fm > 0.

The object can be visualized using ray-marching. A manifold mesh can

be extracted with the marching cubes technique (Lorensen and Cline

1987) if necessary. There are other meshing techniques available, such as

Ju et al. (2002), Kobbelt et al. (2001) and Nielson (2004). However, we

prefer Lorensen and Cline (1987) since it guarantees the mesh extracted

will be manifold.

In short, the process can be seen as the application of the following

scalar field operations: weighted average of the morphed objects after

transformations (space mappings) and offsets (see 3.27).
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Figure 3.27: The process of the pairwise metamorphosis with user-
defined and weighted features.

3.5.5.1 Morphing functions

Section 2.4.2 provides an overview of metamorphosis functions. The lin-

ear metamorphosis often leads to disconnected components, and it is

preferable to avoid it. The function presented in Pasko et al. (2004) pro-

vides better results, with more interesting shapes and less disconnected

components. However, for any metamorphosis function, the user can

adjust the parameter t to accelerate certain phases of the metamorpho-

sis. This can be useful if a function has a more interesting time interval

where the shape changes too quickly.

3.5.5.2 Space mappings

The forward mapping T transforms the given point p into pi
b with respect

to feature i for the target object B and inverse mapping T I transforms

the point p at frame i into pi
a with respect to feature i for the source

object A. Some of the mappings that can be used are: affine mapping,

twist, taper, bending. Those mappings can be combined by applying
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(a) (b)

Figure 3.28: Deformation without metamorphosis: (a) the original
chairs A and B, (b) chair A under deformation of B (left) and chair
B under deformation of A (right)

them consecutively.

For this metamorphosis application, the mapping needs to have a

continuous interpolation between the source and target values. Most pa-

rameters can use linear interpolations (e.g. translations, scaling, twist

angle) while others require more work (e.g. spherical linear interpolation

for rotations). Following these definitions, the mappings T and T I are

parametrized by a time dependent parameter p(t). Thus, T = T (p, p)

and T I = T I(p, p) where p(0) = pa and p(1) = pb are values of the pa-

rameter in the source and destination objects. In conclusion, the points

pa and pb can be obtained as follows:

pa = T I(p, p(t))

pb = T (p, p(1− t))
(3.30)

The simplest case of the mapping function is the affine transformation.

In this case, the forward mapping is defined by a transformation matrix,

the inverse mapping is defined by the inverse of this transformation ma-

trix. Transformation matrices can be linearly interpolated as shown in

Shoemake and Duff (1992). Alternatively, instead of matrices, quater-

nions and spherical linear interpolation can be used for the rotations,

and linear interpolation is applied on translation and scaling.

Finally, the time parameter t for the deformation process (space map-

ping) and metamorphosis can be independent. For instance it is possible

to deform an object but not use the metamorphosis. In figure 3.28, the
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Figure 3.29: Morphing and deformation parameters can be independent
of each other, and dependent on space. Here parameters are feature-
based.

original chairs are on the left. On the right, both chairs have been de-

formed to match each other’s feature orientation. In this example, only

the deformation was applied, but the metamorphosis was not applied.

That is, each feature of the model is kept as it is albeit moved, rotated

and scaled to match the other object’s feature transformation. Addi-

tionally, the parameter t can be set per feature element. This results in

more control allowing the user to choose which parts of the object should

deform and morph into the other.

The figure 3.29 shows the use of this technique between the armadillo

model and the Buddha model from the Stanford repository. In this

example, six features per object are defined by the user (left and right

legs, left and right arms, main body and head). The user defined those

features using oriented boxes. The morphing parameter is set per feature

to take elements of the Armadillo (blue shape on the left) model and

elements of the Buddha (blue shape on the right) model and combining

them together. Some parts are blends of the feature pairs. The red shape

(the monster) uses the arms and legs of the armadillo model, the head

of the Buddha, and a blend of both bodies.
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3.5.5.3 Weighting functions

The previous sections covered deformation and metamorphosis, but each

of those operations must be performed per feature, and correctly weight

each value with respect to di(p). In Lerios et al. (1995), the square

inverse of the distance to the feature is used as the feature weight:

w(d) =
1

(d+ ε)2
(3.31)

This function however is not easy to control because of the ε value, and

is not smooth at d = 0. It causes visible edges close to the feature

boundaries.

Instead, we modify slightly the formula for the transfinite interpola-

tion of n source (Biswas et al. 2004) to support features that can overlap

at the transition stage:

wi =




















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max(0,di)
n
∑

j=1

max(0, dj)

max(di)
i

> 0

n
∏

j=1;j 6=i

dj

n
∑

j=1

n
∏

k=1;k 6=j

dk

otherwise

(3.32)

The transformation in Lerios et al. (1995) was a simple affine trans-

formation. For each feature pair (Ea, Eb), both objects were moved so

that the two features would align with each other in the intermediate

frames, and then the metamorphosis was applied. If there are n feature

pairs, then n metamorphosis are applied. This process is repeated for all

the features, and then a weighted average of the field is applied, where

the weight is a function of space. This produces a simple deformation

(as seen in figure 3.28). Figure 3.28a shows the two original objects,

and figure 3.28b shows each object deformed so that their features are

aligned with the features of the other object.
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3.5.5.4 Offsets

Thin features can be problematic, especially for 3D printing. Issues can

arise at many stages:

• The function Fm may have disconnected components, if the meta-

morphosis is applied on objects with thin features.

• During the mesh extraction, grid based methods such as Lorensen and Cline

(1987), Ju et al. (2002) or Nielson (2004) may miss features which

are smaller than the grid resolution.

• After printing, if the features are too thin, it may break.

While the previous operations greatly help to reduce the chances of

disconnected components, additional operations may be needed. A gen-

eral offset can be applied to the final field to reconnect the disconnected

components. However, this tends to blur out the details when the off-

set is not needed. A better approach is to define a new scalar field to

control the offset value. This reconnects the disconnected components

only when it is needed. Such a field is not trivial to define, especially

for designers. A simpler solution is to define an offset per feature. This

offset can simply be defined as follows:

oi(p) = di(p) + d (3.33)

The offset can be applied on top of the metamorphosis operation, which

is later weighted by the user-defined features. Therefore, the user can

define the offsets if needed, per feature. In the chair example in figure

3.26, a designer could set small offsets for the legs of the chairs. If no

offset is needed, they are set to zero, and will have no impact on the

equation 3.29.

3.5.6 User-controlled group metamorphosis

In the previous section, shapes were designed using a user-controlled

metamorphosis between two objects only. Although, this pairwise meta-
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morphosis can be applied iteratively to a group of objects, a generaliza-

tion of the proposed formulation that creates complex shapes directly

from a group of objects in the design of a new shape is more attractive.

In this section, we present the modifications to the formula in equation

3.29 in order to support any number of objects. Given k objects where

the j-th object, with 1 ≤ j ≤ k, is defined by a signed distance function

fj(p) with the morphing function fm(f1, f2, ..., fk) and n feature elements

defined for each object such that the signed distance function for the

feature i of the object j is dj,i, the user-controlled group metamorphosis

function becomes:

FMk
(p, t) =

n
∑

i=1

wi(di(p)) (fm(f1(p
i
1), ..., fn(p

i
n)) + oi(p))

n
∑

i=1

wi(di(p))
(3.34)

Unfortunately, this new formulation requires the morphing function

fm to take any number of arguments. This is not the case of space

time blending (Pasko et al. 2004), which can only morph between two

objects at a time. Therefore, the only suitable function for morphing

is the linear interpolation, which has already been used in the past to

interpolate between several objects (Adzhiev et al. 2005). Using linear

interpolation, FMk
is rewritten as follows:

FMk
(p, t) =

n
∑

i=1

wi(di(p))

(

k
∑

j=1

fj(p
i
j)vj,i + oi(p)

)

n
∑

i=1

wi(di(p))
(3.35)

where vj,i defines the weight or the influence of the feature element i of

the j-th object in the group metamorphosis process with
n
∑

i=1

vj,i = 1.

The available space mapping functions are also more difficult. While

most space mapping parameters can still be used through weighted sums,

orientation cannot. The spherical linear interpolation on quaternions
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and the matrix rotation interpolation do not extend well to the weighted

average of k elements. Some methods exists, for instance, presented in

Moakher (2002), however this may not behave as the designer would

expect. Some examples are shown in section 4.5.

3.5.7 Summary

In this section, a novel method to combine different parts of different

models into a new single object was presented. The method relies on

a weighting field which is controlled by several distance fields. This

weighting field is used to apply independently deformation, morphing

and offsets, per shape feature. The formulation was first introduced

for two objects to identify the key components of the morphological

shape generation, and then extended to any number of objects. The

applications and results are shown in section 4.5. The work presented in

this section was published in Sanchez et al. (2013).

3.6 Conclusions

In this chapter, a new theoretical framework was introduced and sev-

eral distance based heterogeneous volumetric modelling problems were

tackled.

• The convolution filtering presented in section 3.2 served as a foun-

dation by introducing an approximate smooth distance field given

any distance field. C1 continuity of the approximate distance field

is important for many applications and not only restricted to het-

erogeneous volumetric modelling.

• A novel way for the volumetric interpolation of the material prop-

erties of an object was introduced in 3.3. Unlike alternative fea-

ture based heterogeneous volumetric modelling techniques, the pre-

sented method is shape aware, and considers the feature source

accessibility in the interpolation process.
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• The problem of interpolating in time between the material distri-

butions of two objects was tackled in section 3.4. This section

dealt with the time-dependent changes to the volumetric material

properties as a transformation of the volumetric material distribu-

tions in space time accompanying geometric shape transformations.

Smooth distance fields are a key element of this technique.

• Finally, distance fields were used to combine several fields to achieve

morphological shape generation in section 3.5. This section high-

lighted the relation between property functions (scalar fields of

properties or attributes) used as a parameter for the geometric

modelling process.

In the next chapter, the technical details and algorithms for these four

contributions will be described.
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Chapter 4

Applications and results

In this chapter, applications of the techniques introduced in chapter 3

are shown. First, in section 4.1, the details of how this work was im-

plemented and how users can interact with the system are shown. In

section 4.2, convolution filtering applications for shape modelling and

attribute interpolation are shown. In section 4.3, results of the shape

aware volumetric interpolation for material and microstructure control

are shown and explained. Finally in section 4.4, a few applications of

space time transfinite interpolation are detailed.

4.1 Implementation and user interface

Depending on the type of user, there can be several options to use the

techniques presented in this chapter. An advanced user can implement

these technique in C directly, or in a script such as a HyperFun script

(Adzhiev et al. 1999). Finally, for non technical users, such as an artist

or a designer, a graphical interface can be used.

All the techniques presented in this thesis were implemented as a Maya

(Autodesk 2014) plug-in and as stand-alone command line applications.

Command line applications are useful for developers, but not for users.

For user-friendly interfaces, Maya was chosen. There are several reasons

for choosing this system:
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(a) (b)

Figure 4.1: a) DAG Hierarchy example, a signed distance field is con-
verted to a colour map. b) An attribute view of the ScalarToColour
node

• Maya is a well known modelling package, and many users are com-

fortable with its interface and concepts.

• The Maya API is flexible and makes the integration with the soft-

ware seamless.

• Maya features are modular, and therefore, new features introduced

in a plug-in can use all the existing features.

• Maya can be used by non-technical users as well as technical users.

Maya relies on an object hierarchy called directed acyclic graph, or

DAG. The DAG hierarchy provides a framework to evaluate nodes in a

certain order. Each node in the graph has a number of inputs, and a

number of outputs. Input and attributes of the nodes are interchangeable

in Maya. Any attribute value can be set by another node, or set manually

in the attribute interface. Figure 4.1 shows an example of the DAG view

in Maya. In this example, a signed distance field is generated from a

mesh, and converted to a colour map. The node sdf mesh1 takes in

a mesh, and the sampling point, and outputs the signed distance to

the mesh from the sampling point. The node ScalarToColour outputs

a colour based on the distance. Building this graph could be tedious,

therefore, Maya lets plug-in have ’commands’ to automate this process.

Commands can be used to build these graphs, create objects (such as a

mesh), or modify node attributes.
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(a) (b)

Figure 4.2: a) The DAG hierarchy for transfinite interpolation between
two features using convolution filtering b) the convolution filtering node
attribute view

Since the techniques presented are mostly functions of point coor-

dinates and sometimes time, all the plug-in nodes require at least the

sampling point. These nodes are used for shading. When a mesh or

a surface needs to be shown in the modelling window, to be exported

or manipulated, a command which creates an isosurface mesh from a

function of point coordinates is used. The typical process for a user, is

to select a number of elements and call a command, which generates a

graph. Once this graph is generated, a mesh can be created through an

additional command, or the scene can be rendered by attaching the graph

to a shader. The subsequent subsections provide typical user cases.

4.1.1 Convolution filtering use case

There are several applications for convolution filtering. For its intended

purpose, smooth interpolation, no geometry needs to be created. The

user selects two meshes, and using a command, a convolution filtering

node is created for each mesh. Then these two nodes are selected by

the user, and another command creates the shader for the interpolation.

The figure 4.2a shows the graph generated by the commands, and figure
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(a) (b)

Figure 4.3: a) The DAG hierarchy for shape conforming interpolation,
b) the attribute view of the shape conforming interpolation node

4.2b shows the attribute view of the convolution filter nodes. The user

can then change the capping distance fc, the maximum kernel size and

the adaptive sampling parameters.

For other applications, such as blending unions, the user selects two

meshes, and calls a command which generates a new mesh. It is also pos-

sible to build the union with a node, and then mesh the object through

a command.

4.1.2 Shape conforming volumetric interpolation use

case

For shape conforming volumetric interpolation, the user needs to select

either one mesh, and any number of locators, or several meshes. If the

user selects locators, the material features will be points located where

the locators are, and the object will be the selected mesh. If the user

selects several meshes, then the first mesh is the object in which the

interpolation will occur, and the other meshes will be the material fea-

tures. The user can then call the appropriate command which builds the

graph (shown in figure 4.3a). Each material feature has an associated

136



(a) (b)

Figure 4.4: a) The DAG hierarchy for space time transfinite interpo-
lation, b) the attribute view of the space time transfinite interpolation
node

node which produces a distance (interior distance by default). These

distances are passed to the shape conforming interpolation node. The

shape conforming interpolation node has a number of attributes. For

each material feature, a colour is defined. Then the user can change the

transition distance in the attribute view, or call a command to calcu-

late the factors si,j as detailed in section 3.3.7. There are other minor

parameters such as the R-Function to use.

4.1.3 Space time transfinite interpolation use case

For space time transfinite interpolation, the user simply has to select two

meshes, and call a command. The command can use any type of dis-

tance implemented (signed distance fields, convolution filtering of signed

distance fields, signed Lp distances). The DAG hierarchy is shown in fig-

ure 4.4a. Then the operator parameters (such as balance, time gap and

time) can be accessed in the attribute view of the space time transfinite

interpolation node (see figure 4.4b).
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Figure 4.5: A user defines the feature volumes on an object.

4.1.4 Morphological shape generation use case

The process for morphological shape generation is a two step process.

The first step is to define the features for all the models. Figure 4.5

shows the Maya interface during the process. The back legs and back of

the seat are set, the front leg is in the process of being defined. If there

are only two models (pairwise metamorphosis, see section 3.5.5), then the

user selects the two models and all the features, and then a command

will create the intermediate shapes at the desired resolution. If the user

wants to use the group metamorphosis (as detailed in section 3.5.6),

then all the models, their features must be selected, and the matrix for

deformation and metamorphosis needs to be provided through a file or

as command arguments.

Outside Maya, the stand alone application is capable of using the

objects and their features and generate more models in one run to quickly

explore the design space. The resulting object is also exported as a model

with features which can be used again in the metamorphosis.

4.2 Applications of convolution filtering

In this section, the potential applications of convolution filtering (see

section 3.2 and section 3.2.9) is detailed. The original objective was
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to provide a C1-continuous field of a mesh everywhere in space except

the points on the surface. However, other applications such as local

smoothing are possible.

First, we compare the results of convolution filtering with signed dis-

tance fields and evaluate the smoothness through visual comparison and

gradient field edge detection. Then, we compare signed distances and

convolution filtering on a number of applications for which convolution

filtering is useful. For these applications, we want a smooth interpolation

of attributes (section 4.2.2), or a smooth surface (sections 4.2.3, 4.2.4,

4.2.5, 4.2.6). Each application shows that convolution filtering provides

a visually smooth surface or attribute interpolation while preserving the

exact surface of the original object.

4.2.1 Evaluation

The quality of convolution filtering can be evaluated visually or by ap-

plying subsequent operations on top of the resulting fields.

The figures 4.6a and 4.6b show the exact distance field and the ap-

proximate distance field of a gear model. The figure 4.6a shows clear

discontinuities along the medial axis, while figure 4.6b shows smooth

iso-lines as the distance to the surface grows. The figures 4.6c and 4.6d

show the gradient fields of the exact signed distance function, and the ap-

proximate smooth distance function. The surface of the object is marked

with a black outline to facilitate the readability. Again, the signed dis-

tance function clearly shows the abrupt gradient variations, while figure

4.6d seems smoother away from the surface.

The visually abrupt changes in the gradient field can be visualized

with a Sobel filter. Figures 4.6e and 4.6f show the edges of the figures

4.6c and 4.6d. The approximate smooth signed distance field is smoother

even though it still has discontinuities due to the numerical integration.

When close to the surface, and on the medial axis, the gradient edge

is more visible, which is also expected, as the smoothing kernel gets

smaller, and the overall field becomes almost equivalent to a distance
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: A number of fields produced by a gear model. a) the signed
distance field, b) the convolution filtering, c) the gradient field of the
signed distance function, d) the gradient field of the convolution filter-
ing function, e) the edges of the gradient field of the distance function
revealed by a Sobel filter f) the edges of the gradient field of the convolu-
tion filtering function revealed by a Sobel filter
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field. Additionally, the edges in figure 4.6e are whiter than in figure 4.6f,

which signifies more visible edges in the exact distance gradient field.

In conclusion, the discontinuities on the medial axis are significantly

reduced, and the edges on the gradient field are less visible. Some dis-

continuities remain only because of the numerical integration, but the

approximation improves with more samples.

4.2.2 Transfinite interpolation

C1-continuous fields are desirable for heterogeneous volumetric mod-

elling. Transfinite interpolation (Rvachev et al. 2001) using our filtered

field achieve better results than signed distances, and with better con-

trol and speed than Lp distances (Belyaev et al. 2012). The technique

introduced in Rvachev et al. (2001) defines material features which have

prescribed attribute values. The attributes are then interpolated across

space based on the distances to the boundaries of the material features.

The formulation relies on distance properties, but the C1 discontinuities

cause stress concentrations and other issues due to the loss of differential

properties (Biswas et al. 2004; Fayolle et al. 2006).

A comparison of convolution filtering with the alternative solutions is

given in this section. As stated in the previous chapter, we require the

field to exactly represent the material features (including sharp features).

The field should also be close to the distance field, and smooth. Signed

distance fields are not smooth, but fulfil the other requirements, and Lp

distances fulfil all the requirements, but are too slow for complex meshes.

Convolution filtering fulfills all the requirements and can be controlled

by the user.

Figure 4.7 shows transfinite interpolation using Biswas et al. (2004)

technique used to interpolate properties between two material features,

using various signed distances, signed Lp distances and convolution fil-

tering. The two material features (in white and grey stripes on figure

4.7) are set up by the user, two triangles on one side, and an ellipsoid on

the other. The bands of colours represent intervals of attribute weights.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Transfinite interpolation of material properties between two
material features: the top left is the distribution of materials using exact
signed distances, top right (b) uses the L4−dist field. The other examples
use filters with various parameters to control the smoothing.
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The weights of the material feature on the left, in this case, have the

following values:

• magenta represents values in the range [0, 1
6
],

• cyan represents values in the range [1
6
, 1
3
],

• yellow represents values in the range [1
3
, 1
2
],

• blue represents values in the range [1
2
, 2
3
],

• green represents values in the range [2
3
, 5
6
],

• red represents values in the range [5
6
, 1].

Using exact distance fields (figure 4.7a), there are visible C1 disconti-

nuities which are problematic for the solidity of the final object. Using

signed L4−distance field instead of distances (figure 4.7b) is slow, but

also poorly approximates the distances far away from the boundary. Fig-

ure 4.7 (c) uses convolution filtering applied to both feature shapes with

a filter size b of 3.5 reached at capping distance fc of 5. Figure 4.7(d)

uses b = 1.5 and fc = 5.0 and figure 4.7(e) uses b = 1.5 and fc = 2.0.

This figure shows the effect of b over the field as well as the effect of fc.

Figure 4.7 (f) uses fc = 0.5 and b = 2.0. Such parameters violate the

inequality introduced in equation (3.10). This results in additional zero

level sets and an ill-behaved field. Convolution filtering provides results

more or less close to the exact distance results, which can be controlled

by the user, and the interpolation is smooth (except figure 4.7f).

Overall, the filters succeeded to create smooth material blending. The

maximum filter region can be adjusted and the capping distance fc lets

the user control how close to the surface the smoothing should occur.

4.2.3 Localized smoothing

Filters can also be used to smooth the shape selectively. To achieve

localized smoothing, two C1-continuous functions are needed. The func-

tion fo represents the original object, while the function fs represents

the smoothing volume. The function h from equation 3.5 is replaced by
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(a) (b)

Figure 4.8: Local smoothing with filtering: (a) shows the original model,
and the volume defined to smooth the parts that need smoothing. (b)
shows the resulting shape, using smoothing through filters.

(a) (b)

Figure 4.9: Local smoothing with filtering: (a) shows the original model,
and the volume defined to smooth the parts that need smoothing. (b)
shows the resulting shape, using smoothing through filters.

a function which converts the values from fs into a filtering size value.

Here, a smooth step function remaps the values from fs into the filtering

size. For any point outside the smoothing object, no filtering is required.

If the point is within the volume fs, then the transfer function translates

it to the filter size. In this case, convolution filtering can be applied as

described in section 3.2.

Figure 4.8 shows how a knife can be made by defining a rough shape

with sharp edges all around. The smoothing volume is then defined

around the handle and the top of the blade. This smoothing volume

controls the size of the filter kernel allowing a smooth handle and a

blade sharp only on one side. In the figure, the smoothing amount is

indicated by the red surface or the green bounding volume. Figure 4.9

shows a smooth handle can be made from a very basic shape following

the same procedure. The smoothing is controlled by the green bounding
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volume, and the red surface indicates which part of the object is included

in the smoothing volume.

4.2.4 Blending set operations on distance fields

Simple blending set-theoretic operations with addition or subtraction

of material for smooth transition between two objects was presented in

Pasko et al. (1995). The main idea is to apply an R-function defining a

set-theoretic operation for two objects and apply locally some displace-

ment. The result of the blending operation is the smooth transition

between the initial surfaces. C1-continuity is crucial for blending oper-

ations. The effect of C1 discontinuities, commonly present in distance

fields was shown in figure 3.1. The additive blending shows discontinu-

ities as a sharp edge crossing the otherwise smooth additional material.

In this section, we compare signed distances and the approximate

smooth distances introduced in section 3.2 for the purpose of blending

unions.

Figure 4.10 shows the effect of C1 discontinuity on blending union (c)

by using signed distances. The crease is visible on figure 4.10d, which

is undesirable for a blending union. The figure 4.10e shows the result

obtained using convolution filtering, and there is no visible crease in

figure 4.10f.

In figure 4.11, a gear model is subtracted from a sphere using a blend-

ing difference. The C1 discontinuities of the signed distance fields create

visible creases in the model as seen in figure 4.11b (circled in red). Using

convolution filters on signed distance fields, the hard edges are replaced

by a smooth surface.

4.2.5 Smooth metamorphosis

Metamorphosis also benefits from C1-continuous fields. C1 discontinu-

ities introduce unwanted creases during the transformation. Without
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Images (a) and (b) show two initial objects. The image
(c) shows the blending union with signed distances and (d) zooms on the
discontinuity; (e) and (f) show the same operation with filtered signed
distances
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(a) (b)

(c) (d)

Figure 4.11: The image a) shows the blended difference between a gear
and a sphere with signed distances and b) zooms on the discontinuity; c)
and d) show the same operation with filtered signed distances

such discontinuities, the intermediate shape looks smoother and avoids

the grid-like set of creases.

Figure 4.12 shows the metamorphosis applied to a fandisk and a ge-

ometric shape with sharp features. The metamorphosis here is achieved

using a simple linear interpolation between the values of each field. The

metamorphosis with exact signed distances creates creases on the shape

surface, sometimes in unexpected places. Using convolution filtering, the

surface is smooth, but the source and target shapes of the metamorphosis

retain their exact shapes.

4.2.6 Smooth offset surface

Figure 4.13 shows the offset operator applied to a Stanford bunny using

signed distances ((a) and (b)) and using convolution filters ((c) and (d)).

Figures 4.13a and 4.13c show the original surface in transparent purple,

and the offset surface in opaque blue with yellow lines. Figures 4.13b

and 4.13d zoom closer to the head. The convolution filtering solution

produces a smooth surface. While an exact offset surface is often required
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Metamorphosis between a fandisk and a geometric shape
with sharp features. (a) and (b) use signed distances. (c) and (d) use
convolution filtering.
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(a) (b)

(c) (d)

Figure 4.13: Offset of the Stanford bunny, (a) and (b) using signed
distances, (c) and (d) using our method.
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(using distance fields), a smooth surface allows us to round the sharp

corners of the offset, and can find applications in CAD, as an alternative

to the exact offset surface. For instance, for 3D printing, objects are

often hollow. To create the shell, an inward offset of the surface is used,

and then it is subtracted from the original object. A smooth offset would

avoid surface discontinuities and improve the robustness of the shell.

4.3 Shape conforming volumetric interpo-

lation

In this section, we first compare our method presented in section 3.3 with

transfinite interpolation as presented in Biswas et al. (2004). Then, we

show an application of shape conforming volumetric interpolation for

microstructure attributes.

4.3.1 Comparison

The comparison is performed visually and numerically. We create a num-

ber of cases to show that our method behaves better than the transfinite

interpolation as detailed in (Biswas et al. 2004). For each case, a num-

ber of material features are defined. First, we visually compare the two

results. Then, a curve is sampled and a graph of the weights is drawn.

The curve might be a medial axis, or in some cases, a curve defined

beforehand if the medial axis cannot be represented as a single curve.

Monotone behaviour of the obtained function along such a curve means

the interpolation is shape conforming, while some oscillations mean that

the interpolation is shape independent.

In this section, four models are used, and two or three cases are in-

spected per model. The first model is a simple 2D spiral, and will show

that the problems highlighted in section 3.3 have been solved. The next

model is a spring. The spring is chosen because it is a simple model

which showcases the issues of Biswas et al. (2004) incontestably. Then a
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(a) (b)

(c)

Figure 4.14: The spiral setup cases for comparison

spanner is used, to show that our method handles more complex shapes

than just disk or sphere sweeps. Finally, a rigged character is used to

demonstrate complex shapes with complex skeleton, as well as show that

the behaviour of our method is consistent with an animation.

4.3.1.1 Spiral

In this subsection, we compare the transfinite interpolation as defined

in Biswas et al. (2004) with our method. Three test cases are used, and

they are shown in figure 4.14.

The first case has two material features, one blue at the centre of the

spiral, and one red feature at the end of the central line. Figure 4.15a
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(a) (b)

(c) (d)

Figure 4.15: Comparison for the spiral case 1 a) A render of the spiral
using Biswas et al. (2004), b) A render of the spiral using our method,
c,d) the graph of the weights for each source along the medial axis using
Biswas et al. (2004) (c) and our method (d).

152



(a) (b)

(c) (d)

Figure 4.16: Comparison for the spiral case 2 a) A render of the spiral
using Biswas et al. (2004), b) A render of the spiral using our method,
c,d) the graph of the weights for each source along the medial axis using
Biswas et al. (2004) (c) and our method (d).

and 4.15b show the results from Biswas et al. (2004) and our method

respectively. In figure 4.15a, we can clearly see that the transition is

not monotonous as a user would expect. The graphs in figure 4.15c and

4.15d show the weights of each material feature along the medial axis

of the spiral. The transfinite interpolation as described in Biswas et al.

(2004) does not behave as a user would expect. Our method shows a

clear, linear interpolation of the properties along the medial axis. This

case shows that our technique is shape conformal, and the interpolation

depends on the shape being modelled.

The second case shows the behaviour of shape conformal volumetric

interpolation with three sources. The material features are defined in
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(a) (b)

(c) (d)

Figure 4.17: Comparison for the spiral case 3 a) A render of the spiral
using Biswas et al. (2004), b) A render of the spiral using our method,
c,d) the graph of the weights for each source along the medial axis using
Biswas et al. (2004) (c) and our method (d).

figure 4.14b, and the results for transfinite interpolation are shown in

4.16a, while the results of shape conformal volumetric interpolation are

shown in figure 4.16b. Figure 4.16a shows unexpected behaviour. It

does not interpolate smoothly from the first material feature (blue) to

the second (green), and then from the second (green) to the third (red).

The graph in figure 4.16c shows that the weights for each source are not

intuitive along the medial axis. The graph in figure 4.16d shows that our

method behaves more intuitively because the interpolation is performed

along the medial axis.

The last test case showcases the occlusion of material features in our

method. By setting the material features at a third and two thirds
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(a) (b)

Figure 4.18: The spring setup cases for comparison. a) Three material
features (blue at the start, green halfway through, red at the end) b) Two
material features (blue at the start, red at the end).

along the medial axis (see figure 4.14c), figure 4.17a shows that past

the material features, the interpolation is unintuitive. The weights can

oscillate around 0.5 as shown in figure 4.17c. This is true with Euclidean

distances. With interior distances alone, it does not oscillate, however it

will quickly converge to 0.5 as both distances grow. With our method,

points past the material features along the medial axis rely only on the

closest material feature (see figures figure 4.17b and figure 4.17d).

4.3.1.2 Spring

A spring is used to show the behaviour of our method in 3D. The first

case in figure 4.18a has three material sources: at the start of the curve

representing the medial axis (blue), one halfway through (green) and one

at the end (red). The second case uses only the first and last material

features (red and blue).

For the three material feature sources, the undesirable behaviour shown

in the spiral test case is exacerbated in 3D. Most weights are oscillat-

ing around 1
3
(see 4.19c), leading to a discoloured spring as seen in fig-

ure 4.19a. Shape conforming volumetric interpolation however has an

intuitive interpolation which interpolates the material features almost

separately, as expected.

Similarly to the spiral case with two sources at the ends of the spi-

ral, our method shows a clear interpolation between the two material

features along the curve as shown in figure 4.20d, while the method in

155



(a) (b)

(c) (d)

Figure 4.19: Comparison for the spring case 1 a) A render of the spiral
using Biswas et al. (2004), b) A render of the spring using our method,
c,d) the graph of the weights for each source along the medial axis using
Biswas et al. (2004) (c) and our method (d).
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(a) (b)

(c) (d)

Figure 4.20: Comparison for the spring case 2 a) A render of the spiral
using Biswas et al. (2004), b) A render of the spiral using our method,
c,d) the graph of the weights for each source along the medial axis using
Biswas et al. (2004) (c) and our method (d).
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(a) (b)

(c)

Figure 4.21: The spanner setup cases for comparison , a) first case, b)
second case, c) the curve used for evaluation of the weights

Biswas et al. (2004) fails to provide a monotonous interpolation along

the curve as shown in figure 4.20c.

4.3.1.3 Spanner

We define two more test cases on a bent spanner model. The material

sources for the first case is shown in figure 4.21a, and the second case

in figure 4.21b. Since the medial axis is not simply a curve, we selected

a curve which is partially on the medial axis. A user would expect a

monotonous interpolation along this curve. The curve is shown in red in

figure 4.21c.

Figure 4.22a compares our results with those of Biswas et al. (2004).

The results are visible in figure 4.22a and 4.22b. The graph of the weights

along the curve shown in figure 4.21c are shown in figure 4.22c and 4.22d.

The interpolations in figure 4.22a and 4.22b are identical in between the

two material features, which is what we expect, and past the material

features, our method retains the values of the closest material feature,

which is the desired behaviour.

158



(a) (b)

(c) (d)

Figure 4.22: Comparison for the spanner case 1 a) A render of the
spiral using Biswas et al. (2004), b) A render of the spanner using our
method, c,d) the graph of the weights for each source along the curve
shown in 4.21c using Biswas et al. (2004) (c) and our method (d).
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(a) (b)

(c) (d)

Figure 4.23: Comparison for the spanner case 2 a) A render of the
spiral using Biswas et al. (2004), b) A render of the spanner using our
method, c,d) the graph of the weights for each source along the curve
shown in 4.21c using Biswas et al. (2004) (c) and our method (d).
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(a) (b) (c)

Figure 4.24: The three different poses used for comparison with the
material features. Red feature on the right hand, blue feature on the
left hand, yellow feature on the right foot, cyan feature on the left foot.
Charlie character and its rig courtesy of Jahirul Amin and the NCCA.

In this last case, we show that Biswas et al. (2004) can be unintuitive

in simple cases. The results from Biswas et al. (2004) in figure 4.23a

are unsatisfactory. The graph in figure 4.23c shows that the weights

are not conformal to the shape. Our method (figure 4.23b) provides a

more intuitive interpolation since the interpolation happens in-between

the material features.

4.3.1.4 Character

The shape conformity of our method can be shown by using a character

in different poses. In this example, a character is used with material

features at the hands and feet. The interpolation should be consistent

when the model is animated or modified slightly, given that the topology

does not change. For a rigged model, if only the pose is changed, then a

user would expect similar values along the skeleton or on the surface. In

this subsection, we verify this using three poses of the Charlie character.

We start with a visual comparison, and then look at the weights along

several curves.

The figure 4.24 shows the material features used with the character

Charlie for each pose:

• The right hand feature is in red

• The left hand feature is in blue

• The right foot feature is in yellow
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(a) (b) (c)

Figure 4.25: Transfinite interpolation using the material features de-
fined in figure 4.24

(a) (b) (c)

Figure 4.26: Our method using the material features defined in figure
4.24

• The left foot feature is in cyan

Figure 4.25 shows the results using transfinite interpolation as shown

in Biswas et al. (2004). There are a number of counter intuitive be-

haviours. In figure 4.25a, the legs are mostly green except at the features.

A user may expect the right leg to be mostly yellow, and the right leg

mostly cyan. In figure 4.25b we notice that the hands have an influence

on the legs and hips. The left hip is mostly blue, and the legs are now

almost purple. Figure 4.25c has the same issues.

Figure 4.26 shows the results using our method. The colours of the

body parts are consistent across the various poses, and the colours of the

legs are more intuitive.

We confirm the visual comparison with graphs of the weights along

several curves. For each pose, three curves are defined. One curve con-

nect the right hand to the left hand (arms curve). One curve connects

the right foot with the left foot (legs curve), and finally, one curve con-

nects the neck with the lower back (spine curve). Figure 4.27 shows the

weights generated by transfinite interpolation along each curve. Each

row corresponds to a curve (arms, legs, spine), and each column corre-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.27: Graphs of the weights along the curves using Biswas et al.
(2004). First row for the arms curve, second row for legs curve, last row
for the spine curve. Each column corresponds to a pose (idle, walk,
crouch)
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sponds to a pose of the character (idle, walk, crouch).

We notice that the weights along the arms curve are not consistent

across the different poses (figures 4.27a, 4.27b, 4.27c).

The legs curve is even more inconsistent, and can even become inco-

herent. The weights along the legs curve in the idle pose (figure 4.27d)

show that the right foot and left foot quickly reach similar weights. The

weights for the other two poses (figure 4.27e and figure 4.27f) have os-

cillating weights which do not resemble each other. This shows that the

behaviour is counter intuitive and inconsistent.

Finally, the weights of the spine curve shown in the third row also show

a lot of variation. The figure 4.27g (idle position) follows the expectations

with higher weights of the hand material features towards the neck, and

almost equal weights for all the material features at the lower back. For

the other two poses (figure 4.27h and figure 4.27i), the graphs are very

different, further confirming that it does not behave intuitively.

Figure 4.28 show the weights along the same curves and same poses

using our method. The first row shows that the weights along the arms

curve are consistent across different poses. For the legs curve (figures

4.28d, 4.28e and 4.28f), the curves are marginally different. Finally, for

the spine, the curves have noticeable differences. This is due to the

body bending and blending with the arms and legs changing the interior

distances and the Voronoi diagram. However, this remains acceptable,

since there are no oscillations, and the curves still follow a similar trend.

4.3.2 Shape conforming interpolation of microstruc-

tures

In figure 4.29, shape conformal volumetric interpolation is used to control

microstructure parameters across a spanner. More parameters can be

defined for each material source and then interpolated. The function

driven foam model used in this example is described in appendix C.

Thus, in figure 4.29a, different lattice structures are defined for dif-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.28: Graphs of the weights along the curves using our method.
First row for the arms curve, second row for legs curve, last row for the
spine curve. Each column corresponds to a pose (idle, walk, crouch)

(a) (b)

Figure 4.29: Controlling microstructure properties: a) Various regular
lattices interpolated, c) Foam structure with several parameters controlled
by user features.
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ferent material sources: a cylindrical lattice with different thickness for

two material sources (large for the magenta feature, thin for the green

feature) and a cubical lattice with different thickness for another two ma-

terial sources (large for the blue feature, thin for the red feature). The

interpolation provides a weighting for each feature, and thus, blends all

the lattices together using a weighted sum of the function values of each

lattice. Finally, in figure 4.29b, four features have several values set up.

The objective here is to control the attributes of the foam structure which

are the average cell size, the wall thickness and the roundness (blending

amount). Each feature provides a value for each of those parameters.

The large red feature uses a small cell size, a large blending value and

thick walls. The green feature contrasts with narrow walls, practically

no blending and ample cell size. The last two features (yellow and blue)

have high blending, thick walls. The yellow feature has the same cell size

as the red feature while the blue is slightly larger.

4.4 Space time transfinite interpolation

In this section, three applications of space time transfinite interpolation

for volumetric interpolation are shown. As shown in section 3.4.3, there

are no other methods which can fulfil the requirements defined in section

3.4.2. The advantages of the proposed approach in section 3.4 are:

• Arbitrary volumetric properties can be interpolated through time

• The interpolation is driven by the source and target shapes (see

figure 3.24)

• Function value at any point in time can be obtained by evaluating

a simple closed form expression

• It is easy to use and control (see section 3.4.7 or section 4.1.3)

• Small scale details are interpolated thanks to the exact function

representation
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4.4.1 Space time interpolation of material proper-

ties

Constant colours are not very useful in the definition of realistically

looking objects. However, in order to interpolate material and other

attributes distribution, a volumetric representation of such attributes is

needed. To do so, the following different approaches (procedural, space

enumeration and surface texture extrapolation) are usually employed.

• Solid texturing can be used to define the material properties or any

tri-variate function. They have been successfully used to describe

marble, wood, and many other natural heterogeneous materials

(see the ”watermelon” model in figure 3.22). While those methods

are the most accurate and explicit methods, they are unpopular

because they often require knowledge of scripting or other technical

skills.

• Space enumeration is defined by a constant colour for a given space

partition (see the ”cartoon cat” model in figure 3.22). Note that

space enumeration can be combined with solid texturing. Some

particular care has to be taken for points which belong to several

partitions or to none at all. In the case of a point belonging to

several partitions, a common approach is to give a higher priority

to a particular partition over the others. If the point does not

belong to any partition, then a default colour is used, such as white

or grey.

• Surface textures are popular in creating heterogeneous looking sur-

face colours and properties. But they only define properties at the

surface. A volumetric representation of those surface textures can

be achieved using the closest point of the mesh. This is neither

an accurate nor a continuous representation, but gives reasonable

results especially during an animation sequence. The ”banana”

model in figure 3.22 uses this technique. However, to achieve bet-

ter results, alternative techniques can be used such as the mean

value coordinates (Ju et al. 2005). Unfortunately, mean value co-
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Figure 4.30: The animation from a Buddha to a teapot, with a box
cut out to see the material inside the intermediate shapes. The volu-
metric properties (colours) are interpolated using space time transfinite
interpolation.

ordinates are time consuming and often impractical for real meshes.

This approach is not suitable for interactive applications but gives

smoother and more intuitive results.

Figure 4.30 shows a few frames from an animation generated in Maya.

A segment of the shape is deliberately removed on every frame so that

the internal distribution of colours becomes visible. The material prop-

erties inside the intermediate shapes show that locations where the head

of the Buddha figurine used to be still retain the Buddha’s material

properties mostly, while the inside of the teapot is a more even blend

of both materials. The geometry for the metamorphosis of figure 4.30

was created using space time blending (Pasko et al. 2004). Space time

transfinite interpolation provides the colour information at any point in

space and time. The colour information for the Stanford Buddha in fig-

ure 4.30 comes from the surface texture, while the Utah teapot colour

information comes from solid texturing. To produce this example, we

used our Maya plug-in described in section 4.1.

4.4.2 Space time interpolation of displacement and

other attributes

Space time transfinite interpolation can also be used for other properties

such as displacement. Displacement is an important visual clue that help

us understand the material properties of an object, just like pigmenta-

tion (colours). The displacement is applied to the intermediate shapes

168



Figure 4.31: The Stanford bunny is transformed into the Stanford
dragon, intermediate colours and displacement are produced by the space
time transfinite interpolation

following the basic shape formation. The displacement information is

available at any point in space, but existent renderers will only evaluate

it at the surface. This is purely cosmetic in nature and the interior of

the shape remains completely solid.

The example in figure 4.31 defined two displacement values through

solid texturing. The two attributes were then blended together using

equations 3.25 and 3.26. The displacement information is a single value

in the range [0, 1]. The space time transfinite interpolation provides

this value during the animation and provides at render time, a single

displacement per surface sample which can be used to offset the surface

along its normal. The space time transfinite interpolation is equally

applicable to any attribute which can be linearly interpolated, such as

roughness, opacity and reflectivity.

4.4.3 Space time interpolation of microstructures

Microstructures are internal spatial geometric structures with size of de-

tail orders of magnitude smaller than the overall size of the object. Mi-

crostructures can be described by a function with several parameters

such as orientation and thickness. As any pointwise attribute, these pa-

rameters can be interpolated with a space time transfinite interpolation.

Space time transfinite interpolation can be used as a solution to control

the microstructure distributions when a union of two objects with two

different microstructures is performed.

In figure 4.32, two types of microstructures are defined. Microstruc-
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Figure 4.32: The microstructure parameters are interpolated across
the volume. Here the parameter is the mix amount between the lattice
microstructure and the interlaced thread microstructure.

ture A is a regular lattice represented by the functionma, and microstruc-

ture B, which is made up of interlaced threads, is represented by the

function mb. The parameter interpolated is the mix value ω, set to 0

for the teapot, and 1 for the bunny. The final microstructure function is

defined as follows:

mf = ma · (1− ω) +mb · ω

The blending union operation is applied to the objects, and the result

is filled with the microstructure represented by mf . The time parameter

is used as a designer tool to help determine how much each of the source

objects should influence the resulting internal microstructure.

4.5 Morphological shape generation

In this section, the application results of the morphological shape gener-

ation introduced in section 3.5 are presented.

The metamorphosis formulation described in section 3.5 was success-

ful applied to several projects (see section 4.5.2 and section 4.5.3). In

figure 4.33a, seven virtual chairs were mixed and digitally materialized.

Figure 4.33a shows a small selection from thousands of models generated,

the three chairs in pink were created for testing. The designer provides

a number of chairs and defines their corresponding features. While any

features and correlations can be defined (and redefined), here the de-

signer used four features for the legs, two for the arm rests, one for the

seat and one for the back. The deformation and metamorphosis values
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(a)

(b)

Figure 4.33: Results of the user-controlled group metamorphosis: a)
the seven initial chairs (blue) with user-defined and weighted features
result in the newly generated shapes (pink). b) The miniature chairs 3D
printed using an Envision TEC Ultra 3d printer.

are provided as two k×n matrices where k is the number of features, and

n the number of models. While internally the sum of the weights for a

feature must equate to one, the designer can use arbitrary weighted val-

ues, since the weights are normalized internally. Additionally, to ensure

the objects are printable, feature based offsets are provided per feature.

Some examples have been fabricated using an Envision TEC Ultra 3D

printer (see figure 4.33b). The printing process is straight forward with

FRep. Most printers require a mesh as an STL file, therefore march-

ing cubes (Lorensen and Cline 1987) can be used to generate a manifold

mesh. If an image stack is required, then simply sampling the function

is sufficient.

This method was successfully employed in two independent projects

by an artist and a designer, without supervision. The resulting shapes

have been 3D printed.

171



4.5.1 Comparison

The objective of this project was to apply metamorphosis to a set of

chairs. User control morphological shape generation allows us to obtain

far better results than automatic metamorphosis (see figure 4.34) even

where the user can define feature elements. In the example of the models

with thin feature elements, linear metamorphosis does not produce sensi-

ble results while using space-time blending leads to some features disap-

pearing and growing in unwanted places. Feature-based metamorphosis

Lerios et al. (1995) produces better results as a designer can choose the

best values for each feature set and prevent, for example, thin or small

features from vanishing in various stages of the metamorphosis. Our

method produces better chairs which are printable, and is generalized

to group metamorphosis, and per-feature interpolation. Figure 4.34d

shows the pairwise metamorphosis introduced in section 3.5.5. In this

example, the chairs can be printed and will be functional since the legs

are connected to the seat, unlike the example in figure 4.34c. In figures

figure 4.34a and figure 4.34b, the legs completely disappear. Since the

offsets are controlled by the user, the amount of extra material is up to

the user, who could make the legs very thin (which might be a problem

for printing, but not for visualization), or large like in the example, and

safe for printing.

4.5.2 Chairgenics

It should be noted that the impetus for this research has been an ongo-

ing collaboration with a well-known designer to develop a practical and

usable system for generalized morphological design. Of particular inter-

est was applying this method to morph between famous and well known

chair designs. The goal was to ”breed” classic seating forms in a quest

to find the most beautiful, most perfect chair ”species”. Figure 4.35a

shows a sketch of the proposed exhibit in a contemporary art museum,

and a number of chairs printed in miniature in figure 4.35b.

Jan Habraken, the designer, was unable to realize his vision of breed-
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(a)

(b)

(c)

(d)

Figure 4.34: Comparison of different metamorphosis methods for ob-
jects represented with signed distance fields. a) linear metamorphosis, b)
space-time blending, c) feature-based volume metamorphosis, d) the pair-
wise metamorphosis with space-time blending and additional local offsets.
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(a)

(b)

Figure 4.35: a) A sketch presenting the concept of the chairgenics
project by Jan Habraken, b) the original chairs and the ones generated
by the design printed, images courtesy of Formnation.
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(a) (b) (c)

(d) (e)

Figure 4.36: The chairs created by the designer Jan Habraken, images
courtesy of Formnation and Jan Habraken

ing chairs for several years due to the limitations placed on software

tools by B-Rep and mesh representations. In using and playing with

the developed tool, he was for the first time able to truly define feature

relationships and breed between any target chairs or objects he desired

in a fully automated fashion. As in any breeding process some of the

resulting outcomes were undesirable or even non-functional, however the

power and capability of the process allowed a fast and broad exploration

of the design space with a large number of iterations and resulting chairs,

that could be sent to 3D printing directly, without a difficult and tedious

mesh repair process.

The resulting chairs were 3D printed at miniature scale along with

the ideal chair, selected by the designer through a ”breeding process”,

being printed full scale. The designer’s selection is shown in figure 4.36.

All the chairs and models were exhibited as the physical artifacts of the

synthetic breeding process (Hirst 2013; Stinson 2013; Voyatzis 2013) and

the work has been included in Labaco (2013) along with the exhibition
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(a) (b)

Figure 4.37: A Zoetrope with 3D printed objects, created by William
Copley. a) the virtual shapes, created by our plug-in and b) the printed
objects.

(a)

Figure 4.38: A Zoetrope with 3D printed objects, created by William
Copley. a) the virtual shapes, created by our plug-in and b) the printed
objects.

”Out of hand: Materializing the Postdigital”.

4.5.3 Printed 3D Zoetrope

William Copley, a student at Bournemouth University, used the Maya

plug-in to successfully create a physical Zoetrope which show the trans-

formation between a baby and a monster (Copley 2014) using 3D printed

objects rather than 2D figures. The shapes generated by our plug-in are

shown in figure 4.37a, and the printed shapes in figure 4.37b. Note that

these objects were printed on a low quality printer, which leaves many ar-

tifacts otherwise not visible in Maya. The final prototype of the Zoetrope

is visible in figure 4.38.
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4.6 Summary

In this chapter, many applications were shown to illustrate the techniques

introduced in chapter 3. The proposed convolution filtering was evalu-

ated and various applications of convolution filtering were investigated,

notably using a transfinite interpolation to provide a smooth material

transition based on the boundary representation of material features.

Shape conforming volumetric interpolation was compared to transfinite

interpolation, and was used to control material distributions and the

attributes of a microstructure. The interpolation field created complex

internal structures adapted to the shape of the object. Then, the space

time transfinite interpolation was illustrated with several attributes in-

cluding microstructures and surface displacement. Finally, a concrete

problem was solved using distance fields and the method described in

section 3.5 to generate morphological shapes from various source objects.
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Chapter 5

Conclusion

First of all, the topics covered in this thesis are summarized below.

In chapter 1, an overview of the subject area was presented. The

overview includes the characterisation of the current state of shape mod-

elling, and, in particular, heterogeneous volume modelling. The overview

also covered some of the issues of classical modelling tools and showed

why better tools is important.

In chapter 2, an investigation into works related to distance based

heterogeneous volume modelling was presented. This is subdivided into

four parts. First, the various object representations and their limitations

were introduced. While BReps are important, FReps seemed more rel-

evant to heterogeneous volume modelling. Then, heterogeneous volume

modelling was presented in more detail. This included several solutions

with various object representations, but the focus was on scalar fields.

Distance fields were introduced, including definitions, current solutions,

and their applications. Finally, the background chapter closes on a few

geometric operations which are important for the rest of this thesis.

In chapter 3, the general approach of this work, which relies on het-

erogeneous attributes and properties as functions of time and distances,

was introduced. This framework led to a set of problems to be solved.

The first problem was smooth signed distance fields, where the exact

surface is maintained, but the rest of the field is smoothed out. Then,
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an improvement of feature-based volumetric interpolation was proposed

that provided more intuitive volumetric interpolation in-between ma-

terial features. Then, smooth distance fields were used to interpolate

between two volumetric attribute distributions across time as the shape

of the object was changing. Finally, a solution for mixing various parts

of various objects to create new shapes was introduced in the last section

of that chapter.

In chapter 4, the experimental results and applications of the meth-

ods introduced in this thesis were demonstrated. We first introduce a

microstructure with controllable parameters. This was followed by appli-

cations of convolution filtering, including an example for the transfinite

interpolation and smooth distance fields. The chapter concluded by pre-

senting concrete examples and results from the three methods introduced

in chapter 3.

5.1 Main contributions

In this thesis, several contributions to distance based heterogeneous vol-

ume modelling area were made. The main contributions are listed below:

• The introduction of a general formulation for distance-based, time

variant heterogeneous object modelling. This formulation is sup-

ported by several specific user-oriented operations.

• The introduction of convolution filtering for distance fields. Con-

volution filtering is used to create smooth distance fields, which are

used in heterogeneous volume modelling to create smooth gradient

material properties.

• Convolution filtering was also used to create localized smoothing

of shapes. An additional volume is defined by the user to smooth

the shape which intersects with that volume.

• The introduction of a method to interpolate material properties

given material features within an object. Unlike transfinite inter-

polation, the shape conforming volumetric interpolation is shape
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aware and provides more intuitive results on the base of internal

distances.

• The introduction of space time transfinite interpolation, a tech-

nique to interpolate two material distributions through time. This

technique is then used to demonstrate interpolation of various prop-

erties such as material and surface displacement. It is also used to

create adjustable microstructures with a simple weighting param-

eter.

• The introduction of a new method to mix several objects together

selectively based on features. An object can be made of var-

ious mixed parts of various other shapes, and blended together

smoothly.

Distance fields were always considered one of the best approaches to

heterogeneous object modelling. Some serious unanswered problems re-

stricted the practical use of them. In this thesis, we identified some of

these problems and proposed practical solutions and showed some appli-

cations. The majority of the solutions proposed here are implemented in

a specialist purpose CAD software system by a collaborating company,

Uformia AS, in Norway. However, there are still some unsolved problems

and directions for improvements, some of which are shown in the next

section.

5.2 Future work

A lot of research is still required to provide a sufficient framework for dis-

tance based heterogeneous volume modelling and heterogeneous volume

modelling in general.

First of all, distance fields to surfaces were the primary tools em-

ployed in this thesis. However, many other fields could prove useful to

describe other properties. As mentioned in chapter 3, not all proper-

ties can be defined with a function of distance and time. Also, dis-

tance to object features or elements of an object might prove useful
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such as distance to the medial surface, or similar fields such as MA-

SON (Williams and Rossignac 2005). Some problems cannot be solved

with distances to boundaries, and interior distances can solve some is-

sues when the shape of the object needs to considered. Other types of

fields could be just as useful. In that regard, level sets should also be

investigated for time variant, distance based properties, related to physi-

cal properties. Aside from specific fields, more tools for modelling scalar

fields and vector fields are required to make heterogeneous volume mod-

elling more accessible. Feature-based heterogeneous volume modelling is

a useful technique, but not sufficient to provide enough control to users.

Scalar field modelling can also be beneficial to geometric modelling where

the scalar field quality can have a considerable impact on some opera-

tions such as blending operations and offsets. Such effects are obscure to

casual users who cannot see how the field is affected by some operations.

Additionally, feature detection is largely left to the user in this the-

sis, however, many solutions exist to provide automatic feature detec-

tion. Typically, those techniques are designed for BRep, but volumetric

techniques can be adapted from existing techniques. Automatic feature

detection, for template objects, or for geometric features would greatly

improve the user experience when designing heterogeneous objects.

Furthermore, many of the presented applications showed microstruc-

ture parameters using values provided by a scalar field. A useful improve-

ment would be to iteratively improve the shape of an object given such

field. This relies on automatic feature recognition, and would improve

an object to fulfil a complex set of constraints. For instance, a complex

object, with some constraints (a set number of support features, a fixed

particular part of the shape) and some objectives such as thermal insula-

tion, weight targets and robustness to heavy loads, could be engineered

automatically provided a basic aspect of the shape.

Regarding the techniques presented in this thesis, many improvements

can still be investigated:

• Smooth distance fields rely on sampling and Monte-Carlo integra-

tion. Alternative solutions should be investigated to reduce the
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Figure 5.1: Using C1 continuous set-theoretic operations on the ele-
ments of a set

number of samples, or provide better sample set to improve the fi-

nal field. Additionally, a smooth field can be produced by treating

each primitive in the set as an element of a union. The field is effec-

tively C1 continuous, but fails to provide good distance properties

(see initial experiments in figure 5.1).

• In the shape conforming volumetric interpolation, the Voronoi di-

agram is too simplistic. An alternative solution based on ease of

access, or some physically based procedure, would improve the re-

sults.

• In its current state, the space time transfinite interpolation requires

the user to define the correspondence between the various parts of

each object. Ideally, most features could be detected automatically,

or at least suggested. Additionally, a better solution to propagate

surface properties to the volume should be investigated. Meshes

can use MVC, but this can be time consuming, and can only work

for meshes.

• The morphological shape generation still has issues with thin fea-

tures, and it is not always easy for the user to provide sensible
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parameter values. Additionally, the boundary between features

and feature gaps is often visible. This is because of the weighting

functions changing abruptly. A smoother function would remove

these undesired results. As mentioned earlier, an automatic detec-

tion of features would also improve the user experience, especially

if a template is provided. Some solutions exist to build graphs from

models, as shown in Zheng et al. (2013), which could be an initial

lead.

• Interior distances are computed on a grid. There does not seem

to be any solution without discretization, however, an adaptive

solution could help reduce the issues currently occurring. There

are two main issues to avoid; first if two parts are disconnected,

but the voxel lattice cannot capture the gap (e.g., an almost closed

tube loop); or two connected parts, which are not captured by the

grid (e.g., two large features connected only by a very thin tube).

Component analysis as presented in Fryazinov and Pasko (2015)

could provide some initial ideas.
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Appendix A

Calculating interior distances

The algorithm 1 is a modification of Djikstra’s algorithm which corrects

the error accumulation for interior distances by keeping track of addi-

tional information. Each voxel A in the grid stores its minimal distance

to the seed and the coordinates of the closest voxel to the seed still vis-

ible by A. The closest voxel to the seed still visible is called the root

voxel. This way, the shortest path from a voxel to the seed is simply the

path from the voxel to its root and the shortest path of the root to the

seed. Therefore, the interior distance is simply the sum of the distance

between a voxel and its root voxel with the interior distance of the root

voxel.

The function isV isible in the algorithm can be implemented by using

the DDA algorithm on a voxel grid to see if the voxel being processed

has visibility of another voxel.
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Algorithm 1: Interior propagation

Input: seeds: Initial seeds
G: A grid
S: Shape which defines the boundaries
Output: Seeds for exterior propagation O

1 F : Priority queue of cell coordinates ;
2 foreach p in seeds do
3 insert p to F ;
4 end

5 while F not empty do

6 cell coordinates current retrieved from front;
7 currentvalue← value at current in G;
8 currentroot← value at current in G;
9 rootvalue← value at currentroot in G;

10 foreach Neighbour coordinate neighbour do

11 if neighbour outside S then

12 frontdistance← distance(neighbour, current);
13 recordeddistance← value at neighbour in G;
14 if frontdistance ≤ recordeddistance then
15 value at neighbour in G ← frontdistance;
16 end

17 insert unique neighbour in O;

18 else

19 if isVisible(neighbour,currentroot) then
20 frontdistance←

distance(neighbour, currentroot) + rootvalue;
21 neighbourroot← currentroot;

22 else

23 frontdistance←
distance(neighbour, current) + currentvalue;

24 neighbourroot← current;

25 end

26 recordeddistance← value at neighbour in G;
27 if recordeddistance ≤ frontdistance then
28 continue;
29 end

30 value at neighbour in G ← frontdistance;
31 root at neighbour in G ← neighbourroot;
32 insert neighbour to F ;

33 end

34 end

35 end
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Appendix B

Disconnected components

and Voronoi diagrams

Disconnected components can appear when a Voronoi diagram using

Euclidean distances is intersected with an object (see figure B.1a). If

an object needs to be partitioned, a Voronoi diagram can be used, but

Euclidean distances will only work with convex shapes. For concave

shapes, interior distances need to be used if we want cells to be made of

a single component (such as figure B.1b).

We want to prove that a Voronoi diagram using interior distances

within an object creates cells which are made of a single component,

given that the material features (Voronoi seeds, which can be extended

to volumes in our case) are entirely inside the shape, and made of a single

component.

Suppose a Voronoi diagram using interior distances within an object

creates cells with disconnected parts.

For the shortest path q which connects a point A to its closest seed

vi, any point of q shares the same closest seed, otherwise, q could be

shortened.

By definition, a cell ci is defined by the set of points for which the

closest seed is the seed vi. Let p be a point from one of the components

of a cell ci which is not connected to the component which contains the
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Figure B.1: A cross section of the Stanford Dragon with two Voronoi
seeds. (a) using Euclidean distances, (b) using interior distances. A
Voronoi diagram of an object using Euclidean distances creates discon-
nected components.

seed vi, and let ω the path which connects p and vi. For any point on ω,

its closest seed is vi. However, since the components are disconnected,

the path to the closest seed needs to cross the boundaries of the cell

ci, and therefore, some of those points have a different closest seed (cj)

which is contradictory.

Therefore, the path ω can only be entirely in the same cell and there-

fore a cell can only be made of a single component.
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Appendix C

Generation of foam

microstructures

Subsection 2.4.3 showed that procedural microstructures can be useful

in the creation of lightweight and robust objects. However, adaptive

polymer foams are more popular in material engineering, and are not

easily produced by a procedural function. Typical microstructures can

be adaptive and parameters can be functions of space to better fit a shape

and its constraints (see sections 4.4 and 4.3 or Pasko et al. (2011a) and

Fryazinov et al. (2013)). Foams are more robust than a regular lattice

and can be used to improve several properties of an object such as heat

conservation, weight, or insulation or simply robustness (Lu et al. 2014).

The objective here is to reproduce different foam types as internal

structures. The objective is to either create a geometrical structure which

fits into a shape, or a function defining various materials, gradual or

composite.

A Voronoi wall structure removes Voronoi-shaped cells leaving only

the walls in-between the cells with some thickness. The thicker the wall,

the more robust a cell would be, but this also requires more material.

This means that the user needs to be able to control this parameter

across the object to remove as much material as possible in volumetric

regions with minimal stress. Similarly, the edges between the walls can
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be blended together to increase the robustness of the structure. Once

again, this parameter can be controlled so that the blending material is

only added where it is needed.

The definition of a Voronoi diagram and its function representation

was already detailed in section 3.3. The same definition can be used with

only minor changes to fit the requirements defined above. The function

in equation (3.18) defined a single cell of a Voronoi diagram, where any

point inside the cell was considered solid.

The equation is modified to create solid walls between the cells. The

modifications are:

• Offsets need to be applied to the cells to create a solid around the

boundaries between the cells.

• The function needs to consider all the cells to create one solid.

• The sign need to be flipped so that the cells are hollow.

Therefore, the equation for the Voronoi structure is:

m(p) = −[(vc(p)− ti) ∨
i=1...nq

(vqi(p)− tqi)] (C.1)

where:

• vi is the function which represent an individual cell of the Voronoi

diagram,

• c is the index of the cell the point p belongs to,

• nq is the number of neighbours and

• qi is the i-th neighbour of the cell c,

• ti is the partial wall thickness for a cell.

The details of the wall thickness ti are in the following section C.1.

The cells vi can be rounded to improve the robustness of the structure,

and the details are provided in section C.2. The section C.3 shows how

the parameters of the microstructures can be controlled easily. Finally,

the seeds of the Voronoi diagram is covered in section C.4.
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C.1 Wall thickness

Similarly to the work presented in section 3.3, the cells are offset inwards

by subtracting a value ti. The thickness of the wall is hardly meaning-

ful if it changes across a cell. In fact, a high frequency function could

cause abnormal behaviour on the walls and weaken the overall structure.

Instead, the total thickness of the wall is set by two values assigned to

the cells on either sides of the wall. The offset values of neighbouring

cells can be different, but the wall will be as thick as the sum of the

neighbour cells thickness values. So, for instance, if two neighbouring

cells A and B, have a wall thickness of 0.1 and 0.2 respectively, then the

wall between A and B will be 0.3.

The choice of the union R-function impacts the distance properties of

the overall function, therefore using the
0

R
2
class of R-functions (Rvachev

1982) is favoured. If rounded unions or rounded intersections are re-

quired, the formulation from ImplicitCAD (2013) is favoured since it

provides fixed radius blending, and yet maintains good distance proper-

ties (see section 2.4.1).

C.2 Roundness

In equation 3.18, intersections were used to create the Voronoi cell. In

order to control the roundness of a cell, blended intersections are em-

ployed where the roundness can be controlled and a value exists so that

the blended intersection is equivalent to the ordinary intersection. The

rounded union presented in ImplicitCAD (2013) fulfils those require-

ments. This operator is C1 continuous, has reasonable distance proper-

ties and is controlled by a simple roundness parameter. The equation
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for the rounded intersection is reproduced here for convenience:

f1 ∧rounded f2 =







min(f1, f2) if |f1 − f2| ≥ r

f2 + r · sin (Π
4
+ asin(f1−f2

r
√
2
))− 2 if |f1 − f2| < r

(C.2)

Similarly to the thickness parameter, the roundness parameter of a

cell is defined per cell in order to prevent unexpected results due to a

high frequency function.

C.3 Parameter ranges

The roundness parameter of the rounded union depends on the scale

of the object and cells which means that it can be unintuitive for the

designer to define, especially for a large number of cells. This can be

particularly problematic if the cells do not have uniform sizes. Instead,

the normalization of the parameters (of roundness and wall thickness) is

proposed that adapts in respect to the size of the cell. This way both

parameters have a known range [0, 1]. For the wall thickness, 0 translates

to non-existent wall (no thickness), which only has meaning for hetero-

geneous volumetric modelling, and 1 means maximum thickness where

the user would expect it to be the smallest value of the wall thickness

which completely fills the cells. For the roundness parameter, 0 would

mean no blending, and 1 would mean as round as possible where the cell

is almost spherical for a uniform distribution.

To remap the parameters per cell, the maximum meaningful value

needs to be identified. The radius of the inscribed circle is a great heuris-

tic. Finding the radius of the inscribed circle of a Voronoi cell can be

achieved using the gradient descent technique on a distance field of the

Voronoi cell function. There are no risks of local maximum trapping (as-

suming Euclidean distances are used), since there is only one maximum

unless the shape has parallel planes, in which case they all share the

same maximum value.
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(a) (b)

Figure C.1: Sphere packing on the teapot (a) and the Buddha (b)

C.4 Seeds distribution

A popular solution for polymer foam mentioned in Lal and Sun (2004) is

sphere packing combined with Laguerre-Voronoi tessellation, which al-

lows for weighted seeds, where higher weights correspond to larger cells.

The weight can be seen as the radius of a sphere. Each seed of the

Voronoi diagram becomes a sphere. This requires minimal modifications

to the algorithms presented above, since the cell boundaries remain pla-

nar and are only shifted to account for the weight imbalance. In order

to perform sphere packing on arbitrary shapes, the method detailed in

Weller and Zachmann (2010) is used. Here sphere packing means fitting

the largest spheres first and fitting more spheres by decreasing the radius

until the shape is sufficiently filled. An upper bound on the radius of the

sphere can be used to limit the maximum size of the cells. The results

of sphere packing can be seen in figure C.1. The polymer foam resulting

from sphere packing can be seen in figure C.2.

More importantly, a designer might want to control the foam density

in the function of the region of the shape. Using the Laguerre-Voronoi

tessellation, the user provides a cell size function. This function is related

to heterogeneous volumetric modelling and gradient material properties

and therefore, all the methods introduced in this document are relevant.

To provide the seeds and their weights, rejection sampling is used with
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(a) (b)

Figure C.2: Foam using set theoretic operations (a) and blending op-
erations (b)

(a) (b)

Figure C.3: A simple key shape driven by a radius function. The radius
is small along a stress path, and larger as it goes further away from it
within the shape using interior distances.

Poisson disc sampling. In this case, each sample stores its radius and

so when a new sample point is tested, a collision check is performed

to make sure the new sample does not collide with any of the previous

samples. The sampling stops when the tests fail repetitively many times.

Voronoi Relaxation is applied afterwards to improve on the sampling

distribution. One of the caveats of this method is that the sample set can

fail to accurately represent a high frequency function and a large radius

tends to cover small radius regions. Such function cannot be accurately

sampled because a single sample could overlap several extrema of the

function. A solution to prevent the user from providing such function

is needed, or at least issue warnings when the function is not accurately

represented, however, it is out of the scope of this work.
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In figure C.3, a stress path was created by finding the shortest path

between two points in the shape. Next, the interior distance field of this

path was created and is visualized by the colouring. Red, green and blue

colours represent close, medium and far values respectively. A transfer

function is then used to change the interior distance into a radius. The

microstructure is then generated. Larger walls and more blending are

used in the vicinity of the stress path.
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Appendix D

Main algorithms for distance

based heterogeneous

volumetric modelling

In this appendix, we outline algorithms to implement the various meth-

ods and techniques described in chapter 3 for distance based heteroge-

neous volumetric modelling. Some are trivial and do not require much

explanation, but are shown for convenience.

D.1 Space time transfinite interpolation

Space time transfinite interpolation as presented in section 3.4 is straight

forward to implement and is based only on the two signed distances of

the objects. Note that the algorithm only provides two weights, but does

not perform the interpolation. This also means that the attributes can

be functions of space, but the algorithm will not change.

Algorithm 2 shows the simplest case of space time transfinite interpo-

lation. For partitioned objects, similar process has to be used, but the

transformation algorithm also needs to be available.
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Algorithm 2: Space time transfinite interpolation

Input:
f1: Signed distance to source object G1

f2: Signed distance to target object G2

t: Time value for interpolation in range [0, 1]
α: time gap
β: object balance in range [0, 1]
Output: Property weights w1 and w2

1 m1 ← f1 · 2(1− β);
2 m2 ← f2 · 2β;
3 g1 ← m1 ∧ −αt ;
4 g2 ← m2 ∧ (α− 1)t ;
5 gsum← g1 + g2;
6 w1 ←

g2
gsum

;

7 w2 ←
g1

gsum
;

D.2 Shape conforming volumetric interpo-

lation

Shape conforming volumetric interpolation relies on the inverse distance

weighting formula for n sources. The algorithm 3 describes how to com-

pute the weights for each source given the set of n distances.

Algorithm 4 builds on interior distances to first construct Voronoi

cells with offsets (vi) and then applies the interpolation. If the point

is inside the cell feature, the value of vi is set to zero. Given that the

offsets are not set to zero, the cell features cannot overlap. Therefore,

we cannot have more than one value vi equal to zero. When vi is equal

to zero, then this means that it is within the cell feature, and therefore,

no interpolation is required.

D.3 Feature-based group metamorphosis

The method for feature-based group metamorphosis described in section

3.5 allows to combine and mix various parts of various objects.

The algorithm 5 shows how the group metamorphosis can be imple-
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Algorithm 3: Transfinite interpolation for n sources

Input:
n: Number of material features
d: Set of n distances to each feature
A: Set of n properties, where Ai is the property of the i-th object
Output: Set of weights w and attribute Ao

1 distsum← 0 ;
2 distprod← 1;
3 foreach Distance di do
4 distsum← distsum+ di;
5 distprod← distprod · di;

6 end

7 nums array of n elements;
8 denominator ← 0;
9 foreach Distance di do

10 numsi ←
prod

di
;

11 denominator ← denominator + Ti;

12 end

13 foreach Distance di do
14 wi ←

numsi
denominator

;
15 Ao ← Ai · wi;

16 end
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Algorithm 4: Shape conforming interpolation algorithm

Input:
n: Number of material features
d: Set of n interior distances to each feature
A: Set of n properties, where Ai is the property of the i-th object
s: Transition width matrix, where si,j = sj,i
Output: Set of weights w and attribute Ao

1 v, an array of n elements;
2 for i = 1, i <= n, i← i+ 1 do

3 vi ←undefined;
4 for j = 1, j <= n, j ← j + 1 do

5 if i 6= j then

6 hi,j ← di − dj;
7 bi,j ← hi,j + si,j;
8 if cell is undefined then

9 vi ← bi,j ;
10 else

11 vi ← vi ∧ bi,j ;
12 end

13 end

14 end

15 vi ← max(0, vi);

16 end

17 transfiniteinterpolation(n, v, A)
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Algorithm 5: Group metamorphosis with affine transformations

Input:
P : Position
k: Number of objects
fj : jth object’s field
Ei,j : Original feature i of object j
Output: Field value at P

1 ret← 0 ;
2 denom← 0 ;
3 foreach Feature i do
4 E ′

i ← Interpolated feature i ;
5 R← relative position of P in regards to feature E ′

i ;
6 accumfield ← 0 ;
7 foreach Object j do
8 Q← absolute position of R in regards to Ei,j ;
9 accumv ← fj(Q) · vi ;

10 accumfield ← accumfield + accumv ;

11 end

12 di ← distance from P to feature Ei ;
13 wi ← w(di) ;
14 ret← ret+ (accumfield + oi) · wi ;
15 denom← denom+ wi ;

16 end

17 return ret
denom

;
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mented when affine transformations are applied to feature elements.
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