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Dynamic Data Streams
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Abstract— Active learning (AL) is a promising way to effi-
ciently build up training sets with minimal supervision. A learner
deliberately queries specific instances to tune the classifier’s
model using as few labels as possible. The challenge for streaming
is that the data distribution may evolve over time, and therefore
the model must adapt. Another challenge is the sampling bias
where the sampled training set does not reflect the underlying
data distribution. In the presence of concept drift, sampling bias
is more likely to occur as the training set needs to represent the
whole evolving data. To tackle these challenges, we propose a
novel bi-criteria AL (BAL) approach that relies on two selection
criteria, namely, label uncertainty criterion and density-based cri-
terion. While the first criterion selects instances that are the most
uncertain in terms of class membership, the latter dynamically
curbs the sampling bias by weighting the samples to reflect on the
true underlying distribution. To design and implement these two
criteria for learning from streams, BAL adopts a Bayesian online
learning approach and combines online classification and online
clustering through the use of online logistic regression and online
growing Gaussian mixture models, respectively. Empirical results
obtained on standard synthetic and real-world benchmarks show
the high performance of the proposed BAL method compared
with the state-of-the-art AL methods.

Index Terms— Active learning (AL), Bayesian online learning,
concept drift, data streams.

I. INTRODUCTION

CLASSIFICATION has been the focus on large body of
research due to its key relevance to numerous real-world

applications. A classifier is trained by learning a mapping
function between input and predefined classes. In an offline
setting, the training of a classifier assumes that the training
data are representative and are available prior to the training
phase. Once this later is exhausted, the classifier is deployed
and, therefore, cannot be trained any further even if performs
poorly. This can happen if the training data used do not
exhibit the true characteristics of the underlying distribution.
Moreover, for many applications, data arrive over time as a
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stream, and therefore the offline assumptions cannot hold, that
is, the characteristics of data streams make it impractical to use
offline learning algorithms: 1) data streams are unbounded in
size; 2) they arrive at high steady rate; and 3) they may evolve
over time. Thus, to deal with data streams efficiently, the
classifier must (self-)adapt online over time [1], [2]. To do that,
the classifier needs to be fed with labeled data continuously,
which is not feasible in most real-world streaming situations
where the data are usually unlabeled. It is therefore very
important to seek well-informed ways to obtain labels. Active
learning (AL) methods provide a systematic approach to select
data examples whose labels should be queried. The overall aim
of AL is to provide, in the worst case, the same performance
as that of passive learning (i.e., relying on random sampling)
while using less labeled examples.

For the sake of illustration, consider the example of Internet
advert popping up on screen where both online and AL are
relevant. The goal is to predict if an advert item will be
interesting to a given shopper at a given time. To this end,
a classifier is built based on the feedback from the shoppers.
However, the interest and preference of the shoppers may
change over time leading to what is known as concept drift.
Therefore, building a static model for such a scenario will not
be effective; hence, the importance of an online adaptive model
is manifested. In the streaming setting, obtaining unlabeled
data is often cheap but labeling it is expensive. For instance, in
the previous example, asking frequently for feedback whether
an advert is interesting would annoy the shoppers; hence, AL
should be deployed in applications with caution.

AL allows to label, by an expert, some selected data samples
according to some selection criteria. Three main approaches
of AL have been considered in the literature [3]: membership
query synthesis (MQS), pool-based selective sampling (PSS),
and stream-based selective sampling (SSS). According to
MQS, the learner generates new data samples from the feature
space that will be queried. However, labeling such arbitrary
instances may be impractical, especially if the oracle is a
human annotator as we may end up querying instances [4]
that are hard to explain. PSS is the most popular AL method,
according to which the selection of instances is made by
exhaustively searching in a large collection of unlabeled data
gathered at once in a pool. Here, PSS evaluates and ranks the
entire collection before selecting the best query. On the other
hand, SSS scans through the data sequentially and makes query
decisions individually. In the case of data streams, PSS is not
appropriate, especially when memory or processing power is
limited. It also assumes that the pool of data is stationary and
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uses the whole data set. This will delay the adaptation and
waste the resources. SSS, instead, adapts the classifier in real-
time leading to fast adaptation. Therefore, in this paper, the
SSS approach is adopted.

To select the data examples to query, different criteria may
be used. Among the most known criteria are label uncer-
tainty and density-based labeling [3]. The label uncertainty
(or uncertainty sampling) is a simple and popular criterion and,
more important, it is very suitable for online AL. It has been
extensively used in both PSS [5], [6] and SSS [7], [8]. Label
uncertainty aims at selecting the most uncertain instances that
typically lie close to the decision boundary. The training of
the classifier on those instances is expected to adjust the
boundary, achieving better classification accuracy. That means
that the sampling is biased toward the decision boundary of
the classifier. However, given the nonstationary aspect of data
coming over time in a stream, concept drift can happen any
time and everywhere in the feature space. If the drift is close
to the current classification boundary, the bias created by AL
is not only acceptable, but also desirable. On the other hand,
when concept drift occurs far from the boundary, it may go
unnoticed. In such a case, the bias is undesirable and it is
known as sampling bias problem [9].

On the other hand, density-based labeling selects instances
for labeling from highly dense regions in the space, thus
representing better the data distribution. It allows covering
the whole input space with only few data samples [10]
and reducing the sampling bias. Density-based labeling has
been applied on offline stationary data in the PSS approach
where it is usually combined with label uncertainty [11]–[13].
To the extent of our knowledge, this combination has not been
implemented in the SSS approach.

In this paper, we introduce a bi-criteria AL (BAL) algorithm
for evolving data streams. In particular, we combine label
uncertainty and density-based labeling in an SSS-like setting.
The uncertainty of data samples is evaluated using a classifica-
tion model, while density of regions is evaluated using a clus-
tering model. In general, density criterion performs efficiently
with few labeled data, since it samples from maximum-density
unlabeled regions. On the other hand, uncertainty criterion
tunes the decision boundary after selective sampling from the
uncertain regions [11], [13]–[15]. Thus, the density criterion is
useful when there is regularity in the data, which is the case of
many applications. However, the density criterion alone would
not provide an accurate classifier. In other words, the density
criterion helps establishing the initial decision boundary, while
uncertainty sampling "fine-tunes" that boundary by sampling
the regions where the classifier is least certain. By combining
both criteria, we can take advantage of the density criterion to
reduce the data examples required by the uncertainty criterion
to build an accurate classifier.

To ensure enough flexibility of BAL, we explicitly distin-
guish between the learning engine and the selection engine.
The learning engine uses a supervised learning algorithm
to train a classifier on the existing labeled data, while the
selection engine selects influential samples from the data
stream for labeling. Here, the selection engine includes a
classifier, which is different from the classifier used by the

learning engine and the clustering model that serves to design
and deploy the two criteria.

AL presents an interesting opportunity to handle concept
drift by querying the data samples representative of this drift
(i.e., its characteristics). In contrast to standard concept drift
handling techniques, where only automatic detection mecha-
nisms are applied, AL assumes that an oracle provides the truth
labels of data. To this end, we use the importance weighting
principle to weight labeled data samples that drives a drift
in order to increase the importance of their regions in the
feature space. The importance weighting principle has also
been theoretically proved to correct sampling bias [16]. The
BAL algorithm proposed in this paper is the first AL algorithm
that is concept drift aware.

To illustrate how BAL behaves, consider the example that
pertains to Internet advertisement. Using uncertainty criterion
only would result in querying adverts for which the classifier is
uncertain, and therefore, by interactively labeling such adverts,
the classifier can improve its performance toward a better pre-
diction of what to propose to the shopper. On the other hand,
the density criterion considers the similarity of the adverts.
Thus, from a dense group of similar adverts, only one that
represents the whole group will be queried. Clearly combining
the two criteria allows querying representative adverts for
which the algorithm is not sure. Furthermore, in the streaming
case, the interest and preference of the shoppers may change
over time; hence, when the change (drift) occurs in relation to
those adverts for which the classifier is certain, the sampling
bias caused by the AL will be harmful. By implementing the
weighting mechanism, we aim at reducing the sampling bias
by labeling more of data samples that drive the drift and that
make the uncertainty criterion less important for these data.

In a nutshell, our contributions are as follows.
1) We propose a novel online AL algorithm for data

streams using a probabilistic model that combines two
querying criteria: uncertainty and density-based criteria.
To the best of our knowledge, this is the first approach
based on density-uncertainty to the online setting.

2) The proposed combination applies classification through
logistic regression and clustering through growing
Gaussian mixture models (GGMMs) to implement the
two querying criteria in a uniform probabilistic way. The
choice of these algorithms is, therefore, genuine.

3) We propose mechanisms to make the BAL algorithm
aware of concept drift. It is the first study that shows
the effectiveness of AL in dealing with concept drift.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the proposed
selection criteria along with the classification and clustering
algorithms used. Section IV provides the details of the online
sampling method proposed before the BAL algorithm is pre-
sented in Section V. Section VI discusses the experimental
results for a number of well-known synthetic and real-world
data sets. Finally, Section VII concludes this paper.

II. RELATED WORK

AL for online stationary data with no concept drift has
been the subject of a number of studies [17], [18]. However,
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the approaches proposed in these studies do not meet the
requirements of evolving data streams. They are not equipped
with mechanisms that enable them to perceive changes of the
data distribution and, therefore, ignore the samples of great
value that help improve the learner accuracy. In the case
of concept drift, they tend to react to changes occurring far
from the decision boundary only slowly, hence the problem
of sampling bias. However, they may well handle drift that
happens gradually and close to the boundary.

Online AL methods for data streams in the presence of
drift have been dealt with using batch-based learning, where
data are split into batches [19], [20], which are used to
adapt the classifier. These methods often assume that the
data are stationary within each batch, where pool-based AL
strategies are applied. Lindstrom et al. [21] use a sliding
window approach, which discards the oldest instances instead
of explicitly detecting the changes. Label uncertainty is then
used to label the most representative instances within each
new batch. In contrast, our online AL handles concept drift
directly online by evaluating data instances on-the-fly, allow-
ing faster adaptation as soon as drift is detected. In [22], an
online approach was compared against a batch-based approach
using a fixed and a variable size batch and was found that
both have similar accuracy, but the batch-based one required
more resources. Another issue is that, in general, batch-based
approaches cannot learn from the most recent examples until
a new batch is complete. That leads to more delay when
responding to concept drift. In online AL, this delay has a
negative effect leading to late recovery from drift. For all
these reasons, online learning is suitable for dealing with drift
compared with batch-based learning.

The closest method to ours is proposed in [7], where
online AL is investigated. Authors use randomization to avoid
bias estimation of the class conditional distribution that may
result from querying. This randomization is combined with the
stationary online label uncertainty criterion to deal with drift.
They use the notion of budget (i.e., the maximum proportion of
instances to be queried over time) to control the resources for
labeling. This AL method differs from our BAL approach in
at least two aspects. First, the former wastes the resources by
randomly picking data in order to cover the whole input space.
We, instead, use a density-based criterion, which reduces the
sampling bias by sampling from influential (dense) regions.
Second, randomization does not have any interaction when
drift occurs, and it naively keeps querying randomly as if
nothing had happened. In contrast, BAL increases the impor-
tance of the drifting regions, thus speeding up the recovery
and saving the resources. In Section VI, the superiority of the
proposed BAL approach is empirically shown.

III. ONLINE BI-CRITERIA AL

To facilitate the description of BAL, Table I presents the
list of symbols used in the rest of this paper. Vectors are bold.

The steps of the BAL algorithm proposed in this paper are
portrayed in Fig. 1 and the corresponding details are discussed
in Section V. In a nutshell, BAL consists of four steps. In the
first step, given an instance x, GGMM, used to implement
the density-based criterion, is updated (see Section III-A). In

TABLE I

TABLE OF NOTATIONS

the second step, using BAL’s sampling model, the probability
of querying is computed and the decision whether to query
or discard the instance and receive a new one is made (see
Section IV). In the third step, the label of the queried instance
x is received and the classification model that is used to
implement the label uncertainty criterion will be updated (see
Section III-B). In the fourth step, a weighting technique is
used to curb the sampling bias (see Section IV-A).

In order to identify the data examples to query, we
seek to minimize the current expected error, which conse-
quently leads to the minimization of the future expected
error. The current expected error for an instance x can be
computed using density-based and label uncertainty criteria,
which are estimated by dynamic classification and clustering
models.

In [23], it is suggested to select samples that minimize the
expected future classification error given as follows:

R =
∫

x
E[(ŷ − y)2|x]p(x)d x (1)
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Fig. 1. General scheme of BAL.

Fig. 2. Combining clustering and classification for AL.

where y is the true label of data instance x and ŷ is the
predicted output. E[.|x] denotes the expectation over p(y|x).
This integral cannot be computed due to its complexity.
Nguyen and Smeulders [12], who proposed an AL method that
relies on an offline PSS setting, noted that instead of selecting
data that produces the smallest future error, we can select the
data that have the largest contribution to the current error in
order to achieve a good approximation. Another issue pointed
out is that the data distribution p(x) affects the expected error.

In this paper, we are concerned with online learning. There-
fore, in order to have online approximation of (1), an online
learning model that involves the online sampling technique
is needed. This model should be able to handle real drift
and virtual drift [24]. The former refers to changes in the
conditional distribution p(y|x), whereas the latter refers to
the changes in the distribution of the incoming data p(x).

Our approach deals with the problems mentioned above
and works independently of the classifier by adopting an
online selection engine that uses the Bayesian inference. The
random vector z is typically estimated from a training set
of vectors Z [25], [26]. The Bayesian inference estimation
process is given as follows:
p(z|Z) =

∫
�

p(z,�|Z)d� =
∫

�
p(z|�, Z)p(�|Z)d�. (2)

Assume that the selection engine has processed until time t ,
Xt data, among which Xt

l are labeled. Y t
l is the set of labels

associated with Xt
l . Replace z with (x, y), Z with (Xt , Y t

l ),
and � with (θ , θ ′), where θ and θ ′ represent the parameters
that govern, respectively, the clustering and the classification
models. Equation (2) can be written as follows:

p
(
x, y|Y t

l , Xt ) =
∫

θ ′

∫
θ

p(x, y|θ , θ ′)p
(
θ, θ ′|Y t

l , Xt )dθdθ ′

(3)

p
(
θ , θ ′|Y t

l , Xt ) = p
(
θ |Y t

l , Xt , θ ′)p
(
θ ′|Y t

l , Xt
l

)
. (4)

Assuming that θ and θ ′ are independent, (4) can be rewritten
as follows:

p
(
θ , θ ′|Y t

l , Xt ) = p(θ |Xt )p
(
θ ′|Y t

l , Xt
l

)
. (5)

Assuming also that all the information about the class label y
is encoded in the cluster parameter vector θ , y and x are
conditionally independent given θ . Therefore

p(x, y|θ , θ ′) = p(y|x, θ , θ ′)p(x|θ, θ ′)
= p(y|θ, θ ′)p(x|θ). (6)

Equation (3) can then be rewritten as

p
(
x, y|Y t

l , Xt )

=
∫

θ ′

∫
θ

p(y|θ, θ ′)p
(
θ ′|Y t

l , Xt
l

)
p
(
x|θ)

p(θ |Xt )dθdθ ′ . (7)

This clearly explains how the selection engine consists of
two models: a supervised learning classifier, which is used
to estimate the uncertain data examples, and an unsupervised
clustering model, which is used to estimate the dense regions.
These two models are used to approximate the future error.
Equation (1) can be written as follows:∫

x

∫
y
(ŷ − y)2 p(x, y)dyd x (8)

p(x, y) can be estimated using (7). This later shows how label
uncertainty and density-based criteria are combined. The data
examples that minimize the current expected error are those
located close to the center of clusters near the class boundaries.
Fig. 2 shows an example in two dimensions space, illustrat-
ing the relationship between the clustering and classification
models expressed in (7). The distribution of θ ′ and θ are
represented by lines and clusters. p(y|θ, θ ′) depends on the
distance between cluster θ and line θ ′. p(x|θ) depends on the
distance between x and θ . As data are drawn from potentially
changing distribution, θ and θ ′ may change.

In the following, the models exploited to implement the two
selection criteria are introduced. These criteria are label uncer-
tainty defined through logistic regression [27] and density-
based criterion defined through GGMM [1].
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Fig. 3. Main steps of GGMM.

A. Growing Gaussian Mixture Model

To detect the dense regions, an online learning algorithm to
estimate the density of data examples xt is needed. According
to Bayesian inference

p(xt|Xt−1) =
∫

θt−1

p(xt |θt−1)p(θt−1|Xt−1)dθt−1 (9)

where t represents the time. Traditionally, computing the
integral in (9) is not always straightforward and the Bayesian
inference is often approximated through maximum-a posteri-
ori (MAP) or maximum likelihood estimation (MLE). In order
to obtain an online approximation for (9), an online GMM
algorithm is used. The GMM perceives the data as a popula-
tion with K different components where each component is
generated by an underlying probability distribution [28]

p(xt |Xt−1) =
K∑

i=1

p
(
xt |θ̂ i

t−1

)
τ i

t−1 (10)

where τ i
t−1 is the weight of the i th Gaussian, θ̂t = (θ̂1

t , ..., θ̂ K
t ),

where θ̂ i
t is the parameter vector of cluster i .

In this case of incomplete data, MLE and MAP estimates
are not directly computable. Therefore, it is standard to
use iterative algorithms such as expectation maximization.
To accommodate online learning, the GGMM proposed in [1]
is adopted. It estimates θ̂t from data by maximizing the
likelihood of the joint distribution p(Xt , θ̂t) [29]. GGMM
learns from labelled and unlabeled data and handles the
complexity of the mixture model efficiently. By using the
GGMM, we wish to implement the density-based AL criterion
in an efficient way.

The parameters of GGMM are the clusters variance, the
learning rate, which determines the update step of the clusters’
parameters, the maximum admissible number of clusters, and
the closeness threshold, which controls the creation of new
clusters. GGMM creates a new cluster when the Mahalanobis
distance between a new input and the nearest cluster is
more than the closeness threshold. To make the experiments
easier, the closeness threshold is set equal to the variance.
GGMM uses a constant fading factor (learning rate) to tune the
contribution of clusters by updating θ̂i . The least contributing
clusters are discarded systematically and new ones are added
dynamically over time. Fig. 3 shows the main steps of GGMM.

Due to its incremental nature, GGMM can cope with
concept drift [1] and its combination with the online classifier,
logistic regression, (see Section III-B) to devise BAL ensures
real-time adaptation.

B. Logistic Regression

To sample the uncertain data examples, the logistic classi-
fier, which is offline, probabilistic, and linear in the parameters,
is applied. To meet the online requirement of our approach,
this classifier will be adapted as will be shown below.

Logistic regression corresponds to the following binary
classification model:

y|x ∼ Bern(μ′) (11)

y|x has the Bernoulli distribution with parameter μ′ given as

μ′ = p(y = 1|x, θ ′) = sigm(θ ′T x) (12)

where sigm(a) refers to the sigmoid function,
sigm(a) = (1/(1+ exp(−a))).

While in this paper, binary classification is considered,
it is easy to extend the logistic regression to multi-class
classification. In the following, we discuss the adaptation of
logistic regression to online classification and show how it is
used in our method for handling concept drift.

1) Bayesian View of Online Logistic Regression: Logistic
regression can be trained in an online mode either by using
stochastic optimization or by adopting a Bayesian view, which
has the obvious advantage of returning posterior instead of just
point estimate. In this paper, we use the Bayesian view because
we want to capture the nondeterministic nature (uncertainty)
of the querying process that itself exploits the label uncertainty
criterion. The Bayesian approach of the logistic regression is
expressed through

p
(
θ ′

t

∣∣Dt ) ∝ p
((

xt, yt
)∣∣θ ′

t
)

p
(
θ ′

t

∣∣Dt−1) (13)

where Dt is the labeled data seen up to time t . Suppose that
at time t − 1, our knowledge about the parameters θ ′

t−1 is
summarized by the posterior distribution p(θ ′

t−1|Dt−1). After
receiving an observation xt , we consider the probability

p
(
yt

∣∣xt, Dt−1) =
∫

θ ′
t

p
(
yt

∣∣xt, θ
′
t
)

p
(
θ ′

t

∣∣Dt−1)dθ ′
t

(14)

where p(θ ′
t |Dt−1) is the predicted posterior, which can be

expressed as

p
(
θ ′

t

∣∣Dt−1) =
∫

θ ′
t−1

p
(
θ ′

t

∣∣θ ′
t−1

)
p
(
θ ′

t−1

∣∣Dt−1)dθ ′
t−1

. (15)
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In order to calculate the expression p(θ ′
t |θ ′

t−1), we must spec-
ify how the parameters change over time. Following [27], we
assume no knowledge of the drifting distribution p(θ ′

t |θ ′
t−1).

Thus, (15) can be eliminated by estimating p(yt |xt , Dt−1),
which is done as follows:

p(yt |xt, Dt−1) =
∫

θ ′
t−1

p
(
yt

∣∣xt , θ
′
t−1

)
p
(
θ ′

t−1

∣∣Dt−1)dθ ′
t−1

.

(16)

Here, two challenges need to be dealt with.

1) Predicting the class of the new data example xt by com-
puting the posterior predictive distribution [see (16)].

2) Updating the posterior distribution p(θ ′
t |Dt ) as soon as

the label of xt is obtained by computing [see (13)].

Both challenges require to approximate the prior distribution
over the weight θ ′

t as a Gaussian distribution N (μt ,�t). Two
methods have been proposed in the literature to approximate
the integral of (16): Monte Carlo approximation and probit
approximation [30]. We use probit approximation as it does
not require sampling; thus, it takes less computational time.
However, it has been found that probit approximation gives
very similar results to the Monte Carlo approximation [30].
The result of the approximation is as follows:

p(ŷt = 1|xt, Dt−1) ≈ ∇̂t = sigm(K (st )āt ) (17)

s2
t = xt

T �t−1xt (18)

āt = μt−1
T xt (19)

K (st ) =
(

1+ πs2
t

8

)− 1
2

. (20)

For more details about the approximation steps, the interested
reader is referred to [30].

In the following, we show how the parameters of the pro-
posed online logistic regression classifier are updated. We use
Newton’s method as formulated in [31] to sequentially update
θ ′

t = (�t ,μt ) of (13) using (17). Therefore, the mean μt and
covariance �t can be updated as follows:

�t = �t−1 − ∇̂t (1− ∇̂t )

1+ ∇̂t (1− ∇̂t )s2
t

(�t−1xt)((�t−1xt))
T

μt = μt−1 +�t xt(yt − ∇̂t ). (21)

These recursive equations reflect on the current and the past
data. Nevertheless, the effect of data is implicitly decreasing
as more data are processed due to the variance shrinkage.

2) Handling of Concept Drift: In nonstationary setting, a
variant version of (21) proposed in [27] is used. The situation
is exactly the same as for the stationary case, except that
the prior distribution is now N (μt−1,�t−1 + vt f ). Here,
f = c I with c is a constant and I is the identity matrix.
vt f assumes that the weight vector θ ′

t changes are of similar
magnitude. Alternatively, one could use a separate forgetting
matrix parameter for every weight coordinate as discussed

in [32]. In this paper, we consider the first assumption

�t = (�t−1 + vt f )− ∇̂t (1− ∇̂t )

1+ ∇̂t (1− ∇̂t )s′2t
×[(�t−1 + vt f )xt][(�t−1 + vt f )xt]T

μt = μt−1 + �t xt(yt − ∇̂t ) (22)

where s′2t = xT
t (�t−1 + vt f )xt . Here, vt can be thought of

as the Bayesian version of the window size in batch learning
for data stream. In order to adjust the model as soon as it
becomes unable to estimate the true changing θ ′ distribution,
we compute the discrepancy between the predictive class
uncertainty after and before observing the true class label

Gt = Ũ(xt)− Û(xt) (23)

where Û(xt) is the uncertainty of the label predicted from xt
and Ũ(xt) is the uncertainty remaining after incorporating the
true class label

Û(xt) = E[(ŷt − yt )
2|xt]

Ũ(xt) = E[(ỹt − yt )
2|xt] (24)

ŷt is the predicted label and ŷt = �(∇̂t > 0.5). ỹt is the
predicted label after updating the classification model with
the true label. ỹt = �(∇̃t > 0.5), where ∇̃ can be computed
as follows:

p(ỹt = 1|xt, Dt ) ≈ ∇̃t = sigm(K (s̃t )ãt) (25)

s̃2
t = xt

T �t xt (26)

ãt = μt
T xt (27)

K (s̃t ) =
(

1+ π s̃2
t

8

)− 1
2

. (28)

The discrepancy Gt of the model uncertainty is monitored
using a forgetting technique [33]

vt = αvt−1 +max(Gt , 0)

N Lt
(29)

N Lt = αN Lt−1 + l(xt) (30)

NLt is the prequential number of labeled data. l(xt) is 1 if xt
is labeled and 0 otherwise. α is a fading factor empirically set
to 0.9. Equation (29) will be used to update (22).

Finally, the logistic regression classifier is incrementally
updated using (22) that addresses concept drift.

IV. ONLINE SAMPLING

In the following, the sampling method used by BAL that
avoids the problem of sampling bias is illustrated. Next, a
technique to restrict the available resources in terms of labeling
budget is described.

We noted earlier that the computation of the future error in
(1) is difficult. So instead, we select the sample that has the
largest contribution to the current error. Although this does not
guarantee the smallest future error, there is a good chance for
a large decrease in error. In the offline setting, the selection
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criterion based on the set of unlabelled data Du is

x = arg max
x j∈Du

E[(ŷ j − y j )
2|x j ]p(x j ) (31)

E[(ŷ j−y j )
2|x j ] = p(y j = 1|x j )(ŷ j−1)2 + p(y j = 0|x j )ŷ2

j

(32)

where p(y|x) is unknown and needs to be approximated.
Nguyen and Smeulders [12] use the current estimation
p(y|x, θ̂ ′) assuming that θ̂ ′ is good enough. Unfortunately,
in the online learning setting, the task is more challenging for
three issues.

1) No access to the already seen unlabeled data.
2) The probability p(y|x, θ̂ ′) dynamically changes as more

labeled data are seen. That means the approximation
assumed above needs adjustment.

3) Need to address the problem of sampling bias (which is
detailed in Section IV).

To address these issues, we formulate the querying (sam-
pling) probability in a recursive manner as follows. Let q
be the binary random variable that determines whether x
should be queried. The querying probability is defined by the
following model:

q|x ∼ Bern(μ′). (33)

Using (8), the querying probability can be reformulated as
follows:

p(q = 1|x) =
∫

y
(ŷ − y)2 p(x, y)dy. (34)

That is to say, a sample that has a large contribution to the
current error is likely to be queried.

Now, let us see how this probability is formulated for the
online setting, so that we avoid the requirement to have access
to the whole data. Let Bt = (Y t

l , Xt ) be the set of labeled data
seen so far. Using (7), we express the probability of querying
xt as follows:
p(qt = 1|xt, Bt−1) =

∫
yt

∫
θt

((ŷt−yt )
2 p(yt |θt , Dt−1)p(xt |θt)

p(θt |Xt )dθt dyt )

=
∫

θt

E[(ŷt−yt)
2|θt ]p(xt|θt)p(θt |Xt )dθt .

(35)

E[.|θt] denotes the expectation over p(yt |θt, Dt−1).
Using (10), p(qt = 1|xt, Bt−1) can be estimated as
follows:

p(qt = 1|xt, Bt−1) =
K∑

i=1

E
[
(ŷt − yt )

2
∣∣θ̂ i

t
]

p
(
xt

∣∣θ̂ i
t
)
τ i

t (36)

where E[(ŷt − yt )
2|θ̂ i

t ] = Û(θ̂ i
t ) can be computed as

Û
(
θ̂ i

t
) = p(yt = 1|μ

θ̂ i
t
, Dt−1)(ŷt − 1)2

+ p(yt = 0|μ
θ̂ i

t
, Dt−1)ŷ2

t (37)

where μ
θ̂ i

t
is the mean of cluster i at time t . p(yt =

1|μ
θ̂ i

t
, Dt−1) can be computed using (17) after replacing xt

by μ
θ̂ i

t
. The resulting p(yt = 1|μ

θ̂ i
t
, Dt−1) is the recursive

approximation of the querying probability.

A. Tackling the Problem of Sampling Bias

In general, the AL model starts by exploring the environ-
ment. As training proceeds, the model becomes more certain.
Then, data samples are queried based on their informativeness.
As a result, the training set quickly will no more represent the
underlying data distribution, hence the problem sampling bias.

Given a classification model with a parameter vector θ ,
MAP estimate is ŷ = argmaxy p(y|x, θ) and the risk
associated is expressed as

R(θ) =
∫

x

∫
y

L(ŷ, y)p(x, y)dyd x (38)

where L(.) is the loss function measuring the disagree-
ment between prediction and the true label. Since p(x, y)
is unknown, the expected loss can be approximated by an
empirical risk

R̂n(θ) = 1

n

n∑
j=1

L(ŷ j , y j ) (39)

where (x j , y j ) are drawn from p(x, y) and n is the number
of samples. In AL, instances are drawn according to an
instrumental distribution g(x). Thus, (x j , y j ) are sampled
from g(x)p(y|x). In the presence of drift, g(x) may have
low probability for data located far from the class bound-
ary, because it is considered as an uninformative region.
If a drift occurs in that region, many instances with high
loss L(ŷ j , y j ) will not be queried. This leads to a negative
effect of AL; sometimes, worse than learning from random
sampling. In order to develop an unbiased estimator of the
expected loss, we weight each drawn instance following the
concept of weighted sampling. Thus, the empirical risk can be
written as follows:

R̂g,n(θ) = 1

S

n∑
j=1

Sj L(ŷ j , y j ) (40)

where Sj = ((p(x j ))/(g(x j ))) is the importance weighting
compensating for the discrepancy between the original and
instrumental distributions, and S =∑n

j=1 Sj is the normalizer.
Thanks to the importance weighting, (40) defines a consistent
estimator [34], that is, the expected value of the estimator
R̂g,n(θ) converges to the true risk R(θ) for n → ∞.
The importance weighting was used in [16] to correct the
sampling bias showing that by weighting the queried sample
according to the reciprocals of the labeling probability, a
statistical consistency is guaranteed. For any distribution and
any hypothesis class, AL eventually converges to the optimal
hypothesis in the class. In the case of online learning, the
importance weighting can be defined as follows:

St = p(xt)

p(xt)p(qt = 1|xt, Bt−1)

= 1

p(qt = 1|xt, Bt−1)
. (41)

In order to apply the importance weighting, we interpolate
the effect of weighting into the selection engine through the
density estimation. Thus, the clustering model is updated with
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the importance sampling St . The effect of St on each cluster
is represented by H i

t as follows:

H i
t =

⎧⎪⎨
⎪⎩

S−1
t p

(
θ̂ i

t

∣∣xt
)
, if xt is classified correctly

0, if xt is not queried(
1− S−1

t

)
p
(
θ̂ i

t

∣∣xt
)
, otherwise.

(42)

Therefore, the new cluster weight can be written as follows:
τ i

t,St
= (

1− H i
t

)
τ i

t (1− It )+
((

1− H i
t

)
τ i

t + H i
t

)
It (43)

where It = |ŷ − y|, that is, It is 0 if xt is correctly classified
and 1 otherwise. The first term of (43) is used to decrease
the effect of oversampling by reducing the weight of clusters
representing the instances correctly labeled. The second term is
used to decrease the effect of undersampling by increasing the
weight of clusters representing the instances wrongly labeled.

B. Budget

Under limited labeling resources, a rationale querying strat-
egy to optimally use those resources needs to be applied.
To this end, the notion of budget was introduced in [7] in order
to estimate the label spending. Two counters were maintained:
the number of labeled instances ut and the budget spent so
far: bt = ((ut )/(|data seen so far|)) = ((ut )/(|Xt |)). As data
arrives, we do not query unless the budget is less than a
constant Bd and querying is granted by the sampling model.
However, over infinite time horizon, this approach will not
be effective. The contribution of every label to the budget will
diminish over the infinite time and a single labeling action will
become less and less sensitive. Zliobaite et al. in [7] propose to
compute the budget over fixed memory windows w. To avoid
storing the query decisions within the windows, an estimation
of ut and bt was proposed. It is computed as follows:

b̂t = ût

w
(44)

where ût is an estimate of how many instances were queried
within the last w incoming data examples

ût = (1− 1/w)ût−1 + labelingt−1 (45)

where labelingt−1 = 1 if instance xt−1 is labeled, and
0 otherwise. Using the forgetting factor (1−1/w), we showed
that b̂t is unbiased estimate of bt .

In this paper, this notion of budget will be adopted in BAL,
so that we can assess it against the AL proposed in [7].
Note that in our experiments in relation to the budget, we set
w = 100 as in [7].

V. ALGORITHM

Having introduced the AL criteria and the sampling tech-
nique based on Fig. 2, the full details of the algorithm are
provided in Algorithm 1. The lines 7, 15, and 16 are included
in BAL only when the budget is considered. Otherwise, BAL
is not constrained by the budget.

Algorithm 1 Steps of BAL
1: Input: data stream, parameters of GGMM: {maximum

number of clusters, variance, learning rate }, BAL forget-
ting matrix f

(
Eq. (22)

)
, budget Bd .

2: initialize: t = 0, μ0 = 
0, �0 = 5I
(
Eq. (22)

)
, vt = 0(

Eq. (29)
)
, û1 = 0

(
Eq. (45)

)
3: while (true) do
4: t ← t + 1,
5: Receive xt
6: Update the clustering model {θ̂1

t−1, ...θ̂
k
t−1} by xt .

7: if b̂t < Bd
(
Eq. (44)

)
then

8: compute μ′ = p(qt = 1|xt, Bt−1) that refers to the
combination of uncertainty and density criteria using
Eq. (36)

9: qt ∼ Bern(μ′)
(
Eq. (33)

)
10: if qt = 1 then
11: yt ← query(xt)
12: Update the classifier model {μt−1,�t−1} by (xt , yt )

using Eq. (22)
13: Remove the effect of sampling bias using Eq. (43)
14: end if
15: end if
16: Compute ût+1

(
Eq. (45)

)
17: end while

Fig. 4. Synthetic data. (a) Gradual drift (moving plane). (b) Abrupt drift.
(c) Mixture drift (moving Gaussian).

VI. EXPERIMENTS

First, BAL is evaluated by analyzing its behavior under
different data distributions and different types of concept drift.
In order to have controlled settings with known distribution
and drift type, 2-D synthetic data sets proposed in [35] are
considered. Second, BAL is compared against the state-of-
the-art AL methods designed for data streams on real-world
data sets. Two real-world benchmark data sets are used:
Electricity [36] and Airline [37].

The forgetting constant “c,” which determines that the
forgetting matrix f in (22) is empirically set to 5. The
parameters of GGMM are empirically specified in Table II.
To capture the real performance of BAL, all experiments are
repeated 30 times and the results are averaged.
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Fig. 5. UAL gradual drift. (a) Data. (b) Classifier variance. (c) Accuracy.

TABLE II

CLUSTERING PARAMETERS (EMPIRICALLY OBTAINED)

A. Simulation on Synthetic Data

The main goal of this section is to analyze BAL in terms of
effect of concept drift and data distribution. Also the impact
of the budget and the number of clusters on the performance
of BAL are studied. Then, its strengths and weaknesses are
discussed. Note that the online logistic regression algorithm
serves as learning engine. Three synthetic data sets involving
two different distributions, Gaussian and uniform, and three
types of data drift, gradual, abrupt, and mixture involving both
gradual and abrupt drifts are used. These types of drift occur
in real-world applications as shown in the following.

a) Gradual Drift: It considers two sources with grad-
ual changes from one source to the other. The so-
called moving plane data are used. A gradual changing
environment is simulated by rotating the linear class
boundary about the origin in a 2-D space. All data points
come from a uniform distribution in the unit square
[see Fig. 4(a)]. The class definition (concept) changes
with each new data point by rotating the boundary at
a further angle of 1. The distribution p(x) does not
change over time, while p(y|x) does. A real example
is when a device begins to malfunction; the quality of
its service starts to decrease. After a certain period of
time, the device starts to work under failure operation
conditions [38].
b) Abrupt Drift: It considers many data sources, each
related to one of the target concepts. In the case of
abrupt drift, usually one data source is instantly replaced
by another. We use four Gaussian sources with half
related to one concept and half to another to illustrate
abrupt drift. In the substitution process, one data source
is instantly replaced by another, yielding a change in
p(y|x) with the same p(x) [see Fig. 4(c)]. A real
example is the stuck-on or stuck-off faults in a valve
or the failed-on or failed-off of a pump [38]. We also

introduce remote abrupt drift for uniformly distrib-
uted data by instantly moving the boundary far away
(see Fig. 12).
c) Mixture Drift: It is another version of Gaussian drift
called moving Gaussian, where both p(x) and p(y|x)
change. If p(x) gradually changes, then p(y|x) abruptly
drifts and continues gradually drifting [see Fig. 4(c)].
Consider, for example, textual news arriving as a data
stream. The goal is to predict if a news item is interesting
to a given reader at a given time. The preferences of the
reader (P(y|x)) and the news popularity (p(x)) may
change gradually or abruptly over time.

1) Results: The notion of budget is not used here; thus,
there is no restriction on the use of resources. In order to
study the behavior of BAL on different types of drift and
distributions, each data set is experimented using only the
uncertainty criterion (UAL). Then, another three experiments
on the same data sets are carried out using BAL. Compar-
ing the results allows us to study the impact (interest) of
incorporating density-based criterion on different scenarios
(different distributions and types of drift). The behavior of
BAL is analyzed in terms of sequential querying probability
and accuracy. In the following, the results of the experiment
on these three data sets are shown.

Figs. 5 and 6 show the results after applying UAL and
BAL on the moving plane data to test the gradual drift.
Figs. 5(a) and 6(a) show the queried data in white. BAL and
UAL algorithms adaptively pick the uncertain data around the
center of the whole data as the rotation hyperplane crosses
the data in the center. However, it is clear that the number of
queried data examples using BAL is larger. Figs. 5(b) and 6(b)
show the determinant of the variance �t computed by (22).
The variance is proportional to the classifier uncertainty.

In particular, Figs. 5(b) and 6(b) show that the predictive
model uncertainty is fluctuating over time. This fluctuation
reflects the continuous data drift, which proves the capability
of the classifier to adapt to the gradual drift. Higher uncertainty
of the predictive model in Fig. 6(b) implies slow adaptation
to drift. It is mainly caused by the uniform distribution of the
data leading to inaccurate clustering, that is, the uncertainty
criterion alone could be more valuable than its combination
with the density criterion. Figs. 5(c) and 6(c) show the
accuracy over time. BAL uses more resources to approach
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Fig. 6. BAL gradual drift. (a) Data. (b) Classifier variance. (c) Accuracy.

Fig. 7. UAL abrupt drift. (a) Data. (b) Querying probability. (c) Accuracy.

Fig. 8. BAL abrupt drift. (a) Data. (b) Querying probability. (c) Accuracy.

UAL accuracy. In Section VI-B, this issue is investigated in
detail.

After applying BAL and UAL on the Gaussian data with
abrupt drifts, we obtain the results shown in Figs. 7 and 8.
Figs. 7(b) and 8(b) show the querying probability over time
highlighting the reaction of the model to change. In particular,
Fig. 7(b) shows that the querying probability has a peak
between the instance numbers 5000 and 6000, while the drift
happens at sample 5000, which means that the model adapts to
abrupt drift with some delay. Fig. 8(b) shows that BAL reduces
the querying probability and handles drift with less delay.
Moreover, it is clear that BAL has better accuracy [compare
Fig. 6(c) against Fig. 5(c)].

The results of UAL and BAL on mixture drift data are
shown in Figs. 9 and 10. For both the algorithms, it is clear
that the majority of queried data are around the drifting regions
[see Figs. 9(a) and 10(a)]. Fig. 10(a) shows slightly more

concentrated queried data around the drifting regions using
BAL. In contrast to abrupt drift, the probability of querying
remains high, because the gradual drift occurs after the abrupt
drift. Fig. 10(b) shows that BAL reduces the probability of
querying when there is no drift and produces slightly better
accuracy [compare Figs. 9(c) and 10(c)].

To sum up, BAL shows the ability to adapt to different
types of drift but its performance may be affected by the data
distribution. However, in the case of more complicated drift,
BAL shows much more improvement as we will see also in
the experiments related to real-world data in Section VI-C.

B. Performance Analysis

In the following, the effect of data distribution is studied in
detail and the performance of both BAL and UAL with respect
to the number of clusters is investigated. The notion of budget
is also considered and its effect is analyzed.
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Fig. 9. UAL mixture drift. (a) Data. (b) Querying probability. (c) Accuracy.

Fig. 10. BAL mixture drift. (a) Data. (b) Querying probability. (c) Accuracy.

Fig. 11. Effect of the number of clusters on the performance.

1) Effect of the Data Distribution: In order to capture
the data distribution’s effect, we evaluate BAL’s performance
on Gaussian (mixture drift) and uniformly (gradual drift)
distributed data with respect to the number of clusters. Here,
the budget is fixed to 0.05. Fig. 11 shows the performance on
both data sets. Incorporating density-based criterion clearly
improves the performance on the Gaussian data.

For the case of uniformly distributed data, density-based
criterion yields lower performance than UAL. However, for
both data sets, the accuracy improves as the number of clusters
increases (see Table III). The uniform distribution is the most
extreme break for the Gaussian assumption. However, BAL
has good performance compared with UAL when remote drift
occurs. Fig. 12 shows that BAL can adapt faster to abrupt
remote drift. Based on these experiments, BAL shows great
potential in maintaining higher classification over time.

TABLE III

EFFECT OF THE NUMBER OF CLUSTERS ON BAL ACCURACY:
CASE OF PLANE AND GAUSSIAN DATA

TABLE IV

ACCURACY OF BAL COMPARED WITH RANDOM SAMPLING

USING DIFFERENT BUDGET VALUES (SYNTHETIC DATA)

2) Effect of the Budget: Table IV illustrates the average
accuracy of BAL compared with random sampling (baseline)
on the three types of drift (gradual, abrupt, and mixture)
using different budgets. The values with star indicate that the
additional budget is not used. To cope with abrupt drift, BAL
does not need big budget to show high accuracy. However,
budget has more impact on the accuracy in the case of gradual
drift. Mixture drift requires less budgets than the gradual drift
and more budget than abrupt drift.

C. Simulation on Real-World Data

Two real-world benchmark data sets: Electricity and Air-
lines are used to evaluate BAL in more challenging set-
tings. Their characteristics are shown in Table V. Electricity
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Fig. 12. Sensitivity to remote drift.

TABLE V

CHARACTERISTICS OF THE REAL-WORLD DATA SETS

data [36] is a popular benchmark used in evaluating classifi-
cation in the context of data streams. The task is to predict the
rise or fall of electricity prices (demand) in New South Wales
(Australia), given recent consumption and prices in the same
and neighboring regions. The Airlines data set was collected
by the USA flight control [37]. The task is to predict whether
a flight will be delayed given the scheduled departure time.

To illustrate the performance of BAL compared with the
state-of-the-art AL algorithms over data streams, two meth-
ods are considered: Random (baseline method) and Variable
Randomized Uncertainty proposed in [7]. Unlike BAL, the
method described in [7] depends on the internal classification
algorithm (learning engine). Here, we use the Naive Bayes
classifier as a learning engine as in [7]. Only the first 10% of
the data sequence for both data sets are used. The parameters
of GGMM are empirically set to the values shown in Table II.

In this experiment, the algorithms are evaluated using dif-
ferent budgets in [0.01; 0.3]. The final accuracy results are
reported in Fig. 13, which show that UAL outperforms the rest
of the competitors for high budget, while BAL works better
for low budget (10 % for Electricity and 7̃% for Airlines).

D. Discussion

While the performance of UAL and BAL is far better than
the competitors, the application of the uncertainty criterion
solely becomes more valuable as more data are queried (high

Fig. 13. Results related to the real-world data sets. (a) Electricity data.
(b) Airlines data.

budget). This finding was already shown in previous studies in
the context of batch-based learning [13]. In the case of drifting
data where the boundary between classes is very dynamic like
with Electricity and Airlines data, the samples close to the
boundary are more interesting, since they drive the change in
the distribution. Increasing the number of queries (i.e., high
budget) will definitely enhance the accuracy irrespective of
the data density; hence, UAL performs better than BAL when
the budget is high. This is in contrast to the case of drifting
synthetic data where BAL performs better and has a recovery
speed faster than UAL.

Zliobaite et al. [7] claimed that the Electricity data have
more aggressive drift than the Airlines data, which may
explain the difference between the accuracy improvement
associated with density-based criterion over the two data sets.
BAL accuracy is better than UAL over the Airlines data only
for budget less than 0.07, while it is up to 0.1 in the case of
Electricity data. However, clearly the proposed UAL and BAL
could be dynamically combined yielding one model that gives
better results under any kind of drift over the whole budget
line where BAL selects data for low budget, while UAL takes
control for high budget.

VII. CONCLUSION AND FUTURE WORK

We proposed an AL algorithm for data streams to deal
with changes of the data distribution. BAL labels the samples
with high uncertainty and representativeness in a completely
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online scenario. It also tackles the sampling bias of AL with
potentially adversarial concept drift. Experimental results on
real-world data showed the limitation of the proposed approach
when the budget is high or the drift occurrence is rare and
smooth. However, the main goal of reducing the labeling cost
in the presence of concept drift, while maintaining good accu-
racy, has been achieved. Experimental results on synthetic data
showed that as the data distribution becomes more uniform,
more clusters are needed, and the time complexity increases.
However, the maximum number of clusters is fixed, and we
can have a lower bound on the time complexity. Therefore,
based on the data stream velocity, we can decide the maximum
number of clusters allowed. Finally, many experiments have
been carried out in order to come up with an approximation
of local optimal values for GGMM’s parameters. This is the
main drawback of the proposed method and an improvement
will be done in the next step of this research by reducing the
effect of parameter settings.

In the future, we will improve BAL to accommodate data
with any distribution by using nonparametric models that
require less number of parameters and possibly unknown
number of classes. We will also provide dynamic combination
between BAL and UAL as stated Section VI-D. We also aim at
addressing a number of outstanding questions associated with
online AL such as follows.

1) Are the labels provided by the oracle always accurate?
How long does it take the oracle to provide the label?

2) What are the variables that might affect the budget?
3) How can prior knowledge about drift be exploited?

These are all interesting open issues worth exploring in the
context of data stream classification.
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