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Summary 26 

1. Animals with distinct life stages are often exposed to different temperatures 27 

during each stage. Thus, how temperature affects these life stages should be 28 

considered for broadly understanding the ecological consequences of climate 29 

warming on such species. For example, temperature variation during particular 30 

life stages may affect respective change in body size, phenology, and 31 

geographic range, which have been identified as the “universal” ecological 32 

responses to climate change. While each of these responses has been 33 

separately documented across a number of species, it is not known whether 34 

each response occurs together within a species. The influence of temperature 35 

during particular life stages may help explain each of these ecological 36 

responses to climate change.   37 

2. Our goal was to determine if monthly temperature variation during particular 38 

life stages of a butterfly species can predict respective changes in body size 39 

and phenology. We also refer to the literature to assess if temperature 40 

variability during the adult stage influences range change over time.    41 

3. Using historical museum collections paired with monthly temperature records, 42 

we show that changes in body size and phenology of the univoltine butterfly, 43 

Hesperia comma, are partly dependent upon temporal variation in summer 44 

temperatures during key stages of their life cycle. June temperatures, which 45 

are likely to affect growth rate of the final larval instar, are important for 46 

predicting adult body size (for males only; showing a positive relationship 47 

with temperature). July temperatures, which are likely to influence the pupal 48 

stage, are important for predicting the timing of adult emergence (showing a 49 
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negative relationship with temperature). Previous studies show that August 50 

temperatures, which act on the adult stage, are linked to range change. 51 

4. Our study highlights the importance of considering temperature variation 52 

during each life stage over historic time-scales for understanding intraspecific 53 

response to climate change. Range edge studies of ectothermic species that 54 

have annual life cycles, long time-series occurrence data, and associated 55 

temperature records (ideally at monthly resolutions), could be useful model 56 

systems for intraspecific tests of the universal ecological responses to climate 57 

change and for exploring interactive effects.  58 

 59 

Key-words: body size, climate change, global warming, Hesperia comma, 60 

Lepidoptera, museum collections, phenology, range change, Silver-spotted Skipper, 61 

temperature variation   62 
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 63 

Introduction 64 

 65 
Ecologists are increasingly reporting responses to climate change that appear to be 66 

ubiquitous across taxa and habitat types. Notably, some studies suggest that warming 67 

may be causing widespread body size declines (Gardner et al. 2011; Sheridan & 68 

Bickford 2011) while others show that many aquatic and terrestrial species are 69 

experiencing earlier phenological events and range expansions (Walther et al. 2002; 70 

Parmesan & Yohe 2003; Hickling et al. 2006; Miller-Rushing & Primack 2008; 71 

Diamond et al. 2011). Collectively, these are thought to be the three “universal” 72 

ecological responses to climate change (Daufresne, Lengfellner & Sommer 2009; 73 

Ohlberger 2013). Yet if such universal responses indeed exist, then each of these 74 

responses should be observable within and between species and at varying temporal 75 

scales (i.e. not just recently). At the century scale for example, one could hypothesize 76 

that years with warm temperatures could result in a species (i) reducing its body size, 77 

(ii) emerging, flowering, or spawning earlier (or other phenological events), and (iii) 78 

expanding its range. Yet despite empirical support for each response interspecifically 79 

across some groups, it is not known whether each response may occur within a 80 

species. Intraspecific tests of each response are important, in part, because responses 81 

to warming are likely to be interactive, which may be easier to explain at the 82 

intraspecific scale. For example, body size is thought to influence dispersal ability 83 

(linked to range expansion) and the timing of phenological events within species 84 

(Ozgul et al. 2010; McCauley & Mabry 2011). Moreover, organisms with complex 85 

life cycles experience different temperatures during each life stage. How different life 86 

stages separately and collectively respond to temperature is essential for 87 

understanding intraspecific response to climate change (Kingsolver et al. 2011; 88 
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Buckley et al. 2015), including changes in body size, phenology, and geographic 89 

range.    90 

 91 

Species that complete their life cycles in one year (such as univoltine insects) may be 92 

useful for testing intraspecific response to temperature change; particularly if studied 93 

populations are near a range edge, where they may be approaching the limits of their 94 

thermal tolerance. For some such species, it may be possible to link temperature 95 

variation of particular months during key life stages to respective changes in body 96 

size, phenology, and probability of range change. In holometabolous insects, for 97 

example, adult body size is a direct result of growth rate during the larval stages 98 

(Shingleton 2011). Thus, if temperature is a factor influencing larval growth rate, then 99 

temperatures during the particular month(s) of the larval phase are likely to be 100 

important for predicting adult body size. Temperature should be especially important 101 

during the final larval instar, which is a critical period when holometabolous insects 102 

attain the critical size needed to initiate metamorphosis (Shingleton 2011). Similarly, 103 

the timing of phenological events and range changes may be partly dependent upon 104 

respective temperatures during the subsequent pupal and adult stages of 105 

holometabolous insects (see below). 106 

 107 

Though rarely discussed in tandem, the timing of phenological events and range 108 

changes have often been linked to temperature variability across multiple taxa and 109 

habitat types using time-series data (see first paragraph references), but these trends 110 

have not generally been examined alongside temporal analyses of temperature-size 111 

responses. There is a particular need for such studies using invertebrates given that 112 

they represent the majority of animal biodiversity, live in all habitat types, are of 113 
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fundamental ecological importance, and perhaps most importantly, they are 114 

exclusively ectothermic; thus, they are highly sensitive to changes in temperature 115 

(Bickford, Sheridan & Howard 2011; Ohlberger 2013). Until recently, the prevailing 116 

hypothesis was that adult body sizes of invertebrates will get smaller with increasing 117 

temperature (Sheridan & Bickford 2011), but the direction of the temperature-size 118 

response may depend upon a number of factors, such as habitat, food quality, sexual 119 

size dimorphism, season length, voltinism, and others (Diamond & Kingsolver 2010; 120 

Stillwell et al. 2010; Forster, Hirst & Atkinson 2012; Ghosh, Testa & Shingleton 121 

2013; Horne, Hirst & Atkinson 2015).  122 

 123 

A recent meta-analysis of intraspecific temperature-size responses of arthropods 124 

under laboratory conditions and across latitude revealed an interesting dichotomy of 125 

response between multivoltine (more than two broods or generations per year) and 126 

univoltine (one brood or generation per year) terrestrial species (Horne, Hirst & 127 

Atkinson 2015). Multivoltine species tend to get smaller with increasing temperature 128 

and at lower latitudes, whereas univoltine species show the opposite response, 129 

suggesting that univoltine arthropods exhibit a converse Bergmann cline (Horne, Hirst 130 

& Atkinson 2015). These differences are thought to be due to evolutionary 131 

adaptations to variation in season length such that univoltine species take advantage 132 

of a longer growing season (i.e. at lower latitudes and/or higher temperatures) by 133 

growing larger, whereas multivoltine species may use a longer growing season by 134 

maturing earlier at smaller sizes to produce more generations per year (Horne, Hirst & 135 

Atkinson 2015). However, the studies used for the meta-analysis were restricted to 136 

laboratory and spatial comparisons, it is therefore unknown if the body sizes of 137 

univoltine species respond to variations in seasonal temperature from year to year. 138 
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Specifically, do the adults of univoltine species within the same region reach larger 139 

sizes in years with warm temperatures during the final larval instar stage (i.e. an 140 

effectively longer growing season) compared to relatively cool years?  141 

 142 

A key step for testing intraspecific ecological responses to temperature change is the 143 

establishment of a historical baseline of trends, at the highest feasible spatial and 144 

temporal resolution, before the recent (1970s onwards) onset of rapid climate 145 

warming. This requires copious amounts of historical data (such as body size and 146 

phenological records) to be paired with historic temperature records (ideally at 147 

monthly or daily resolutions). Natural history collections, which often consist of 148 

thousands of specimens with detailed information on collection date and locality, can 149 

provide invaluable datasets for such studies (Johnson et al. 2011). In Britain, for 150 

example, both monthly temperature data and natural history collections of butterfly 151 

specimens, dating back over a century, are available. When paired, Brooks et al. 152 

(2014) showed that a number of British butterfly adults emerge earlier (using 153 

specimen collection date as a proxy for emergence date) during years with warm 154 

spring temperatures and later in cool, wet springs. Likewise, Kharouba et al. (2014) 155 

found that the timing of flight season of Canadian butterflies was related to spring 156 

temperatures (also using museum collections), but the strength of response varied 157 

according to taxon specific ecological traits (i.e. species with shorter flight seasons 158 

and shorter wingspan were more sensitive). Unlike adult body size change in 159 

holometabolous insects, where it is hypothesized that temperature during the final 160 

instar larval stage will be an important predictor, phenological responses (in this case, 161 

adult emergence from the pupa) are more likely to be dependent upon temperature 162 

just before adults emerge, during the pupal stage.  163 
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 164 

Predictors of range change, on the other hand, should be partly dependent on 165 

temperature during the adult phase of the life cycle of winged holometabolous insects, 166 

when individuals are reproductive and capable of longer dispersal. For example, years 167 

with warm August temperatures have been linked with high local abundances and 168 

range expansion of the univoltine Silver-spotted Skipper (Hesperia comma, Linnaeus, 169 

1758) in southeastern England since the early 1980s (see Davies et al. 2005; Davies et 170 

al. 2006 for full descriptions of recent range dynamics). Alternatively, years with 171 

comparatively cool August temperatures have reduced populations and are expected 172 

to contribute to range contractions/local extinctions (Lawson et al. 2012; Lawson et 173 

al. 2013). Alongside improved habitat management, the range expansion of H. comma 174 

is thought largely to be a result of increased availability of thermally suitable habitat 175 

due to recent climate warming (Thomas et al. 2001; Davies et al. 2006; Lawson et al. 176 

2012). Specifically, egg-laying rates are temperature dependent and females adjust 177 

oviposition based on the relative temperature of the larval foodplant (the grass - 178 

Festuca ovina; Davies et al. 2006). Warm August temperatures are correlated with 179 

higher egg-laying rates and the number of microhabitats available for optimal 180 

oviposition (Thomas et al. 2001; Davies et al. 2006). Interestingly, the recently 181 

expanded portions of the H. comma range are generally comprised of individuals with 182 

larger relative investment in body size (as measured by relative thorax size), 183 

suggesting that larger individuals are capable of longer distance dispersal (Hill, 184 

Thomas & Lewis 1999). 185 

 186 

Given the apparent sensitivity of H. comma population sizes and range dynamics to 187 

August temperature variation, one may expect that body size and phenology would 188 
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also be highly sensitive to temperature in this species, particularly for monthly 189 

temperatures prior to August when individuals are either in the larval or pupal stage. 190 

As such, we hypothesize that (i) years with warm temperatures during the final larval 191 

instar stage (June) will lead to larger adults and (ii) years with warm months during 192 

the pupal stage (July) will lead to earlier adult emergence (phenology). We use wing 193 

length measurements (as a proxy for body size) and collection date (as a proxy for 194 

adult emergence date) of digitized Natural History Museum (NHM, London) 195 

specimens paired with historic monthly temperature records to test these hypotheses.  196 

 197 

 198 

Materials and methods 199 

 200 

TEMPERATURE RECORDS 201 

 202 

Mean monthly air temperature data are available from two sources: the central 203 

England temperature records (CET; http://www.metoffice.gov.uk/hadobs/hadcet/) and 204 

regional monthly records from the UK MET Office 205 

(http://www.metoffice.gov.uk/climate/uk/summaries/datasets). The CET covers a 206 

region triangulated by Lancashire, London, and Bristol and dates from 1659 (Manley 207 

1974; Parker, Legg & Folland 1992; Perry & Hollis 2005). For central England, mean 208 

monthly minimum and maximum temperature data are available from 1878 (Parker & 209 

Horton 2005) and monthly precipitation data from 1873 (Alexander & Jones 2001). 210 

However, this area is slightly outside most of the southern England chalk grasslands 211 

range of H. comma. Alternatively, monthly records for the England southeast and 212 

central south region encompasses the modern range of H. comma, yet are only 213 

available from 1910 onwards. Previous researchers have shown that CET data are 214 

http://www.metoffice.gov.uk/hadobs/hadcet/
http://www.metoffice.gov.uk/climate/uk/summaries/datasets
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representative of the UK as a whole (Croxton et al. 2006), and paired monthly 215 

correlations between the regional and CET data for the years between 1910-1981 216 

(encompassing the overlap in CET and regional temperature data for all years of 217 

NHM specimen collection) justify this conclusion (all Pearson’s correlations > 0.96). 218 

In addition, pairwise comparisons of mean monthly air temperatures between the two 219 

record types are not significantly different (Wilcoxon signed-rank test; p> 0.05) 220 

except for August temperatures (p = 0.02) where the regional data are warmer than 221 

CET data by 0.42ºC on average. Although August air temperature records are slightly 222 

warmer in the regional dataset, this is the month when the vast majority of H. comma 223 

individuals are adults, and are thus past the growth and emergence stages of their life 224 

cycle (the focus of our analysis). Given the broad similarity between CET and 225 

regional monthly temperature records, we have chosen to focus our analysis using the 226 

CET data since it covers the entire temporal range of collected specimens useful for 227 

body size and phenology analyses (1880-1973; see below). 228 

 229 

STUDY SYSTEM 230 

 231 

Hesperia comma adults spend much of their time basking or feeding on a variety of 232 

nectar sources while staying inactive during overcast days. The species’ life cycle is 233 

one generation per year (univoltine) and it is one of the last butterflies to emerge as an 234 

adult in southern England. Individuals generally spend September to March in the 235 

ovum stage, mid to late March through June as larvae (the final instar occurs in June) 236 

and approximately one month as a pupa (~July). Their life cycle culminates with the 237 

adult flight period from late July to early September (UK Butterfly Monitoring 238 

Scheme). The vast majority of field counts of adults of this species are recorded in 239 

August (Lawson et al. 2013). Like other British butterflies, H. comma has been well 240 
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collected by amateur and professional naturalists, particularly from the mid-19th 241 

century through the 1960s (Brooks et al. 2014). The NHM houses a very large 242 

collection of British butterflies (65 species) comprising ~180,000 specimens, which 243 

have been digitized, geo-referenced, and databased. 863 of these specimens are H. 244 

comma, collected from 1860-1981, about half of which are useful for body size and/or 245 

phenology analysis (see below). As with abundance counts in the field, the vast 246 

majority of specimens were collected in August (84%). Importantly, the NHM data 247 

are restricted to counties within southern England (particularly southeast England: 248 

>50% of specimens are from Hertfordshire, Surrey, Kent, and Dorset), thus keeping 249 

the geographic scope of the study comparable to modern field studies (e.g. Davies et 250 

al. 2006; Lawson et al. 2012; Lawson et al. 2013).  251 

  252 

WING LENGTH DATA 253 

 254 

Forewing length was chosen as a proxy for body size (the point of wing attachment on 255 

the thorax to the apex of each forewing; Fig. 1) using digitized NHM specimens and 256 

Image-J software. We chose forewing length as opposed to other metrics of body size 257 

(i.e. body length) because it is less prone to shrinkage over time due to specimen 258 

drying. To confirm that forewing length scales with another potential metric of body 259 

size, we correlated forewing surface area by forewing length for a subset of 260 

specimens (n=43). The correlation is very high (r = 0.97), supporting the use of 261 

forewing length as a proxy for overall wing size, and by extension, body size.  262 

 263 

Because we are interested in the relationship between monthly temperature variation 264 

and wing length, we only measured the forewing lengths of specimens that were field 265 

caught and labeled with a collection month. We averaged the measurements of left 266 
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and right forewing lengths for each specimen with relatively un-damaged wings. For 267 

each sex, we calculated the median value of our wing length measurements across 268 

specimens per year for years that contain three or more specimens.  269 

 270 

We have focused our wing-size analysis and discussion based on specimens collected 271 

in August as they represent the overwhelming majority of specimens (see above) and 272 

August coincides with the peak period of adult abundance (UK Butterfly Monitoring 273 

Scheme). However, including specimens collected in June (2% of specimens), July 274 

(11% of specimens), or September (3% of specimens) did not qualitatively change our 275 

results (see below). As a result, the wing length dataset of August collected 276 

individuals consists of 331 specimens collected from 58 years from 1880 to 1973. 158 277 

of these specimens are female, collected over 30 years from 1880-1971. 173 278 

specimens are male, collected over 28 years from 1892-1973. These data were paired 279 

with the associated monthly mean, minimum, and maximum CET temperature values 280 

for each year, and total monthly precipitation for each year (mm).  281 

 282 

WING LENGTH ANALYSIS 283 

 284 

We performed a multiple linear regression analysis to model the relationship between 285 

forewing length and nine variables: mean monthly temperatures from March through 286 

September (i.e. the months spanning the larval, pupal, and adult life stages), year of 287 

collection, and sex as a factor variable (after confirming that assumptions for running 288 

a linear model are met). Variable selection for final models was performed using 289 

stepwise regression in both directions using the MASS package in R (Venables & 290 

Ripley 2002). Variance inflation factors (VIF) were determined using the car package 291 

(Fox & Weisberg 2011). We repeated the above analyses using minimum and 292 
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maximum monthly temperatures and total monthly precipitation (mm) as predictors of 293 

wing-length. 294 

 295 

We repeated the analysis using an information-theoretic (IT) approach. Models were 296 

selected using (IT) model selection, with model averaging based on Akaike 297 

Information Criterion (AIC) to linearly relate wing length to the explanatory variables 298 

listed above (following Burnham & Anderson 2002). We applied the dredge function 299 

of the R package MuMIn (Barton 2013) to fit models for all possible combinations of 300 

explanatory variables and then ranked them based on AICc. We then extracted the 301 

model-averaged coefficient for each variable that was present in at least one candidate 302 

model. The set of candidate models was defined as those with ΔAIC ≤ 7 (Burnham, 303 

Anderson & Huyvaert 2011). We identified the importance of each variable based on 304 

its frequency in the candidate models. An importance score of 1.0 indicates that a 305 

variable was present in all candidate models. The importance scores and the model-306 

averaged coefficients were used to determine the main variables for explaining wing 307 

length. Specifically, if a variable had an importance score of 1.0 and did not have a 308 

coefficient (slope) estimate that included zero, then we were confident that it is a main 309 

variable for explaining wing length (or collection date, see below). We further 310 

identified the most important variables by determining which are retained after nested 311 

models were removed (Richards, Whittingham & Stephens 2011) using the nested 312 

function in MuMln (Barton 2013). The removal of nested models reduces the chance 313 

of selecting overly complex models (i.e. those that include variables which add little 314 

or no predictive power) while not affecting the selection of the very best models 315 

(Richards, Whittingham & Stephens 2011). In practice, variables with the highest 316 

importance scores are the best predictors and will be retained regardless of whether 317 
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nested models are removed. For presentation purposes, we show the importance 318 

scores and coefficient estimates for all variables (calculated from the nested and un-319 

nested candidate models) while highlighting which variables are retained when nested 320 

models are removed (Tables 1-3 and SI tables 1-15).  321 

 322 

 323 

PHENOLOGY DATA 324 

 325 

For phenological analysis, we included records in the analysis only if i) the data labels 326 

specified the location of collection to at least vice-county level (see Fig. S1 for a map 327 

of collection locations), ii) the day of collection was recorded and iii) if the specimens 328 

were field caught. Dates that varied by more than three standard deviations from the 329 

mean collection date were treated as outliers and excluded from further analysis, as 330 

were specimens with unreliable locality data (i.e. locations remote from the known 331 

20th century distribution). Collection dates were converted to day number after 332 

December 31st. The median and 10th percentile collection dates were calculated for 333 

each year in which there were five or more records. 334 

 335 

PHENOLOGY ANALYSIS  336 

 337 

Following the methods outlined above for wing-length, we performed a multiple 338 

linear regression analysis using stepwise regression to examine the relationship 339 

between 10th percentile and median collection dates with the explanatory variables of 340 

mean monthly temperature (March through September) and year of collection. We 341 

repeated analyses using minimum and maximum monthly temperatures and total 342 
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monthly precipitation (mm). Further, we used IT-AIC model selection as described 343 

above to relate collection dates to the explanatory variables. 344 

 345 

Results 346 

 347 

WING LENGTH 348 

 349 

The stepwise multiple linear regression analysis (March-September mean 350 

temperature; none with a VIF >2) was significant (adjusted R2 = 0.74; p<0.0001), 351 

with sex (factor) and June temperatures as the most important variables (p<0.0001) 352 

for predicting wing-length. These results do not change if we re-run the analysis while 353 

using collection locality as a factor variable (at the county scale) to predict wing-354 

lengths across all specimens (i.e. not just those collected in years with three or more 355 

specimens; adjusted R2=0.57; p<0.0001; factor (county) not significant). Thus, 356 

locality at the county scale does not appear to influence wing-size in our dataset and 357 

was therefore excluded from subsequent analyses.    358 

 359 

Due to the importance of sex for predicting wing length, we subsequently ran the 360 

stepwise multiple linear regression analyses for males and females separately. Males 361 

are significantly smaller than females (t-test, p<0.0001) and can be easily recognized 362 

by their scent scales, which form a distinct dark line on their dorsal forewings (Fig. 363 

1). Mean June temperature was the only significant variable for predicting male wing 364 

lengths (showing a positive relationship), for both August collected individuals 365 

(adjusted R2=0.43; p<0.001) and for those collected across all summer months (June – 366 

September; adjusted R2=0.24; p=0.01). Likewise, June was the only significant 367 

variable for analyses using minimum (adjusted R2=0.33; p=0.002) and maximum 368 
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(adjusted R2=0.38; p<0.001) monthly temperature values. Mean June temperature 369 

alone can explain 39% of the variability in male wing lengths (Fig. 2c). There was no 370 

significant relationship between female wing lengths and mean monthly temperatures 371 

for August collected individuals (p=0.07) or for females collected across all summer 372 

months (p=0.09). Likewise, female wing lengths were not significantly related to 373 

minimum and maximum monthly temperatures. In addition, there was no significant 374 

relationship between male or female wing lengths and total monthly precipitation. 375 

Figure 2 shows that mean June temperature is a good predictor of male wing lengths, 376 

but female wing lengths cannot be well predicted by any of the variables.  377 

 378 

The above results from the stepwise multiple linear regression analyses were reflected 379 

by the model selection analyses performed using the IT-AIC approach. Sex (factor) 380 

and mean June temperatures were the most important variables (importance scores of 381 

1.0) to predict wing lengths for the overall dataset (both males and females; Table 1). 382 

After nested models were removed, the only variables retained were sex (factor), 383 

June, and April (Table 1). Mean June temperature was the most important variable for 384 

predicting male wing lengths (importance score of 1.0; Fig. 2a; after nested models 385 

were removed, only June and May were retained; Table 2). Likewise, June was the 386 

most important variable (importance scores of 1.0) when models were run using 387 

minimum and maximum monthly temperatures. For females, April temperature 388 

(mean, minimum, maximum) was the most important variable for predicting wing 389 

length, but it was not present in all models (importance score 0.72 or lower; Fig. 2b; 390 

after nested models were removed, only April and June were retained; Table 2), nor is 391 

it significantly related to female wing length using ordinary linear regression 392 

(p>0.05). For analyses relating precipitation to male and female wing length, July was 393 
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the most important variable - but it was not present in all candidate models 394 

(importance scores of 0.49 and 0.35 respectively) nor was it significantly related to 395 

male or female wing lengths using ordinary linear regression (p>0.08). Overall, 396 

monthly precipitation is a poor predictor or wing lengths. All results relating wing 397 

lengths to minimum/maximum monthly temperature and rainfall using the IT-AIC 398 

analyses can be found in SI tables 1-9. 399 

 400 

To deal with potential scaling effects caused by the sexual size dimorphism, we 401 

calculated the slope of the natural log of wing lengths versus June temperatures, 402 

which was then transformed into a percentage change in wing length per ºC using the 403 

formula: (exp(slope)-1)*100 (Forster, Hirst & Atkinson 2012; Horne, Hirst & Atkinson 404 

2015). There was a 2.20% increase in male wing length per ºC compared with a 405 

0.90% increase in female wing length (though the regression itself is not significant, 406 

Fig. 2d), further showing that male wing sizes are more sensitive to change in June 407 

temperatures than female wing sizes. 408 

 409 

 410 

PHENOLOGY 411 

 412 

Between 1892 and 1973 sufficient specimens were available for analysis (i.e. five or 413 

more records in one year) in 40 of those years, providing a total of 437 useable 414 

records. The stepwise multiple linear regression analysis (no variables with a VIF >2) 415 

shows that mean July temperature was the only significant variable to predict median 416 

collection dates (a negative relationship; adjusted R2 = 0.42; p<0.0001). For 10th 417 

percentile collection dates, mean July temperature and year were both significant 418 

(adjusted R2=0.46; p<0.0001), though year only was only weakly significant 419 
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(p=0.04), indicating no long-term phenological trend in the response of H. comma to 420 

temperature. 10th percentile collection date advanced 3.8 days per 1°C increase mean 421 

July temperature (ordinary linear regression: R2 = 0.36; p < 0.0001; Fig. 3c) and 422 

median collection date advanced by 5.1 days per 1ºC increase in mean July 423 

temperature (ordinary linear regression: R2 = 0.43; p < 0.0001; Fig3d). We found 424 

weak positive relationships between 10th percentile and median collection dates with 425 

April rainfall (ordinary linear regression: R2 = 0.11; p = 0.034 and R2 = 0.20; p = 426 

0.004 respectively). There were also significant negative relationships between 10th 427 

percentile and median collection date with minimum and maximum July temperatures 428 

as well as a slight positive relationship with July rainfall, but these variables were 429 

strongly correlated with mean July temperature.  430 

 431 
These results were also evident from the IT-AIC model selection analysis. Mean July 432 

temperature is the most important variable for predicting both10th percentile and 433 

median collection dates (importance scores of 1.0; Fig. 3a,b; Table 3). When nested 434 

models were removed, July, year, April and September were retained for analyses 435 

predicting 10th percentile collection date; whereas only July was retained to predict 436 

median collection dates (Table 3). Likewise, July was the best predictor of collection 437 

dates when models were run with minimum and maximum monthly temperatures 438 

(importance scores of 1.0). For rainfall, July was the most important month for 439 

predicting 10th percentile collection dates (importance score = 0.98) and April was the 440 

most important variable for predicting median collection dates (importance score = 441 

0.98), closely followed by July rainfall (importance score = 0.86); but as described 442 

above, April and July rainfall are only weakly related to collection date. All results 443 

relating collection dates to minimum/maximum monthly temperature and rainfall 444 

using the IT-AIC analyses can be found in SI tables 10-15. 445 
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 446 

Discussion 447 

 448 

Determining how different life stages of a species separately and collectively respond 449 

to temperature is essential for understanding the ecological and evolutionary 450 

consequences of climate change (Kingsolver et al. 2011; Buckley et al. 2015). Here, 451 

we show that changes in wing length and phenology of the univoltine butterfly, 452 

Hesperia comma, are partly dependent upon temporal variation in monthly summer-453 

time temperatures during key stages of their life cycle (Fig. 4). June temperatures, 454 

when larvae are in the final larval instar, are important for predicting adult wing 455 

length (but only for males). July temperatures, during the pupal stage, are important 456 

for predicting timing of adult emergence (phenology). Finally, August temperatures, 457 

during the adult stage, have recently been shown to be important for predicting 458 

geographic range expansion during years with warm August temperatures and 459 

localized extinction during years with cooler August temperatures (Lawson et al. 460 

2012; Lawson et al. 2013). Our study would not be possible without long time-series 461 

data from digitized natural history collections paired with monthly temperature 462 

records (for wing length and phenology), previously published data from field surveys 463 

over recent decades (for range change), and extensive prior knowledge of the life 464 

cycle and natural history of H. comma (Thomas et al. 1986; Thomas et al. 2001; 465 

Davies et al. 2006; Lawson et al. 2012; Lawson et al. 2013). 466 

 467 

Advancement in adult emergence dates and range expansion has commonly been 468 

reported for northern temperate butterfly species in recent years (Parmesan et al. 469 

1999; Breed, Stichter & Crone 2013; Brooks et al. 2014; Kharouba et al. 2014), but 470 



 

 

20 

these responses have not been examined alongside body size change. Until recently, it 471 

was thought that warming will cause widespread declines in body size of ectotherms 472 

because they burn more metabolic energy when it is warmer and thus, need more food 473 

to achieve and maintain large body sizes at higher temperatures (Bickford, Sheridan 474 

& Howard 2011; Ohlberger 2013). If increased consumption is not sustainable, then a 475 

shift towards smaller individuals over time is predicted with warming (Sheridan & 476 

Bickford 2011). While this may be true for a number of ectotherms (particularly for 477 

aquatic species; Forster, Hirst & Atkinson 2012), we now know that voltinism is also 478 

an important factor influencing the direction of the temperature-size response, at least 479 

among terrestrial arthropods (Horne, Hirst & Atkinson 2015). Univoltine species (e.g. 480 

some butterflies) appear to get larger with increasing temperatures, whereas 481 

multivoltine species show the opposite response. Our study mirrors this result, which 482 

we believe to represent the first support of the ‘converse Bergmann cline’ 483 

(Blanckenhorn & Demont 2004) using a temporal rather than a spatial or laboratory 484 

dataset in insects (see Teplitsky & Millien (2014) for an endothermic study).  485 

 486 

Interestingly, our results suggest that male wing sizes are more responsive than 487 

females to temperature, also noticed in field studies of other butterfly species 488 

(Gilchrist 1990). Males are significantly smaller than females as adults (Fig. 1), which 489 

is common across insects and largely due to longer female development times (Teder 490 

2014). Assuming that the relative size difference between male and female adults is 491 

also found in their respective final larval instar, then variation in June temperatures 492 

will affect growth of male caterpillars more than females simply due to differences in 493 

surface area to volume ratio (smaller individuals lose heat faster than large 494 

individuals). Thus, cold June temperatures should disproportionally restrict the 495 
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growth of smaller caterpillars (males) compared to larger caterpillars (females), 496 

though possible differences in microhabitat may also be an important, yet largely un-497 

tested variable (Kingsolver et al. 2011). In addition, field surveys indicate that males 498 

tend to emerge earlier than females (Hill, Thomas & Lewis 1999), though this was not 499 

evident in our dataset. Earlier emergence (and shorter developmental time) could 500 

mean that males experience different temperatures (and/or more extreme 501 

temperatures) than females for some portion of their life cycle, which may also 502 

contribute to our findings. Furthermore, warmer June temperatures may improve 503 

larval food quality (Festuca ovina) and increase rate of feeding (Higgins et al. 2014), 504 

leading to larger adult sizes. Finally, and in line with predictions from Horne, Hirst & 505 

Atkinson (2015), years with warm June temperatures are, on average, likely to have 506 

more days of sunshine, effectively producing a longer larval growing season leading 507 

to increased size of the final instar and subsequent adult size. But why this would 508 

affect males and not females remains unclear. One possibility is that the upper range 509 

of female body sizes is more constrained compared to males given that they are the 510 

larger sex and maximum body size should be set within physiological limits; 511 

suggesting that females are already near their upper size limits whereas males have 512 

more scope for change. Interestingly, years with the warmest average June 513 

temperatures in our dataset (16.4ºC) have males with relatively small wing sizes, 514 

indicating that the upper limit to male wing size may occur just below this 515 

temperature threshold (Fig. 2c). Although it requires further study, our results provide 516 

further support that climate variability may contribute to the magnitude of sexual size 517 

dimorphism (Stillwell et al. 2010).  518 

 519 
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Incorporating the interactive effects of each response (body size, phenology, range 520 

change) will be a key, yet challenging, step towards a comprehensive understanding 521 

of the ecological effects of climate change (Kingsolver et al. 2011; McCauley & 522 

Mabry 2011). In H. comma for example, Hill, Thomas & Lewis (1999), found that the 523 

most rapidly expanded portions of its range in Britain were composed of individuals 524 

that had a higher relative investment in thorax size, which is primarily composed of 525 

muscles used in flight. While we did not measure thorax size (due to the probability 526 

of shrinkage for old specimens) and the temporal scope of our study (1880-1973) is 527 

prior to the more recent range expansion, we do show that male wing sizes get larger 528 

during years with warm June temperatures. Across butterfly species, larger wings 529 

(and other life history traits) are often associated with longer dispersal distances 530 

(Hughes, Dytham & Hill 2007; Stevens et al. 2013). Thus, if wing sizes scale 531 

positively with seasonal temperature across univoltine species, then range expansions 532 

(assuming habitat is available) would be more likely during years with warm 533 

temperatures during both the final larval instar and adult stages. This scenario implies 534 

an interactive effect of body size on distribution, but an interaction of distribution on 535 

body size should also be apparent. Hesperia comma adults are smallest at the very 536 

northern edge of the range in Scandinavia, where summer temperatures are cool 537 

(Dennis & Shreeve 1989; though they did not distinguish between males and 538 

females), which we would predict based on the positive relationship between 539 

temperature and male wing size (Fig. 2). There are likely to be other interactive 540 

effects (distribution and phenology, e.g. Diamond et al. 2011; body size and 541 

phenology; e.g. Kharouba et al. 2014) but the current lack of long-term H. comma 542 

studies outside of southern England precludes much discussion (but see Karlsson 543 

2014). Further, the influence of microhabitat (e.g. slope and aspect of chalk hills, 544 
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sward height) on the temperature experienced by the larval, pupal, and adult stages, 545 

which is often a key component of field based ecological studies of H. comma 546 

(Thomas et al. 2001; Davies et al. 2006), may have caused some of the unexplained 547 

variation in our results.  548 

 549 

We have used historical data and previous research to link monthly summer 550 

temperature variation during key stages of the life history of H. comma to respective 551 

changes in body size, phenology, and range change. Historically however, years with 552 

warm June temperatures did not necessarily also have both warm July and August 553 

temperatures. Yet in the near future, one may expect it will be more common to have 554 

years when these months are collectively warmer than they were in the past. Based on 555 

our results, this would result in relatively large males, earlier emergence, and 556 

continued range expansion (Fig. 4). However, the possibility of further range 557 

expansion will be highly dependent upon habitat availability and appropriate habitat 558 

management for this species.   559 

 560 

Where available, natural history collections paired with associated meta-data can be 561 

used to establish a baseline of ecological response to temperature variation before the 562 

onset of modern climate warming. Such studies are needed in conjunction with 563 

continued long-term monitoring of relevant traits (e.g. body size, phenology, 564 

abundance, distribution) and sustained specimen collection deposited in natural 565 

history museums (Johnson et al. 2011) as a part of the greater goal of understanding 566 

the ecological and evolutionary consequences climate change. Moreover, studies 567 

assessing the consequences of climate change for organisms with complex life cycles, 568 

where different environments are experienced during different life stages, must take 569 



 

 

24 

into account the differing responses of each life stage (Kingsolver et al. 2011). We 570 

show that changes may be predictable at the intraspecific scale if long-term data are 571 

integrated with knowledge of the life history and ecology of a species. But scaling up 572 

predictions established for single species to the community level and across varying 573 

spatial scales will be a greater challenge (but see Hinks et al. 2015). General patterns 574 

may emerge once each “universal” ecological response to climate change and their 575 

interactions are explored intraspecifically, followed by comparative analyses across 576 

taxonomic groups with different modes of life and habitat requirements. 577 
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Fig. 1  593 

Boxplots of all August collected male (n=217) and female (n=202) forewing lengths 594 

of H. comma specimens. Males have significantly smaller forewing lengths than 595 

females and can be distinguished by a dark band of scent scales on each forewing. 596 

The white dotted lines illustrate specimen forewing lengths.  597 

 598 

Fig. 2 599 

Coefficient (slope) estimates for each variable (March – September mean monthly 600 

temperature and year) to predict a) male wing lengths and b) female wing lengths 601 

using the IT-AIC approach. June is the only variable that was found in all candidate 602 

models (importance score of 1.0) for predicting male wing lengths, with slope 603 

estimates not including zero. For females, none of the variables were found in all 604 

candidate models and all had slope estimates that include zero. The bottom panels 605 

show the significant linear regression of c) male wing lengths and d) the non-606 

significant regression of female wing lengths versus June temperature. Each point 607 

represents the median value of forewing lengths for years with at least three 608 

specimens (n=28 years from 1892-1973 for males; n=30 years from 1880-1971 for 609 

females).  610 

 611 

Fig. 3 612 

Coefficient (slope) estimates for each variable (March – September mean monthly 613 

temperature and year) to predict a) 10th percentile collection day and b) median 614 

collection day using the IT-AIC approach. July was the only variable present in all 615 

candidate models (importance scores of 1.0) for predicting both 10th percentile and 616 

median collection days, with slope estimates not including zero. All of the slope 617 
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estimates for non-July variables include zero. The bottom panels show the significant 618 

linear regressions of c) 10th percentile and d) median collection days versus July 619 

temperature. Each point represents values for years with at least five specimens (n=40 620 

years, spanning from 1892-1973).  621 

 622 

Fig. 4 623 

Climate change affects the body size, phenology and geographic range of a species. In 624 

the Silver-spotted Skipper (Hesperia comma) in Britain, male body size is correlated 625 

with June temperatures during the final larval instar, adult emergence is correlated 626 

with July temperature during the pupal stage, and geographic range change is linked 627 

with August temperature during the adult stage.  628 
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Table 1. Parameter estimates for the candidate models using information criteria (ΔAIC < 7) for predicting wing lengths of all individuals 629 

(males and females). In addition to sex, predictor variables include year and mean monthly temperatures (March-September) when H. comma 630 

individuals are in the larval through adult stages of their life cycle in southern England. An importance score of 1.0 means that a variable was 631 

present in all candidate models. Columns are ordered in descending order by importance score. Coefficient estimates (slope) are averaged over 632 

all the candidate models. Variables in bold are those that were retained when nested models were removed. 633 

 634 

 Factor (sex) JUN APR SEP MAY MAR AUG Year JUL 
Importance scores 1.0 1.0 0.68 0.42 0.42 0.37 0.31 0.25 0.24 
N containing models 102 102 60 50 48 47 43 42 43 
Coefficient estimate -1.32 0.22 0.11 0.10 -0.09 -0.05 -0.06 0.00 0.04 
Std. Error 0.12 0.06 0.06 0.07 0.07 0.05 0.06 0.00 0.06 
Adjusted Std. Error 0.12 0.06 0.06 0.08 0.07 0.05 0.07 0.00 0.07 
Lower CI -1.55 0.10 -0.01 -0.05 -0.22 -0.15 -0.19 -0.01 -0.09 
Upper CI -1.08 0.35 0.22 0.25 0.05 0.04 0.07 0.00 0.17 
 635 
      636 



 

 

28 

 637 
Table 2. Importance scores and number of candidate models containing each variable (mean monthly temperatures and year) when analyses are 638 

separately run to predict male and female wing lengths using information criteria (ΔAIC < 7). Columns are ordered in descending order by 639 

importance score. The predictor variables include year and mean monthly temperatures (March-September) when H. comma individuals are in 640 

the larval through adult stages of their life cycle in southern England. Coefficient estimates with confidence intervals are shown graphically in 641 

Figs 2a and b. Variables in bold are those that were retained when nested models were removed.  642 

 643 
 644 
Males JUN MAY SEP APR AUG MAR JUL Year 
Importance scores 1.0 0.65 0.18 0.18 0.18 0.16 0.15 0.15 
N containing models 43 22 12 12 12 12 11 11 
Females APR JUN SEP MAR AUG JUL Year MAY 
Importance scores 0.67 0.51 0.31 0.28 0.22 0.21 0.19 0.15 
N containing models 69 57 49 45 42 39 36 31 
 645 
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Table 3. Importance scores and number of candidate models containing each variable (mean monthly temperatures and year) when analyses are 646 

separately run to predict 10th percentile collection day and median collection day using information criteria (ΔAIC < 7). Columns are ordered in 647 

descending order by importance score. An importance score of 1.0 means that a variable was present in all candidate models. The predictor 648 

variables include year and mean monthly temperatures (March-September) when H. comma individuals are in the larval through adult stages of 649 

their life cycle in southern England. Coefficient estimates with confidence intervals are shown graphically in Figs 3a and b. Variables in bold are 650 

those that were retained when nested models were removed. 651 

 652 

10th percentile collection day JUL Year APR SEP MAY JUN MAR AUG 
Importance scores 1.0 0.88 0.61 0.35 0.27 0.19 0.17 0.16 
N containing models 53 40 27 28 19 16 15 15 
Median collection day JUL Year APR JUN MAY SEP MAR AUG 
Importance scores 1.0 0.44 0.32 0.27 0.24 0.18 0.18 0.18 
N containing models 69 31 29 27 26 22 21 22 
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