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BACKGROUND

The quality of Evolutionary Multiobjective Optimisation (EMO)
solution sets can be measured by their pertinency, proximity, and
diversity. The Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) is a state-of-the-art evolutionary algorithm first introduced
in Hansen and Ostermeier (1996), designed to solve non-linear and
non-convex optimisation problems in a continuous domain. The CMA-
ES offers fast convergence, however it does not incorporate any
techniques for the preservation of diversity amongst candidate
solutions. In order to encourage preservation of diversity in the CMA-
ES and produce a final candidate solution set with a satisfactory
spread, an Adaptive Grid Archiving (AGA) system inspired by the
Pareto Archived Evolution Strategy (PAES) introduced in Knowles
and Corne (1999) has been combined with the CMA-ES, in a new
algorithm named the Covariance Matrix Adaptation Pareto Archived
Evolutionary Strategy (CMA-PAES), illustrated in figure 1.
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Figure 1: Flow chart illustrating the CMA-PAES algorithm. Blue indicates stages
mutual within most EMO algorithms; yellow indicates stages specific to the
CMA-ES algorithm; red indicates stages specific to the AGA used in PAES.

PURPOSE

The purpose of this research is to improve upon the CMA-ES
algorithm, by incorporating the AGA from PAES to improve the
diversity of solutions provided at the end of the EMO process.

METHODS

Both CMA-ES and CMA-PAES were tested using the ZDT suite of
test functions defined in Zitzler et al. (2000). The test suite contains
six test functions, ZDT1 through to ZDT6, with each function
incorporating a feature that is known to cause the EMO process
difficulty in convergence to the Pareto-optimal front. ZDT5 was not
included Iin the experiment due to the requirement for binary
represented decision variables. Each algorithm was tested using the
parameters specified in table 1.

Due to the EMO process being stochastic by nature, each
algorithm was executed 100 times against each test function, in an
effort to minimise stochastic noise and increase the integrity of the
comparison between the two algorithms. The performance of each
algorithm execution was then measured using metrics to assess the
quality of the approximation set, in terms of proximity to the true
Pareto-optimal front and the diversity of solutions in the population.

Parameter Value

Generations 15

Offspring population size | 400

Parent population size 100

Archive size 100
Table 1: Algorithm configuration values for the CMA-ES and CMA-PAES.
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A statistical comparison between the CMA-ES and the CMA-PAES
was performed by computing the t-values of the performance results
produced by each algorithm. Randomisation testing was then used to
analyse the significance of these results, an advantage of this
approach is that randomisation testing is a non-parametric test, and

therefore does not require any assumptions to be made about the
data (Manly,1991).

RESULTS

The following are the results of the randomisation testing conducted
on the diversity metrics, these are shown graphically. The randomised
distribution is presented as a histogram, and the observed result is
marked as an asterisk on the x-axis. An observed result marked to
the left of the histogram indicates that the CMA-PAES outperforms
(provides a more diverse population) the CMA-ES, similarly an
observed result to the right indicates the opposite is true. An
observed result marked towards the middle of the histogram indicates
that any difference in performance has occurred by chance.
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Figure 2: Randomisation data for the ZDT test functions. The x-axis describes

the t-value, the y-axis describes the frequency.

CONCLUSION

The results suggest that AGA consistently improves the diversity of
solutions in the CMA-PAES, and in that regard, the CMA-PAES
outperforms the CMA-ES. As expected, there is no significant
difference in performance when it comes to proximity of solutions in
either algorithm.

FURTHER WORK

Further work to the CMA-PAES is recommended to improve the
pertinency of its final solution set. This can be achieved by using
preference  articulation  techniques, allowing focus and
encouragement towards a desired region of interest during the
optimisation process. A review and discussion of some popular
methods of incorporating preference articulation into an EMO can be
found in Coello (2000).
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