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The impact of green macroalgal mats on benthic invertebrates 

and overwintering wading birds 

Ann Thornton 

 

Abstract 

A consequence of increased nutrient levels within an estuarine ecosystem is the 

development of green macroalgal blooms or ‘mats’.  These mats can cover extensive 

areas of estuarine intertidal habitats and have biomass >1 kg m-2 (wet weight).  One of 

the key metrics for assessment of the ecological condition status of estuarine features 

in Europe is the extent and biomass of macroalgal mats.  

 

The aim of this research is to establish whether the development of green macroalgal 

mats affects feeding relationships between invertebrate assemblages and 

overwintering migratory wading birds in Poole Harbour - a temperate estuarine 

ecosystem on the south coast of England.  Poole Harbour is designated for its 

populations of overwintering migratory wading birds.  As such, any decline in wading 

bird numbers as a result of nutrient enrichment affecting their food supply or altering 

feeding behaviour, would result in sanctions under current legislation.   

 

This field research consisted of three main objectives: 1) Measuring the biomass and 

extent of the macroalgal mat within Poole Harbour.  2) Analysing any changes to the 

benthic invertebrate community under varying macroalgal mat densities. 3) Observing 

and recording the behaviour and feeding success of key wading bird species; in 

particular how they responded to changes in prey availability and varying levels of 

macroalgal mat coverage. 

 

Samples of macroalgal mat were taken monthly or bi-monthly on mudflats at four 

locations around the harbour over two years and wet weight biomass was recorded.  

Wading bird invertebrate prey availability was measured using benthic core samples 

taken at upper, mid, and lower shore levels at three key sites.  Invertebrate size-

classes were recorded and converted into available energy (kJ m-2) according to the 

preferred diet of each of the five wading bird species studied.  Observations of wading 

bird behaviour were recorded over two overwintering periods (September – March).  

Digital video recordings were taken of different wading bird species’ feeding behaviour 

and success on varying levels of macroalgal mat coverage.  
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Coverage by macroalgal mats was high (>50%) with dense patches persisting into 

autumn.  Biomass of algae reached 1 kg m-2 at each of the sites during both years with 

two sites exceeding 2 kg m-2 (wet weight) in 2013; although that level was not 

maintained throughout the summer growth period.  The invertebrate community was 

transformed under increased algal biomass within an increase in abundance (m-2) of 

smaller less energy-dense species when algae reached ~800 g m-2 (wet weight).  

Variation in overall invertebrate community assemblage between benthic samples was 

best explained by algae biomass; either singularly or in combination with % organic 

matter.  This pattern was repeated with an initial increase in available energy (kJ m-2) 

within each bird species preferred prey under lower macroalgal mat biomass  

(~800 g m-2 wet weight) followed by a decline as algae biomass increased.  During 

autumn, when large areas of macroalgal mat were still visible, foraging behaviour by 

some wading bird species varied under different levels of algae coverage.  Some 

wading bird species’ behaviour also varied in winter on areas which had been covered 

by algae during the previous growth season.  

 

The current macroalgal mat biomass threshold of concern under SSSI Conditions 

Assessments is 2 kg m-2 (wet weight).  Results suggest that the impact from 

macroalgal mats in Poole Harbour is evident at a biomass lower than 2 kg m-2 (wet 

weight); supporting a lowering of this threshold to 1 kg m-2.  An increase in abundance 

of smaller invertebrates has resulted in a decline in energy available for the wading 

birds’ preferred diet.  Observations suggest that wading birds may be adapting to these 

changes with some species appearing to be feeding on smaller, lower-quality prey (i.e. 

smaller worms/bivalves) and other species feeding on prey found on the surface of the 

macroalgal mat.  Adaptations are site-specific in response to conditions within 

individual bays but consistent between shore levels within each bay.       
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1.0 Introduction  

‘…what we are concerned with here is the fundamental interconnectedness of all 

things...’ 

(Dirk Gently’s Holistic Detective Agency, Douglas Adams, 1987) 

 

It is estimated that 40% of the global population live within 100 km of the coast and 

almost 1 billion people rely on the marine environment to provide a source of protein 

(Agardy et al. 2005; Statham 2012).  As marine and coastal research catches up with 

its terrestrial counterparts, there is increasing evidence of the impact of human activity 

on the estuarine environment (McLusky and Elliott 2004; Elliott and Whitfield 2011; 

Hawkins 2012; Borja et al. 2012).  Threats including climate change, sea-level rise, 

over-fishing, pollution, habitat loss, and non-native species risk transforming the 

estuarine ecosystem (Raffaelli 2006; Airoldi and Beck 2007; Elliott et al. 2007; Hawkins 

2012).  Approximately 1,200 of the world’s major estuaries cover an area of c.500,000 

km2, with 62% of these located within 50 km of urban populations >100,000 (Agardy et 

al. 2005).  With continued urban development in coastal areas, increased pressure is 

placed upon estuarine and coastal waters (also known as ‘transitional waters’) 

receiving discharges from the surrounding land and rivers (Patrício et al. 2007; WFD-

UKTAG 2009; Giordani et al. 2009; Borja et al. 2012; 2013).   

 

Ecosystem services provided by estuarine and coastal waters are myriad with 

commercial operations including shell-fisheries, bait-digging and cargo transport, and 

recreational activities including wildlife tourism alongside provisioning services such as 

flood prevention and effluent disposal (Crooks and Turner 1999; McLusky and Elliot 

2004; Agardy et al. 2005; Raffaelli 2006).  In order for humans to benefit from these 

services, estuaries have experienced an unprecedented transformation over the last 50 

years with channel-dredging, coastal defence construction, harbour and urban 

expansion as well as increased artificial light and noise levels (Davidson et al. 1991; 

Borja et al. 2012; Dwyer et al. 2013).  Any suggestion that vital ecosystem services 

may be threatened raises environmental, economic and social concern amongst local, 

national, regional and global administrations and governments (Raffaelli 2006).   
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1.1  Consequences of excess nutrient input into an estuarine 

ecosystem:  the development of macroalgal mats.  

In June 2008 a large dense macroalgal mat was recorded on beaches off the coast of 

Qingdao, China.  The mat comprised Ulva prolifera [O F Müller 1778] (Kong et al. 

2010) and covered an area of 12000 km2 making this bloom the largest recorded at 

that time (Liu et al. 2009; Gao et al. 2010; Shen et al. 2012).  Media reports suggested 

that 20,000 people were involved in clearing the macroalgal mat in time for the city to 

host the sailing events for the 2008 Olympic Games which commenced 5 weeks later 

(Yardley 2008; Gao et al. 2010).  Satellite images appeared to suggest that the bloom 

formed further south as a result of coastal eutrophication (Liu, F., et al. 2010).  Further 

research discovered the source to be rafts of Porphyra yezoensis [(Ueda) M S Hwang 

and H G Choi 2011] created as part of an expanded aquaculture 180 km north along 

the Yellow Sea coast (Liu, D., et al. 2009; 2010).   

 

In contrast to the open sea environment where nutrients can be limited, estuaries are 

amongst the most naturally nutrient rich systems on Earth (Teichberg et al. 2010).  

Inputs of allochthonous (‘new’) nitrogen and phosphorus from land, via rivers and 

groundwater seepage, combine with tidal input from marine sources and 

autochthonous (‘recycled’) nutrients in the sediment to maintain a constant supply; 

small amounts of which naturally stimulate primary production within an estuarine food-

web (Neilson and Cronin 1981; Raffaelli et al. 1999; Bricker et al. 2008; Fox et al. 2009; 

Day et al. 2013).   

 

Sources of excess nutrients discharged into the estuarine environment as a 

consequence of anthropogenic activities include the use of fertilisers from farming, land 

run-off (both agricultural and urban), and discharges from sewage works and storm 

drains (Nedwell et al. 2002; McLusky and Elliott 2004; Day et al. 2013). In combination, 

these contribute to an overall increase in the nutrient loading of estuarine waters 

resulting in a global increase in eutrophication (Costanzo et al. 2001; Gray et al. 2002; 

Deegan et al. 2012; Hawkins 2012; Day et al. 2013).  It can be difficult to determine the 

early stages of eutrophication due to the natural dynamic variability within the estuarine 

environment (Raffaelli 1999).  In addition, fringe vegetation (e.g. saltmarsh) can 

mitigate some of the effects of excessive nutrient input through uptake of phosphorus 

and nitrogen compounds before they reach the water (Deegan et al. 2012).  As a 

system becomes more eutrophic, a visible symptom of excess nutrient enrichment 

within an estuary can be the development of macroalgal mats (Nedwell et al. 2002; 
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Scanlan et al. 2007; Teichberg et al. 2010).  Dense macroalgal mats are an 

increasingly common sight within both temperate and tropical estuarine systems 

(Jones and Pinn 2006; Teichberg et al. 2010).  These mats, comprising mainly green 

alga species (such as Ulva, Cladophora and Chaetomorpha), are able to uptake 

nutrients swiftly for rapid growth; Chlorophyta (green algae) can take up nutrients 4-6 

times faster than slower-growing, more structurally complex, Phaeophyta (brown algae) 

(Pedersen and Borum 1997).   

 

Estuaries and beaches in northern France have experienced an increase in macroalgal 

mats over the last two decades (Ménesguen and Cugier 2006; Perrot et al. 2014).  This 

has been attributed to intensive farming methods used in the surrounding countryside 

(Ménesguen and Cugier 2006).  Macroalgal mats were not reported to be problematic 

in northern France until the 1990s.  However, as nutrient enrichment increased, the 

development of extensive macroalgal blooms became an environmental issue 

(Ménesguen and Piriou 1995; Smetacek and Zingone 2013).  Chlorophyte Ulva spp. 

are the main component of the macroalgal blooms in this region (Merceron and Morand 

2004; Smetacek and Zingone 2013).  The decaying algae can release toxic hydrogen-

sulphide (H2S) gas; a process that caused the death of a horse and left its rider 

unconscious in 2008, and resulted in the death of 30 wild boar two years later 

(Smetacek and Zingone 2013).  

 

However, there is agreement that certain types of estuaries are more susceptible to the 

effects of eutrophication (Kadiri et al. 2014); particularly those with a limited tidal range 

and restricted flushing (Scanlan et al. 2007).  These micro-tidal estuaries have a range 

of ~<2 m and reduced water exchange resulting in lower dilution of effluents (McLusky 

and Elliott 2004), with excess nutrients remaining available within the shallow water 

and sediment for longer before being flushed out to sea (Monbet 1992).  By contrast, 

on higher energy macro-tidal estuaries, water column mixing ensures excess nutrients 

do not remain within the system for long periods (Elliott and Whitfield 2011; Kadiri et al. 

2014).  

 

1.2 The ecological impacts of macroalgal mats on soft-

sediment intertidal habitats: a review. 

1.2.1 Soft-sediment estuarine systems 

Sediment washed outward from land run-off and rivers or washed inwards from the sea 

creates large intertidal mudflats characterised by fine silt and sand (Prater 1981).  
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These mudflats, formed from sediment predominantly comprising a particle size of 

<250 µm, support an abundance of specialised invertebrates (Wilson and Fleeger 

2013).  Although bacterial organisms can live on individual particles and meiofauna in 

interstitial waters, the larger macrofauna are distributed according to sediment particle 

size (Leaper et al. 2001).  For example, burrowing species such as Arenicola marina 

[Linnaeus 1758] require sand or sandy mud to ensure stability of their burrow 

(Longbottom 1970).   

 

In addition to particle size affecting invertebrate species and community composition, 

salinity levels are also important (Whitfield et al. 2012).  The salinity of estuarine water 

is between 0.5 (freshwater) and 35 (marine).  The term ‘brackish’ is used to 

differentiate between estuarine water, freshwater and marine ecosystems (McLusky 

and Elliott 2004).  Due to this variation in salinity levels along the estuarine gradient, 

species surviving in these conditions tend to be euryhaline – able to survive in 

fluctuating conditions caused by the changes in salinity levels from marine and 

freshwater input (Borja et al. 2012).  As a consequence of the need for benthic 

invertebrate species to be able to tolerate varying environmental conditions, the 

invertebrate community within estuarine environments is less diverse than marine or 

freshwater systems (McLusky and Elliott 2004).  

 

1.2.2 Global context  

This review examines the impact of macroalgal mats within northern hemisphere 

temperate estuarine ecosystems.  A study at nine sites comprising both tropical and 

temperate estuarine systems reported no difference between tropical and temperate 

sites in the response of green mat-forming alga Ulva lactuca [Linnaeus 1753] to the 

experimental manipulation of nutrient levels.  However, the study found seasonal 

responses in U. lactuca growth rate were less apparent in tropical sites with 

fluctuations in growth possibly triggered by other environmental factors such as 

increased rainfall during the wet season (Teichberg et al. 2010).  Therefore studies in 

tropical environments will not be considered further.  

 

Studies examining the impact of macroalgal mats as a consequence of enrichment of 

estuarine and coastal waters have been carried out since the 1960s in temperate 

regions (Valiela et al. 1997) including Waquoit Bay, Massachusetts (Escartín and 

Aubrey 1995; Fox et al. 2008), Portugal (Cardoso et al. 2002; Ferreira et al. 2005), and 

even the harbour wall in Venice (Piazzi and Cinelli 2003).  Results have shown that 

dense macroalgal mats can affect tidal hydrodynamics (Escartín and Aubrey 1995), 
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lead to the decline or disappearance of eel grass (Zostera spp.) (Bowen and Valiela 

2001) and smother saltmarsh (Boyer and Fong 2005; Newton and Thornber 2012). 

 

1.2.3 Impact of macroalgal mats on tidal hydrodynamics 

The thickness of macroalgal mats can result in changes to shallow-water estuarine tidal 

hydrodynamics as the mat can represent >50% of the water depth (Escartín and 

Aubrey 1995).  Flume experiments have recorded increases in friction across the 

macroalgal mat (Escartín and Aubrey 1995) and a reduced flow rate across dense 

mats of U. intestinalis [Linnaeus 1753] (Venier et al. 2012). It was concluded that this 

could increase bed stability by reducing sediment transport but also lead to finer 

sediment particles resulting in increased siltation between the algal layers and a 

greater organic deposition within the sediment (Venier et al. 2012). 

 

1.2.4 Impact of macroalgal mats on intertidal habitats in the UK and Ireland 

A number of micro-tidal (tidal range <2 m) and meso-tidal (tidal range 2 m – 4 m) 

estuaries (McLusky and Elliott 2004) within the UK and Ireland are susceptible to the 

development of macroalgal mats.  Examples include the meso-tidal Ythan Estuary in 

Scotland (Raffaelli 1999), and micro-tidal Langstone, Chichester and Poole Harbours 

along the south coast of England (Soulsby et al. 1982; Jones and Pinn 2006).  By 

contrast, the increased turbidity within higher-energy macro-tidal systems (e.g. Severn 

Estuary) reduces available light thereby preventing the development of macroalgal 

mats (Painting et al. 2007; Kadiri et al. 2014).   

 

Ythan Estuary, Scotland 

Research using a long-term (30 year) data set recorded an increase in macroalgal mat 

biomass and extent during this period particularly during the final decade of the project 

(1986-1997) (Raffaelli et al. 1999).  The study found no significant change in the 

hydrology or geomorphology of the Ythan Estuary so could not attribute an increase in 

macroalgal mat development to these factors.  It was therefore concluded that a rise in 

nitrogen loading within the estuary was likely to be the cause of the macroalgal mat 

development but further research was needed (Raffaelli et al. 1999).  A decade later a 

study examining the effectiveness of using aerial image interpretation technology to 

measure the spatial extent of the macroalgal mat was carried out in the Ythan Estuary 

and recorded extensive macroalgal mat coverage although technical limitations 

prevented an accurate measurement of % coverage (Green 2007).  This, and other 

studies using remote sensing to determine the spatial extent of macroalgal mats, is 

discussed further in Chapter 2.   
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Langstone and Chichester Harbours, Hampshire 

In southern England, macroalgal mat growth usually commences in the spring with 

densities at their greatest during July and August (Jones and Pinn 2006).  Evidence of 

the development of dense macroalgal mats was first reported in Langstone Harbour in 

the late 1960s (Soulsby et al. 1982; C. Maggs, pers. comm.) with extensive coverage 

(>75%) recorded during 1977 and 1978 (Soulsby et al. 1982).  During the 1970s 

macroalgal mat coverage varying from 1% - 100% was recorded on almost 1000ha of 

Langstone Harbour (representing c. 40% of the intertidal area) (Montgomery and 

Soulsby 1980).  Since that time, macroalgal mats in Langstone Harbour have remained 

extensive and persistent (Rees-Jones 2004).   

 

1.2.5 Impact of macroalgal mats on Zostera 

From 1938 – 1990, nitrogen input into the Waquoit Bay, Massachusetts doubled 

resulting in a significant increase in phytoplankton and macroalgal blooms as nutrient 

levels rose (Bowen and Valiela 2001).  The dense macroalgal mats smothered the 

established seagrass (Zostera marina [Linnaeus 1753] - also known as eelgrass) and 

reduced light availability thereby restricting growth.  Aerial images showed a reduction 

in Zostera when nitrogen loading was 20 kg ha-1 year-1 and, once nitrogen levels 

reached 100 kg ha-1 year-1, the Zostera beds had almost disappeared (Bowen and 

Valiela 2001).  Experimental manipulation of macroalgal canopies conducted in 

Waquoit Bay resulted in a decline in new growth of Z. marina as densities of 

macroalgae increased and the study identified a macroalgal canopy height of 9-12 cm 

as a threshold above which Z. marina began to decline (Hauxwell et al. 2001).  Results 

from long-term sampling of nutrient levels and macrophyte community structure in 

Waquoit Bay (June 1994 – June 2000) also showed a decline in Zostera biomass and 

a corresponding increase in macroalgal biomass under increased nitrogen loading in 

the estuary (Fox et al. 2008).  

 

A long-term (1993-2005) study at the Mondego Estuary, Portugal, gathered data on 

nutrient input and the extent of the macroalgal mat development within Zostera noltii 

[Hornemann 1832] beds (Cardoso et al. 2010).  The study benefitted from before-and-

after-impact analysis due to management intervention in 1998 aimed at reducing 

nutrient input into the estuary.  There was a decline in Z. noltii from 1993-1998 as 

nutrient load increased yet, following the control measures, Z. noltii began to recover 

with levels recorded in 2005 at 100% higher than 1997; although only 50% of the 1993 

level (Cardoso et al. 2010).  Increases in organic content in low energy estuarine 

systems can lead to higher turbidity; a consequence being reduced light levels and a 



7 
 

decline in Zostera (Dolbeth et al. 2003; Fox et al. 2008).  After nutrient control 

measures were implemented in 1998, the estuarine ecosystem was transformed with 

an increase in the red alga, Gracilara gracilis [(Stackhouse) M Steentoft, L M Irvine and 

W F Farnham 1995], a gradual increase in Z. noltii, and a decline in the green 

macroalgal mats of Ulva spp. (Leston et al. 2008).   

 

1.2.6 Impact of macroalgal mats on saltmarsh 

Saltmarsh communities are also under threat from macroalgal mats (Boyer and Fong 

2005; Newton and Thornber 2012).  Results from mesocosm and in situ experiments 

carried out in Rhode Island (USA) showed that the growth rate of the dominant 

saltmarsh species, Spartina alterniflora, increased under increased macroalgal 

biomass within the mesocosm experimental plots.  However, growth declined under 

increased macroalgal biomass in field-based experiments.  These results suggest more 

complex ecological interactions take place within the estuarine system making it less 

likely that a direct impact from macroalgal mat development can be recorded on 

saltmarsh plants (Newton and Thornber 2013).   

 

1.3 The impact of macroalgal mats on benthic invertebrates 

An introduction to the macroalgal mat cycle, and the resultant changes to the sediment 

chemistry, is provided in Chapter 2.  In summary, as the macroalgal mat increases in 

biomass, lower fronds break down leading to a reduction in oxygen, an increase in 

anoxic conditions and the aerobic layer being restricted to the sediment surface. This 

alteration of sediment chemistry affects the benthic macro-invertebrate community 

within the sediment (Pearson and Rosenberg 1978; Wildsmith et al. 2009; Riedel et al. 

2012). Some invertebrate species are able to adapt either by extending siphons, (e.g. 

the bivalve Limecola (Macoma) balthica [Linnaeus 1758] (Thiel et al. 1998) or by 

moving within the sediment column (e.g. the annelid Capitella capitata [Fabricius 

1780]) (Rosenberg et al. 2001).  However, such behaviour can increase vulnerability to 

predation from the surface (Grall and Chauvaud 2002; Jones and Pinn 2006). As the 

macroalgal mat increases in extent, thereby creating a greater area of hypoxic/anoxic 

sediment, refuges for invertebrates become fewer (Pearson and Rosenberg 1978).   

 

The effect of different species of macroalgae on invertebrates was explored by 

Cardoso et al. (2004) using field experiments carried out in the Mondego Estuary, 

Portugal.  Measured (0.3 kg m-2 wet weight, 1.0 kg m-2 wet weight, 3.0 kg m-2 wet 

weight) biomass of green algae Ulva (Enteromorpha) intestinalis and red algae 
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Gracilariopsis longissimi (Gracilaria verrucosa) [(S G Gmelin) M Steentoft, L M Irvine 

and W F Farnham 1995] were added to caged plots.  After four weeks results showed 

a greater detrimental impact on the invertebrate community from the green algae with 

populations of Cyathura carinata [Krøyer 1847], Scrobicularia plana [da Costa 1778] 

and Cerastoderma edule [Linnaeus 1758] all declining significantly under mats of Ulva 

(Enteromorpha) intestinalis.  This resulted in an increase in more ‘opportunist’ species 

(e.g. Peringia (Hydrobia) ulvae [Pennant 1777], Hediste diversicolor [O F Müller 1776] 

and Capitella capitata).  However, no significant change in the invertebrate community 

was recorded beneath G. longissimi (Cardoso et al. 2004).  Experimental studies 

carried out using laboratory flow tanks found that dense mats of U. intestinalis 

restricted tidal flow and trapped sediment between layers possibly reducing prey 

availability for filter-feeding bivalves such as cockles (Venier et al. 2012).  Similar 

results were also found following a field experiment conducted in the shallow soft-

sediment Bökevik Bay, Sweden (Österling and Pihl 2001).  This three week study 

examined the impact of low (150 g dwt m-2) and high (300 g dwt m-2) manipulated 

levels of Ulva (Enteromorpha) and Chaetomorpha on benthic invertebrates.  Results 

showed a decline in abundance of Corophium volutator [Pallas 1766] and C. edule 

under low and high levels of macroalgal mat biomass compared to the algae-free 

control.    

 

The Ythan Estuary, Scotland, supports an abundance of the amphipod C. volutator - a 

vital prey item for a number of overwintering wading bird species, particularly redshank 

(Goss-Custard and Jones 1976).  Two separate studies recorded a decline in C. 

volutator under increasing macroalgal mat biomass whereas the opportunist 

polychaete, C. capitata, increased in abundance (Raffaelli et al. 1991; Leaper et al. 

2001).  It was suggested that the tubular/filamentous morphology of U. (Enteromorpha) 

intestinalis restricted the ability of C. volutator to feed effectively (Raffaelli et al. 1991).  

 

Field-based experimental studies were carried out in Lowes Cove on the Damariscotta 

River Estuary, Maine, USA, to examine the response of two species of bivalve, L. 

(Macoma) balthica and Mya arenaria [Linnaeus 1758], to the presence of dense 

macroalgal mats (Thiel et al. 1998).  Results showed that L. (Macoma) balthica, with its 

longer siphon, was able to extend further into the macroalgal mat and access food and 

oxygen above, whereas the shorter, thicker siphon of M. arenaria was unable to 

penetrate the thick mat.  A subsequent algae addition/removal experiment found 

abundance of M. arenaria declined significantly beneath macroalgal mat whereas 

abundance of L. (Macoma) balthica remained unchanged (Thiel et al. 1998).  By 
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contrast, an experimental field-based study in Poole Harbour recorded a decline in L. 

(Macoma) balthica under increased macroalgal mat density (Jones and Pinn 2006).  

Algal removal experiments, carried out every two weeks between June – November 

1984, and June – November 1986 in Bodega Harbor, California using Ulva expansa 

[(Setchell) Setchell and N L Gardner 1920], recorded a decline in the abundance of 

large bivalves (particularly Macoma nasuta [Conrad 1837]) under increased algal 

cover.  However, there was no significant difference in species richness or total density 

of small invertebrates under macroalgal mat or cleared plots (Everett 1994).  

 

In the Mondego Estuary, Portugal, a significant decline in abundance of S. plana was 

recorded during the period 1993-1997; mirroring the decline in Zostera spp. (Lopes et 

al. 2000)  Following measures to reduce eutrophication and macroalgal mat 

development in 1998, increases in S. plana were recorded indicating a possible 

recovery of recruitment and survival rates (Verdelhos et al. 2005).  By contrast, no 

decline in S. plana was recorded when algae (3 kg wet weight biomass) were 

experimentally added to 2 m2 treatment plots.  Results showed an increased 

abundance of the opportunist polychaete, C. capitata, under algal treatment and an 

initial increase in abundance of H. diversicolor in the first month followed by a decline; 

other polychaetes (Streblospio shrubsolii [Buchanan 1890] and Amage adspersa 

[Grube 1863]) also declined.  In contrast to other studies (Hull 1987; Raffaelli et al. 

1991) abundance of P. (Hydrobia) ulvae remained unchanged in algae and clear plots 

(Lopes et al. 2000).   

 

Further research carried out in the Mondego Estuary recorded an initial increase in 

abundance of the isopod C. carinata under dense macroalgal mat; benefitting from a 

higher energy availability supplied by the algae (Ferreira et al. 2004; 2007).  However 

this was a short-term effect as C. carinata mortality also increased with 80-90% of 

individuals dying at 1 year instead of reaching the c. 2 year expected lifespan of the 

species (Ferreira et al. 2004).  Following nutrient reduction in 1998, abundance of C. 

carinata slowly increased with recruitment and mortality returning to expected rates.  

However, further studies concluded that C. carinata were not useful bioindicators of 

ecosystem health (Ferreira et al. 2007).  Research into the diversity and structure of 

the invertebrate community in the Mondego Estuary continued until 2007 and results 

showed a shift in the invertebrate community after the 1998 intervention from r-selected 

to K-selected species with evidence of an increase in the population of slower growing 

invertebrate macrofauna (e.g. H. diversicolor, S. plana) (Dolbeth et al. 2007; 2011).     
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An increase in overall benthic invertebrate biomass was recorded in Langstone 

Harbour under increasing macroalgal mat biomass.  However, it was acknowledged 

that this resulted from the increased abundance of P. (Hydrobia) ulvae (Montgomery 

and Soulsby 1980).  These results support findings from a study on estuaries within the 

Solent European Marine Site and North Kent Marshes Site complex that recorded an 

increase in abundance of P. (Hydrobia) ulvae  under increasing macroalgal mat 

biomass; particularly when macroalgal mat biomass >4 kg m-2 (Rees-Jones 2004).  In 

contrast to other studies (Raffaelli et al. 1998), there was no increase in abundance of 

other opportunistic species such as Tubificoides spp. or Capitella spp. recorded as 

macroalgal mat biomass increased.  In addition, contrary to findings from other 

research (Lopes et al. 2000) there was no variation in abundance of larger polychaete 

worms (e.g. H. diversicolor) or bivalves (e.g. S. plana) under increasing macroalgal mat 

biomass (Rees-Jones 2004).   

 

Herbivores such as P. ulvae take advantage of the macroalgal mat as a source of both 

food and shelter from predators (Cardoso et al. 2004).  Other species are also reported 

to be adapting to increases in macroalgal mats.  In Waquoit Bay, stable isotope 

analysis on invertebrate samples taken from two sub-estuaries (one eutrophic and one 

oligotrophic) revealed that some omnivorous species (decapod Palaemonetes spp. and 

gastropod Tritia obsolete [Say 1822]) switched to a predominantly herbivorous diet in 

estuarine areas covered by macroalgal mats (Fox et al. 2009).  Although so far 

untested, this could have implications for energy availability to the next trophic level if 

some prey are lacking in nutrients usually obtained from a carnivorous diet.       

 

1.4 The impact of macroalgal mats on overwintering wading 

birds 

A study in the Mondego Estuary, Portugal, carried out between October 1993 and May 

1994, reported that the presence of gulls and the presence of macroalgal mats were 

the two main factors affecting the distribution of wading birds (Cabral et al. 1999).  The 

study focussed on plovers (Charadrii) dunlin (Calidris alpina [Linnaeus 1758]), Kentish 

plover (Charadrius alexandrines [Linnaeus 1758]), ringed plover (Charadrius hiaticula 

[Linnaeus 1758]) and grey plover (Pluvialis squatarola [Linnaeus 1758]) and found that 

all species avoided areas covered by macroalgal mat although feeding behaviour was 

unaffected.  It should be noted that the maximum algal coverage recorded in this area 

was 36% and adjacent areas offered invertebrate-rich bare mud available to the 
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wading birds.  The study concluded that there was a negative impact on Charadrii from 

gull presence (transient) and macroalgal mats (pernicious) (Cabral et al. 1999). 

 

By contrast, a study carried out during the same time period (October 1993 – May 

1994) and in the same area of the Mondego Estuary found no significant variation in 

abundance of dunlin or grey plover from an increase in macroalgal mat coverage 

(Múrias et al. 1996).  It was suggested that the birds might be adapting to the presence 

of the algae by subtle changes to their feeding behaviour.  Dunlin and grey plover both 

consumed smaller prey items such as P. (Hydrobia) ulvae (abundant in the macroalgal 

mat) and small polychaetes present in the mud.  The results showed no difference in 

behaviour of the birds on covered or uncovered areas although this could be due to the 

limited coverage of the mudflats (<36%) by macroalgal mat.  Although there were no 

significant differences in feeding between macroalgal mat and bare mud areas during 

this study, it was acknowledged that longer-term monitoring would be required to test 

the results (Múrias et al. 1996).  

 

Using a long-term data set (1993-2003) from the Mondego Estuary, Lopes et al. (2006) 

studied the impact of macroalgal mats on the distribution of dunlin (C. alpina) reporting 

an increase in avoidance of mats by dunlin as the percentage cover increased (>25%).  

Although this was a long-term study (10 years) the maximum percentage mat cover 

recorded was 43%.  As a result, conclusions could not be drawn on the impact from 

extensive (e.g. >75%) macroalgal mat coverage (Lopes et al. 2006).   

 

In the Mugu Estuary, California, visual ‘clues’ indicating the location of preferred prey 

items were reported to be obscured due to macroalgal mat coverage leading to a 

decline in feeding by visual foragers (black-bellied plover (grey plover, UK), Pluvialis 

squatarola [Linnaeus 1758]), marbled godwit (Limosa fedoa [Linnaeus 1758]) and willet 

(Tringa semipalmata [J F Gmelin 1789]) (Green et al. 2015).  However, species 

adopting a mixture of both visual and tactile foraging behaviour (e.g. western 

sandpipers (Calidris mauri [Cabanis 1857]) were unaffected by the presence of 

macroalgal mats.  Although this study was carried out on a highly eutrophic estuary, 

mean macroalgal mat coverage was only 55% (±0.04% s.e.) (Green et al. 2015).   

 

Results from a short-term study (October 1998-February 1999) in Clonakilty, Ireland, 

indicated that black-tailed godwits (Limosa limosa [Linnaeus 1758]) actively avoided 

areas covered by macroalgal mats although numbers did not increase once the mat 

had disappeared (Lewis and Kelly 2001).  The same study reported redshanks (Tringa 
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totanus [Linnaeus 1758]) were preferentially foraging on areas covered by macroalgal 

mat and appeared able to adapt to its presence and obtain sufficient prey from either 

covered or uncovered areas (Lewis and Kelly 2001).  Further research in the same 

area concentrated on the response of black-tailed godwit and redshank to the presence 

of macroalgal mats (Lewis et al. 2014).  Both species foraged in areas covered by 

macroalgal mat although preferentially selected the bare mud patches.  Redshank 

distribution was negatively impacted by the macroalgal mat and feeding success was 

50% lower in these covered areas.  Black-tailed godwit foraging rates were lower in the 

algal-covered patches but feeding success was similar in both areas (Lewis et al. 

2014).   

 

The Ythan Estuary, Scotland, has extensive records of wading bird numbers dating 

back to 1963 providing an ideal opportunity to study the relationship between the early 

development of macroalgal mats and any fluctuations in coastal bird numbers (Raffaelli 

et al. 1999).  Redshank numbers declined during this period with birds foraging on the 

upper reaches of the Ythan Estuary where macroalgal mat biomass was lower; the 

decline in redshank was against the national trend (Raffaelli et al. 1999).  Shelduck 

(Tadorna tadorna [Linnaeus 1758]) numbers declined despite a reported increase in P. 

(Hydrobia) ulvae (a preferred prey item).  It was suggested that the filamentous algae 

may be inhibiting shelduck feeding success (Raffaelli et al. 1999; Anders et al. 2009).   

 

Numbers of oystercatcher (Haematopus ostralegus [Linnaeus 1758]), grey plover (P. 

squatarola), black-tailed godwit (L. limosa), bar-tailed godwit (Limosa lapponica 

[Linnaeus 1758]), knot (Calidris canutus [Linnaeus 1758]), dunlin (C. alpina) and Brent 

goose (Branta bernicla [Linnaeus 1758]) all increased in Langstone Harbour coinciding 

with an increase in macroalgal mat biomass (Tubbs 1977).  Studies were carried out 

using count data from 1954 – 1975 in conjunction with aerial photos which showed an 

increase in summer coverage of Ulva (Enteromorpha) spp. and Ulva lactuca with 75% 

coverage over 20% of the mudflats.  Redshank (T. totanus), curlew (Numenius arquata 

[Linnaeus 1758]) and shelduck (T. tadorna) declined during this period, whereas ringed 

plover (C. hiaticula) numbers fluctuated without showing any apparent trend.  This 

increase in populations of coastal bird species in Langstone Harbour during the 1950s, 

1960s and 1970s was reflected in national upward trends.  However, although 

redshank, curlew and shelduck also increased nationally they declined locally 

suggesting this may have been due to an increase in macroalgal mats within the 

harbour (Tubbs 1977; Tubbs and Tubbs 1980).   
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A study on benthic invertebrate response to macroalgal mat coverage in Langstone 

Harbour also reported observational evidence of a decline in curlew (N. arquata) and 

redshank (T. totanus) as macroalgal mat increased.  The decline in redshank coincided 

with an increase in dunlin (C. alpina) suggesting increased inter-specific competition for 

prey resources (Soulsby et al. 1982).  An increase in macroalgal mat also coincided 

with an increase in the numbers of grazing species such as Brent geese (B. bernicla) 

and widgeon (Anas penelope [Linnaeus 1758]).  It is worth noting that these results are 

based upon observations rather than sampling analysis as the purpose of the study 

was not to determine the effect of macroalgal mats on coastal birds (Soulsby et al. 

1982). 

 

1.5 Study Site:  Poole Harbour 

Poole Harbour is a 3600 ha bar-built or ‘ria’ estuary situated on the south coast of 

England (Fig. 1.1) comprising intertidal mudflats, open water and wetlands (Humphreys 

and May 2005).  Also described as almost ‘lagoonal’ due to the narrow entrance and 

limited tidal range (Humphreys 2005), the estuary was formed due to sea level rise at 

the end of the last ice age and consists of a large central basin with two smaller basins 

at Holes Bay and Lytchett Bay together with a number of islands, the largest of which is 

Brownsea Island (Thomas et al. 2004).  This topography has resulted in the system 

being micro-tidal with a tidal-range of <2 m and restricted tidal-flush (McLusky and 

Elliott 2004; Humphreys 2005).  Sediment particle size varies across the harbour with 

fine silt/clay predominant in the north and coarser sandy/mud near the entrance in the 

south (Fig. 1.1) (Herbert et al. 2010).  Salinity levels range from a mean of 33 at the 

harbour entrance to 20 10 km away (Kite et al. 2012).  However, levels recorded in 

samples from 1998 – 2008 showed a maximum of >35 and minimum of 25 at the 

harbour entrance and a maximum of >30 and minimum of 0 10 km away in the 

Wareham Channel.  This was due to tidal input and variations in river flows during the 

sampling period (Kite et al. 2012).    

 

In addition to the intertidal mudflats, the surrounding terrestrial areas provide a diversity 

of habitats and land usage within a relatively small area.  To the north, the urban 

conurbation of Bournemouth and Poole supports a commercial port and ferry terminal 

located at Poole Quay (Bennett 2011).  A narrow harbour entrance (370 m) separates 

some of the world’s most desirable real-estate on Sandbanks, from areas of protected 

heathland and wetland on Studland peninsula to the south (Humphreys and May 
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2005).  Further west, the landscape becomes dominated by agricultural land use 

including livestock farming (particularly cattle).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1:  Location and map of Poole Harbour showing conservation designations.   

© Crown Copyright and Database Right (2016) Ordnance Survey (Digimap Licence).   

Ecologically, Poole Harbour is of national, European and international significance 

(Underhill-Day et al. 2010).  The overwintering bird population uses the invertebrate-

rich mud as a valuable resource (Herbert et al. 2010).  Protection is afforded to the 

harbour through a number of statutory designations including the Ramsar Convention 

for wetlands of international importance and Special Protection Area (SPA) under the 

European Union Directive on the Conservation of Wild Birds (79/409/EEC) (Fig. 1.1).  

SPA status is due to the presence of internationally important numbers of avocet 

(Recurvirostra avosetta [Linnaeus 1758]), black-tailed godwit (L. limosa) and shelduck 

(T. tadorna) and an internationally important assemblage of over 20,000 waterfowl 

(Frost et al. 2016).  The 2010 condition assessment of Poole Harbour Site of Special 

Scientific Interest (SSSI) revealed a number of units in ‘unfavourable’ condition due, in 

part, to the presence of extensive macroalgal mats (Underhill-Day et al. 2010).  These 

factors combine to make the intertidal mudflats present in Poole Harbour an ideal 
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location to study the impact of macroalgal mats on benthic invertebrates and 

overwintering wading birds.   

 

1.5.1 Nutrient input into Poole Harbour 

Poole Harbour is failing to achieve ‘good ecological status’ under the European Water 

Framework Directive (Council Directive 2000/60/EC) due to excess nutrient input 

(Bryan et al. 2012).  Poole Harbour has also previously been designated as a Sensitive 

Area (eutrophication) and “Polluted Waters” (eutrophication) and the catchment is a 

Nitrate Vulnerable Zone (NVZ) (Langston et al. 2003; Kite et al. 2012).  Nitrogen levels 

in the harbour were approximately 10000 kg year-1 prior to the 1960s and have 

increased since then (Bryan et al. 2012).  As Table 1.1 shows, without mitigation these 

levels are predicted to be in excess of 2,500,000 kg year-1 by 2100 (Kite et al. 2012).  

 

Table 1.1:  Historical and predicted N and P loading in Poole Harbour (Kite et al. 2012). 

Date Total N load kg year
-1

 Total P load kg year
-1

 

1980-84 1721200 177680 

c.2004 2456720 78592 

2006-2010 2089800 58413 

2100 2551400 58413 

 

Over 50% of nitrogen deposition in Poole Harbour comes from agricultural fertiliser 

entering the estuarine system either from land run-off or groundwater seepage (Kite et 

al. 2012).  Nitrogen removal was introduced to the Poole Sewage Treatment Works 

(STW) in 2008 leading to a significant reduction in dissolved inorganic nitrogen (DIN) 

levels in Holes Bay between 2007 – 2008 (Cascade Consulting 2012).  However, this 

did not lead to a reported reduction in the biomass or extent of macroalgal mats in the 

immediate vicinity (Kite et al. 2012).  Elsewhere around the harbour, although there 

was a gradient decline in inorganic nitrogen from Wareham Channel to the harbour 

entrance, there was no reported corresponding decline in the abundance of macroalgal 

mats (Kite et al. 2012).  This supports other studies suggesting a much more complex 

relationship between high inorganic nitrogen loading within an estuary and the 

development of macroalgal mats with other environmental interactions also contributing 

to the increase in macroalgal mats (Cloern 2001; Howarth and Marino 2006).   
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1.6 Rationale  

Under legislation within the Birds and Habitats Directives (combined under NATURA 

2000), assessments of SSSIs, Special Areas of Conservation (SACs) and SPAs are 

required to determine the condition status of each area against targets set down within 

Common Standards Monitoring Guidelines (CSM) (JNCC 2004) for each feature.  One 

of the key metrics for assessment of estuarine features under the CSM is the extent of 

macroalgal mats (JNCC 2004).  Conservation managers also use coastal bird numbers 

as an indicator of overall estuarine ecosystem health (West et al. 2005). 

 

Poole Harbour is designated for its populations of overwintering migratory wading birds 

(JNCC 2004).  As such, any decline in their numbers as a result of nutrient enrichment 

affecting their food supply or altering their feeding behaviour, would result in a decline 

in the feature and sanctions under current legislation (JNCC 2004).  A reduction in 

biodiversity resulting from eutrophication would, therefore, have implications for the 

UK’s binding agreements under the Birds and Habitats Directives and overall 

coherence of NATURA 2000 sites (Natural England 2013). Therefore it is important to 

be able to reliably assess the impact from macroalgal mats on this upper trophic level 

of the estuarine food-web. 

 

This research will address some of the temporal constraints associated with other 

studies by beginning sampling at the start of macroalgal mat development and 

recording changes throughout two complete ecological cycles.  In addition, wading bird 

observations will be related back to the known extent of the macroalgal mat to assess 

whether that year’s mat growth has impacted or influenced feeding behaviour. 

 

1.7 Aims and objectives 

The overall aim of this thesis is to determine how the development of green macroalgal 

mats affects the different trophic levels within an estuarine food-web. 

 To determine the extent of the macroalgal mat within a soft-sediment estuarine 

habitat. 

 To assess the benthic invertebrate community structure and determine if this is 

transformed under macroalgal mats. 

 To examine the impact of macroalgal mats on key wading bird species using 

their preferred prey as an indicator of available resources. 
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 To determine whether bird foraging behaviour and distribution is affected by the 

presence of macroalgal mats. 

 To assess whether wading birds may be adapting to the presence of 

macroalgal mats and assess the conservation consequences of any 

adaptations. 

 

1.8 Thesis structure 

Fig. 1.2 provides a conceptual diagram highlighting the key themes of this thesis and 

the chapters in which these are discussed.   

 

Chapter 1: Introduction 

Provides an overview of the importance of estuaries and details of recent global studies 

into the ecological impact of the development of macroalgal mats.  This chapter will 

introduce the study site, Poole Harbour, and provide an explanation of the conservation 

importance of the site and why extensive macroalgal mat development might be an 

issue. 

 

Chapter 2: The biomass and extent of macroalgal mats in Poole Harbour 

Establishes a baseline of the biomass of the macroalgal mat together with an 

assessment of the extent of the mat in three key areas for overwintering wading birds 

in Poole Harbour.  In addition, the chapter will provide analysis of whether the current 

threshold of concern for macroalgal mat biomass (2 kg m-2) is sufficiently precautionary 

for Poole Harbour.   

 

Chapter 3: The effect of macroalgal mats on the benthic invertebrate 

community  

This chapter is split into two parts with the first section analysing the invertebrate 

community composition in three areas and three shore levels within Poole Harbour.  

The second part of the chapter will determine the effect of macroalgal mats on the 

benthic invertebrate community. 

 

Chapter 4: The effect of macroalgal mats on wading bird prey: implications for 

individual bird species 

Provides an analysis of the impact from macroalgal mats on the preferred prey of five 

key wading bird species by using the concept of a ‘benthic invertebrate menu’.  This is 
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based upon the energy available at each site derived from each wading bird’s preferred 

prey. 

 

Chapter 5: The relationship between macroalgal mat coverage and wading 

bird foraging behaviour 

Examines how wading bird foraging and distribution might be affected by the presence 

of varying levels of macroalgal mat coverage.  The chapter will assess whether birds 

are foraging on the macroalgal mat or avoiding areas of mat coverage. 

 

Chapter 6: Changes to wading bird feeding rate in response to macroalgal mat 

coverage  

Analyses digital video recordings to determine whether macroalgal mat coverage is 

affecting wading bird feeding rate.  This chapter also examines whether wading birds 

are using different foraging strategies to locate suitable prey or increasing their feeding 

rate in response to the abundance of smaller, lower quality prey.    

 

Chapter 7: Conclusions and further research 

Brings together the findings from the research and suggests areas for further study. 
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Fig. 1.2:  Conceptual diagram showing the main drivers of macroalgal-mat development and the main interactions between macroalgal-mats, benthic-

invertebrates and overwintering wading birds.  Arrows show the direction of the interaction.  Hollow boxes indicate the main impact.  Solid-frame boxes show 

the chapter number in which these impacts are analysed.   
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2.0 The biomass and extent of macroalgal mats in 

Poole Harbour 

Abstract 

The development of macroalgal mats in estuarine systems is a global conservation 

concern.  Macroalgal mats are largely formed from Chlorophyta (green algae); primarily 

comprising the genera Ulva, Chaetomorpha and Cladophora.  In the UK, the presence 

of extensive macroalgal mats in sheltered harbours and on mudflats along the south 

coast of England has been recorded since the 1960s.  Poole Harbour is an example of 

a micro-tidal estuary on the south coast of England with macroalgal mats recorded on 

the intertidal mudflats since the 1970s.   

 

Macroalgal mat biomass and extent were measured on a regular basis from March 

2013 to February 2015 at four sites around the harbour.  Four species of Ulva were 

recorded:  sheet-forming U. rigida, tubular U. compressa and U. intestinalis, and 

filamentous U. clathrata.  Wet weight biomass exceeded 2 kg m-2 on two occasions but 

this level was not maintained during the growth season; biomass of 1 kg m-2 was 

recorded at all four sites during the survey period.  There was no significant variation in 

macroalgal mat biomass between years.  Macroalgal mat coverage was high (>50%) at 

all sites during the summer growth period each year.  Results showed a strong 

correlation between macroalgal mat coverage within quadrats at the upper shore 

sampling sites and overall coverage across each of the four bays observed using a 

telescope.   
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2.1 Introduction 

2.1.1 Primary production and macroalgae 

Excess nutrient loading within an estuarine system can lead to changes in the 

community structure of primary producers with consequences for food resources at 

higher trophic levels.  In systems where nitrogen (N) and phosphorus (P) are limited, 

slower growing, structurally complex species such as Zostera marina [Linnaeus 1753] 

and brown algae are dominant (Flindt et al. 1999; Bowen and Valiela 2001).  Although 

ephemeral green algae are present within non-eutrophied estuarine systems, these 

faster-growing r-selected species are controlled through grazing and the limited supply 

of nutrients (Flindt et al. 1999; Fox et al. 2009).  Therefore, low levels of green algae 

are regarded as beneficial and an integral part of primary production within a ‘stable’ 

system resulting in an increase in productivity (Raffaelli et al. 1999; Flindt et al. 1999; 

Scanlan et al. 2007; Fox et al. 2009).  As a consequence, symptoms of the initial 

stages of excess nutrient loading can be difficult to determine as small increases in 

green algae are often not deemed a ‘nuisance’ (Fletcher 1996).  However, as nutrient 

loading begins to increase, ephemeral algae respond with ever-larger ‘blooms’, 

gradually outcompeting other macroalgal species and plants for nutrients and light and 

eventually dominating the estuarine habitat (Raven and Taylor 2003; Eriksson and 

Johansson 2005; Teichberg et al. 2010).  This can create a paradox whereby water 

quality testing for nutrients record ‘normal’ due to the rapid uptake of nitrates by the 

macroalgal mats – themselves a symptom of eutrophication (Valiela et al. 1997).  By 

the time the macroalgal mat has become established, the estuary is already exhibiting 

eutrophic conditions (Morand and Merceron 2005).   

 

2.1.2 Mat-forming chlorophytes  

Although some species of brown alga (e.g. Ectocarpus and Pilayella) will form ‘blooms’, 

macroalgal mats are largely formed from Chlorophyta (green algae); primarily 

comprising the genera Ulva, Chaetomorpha and Cladophora (Raffaelli et al. 1998; 

Raven and Taylor 2003).  Studies prior to 2003 refer to species of Enteromorpha 

however it has been shown that Enteromorpha and Ulva are not two distinct genera 

(Hayden et al. 2003); both are now classified as Ulva.  There are a number of 

morphological traits which ensure the success of these mat-forming species.  Green 

algae are able to assimilate excess nutrients much quicker than slower-growing 

species of red and brown algae (Taylor et al. 2001; Raven and Taylor 2003).  Indeed, 

Pedersen and Boram (1997) reported that due to the higher growth rates, species of 

Chaetomorpha, Ulva and Cladophora were able to take up ammonium and nitrate up to 
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six times faster than Codium fragile [Hariot 1889] or Fucus vesiculosus [Linnaeus 

1753].  However, this was only apparent in nutrient enriched systems, with only 

marginal increases in uptake reported at low concentrations of ammonium.   

 

The successful and rapid assimilation of nutrients by opportunistic Chlorophyte algae is 

due to a simple thallus structure (Littler and Littler 1980).  A high surface-area:volume 

ratio created by the sheet, filamentous or tubular forms of thalli ensures maximum 

exposure to light (Littler and Littler 1980; Hurd et al. 2014).  Nutrients are supplied 

through the water column and taken up through membrane porters on the plant 

surface; algae are also able to assimilate nutrients from the sediment if necessary 

(Raven and Taylor 2003).  Yet despite their apparent fragility, green algae species of 

the genus Ulva are able to withstand adverse environmental conditions including lower 

light levels and even anoxic conditions in the sediment (Fletcher 1996).  Field 

experiments carried out in Sweden found that Ulva intestinalis [Linnaeus 1753] was 

highly tolerant of increased sedimentation when compared to F. vesiculosus (Eriksson 

and Johansson 2005).  Although this simple morphology enables opportunistic green 

algae species to take advantage of sudden increases in nutrients, algae are unable to 

store nutrients for long periods thereby necessitating rapid growth (Fletcher 1996; Day 

et al. 2013).  As energy is concentrated on maximising growth, fragile green algae are 

also at greater risk from grazing pressure compared to the more structurally complex, 

slower growing brown algae (Hurd et al. 2014).  However, this is compensated by rapid 

regeneration of new fronds from small fragments of existing vegetation (Raven and 

Taylor 2003; Brodie et al. 2007).   
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2.1.3 Development cycle of a macroalgal mat 

The development of macroalgal mats is a global conservation concern (Borja et al. 

2012).  In the UK, the presence of extensive macroalgal mats in sheltered harbours 

and on mudflats along the south coast of England has been recorded since the 1960s 

(Tubbs 1977).  Fig. 2.1 provides an overview of the stages of macroalgal mat 

development using images taken from Poole Harbour.   

Fig. 2.1:  The development cycle of macroalgal mats with a summary of the key issues at each 

stage of growth and decline.  Images clockwise from top left:  Ower Bay (April 2014), Holes Bay 

(August 2014), Newton Bay (October 2014), Brands Bay (February 2015).  Photographs © A. 

Thornton.   

 

As discussed in Chapter 1 (Section 1.2) there are a number of similarities between 

estuaries susceptible to the development of dense macroalgal mats including limited 

tidal range and reduced tidal flush (Scanlan et al. 2007).  Provided conditions are 

suitable, macroalgal mats in temperate estuaries will begin to develop during spring 

when mean air temperature reaches c.10 oC (Raffaelli et al. 1998).  Excess 

allochthonous nutrient input from anthropogenic sources results in a constant 

availability of N and P which, in combination with increased light levels during summer, 

leads to the development of macroalgal mats (Fletcher 1996; Raffaelli et al. 1998; 
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Excess nutrient 
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SUMMER 
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AUTUMN 
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WINTER 
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to sediment. 
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Anderson et al. 2002; Day et al. 2013).  Sheet, filamentous and tubular forms of Ulva 

spp. and filamentous Chaetomorpha linum [(O. F. Müller) Kürtzing 1845] all form dense 

mats with high biomass and extensive coverage.  Light penetration is reduced and, as 

a consequence, the lower fronds become starved of light and begin to deteriorate (Day 

et al. 2013).  These lower fronds get broken down by heterotrophic bacteria and other 

detritivores; oxygen demand increases resulting in hypoxic and anoxic conditions 

developing in the sediment (Raffaelli et al. 1989; Anderson et al. 2002; Day et al. 

2013).  This, in turn, leads to an increase in the naturally occurring production of 

hydrogen sulphide (H2S) gas which, along with the released dimethyl sulphide (Van 

Alstyne et al. 2015), contributes to the characteristic pungent aroma on the upper shore 

(Fletcher 1996; Kaiser et al. 2005).  Nutrients released back into the sediment by the 

breakdown of the algae become an autochthonous supply available to new macroalgal 

mat development and the cycle continues (Sfriso et al. 1987; Day et al. 2013).  

Eventually, temperature, wind and wave action, and a reduction in light levels during 

autumn and winter reduce new growth of algae and the mat disintegrates.   

 

2.1.4 Macroalgal mats in Poole Harbour 

The micro-tidal, almost lagoonal, environment of Poole Harbour (Humphreys 2005) is 

particularly vulnerable to the development of macroalgal mats (Jones and Pinn 2006, 

Fig. 2.1).  Macroalgal mats were first reported in Holes Bay in 1971 (Fletcher 1996) and 

since the 1980s, the area of intertidal mudflats in Poole Harbour affected by macroalgal 

mat coverage has increased from 100ha to 400ha; with areas of >75% coverage also 

increasing from 3% to 15% of the total intertidal area (Kite et al. 2012).  There have 

been only a few reported studies investigating the issues and impacts surrounding 

macroalgal mat development in Poole Harbour (Underhill-Day, 2010; Axelsson et al. 

2012; Cascade Consulting 2012; Kite et al. 2012).  Jones and Pinn (2006) recorded 

peak coverage of 91% within a 50 m x 50 m site in Holes Bay.  However, no 

measurement of algal biomass was recorded as the study concentrated on the infaunal 

community.  Monthly sampling was carried out for a single season from July – 

November 2002.   

 

2.1.5 Biomass and extent of macroalgal mats in Poole Harbour 

There is considerable discussion regarding the threshold at which algal biomass 

impacts on the nature conservation interest features of a site (Hull 1987; Raffaelli et al. 

1999; Scanlan et al. 2007; Underhill-Day et al. 2010; WFD-UKTAG 2013).  Although 

studies have reported an impact upon invertebrates was apparent when macroalgal 

wet weight biomass reached 1 kg m-2 (Hull 1987; Raffaelli et al. 1999), research carried 
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out along the south coast of England by the UK Environment Agency indicated that a 

biomass of 1 kg m-2 was too ‘precautionary’ and algal biomass of <2 kg m-2 caused no 

adverse effect on macro-invertebrate diversity (Rees-Jones 2004).  This level was 

incorporated into the Site of Special Scientific Interest (SSSI) condition assessment for 

Poole Harbour (Underhill-Day et al. 2010).  Scanlan et al. (2007) argued that the extent 

of the macroalgal mat should also be considered and suggests that the combined 

measure of 15-25% coverage with >1 kg – 3 kg m-2 is indicative of ‘poor’ quality.   

 

The overall extent and degree of patchiness of the macroalgal mats in Poole Harbour is 

important to determine as this will affect the scale of impact on areas of bare mud 

refugia for invertebrates and feeding areas for migratory coastal birds (Lewis et al. 

2014).  A number of different methods have been used to determine the extent of 

macroalgal mat coverage within an area including assessment of % coverage using a 

telescope (Nedwell et al. 2002) or recording % coverage within quadrats to estimate 

total % coverage within an estuary (Cabral et al. 1999).  However, the study site is 

often too large to enable accurate and total mapping from the upper shore using 

quadrats (Nedwell et al. 2002) and ideally the measurement of macroalgal mat should 

also incorporate some form of visual assessment of the coverage across a study site 

(Alexander et al. 2008).  Aerial remote sensing can be costly, particularly for large 

intertidal areas and requires extensive ground-truthing to validate the results (Raffaelli 

et al. 1999).  

 

2.1.6 Rationale 

Macroalgal mat development is dependent upon a number of climate conditions 

including air temperature, rainfall, and light levels. The first part of the chapter will 

briefly examine historical data on local climate in order to place the 2013-2014 and 

2014-2015 field seasons into context.   

 

Site-specific factors such as sediment temperature and the depth of the anoxic layer 

within the sediment may also affect the development of the macroalgal mat.  The 

second part of the chapter will address gaps in the knowledge of how the macroalgal 

mat develops within Poole Harbour in response to site conditions.  The primary focus of 

this part will be to establish whether the biomass of the macroalgal mat exceeds the 

current higher threshold of concern (2 kg m-2) or the more conservative 1 kg m-2.  As 

the current level for SSSI condition assessment is 2 kg m-2, results from this chapter 

will contribute to an understanding of whether this is an appropriate threshold in Poole 

Harbour.         
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2.2 Aims and objectives 

Aim 1: To establish baseline information on the biomass and extent of 

macroalgal mats in Poole Harbour. 

Aim 2: To determine which climatic factors influence the development of 

macroalgal mats. 

Aim 3: To determine whether the current threshold of concern for macroalgal 

mat biomass is effective in Poole Harbour.  

Aim 4: To determine the extent of macroalgal mat coverage in important 

feeding areas for migratory overwintering wading bird. 

 

Objective 1: Measure the wet weight biomass of macroalgal mat development over 

two ecological cycles. 

Objective 2: Assess the development of the macroalgal mat in relation to climatic 

variables. 

Objective 3: Regularly measure the development and extent of the macroalgal mat 

using terrestrial mapping techniques. 

 

2.3 Methods 

2.3.1 Climate data 

Historical data on air temperature, rainfall and sunshine hours were obtained from the 

Meteorological Office (Met Office 2016).  Data were taken from Bournemouth Airport 

monitoring station as this is the closest station to Poole Harbour (grid reference:  

SZ11730 97727).  

 

2.3.2: Measurement of the extent and biomass of macroalgal mats at important 

sites around Poole Harbour 

2.3.2.1 Site selection 

Eight sites were selected:  Parkstone Bay, Holes Bay north-east, Upton Park, Holton 

Heath, Grip Heath (Arne), Ower Bay, Newton Bay and Brands Bay (Fig. 2.2) stratified 

according to access, surrounding land-use and aspect.    

 

Data collection commenced in March 2013 and continued until February 2015 to 

include two ecological cycles for macroalgal mat growth (Fletcher 1996).  Sampling 

was carried out each month from March 2013 – March 2014 and every two months 

from April 2014 – February 2015.  Fieldwork was conducted at low-water on a spring 
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tide (<0.9 m above chart datum) (UK Hydrographic Office, 2013-2015).  Each site was 

sampled using a quadrat sampling strategy based upon the Common Standards 

Monitoring for Littoral Sediment Habitats (JNCC 2004) and Environment Agency 

monitoring protocol (S. Witt, Environmental Monitoring Officer, Environment Agency, 

pers. comm.).  

 

In August 2013, due to no extensive macroalgal mat growth, three sites (Parkstone, 

Holton Heath and Grip Heath) were removed from further sampling during 2013/2014.  

A visit to each of these sites in October 2013 confirmed that no macroalgal mat had 

developed.  Biomass sampling was not permitted at Upton Park so the area was only 

assessed for spatial extent of the macroalgal mat from the shore during 2013/2014. 

  

 

Fig. 2.2:  Survey sites selected:  Parkstone Bay, Holes Bay N.E., Upton Park, Holton Heath, 

Grip Heath, Ower Bay, Newton Bay, Brands Bay.  © Crown Copyright and Database Right 

(2016) Ordnance Survey (Digimap Licence). 

 

Site selection was reviewed in February 2014 prior to the next sampling period.  In 

addition to no macroalgal mat development recorded there were other issues with three 

sites.  The substrate in Parkstone Bay is predominantly sand (Herbert et al. 2010) and 

therefore not comparable with the muddier, fine silt/clay substrates at other sampling 

sites around the harbour.  Access to Holton Heath had become dangerous due to a 

collapsing sea wall and asbestos landfill.  Grip Heath did not provide suitable 
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conditions for the development of extensive macroalgal mats as the area is formed of 

extensive salt-marsh fringing a narrow channel rather than an embayment.  In 

2014/2015 access to the previous year’s vantage point was restricted at Upton Park so 

no further assessment of the extent of macroalgal mat coverage was possible. 

Therefore, these sites were not sampled during the 2014/2015 season.   

 

2.3.2.2 Macroalgal mat sampling 

The location of the sampling stations was recorded using a Garmin GPS 60CSx with 

an error of ±3 m.  Five quadrats (0.25 m2) were randomly placed on the mudflat 

between 2 m and 5 m distance from the upper shoreline.  Poole Harbour sediment 

comprises fine silt/clay and the intertidal mudflats are characteristically thixotropic.  

These spatial limits on placement of quadrats were determined as being far enough 

from the influence of the upper shore vegetation yet still within safe operating distance.   

 

Algae thickness was measured at five points within the quadrat using a combination 

square ruler; mean measurement was recorded.  A measurement was taken of the 

depth of the anoxic layer (deemed as the depth at which black mud is visible).  Site air 

temperature was also recorded on each sampling date using a digital thermometer.  

Sediment temperature was measured from individual quadrats using a Hach HQ30d 

Portable Meter and a mean value obtained for each survey.  Photographs were taken 

of each quadrat containing algae.  Percentage surface cover of algae within the 

boundaries of each quadrat was determined to the nearest 5% by examining the 

photographs over a grid on the computer.  Algae within each quadrat were cut away 

and scraped from the surface, placed into a pre-labelled grip-seal bag and removed 

from site.  

 

2.3.2.3 Macroalgal mat processing 

Samples were processed in the laboratory within 24hours.  Algae were rinsed under 

running tap water over a 500 µm mesh sieve to remove sediment.  Any invertebrates 

were removed and retained.  The dominant green algae species was recorded together 

with other species of Chlorophyta, Rhodophyta, and Phaeophyta.  Samples were 

squeezed thoroughly to remove excess water, weighed using an electronic balance to 

obtain wet weight biomass, bagged and placed in a freezer for storage.  Methods were 

in accordance with sampling guidelines for monitoring under the Water Framework 

Directive (WFD-UKTAG 2009).  Invertebrates found within the algae were fixed in 4% 

formal saline and then stored in IMS for future identification and measurement.  
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2.3.2.4 Nutrient data 

Nutrient data were obtained from Environment Agency monitoring carried out within 

Poole Harbour.  However, as samples were collected outside the survey areas, the 

data were unsuitable for this research.    

 

2.3.3 Analysis 

All statistical analysis was performed using R version 3.3.0 “Supposedly Educational”, 

(R Core Team 2016).  Assumptions of normality and homogeneity of variance were 

checked using Shapiro Wilks test within the “stats” package in R Version 3.3.0 

“Supposedly Educational” (R Core Team 2016) and Levene test within the “car” 

package developed for R (Fox and Weisberg 2011) respectively.   

 

Co-linearity between environmental variables (site temperature, air temperature, 

rainfall, sunshine hours, sediment temperature and depth of anoxic layer) was tested 

using multiple linear regression within the ‘stats’ package for R (R Core Team 2016); 

co-linear variables were removed.  The relationships between macroalgal mat biomass 

and remaining environmental variables were tested using Pearson product moment 

correlation coefficients within the ‘stats’ package for R (R Core Team 2016).   

 

Spatial and temporal variations in macroalgal mat biomass and % coverage did not 

meet the assumptions of normality and homogeneity of variance required for analysis 

of variance (ANOVA).  Overall and within-site variation in algal biomass between years 

was determined using Wilcox signed rank test.  Between-site variation in algal biomass 

was determined using Kruskal Wallis test within the ‘stats’ package for R (R Core Team 

2016).  

 

Two measures of % coverage were analysed:  mean % coverage recorded from the 

quadrat samples at the upper shore, and % coverage estimated across each survey 

site.  As data did not meet the assumptions of normality or homogeneity of variance 

required for parametric tests, overall and within-site variation in algae % coverage 

between years was determined using Wilcox signed rank test.  Between-site variation 

in algae % coverage was determined using Kruskal Wallis test within the ‘stats’ 

package for R (R Core Team 2016).   

 

The relationship between % coverage of macroalgal mat at the upper shore sampling 

station and estimated coverage across the bay was assessed using Spearman’s rank 

correlation within the ‘stats’ package for R (R Core Team 2016).  
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2.3.4 Mapping the extent of macroalgal mat coverage 

Two methods were considered in order to map the spatial extent of the macroalgal mat 

within the study sites: mapping the extent of the macroalgal mat from an upper-shore 

vantage point using a telescope with laser rangefinder, and using a laser scanner.  A 

pilot study was undertaken to test the effectiveness of using the laser scanner to map 

3D images of the surface and extent of the macroalgal mat. This feasibility study 

revealed the laser scanner to have insufficient range (<100 m) to map the full extent of 

the macroalgal mat coverage across the larger bays.   

 

The extent of the macroalgal mat was recorded monthly (2013-14) and bimonthly 

(2014-15) at the same time as the biomass sampling and at the same locations (8 sites 

in 2013-2014 and 5 sites in 2014-2015 see section 2.3.2).  At each site, a visual 

assessment of coverage of macroalgal mat was made by eye using a mounted 

telescope (Swarovski HD 20-60x zoom) from a raised vantage point above the 

shoreline (Ower Bay and Newton Bay 1.0 m, Holes Bay 1.5 m and Brands Bay 10 m).  

The percentage cover of each patch of algae was estimated and recorded on an 

Ordnance Survey (OS 1:25000) site map.  Each site was visited at low water on a 

spring tide when predicted low water was <0.9 m above chart datum (UK Hydrographic 

Office, 2013-2015) thus ensuring the mudflats were exposed.   

 

2.4 Results 

2.4.1 Weather and climate 

2013/2014 

Annual temperature range for 2013 did not vary significantly from the 1981 - 2010 

average.  However, the UK mean temperature for March 2013 was 3.3 oC lower than 

the 1981-2010 average and the coldest since 1962.  Mean temperature for March 2013 

at the Bournemouth Airport weather station was 3.4 oC (3.5 oC lower than the 1981-

2010 average).  Although July and August were warmer, mean temperatures were only 

1.7 oC and 0.8   respectively above the 1981-2010 average (Met Office 2016) 

 

2014/2015 

By contrast, 2014 was the warmest year since 1910 with all months (except August) 

warmer than 1981 - 2010 average.  Rainfall was 113% higher than the 1981 - 2010 

average.  Severe storms brought damaging winds and heavy rain with flooding during 

January and February 2014.  Spring 2014 was 3.0 oC warmer than 2013 and the 

second warmest spring since 1910 (spring 2011 was warmer) (Met Office 2016). 
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2.4.2 Algae species recorded 

Table 2.1 provides details of the four species of Ulva recorded within the macroalgal 

mat samples in Poole Harbour:   

 

Table 2.1:  Species, location and morphology of four Ulva spp. recorded during sampling in 

Poole Harbour.   

Species Location Morphology 

Ulva rigida [C. Agardh, 1823]  Holes Bay Thin sheet-forming thalli 

Ulva compressa  

[Linnaeus 1753]  
Brands Bay 

Tubular thalli (similar to U. 

intestinalis) 

Ulva intestinalis  

[Linnaeus 1753]  
Brands Bay 

Tubular thalli (similar to U. 

compressa)  

Ulva clathrata  

[(Roth) C. Agardh 1811]  
Ower Bay Fine, filamentous thalli 

 

The different species of Ulva are notoriously difficult to identify (Hofmann et al. 2010).  

Identification was supported using Brodie et al. (2007) and Hofmann et al. (2010) and 

confirmed by Prof. Christine Maggs (pers. comm. May 2016).  Fig. 2.3 shows the cell 

structure of Ulva clathrata with multiple pyrenoids and the quadrat from which it was 

collected in Ower Bay, August 2014.  It is possible that other species of Ulva or green 

mat-forming algae were present within the Harbour but identification would require 

further research outside the scope of this study.   

  

Fig. 2.3:  Cell structure of U. clathrata showing multiple pyrenoids (average 5), one of the 

identifying features of the species (Brodie et al. 2007, C. Maggs, pers. comm.), and the sample 

of U. clathrata prior to being collected in August 2014 at Ower Bay.  Photos © A. Thornton.   
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2.4.3 The effect of air temperature, sunshine hours, rainfall and depth of anoxic 

layer on macroalgal mat biomass 

Climate variables (air temperature, sunshine hours, site temperature and rainfall) were 

checked for co-linearity and it was found that air temperature, sunshine hours and site 

temperature were all significantly correlated (p = <0.05, r = >0.85).  Therefore, air 

temperature and sunshine hours were removed from the analysis.  Full details of 

climate and environmental data are provided in Appendix 1a and 1b. 

 

There was a highly significant correlation between algae biomass and site temperature 

(t = 7.297, df = 70, p = <0.001, r2 = 0.43, 95% CI = 0.502 – 0.771) and between algae 

biomass and sediment temperature (t = 6.183, df = 70, p = <0.001, r2 = 0.35, 95% CI = 

0.421 – 0.726).  Fig. 2.4 shows the correlation between algae biomass and site 

temperature, and algae biomass and sediment temperature with 95% confidence 

intervals shaded.   

 

 

Fig. 2.4: Correlation between algae biomass (g (ww) m
-2

) and (A) site temperature (
o
C), (B) 

sediment temperature (
o
C).  Shaded area is 95% confidence interval. 

 

There was no significant correlation between algae biomass and rainfall (p = >0.05) or 

between algae biomass and depth of anoxic layer (p = >0.05).  Table 2.2 provides 

details of the anoxic layer depth recorded during sampling. 

 

 

 

A B 
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Table 2.2:  Mean and range of depths of anoxic layer (visible black mud) recorded during 

2013/2014 and 2014/2015 sampling.   

Site 
 
 

n  
 

Min. 
depth  
(mm) 

Max.  
depth  
(mm) 

Mean  
depth 
(mm) 

95% 
C.I. 
 

Brands Bay 2013/2014 12 1 10 4.67 1.81 

Brands Bay 2014/2015 6 1 15 5.17 4.42 

Holes Bay 2013/2014 12 1 19 4.22 2.78 

Holes Bay 2014/2015 6 0 12 5.33 4.34 

Newton Bay 2013/2014 12 1 20 7.18 3.67 

Newton Bay 2014/2015 6 1 10 4.5 2.85 

Ower Bay 2013/2014 12 1 7 3.18 1.04 

Ower Bay 2014/2015 6 0 10 4.83 3.10 

 

2.4.4 Between-year and between-site variation in macroalgal mat biomass 

Figure 2.5 shows the mean wet weight biomass (g m-2) for algae collected within 0.25 

m2 quadrats from the upper shore.  There was no significant variation in algal biomass 

(g m-2) between 2013-2014 and 2014-2015 across Poole Harbour (W = 530.5, p = 

0.583, n (2013/2014) = 240, n (2014/2015) = 120), yet, as Fig. 2.5 shows, there 

appeared to be some fluctuations in the development of the macroalgal mat at different 

sites between years   

 

2013/2014 

Macroalgal mats began to develop in Brands Bay and Ower Bay in April with biomass 

increasing rapidly during the early part of the 2013/2014 growth season (Fig. 2.4).  By 

contrast, growth did not appear in Holes Bay and Newton Bay until May 2013.  Peak 

biomass was variable between sites with an early peak in May 2013 (Ower Bay), June 

2013 (Brands Bay) and July 2013 (Newton Bay) whereas Holes Bay did not record 

peak biomass until much later in the season (October 2013).  A second, smaller, bloom 

was recorded in September 2013 (Brands Bay) and October 2013 (Newton Bay) yet 

this pattern was not recorded in Holes Bay or Ower Bay, although Ower Bay showed a 

slight increase in biomass in December 2013. The current SSSI Condition Assessment 

threshold of 2 kg m-2 was exceeded early in the 2013/2014 season; occurring in May 

2013 in Ower Bay and June 2013 in Brands Bay.  In Newton Bay this threshold was 

within 1 s.e. of the mean biomass in July 2013.  No algal growth was recorded during 

January or February 2014.  Although the patterns of macroalgal mat development 

appeared to vary between sites, these were not significant (x2 = 1.5844, df = 3, p = 

0.663, n (2013/2014) = 60 per site). 
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2014/2015 

Patterns of macroalgal mat biomass development recorded in 2013/2014 were not 

replicated in 2014/2015 although there was an early season growth recorded in April 

2014 at both Brands Bay and Ower Bay (Fig. 2.5).  Peak biomass for Holes Bay was 

earlier in the season than the previous year occurring in June 2014 with Ower Bay also 

recording peak biomass in that month.  By contrast, Brands Bay and Newton Bay both 

recorded peak biomass for the season in October 2014.  Once again a second, smaller 

bloom was recorded although this only occurred in Holes Bay in December 2014. Peak 

biomass during 2014 season never reached 2 kg m-2, yet remained close to 1 kg m-2 at 

all sites (except Holes Bay) until October 2014.  No algal growth was recorded in 

January or February 2015.  Despite the apparent variation in development between 

sites, these differences were not significant (x2 = 2.252, df = 3, p = 0.522, n 

(2014/2015) = 30 per site). 

 

Although there appeared to be fluctuations in the growth and development of 

macroalgal mat biomass within each site between years, there was no significant 

variation in algal biomass (g m-2) within sites between 2013/2014 and 2014/2015 

(Brands Bay, W = 31.5, p = 0.707, Holes Bay W = 42.5, p = 0.557, Ower Bay W = 26.5, 

p = 0.397, Newton Bay W = 31.5, p = 0.695, n (2013/2014) = 60 per site, n (2014/2015) 

= 30 per site).  
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Fig. 2.5:  Mean wet weight biomass of algae (g (ww) m
-2

) error bars ± 1 s.e.   

1000 g m
-2 

2000 g m
-2 

(current threshold for SSSI Condition Assessment).   
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2.4.5 Mapping macroalgal mat coverage  

Figure 2.6 shows the estimated percentage cover across each bay together with the 

mean percentage cover within that month’s upper shore quadrat samples.  With the 

exception of Newton Bay, in 2013/2014 there was an apparent difference between 

percentage cover of algae recorded in the quadrats and percentage cover recorded 

across the whole bay early in the season.  By August the quadrat percentage cover is 

similar to the percentage cover across the bay.  Newton Bay was the only area where 

both quadrat coverage and bay coverage were similar across the season.  By contrast, 

in 2014/2015, development of macroalgal mat biomass more closely matched 

coverage recorded during 2014/2015.  Results from August 2014 in Newton Bay show 

zero percentage cover for the quadrat samples as the macroalgal mat did not extend to 

the upper shore.  Although the coverage within quadrats was higher in Ower Bay, the 

trend was similar with corresponding increases in coverage at the upper shore and 

across the bay.  Each season the rate of decline was similar for coverage measured 

within quadrats and coverage estimated across each site.   
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Fig. 2.6:  Algae % coverage measured in quadrats and estimated across each bay.   

= quadrat coverage = bay coverage.  Error bars (for quadrat coverage) ±1s.e.  
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2.4.6 Between-year variation in % algae coverage 

2.4.6.1 Upper shore quadrat samples 

There was no significant variation in overall % algae coverage at the upper shore 

between years (W = 588, p = 0.889).  There was no significant within-site variation in % 

algae coverage at the upper shore between years (Brands Bay:  W = 39, p = 0.814; 

Holes Bay: W = 35.5, p = 0.999; Ower Bay: W = 29.5, p = 0.572; Newton Bay: W = 38, 

p = 0.883) 

 

2.4.6.2 Estimated overall % coverage across each bay 

There was no significant variation in overall % algae coverage across sites between 

years (W = 488.5, p = 0.295).  There was no significant within-site variation in % algae 

coverage between years (Brands Bay:  W = 32, p = 0.742; Holes Bay:  W = 30, p = 0.6; 

Ower Bay: W = 33, p = 0.811; Newton Bay:  W = 33.5, p = 0.850). 

 

2.4.7 Between-site variation in % algae coverage 

2.4.7.1 Upper shore quadrat samples 

There was no significant variation between sites for % algae coverage in upper shore 

quadrat samples for 2013/2014 (x2 = 1.218, df = 3, p = 0.749) or for 2014/2015 (x2 = 

1.282, df = 3, p = 0.733) 

 

2.4.7.2 Estimated overall % coverage across each bay 

There was no significant variation between sites for % coverage across each bay for 

2013/2014 (x2 = 1.218, df = 3, p = 0.749) or for 2014/2015 (x2 = 1.01, df = 3, p = 0.799). 

 

2.4.8 Relationship between upper shore and bay-wide % algae coverage  

There was a highly significant correlation between % coverage measured using upper 

shore quadrat samples and estimated coverage across each bay over both survey 

years (S = 15252, p = <0.001, rho = 0.755).  There was also a highly significant 

correlation between % coverage at the upper shore and across the bay each year: 

2013/2014 (S = 3816.3, p = <0.001, rho = 0.793) 2014/2015 (S = 517.75, p = <0.001, 

rho = 0.775).  
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2.5 Discussion 

2.5.1 Climate 

It is apparent from the results that temperature (as the main co-linear variable) is an 

important environmental driver of macroalgal mat growth with 43% of the variance in 

algal biomass being accounted for by air temperature.  Sediment temperature was also 

significant accounting for 35% of the variance in algal biomass.  There are other, 

untested environmental variables which will account for the remaining variance yet 

Figs. 2.5 and 2.6 clearly show that when mean air and sediment temperatures began 

to rise, there was an almost immediate corresponding rise in macroalgal mat 

development.  This is likely due to the opportunistic nature of the ephemeral green 

algae being able to rapidly respond to changes in temperature.  Macroalgal mat growth 

is inhibited by extremes of temperature (Raffaelli et al. 1998), therefore, it had been 

expected that, with the extremely low temperatures in spring 2013, the algal bloom 

may have been reduced or delayed.  In fact the reverse was apparent with a high algal 

biomass recorded at some sites in May 2013 (Fig. 2.5).   

 

It was surprising that rainfall was not a significant factor in algal growth.  Winter 

2013/2014 was the ‘wettest since 1766’ (Met Office 2016) and it was predicted that the 

bloom during summer 2014/2015 season would be extensive as the rain may have 

washed additional nutrients straight off the land; although an increased flow may have 

rapidly flushed the nutrients out of the estuary.  However, there was no significant 

difference in overall biomass between years.  It is also possible that the flooding 

washed excessive amounts of sediment into the harbour thereby increasing turbidity 

levels and reducing light penetration; although U. intestinalis has been shown to be 

highly tolerant of increased sedimentation in field experiments carried out in Sweden 

(Eriksson and Johansson 2005).   

 

2.5.2 Algal growth 

In general, macroalgal mat development in Poole Harbour was typical of other 

temperate estuarine systems (Raffaelli et al. 1998; Nedwell et al. 2002; Anderson et al. 

2002).  However, the ‘peak’ biomass recorded each year did not occur between June-

August as anticipated (Jones and Pinn 2006; WFD-UKTAG 2009).  It is noteworthy that 

in 2013/2014 the ‘peak’ biomass was not particularly high so it is possible that further 

growth during July-August was inhibited due to the high temperatures recorded during 

those months; surface fronds of macroalgal mat in August 2013 were visibly yellowing 

possibly indicating stress.   
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It was surprising that there was no significant variation in algae biomass between sites 

as it had been expected that Holes Bay would record a lower biomass than the other 

sites.  This is due to the sheet-forming morphology of the dominant Ulva species in 

Holes Bay; the thin sheet-like thalli covered up to 75% of the intertidal area in Holes 

Bay yet recorded lower biomass and density.  By contrast the tubular or filamentous 

fronds of the Ulva species dominant in the southern part of the harbour form dense, 

impenetrable mats.  Under the WFD a biomass of 2 kg m-2 is the threshold at which the 

Environment Agency suggests further investigation (Rees-Jones 2004).  This level was 

reached during 2013 in May (Ower Bay) and June (Brands Bay) but not maintained.  

The lower threshold of wet weight biomass of 1 kg m-2 was reached in May in Brands 

Bay, July in Ower Bay and July, September and October in Newton Bay.  The 

maintenance of this level at Newton Bay is possibly due to the surrounding land-use.  

The site is fringed by arable farmland and access to the sampling area is across a 

patch of wet woodland.  There was evidence of cattle poaching in this area which may 

have resulted in localised nutrient input into the bay.   

 

Macroalgal mat development during 2014/2015 showed surprising results.  There 

appeared to be a ‘double-bloom’ with early peak biomass recorded in April (Brands 

Bay) and June (Holes Bay and Ower Bay).  A second peak of macroalgal mat 

development with a biomass >500 g m-2 was recorded at all sites in October 2014 and 

was recorded in Newton Bay at this level in December 2014.  The persistence of the 

macroalgal mat into autumn and even December may have implications for the 

overwintering birds and their invertebrate prey.  It is worth pointing out that the biomass 

samples were taken from the upper shore area and, as such, are likely to be higher 

than mid and lower shore areas.  However, all shore levels are used by overwintering 

wading birds and the implications of increased biomass at the upper-shore level are 

discussed in later chapters.       

 

2.5.3 Extent 

Terrestrial methods for mapping algal coverage have been trialled albeit on a smaller 

scale than Poole Harbour (Nedwell et al. 2002).  It was possible to estimate the 

coverage across each bay using a mounted telescope from elevated positions.  The 

vantage point at the largest site, Brands Bay, was a bird hide situated approximately 10 

m above the shore, Holes Bay vantage point was on a raised footpath approximately 

1.5 m above the shore and the smallest site, Ower Bay, vantage point was on a bank 

approximately 1.0 m above the shore.  However, due to the tidal system in Poole 

Harbour, low water spring tides occur in late afternoon which presented some 
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difficulties in estimating coverage particularly during autumn when the sun was lower 

and reflecting off the wet algae.  The laser range-finder proved ineffective in 

determining distance of the algal patches from the upper shore vantage points.  The 

macroalgal mat is relatively flat on the surface of the mud so the laser could not secure 

a sufficiently raised point to establish a distance. 

 

Coverage of algae in the upper shore quadrats was higher at the start of the survey 

season compared to coverage across each bay.  This supports observations in the 

field suggesting growth of macroalgal mat generally begins at the upper shore (except 

at Newton) and extends down the shore gradient as the season progresses (March – 

July).  Therefore simply extrapolating the extent of coverage across a bay from the 

percentage cover recorded in quadrats at the upper shore level is not a reliable 

measure whilst macroalgal mats are developing.  Yet once the peak extent has been 

reached it appears that the mats deteriorate at a similar rate across shore-levels.  Even 

so, relying solely upon coverage in quadrats to estimate coverage across a bay is 

unreliable.  Some form of remote sensing (either terrestrial or aerial or both) is vital to 

determine the extent of the macroalgal mats in a given area (Alexander et al. 2008).  

 

Although peak coverage recorded across each bay reached 75% at Brands Bay, Holes 

Bay and Newton Bay for both 2013/2014 and 2014/2015 and 60% in Ower Bay, there 

were areas within each site that remained ‘algae-free’.  High levels (>50%) of 

macroalgal mat coverage remained at all sites in September and October 2013 and 

2014; coinciding with the arrival of the overwintering wading bird population.  The 

implications of high levels of macroalgal mat coverage on the wading bird population 

are discussed in Chapters 4, 5 and 6.  Although a peak coverage of >75% was 

recorded at all sites, this was expected during the summer months (Nedwell et al. 

2002) when increased light and temperature levels stimulate macroalgal mat 

development (Raffaelli et al. 1998).  The high levels of coverage are consistent with an 

earlier study in the harbour where peak coverage of 91% was recorded in August 2002 

within a 50 m x 50 m study site in Holes Bay (Jones and Pinn 2006).  Coverage of 

~50% recorded at all sites during September – December is consistent with other 

studies examining the impact of macroalgal mats on overwintering wading birds.  

Results from work on the Mondego Estuary, Portugal, recorded peak macroalgal mat 

coverage of 36% between October 1993 and May 1994 (Múrias et al. 1996).  Maximum 

coverage of 55% was recorded in winter 2000/2001 in the Clonakilty Estuary, Ireland, 

(Lewis et al. 2014).  High coverage (>75%) of algae was recorded in winter 1977 – 
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1978 at sheltered sites in Langstone Harbour, UK (Soulsby 1982); an area where 

macroalgal mat persists throughout the year (Rees-Jones 2004).   

 

2.5.4 Conclusion 

Temperature is an important factor in macroalgal growth and persistence (Raffaelli et 

al. 1998).  Therefore any rise in air or sediment temperature due to climate change 

may result in areas of the harbour being permanently covered by macroalgal mats.   

 

Although the macroalgal mat biomass was only recorded above the 2 kg m-2 threshold 

on a few occasions, levels were consistently around 1 kg m-2 throughout each season.  

It could be argued that these biomass values were obtained at the upper shore and, 

therefore, not representative of the rest of the intertidal area.  However, coverage is 

also an important metric within the Water Framework Directive (Scanlan et al. 2007).  

Coverage was maintained at over 50% at all sites during 2013/2014 and 2014/2015 at 

both the upper shore level and across each bay.  These results support earlier studies 

indicating a wet weight algal biomass of 1 kg m-2 should be the target threshold (Hull 

1987; Raffaelli et al. 1999).  Natural England is currently reviewing the 2 kg m-2 target 

used for SSSI condition assessments and it is likely that this threshold will be reduced 

to 1 kg m-2 (D. Kite pers. comm.).   
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3.0 The effect of macroalgal mats on the benthic 

invertebrate community  

Abstract 

Benthic macro-fauna represent the pivotal trophic level within an estuarine ecosystem 

by providing both top-down control of primary production, through herbivorous species 

such as hydrobid snails, and bottom-up food supply for secondary/tertiary consumers 

such as carnivorous polychaete worms (e.g. Nephtys hombergii) and top predators 

(e.g. overwintering wading birds).  

 

This chapter investigates the impact of macroalgal mats on the benthic invertebrate 

community within a temperate estuarine ecosystem on the south coast of the UK.  

Benthic core samples were obtained in September 2013, December 2013 and 

September 2014 at upper, mid and lower shore levels at three sites around Poole 

Harbour (Holes Bay, Brands Bay and Ower Bay) which showed varying levels of 

macroalgal mat growth.  These sites also provide important feeding areas for the 

overwintering wading bird population for which Poole Harbour is a designated Special 

Protection Area (SPA).   

 

Abundance/Biomass Comparison curves were used to provide an initial indication of 

areas under environmental stress.  Variation in community structure was significantly 

different between Holes Bay and Brands Bay, and Holes Bay and Ower Bay.  This 

variation was mainly due to the polychaete Hediste diversicolor and smaller r-selected 

opportunists such as Tubificoides spp. and Hydrobidae.   

 

Algae biomass, either singularly or in combination with % organic content within the 

sediment, provided the best explanatory model for variance in the overall community 

assemblage; annelid worm assemblage; crustacean assemblage; and five of the six 

individual species contributing over 60% of the variation in invertebrate assemblage.  

Tubificoides spp. variance was best explained by % organic content.  Results showed 

that overall abundance of invertebrates increased under low levels macroalgal mat 

biomass (~800 g m-2 wet weight) then began to decline.  The transformation of the 

benthic invertebrate community has implications for available prey items for the 

overwintering bird population.    
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3.1 Introduction 

3.1.1 Benthic invertebrate response to environmental change 

Benthic macro-fauna represent the pivotal trophic level within an estuarine ecosystem 

by providing both top-down control of primary production, through herbivorous species 

such as hydrobid snails, and bottom-up food supply for secondary/tertiary consumers 

such as carnivorous polychaete worms (e.g. Hediste diversicolor [O. F. Müller 1776]) 

and top predators (e.g. overwintering wading birds) (McLusky and Elliott 2004; 

Wildsmith et al. 2009; Fox et al. 2012).   

 

Under increasing hypoxic and anoxic conditions within the sediment resulting from the 

breakdown of the macroalgal mat, the invertebrate community could become 

dominated by species tolerant of low oxygen levels, such as oligochaetes and capitellid 

polychaete worms; highly abundant but with low biomass.  Species less able to tolerate 

increased stress within the system will either move or perish; leading to a further 

reduction in diversity (Pearson and Rosenberg 1978; Fox et al. 2009). However, the 

increase in abundance of one or two taxa should not be used as the only indicator of 

environmental stress (Gray and Mirza 1979; Warwick 1986).  Eutrophication is a 

chronic stressor within an estuarine system with symptoms such as macroalgal mats 

developing over a number of years (Kite et al. 2012).  Capitellids, for example, are 

opportunists and will take advantage of sudden stress events (Pearson and Rosenberg 

1978).  These species are normally out-competed within a short period of time as the 

system either returns to normal or other stress-adapted species take over (e.g. 

Peringia ulvae [Pennant 1777], Hediste diversicolor) (Warwick 1986).     

 

Differences between overall abundance and biomass of an invertebrate community 

could indicate chronic environmental stress caused by macroalgal mats (Warwick 

1986).  Although estuarine environments are naturally stressed due to fluctuations in 

salinity and exposure, these systems should contain a greater biomass of invertebrates 

in relation to their abundance; suggesting a community dominated by larger, slower 

growing K-selected species rather than those smaller, faster growing opportunistic r-

selected species (Warwick 1986).   

 

3.1.2 Benthic invertebrate response to macroalgal mats 

Determining the effect of algae on benthic invertebrates has previously proved difficult.  

Much of the current understanding of impacts has been developed through 

manipulation experiments in controlled situations with algae either removed (Everett 
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1994; Lewis et al. 2003) or added (Raffaelli et al. 1991; Österling and Pihl 2001; 

Cardoso et al. 2004) in measured amounts.  Whilst these experiments have led to an 

increased understanding of the impacts of algae on invertebrates, many of the 

interactions found during experimental work have not been confirmed in the field.  For 

example Yarrington et al. (2013) reported that, under experimental conditions, 

gastropods were facilitating the growth of macroalgae.  This was due, in part, to the 

sudden availability of a food source and nutrient deposition from pseudofaeces.  

However, similar results were not recorded in subsequent field manipulation 

experiments.  A study in the Waquoit Bay, Massachusetts, found a lower abundance of 

benthic invertebrates in the eutrophic estuary with high macroalgal mat biomass 

compared to the non-eutrophic site (Fox et al. 2009).  In addition, the study suggested 

increases in macroalgal mat biomass could provoke a regime shift resulting in a more 

herbivorous dominated invertebrate community (Fox et al. 2009).  As the survival of the 

overwintering bird population depends upon gaining sufficient energy from 

invertebrates, any reduction in prey size and quality could have significant implications 

at higher trophic levels (Raffaelli et al. 1991).   

 

3.1.3 Benthic invertebrates and macroalgal mats in Poole Harbour 

The extensive, intertidal mudflats in Poole Harbour contain an abundance of benthic 

macrofauna (Thomas et al. 2004; Herbert et al. 2010).  These, in turn, support the 

large populations of overwintering birds for which Poole is nationally and internationally 

designated. If the macroalgal mat is affecting the functional ecology or diversity of the 

invertebrate community this could impact upon the survival of the estuary’s upper 

trophic levels, in this case, wading birds (Raffaelli et al. 1999).   

 

Yet, in spite of the importance of the invertebrate community to Poole Harbour, there 

has only been one peer-reviewed article examining changes in invertebrate diversity 

and species-richness under macroalgal mats (Jones and Pinn 2006).  This study 

looked at invertebrates inhabiting the sediment and within the macroalgal mat itself.  

Research was carried out from June – November 2002 within a 50 m x 50 m area of 

Holes Bay approximately 900 m south-west from a tertiary treated sewage outflow and 

approximately 500 m north-east from a marina complex.  Although no algae biomass 

measurements were taken, maximum coverage of 91.3% and thickness of 90 mm were 

recorded within the study site.  As the macroalgal mat developed, invertebrate diversity 

and species richness initially increased reaching a peak in June and July.  Once the 

macroalgal mat reached its maximum coverage (August 2002), invertebrate species 

richness and biomass were at their lowest.  The macroalgal mat was found to have a 
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negative impact upon infaunal species-richness although the epifaunal species 

abundance and diversity increased (Jones and Pinn 2006).  However, as the study was 

carried out during summer and autumn months, it is possible that fluctuations in 

invertebrate abundance and diversity were due to seasonal trends.   

  

A harbour-wide survey for English Nature (Natural England) using 80 sampling stations 

was carried out in September and October 2002 (Thomas et al. 2004).  This study 

aimed to establish baseline data on the invertebrate community within Poole Harbour; 

primarily to ensure sufficient food resources for the wading bird population within the 

harbour.  A total of 61 species were recorded comprising 23 Annelida, 20 Arthropoda, 

15 Mollusca and 3 other (Thomas et al. 2004).  Although not specifically addressing the 

relationship between invertebrate community and macroalgal mats, algae coverage 

ranging from 0% - 100% was recorded at the sample sites.  No relationship was found 

between coverage and tidal-height.  Sediment particle size (% fine silt and % coarse 

sand) was found to be the best explanatory environmental variable for the variation in 

invertebrate distribution (Thomas et al. 2004). This study was repeated in September 

and October 2009 (Herbert et al. 2010).  Despite not being the primary objective of the 

study, Herbert et al. (2010) did investigate the relationship between macroalgal 

biomass, % algal cover, % organic content and % sand; finding weak yet significant 

relationships between invertebrate assemblage and % organic content and % sand.  

Weak, significant associations were also recorded between the algae variables and % 

organic content and % sand.  However, there was no significant relationship between 

the invertebrate community or diversity and either algal biomass or algal % coverage.  

Caldow et al. (2005) provides an overview of other invertebrate surveys carried out in 

Poole Harbour dating back to 1971.  None of these studies examined the relationship 

between invertebrate assemblage and macroalgal mats; nor did many obtain size 

classes for the invertebrates recorded.  Further details, analysis and discussion of 

these reports are presented in Caldow et al. (2005).  

 

3.1.4 Rationale 

Although recent reports and analysis of invertebrates within Poole Harbour have 

recorded levels of macroalgal mat coverage (Thomas et al. 2004; Herbert et al. 2010), 

there are no data showing the benthic invertebrate community assemblage before the 

macroalgal mat developed.  Therefore, in order to determine the impact of macroalgal 

mats on wading birds, it is necessary to determine the prey resources available at the 

start of the overwintering season (September) and also the resources available when 

the extent of the macroalgal mat has declined (December).   
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This chapter will investigate how macroalgal mats are spatially and temporally affecting 

the invertebrate community of Poole Harbour.  As discussed in Chapter 2, macroalgal 

mats have been present on the intertidal mudflats in Poole Harbour for over 40 years 

(Fletcher 1996).  These data will also provide the basis for analysis of the availability 

and quality of prey items for the overwintering wading birds discussed in Chapter 4.  

Results will also determine whether the current threshold of concern for macroalgal 

mat biomass (2 kg m-2) is appropriate for Poole Harbour. 

 

3.2 Aims and objectives 

Aim 1: To investigate the spatial and temporal variability in benthic invertebrate 

species diversity and assemblage at three sites in Poole Harbour under 

varying levels of macroalgal mat coverage and biomass. 

Aim 2: To determine whether macroalgal mats are transforming the 

invertebrate community. 

Aim 3: Provide data on abundance of invertebrate species to inform availability 

of suitable prey items for the overwintering wading birds. 

 

Objective 1: Sample the benthic macro-invertebrate community under varying levels 

of macroalgal mat biomass and coverage.  

Objective 2: Assess the impact of macroalgal mats on the invertebrate assemblage. 

 

3.3 Methods 

3.3.1 Site selection 

The assessment of macroalgal mat extent carried out between March and August 2013 

was used to inform the selection of sampling sites for the invertebrate surveys (see 

Section 2.3.2.1).  Macroalgal mat coverage and biomass recorded at each of the 

selected sites varied during that period.  In addition, as these sites were also to be 

used for observation of bird feeding behaviour, it was necessary to ensure good visual 

coverage of each bay from a single vantage point.  Three sites were deemed suitable:  

Holes Bay, Ower Bay and Brands Bay (Chapter 2, Fig. 2.2).  Macroalgal mat extent in 

2013 and 2014 varied within each site with patches ranging from 0% - 100% coverage 

(Chapter 2, Fig. 2.6) and correspondingly varying levels of algal biomass (Chapter 2, 

Fig. 2.5).   

 

Due to the variation in environmental conditions around Poole Harbour, it was not 

possible to select a suitable control site.  There were uncontrollable environmental 
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conditions present in the ‘algae-free’ bays proposed as potential control sites and, as a 

result, differences in invertebrate community structure which would have been 

impossible to attribute solely to the lack of macroalgal mat. One particular site, Holton 

Heath, was proposed as this area remained algae-free throughout the summer of 

2013.  However, access was dangerous due to its proximity to a former weapons 

factory and land-fill site used for asbestos waste.  Wareham Channel was considered 

as this area also remained algae-free during summer 2013.  This site, however, was 

not comparable due to it being a long-thin channel rather than a sheltered bay and, 

therefore, not susceptible to the development of macroalgal mats.  Parkstone Bay to 

the east of the harbour was too sandy and likely to contain a different benthic 

invertebrate community.        

 

3.3.2 Sampling design 

As one of the aims is to determine whether macroalgal mats have an impact on 

invertebrate prey for the wading bird population, benthic core samples were taken at 

the start of two overwintering seasons (September 2013 and September 2014) and the 

mid-point of a season (December 2013).   

 

Each site was stratified according to shore gradient and classified as either upper, mid 

or lower shore.  Poole Harbour’s unique ‘double high-water’ can result in some lower 

shore levels remaining under water (water level above mean tide level) for 16 out of 24 

hours (Humphreys 2005).  Mid-shore stations aimed to represent the low water level 

for a neap tide.  In addition, as wading birds tend to follow the receding tide (Goss-

Custard et al. 1977), sampling at different shore levels enabled assessment of bird 

prey availability during a complete tidal-cycle.  

 

The sampling design was applied to each of the three sites (Brand’s Bay, Holes Bay 

and Ower Bay) (Fig. 3.1).  Within each shore-level, two sampling stations were chosen 

using random point selection; S1, S2 (lower shore), S3, S4 (mid-shore), S5, S6 (upper-

shore).  At least 50 m separated stations within the same shore level and >150 m 

separated stations on different shore-levels.  Six replicate core samples were taken at 

each station.  A map showing locations of the sampling stations is provided in 

Appendix 2. 
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3.3.3 Core sampling and processing 

Upper shore core samples were obtained at low tide from the shore using a hand corer 

10 cm diameter to a measured depth of 15 cm (Ausden and Drake 2006).  Mid and 

lower shore stations were sampled from a boat using a cylindrical suction corer 10 cm 

diameter 15 cm deep (Fig. 3.2).  In addition, a single core was taken at each station for 

sediment and organic content analysis.  Samples were immediately 

placed into labelled bags.  A total of 324 individual invertebrate core 

samples were collected during the three sampling periods.  Samples 

were stored for a maximum of 24 hours prior to being sieved in 

running water over a 0.5 mm mesh sieve.  Invertebrates and any 

organic matter within the core samples were fixed in 4% formal 

saline for at least 72 hours before identification and analysis.  

Sediment core samples were frozen for storage within 24 hours to 

prevent organic matter decomposition. 

 

 

 

 

Fig. 3.2:  Annotated diagram of suction corer used for  

mid and lower shore benthic invertebrate sampling.   

Fig. 3.1:  Nested hierarchical sampling design for benthic 

invertebrate core sampling.   
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3.3.4 Identification and measurement of invertebrates 

In the laboratory, each sample was rinsed over a 0.5 mm mesh sieve to remove 

residual formalin.  Samples were then examined using a Nikon stereo zoom 

microscope (0.8 – 8 x zoom) with x10 eyepiece.  Invertebrates were removed and 

placed in 70% industrial methylated spirit (IMS).   

 

Individual invertebrates were counted, identified and measured using a Brunel BMS 

stereo zoom microscope (0.7 – 4.5 x zoom) with x10 graticule eyepiece. Callipers (0.1 

mm) were used when individuals were >10 mm.  Samples were identified to the lowest 

possible taxonomic level (at least genus) with species identified where possible using 

Hayward and Ryland (1998), Crothers (1997), and taxonomy confirmed using the 

World Register of Marine Species (WoRMS) (www.marinespecies.org).   

 

Head widths (across peristomium) were taken of all larger worms (e.g. Hediste 

diversicolor) together with lengths of complete specimens and a regression equation 

calculated to provide lengths of incomplete specimens.  Lengths of Crustacea (from tip 

of rostrum to end of telson) were recorded and shell lengths of gastropoda and 

bivalves were measured. When in high abundance, Peringia (Hydrobia) ulvae were 

sub-sampled, with the mean of 10 measurements taken.  It is often difficult to ascertain 

whether hydrobid shells contain tissue therefore, once measured, 10% were opened 

and the percentage of empty shells noted; a corresponding percentage of Peringia 

ulvae were removed from the total count.  Length to ash-free dry-mass (AFDM) (mg) 

calculations were based upon existing equations for species recorded in Poole Harbour 

(Thomas et al. 2004; Herbert et al. 2010).  Full details of all equations used are 

provided in Appendix 3. 

 

3.3.5 Algae from benthic-cores 

Algae was removed from the sieved core sample and processed according to 

methodology detailed in Section 2.3.2.3.  Wet weight of algae samples was recorded 

using an electronic balance and samples were placed into labelled bags prior to being 

frozen for storage.  Wet weight (ww) (g) of algae obtained from each core was 

converted to g m-2.  

 

3.3.6 Sediment particle size and organic content 

Once sediment samples were defrosted, each sample was mixed by hand to ensure 

homogeneity of particle distribution.  As some of the sediment samples contained a 

high water-content, samples were dried at 105 oC for 18 hours.  Dried samples were 
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weighed using an electronic balance then placed in a muffle furnace at 450 oC for 12 

hours.  Each sample was re-weighed to determine organic % loss on ignition.   

 

Particle size distribution was determined using a Mastersizer 3000 particle 

characterisation system (Malvern Instruments).  Output provided percentages of the 

sediment within pre-defined particle size categories using the soil characteristic 

measurements contained in ISO14688-1:2002. As the instrument cannot measure 

particles >2 mm, samples were first sieved over a 2 mm mesh and particles >2 mm 

removed and weighed with the representative percentage added to the final output.   

 

3.3.7 Statistical analysis 

3.3.7.1 Between-site and between-date variation in algae biomass from core samples 

Spatial and temporal variations in macroalgal mat biomass collected from core 

samples did not meet the assumptions of normality and homogeneity of variance 

required for ANOVA so were tested using non-parametric Kruskal-Wallis test in R 

Version 3.0.3 “Supposedly Educational” (R Core Team 2016).   

 

3.3.7.2 Spatial and temporal variation in invertebrate abundance and biomass 

Invertebrate abundance and biomass values from individual replicate cores were 

combined and abundance values converted to individuals m-2; combined biomass 

values were converted to mg m-2.   

 

Assumptions of normality and homogeneity of variance were checked using Shapiro 

Wilks test within the “stats” package in R (R Core Team 2016) and Levene test within 

the “car” package developed for R (Fox and Weisberg 2011) respectively.  Variations in 

total abundance and total biomass of invertebrates were tested using Analysis of 

Variance (ANOVA) with subsequent pair-wise analysis conducted using Tukey post-

hoc test in R Version 3.0.3 “Supposedly Educational” (R Core Team 2016).   

 

3.3.7.3 Diversity indices 

Univariate indices were calculated using Plymouth Routines In Multivariate Ecological 

Research (PRIMER) v.6 (Clarke and Gorley 2006). Diversity indices measured were 

number of species (S); numerical abundance (N); Margalef’s index of richness (d) 

whereby d = (S-1)/log(N); Shannon-Weiner diversity (H’(loge) H’ = -Σi pi log(pi) where pi 

is the proportion of the total count arising from the ith species; Pielou’s evenness index 

(J) where J = H’/H’max = H’/logS, and Simpson’s diversity (1- λ ) 1- λ = 1-{ΣiNi(Ni-

1)}/{N(N-1)} where Ni is the number of individuals of species i, (Clarke and Warwick 
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2001). Variation between sites was analysed using ANOVA with a Tukey post-hoc test 

in R (Version 3.0.3 “Supposedly Educational”, R Core Team 2016) or Kruskal-Wallis 

test if assumptions required for ANOVA were not met.   

 

3.3.7.4 Invertebrates as indicators of nutrient pollution 

Abundance/Biomass Comparison (ABC) curves for each site were plotted using 

PRIMER v.6 (Clarke and Gorley 2006). Differences are highlighted by a W value with a 

positive W value indicating biomass greater than abundance and, therefore, a less 

stressed environment.  A negative W value would suggest a stressed system (Warwick 

1986).  As the differentiations between stress levels are not indicated by Warwick 

(1986), W values were determined as: 

 

W =  >0.00   ‘less stressed’ 

W =  ≤ 0.00 - ≤ -0.05 ‘moderately stressed’ 

W =  >-0.05   ‘highly stressed’ 

 

3.3.7.5 Multivariate analysis of invertebrate community assemblage 

PRIMER (v.6) was used to analyse spatial and temporal variation in invertebrate 

assemblage (Clarke and Gorley 2006).  The community assemblage was determined 

using abundance m-2 of each species recorded from the combined species totals of the 

six replicate core samples per station.  Abundances were transformed as necessary 

and converted into a distance based matrix using Bray Curtis Index of Dissimilarity 

(Clarke et al. 2006).   

 

Data were plotted on a non-metric multi-dimensional scaling (nMDS) plot and any 

obvious separation between samples noted.  Analysis of Similarity (ANOSIM) was 

carried out on the assemblage data to determine any significant spatial or temporal 

variation in community structure.  Once significant variation had been determined, 

‘similarity percentages’ (SIMPER) was used to determine which species were the main 

drivers of variation between sites or dates (Clarke and Gorley 2006). 

 

3.3.7.6 The influence of algae, organic content and sediment particle size on 

macrobenthic community assemblage  

A distance-based linear model (DISTLM) was used to determine the influence of four 

environmental factors on invertebrate community assemblage.  DISTLM within the 

PERMANOVA add-on to PRIMER (v.6) provides a method for analysing multiple 

dependent variables within an assemblage against one or more associated predictor 
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variables (Anderson et al. 2008).  Transformed assemblage abundance data are 

placed into a distance matrix (in this case Bray Curtis Index of Dissimilarity).  Where 

sub-sets of data were tested, a zero-adjusted Bray-Curtis coefficient was used and a 

‘dummy sample’ of value 1 was added.  This enabled the index to reflect actual 

dissimilarity between denuded samples (i.e. those which contain no species within the 

sub-set group) rather than inferring similarity between samples due to absence of 

species (Clarke et al. 2006).  The four environmental variables used; algae biomass, 

algae % coverage, % organic content and % sand, were normalised using Euclidean 

distance measure to enable comparison between different metrics (Clarke et al. 2006).   

 

3.3.7.7 The effect of macroalgal mat biomass on invertebrate abundance (m-2) 

Total abundance (m-2) of invertebrates plotted against algae biomass appeared to 

show a non-monotonic curved relationship.  A generalised additive model (GAM) was 

plotted with a loess smoothing curve applied using ggplot2 package in R (version 3.3.0 

“Supposedly Educational”, R Core Team 2016) (Wickham 2009). 

 

3.4 Results 

Section 3.4.1 provides analysis of any variation in algae biomass collected from 

benthic cores.  Sections 3.4.2 – 3.4.6 analyse spatial and temporal variation in the 

benthic invertebrate community during autumn and winter periods at the three 

sampling sites.  Sections 3.4.7 to 3.4.9 focus on the impact of macroalgal mats on the 

benthic invertebrate community. 

 

3.4.1 Algae biomass from core samples 

Fig. 3.3 shows the mean wet weight algal biomass (ww g m-2) for samples collected 

using either hand or suction corer from upper, mid and lower shore-levels in 

September 2013, December 2013 and September 2014.  It is apparent that biomass at 

the different shore levels within each site mirrored the results from the upper shore 

quadrat samples whereby Holes Bay recorded a much lower biomass than either 

Brands Bay or Ower Bay.  Both Ower Bay and Brands Bay recorded upper shore, mid 

shore and even some lower shore macroalgal mat biomass >1000 g (ww) m-2, and 

some mid shore and upper shore samples >2000 g (ww) m-2.  Mid-shore and upper-

shore biomass in Ower Bay was high and there was a large variation in September 

2014 upper shore samples in Brands Bay.  Despite this, there was no significant 

variation in macroalgal mat biomass from core samples between sites (p = >0.05) or 

between dates (p = >0.05).  
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Fig. 3.3:  Mean wet weight biomass of algae (g m
-2

) recorded in core samples taken at upper, 

mid and lower shore levels in September 2013, December 2013 and September 2014.  Error 

bars + 1 s.e. There was no significant variation (p = >0.05) in macroalgal mat biomass between 

sites or between dates. 

 

3.4.2 Benthic invertebrate community 

A total of 42 invertebrate species were recorded during the study – 18 annelids (17 

polychaetes, 1 oligochaete), 10 crustaceans, 10 molluscs (5 bivalves, 4 gastropods 

and 1 chiton), 2 larval insects (Chironomidae and Dolichopodidae), 1 nemertea and 1 

actinaria.  These included common benthic invertebrates such as Corophium volutator 

[Pallas 1766], Tubificoides spp. Hediste diversicolor, and Peringia (Hydrobia) ulvae, 

together with non-native species (Desdemona ornata [Banse 1957], and Ruditapes 

philippinarum [Adams & Reeve 1850]).  A full list of species recorded is presented in 

Appendix 4. 

 

3.4.3 Spatial variation in species diversity 

Table 3.1 shows diversity indices (number of species (S), numerical abundance (N), 

Margalef’s index of richness (d), Pielou’s evenness index (J), Shannon-Weiner 

diversity (H’(loge), and Simpson’s diversity (1-λ) calculated for each site irrespective of 

date and shore level.  Table 3.2 provides details of significant variations between sites 
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for diversity indices.  Although there were only two significant differences between 

sites, these were both between Brands Bay and Holes Bay.   

 

Table 3.1:  Diversity indices (number of species (S), numerical abundance (N), Margalef’s index 

of richness (d), Shannon-Weiner diversity (H’(loge), Pielou’s evenness index (J') and Simpson’s 

diversity (1-λ) on square-root transformed abundance for all samples per site (±95% confidence 

interval in parentheses). 

 
S N d J' H'(loge) 1- λ 

Brands 

Bay  

12.611  

(±1.80) 

209.66  

(±27.52) 

2.18  

(±0.32) 

0.82  

(±0.03) 

2.05  

(±0.17) 

0.82  

(±0.03) 

Holes 

Bay 

10.00  

(±1.14) 

186.91 

(±29.86) 

1.73  

(±0.18) 

0.87  

(±0.02) 

1.96  

(±0.09) 

0.83  

(±0.02) 

Ower 

Bay  

11.61  

(±1.29) 

173.84  

(±27.64) 

2.07  

(±0.22) 

0.84  

(±0.03) 

2.04  

(±0.12) 

0.83  

(±0.02) 

 

Table 3.2:  ANOVA and Tukey post-hoc analysis between sites for diversity indices (Margalef’s 

index of richness (d), Shannon-Weiner diversity (H’(loge), Pielou’s evenness index (J') and 

Simpson’s diversity (1-λ) for the benthic invertebrate community.  BB:  Brands Bay HB:  Holes 

Bay OB:  Ower Bay.   Significance codes: *** <0.001 ** <0.01 * <0.05 NS = not significant (p = 

>0.05). 

Diversity index F  Df Sig. 

Tukey  

post-hoc 

Margalef’s  

richness (d) 
3.649  2,51 p = 0.033* BB>HB p = 0.033* 

Pielou’s  

evenness (J')  
3.435  2,51 p = 0.040* HB>BB p = 0.031* 

Shannon-Weiner  

diversity (H’(loge) 
 2,51 

NS 

p = 0.506 
- 

Simpson’s  

diversity (1-λ)  
 2,51 

NS  

p = 0.823 
- 

 

3.4.4 Spatial variation in overall abundance and overall biomass of 

invertebrates 

3.4.4.1 Abundance 

Figure 3.4 shows mean abundance (individuals m-2) and mean biomass (mg m-2) by 

site for species recorded.  There was significant variation in the abundance of molluscs 
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between sites (F 2,51 = 3.291, p = 0.045) with a significantly greater abundance in 

Brands Bay than Ower Bay (p = 0.036).  There was also a significant variation in larval 

insect abundance between sites (F 2,51 = 4.773, p = 0.013) with a significantly greater 

abundance recorded in Brands Bay than Holes Bay (p = 0.014). There was no 

significant variation in abundance of annelid worms, crustaceans or Hydrobidae 

between sites (p = >0.05). 

 

3.4.4.2 Biomass 

Biomass of annelid worms varied significantly between sites (F 2,51 = 5.832, p = 0.005) 

with significantly higher annelid biomass recorded in Holes Bay than Brands Bay (p = 

0.011) and in Holes Bay than Ower Bay (p = 0.016).  There was significant variation in 

mollusc biomass between sites (F 2,51 = 5.368, p = 0.008) with greater biomass 

recorded in Holes Bay than Brands Bay (p = 0.012) and Holes Bay than Ower Bay (p = 

0.028).  Larval insect biomass varied significantly between sites (F 2,51 = 4.773, p = 

0.013) with greater biomass in Brands Bay than Holes Bay (p = 0.014).  There was no 

variation in crustacean or Hydrobidae biomass between sites (p = >0.05). 

 

 

Fig. 3.4:  Mean abundance (individuals m
-2

) and mean biomass (mg m
-2

) for key invertebrate 

groups by site with significant pairs (p = <0.05) shown (*).  Annelid worms, Crustaceans, 

Molluscs (excluding Hydrobidae), Hydrobidae and Insects (comprising larval Chironomidae and 

Dolichopodidae).  Error bars ± 1 s.e.  Data are shown on a log10 scale for clarity.   
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3.4.5 Temporal variation in overall abundance and overall biomass of 

invertebrates 

Figure 3.5 shows mean abundance (individuals m-2) and mean biomass (mg m-2) by 

date for species recorded.  There was a significant variation in annelid worm 

abundance between dates (F 2,51 = 4.369 , p = 0.042), with a significantly (p = <0.05) 

greater abundance recorded in December 2013 compared to September 2013 (p = 

0.042) and December 2013 compared to September 2014 (p = 0.03). There were no 

other significant variations between dates (p = >0.05). 

 

There was no statistically significant variation in biomass (mg m-2) between dates.  

 

 
 

Fig. 3.5:  Mean abundance (individuals m
-2

) and mean biomass (mg m
-2

) for key invertebrate 

groups by date with significant pairs (p = <0.05) shown (*).  Annelid worms, Crustaceans, 

Molluscs (excluding Hydrobidae), Hydrobidae and Insects (comprising larval Chironomidae and 

Dolichopodidae).  Error bars ± 1 s.e.  Data are shown on a log10 scale for clarity.   

 

3.4.6 Using benthic invertebrates as indicators of environmental stress 

Figure 3.6 shows the Abundance/Biomass comparison (ABC) curves for each site and 

date.  All sites were showing either moderate (W = ≤ 0.00 - ≤ -0.05) or high (W = >0.05) 

levels of stress with the exception of Holes Bay in September 2014 which showed a 

low positive W measurement.  These values indicate a higher abundance of 

opportunistic r-selected species over K-selected species (Warwick 1986).    
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Fig. 3.6:  Abundance/Biomass Comparison curves plotted for each site by date using square-root transformed values within a Bray Curtis index 

of dissimilarity.  W values: >0.00 ‘less stressed’, ≤ 0.00 - ≤ -0.05 ‘moderately stressed’, >-0.05 ‘highly stressed’.   
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3.4.7 Spatial and temporal variation in benthic invertebrate community 

assemblage 

It is apparent from the spatial separation in the non-metric multi-dimensional scaling 

(nMDS) plot shown in Fig. 3.7 that the community structure in Holes Bay is less similar 

to that in Brands Bay or Ower Bay.      

 

A one-way ANOSIM test showed significant variation in community assemblage 

between sites (R = 0.446, p = 0.01) with significant variation between Brands Bay and 

Holes Bay (R = 0.716, p = 0.01) and between Holes Bay and Ower Bay (R = 0.473, p = 

0.01) no variation was found between Ower Bay and Brands Bay (p = 0.09). There was 

no significant variation in community assemblage between dates (p = >0.05). 

 

 

Fig. 3.7:  Non-metric multidimensional scaling (nMDS) plot of Bray Curtis similarity on square-

root transformed community abundance (m
-2

).  Samples from September 2013 (0913), 

December 2013 (1213) and September 2014 (0914) at Brands Bay (BB), Holes Bay (HB) and 

Ower Bay (OB).  Each point represents the mean value (m
-2

) of six replicate benthic cores.   

 

SIMPER analysis of the significant differences identified by ANOSIM revealed that the 

main species contributing to variance in community structure between Holes Bay and 

Brands Bay, and Holes Bay and Ower Bay was H. diversicolor.  This species 

contributed 15% and 16% respectively of the variation between the sites.  Overall 

dissimilarity between communities on different sites was largely driven by six species.  

These species (H. diversicolor, Chironomidae, Tubificoides spp., P. ulvae, Streblospio 

shrubsolii [Buchanan 1890] and Aphelochaeta marioni [Saint-Joseph 1894]) 
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contributed 67% of the variation between Holes Bay and Brands Bay, and 65% of the 

variation between Holes Bay and Ower Bay.  Table 3.3 provides details of the 

individual % contribution from these six species.  Of the 42 species recorded, 19 were 

responsible for 90% of the variation in community structure between Holes Bay and 

Brands Bay and 18 responsible for 90% of the variation between Holes Bay and Ower 

Bay.  A table showing all species contributing up to 90% of the cumulative variation 

between sites is provided in Appendix 4. 

 

Table 3.3:  Results from SIMPER showing the main contributors to variation in the invertebrate 

community structure between sites.  Pairs of sites with significant variation were identified from 

ANOSIM results (BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay).  Comparisons between BB 

and OB were not significant so are not given.  Data show average abundance for species within 

the two groups, individual species % contribution and the cumulative % contribution.  Data are 

square-root transformed abundance within Bray-Curtis index of dissimilarity.    

Brands Bay and Holes Bay 

Average dissimilarity = 62.27 
    

 
BB HB                

Species 

Average 

Abundance 

(indiv. m
-2

) 

Average 

Abundance 

(indiv. m
-2

) 

Contributory 

% 

Cumulative 

% 

H. diversicolor 6.06 42.1 15.11 15.11 

Chironomidae 36.37 0.93 13.79 28.9 

Tubificoides spp. 57.47 29.04 13.03 41.93 

P. ulvae 25.95 40.97 11.43 53.36 

S. shrubsolii 3.41 21.9 7.78 61.14 

A. marioni 10.11 13.74 5.73 66.87 

Ower Bay and Holes Bay 

Average dissimilarity = 53.33 
    

 
OB HB                

Species 

Average 

Abundance 

(indiv. m
-2

) 

Average 

Abundance 

(indiv. m
-2

) 

Contributory 

% 

Cumulative 

% 

H. diversicolor 14.3 42.1 15.76 15.76 

P. ulvae 32.92 40.97 13.3 29.06 

Tubificoides spp. 48 29.04 12.97 42.03 

S. shrubsolii 2.38 21.9 10.6 52.63 

A. marioni 9.98 13.74 6.79 59.42 

Chironomidae 12.78 0.93 6.02 65.44 
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3.4.8 The impact of algae biomass on benthic invertebrate species richness, 

evenness and diversity 

Analysis was carried out on the effect of algae biomass on Pielou’s evenness, 

Shannon diversity and Margalef richness between sites and within sites.  Algal 

biomass had a significant negative effect on Pielou’s evenness across all sites (F1,52 = 

9.43, p = 0.003, adj. R2 = 0.14).  Algae biomass did have a statistically significant 

positive effect upon Margalef richness in Holes Bay (F1,16 = 6.538, p = 0.021, adj. R2 = 

0.246).  However, the R2 values indicate other, untested, biotic and abiotic factors are 

affecting species’ evenness and richness.  No other significant effects were found 

between algae biomass and biological indices.   

 

3.4.9 The impact of algae, sediment organic content, and sediment type on 

benthic invertebrate community assemblage 

Table 3.4 provides details of the DISTLM routine with algae biomass (g m-2), algae % 

coverage, % organic, and % sand, against Bray-Curtis dissimilarity index for 

abundance of invertebrates.  Separate DISTLM routines were run for the six species 

which were the main drivers of community assemblage variation between sites as 

identified by the ANOSIM (Section 3.5.7).  Significant variation was found for all groups 

except mollusc abundance excluding P. ulvae (p = 0.096).  Strength of correlations 

using Pearson (r) coefficient are shown for individual species’ abundance against the 

individual contributory environmental variables in the best explanatory model.  All the 

models shown, except P. ulvae variance, recorded a R2 of >15% with some models 

explaining >25% of the variation in community structure.  

 

Algae biomass, either singularly or in combination with % organic, provided the best 

explanatory model for variance in the overall community assemblage; annelid worm 

assemblage; crustacean assemblage and five of the six species identified by ANOSIM.  

Tubificoides spp. variance was best explained by % organic content.  Full details of the 

algae biomass, % algae cover, % organic content and % sand for each sample are 

provided in Appendix 5. 

 

The correlations for individual species show negative (r) values for algae biomass and 

abundance for each individual polychaete worm species whereas there was a positive 

correlation for algae biomass on both Chironomidae and P. ulvae abundance.  Organic 

content was negatively correlated with Tubificoides spp. abundance and Chironomidae 

abundance; although the spionid polychaete, S. shrubsolii, abundance showed a 

positive correlation with organic content.   
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Table 3.4:  DISTLM results for log(x+1) transformed benthic invertebrate community abundance 

m
-2

 within a Bray Curtis Index of Dissimilarity.  Environmental variables tested: algae biomass (g 

m
-2

); algae % coverage; % organic; % sand.  Pearson (r) values given for individual species’ 

correlations. 

Abundance 

(groups)  

Explanatory 

category  

Pseudo F 

(res. df) 
Adj. R

2
  P value   

All abundance 

Algae 

biomass+ % 

organic 

4.325  

(51) 
0.16 0.001  

Annelida  

Algae 

biomass+ % 

organic 

5.250  

(51) 
0.22 0.001  

Crustacea  

Algae 

biomass+ % 

organic 

3.420  

(51) 
0.12 0.015  

Mollusca  - - - 0.096  

      

Abundance 

(species)  

Explanatory 

category  

Pseudo F 

(res. df) 
Adj. R

2
  P value  Pearson r 

A. marioni  Algae biomass 
15.946 

(52) 
0.22 0.001 -0.51 

H. diversicolor  Algae biomass 
11.013 

(52) 
0.16 0.001 -0.44 

S. shrubsolii 

Algae 

biomass+ % 

organic 

8.830 

(51) 
0.30 0.006 

-0.41 

0.46 

Chironomidae  

Algae 

biomass+ % 

organic 

6.814  

(51) 
0.28 0.008 

0.40  

-0.45 

Tubificoides spp. % organic 
10.861 

(52) 
0.17 0.001 -0.43 

P. ulvae Algae biomass 
4.977  

(52) 
0.09 0.02 0.41 

 

3.4.10 The impact of algae biomass on overall benthic invertebrate abundance   

Results from the DISTLM models show both negative and positive correlations for 

abundances of the top six species.  By plotting overall abundance of invertebrates 

against algae biomass irrespective of site or date it became clear that the relationship 

was more complex.  Scatter plots were visually examined and appeared to show a 

non-monotonic curve.  A generalised additive model (GAM) was fitted with loess 

smoothing curve and 95% confidence intervals plotted.  Figure 3.8 shows this applied 

to abundance of invertebrates (individuals m-2) against algal biomass (g m-2) 
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irrespective of date or site.  It shows an initial increase in overall invertebrate 

abundance up to an algal biomass ~800 g (ww) m-2 before abundance begins to 

decline.   

 

 

Fig. 3.8: GAM plot with loess smoothing curve showing the relationship between invertebrate 

abundance (individuals m
-2

) against algae biomass (g (ww) m
-2

).  Shaded area shows 95% 

confidence interval.  Data are plotted on a log10 scale for clarity. 

 

3.5 Discussion 

The aims of this chapter were, firstly, to investigate the invertebrate community within 

Poole Harbour under varying levels of macroalgal mat coverage, and secondly to 

determine whether the macroalgal mat is transforming that community.   

 

3.5.1 Benthic invertebrate community 

There were fewer species recorded during this survey than have previously been found 

in Poole Harbour using a similar sampling methodology (Thomas et al. 2004; Herbert 

et al. 2010).  This is not surprising as those earlier surveys were specifically designed 

to record invertebrate species’ diversity across the whole harbour; thus requiring a 

greater number and spatial distribution of sampling sites.  The aim of this research was 

to determine invertebrate prey availability and diversity within three selected sites and 

Algae biomass gm
-2
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under varying macroalgal mat conditions.  The community structure remained 

consistent with previous studies, showing a greater abundance of annelid worm 

species (n = 20) compared to molluscs (n = 10) and crustaceans (n = 10).  These 

results support a possible regime shift of macro-invertebrates from one dominated by 

bivalve molluscs to a more ‘worm-dominated’ system reported during the 1990s 

(Caldow et al. 2005).  This change in community structure has been attributed to 

sediment contamination of bivalves from high levels of tributyltin (TBT) (Langston et al. 

2015).  However, this would require further investigation which falls beyond the scope 

of this research.    

 

3.5.2 Using benthic invertebrates as indicators of environmental stress 

The ABC curves were established in order to test levels of pollution within an estuarine 

environment (Warwick 1986).  However, the relationship between abundance and 

biomass of individual invertebrates can be used to determine other potential 

environmental stress such as macroalgal mats.  The ABC curves shown in Fig. 3.6 

indicate that all three sites were showing either moderate (W≤ 0.00 - ≤ -0.05) or high 

(W>0.05) levels of stress, with the exception of Holes Bay in September 2014.  Even 

this site, however, still only showed a low positive W measurement.  These values 

suggest a higher proportion of fast growing r-species are present within the bays.  

These species are likely to be opportunists or pollution tolerant and able to take 

advantage of a fluctuating environment.  Estuaries are by nature stressed 

environments (McLusky and Elliott 2004) so it could be argued that the ABC values are 

only indicating stress inherent within the system.  However these models do not require 

baseline data as the curves are plotted using abundance and biomass data from 

fieldwork (Warwick and Clarke 1994).  Analysis is bounded by the site limits and 

cannot be used to infer environmental stress in other areas.  As it is widely agreed that 

using individual species as indicators of environmental stress is an unreliable method 

(Warwick 1986; Gray and Elliot 2010), ABC curves can provide a useful initial overview 

of the levels of stress within a system and whether further investigations are required.   

 

The ABC curves showed that each area contained a greater abundance of smaller 

species or opportunists rather than slower-growing and larger fauna.  Once the 

subsequent ANOSIM and SIMPER analyses were completed the results confirmed the 

output from the ABC curves.  The top six most abundant species for each survey site 

comprised small worms, opportunistic gastropods, Chironomidae larvae and the highly 

adaptable H. diversicolor; all small r-selected species with the exception of H. 

diversicolor.  However, although slower-growing, H. diversicolor is an adaptable feeder 
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able to alter its feeding strategy in response to available food supply; H. diversicolor 

will switch from a carnivorous to a detritivorous or herbivorous diet (Barnes 1994).   

 

3.5.3 The impact of algae, sediment organic content, and sediment type on 

benthic invertebrate community assemblage 

The results revealed that each site contained a greater abundance of smaller r-

selected species than K-selected thereby suggesting a stressed system (Warwick 

1986; Gray and Elliot 2010).  The second part of this chapter aimed to determine 

whether algae biomass, algae coverage, sediment organic content or sediment type 

were contributory factors to this stress.    

 

The negative impact on species evenness from algal biomass recorded is possibly a 

consequence of the increased numbers of the opportunist species.  An increase in 

richness in Holes Bay is consistent with results recorded during an earlier study at a 

nearby site described in Jones and Pinn (2006).  Although this work found the increase 

in richness occurred during the peak algae growth period (June – August) and was 

followed, in November, by a decline.  Other studies in locations away from Poole 

Harbour have found macroalgal mats have negatively impacted some biological 

indices.  For example, in a study in two sub-estuaries of the Waquoit Bay, 

Massachusetts, Fox et al. (2009) recorded a significant decline in invertebrate species 

abundance in the eutrophicated area with macroalgal mat compared to the non-algae 

area.  By contrast Everett (1994) found no relationship between invertebrate diversity, 

richness, or evenness between algae plots and cleared plots in an experimental 

design.   

 

Based on results from Herbert et al. (2010), it had been expected that sediment type 

and organic content would be the main contributory environmental factors to the 

distribution of the invertebrate assemblage.  However, given that the main species 

contributing to the variation in assemblage were all highly adaptable or opportunists, it 

was not surprising that sediment type was unimportant.  The combination of algae 

biomass and organic content suggests that the organic matter within the sediment 

comprises decaying or fragments of green macroalgae.  More detailed analysis of the 

organic matter within the sediment would be required to confirm this.   

 

There is clearly a relationship between annelid worm assemblage and algae biomass 

with organic content.  Whilst the negative effect of algae biomass on important 

polychaete species (H. diversicolor, S. shrubsolii, A. marioni) supports work carried out 
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in other temperate estuaries (Bolam et al. 2000; Raffaelli et al. 2000), other studies 

recorded an increase in abundance of H. diversicolor under increased algal biomass 

(Cardoso et al. 2004).  Indeed experimental work carried out in the Mondego Estuary, 

Portugal, recorded an initial increase in abundance of H. diversicolor followed a month 

later by a decline (Lopes et al. 2000).   

 

Capitellid species were not recorded in large numbers in either Brands Bay or Holes 

Bay and were only the 5th most abundant species in Ower Bay.  It had been expected 

that these pollution tolerant species would be highly abundant under the macroalgal 

mat as previous studies have recorded similar results (Raffaelli et al. 2000).  An 

abundance of capitellids can be a reliable indicator of nutrient enrichment (Pearson 

and Rosenberg 1978) and have been regarded as a ‘universal indicator of organic 

pollution (Gray and Elliott 2010).  However, Capitella spp. are highly opportunistic; 

taking advantage of a sudden disturbance in the functioning ecosystem and increasing 

their reproduction rate in response (Gray and Elliot 2010).  As the estuarine system 

responds to disturbance, Capitella spp. are rapidly outcompeted by other benthic 

invertebrates and return to their normal population levels.  It is reasonable to suppose 

that the Capitella spp. population in Poole developed rapidly during the peak growth 

period of the algae (June – August) and then declined once the more stress tolerant 

species colonised the area.  It is possible that the timing of the invertebrate surveys 

carried out in this research resulted in the early population growth of capitellids being 

missed. Given that one of the aims of this research was to determine prey availability 

for the overwintering bird population, mid-summer surveys would not have been 

appropriate.   

 

However, it could equally be argued that the experimental manipulation of algal 

biomass carried out in previous studies might be regarded as a sudden ‘acute’ stress 

event and therefore encourage the rapid population growth of capitellids which is not 

repeated in the field.  Given that the natural development of macroalgal mats takes 

place over a period of months, it could be interpreted as ‘chronic’ rather than ‘acute’ 

stress (Gray and Elliott 2010).  As macroalgal mats have been a feature of many 

estuarine systems for decades it is possible that the continued long-term impact may 

have resulted in capitellids being outcompeted by other opportunist species.   

 

There were fewer crustaceans recorded during this survey than previously within the 

harbour (Thomas et al. 2004; Herbert et al. 2010); no crustaceans were in the top six 

species recorded at any site.  Nonetheless, the effect of algae biomass on crustacea is 
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widely acknowledged.  A decline in abundance of C. volutator under increased algal 

biomass was recorded in the Ythan Estuary (Raffaelli et al. 2000); a decline in 

abundance of Cyathura carinata [Krøyer 1847] was found under long-term macroalgal 

mat development in the Mondego Estuary (Ferreira et al 2004; Cardoso et al 2004).  

By contrast Bolam et al. (2000) reported an increase in abundance of Gammarus spp. 

after 6 weeks of a 20 week experimental manipulation of algae biomass on the Firth of 

Forth, Scotland.  It is worth noting that this experiment was conducted on sandflats 

rather than intertidal mudflats although it was acknowledged that results were similar to 

those found in muddier sediment.      

 

It was expected that abundance of the herbivore P. ulvae would increase in response 

to an increase in available resources obtained from the macroalgal mat biomass; 

previous studies have also reported an increase in P. (Hydrobia) ulvae (Soulsby et al. 

1982; Cardoso et al. 2004).  It is possible that the dense macroalgal mat is providing 

an ideal habitat for the gastropod with an abundant food supply and shelter from 

predators.   

 

One notable feature of the estuarine community in Poole Harbour is the abundance of 

larval Chironomidae; particularly in Brands Bay and, to a lesser extent, in Ower Bay.  

Chironomidae response to an increase in algal biomass has not been reported in 

previous studies.  However studies have shown that an increase in hydrogen sulphide 

(H2S) can lead to an increase in chironomid larvae (Fletcher 1996) therefore it had 

been anticipated that chironomid larvae abundance would increase as macroalgal mat 

biomass increased.  Indeed it is reported that the larvae utilise the tubular thallus of U. 

intestinalis both for shelter and as a food source (McAllen 1999).  It was expected that 

chironomid abundance would be higher in December due to the reported seasonal 

fluctuation of this species (Como and Magni 2009).  However, although there were a 

greater number of insect larvae recorded in December 2013, there was no significant 

variation in abundance or biomass of insects between September 2013, December 

2013 or September 2014.  Given that, with two individual exceptions, the abundance of 

insects comprised entirely of chironomids, seasonal variation does not account for the 

fluctuation in abundance.          

 

The negative correlation between Tubificoides spp. and % organic content is 

noteworthy as oligochaetes will consume organic matter within the sediment and 

facilitate bacterial decomposition of organic matter by breaking down larger particles 
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(Giere 2006).  It is possible that the quantity or size of the organic matter fragments 

were too large to be effectively broken down (Giere 2006).    

     

3.5.4 The impact of algae biomass on overall invertebrate abundance; a 

threshold for macroalgal mat biomass in Poole Harbour 

A certain amount of algae (as primary production) is essential to stimulate growth and 

consumption within an estuarine system (Raffaelli et al. 1999; Fox et al. 2009).  What 

remains unclear is at what point the algal biomass becomes too great, leading to a 

detrimental impact upon benthic invertebrate abundance (Rees-Jones 2004).  Despite 

almost all being opportunists, the ‘top six’ species recorded in Poole Harbour 

responded very differently to increases in algal biomass.  Given the complexity of the 

relationship between just six species, it was not surprising to find the response of the 

overall population of invertebrates was variable.  Fig. 3.8 shows an initial increase in 

invertebrate abundance up to an algal biomass of ~800 g (ww) m-2 thereby supporting 

the suggestion that an algal biomass >1000 g (ww) m-2 could be regarded as the 

‘tipping point’ beyond which invertebrates in the Poole Harbour estuarine system may 

be detrimentally impacted.  These data also support previous studies where a 

detrimental impact upon invertebrate species was recorded when algae biomass was 

>1000 g (ww) m-2 (Hull 1987; Raffaelli et al. 1998).  

 

However, it is acknowledged that there were fewer invertebrate samples taken under 

macroalgal mat biomass >2000 g (ww) m-2, as reflected in the wider confidence 

intervals shown in Fig. 3.8.  Therefore it is recommended that further research be 

undertaken, particularly during the peak growth period of the algae (June – August), in 

order to determine whether 1000 g (ww) m-2 is an appropriate ‘tipping point’.   

 

3.5.5 Conclusion 

There is no doubt that interactions between algae and benthic macro-invertebrates are 

complex.  What remains clear is that there are no predictable general effects and each 

system has a unique set of environmental and algae variables contributing to 

assemblage characterisation and species diversity.  In addition there appears to be 

some scope for further research using a combined experimental and survey approach 

to determine the impact on invertebrates from macroalgal mats.       
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4.0 The effect of macroalgal mats on wading bird prey: 

implications for individual bird species 

Abstract 

It is estimated that UK estuaries support 1.5 million overwintering wading birds making 

these areas a priority habitat for conservation in Europe.  In temperate coastal areas, 

wading birds begin to arrive in September to take advantage of the rich supply of 

invertebrates available within the estuarine sediment.  Macroalgal mat coverage in 

Poole remained extensive during September – November and algal biomass >1 kg m-2 

was recorded in benthic core samples from September 2013 and September 2014.   

 

This chapter examines how the macroalgal mats affect the preferred benthic 

invertebrate prey of migratory wading birds in Poole Harbour.  Five species of wading 

bird; Eurasian curlew (Numenius arquata); black-tailed godwit (Limosa limosa); 

oystercatcher (Haematopus ostralegus); redshank (Tringa totanus) and dunlin (Calidris 

alpina) were selected for study.  Not all prey items are available to all birds nor will all 

prey items provide sufficient energy for different wading bird species.  Each wading 

bird species was allocated a ‘benthic invertebrate menu’ (BIM) based upon energy 

values contained within the preferred prey species/sizes available at each study site 

(Holes Bay, Brands Bay, Ower Bay). 

Results showed the highest energy available for each wading bird species was in 

Holes Bay.  There was also an initial increase in each species’ BIM under lower 

macroalgal mat biomass (<~800 g (ww) m-2) in Holes Bay and Ower Bay followed by a 

decline in BIM at higher macroalgal mat biomass; a pattern not as apparent in Brands 

Bay.  A reduction in available energy within each bird’s preferred prey could have 

implications for the overwintering wading bird’s ability to maintain sufficient energy to 

ensure winter survival.   
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4.1 Introduction 

It is estimated that UK estuaries support 1.5 million overwintering wading birds (RSPB 

accessed 03/2016) making these areas a priority habitat for conservation in Europe 

(Durell et al. 2006).  Large populations of wading birds (comprising Charadriidae, 

Recurvirostridae, Scolopacidae, Haematopodidae) are supported by the rich 

invertebrate prey resources provided by temperate intertidal mudflats; an essential 

overwintering habitat for the birds (Stillman et al. 2010).  The British Trust for 

Ornithology (BTO) reported that, following long-term declines, ringed plover 

(Charadrius hiaticula [Linnaeus, 1758]), oystercatcher (Haematopus ostralegus 

[Linnaeus, 1758]) and dunlin (Calidris alpina [Linnaeus, 1758]) all recorded a small 

increase, redshank (Tringa totanus [Linnaeus, 1758]) numbers may be stabilising, and 

populations of black-tailed godwit (Limosa limosa [Linnaeus, 1758]) remained high 

(Frost et al. 2016).  Numbers of other species (including turnstone (Arenaria interpres 

[Linnaeus, 1758]), grey plover (Pluvialis squatarola [Linnaeus, 1758]) and curlew 

(Numenius arquata [Linnaeus, 1758]) declined resulting in curlew being included on the 

Birds of Conservation Concern 4 Red List (Eaton et al. 2015).  The trend appears to be 

a decline in the overall population of wading birds in the UK from 1974 – 2013 as 

shown in Fig. 4.1 (Holt et al. 2015). 

Fig. 4.1:  UK winter average 1974 – 2013 for 5 key species of wading bird:  Curlew (Numenius 

arquata), black-tailed godwit (Limosa limosa), oystercatcher (Haematopus ostralegus), 

redshank (Tringa totanus), and dunlin (Calidris alpina).  Data from British Trust for Ornithology 

(BTO) Wetland Bird Survey (WeBS) Report 2013/2014 (Holt et al. 2015). 
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In temperate coastal areas, wading birds begin to arrive in September from their 

breeding grounds further north to take advantage of warmer conditions and the rich 

supply of invertebrates available within the sediment (Ferns 1992).  Each individual 

bird’s behaviour is governed by a need to maximise its chances of survival and 

maintain sufficient energy stores to be fit enough to return to breed the following spring 

(Prater 1981). Wading birds are one of the top predators within an estuarine food-web 

and their survival largely depends upon the availability during winter of sufficient prey 

within the mudflats (Raffaelli and Milne 1987).  Overall numerical abundance of 

invertebrates within a system is, therefore, an important factor when assessing the 

quality and diversity of the intertidal mudflats (West et al. 2005).  However, abundance 

alone cannot provide an indicator of suitable resources for wading birds; prey quality 

(measured as size), and the energy contained within the prey, is key to the success of 

the overwintering bird population (West et al. 2007).   

 

Larger wading birds have a greater daily energy requirement (DER) due to their size 

and will therefore consume larger size prey to obtain that energy (Goss-Custard et al. 

1977; Zwarts and Wanink 1993).  Each bird will select prey based upon ensuring 

maximum energy intake with minimum energy cost (Goss-Custard 1977; Durell 2000); 

energy cost in obtaining prey includes time spent locating and handling the prey item 

(Zwarts and Wanink 1993).  An item which is too small will result in a greater energy 

cost than the prey contains; too large and the bird is unable to consume the item 

(Goss-Custard et al. 1977; Durell 2000; Gill et al. 2001a).  As a result, each wading 

bird species has a preferred diet comprising an optimum range of size classes of prey 

which will return maximum energy for minimum effort (Zwarts and Wanink 1993; 

Santos et al. 2005).   

 

There are two important reasons why temperate intertidal mudflats are able to support 

such large and diverse populations of overwintering wading birds.  Firstly, as discussed 

in Chapter 3, the sediment supports an abundance and diversity of invertebrates 

thereby providing sufficient resources (in conjunction with terrestrial habitats) for 

overwintering wading birds.  Secondly an assemblage comprising a variety of wading 

bird species can be supported due to variations in birds’ body size, bill length/shape, 

and intestinal morphology resulting in birds requiring different sizes and species of 

invertebrate prey (Alves et al. 2010).   

 

The Eurasian curlew, (N. arquata), Europe’s largest wading bird, has an average bill 

length of 12 cm (male) and 14 cm (female) enabling the species to access prey items 
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located at depths of up to 15 cm (Evans et al. 1976; van de Kam et al. 2004).  Larger 

size classes of invertebrate prey such as annelid worms, burrow deeper into the 

sediment with some species (e.g. Hediste diversicolor [O. F. Müller 1776] and Nephtys 

hombergii [Savigny in Lamarck 1818]) recorded at sediment depths of 30 cm (Zwarts 

and Wanink 1993).  In addition it has been shown that the curlew’s curved bill enables 

the bird to successfully access prey from deep in the sediment (Ferns and Siman 

1994), with a greater proportion of prey remaining intact (Davidson et al. 1986).  Black-

tailed godwits will take prey from depths around 10 cm and the smaller birds, (e.g. 

redshank and dunlin) will take smaller prey items from the top 3-4 cm of mud 

(Dierschke et al. 1999).  Although oystercatcher’s bill length is between 6.5 cm – 9 cm 

and they can probe up to 10 cm into the sediment, this rarely occurs; oystercatchers 

tend to probe to depths of ~4 cm (Zwarts 1996).  This niche separation enables large 

and diverse populations of wading birds to feed on the same area of intertidal soft-

sediment habitat with each species selecting prey according to size and availability 

(Sutherland et al. 2005). 

 

4.1.1 Impact of macroalgal mats on wading bird benthic invertebrate prey  

Macroalgal mats have been shown to alter the sediment chemistry resulting in 

invertebrate species having to adapt to increasingly anoxic or hypoxic conditions 

(Lyons et al. 2014).  It is possible that, as a consequence, invertebrates are adapting to 

the conditions either by moving within the sediment column or extending siphons 

upwards to feed in oxygenated sediment closer to the surface (Thiel et al. 1998; 

Raffaelli 1999; Österling and Pihl 2001).  This behavioural change could increase inter-

specific competition between wading birds as larger prey sizes (previously only 

accessible to the larger birds) become available to smaller wading birds at shallower 

sediment depths.  In addition, as discussed in Chapter 3 (Section 3.5.7), there is a 

greater abundance of lower-quality smaller invertebrate species under increasing 

macroalgal mat biomass.  This could lead to a reduction in energy provision from 

invertebrates with implications for all wading bird species but in particular the larger 

birds which require greater energy intake (Zwarts and Wanink 1993).   

 

The effect of macroalgal mats on overwintering birds’ prey resources has been the 

focus of a number of studies.  Research carried out in the Ythan Estuary, Scotland, 

recorded a decline in the abundance of Corophium volutator [Pallas, 1766] under 

increased macroalgal mat biomass (Raffaelli et al. 1991); C. volutator is an important 

prey item for wading birds (particularly redshank) on that site (Goss-Custard 1970).  A 

similar decline in the abundance of important bivalve species, such as Scrobicularia 
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plana [da Costa, 1778], was recorded under increasing macroalgal mat biomass in the 

Mondego Estuary, Portugal (Cardoso et al. 2004).  Bivalves of family scrobicularidae 

form a significant part of the diet of black-tailed godwits on the Tagus Estuary, Portugal 

(Moreira 1994).  These studies experimentally manipulated levels of algal biomass and 

presented analysis of the change in abundance of individual invertebrate species under 

varying measured algae densities.   

 

4.1.2 Wading bird diet 

Studies examining the diet of overwintering wading birds have been produced since 

the 1960s although wading bird diets can be difficult to determine as the digestive 

process can result in soft-bodied prey items being under-recorded in analysis of pellets 

or droppings (Goss-Custard and Jones 1976; Sutherland et al. 2005).  A 

comprehensive review of research into wading bird diet composition was carried out by 

Goss-Custard et al. (2006b) resulting in a list of preferred prey taxa and sizes for nine 

wading bird species.  Full details of the methodology and studies used are presented in 

Goss-Custard et al. (2006b) and Durell et al. (2006).  Wolff (1969) suggested that 

wading bird distribution was determined by prey distribution.  However, as shown in 

Goss-Custard et al. (2006b) wading birds have preferred prey comprising a variety of 

taxa in sizes which will deliver the required amount of energy.   

 

4.1.3 Rationale 

Not all prey items are available to all birds (Sutherland et al. 2005) nor will all prey 

items provide sufficient energy for different wading bird species.  Therefore examining 

overall abundance or biomass of invertebrates could result in an overestimation of the 

availability of suitable prey items for birds.  This could also lead to an underestimation 

of the impact from macroalgal mats on the overwintering wading birds (for example 

from an increase in smaller, less energy-dense prey).  In addition, the invertebrate 

community varies between estuaries; the Ythan Estuary, for example, supports a very 

high abundance of C. volutator (Raffaelli et al. 1991).  By contrast, the invertebrate 

community recorded in Poole Harbour in recent years found fewer crustaceans but a 

greater abundance of annelid worms (Thomas et al. 2004; Herbert et al. 2010).  

Therefore, although it is important to ascertain the impact of macroalgal mats on single 

invertebrate prey species, this must be within the context of the preferred prey 

according to each wading bird’s diet; and the availability of a diversity of invertebrates 

at a chosen site.  
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This chapter will build upon the findings discussed in Chapter 3 by examining the 

invertebrate prey community from the birds’ perspective.  Using existing data on 

preferred prey species and prey size for different wading birds (Goss-Custard et al. 

2006b) each species will be allocated a ‘benthic invertebrate menu’ (BIM) based upon 

energy values contained within the preferred prey species/sizes.  The study will assess 

the impact of macroalgal mats on the overall energy available (determined as a 

function of size of invertebrate) from all the preferred prey constituting the BIM of 

different wading bird species.  The BIM is based on the principle that a wading bird will 

search for prey items of a certain size that will deliver sufficient energy (Zwarts and 

Wanink 1993).  Given that overwintering wading birds generally return to the same 

region each year populations adapt to certain location-specific conditions; in particular 

the resources available at each site (Martins et al. 2013).  Examining the impact of 

macroalgal mats on individual wading bird’s BIM will enable a more accurate 

assessment of the effect of these mats on the energy resources vital for each bird’s 

survival.  

 

4.2 Aims and objectives 

Aim 1: Determine the availability of different size classes of invertebrate 

species within Poole Harbour. 

Aim 2: Establish the preferred prey sizes and taxa available for each studied 

wading bird species. 

Aim 3: Provide each wading bird species with a species-specific benthic 

invertebrate menu (BIM). 

Aim 4:  Assess the impact from macroalgal mats on wading bird’s BIM.  

Objective 1: Measure the sizes of invertebrates collected during sampling at three 

different sites and on three different dates in Poole Harbour. 

Objective 2: Allocate each wading bird species a diet comprising the preferred prey 

sizes (as determined by Goss-Custard et al. 2006b) recorded in 

samples from Poole Harbour. 

Objective 3: Using field samples, measure the energy content of each wading bird 

species preferred prey.  Allocate a specific benthic invertebrate menu to 

each wading bird species based upon energy contained within the 

preferred prey sizes and within samples collected.   

Objective 4: Measure the impact on BIM under varying levels of macroalgal mat 

biomass.  Assess whether there is a ‘tipping point’ above which there is 

a significant detrimental effect on wading bird BIM.   
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4.3 Methods 

4.3.1 Selection of wading bird species 

Five species of wading bird; Eurasian curlew (Numenius arquata [Linnaeus 1758]); 

black-tailed godwit (Limosa limosa [Linnaeus 1758]); oystercatcher (Haematopus 

ostralegus [Linnaeus 1758]); redshank (Tringa totanus [Linnaeus 1758]); and dunlin 

(Calidris alpina [Linnaeus 1758]), were selected for study.  These species were chosen 

as important representatives of the overall assemblage of >20,000 overwintering birds 

for which Poole Harbour is a designated Special Protection Area (SPA).  Individual 

species are also of conservation importance as the harbour is designated for 

internationally important populations of black-tailed godwits (Frost et al. 2016).  A 

decline in the population of all five wading bird species has been reported over the last 

10 years (Frost et al. 2016) with the decline in curlew population resulting in its 

inclusion on the UK Red List of Birds of Conservation Concern (Eaton et al. 2015).  

According to the most recent Wetland Bird Survey (WeBS), all five selected bird 

species were recorded at each of the study sites (Brands Bay, Holes Bay and Ower 

Bay) (Frost et al. 2016).   

 

4.3.2 Wading bird species’ preferred prey 

Table 4.1 provides information on the preferred size classes of invertebrate prey for 

each of the five wading bird species studied (Goss-Custard et al. 2006b).   

 

Table 4.1:  Size range for preferred invertebrate prey within the diet of each studied wading bird 

species (adapted from Goss-Custard et al. 2006b).   

Prey Curlew Black-tailed 

godwit 

Oystercatcher Redshank Dunlin 

Annelid worm ≥50 mm ≥25 mm ≥50 mm 
15 mm – 80 

mm 

10 mm – 60 

mm 

Bivalve (excl. 

Cerastoderma edule) 
≥5 mm 

5 mm – 20 

mm 
≥10 mm 

5 mm – 15 

mm 

<5 mm – 10 

mm 

C. edule 
5 mm – 20 

mm 
No ≥15 mm No No 

Crustacean (incl. 

Carcinus maenas) 
≥10 mm ≥3 mm ≥10 mm ≥3 mm ≥3 mm 

Hydrobidae No No No <5 mm <5 mm 
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4.3.3 Calculating the energy value within invertebrate prey items  

Invertebrate prey samples were collected and processed using the methodology 

described in Chapter 3, Section 3.3.3.  Lengths of invertebrate species were measured 

using the methodology described in Chapter Section 3.3.4. Invertebrates were 

allocated a size class as shown in Table 4.2.   

 

Table 4.2:  Size classes of benthic invertebrates.  The ‘small worms’ category includes 

polychaetes, Tubificoides spp. and Chironomidae larvae. 

Invertebrate category Size range 

Small worms <5 mm 

Annelid worms 

 

5 mm - >105 mm 

In 5 mm bands 

Crustaceans  

(including Carcinus maenas) 

<3 mm, 3-<10 mm, then in  

5 mm bands to >40 mm 

Bivalves  

(excl. Cerastoderma edule) 

<5 mm – 55 mm in 5 mm bands 

C. edule <5 mm – 55 mm in 5 mm bands 

Molluscs  

(excl. bivalve and Hydrobidae 

<5 mm – 55 mm in 5 mm bands 

Hydrobidae <5 mm ≥5 mm 

 

Numerical abundance (individuals m-2) recorded within each size class shown in Table 

4.2 was converted into ash-free dry mass (AFDM mg m-2) according to species-specific 

equations provided in Appendix 3 (Thomas et al. 2004; Herbert et al. 2010).  Values for 

length within the equation were calculated using the median value for each size class 

(e.g. AFDM calculated for annelid worm size class 70- <75 mm was based upon a 

worm length of 72.5 mm).  The AFDM values for the largest size categories (e.g. 

Annelid worm >105 mm) were calculated by adding 2.5 mm to the maximum length 

value (e.g. AFDM for annelid worm >105 mm was calculated using length of 107.5 

mm).  Zwarts and Wanink (1993) proposed an energy conversion value of 21-23 kJ for 

each gram of AFDM.  A conversion value of 22 kJ was used for this study whereby 

 

Energy (kJ) = AFDM g * 22 
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4.3.4 Defining the wading birds’ benthic invertebrate menu (BIM) 

The energy values were calculated for the preferred prey size per taxa for each of the 

studied wading bird species.  Energy values per taxa were combined to produce a 

benthic invertebrate menu (BIM) for each species of wading bird.  Each bird’s BIM will 

vary according to prey availability at different sites and/or different dates.   For example 

the curlew BIM in Holes Bay would be calculated as: 

 

𝐵𝐼𝑀 = 𝛴(𝑎1 … 𝑎𝑛), (𝑏1 … 𝑏𝑛), (𝑐1 … 𝑐𝑛), (𝑛1 … 𝑛𝑛)  

Where 𝑎1 = energy (kJ) value of the smallest size and 𝑎𝑛 = energy (kJ) value of the largest size 

class of annelid worm, 𝑏1 = energy (kJ) value of the smallest size and 𝑏𝑛 = energy (kJ) value of 

the largest size class of bivalve, 𝑐1 =energy (kJ) value of the smallest size and 𝑐𝑛= energy (kJ) 

value of the largest size class of C. edule, 𝑛1 = energy (kJ) value of the smallest size and 𝑛𝑛= 

energy (kJ) value of the largest size class of 𝑛
th
 taxa within curlew preferred prey recorded in 

Holes Bay.  

 

4.3.5 Analysis 

4.3.5.1 Between-site and between-date variation in BIM  

Variation in mean energy between sites and stations were analysed using analysis of 

variance (ANOVA) with pairwise Tukey post-hoc tests in R Version 3.3.0 “Supposedly 

Educational” (R Core Team 2016).  Assumptions of normality and homogeneity of 

variance were checked using Shapiro Wilks test within the “stats” package in R Version 

3.3.0 “Supposedly Educational” (R Core Team 2016) and Levene test within the “car” 

package developed for R (Fox and Weisberg 2011) respectively.   

 

4.3.5.2 Determining a ‘tipping point’ for macroalgal mat biomass impact on wading bird 

BIM  

Mean energy (kJ m-2) of invertebrate prey for each wading bird species BIM were 

plotted against algae biomass; each showed a non-monotonic relationship.  A 

generalised additive model (GAM) was plotted with a loess smoothing curve applied 

using “ggplot2” developed for R (Wickham 2009). 

 

4.4 Results 

4.4.1 Spatial and temporal variation in invertebrate size-class distribution 

Fig. 4.2a-c shows variation in abundance m-2 for size-classes of important prey items 

for overwintering birds.  Sizes of annelid worms <5 mm include oligochaetes and 
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Chironomidae larvae as these were classified as ‘small worms’ due to their low energy 

value.   

 

The annelid worm populations in both Holes Bay and Ower Bay show a range of sizes 

with polychaete worms recorded in all size-classes, although fewer recorded in Ower 

Bay than Holes Bay. Fewer larger worms (>35 mm) were recorded in Brands Bay with 

none recorded in categories 75-105 mm.  Larger bivalves and Cerastoderma edule 

[Linnaeus 1758] were recorded at all sites.  There were fewer crustaceans >10 mm 

recorded with only two individuals >20 mm recorded at Brands Bay and Holes Bay and 

none of that size-class recorded in Ower Bay.    
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Fig. 4.2a:  Abundance (individuals m
-2

) 

for invertebrate size classes by date in 

Brands Bay.  Data shown on a log10 

scale for clarity 
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Fig. 4.2b:  Abundance (individuals m
-2

) 

for invertebrate size classes by date in 

Holes Bay.  Data shown on a log10 scale 

for clarity 
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Fig. 4.2c:  Abundance (individuals m
-2

) 

for invertebrate size classes by date in 

Ower Bay.  Shown on a log10 scale for 

clarity 
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4.4.2 Between-site and between-date distribution of energy by taxa 

Fig. 4.3 shows the energy distribution and diversity of the preferred prey for each of the 

five studied wading bird species across all three sites.  Energy (kJ m-2) is shown for 

recorded taxa within each bird species’ preferred prey:  annelid worms, bivalves 

(excluding C. edule), C. edule, crustaceans and Hydrobidae.   
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Fig. 4.3:  Total energy (kJ m
-2

) recorded in core samples for each wading bird species’ BIM by 

taxa.  Samples taken in September 2013, December 2013, September 2014.    
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Within Poole Harbour black-tailed godwit, redshank and dunlin BIM comprises mainly 

annelid worms.  Both curlew and oystercatcher BIM is composed of almost equal 

amounts of annelid worms and C. edule.  A greater abundance of C. edule was 

recorded in Brands Bay whereas Holes Bay recorded a greater abundance of annelid 

worms within the birds’ BIM size categories.   

 

4.4.3 Spatial variation in wading bird species’ BIM  

Figure 4.4 provides details of spatial distribution of mean energy (kJ m-2) for each bird 

species’ BIM.  Holes Bay provides the highest mean energy for each of the wading bird 

species.  

 

 

Fig. 4.4:  Mean energy (kJ m
-2

) available by site for individual wading bird species.  Values 

taken from combined core samples for September 2013, December 2013 and September 2014.  

Error bars 95% confidence intervals.  BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.     
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4.4.4 Between-site variation in wading bird BIM 

Table 4.3 provides details of the results of ANOVA between sites for each wading bird 

species’ BIM.  Energy available for all species’ BIMs was greater in Holes Bay than 

either Brands Bay or Ower Bay suggesting that this site provides a potentially more 

profitable feeding area than the two southern sites.  There was no significant variation 

between Brands Bay and Ower Bay for the BIM for any wading bird.  

 

Table 4.3:  ANOVA between sites for energy (kJ m
-2

) available for each wading bird species’ 

BIM with pairwise Tukey post-hoc test for significant (p = <0.05) sites.   

BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.    

Significance codes: *** <0.001, ** <0.01, * <0.05 

Wader  

Species BIM 

F  Df Sig. 

Tukey  

post-hoc 

Curlew 10.76  2,51 p = <0.001 *** 

HB>BB p = <0.001 *** 

HB>OB p = 0.002 ** 

Black-tailed godwit 29.74  2,51 p = <0.001 *** 

HB>BB p = <0.001 *** 

HB>OB p = <0.001 *** 

Oystercatcher 11.99  2,51 p = <0.001 *** 

HB>BB p = <0.001 *** 

HB>OB p = <0.001 *** 

Redshank 25.86  2,51 p = <0.001 *** 

HB>BB p = <0.001 *** 

HB>OB p = <0.001 *** 

Dunlin 21.72  2,51 p = <0.001 *** 

HB>BB p = <0.001 *** 

HB>OB p = <0.001 *** 

 

4.4.5 Between-date variation in wading bird species’ BIM  

4.5.5.1 Variation between dates  

There was no statistically significant (p = <0.05) difference in energy (kJ m-2) 

availability for any wading bird BIM between dates (irrespective of site). Curlew (p = 

0.087); black-tailed godwit (p = 0.42); oystercatcher (p = 0.068); redshank (p = 0.832); 

or dunlin (p = 0.816).  
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4.4.6 The impact of algae biomass on wading bird BIM   

Figure 4.5 provides results from the non-linear GAM output for mean energy available 

for each individual bird’s BIM (kJ m-2) against algae biomass (g (ww) m-2).  It is 

apparent that there is an initial increase in energy availability under low algae biomass 

followed by a decline when algae biomass reaches ~800 g (ww) m-2.  Wider 95% 

confidence intervals reflect fewer samples where algae biomass >2000 g (ww) m-2.   

The individual site plots shown in Fig. 4.6 indicate that this initial increase in wading 

bird BIM at algae biomass <800 g (ww) m-2, is replicated in Holes Bay and Ower Bay.  

There appears to be a more obvious decline for all wading bird species BIM at algae 

biomass >1000 g (ww) m-2 in Ower Bay although this levels out at much higher algae 

biomass.  This is due to fewer samples containing invertebrate species in the larger 

size classes required for wading bird BIM under higher algae biomass.  In Brands Bay 

there was an initial increase in black-tailed godwit, redshank, and dunlin BIM under 

lower algae biomass yet a decline in curlew and oystercatcher BIM at the same algae 

biomass levels.  Once again, fewer samples containing larger prey sizes were 

recorded in Brands Bay at higher algae biomass.  It was not possible to extrapolate 

beyond the data in Holes Bay to suggest whether a decline in energy would be 

apparent at higher algal biomass. However, Holes Bay is the site which contains the 

highest BIM for all studied wading bird species.     
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Fig. 4.5:  GAM chart with loess smoothing curve showing the relationship between mean 

energy available within each bird species’ BIM (kJ m
-2

) and algae biomass (mean wet weight g 

m
-2

) for all values recorded irrespective of site and date.  Shaded areas are 95% confidence 

intervals.  
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Fig. 4.6:  GAM charts with loess smoothing curve showing the relationship between mean 

energy available within each bird species’ BIM (kJ m
-2

) and algae biomass (mean wet weight g 

m
-2

) recorded at each site irrespective of date.  Shaded areas are 95% confidence intervals.  

Highest mean algae biomass recorded in core samples taken in Holes Bay was <1000 g (ww) 

m
-2

. 
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4.5 Discussion 

4.5.1 Invertebrate size-class distribution  

It was not surprising that there were a greater number of annelid worms in all size 

classes in Holes Bay.  As has been discussed in Chapter 3, this site contained a 

significantly greater abundance of H. diversicolor than either Brands Bay or Ower Bay.  

Indeed, this species was the main driver behind variation in community assemblage 

between the sites (Chapter 3, Table 3.3).  Although there were a greater number of 

‘small worms’ (<5 mm) recorded in Brands Bay, this figure comprised a significant 

number of Tubificoides spp. and Chironomidae; the implications of which were 

discussed in Chapter 3 (section 3.6.3).  There was a paucity of larger invertebrates in 

Brands Bay; particularly annelid worms >55 mm and bivalves >10 mm.  It is noteworthy 

that there were few individuals in the larger crustacean size classes (>10 mm).  This is 

of particular concern as the category also included Carcinus maenas [Linnaeus 1758] 

and Crangon crangon [Linnaeus 1758].  It is possible that C. crangon were not present 

in the sampling sites due to their preference for much sandier sediment (Barnes 1994).  

However, it is more likely that this species was able to avoid the suction corer and was 

therefore under-recorded rather than absent.  Smaller C. maenas were recorded 

however a lack of larger sizes present has implications for larger wading birds’ BIM.   

 

4.5.2 Spatial and temporal variation in wading bird species’ BIM 

Combining these taxa into a BIM for wading bird species provided a more direct 

comparison between sites to determine which might be the most profitable for the 

birds.  Energy from species recorded for each wading bird BIM was significantly higher 

in Holes Bay than either Brands Bay or Ower Bay; in particular redshank and dunlin 

BIM.  As the BIM energy values are derived from sizes of invertebrates, these results 

support the size class distribution shown in Fig. 4.3.  Redshank and dunlin also 

consume Peringia ulvae [Pennant 1777] (<5 mm) which contributed to the BIM 

available for these birds at all sites.  The lower abundance of larger invertebrates could 

impact upon the larger wading bird species (such as curlew, oystercatcher and black-

tailed godwit) (Goss-Custard et al. 1977; Zwarts and Wanink 1993).   

 

An initial inspection of the overall size-class distribution shown in Fig. 4.2a-c would 

indicate that there was a greater abundance of invertebrates in December 2013; 

suggesting there was prey available for the wading birds.  However, analysis revealed 

there was no significant variation in wading bird BIM between dates (irrespective of 

site).  This was surprising as it had been expected that invertebrate abundance would 
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vary significantly between both September 2013 and September 2014 compared to 

December 2013 as the macroalgal mat coverage was greatly reduced (Chapter 2, Fig. 

2.4).  However, although there was no extensive surface coverage of algae (maximum 

coverage 40% in Ower Bay mid and upper shores) the biomass values recorded in the 

core samples remained high suggesting a large amount of entrained algae was still 

present.  This, together with the recorded anoxic layer being <10 mm below the surface 

of the mud during December (see Chapter 2, Table 2.2), might have resulted in a 

greater number of invertebrates being prevented from burrowing deeper into the 

sediment.  There are myriad environmental factors such as mild winter temperatures 

which might contribute to the spatial and temporal distribution of invertebrates (Barnes 

1994).  These would require further research beyond the scope of this study.   

 

4.5.3 The effect of increased macroalgal mat biomass on wading bird BIM 

What is apparent from the charts shown in Fig. 4.5 and Fig. 4.6 is a similar relationship 

between wading bird BIM and algae biomass as that found when examining the overall 

invertebrate community (Chapter 3, Fig. 3.8).  There is an initial increase in energy 

(kJm-2) up to ~800 g (ww) m-2 algae and then a decline for each wading bird BIM.  

These results support other studies which recorded a detrimental effect on 

invertebrates under algae biomass >1000 g (ww) m-2 (Hull 1987; Raffaelli et al. 1999).  

Therefore it could be argued that algae biomass of 1000 g m-2 represents a ‘tipping 

point’ in Poole Harbour indicating detrimental effect on wading birds through a decline 

in BIM.  Although it is acknowledged that determining sizes of invertebrate samples 

would increase research costs, it is clearly necessary in order to more accurately 

determine the effect of macroalgal mats on different wading bird species.     

 

One area which has yet to be explored within the context of wading bird BIM is the 

impact on preferred prey from different species of Ulva recorded at the sites.  The 

dominant species and differences in morphology have already been discussed in 

Chapter 2 (Section 2.4.2).  However, the differences between algae species may also 

explain the between-site variance in wading bird BIM.  Holes Bay recorded the highest 

% coverage of algae yet the lowest algae biomass (see Chapter 2, Figs. 2.5 and 2.6); 

the site is dominated by less dense, sheet forming, Ulva.  By contrast, Ower Bay and 

Brands Bay were dominated by denser tubular or filamentous Ulva.  It has been 

suggested that the filamentous algae may prevent certain invertebrate species from 

feeding successfully (Raffaelli et al. 1991).  It is possible that other invertebrate species 

may be prevented from obtaining food either from beneath the denser, 

tubular/filamentous form of Ulva or by being unable to penetrate the algae (Thiel et al. 
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1998).  Filter feeders, for example, may be restricted due to the increased sediment 

trapped within the macroalgal mat layers (Bolam and Fernandes 2002; Green et al. 

2015).  This may, in turn, restrict growth of the invertebrates resulting in a reduction in 

size classes and a consequential reduction in wading bird BIM.  This hypothesis would 

require further research and testing using manipulation experiments beyond the scope 

of this study.     

 

4.5.4 Conclusion 

Ensuring the conservation of nationally and internationally important populations of 

overwintering wading birds is one of the main conservation priorities under the SPA 

legislation for Poole Harbour (Durell et al. 2006).  The intertidal mudflats provide an 

important food resource for these birds and therefore the protection of the food source 

within their key feeding areas is vital to maintain these populations.  Numbers of 

wading birds per se cannot provide a reliable indicator of the health of an estuarine 

ecosystem (Durell et al. 2006).  Bird survival not only depends upon there being 

sufficient prey resources within the intertidal mudflats but also that the food is of 

suitable quality (i.e. provides sufficient energy) (Bowgen et al. 2015).  It has been 

suggested that wading birds’ ‘starvation threshold’ (<90% survival) is reached when 

biomass of invertebrates falls below 4 g AFDM m-2 (West et al 2007).  Converted to 

energy this level represents 88kJ m-2 (after Zwarts and Wanink 1993).   

 

An initial inspection of the results would suggest that the most profitable site for each 

wading bird species studied would be Holes Bay.  This site had the highest BIM for 

each species of bird largely due to the greater abundance of larger sizes of H. 

diversicolor recorded.  These results might indicate that there is sufficient energy 

available from annelid worms to support a greater number of birds in Holes Bay.  

However, it is worth noting that these results only show the BIM potentially available to 

wading birds.  It has been suggested that wading birds may not always feed in the 

most profitable areas (Stillman et al. 2005), possibly due to a combination of external 

factors including competition and density (Stillman 2008).  In addition, this study 

concentrates on energy availability only and does not incorporate digestion time, prey 

handling or even inter-specific or intra-specific competition.   

 

As demonstrated by the ABC curves shown in Fig. 3.3 and supported by the charts 

shown in Fig. 3.4, each intertidal system has its own site-specific invertebrate 

community that is able to support the overwintering bird population.  The decline in one 

invertebrate species within a system can be compensated by an increase in another; 
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wading birds will select from their BIM based upon the availability at each site (West et 

al. 2007).  Therefore, those wading bird species that include a diversity of prey types 

within their BIMs could be more resilient to changes in environmental conditions 

(Bowgen et al. 2015).  Curlew and oystercatcher, for example, will feed on C. edule as 

well as annelid worms; both of which are abundant within Poole Harbour (Thomas et 

al. 2004; Herbert et al. 2010).  In addition, as shown in Chapter 3, Table 3.4, overall 

mollusc community distribution was not significantly affected by algae biomass, algae 

cover, % organic or % sand.  It is also worth noting that these curlew and oystercatcher 

are ‘site faithful’ and will utilise different food supplies when their preferred prey is 

unavailable (van de Kam et al. 2004); redshank, dunlin and black-tailed godwit will 

travel between sites if their preferred prey is unavailable.  However, species which rely 

on the larger annelid worms (e.g. black-tailed godwit) without abundant alternative prey 

taxa are likely to be more vulnerable to population fluctuations in prey species 

potentially caused by increases in macroalgal mat biomass.   
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5.0 The relationship between macroalgal mat coverage 

and wading bird foraging behaviour 

Abstract 

The intertidal mudflats within Poole Harbour provide an ideal range of conditions for 

supporting large assemblages of overwintering wading birds including internationally 

important populations of black-tailed godwit (Limosa limosa) and nationally important 

populations of redshank (Tringa totanus) and dunlin (Calidris alpina).  Within each 

chosen overwintering region, wading birds will select feeding sites based upon certain 

criteria; one of the most important is a sufficient supply of suitable invertebrate prey. 

  

This chapter examines the impact of macroalgal mats on wading bird foraging 

behaviour.  Five species of wading bird; Eurasian curlew (Numenius arquata); black-

tailed godwit (Limosa limosa); oystercatcher (Haematopus ostralegus); redshank 

(Tringa totanus) and dunlin (Calidris alpina) were selected for study.  Bird foraging 

behaviour was observed from vantage points in Poole Harbour within three survey 

sites (Holes Bay, Brands Bay, Ower Bay) each month from September 2013 – March 

2014 and September 2014 – March 2015.  Wading bird activity and the level of visible 

macroalgal mat coverage was recorded.  Surveys were split by season (autumn and 

winter) in order to assess bird behaviour on areas of the mudflat where macroalgal mat 

remained on the surface (autumn observations) and areas which had recorded levels 

of macroalgal mat coverage during the previous growth period (winter observations). 

 

Foraging behaviour by curlew, black-tailed godwit, oystercatcher and dunlin was 

affected by macroalgal mat coverage (either visible or previous peak) during the 

overwintering period.  Results showed that curlew and dunlin were affected by the 

presence of macroalgal mat coverage in autumn – curlew density (number ha-1) was 

greater on high macroalgal mat coverage than low coverage in Holes Bay.  Densities of 

curlew and oystercatcher were greater on areas of zero previous algae coverage 

compared to areas of either low or high previous coverage.  Black-tailed godwit density 

was higher on areas of high previous algae coverage compared to low in Brands Bay.  

Redshank density was not affected by macroalgal mat coverage.  Variations in foraging 

behaviour on different levels of macroalgal mat coverage could suggest wading birds 

may be adapting to the presence of macroalgal mats with implications for their ability to 

feed efficiently.  
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5.1 Introduction 

In northern-European estuarine systems, overwintering migratory wading birds mainly 

arrive in September and remain until March (Stillman et al. 2010).  During these 

months, outside the breeding season, a bird’s primary objective is to obtain sufficient 

energy in order to survive and ensure a successful return to the breeding site the 

following spring (Kersten and Piersma 1987; Stillman and Goss-Custard 2010).  

Therefore it is a reasonable assumption that an individual bird’s behaviour is focused 

upon feeding and maximising its chances of gaining food with minimal effort (Finn et al. 

2008; Kuawe et al. 2010; Martins et al. 2013).  How the macroalgal mats affect the 

abundance and distribution of key invertebrate prey items has been explored in 

Chapters 3 and 4.  These chapters highlighted a transformation of the invertebrate 

community (Chapter 3) and a shift in each key bird species’ benthic invertebrate menu 

(BIM) due to the presence of dense macroalgal mats (Chapter 4).  It has been 

suggested that macroalgal mats affect birds’ ability to access prey; either by obscuring 

visual clues to prey location (Green et al. 2015) or by preventing birds from penetrating 

the thick mat in order to obtain prey from the sediment (Kuwae et al. 2010). 

 

5.1.1 Site choice and use by overwintering migratory wading birds 

Populations of overwintering migratory wading birds have a ‘wintering range’ and will 

return to the same region each year (Evans 1976).  Black-tailed godwits (Limosa 

limosa [Linnaeus, 1758]), for example, are highly philopatric in their choice of winter 

feeding site (Gill et al. 2001a; Gunnarsson et al. 2005a; 2006).  Within each location, 

birds will utilise a number of key areas (e.g. Poole Harbour) in order to ensure their 

survival by maximising their energy intake in the areas with the highest potential food 

resource (Goss-Custard and Charman 1976).  Therefore, overwintering wading birds 

will be familiar with each area within their preferred region and will adapt to local 

environmental conditions and even site-specific variation in their preferred prey (Bryant 

1979; van de Kam et al. 2004; West et al. 2005; Gunnarsson et al. 2005c).  It is worth 

noting that juvenile black-tailed godwits do not migrate with their parents and will, 

therefore, make the important choice of winter feeding ground on their first migration 

(Gunnarsson et al. 2005c).   

 

Observing bird behaviour can provide a useful insight into how different wading birds 

use a particular site under varying macroalgal mat conditions (Lewis and Kelly 2001).  

As discussed in Chapter 1, there have been several behavioural studies carried out on 

wading bird species in relation to macroalgal mats in temperate estuaries in the UK 
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(Raffaelli et al. 1998, Lewis et al. 2014), Europe (Cabral et al. 1999) and north-America 

(Green et al. 2015).  Experimental studies were carried out in the Clonakilty Estuary, 

Ireland, by Lewis et al. (2003).  Yet, although the study reported changes in the 

invertebrate community under manipulated levels of algae coverage, too few wading 

birds were recorded on the experimental plots (10 m x10 m) for analysis.  By contrast, 

results from a later study on the same estuary found that black-tailed godwits were 

avoiding areas of high algae cover whereas redshanks were observed foraging on 

algae (Lewis et al. 2014).  This study also reported that black-tailed godwits were 

utilising algae-free patches which were revealed as the macroalgal mat began to break 

down.   

 

What has not been fully explored is the residual impact from the algae.  During the 

winter months (December – February) most areas of macroalgal mat in Poole Harbour 

have declined significantly or disappeared altogether.  However, those areas will still 

contain decaying or fragments of algae within the sediment (Raffaelli et al, 1998).  

Although these areas appear to be ‘bare mud’ the sediment composition and organic 

content could be different from those areas which never showed any algal growth 

(Hardison et al. 2010).   

 

An additional consideration is the delay between the surface algae disappearing and 

the anoxic layer depth lowering.  The depth of the layer of black mud (a visible indicator 

of anoxic/hypoxic conditions within the sediment) measured during sampling remained 

close to the surface throughout the winter months at all sites monitored for algae 

biomass (Chapter 2, Table 2.1).  Indeed the lowest recorded depth at which black mud 

was visible was in March 2013 at Newton Bay (20 mm) at the end of the overwintering 

season for wading birds.  Therefore, although the surface algae had virtually 

disappeared, the invertebrate response to chronic residual impacts would remain 

unchanged (Pearson and Rosenberg 1978; Wildsmith et al. 2009).  As discussed in 

Chapters 3 and 4, the invertebrate community has become dominated by smaller r-

selected species under macroalgal mats.   

 

5.1.2 Bird behaviour in Poole Harbour 

The intertidal mudflats within Poole Harbour provide conditions for supporting large 

assemblages of overwintering wading birds including internationally important 

populations of black-tailed godwit together with nationally important populations of 

redshank and dunlin (Frost et al. 2016).  The importance of the area to these birds has 

already been discussed in Chapter 1.  Understanding the impact of macroalgal mats on 
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the overwintering bird population is important as the extent and biomass of the 

macroalgal mats provides a measure of the quality and condition of a Site of Special 

Scientific Interest (SSSI) feature and, as such, its ability to support the coastal bird 

community (Underhill-Day et al. 2010).  Any decline in this feature will impact on the 

overall quality of the Special Protection Area (SPA) designation for Poole Harbour 

(Durell et al. 2006).   

 

As discussed in Chapter 1, Poole Harbour is susceptible to the development of 

macroalgal mats.  Yet, despite the national and international importance of the harbour 

for overwintering migratory wading birds, there has only been one study specifically 

examining the impact from macroalgal mats on birds (Axelsson et al. 2012).  The small-

scale study, commissioned by Natural England, was carried out between November 

2011 and February 2012 and recorded bird activity at four points around Brands Bay.  

These points comprised adjacent patches of macroalgal mat (c. 20 m x 20 m) and clear 

mud.  The study concluded that curlew and oystercatcher were deterred from feeding 

on the macroalgal mat and displayed a preference for clear mud.  Other species of 

wading bird were not significantly affected by the presence of macroalgal mats.  

However this study was restricted in scale and lasted only three months.   

 

In addition, due to the unique double high-water, some areas of the intertidal mudflats 

can remain under water (water level above mean tide level) for up to 16 hours each 

day (Humphreys 2005).  This significantly reduces the available feeding time for the 

overwintering birds.  If access to prey is further restricted due to the macroalgal mats 

(whether visible on the surface or residual within the sediment) the birds may simply 

not have time within each day to ensure sufficient prey is consumed.    

 

5.1.3 Rationale 

Chapters 5 and 6 have been developed within a behavioural ecology framework using 

key concepts within that framework to support the investigation into the impact of 

macroalgal mats on overwintering wading birds.  Elements of species’ behavioural 

adaptation and optimal-foraging theory will be explored with the aim of informing 

conservation objectives and indicating threshold levels of concern in macroalgal mat 

development.  A link between animal behaviour and conservation was established 

during the 1990s however collaboration between an essentially academic discipline 

and a practical industry has not been without problems (Caro et al. 2007).  At a 

fundamental level, however, both disciplines utilise elements of the other; behavioural 

ecologists are keen to conserve species being studied and conservation ecologists use 
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known animal behaviour to ensure appropriate timing for surveys of species of 

conservation concern (Sutherland 2006).   

 

Optimal -Foraging Theory 

First proposed in the 1960s (MacArthur and Pianka, 1966; Emlen 1966), optimal-

foraging theory uses observational studies and models to determine feeding behaviour 

based on the principal that each predator makes a series of ‘choices’ in order to 

maximise energy intake with minimum effort (Townsend et al. 2008).  These decisions 

are summarised below (Townsend et al. 2008): 

 Feeding patch selection:  Which patch, within a chosen feeding site, offers the 

best chance of finding prey. 

 Predator avoidance:  Maximising energy input whilst avoiding predation 

 Length of time at a patch:  How long to remain in one profitable patch with 

depleting resources before moving to an alternative patch where prey-quality 

and availability are unknown. 

 Competitor density:  Whether to remain in a profitable patch with increased 

competition or move to a lesser quality patch with fewer competitors. 

 Prey choice:  Whether to use energy feeding on lower quality prey or continue 

searching for better quality items.  

 

The remaining two chapters will examine how varying levels of macroalgal mat 

coverage disrupt two of these choices: foraging patch selection (Chapter 5) and prey 

choice/availability (Chapter 6).  

 

Within each chosen overwintering region, wading birds will select feeding sites based 

upon certain criteria; one of the most important is a sufficient supply of suitable 

invertebrate prey (Durell et al. 2006).  This chapter will build upon findings reported in 

earlier chapters and examine how the birds respond to the presence of macroalgal 

mats within the context of three different bays within Poole Harbour.  This study 

examines whether foraging birds display an aversion to or a preference for areas 

affected by macroalgal mats.  The criteria by which wading birds select their feeding 

location within the harbour for a particular tidal-cycle has been extensively studied and, 

as such, falls outside the scope of this research (Durell et al. 2006; Stillman and Goss-

Custard 2010).    
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Although previous studies have been few, it has been reported that the presence of 

large areas of macroalgal mats can affect wading bird behaviour (Cabral et al. 1999; 

Lewis and Kelly 2001; Lewis et al. 2014).  All these investigations have quantified 

activity levels of birds on areas of differing algae coverage and bare mud.  Yet, to date, 

studies have concentrated primarily on recording avoidance of surface algae coverage.  

There is a gap in the knowledge that this chapter aims to address, namely whether 

there is any change in behaviour in areas that were previously covered by algae as 

opposed to those areas which remained ‘bare mud’ due to no algal growth.  As 

demonstrated in Chapter 3 (Section 3.5.1) there is a notable difference in the visual 

recording of algae coverage, particularly in Holes Bay, and the biomass recorded in the 

core samples taken the same month.  Core samples taken in areas which had been 

recorded as ‘bare mud’ (i.e. no visible surface algae) did, in fact, contain a quantity of 

algae within the sediment.  It is important to determine whether there is any residual 

impact from algal growth during the winter months as this could result in birds still 

being affected by macroalgal mats despite the surface coverage having disappeared.  

This has implications as the winter months are the most stressful for overwintering 

birds due to a number of factors including prey availability, reduced temperature and 

limited daylight (Zwarts 1996; Dwyer et al. 2013).   

 

5.2 Aims and objectives 

Aim 1: To determine whether macroalgal mats are affecting wading bird 

distribution around Poole Harbour. 

Aim 2: To examine different species’ response to present or previous coverage 

of macroalgal mat and whether this behaviour is site-specific or can be 

applied more generally. 

 

Objective 1: The aims will be addressed by observing and recording active foraging 

behaviour of a number of key wading bird species on varying levels of 

algae % coverage.  

 

5.3 Methods 

5.3.1 Site selection 

Sites for bird observations were selected from the four sites used for algae biomass 

monitoring.  Newton Bay was rejected as there was no single vantage point from which 

to observe a large enough area of the whole bay.  Therefore Holes Bay, Ower Bay and 
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Brands Bay were chosen.  Full details of the site selection methodology can be found 

in section 2.3.2.1.    

 

5.3.2 Species selection  

Coastal birds can be observed with relative ease from a single vantage point on the 

shore (Bibby et al. 2005).  Five wading bird species; Eurasian curlew (Numenius 

arquata [Linnaeus 1758]); black-tailed godwit (Limosa limosa [Linnaeus 1758]); 

oystercatcher (Haematopus ostralegus [Linnaeus 1758]); redshank (Tringa totanus 

[Linnaeus 1758]); and dunlin (Calidris alpina [Linnaeus 1758]), were selected for study.  

Details of the selection criteria can be found in section 4.3.1. 

 

5.3.3 Timing of surveys 

Surveys were carried out each month from September 2013 – March 2014 (hereafter 

termed Y1) and September 2014 – March 2015 (hereafter termed Y2).  Over both 

years, a total of 22 surveys were undertaken (12 on neap tides and 10 on spring tides) 

at each of the three sites.  Neap and spring tides were determined by predicted low 

water depth (UKHO Admiralty Easy Tide), with neap tide low water depth ≥1.0 m Chart 

Datum (CD) and spring tide low water depth <1.0 m CD.  Year 1 and Year 2 counts 

were combined then divided by season.  Autumn (September – November) when algae 

was visible on the surface, and winter (December – March) the macroalgal mat had 

disintegrated and was no longer visible.  March observations were included in winter 

analysis as there was no visible algal growth in March 2013 or March 2014 (Chapter 2, 

Fig. 2.5). In addition, average air temperature for the month did not remain above the 

10 oC (Met Office 2016) required to stimulate macroalgal mat growth (Raffaelli et al. 

1998).   

   

5.3.4 Bird counts 

5.3.4.1 Determining bird location within each site  

Using an Ordnance Survey 1:25,000 map, each site was divided into a number of 

discrete patches.  Boundaries for these patches were determined visually using 

landscape features such as channels in the mud, protruding saltmarsh and prominent 

terrestrial markers (e.g. buildings and trees).  Patch boundaries were checked using 

aerial photographs in conjunction with Ordnance Survey maps then each patch was 

plotted as a spatially referenced polygon in ArcGIS (version 10.1).  Once mapped, 

patch areas were measured (ha) and then amalgamated into three shore levels using 

tidal curves to determine upper, mid and lower shore levels for each of the sites 

(www.ukho.gov.uk).  Sizes of each shore level patch are provided in Table 5.1.    
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Table 5.1:  Area (ha) of each shore level within visible range for observations of bird behaviour. 

Site Shore level Area (ha) 

Brands Bay Lower 6.67 

 Mid 22.76 

 Upper 12.36 

 Total 41.79 

Holes Bay Lower 7.2 

 Mid 11.76 

 Upper 6.85 

 Total 25.81 

Ower Bay Lower 8.74 

 Mid 4.57 

 Upper 2.94 

 Total 16.25 

 

5.3.4.2 Bird observations 

Wading bird identification was confirmed using Svensson et al. (2010).  Bird behaviour 

was observed using timed scans counting bird numbers, recording the location and 

activity on each patch (Altman 1974).  Observations were carried out every half-hour 

from 1 hour before low water to 1 hour after low water (n = 5 observations per survey) 

and took approximately 10 minutes to complete.  Low water time was based on data 

supplied by UK Hydrographic Office (UKHO) (www.ukho.gov.uk).  Scans were carried 

out using a Swarowski 20-60 zoom telescope and were conducted from left to right 

across each bay to avoid ‘double counting’ of birds.  Birds which moved between 

patches were noted and only counted once.  Birds which flew away before their patch 

was scanned were not counted.  Given that Poole Harbour supports an assemblage of 

over 20,000 wading birds, it is highly unlikely that an identical flock was counted on two 

separate occasions.  Number and species of wading birds present were recorded on 

field maps showing the different patches.  The behaviour of each bird or flock of birds 

on a patch was recorded as either active or passive.  Passive bird numbers were 

counted but did not form part of the study.  Table 5.2 provides details of the behaviour 
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within each category.  In order to avoid temporal autocorrelation, bird numbers 

recorded during each survey were totalled and a mean value obtained.  Mean bird 

numbers per patch were converted into density (individuals ha-1).   

 

Table 5.2:  Behavioural categories observed during bird observations.   

Behaviour Description 

Active  

Foraging 
Bird observed searching for prey.   

No prey obtained.  

Feeding Swallowing motion and/or prey observed. 

Walking 
Moving between feeding patches.   

Not searching for prey. 

Passive  

Resting or preening Not actively searching for prey or moving 

 

5.3.5 Algae coverage 

5.3.5.1 Autumn visible coverage of algae 

Percentage cover of algae within individual patches was recorded during each survey 

using the methods described in Section 2.3.4.1.  For the autumn observations, algae 

coverage was categorised as 0 (<5% coverage), Low (5%-50% coverage) and High 

(51%-100% coverage). Where algal coverage was not visible at the start of the survey, 

values were ascribed when the intertidal area was exposed.  Occasionally some 

individual patches remained water covered throughout a neap-tide survey.  When this 

occurred, algae coverage was determined using other sampling or surveys carried out 

in the same month.   

 

5.3.5.2 Winter algae from previous peak coverage. 

Previous algae cover was determined by taking values from algal growth recorded 

during the preceding summer.  Previous algae coverage was also categorised as 0 

(<5%), Low (5%-50% coverage), High (51%-100% coverage) with data taken from 

each area’s peak coverage recorded during the previous season’s growth period.  

Peak algae was used as opposed to mean algae coverage for the whole season as 

this is the maximum area of each bay which would likely contain decaying or fragments 

of macroalgal mat. 
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5.3.6 Statistical analysis 

All statistical tests were carried out using R version 3.3.0 “Supposedly Educational” (R 

Core Team 2016).  Assumptions of normality and homogeneity of variance were 

checked using Shapiro Wilk’s test within the “stats” package in R (R Core Team 2016) 

and Levene’s test within the “car” package developed for R (Fox and Weisberg 2011) 

respectively.  Paired t-tests were used to determine variation in mean bird density 

(individuals ha-1) between years.  Kruskal-Wallis tests were used to analyse temporal 

and spatial variation in bird density and analyse variation in bird density between 

varying macroalgal mat coverage with post-hoc Nemenyi test for pairwise multiple 

comparisons carried out using “PMCMR” package developed for R (Pohlert 2016).  

Effect size, using Pearson’s r correlation coefficient, was determined for significant 

pairs using exact Wilcoxon-Mann-Whitney Test to obtain z scores then the equation r = 

z/sqrt(N) with N being the number of samples (Barto and Rillig 2012; Field 2012).  

Effect sizes are defined as small (r = <0.3), medium (r = <0.5), large (r = >0.5) (Cohen 

1994).  

 

5.4 Results 

5.4.1 Spatial and temporal variation in wading bird density (individuals ha-1) 

5.4.1.1 Between-year variation in wading bird density  

Fig. 5.1 shows variation in mean density for all studied species of wading bird at each 

site between years.  The only significant variation in bird density between years was 

black-tailed godwit density in Brands Bay, which was higher in year 2 than year 1 (t = -

2.142, df = 43.054, p = 0.038).  No significant variation in density between years was 

found for curlew, oystercatcher, redshank or dunlin for any site (p = >0.05). 
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Fig. 5.1:  Mean density (number ha
-1

) per year of five wading bird species recorded at each site.  

Error bars 95% confidence intervals. Y1 = year 1 (2013/2014), Y2 = year 2 (2014/2015).   

BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  

 

5.4.1.2 Seasonal variation in wading bird density between sites 

Table 5.3 provides details of the Kruskal-Wallis and post-hoc Nemenyi tests on wading 

bird density between sites for autumn and winter. Individual species density varied 

significantly (p = <0.05) between sites with data from both years combined.  Curlew 

density was highest in Ower Bay in autumn.  Winter density of curlew was higher in 

Holes Bay than Brands Bay and higher in Ower Bay than Brands Bay.  Holes Bay also 

recorded higher autumn density of black-tailed godwit than Ower Bay and a higher 

winter density than both Brands Bay and Ower Bay.  Ower Bay recorded the highest 

density of oystercatchers in autumn and a higher density in winter than Brands Bay.  

Autumn and winter densities for redshank were higher in Holes Bay and Ower Bay 

than Brands Bay.  Overall, Brands Bay did not record higher densities for any wading 

bird species in either autumn or winter.   
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Table 5.3:  Kruskal-Wallis test for seasonal variation in wading bird densities between sites with 

Nemenyi post-hoc test for pairwise significance.  Data are combined for both years.  

Significance codes: *** = <0.001, ** = <0.01, * = <0.05.  NS = not significant 

BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  

Species Season x
2
 (df) P Post-hoc Nemenyi 

Curlew Autumn 30.725 (2) <0.001*** 
OB>BB p = <0.001*** 

OB>HB p = <0.001*** 

Curlew Winter 16.528 (2) <0.001*** 

 

HB>BB p = 0.002** 

OB>BB p = <0.001*** 

 

Black-tailed 

godwit 

Autumn 8.472 (2) 0.015* HB>OB p = 0.016* 

Black-tailed 

godwit 
Winter 11.84 (2) 0.003** 

 

HB>BB p = 0.027* 

HB>OB p = 0.011* 

Oystercatcher Autumn 19.427 (2) <0.001*** 
OB>HB p = <0.001*** 

OB>BB p = 0.008 ** 

Oystercatcher Winter 8.373 (2) 0.015* OB>BB p = 0.015* 

Redshank Autumn 10.586 (2) 0.005** 
HB>BB p = 0.006** 

OB>BB p = 0.049** 

Redshank Winter 25.231 (2) <0.001 *** 

 

HB>BB p = <0.001*** 

OB>BB p = 0.004** 

Dunlin Autumn 3.370 (2) 0.186 NS 

Dunlin Winter 5.143 (2) 0.076 NS 

 

5.4.1.2 Shore-level variation in wading bird density  

Autumn 

Shore-level only had a significant (p = <0.05) impact on black-tailed godwit density in 

Brands Bay in autumn (x2
 =7.304, df = 2, p = 0.026*, mid-shore>upper-shore p = 

0.005**, z = 2.747, r = 0.43) and redshank density in Brands Bay in autumn (x2
 

=12.661, df = 2, p = 0.002**, mid-shore>upper-shore p = 0.004**, z = 2.794, r = 0.44, 

mid>lower p = 0.003**, z = 2.865, r = 0.45).  No other significant (p = <0.05) effects for 

shore level on wading bird density for autumn were recorded.    
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Winter 

Shore-level only had a significant impact on redshank density in Ower Bay in winter (x2
 

=7.551, df = 2, p = 0.229*, mid-shore>lower-shore p = 0.009**, z = 2.597, r = 0.41).  No 

other significant (p = <0.05) effects for shore level on wading bird density for winter 

were recorded.    

 

5.4.2 The effect of autumn macroalgal mat coverage on wading bird density 

Fig. 5.2 shows numbers of active birds at each of the three sites under different levels 

of macroalgal mat coverage in autumn (September, October, November). 

Fig. 5.2:  Box plots showing median bird density (number ha
-1

) recorded at each site for varying 

levels of algae coverage in autumn (September, October, November) shown on log10 scale for 

clarity.  BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.    

Algae coverage 0 = <5%, L = 5%-50%, H = 51%-100%.   
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Table 5.4 provides results from the Kruskal-Wallis test on wading bird species numbers 

on varying levels of algae coverage during autumn.   

 

Table 5.4:  Kruskal-Wallis analysis between median bird density and algae coverage present at 

each site recorded in autumn with post-hoc Nemenyi test for pairwise comparisons.  Effect size 

(r) small (r = <0.3), medium (r = <0.5), large (r = >0.5).  Year 1 and Year 2 data are combined.  

BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  Algae coverage 0 = <5%, L = 5%-50%, H = 

51%-100%.  Significance codes: *** = <0.001 ** = <0.01 * = <0.05 NS = not significant (p = 

>0.05). 

Species Site x
2
 (df) P Post-hoc Nemenyi Z r 

Curlew 

BB 7.929 (2) 0.019** No significant pairs N/A N/A 

HB 7.233 (2) 0.027 * H>L p = 0.016* 2.390 0.35 

OB 4.426 (2) 0.109 NS     

Black-tailed 

godwit 

BB 2.292 (2) 0.318 NS 
  

HB 0.346 (2) 0.841 NS 
  

OB 1.563 (2) 0.458 NS     

Oystercatcher 

BB 2.300 (2) 0.223 NS 

  
HB 2.582 (2) 0.275 NS 

  
OB 2.659 (2) 0.265 NS     

Redshank 

BB 3.275 (2) 0.194 NS 

  
HB 4.660 (2) 0.097 NS 

  
OB 1.363 (2) 0.506 NS     

Dunlin 

BB 9.024 (2) 0.011 * No significant pairs N/A N/A 

HB 2.993 (2) 0.224 NS 

  
OB 5.878 (2) 0.053 NS     

 

Results from the autumn surveys indicate that algae coverage had a significant impact 

upon curlew activity (i.e. foraging, feeding or walking) with a greater density of active 

birds recorded on high algae coverage compared to low in Holes Bay with a ‘medium’ 

effect size (r>0.30).  Curlew and dunlin activity were affected by autumn algae 
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coverage in Brands Bay but no pairwise significance was found.  Black-tailed godwit, 

oystercatcher and redshank were unaffected by algae coverage.  No significant effect 

was found for any species in Ower Bay.   

 

5.4.3 The effect of previous macroalgal mat coverage on wading bird density 

Figure 5.3 shows the median bird numbers on a log10 scale on levels of previous algae 

coverage. 

 

 

Fig. 5.3:  Box plots showing median bird density (number ha
-1

) recorded in winter at each site 

for varying levels of previous macroalgal mat coverage on a log10 scale for clarity.  Previous 

macroalgal mat coverage is maximum coverage recorded during the preceding summer’s 

macroalgal mat growth.  BB:  Brands Bay HB:  Holes Bay OB:  Ower Bay.   

Algae coverage 0 = <5%, L = 5%-50%, H = 51%-100%.   

 

Table 5.5 provides results from the Kruskal-Wallis test on wading bird species density 

on varying levels of previous algae coverage during winter.  There was no ‘0’ level of 

previous macroalgal mat coverage in Brands Bay. 
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Table 5.5: Kruskal-Wallis analysis between median bird density and previous macroalgal mat 

coverage at each site recorded in winter with post-hoc Nemenyi test for pairwise comparisons.  

Effect size (r) small (r = <0.3), medium (r = <0.5), large (r = >0.5).  Year 1 and Year 2 data are 

combined.  BB:  Brands Bay HB:  Holes Bay OB:  Ower Bay.  Algae coverage 0 = <5%, L = 5%-

50%, H = 51%-100%.  Significance codes: *** = <0.001 ** = <0.01 * = <0.05 NS = not significant 

(p = >0.05). 

Species Site x
2
 (df) P Post-hoc Nemenyi Z r 

Curlew 

BB 2.466 (1) 0.116 NS 
  

HB 11.772 (2) 0.003** 
0>L p = 0.012* 

0>H p = <0.001*** 

2.48 

3.241 

0.33 

0.43 

OB 1.354 (2) 0.508 NS     

Black-tailed godwit 

BB 6.315 (1) 0.012* H>L p = 0.011* 2.513 0.36 

HB 0.110 (2) 0.946 NS 
  

OB 0.106 (2) 0.948 NS     

Oystercatcher 

BB 5.793 (1) 0.016* H>L p = 0.015* 2.407 0.35 

HB 14.696 (2) <0.001*** 
0>H p = <0.001*** 

0>L p = 0.011* 

3.697 

2.505 

0.49 

0.33 

OB 0.139 0.933 NS   

Redshank 

BB 0.915 (1) 0.339 NS 

  
HB 4.405 (2) 0.111 NS 

  
OB 0.814 (2) 0.666 NS     

Dunlin 

BB 1.043 (1) 0.307 NS 

  
HB 2.026 (2) 0.363 NS 

  
OB 4.080 (2) 0.130 NS     

 

There were significant effects from previous macroalgal mat coverage on species 

densities in winter.  Curlew density was greater on bare mud than either low or high 

levels of previous macroalgal mat coverage in Holes Bay.  The density of black-tailed 

godwits was greater on high levels of previous macroalgal mat coverage than low 

levels in Brands Bay.  Oystercatcher density was greater on high levels of previous 

macroalgal mat coverage compared to low levels in Brands Bay, and greater on ‘0’ 
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levels compared to both high and low levels of previous macroalgal mat coverage in 

Holes Bay whereas they were unaffected by the surface coverage of algae in autumn.  

For each of the significant results in winter, the effect size was medium (r>0.30). 

Redshank and dunlin were unaffected by the previous algae coverage.   

 

In summary, mean density of black-tailed godwits was significantly higher in Brands 

Bay in Y2 than Y1; mean density at other sites did not vary between years.  There was 

seasonal variation in wading bird density between the sites although, where significant 

differences were recorded, densities in Brands Bay were always lower than either 

Holes Bay or Ower Bay.  Curlew density at Holes Bay varied significantly under 

autumn macroalgal mat coverage; the effect size in was medium (r = 0.35).  Curlew 

and dunlin densities also varied significantly in autumn at Brands Bay although the 

post-hoc test was not significant.  Curlew and oystercatcher densities at Holes Bay 

varied significantly in winter on areas of previous peak macroalgal mat coverage; 

densities were higher on ‘0’ than either low or high previous coverage with a medium 

effect size (r>0.3).  Densities of black-tailed godwits and oystercatchers were higher in 

winter at Brands Bay on high levels of previous coverage compared to low; again, the 

effect size was medium (r>0.3).    

 

5.5 Discussion 

5.5.1 Spatial and temporal variation in bird numbers 

With the exception of black-tailed godwit, bird numbers were similar between years.  

Winter 2013/2014 was one of the wettest on record with areas along the south coast 

experiencing flooding (www.metoffice.gov.uk).  It is possible that large numbers of 

black-tailed godwits re-located to flooded meadows further inland in order to take 

advantage of the sudden abundance of available prey (Gill et al. 2007).  Black-tailed 

godwit numbers were higher in Poole Harbour in 2014/2015 (average count 2,636) 

than 2013/2014 (average count 2,070) (Frost et al. 2016).   

 

It had been expected that Holes Bay would record the highest densities of all studied 

wading bird species given that this site contained the greatest amount of energy for 

each bird species’ BIM (Chapter 4, Section 4.5.3).  Although densities of individual 

wading bird species did vary between sites, this variation was not consistent with 

differences in available BIM (discussed in Chapter 4, section 4.6.3).  Ower Bay 

recorded a significantly higher density of curlews than either Brands Bay or Holes Bay 
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and a significantly higher density of oystercatchers than Holes Bay.  This is despite 

Ower Bay being the smallest of the three study sites.   

 

5.5.2 Shore-level and bird distribution 

It was not surprising that redshank density was affected by shore-level as this species 

will follow the receding tide to forage (Goss-Custard 1970).  However, density was 

highest on mid-shore levels in Brands Bay in autumn rather than the upper or lower 

shore areas.  Redshank will also forage alongside channels (Goss-Custard et al. 1977) 

which, in Brands Bay, were a feature of mid-shore areas.  This foraging behaviour is 

likely to account for the impact of shore level in winter in the smallest study area, Ower 

Bay.     

 

Black-tailed godwit density was affected by shore-level in Brands Bay with fewer birds 

recorded on the upper shore than the mid-shore.  Brands Bay is the largest of the three 

study sites with an extensive mid-shore area.  During the autumn months, the majority 

of black-tailed godwits were recorded feeding on the lower and mid shore areas in the 

south-west of the study site.  However, there was an observed change in behaviour 

during the winter months as large numbers of black-tailed godwits were recorded within 

the north-eastern patches; shore-level was not significant for black-tailed godwit 

abundance during winter.   

 

It is possible that birds avoided some upper shore patches, not as a result of higher 

macroalgal mat coverage but because these areas were subject to human disturbance 

(Burton et al. 2002).  However, although quantifying bird response to disturbance was 

outside the scope of this study, some personal observations were made.  Holes Bay 

was most prone to disturbance from walkers, runners and cyclists using the footpath 

around the northern and eastern edge of the bay (see Appendix 2).  Observations of 

feeding behaviour on areas of upper shore adjacent to the path showed that birds 

appeared undisturbed by the human traffic or even the vehicle noise from the main 

road <20 m away.  Bird surveys in Brands Bay were carried out from a hide located 

approximately 10 m above the mudflats with birds seen foraging on the upper shore 

area immediately below the hide.  Ower Bay is very secluded and not accessible by car 

and there were only a few occasions when other people were present at the vantage 

point.  Wading birds were observed foraging in areas of upper shore adjacent to the 

vantage point although birds appeared to prefer upper shore areas on the opposite 

bank (see Appendix 2 for location of vantage point at each bay).   
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5.5.3 The impact of surface coverage (autumn) and previously recorded peak 

coverage (winter) of macroalgal mats on wading bird densities  

Of the five wading bird species studied, only variation in densities of curlew and dunlin 

were significantly affected by autumn coverage of macroalgal mats.  By contrast, areas 

likely to contain residual algae following the summer ‘peak’ coverage had a significant 

effect on densities of curlew, black-tailed godwit and oystercatcher.  It is worth noting 

that there were no areas in Brands Bay which remained free from macroalgal mat 

coverage during the preceding summer growth and therefore it is assumed that no 

areas in Brands Bay were without some level of residual algae.   

 

Curlew 

To date there have been no studies specifically examining the impact of macroalgal 

mats on curlew.  It had been expected that the larger wading birds (particularly curlew) 

would be most susceptible to the impact of macroalgal mats in Poole Harbour.  This 

could be due, in part, to increased interspecific competition as larger prey items move 

upwards in the sediment column, due to the development of anoxic/hypoxic conditions, 

thereby becoming available to smaller wading bird species (Lewis and Kelly 2001).  

This has been discussed in Chapter 3.  Given the shape and length of its bill, it had 

been expected that curlews would be able to penetrate the algae to access prey.  

However Finn et al. (2008) reported a negative correlation between density of 

substrate and density of Eastern curlew (Numenius madagascariensis [Linnaeus, 

1766]) which could suggest that curlews may find penetrating dense macroalgal mat 

difficult.  In addition a curlew bill is not as robust as some other wading bird species 

due to the curved design and is therefore restricted to feeding on softer sediment 

(Davidson et al. 1986).   

 

It is possible that variation in wading bird distribution may be due to morphological 

differences in the different Ulva species recorded at each site.  The Ulva spp. recorded 

at Brands Bay comprised dense, tubular/filamentous morphology.  It is possible that 

the overall variation in density of curlews on the site was due, in part, to the dense 

algae preventing access to suitable prey.  Yet, although the pair-wise analysis was not 

significant there was a greater median density of curlew on low algae compared to 

either ‘0’ or high algae coverage in Brands Bay.  In addition, there was no significant 

difference in curlew density on different algae coverage at Ower Bay; the site where 

the greatest density of curlews was recorded.  The dominant algae species at Ower 

Bay was also the tubular/filamentous Ulva spp. and coverage remained high at the 

upper shore throughout autumn.  In addition, U. clathrata [(Roth) C. Agardh, 1811] was 
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also recorded at Ower Bay; comprising very fine filamentous fronds also forming dense 

mats (Brodie et al. 2007).  Curlews were observed in Ower Bay actively foraging on all 

shore levels and all algae coverage.  By contrast, there were higher densities of 

curlews on high algae coverage than low algae coverage in Holes Bay.  The 

macroalgal mat at Holes Bay is formed of less dense, sheet-forming Ulva spp.; curlews 

should be able to penetrate thin sheet-form thalli easier than the tubular/filamentous 

mats.  Curlews were also recorded foraging on patches of high algae coverage in 

preference to adjacent large patches of bare mud which might indicate a change in 

feeding strategy at Holes Bay. This site-specific feeding adaptation theory will be 

explored further in Chapter 6.   

 

It is also worth considering the structure of the mat itself.  Although Holes Bay 

contained the highest curlew BIM, prey items may not be available to the birds 

(Sutherland 2005).  Curlews are the heaviest wading bird overwintering in the UK 

(male = 716.0 g ±67.97 g, female = 851.8 g ±89.04 g, www.bto.org) and, as such, 

require a harder substrate upon which to stand (van de Kam et al. 2004).  Although % 

sand was not found to be a determining factor in the variation in curlew BIM, it is worth 

noting that mean particle size in Holes Bay results in the sediment being classified as 

‘fine silt/clay’ whereas Brands Bay is classified as ‘mixed mud/sand’ (Herbert et al. 

2010).  It is possible that the reason that curlew density was higher on high than low 

algae coverage in Holes Bay is due to the algae providing the birds with a firmer 

surface and an alternative food supply.  This could be tested in future research using 

full-size models of curlews and measured density of algae and sediment.    

 

The fact that curlew densities were higher on areas of ‘0’ previous algae compared to 

both low and high levels supports the findings discussed in Chapter 3.  Some 

invertebrate species (e.g. annelid worms) were affected by % organic in conjunction 

with algae biomass and it is suggested (although as yet untested) that a significant 

proportion of the organic content within the sediment comprises fragmented or 

decaying macroalgal mat.  What is of particular note is the implication that algae 

biomass is still having an effect on curlew distribution despite the surface coverage 

having disappeared.  

 

Black-tailed godwit 

As black-tailed godwits are tactile feeders (Granadeiro et al. 2006; Dias et al. 2009), it 

had been expected that this species would be unable to access prey through the dense 

macroalgal mats.  Yet there was no significant difference between densities of black-
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tailed godwits on varying levels of macroalgal mat coverage.  Indeed, flocks of black-

tailed godwits were observed foraging and feeding on adjacent patches of 0% and 

>50% algae coverage in Holes Bay.  This behaviour supports findings from Lewis et al. 

(2014) indicating that black-tailed godwits were unaffected by increased macroalgal 

mat coverage.  By contrast, Green (et al. 2015) reported that marbled godwits (L. 

fedoa) avoided foraging on areas of higher algae coverage in the Mugu Lagoon, 

California.  However, it is worth noting that the mean coverage of macroalgal mat 

recorded by Green et al. (2015) was 55% (±0.04%) and the results only compared bird 

feeding activity on algae or bare mud.  

 

Black-tailed godwit density was higher on high levels of previous algae coverage in 

Brands Bay.  This suggests that the birds are able to obtain a greater amount of energy 

from areas of Brands Bay that were previously covered by high levels of algae; the 

implications of this behaviour are explored fully in Chapter 6.   

 

Oystercatcher 

It had been expected that oystercatchers would be unaffected by the presence of 

macroalgal mats as their bill strength would enable them to penetrate the algae 

successfully (Hulscher 1996).  Although the results showed no significant variation in 

density between varying levels of macroalgal mat coverage, there were fewer 

oystercatchers recorded during the study than any other species. Therefore, further 

observations are needed before concluding that macroalgal mat coverage does not 

affect oystercatcher activity.   

 

By contrast, oystercatchers were significantly affected by previous macroalgal mat 

coverage in both Brands Bay and Holes Bay.  Similar to black-tailed godwits in Brands 

Bay, it was areas with previously high levels of algae coverage which supported a 

greater density of oystercatchers.  As oystercatcher BIM is very similar to curlew BIM in 

terms of sizes of invertebrates preferred (although oystercatchers are able to consume 

larger bivalves), it is not surprising that a similar response was found between the two 

species in terms of preference for areas of 0 previous algae coverage in Holes Bay.  

Both oystercatcher and curlew are large wading birds with higher energy requirements 

necessitating accessing larger prey (Goss-Custard et al. 2006b).  Yet oystercatcher 

BIM was highest in Holes Bay suggesting that there were prey resources available, 

although these would be predominantly annelid worms.  If the macroalgal mats are 

preventing oystercatchers accessing this prey the birds may have to adopt different 

feeding strategies in order to ensure their overwinter survival.    
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Redshank 

Redshanks adopt a visual feeding strategy during daylight (Dwyer et al. 2013).  

Therefore it was surprising that redshank distribution was unaffected by macroalgal 

mat coverage in all three sites.  However, this supports the findings from an earlier 

study in Poole Harbour (Alexesson 2012) which found no significant preference by 

redshank for algae patches or bare mud in Brands Bay.  By contrast, Lewis et al. 

(2014) found redshanks were negatively affected by the presence of dense macroalgal 

mats at the Clonakilty Estuary, Ireland.  The species was observed altering its feeding 

strategy and probing through sparse algae coverage but unable to penetrate denser 

mats.  It is worth noting that maximum coverage recorded during the study was 55% at 

one site (Lewis et al. 2014).  In an earlier, experimental study at the same site, Lewis 

and Kelly (2001) found redshank feeding in greater numbers on algae than on bare 

mud.  However, the study used relatively small experimental plots of 50 m x100 m and 

100 m x100 m.  

 

Redshank abundance was unaffected by levels of previous algae coverage.  It is 

probable that the birds were able to visually search the surface of the mud for Peringia 

ulvae [Pennant, 1777], an important alternate prey, which remained abundant 

throughout the winter months.  Variation in feeding strategy in response to macroalgal 

mat coverage is explored in Chapter 6.   

 

Dunlin 

There was overall variation in dunlin density on different levels of algae coverage.  

However, there were no dunlins recorded on high algae coverage in Brands Bay during 

the study period.  The average length of a dunlin bill is 3 cm (van de Kam et al. 2004) 

therefore it is possible that macroalgal mat formed of dense tubular/filamentous Ulva in 

Brands Bay presented a thick barrier to the dunlin preventing the birds penetrating 

beneath the mat to access their prey.  The results support studies carried out on the 

Tagus Estuary (Cabral et al. 1999) which reported a significant negative effect on 

dunlin distribution on macroalgal mats.  However, it is worth noting that macroalgal mat 

coverage never exceeded 36% during that study.  Dunlins were recorded foraging on 

high algae coverage in Holes Bay, although the variation in dunlin density and 

macroalgal mat coverage was not significant.   

 

Dunlin distribution was unaffected by previous algae coverage.  This could be due, in 

part, to the high numbers of an important item (P. ulvae) still being present and 

accessible to the dunlin during the winter (Chapter 4, Fig. 4.2a – 4.2c).   
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5.5.4 Summary 

Earlier studies indicated that birds would be unlikely to be impacted by macroalgal 

mats particularly as these tended to break up during autumn (Lambeck et al. 1996).  

What this study has shown is that, with the exception of redshank, all species are 

affected by macroalgal mats at some point during the overwintering season.  Of the 

five wading bird species studied, it is the curlew that is most affected by macroalgal 

mats (either visible coverage or previous coverage).   

 

What is also apparent from the results is that using prey availability alone cannot 

predict the distribution of wading bird species.  By virtue of the area containing the 

highest BIM, Holes Bay should have supported the highest density of all wading birds 

studied. Yet this was not the case with Ower Bay supporting higher autumn densities of 

curlews and oystercatchers and a higher density of redshank than Brands Bay.  It is 

important to consider the accessibility of prey items as it has been shown that 

macroalgal mats are potentially impacting wading bird ability to access suitable prey 

items which could have consequences for the bird’s ability to maintain required energy 

levels (Goss-Custard et al. 2002; Sutherland et al 2005).  However, not all wading bird 

species respond in the same way to fluctuations in prey availability.  Oystercatchers 

and curlews, for example, are site faithful with populations remaining similar in size 

despite fluctuations in resources (van de Kam et al. 2004).  By contrast, it has been 

suggested that redshanks will only return to an overwintering site where there is an 

abundance of preferred prey (van de Kam et al. 2004).  Given that wading birds will 

return to the same overwintering area each year, it is likely that they will be adapted to 

variation in conditions at each site (Gill et al. 2001b; Gunnarsson et al. 2005b).   The 

appearance of dense macroalgal mats was first reported in Holes Bay (Poole Harbour) 

in 1972 (Fletcher 1996; Langston et al. 2003).  Table 5.6 shows the typical and 

maximum recorded lifespan for each of the five studied wading birds.   
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Table 5.6: Typical lifespan and maximum-recorded lifespan for the five studied wading bird 

species.  Data taken from British Trust for Ornithology (www.bto.org). 

Species Typical lifespan Maximum recorded  

(year of record) 

Curlew 5 years 32 years (2011) 

Black-tailed godwit 18 years 23 years (2001) 

Oystercatcher 12 years 40 years (2010) 

Redshank 4 years 20 years (2007) 

Dunlin 5 years 19 years (2010) 

 

With typical lifespans ranging from 4 years to 18 years it is reasonable to suppose that 

the birds have become adapted to the site conditions.  Indeed, even if each individual 

bird reached the maximum recorded life-span they would be unaware of pre-

macroalgal mat conditions in Poole Harbour.  

 

The contradictory studies highlighted in this chapter demonstrate a clear indication that 

a species-specific response to macroalgal mats in one area cannot predict the 

response in another; one behavioural response does not ‘fit all’.  Within the harbour 

itself this study has shown that birds appear to be adapting to the conditions prevalent 

in individual bays, although behaviour remains consistent within each bay.  Longer-

lived species may remain ‘faithful’ to a site even as the quality of this site deteriorates 

resulting in a ‘lag’ between environmental conditions worsening and a noticeable 

decline in bird numbers (West et al. 2007).  There is a trade-off between travelling 

further from their preferred breeding ground and finding a site with sufficient prey to 

sustain their winter feeding (Gill et al. 2001b).  In addition, suitable sites along the 

south coast (including Langstone and Chichester Harbours) are also susceptible to 

dense areas of macroalgal mat coverage (Hull 1987); thereby reducing the choice of 

overwintering site still further.  This has implications for the wading bird population in 

terms of the overall conservation of the SPA feature and may affect breeding success 

the following season (Gill et al. 2001b).  This is particularly important if bird numbers 

remain the main indicator of estuarine ecosystem health (Durell et al. 2006). 
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6.0 Changes to wading bird feeding rate in response 

to macroalgal mat coverage  

Abstract 

Wading birds will feed in areas where they can optimise their energy intake; although 

these may not always be the most profitable areas due to a wide range of 

disturbances.  An important research theme is whether the macroalgal mat is causing 

changes to a wading bird’s feeding rate (defined as the number of times a bird 

swallows per minute).  Birds may display an aversion to, or preference for, areas 

covered by macroalgal mat, yet there could be subtle differences in feeding rate that 

might indicate a reduction in energy intake.  These changes, albeit small, could have a 

cumulative effect resulting in birds not reaching the required weight in order to ensure 

successful breeding.  

 

This chapter examines feeding rate of wading birds under varying levels of macroalgal 

mat coverage.  Five species of wading bird; Eurasian curlew (Numenius arquata); 

black-tailed godwit (Limosa limosa); oystercatcher (Haematopus ostralegus); redshank 

(Tringa totanus) and dunlin (Calidris alpina) were selected for study.  A total of 535 

digital video recordings were taken of bird feeding behaviour on areas of intertidal 

mudflats and on varying levels of macroalgal mat coverage.  Recordings were taken 

during the period 1hr before to 1hr after low water on both neap and spring tides 

between September 2013 – March 2014 and September 2014 – March 2015.  Feeding 

rate (number of swallows min-1) was determined for curlew, black-tailed godwit, 

oystercatcher and redshank, and a peck rate (number min-1) determined for dunlin.  

Analysis showed apparent behavioural adaptations to the presence of macroalgal mats 

including a higher feeding rate by black-tailed godwits on high levels of macroalgal mat 

coverage in Brands Bay; where they appeared to be consuming smaller prey items.  

Curlews were recorded foraging for prey on the surface of the macroalgal mat and 

shaking sheets of Ulva spp. to dislodge prey, notably shore crabs.  These behavioural 

changes may have implications for each individual wading bird’s ability to meet its daily 

energy requirement and maintain fitness in order to be able to return to the breeding 

ground in spring.    
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6.1 Introduction 

Determining whether an overwintering bird population is able to obtain sufficient prey in 

order to return to their spring breeding ground is a key conservation objective 

associated with a Special Protection Area (SPA) designated for populations of 

overwintering migratory wading birds (West et al. 2005; Durell et al. 2006; Stillman et 

al. 2010; JNCC 2013).  Any indication that these birds are unable to feed effectively or 

efficiently could result in a decline in the individual species numbers or the overall 

assemblage of wading birds (West et al. 2007).  An important research theme when 

assessing the overall impact of macroalgal mats on wading birds is the question of 

whether the macroalgal mat is causing changes to a wading bird’s feeding rate 

(defined as the number of times a bird swallows per minute).  To date, there have been 

few studies specifically examining feeding rate under varying levels of macroalgal mat 

cover.  Lewis et al. (2014) studied feeding rate for black-tailed godwit and redshank on 

varying macroalgal mat coverage in the Clonakilty Estuary, Ireland.  Black-tailed 

godwits made fewer foraging attempts on areas of macroalgal mat coverage whereas 

redshanks made a similar number of foraging attempts on bare mud and algae covered 

patches but with a reduced feeding rate on algae areas.  The maximum macroalgal 

mat coverage recorded during that study was 55%.   

 

Wading birds require a large amount of energy in order to survive to return to the 

breeding areas in spring (Kersten and Piersma 1987) and each species has an optimal 

‘diet’ based upon the energy intake requirements together with the need to ensure 

maximum intake with minimum effort (Goss-Custard et al. 2006b).  As discussed in 

previous chapters, the presence of dense macroalgal mats is transforming the 

invertebrate community and affecting the energy available to wading birds through their 

benthic invertebrate menu (BIM).  Using the sizes of prey recorded to determine 

energy availability, it was shown in Chapter 4 that the most profitable of the three study 

sites in terms of bird BIM was Holes Bay.  However, the distribution of wading birds 

recorded and discussed in Chapter 5 suggested that birds were not always foraging in 

the most profitable areas.  In Chapter 5 it was reported that density of curlews 

(Numenius arquata [Linnaeus, 1758]) was affected in certain areas by the presence of 

macroalgal mats.  In addition, densities of curlews, oystercatchers (Haematopus 

ostralegus [Linnaeus 1758]) and black-tailed godwits (Limosa limosa [Linnaeus, 1758]) 

were affected by the previous algae coverage in Brands Bay and Holes Bay.  Birds 

may display an aversion to, or preference for, areas covered by macroalgal mat yet 

there could be subtle differences in feeding rate that might indicate a reduction in 
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energy intake.  These changes, albeit small, could have a cumulative effect resulting in 

birds not reaching the required weight in order to ensure successful breeding (Goss-

Custard et al. 2006a).  

 

There are two techniques adopted by overwintering wading bird species when foraging 

for benthic invertebrates in soft sediment habitats; tactile or visual (Davidson et al. 

1986; Dias et al 2009).  Curlews will adopt both tactile and visual foraging strategies 

(Davidson et al. 1986) although it is not fully understood how prey are located within 

the sediment but it has been suggested that the length and curvature of a curlew’s bill 

enables the bird to access larger prey from deeper burrows (Ferns and Siman 1994).  

By contrast, black-tailed godwits are reported to adopt a tactile foraging strategy with a 

series of several quick probes into the sediment often described as a ‘sewing machine’ 

technique (Dias et al. 2009).  Oystercatchers will utilise both tactile and visual feeding 

techniques; probing in the sediment to obtain large worms and buried bivalves by touch 

and also visually searching the surface for bivalves and crabs (van de Pol et al. 2009). 

Redshank (Tringa totanus [Linnaeus, 1758]) adopt a characteristic ‘run stop peck’ 

visual feeding strategy searching for evidence of invertebrates in the sediment or prey 

on the surface (Little 2000) and will adopt a tactile feeding strategy at night (Dwyer et 

al. 2013).  Dunlin (Calidris alpina [Linnaeus, 1758]) visually search and peck the 

surface of the sediment for small hydrobid snails and crustaceans and probe the 

sediment to ‘crop’ bivalve siphons (Martins et al. 2013).  Birds will switch between 

strategies and, during night feeding, those birds which rely on a visual foraging strategy 

during the day will switch to a tactile approach (Mouritsen 1994; Dwyer et al. 2013).   

 

6.1.1 Methods for recording feeding success and prey selection 

Given that most feeding on intertidal areas takes place at low water when the mudflats 

are exposed, wading bird feeding behaviour can be observed and analysed with 

relative ease from a suitable shoreline vantage point (Goss-Custard et al. 1991; Dias 

2009).  However, observing and recording feeding success and size of prey taken is 

more difficult.   

 

Field observations 

Most wading birds display a very distinctive ‘swallowing’ motion when a prey item is 

taken and this can be easily recorded during observations of birds at low water (Dias et 

al. 2009).  Figure 6.1 shows a sequence of feeding success for a black-tailed godwit 

from prey acquisition, moving the item up the bill and finally swallowing.  The video 

sequence (Chapter 6 Fig 6,1 black-tailed godwits feeding in Brands Bay) is provided in 
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the attached cd.  This motion can be differentiated from a bird lifting its head in order to 

check for predators by the upward tilting and rapid head movement indicating 

swallowing (Fitzpatrick and Bouchez 1998). 

 

 

 

 

     

 

 

 

 

 

Fig. 6.1:  Black-tailed godwit feeding sequence taken from video recording on 4
th
 November 

2014 in Brands Bay on low (5%-50%) algae coverage at the mid-shore level.  A:  prey located, 

B: prey in bill, C: prey swallowed.  Photos: © A. Thornton.  The full video sequence (Chapter 6 

Fig 6,1 black-tailed godwits feeding in Brands Bay) is provided in the attached cd.   

 

Although, as Fig. 6.1 shows, it is clear when a bird has swallowed prey, accurate 

determination of prey species taken can be problematic using field observations alone 

(Goss-Custard and Jones 1976).  Variation in bill size, light conditions, distance from 

the bird, and speed of prey handling were all reported to contribute to both 

underestimation and overestimation of energy intake from a prey item (Lee and Hockey 

2001).  A study on the intertidal mudflats of the Ria de Huelva, Spain, recording 

feeding behaviour and prey selection by black-tailed godwits found difficulty in 

determining prey items taken; analysis could only sort prey items into two categories, 

‘worm’ and ‘unidentified prey’ which, it was reported, could also include small worms 

(Dominguez 2002).  

 

Video recordings 

Digital video recording of bird behaviour provides a more reliable method for 

determining feeding success (Lee and Hockey 2001; Sutherland et al. 2005).  Analysis 

can be carried out using computer video technology enabling recordings to be slowed 

down and played back repeatedly ensuring more accurate counts of swallowing and, in 

many cases, determination of prey taken.  This reduces the observer error reported in 

other studies (Lee and Hockey 2001).  Using digital video recordings Martins et al. 

(2013) determined changes in foraging and feeding strategies adopted by migrating 

A B C 
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dunlin on intertidal areas of the Tagus Estuary, Portugal.  From recordings taken at a 

short distance it was possible to determine the proportion of the dunlin diet derived 

from Hediste diversicolor [O. F. Müller 1776] and Scrobicularia plana [da Costa, 1778] 

(Martins et al. 2013).  Variation in predator avoidance and flocking behaviour was 

analysed using video recordings of dunlin flocks adopting visual or tactile feeding 

behaviour (Barbosa 1997).  

 

Droppings 

An additional method used to support the video analysis is the collection of droppings 

(Sutherland et al. 2005).  Analysis of droppings collected at a suitable interval following 

the video recording can be used to corroborate the determination of prey items taken 

(Goss-Custard and Jones 1976; Rippe and Dierscheke 1977; Sutherland et al. 2005). 

Success using this method relies upon the researcher’s ability to locate and collect 

droppings without causing unnecessary disturbance to the birds or the dropping itself 

being washed away.  The collection of droppings on a rising tide or at a roost site can 

prevent birds being disturbed whilst feeding and this method was adopted by Santos et 

al. (2005) when examining the diet of overwintering dunlin on the Tagus Estuary.  

Cabral et al. (1991) used experimental plots of 1ha and was able to collect droppings 

by observing the species location and following the bird footprints.  Martins et al. (2013) 

observed dunlin feeding in the study area for 1 hour before collecting droppings to 

ensure they contained prey from the survey location.  However, there is danger that 

prey items or identifiable fragments may not survive the digestion process (Goss-

Custard and Jones 1976).  

 

6.1.2 Bird feeding in Poole Harbour  

Feeding rate  

There remains some confusion around the terms ‘feeding rate’ and ‘intake rate’ (Goss-

Custard et al. 2006b).  For the purposes of this research, feeding rate is the number of 

times an individual bird is observed swallowing per unit time (Goss-Custard et al. 

2002).  Intake rate refers to the amount of energy consumed by an individual wading 

bird and requires an accurate determination of the size and species of prey item 

consumed (Goss-Custard et al. 2006b).  Feeding rate is a wading bird’s functional 

response to the abundance and availability of suitable invertebrate prey (Goss-Custard 

et al. 2006b).   

 

Holes Bay contained significantly greater energy than either Brands Bay or Ower Bay 

for each of the studied wading bird species’ BIM; although there was no difference in 
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energy available between Brands Bay and Ower Bay for any of the wading bird’s BIM.  

This led to the expectation that there would be correspondingly fewer birds feeding in 

Ower Bay and Brands Bay than in Holes Bay (Pickess and Underhill-Day 2002).  As 

shown in Chapter 5 this was not evident from the observations; there was no variation 

between sites for the total numbers of the five key wading bird species.  Indeed, both 

curlew and oystercatcher numbers were significantly higher in Ower Bay than either 

Brands Bay or Holes Bay.   

 

Droppings were not collected for this research as the consistency of the sediment in 

Poole Harbour prevented easy and timely access.  In addition, the surface water film 

on the mud would have led to the breakdown of the dropping before it could be 

collected.   

 

6.1.3 Rationale 

This chapter will address a gap in the knowledge by assessing whether wading bird 

feeding rate is affected by the presence of macroalgal mats.  It has already been 

suggested that macroalgal mats are transforming the invertebrate community and, as a 

consequence, impacting upon the wading bird’s BIM.  Yet wading birds will feed in 

areas where they can optimise their energy intake (Dias et al. 2009); although these 

may not always be the most profitable areas (Stillman and Goss-Custard 2010).  It is 

not possible for birds to take prey items which are larger than their gullet (Davidson et 

al. 1986).  However, there is also a maximum feeding rate even if a bird is consuming 

prey within their BIM; feeding rate will be limited by the time needed for the gut to 

process prey (Goss-Custard et al. 2006a).   

 

Digital video recordings were made of bird feeding rate under different algae coverage 

to compare the effect of macroalgal mat coverage at different sites.  Research also 

examined whether birds are adapting to the presence of macroalgal mats and 

modifying their feeding behaviour to compensate by exploiting new or alternative food 

sources.  In addition, the analysis should determine whether species-specific foraging 

behaviour on levels of macroalgal mat coverage is site-specific or consistent between 

sites.   
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6.2 Aims and objectives 

Aim 1: To establish whether the macroalgal mat is contributing to variations in 

feeding rate of predatory wading birds.  

Aim 2: To determine whether there are behavioural adaptations apparent on 

varying levels of macroalgal mat coverage.  

Aim 3: To predict the time required for wading birds to reach their daily energy 

requirement (DER) at each site if consuming preferred-size prey or 

smallest-size prey. 

 

Objective 1: Observe and record the behaviour of key wading bird species over the 

course of two winter seasons (September – March 2013/2014, and 

September – March 2014/2015). 

Objective 2: Use video recordings of bird feeding behaviour to establish a feeding 

rate for each wading bird species on varying levels of macroalgal mat 

coverage.    

Objective 3: Establish wading bird DER and plot predicted intake rate for two prey 

sizes using feeding rate recorded.   

 

6.3 Methods 

6.3.1 Digital video recording 

Five species of wading bird; Eurasian curlew (Numenius arquata [Linnaeus 1758]); 

black-tailed godwit (Limosa limosa [Linnaeus 1758]); oystercatcher (Haematopus 

ostralegus [Linnaeus 1758]); redshank (Tringa totanus [Linnaeus 1758]); and dunlin 

(Calidris alpina [Linnaeus 1758]), were selected for study.  Digital video recordings 

were made in daylight and in suitable weather conditions during the period 1hr before 

to 1hr after low water on both neap and spring tides between September 2013 – March 

2014 and September 2014 – March 2015 in conjunction with observation surveys 

detailed in Section 5.4.3.  Species were recorded at all three sites and all shore-levels 

(where possible) during the two survey seasons and on varying levels of macroalgal 

mat coverage.  Each recording was two minutes in length and made using a 

Swarowski 20-60 zoom telescope with a Swarowski digiscope attachment on a Pentax 

K30 digital camera recording in HD 1087p.  The same individual was not recorded 

more than once in the same area of the bay.  Given the number of overwintering birds 

present in Poole Harbour, it is unlikely that the same individual would be recorded on 

more than one occasion in any year.  Videos were replayed on computer in slower 
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motion and the length of the recording for each individual was noted; recordings of 

<30seconds were rejected.  Where more than five birds were recorded, five individuals 

were randomly selected for analysis.  Videos were also assessed for quality and 

recordings were rejected if the bird’s swallowing motion was not clearly visible.  The 

maximum distance for a successful recording varied according to the size of species, 

the size of the site, and weather conditions at the time of recording.   

 

6.3.2 Feeding rate 

Feeding rate was determined by counting the number of swallowing motions by 

individual birds per minute.  This was possible for curlew, black-tailed godwit, 

oystercatcher and redshank as these species display clear swallowing motion when 

taking prey, even if the prey item is not visible.  It was not possible to determine a 

distinct swallowing motion by dunlin as the species adopts a pecking foraging strategy 

and will take up prey without lifting its head (Santos et al. 2005).  Therefore, for the 

purposes of this study, peck rate (number of pecks per minute) was recorded for 

dunlin.   

 

6.3.3 Algae coverage 

Recordings of each species were made on varying levels of algae coverage which 

were confirmed during video analysis.  Algae coverage was recorded on three levels 0 

(<5% cover), low (L) (5%-50% cover), high (H) (51%-100% cover).  The level of 

coverage was determined by the location of the recorded bird within the frame of the 

video not the overall coverage of the patch.  This provided an indication of behaviour in 

adjacent patches of algae and bare mud.   

 

6.3.3.1 Determining feeding strategy 

Recordings were also analysed to determine whether wading birds could be observed 

alternating between visual and tactile feeding strategies whilst foraging.  Birds using 

visual techniques were observed looking for prey items or evidence of buried prey by 

tilting their head, pecking from the macroalgal mat or sediment surface or changing 

direction suddenly to peck or probe for prey.  Tactile feeding techniques involved rapid 

probing into the macroalgal mat or sediment, rapid surface pecking, or random probing 

of the sediment.      

 

 

 

 



134 
 

6.3.3.2 Calculation of daily energy requirements using basal metabolic rate 

The difference in number of hours required for each bird to obtain its daily energy 

requirement (DER) were calculated for each wading bird species consuming preferred 

prey size within its BIM, and the smallest prey size.  Preferred prey size was calculated 

as the mean size of prey within each invertebrate group for each wading bird BIM that 

was available at each of the three sites.  An example is shown in Table 6.1 with details 

of values for all size classes used provided in Appendix 7 and AFDM equations 

provided in Appendix 3.  An energy value was calculated from the AFDM of an 

individual of the mean preferred size and smallest size using the formula based on 

calculations by Zwarts and Wanink (1993): 

Energy (kJ) = AFDM g * 22 

 

Table 6.1:  Example showing how the mean size value was calculated for curlew’s preferred 

size of C. edule available from samples taken in Holes Bay.  

Wading bird Preferred prey size 

within BIM 

Size range available 

at Holes Bay 

Mean size for 

determining DER 

Curlew C. edule 5 - 20 mm  5 mm - 20 mm 12.5 mm 

 

Basal metabolic rate (BMR) is calculated using formula in Kersten and Piersma (1987): 

𝐵𝑀𝑅 = 437 ∗ (𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑘𝑔)0.729 

 

Body weight for each species of wading bird was taken from BTO Bird Facts website 

(BTO 2016) with average weight used where males and females differ.  Full details are 

provided in Appendix 7. 

 

The DER for a foraging / resting wading bird was determined using formula in Kersten 

and Piersma (1987).  The value of 2.1 is calculated from the energy expenditure for 

cage existence metabolism (2*BMR) plus an additional 10% estimated energy required 

for periods of flight taken as the mid-point of 10-30 minutes (Zwarts et al. 1996).    

𝐷𝐸𝑅 = 2.1 ∗ (𝐵𝑀𝑅) 

 

6.3.4 Analysis 

6.3.4.3 Spatial and temporal variation in feeding rate 

All analysis was carried out using R version 3.0.3 “Supposedly Educational”, (R Core 

Team 2016).   
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Counts of successful swallowing were converted to feeding rate.  Assumptions of 

normality and homogeneity of variance were checked using Shapiro Wilks test within 

the “stats” package in R (R Core Team 2016) and Levene test within the “car” package 

developed for R (Fox and Weisberg 2011) respectively.  Variation in feeding rate 

between sites was analysed using ANOVA with post-hoc Tukey test within the “stats” 

package in R (R Core Team 2016).  Variation in dunlin peck rate between sites was 

carried out using Welch’s one-way ANOVA (not assuming equal variance) with post-

hoc Games-Howell test carried out using the “userfriendlyscience” package developed 

for R (Peters 2016).  Seasonal variation in feeding rate for each species was tested 

using ANOVA.  Effect size, using Pearson’s r correlation coefficient, was determined 

for significant pairs using exact Wilcoxon-Mann-Whitney Test to obtain z scores then 

the equation r = z/sqrt(N) with N being the number of samples (Barto and Rillig 2012; 

Field 2012).  Effect sizes are defined as small (r = <0.3), medium (r = <0.5), large (r = 

>0.5) (Cohen 1994).  

 

6.3.4.4 Variation in feeding rate under macroalgal mat coverage 

Within-site variation in feeding rate under macroalgal mat coverage was analysed 

using ANOVA with Tukey post-hoc tests within the “stats package” for R (R Core Team 

2016) or non-parametric Kruskall-Wallis test (R Core Team 2016) with post-hoc 

Nemenyi tests carried out using “PMCMR” package developed for R (Pohlert 2014).  

Between-site variation in feeding rate on levels of macroalgal mat coverage was 

determined using ANOVA with Tukey post-hoc tests within the ‘stats’ package for R (R 

Core Team 2016).  Effect size (r) was calculated using exact Wilcoxon-Mann-Whitney 

Test as detailed above.   
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6.4 Results 

6.4.1 Number of recordings per species  

Table 6.2 provides details of the number of recordings taken for each wading bird 

species and the level of macroalgal mat coverage visible in the recording.  Site 

conditions and the rapid fragmentation of the macroalgal mat in Holes Bay resulted in 

some wading birds not being recorded on low levels of macroalgal mat coverage at this 

site.   

 

Table 6.2:  Number of individual birds recorded per site and on each level of macroalgal mat 

coverage.  Levels of coverage 0 (<5%), Low (5% - 50%), High (51% - 100%). 

Species Site 
Total  

recordings 

0 algae 

coverage 

Low algae 

coverage 

High algae 

coverage 

Curlew 

Brands Bay 15 7 5 3 

Holes Bay 18 12 0 6 

Ower Bay 32 15 9 8 

Black-tailed 

godwit 

Brands Bay 92 11 56 25 

Holes Bay 68 39 14 15 

Ower Bay 44 9 29 6 

Oystercatcher 

Brands Bay 15 5 8 2 

Holes Bay 9 8 0 1 

Ower Bay 29 15 7 7 

Redshank 

Brands Bay 20 13 4 7 

Holes Bay 31 26 0 5 

Ower Bay 34 15 15 4 

Dunlin 

Brands Bay 56 44 12 0 

Holes Bay 8 8 0 0 

Ower Bay 64 32 27 5 
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6.4.2 Spatial and temporal variation in feeding rate 

6.4.2.1 Between-site variation in feeding rate  

Table 6.3 provides details on variations in wading bird feeding rate between sites 

irrespective of date. 

 

Table 6.3:  Variation in mean feeding rate (No. min
-1

) between sites for curlew, black-tailed 

godwit, oystercatcher and redshank, and variation in mean peck rate (No. min
-1

) for dunlin. 

Significance codes: *** = <0.001 ** = <0.01 * = <0.05.  NS = not significant (p = >0.05). 

BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  

Species F (df) P Post-hoc Tukey 

Curlew 2.159 (2, 62) 0.124 NS 

Black-tailed 

godwit 

96.704 (2, 62) <0.001*** BB>HB p = <0.001*** 

  

BB>OB p = <0.001*** 

OB>HB p = <0.001*** 

Oystercatcher 3.42 (2, 62) 0.041* OB>BB p = 0.036* 

Redshank 0.219 (2, 62) 0.804 NS 

Dunlin  7.866 (2, 19.696) 0.003** BB>OB p = 0.009** 

 

Mean black-tailed godwit feeding rate varied significantly between all sites with the 

highest mean feeding rate recorded in Brands Bay.  Oystercatcher mean feeding rate 

was higher in Ower Bay than Brands Bay.  Dunlin mean peck rate was higher in 

Brands Bay than Ower Bay.   

 

6.4.2.2 Within-site variation in feeding rate between seasons 

Although there was some variation in feeding rate between seasons, there was no 

pattern.  Curlew feeding rate was higher in winter whereas black-tailed godwit, 

oystercatcher and redshank recorded a higher mean feeding rate in autumn.  By 

contrast, winter feeding rate for oystercatcher was higher in winter than autumn in 

Holes Bay.  Table 6.4 provides details of the analysis and post-hoc tests on wading 

bird feeding rate between seasons per site; autumn (September-November), winter 

(December- March). 
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Table 6.4:  Variation in mean feeding rate (No. min
-1

) within sites for curlew, black-tailed godwit, 

oystercatcher and redshank, and variation in mean peck rate (No. min
-1

) for dunlin between 

seasons; autumn (September-November), winter (December- March). 

Significance codes: *** = <0.001 ** = <0.01 * = <0.05.  NS = not significant (p = >0.05). 

BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  

Species Site F (df) P  

Curlew 

BB 

HB 

OB 

5.894 (1,13) 

3.031 (1,16) 

1.878 (1,30) 

Winter > autumn p = 0.031* 

NS p = 0.101 

NS p = 0.181 

Black-tailed 

godwit 

BB 

HB 

OB 

9.506 (1,90) 

2.168 (1,66) 

0.051 (1,42) 

Autumn > winter p = 0.003** 

NS p = 0.146 

NS p = 0.823 

Oystercatcher 

BB 

HB 

OB 

6.998 (1,13) 

7.687 (1,7) 

0.152 (1,27) 

Autumn > winter p = 0.020* 

Winter > autumn p = 0.028* 

NS p = 0.7 

Redshank 

BB 

HB 

OB 

15.2 (1,13) 

1.369 (1,29) 

1.366 (1,32) 

Autumn > winter p = 0.001** 

NS p = 0.251 

NS p = 0.251 

Dunlin  

BB 

HB 

OB 

1.357 (1,54) 

NA 

2.901 (1,62) 

NS p = 0.249 

NA 

NS p = 0.094 

 

6.4.3 The impact of macroalgal mat coverage on feeding rate  

6.4.3.1 Within-site variation in feeding rate under macroalgal mat coverage 

Recording data for both years were combined irrespective of season.   

 

Figure 6.2 shows the feeding rate for curlew, black-tailed godwit, oystercatcher and 

redshank, and peck rate for dunlin, under varying levels of macroalgal mat coverage 

within each site.   
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Fig. 6.2:  Mean feeding rate (No. min
-1

) recorded against levels of macroalgal mat coverage for 

curlew, black-tailed godwit, oystercatcher, redshank, and peck rate (No. min
-1

) against 

macroalgal mat coverage for dunlin.  Error bars 95% confidence intervals.  Macroalgal mat 

coverage 0 = 0 (<5% cover), L = low (5%-50% cover), H = high (>50% cover).   

Data are combined for both years and both seasons.   

Site BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  
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Black-tailed godwit 

There was very highly significant variation in black-tailed godwit feeding rate between 

macroalgal mat coverage in Brands Bay (F2,89 = 10.32, p = <0.001) with a higher rate 

on low algae compared to ‘0’ algae (z = 3.8334, p = <0.001, r = 0.40), and a higher 

feeding rate on high algae compared to ‘0’ algae (z = 3.2883, p = <0.001, r = 0.34).  

There was very highly significant variation in black-tailed godwit feeding rate between 

macroalgal mat coverage in Ower Bay (x2=25.628, df = 2, p = <0.001) with a higher 

feeding rate on low algae compared to ‘0’ algae (z = 4.4832, p = <0.001, r = 0.68), and 

a higher feeding rate on low algae compared to high algae (z = 2.9773, p = <0.01, r = 

0.45).  There was no significant variation in feeding rate for black-tailed godwits on 

different macroalgal mat coverage in Holes Bay. 

 

Redshank 

Redshank feeding rate varied significantly under different macroalgal mat coverage in 

Brands Bay (F2, 17 = 4.073, p = 0.036) but no pair-wise significance was found.  There 

was no significant variation in feeding rate under varying macroalgal mat coverage in 

Holes Bay or Ower Bay.  

 

Curlew, oystercatcher and dunlin 

Curlew and oystercatcher feeding rate did not vary significantly between macroalgal 

mat coverage levels at any site.  Dunlin peck rate did not vary significantly between 

macroalgal mat coverage at Brands Bay or Ower Bay.  There were insufficient samples 

in Holes Bay to provide analysis.   

 

6.4.3.2  Between-site variation in feeding rate on varying macroalgal mat coverage. 

Figure 6.3 shows the feeding rate for curlew, black-tailed godwit, oystercatcher and 

redshank, and peck rate for dunlin, under similar levels of algae coverage between 

sites.   
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Fig. 6.3:  Mean feeding rate (No. min
-1

) recorded against equivalent levels of macroalgal mat 

coverage between sites for curlew, black-tailed godwit, oystercatcher, redshank, and peck rate 

(No. min
-1

) against equivalent levels of macroalgal mat coverage between sites for dunlin.  Error 

bars 95% confidence intervals.  Macroalgal mat coverage 0 = 0 (<5% cover), L = low (5%-50% 

cover), H = high (>50% cover).  Data are combined for both years and both seasons.   

Site BB: Brands Bay.  HB: Holes Bay.  OB: Ower Bay.  
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Black-tailed godwit 

There was very highly significant variation in feeding rate for black-tailed godwits on 0 

algae between sites (F2,52 = 14.63, p = <0.001) with a higher rate on ‘0’ algae in Brands 

Bay than Holes Bay (z = 3.136, p = <0.001, r = 0.42) and a higher rate on ‘0’ algae in 

Brands Bay than Ower Bay (z = 3.240, p = <0.001, r = 0.44). 

 

There was very highly significant variation in feeding rate for black-tailed godwit on low 

algae between sites (F 2, 53.40 = 195, p = <0.001) with a higher rate on low algae in 

Brands Bay than Holes Bay (z = 5.783, p = <0.001, r = 0.57), a higher rate on low 

algae in Brands Bay than Ower Bay (z = 3.716, p = <0.001, r = 0.37), and a higher rate 

on low algae in Ower Bay than Holes Bay (z = 4.939, p = <0.001, r = 0.49). 

 

There was very highly significant variation in feeding rate for black-tailed godwit on 

high algae between sites (F2, 43 = 50.08, p = <0.001) with a higher rate on high algae in 

Brands Bay than Holes Bay (z = 5.1005, p = <0.001, r =  0.75) and a higher rate on 

high algae in Brands Bay than Ower Bay (z = 3.652, p = <0.001, r = 0.54).  There was 

no significant variation in feeding rate on high algae between Holes Bay and Ower Bay.   

 

Oystercatcher 

Oystercatcher feeding rate varied significantly between sites on ‘0’ algae (F2,25 = 5.392, 

p = <0.05) with a higher rate in Ower Bay than Brands Bay (z = 2.708, p = <0.01, r = 

0.51).  Oystercatcher feeding rate did not vary significantly between sites on low or 

high algae coverage.  

 

Dunlin 

Dunlin peck rate varied significantly on ‘0’ algae between sites (F2,76 = 4.611, p = <0.05) 

with a higher rate in Brands Bay than Holes Bay (z = 2.194, p = <0.05, r = 0.25) and a 

higher rate in Brands Bay than Ower Bay (z = 1.925, p = <0.05, r = 0.23).  There was 

no significant variation in peck rate on ‘0’ algae between Holes Bay and Ower Bay. 

 

Dunlin peck rate varied significantly on low algae between sites with a higher rate in 

Brands Bay than Ower Bay (z = 2.1815, p = <0.05, r = 0.33).  There were insufficient 

recordings of dunlin on low algae in Holes Bay to enable analysis.  

 

Curlew and redshank 

There was no variation in curlew or redshank feeding rate on any level of macroalgal 

mat coverage between sites.     
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6.4.4 Variation in feeding strategy on different levels of macroalgal mat 

coverage 

Figs. 6.4a and 6.4b show the observed variation in percentage of the recording where 

birds used tactile and visual feeding strategies.  Only curlews and redshank were 

observed using different feeding strategies. Apart from one occasion where an 

oystercatcher caught and consumed a fish, both black-tailed godwit and oystercatchers 

used tactile feeding only.  It was not possible to determine whether dunlin used tactile 

or visual feeding strategies as only peck rate was recorded.  

 

 

Fig. 6.4a:  Proportion of time curlews were recorded using a visual or tactile foraging technique 

on varying levels of macroalgal mat coverage.   

Macroalgal mat coverage 0 = 0 (<5% cover), L = low (5%-50% cover), H = high (>50% cover).     
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Fig. 6.4b: Proportion of time redshanks were recorded using a visual or tactile foraging 

technique on varying levels of macroalgal mat coverage.  Macroalgal mat coverage 0 = 0 (<5% 

cover), L = low (5%-50% cover), H = high (>50% cover).   

 

6.4.5 Observations of curlew foraging behaviour 

As figure 6.4a indicates, curlews switched from visual to tactile foraging in response to 

all levels of macroalgal coverage; yet in Ower Bay in particular they used tactile 

foraging almost exclusively.  However, in Ower Bay, curlews were recorded rapidly 

pecking the surface of the algae when coverage was high; although their feeding rate 

did not vary.   

 

Curlews were also observed using a different feeding technique by searching for prey 

beneath the algae by picking up and shaking sheets or sections of the macroalgal mat 

to dislodge invertebrates.   Holes Bay was covered by the sheet-forming Ulva spp. 

which is less dense and easier to move.  Figure 6.5 provides a still image taken from a 

video recording showing a curlew picking up a piece of algae and shaking it.  The full 

video sequence (Chapter 6 Fig 6,5 curlew shaking algae sheet in Holes Bay) is 

provided in the attached cd.  Although on that occasion there was no prey underneath, 

the foraging behaviour was observed (but not recorded) on two other occasions; both 

of which resulted in the curlew finding and consuming a large shore crab.  Curlews are 

known to throw larger prey items (particularly crabs) onto the sediment in order to 

break the body of the prey into more manageable pieces (van de Kam et al. 2004).  It 

is stressed that these are observations and any significant behavioural change would 

require further study. 
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Fig. 6.5:  Image taken from a video recording showing a curlew foraging on high algae in Holes 

Bay.  The full video sequence (Chapter 6 Fig 6,5 curlew shaking algae sheet in Holes Bay) is 

provided in the attached cd.  The curlew is recorded picking up a piece of algae and shaking it 

suggesting it hoped to dislodge prey from the algae.  Photo © A Thornton 

 

6.4.6 Impact on feeding rate if smallest-size prey taken 

Fig. 6.6a-c provides an overview of the difference in feeding time required should birds 

have to rely solely on the smallest-size prey for their daily energy requirement (DER) 

on different levels of algae coverage.   

 

It is apparent from these data that all studied wading bird species would be unable to 

fulfil their (DER) during a 12hour available feeding period if only the smallest prey size 

were available.  However, it is possible for black-tailed godwits in Brands Bay to 

achieve their DER within 24hours by only taking the smallest prey.  This is using 

feeding rate recorded on those levels of macroalgal mat.  However, these figures also 

show that even a slight decrease in mean prey size resulting from changes in 

environmental conditions under macroalgal mats could have significant impacts upon a 

bird’s ability to meet its DER.    
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Brands Bay 

 

Fig. 6.6a:  Time needed (h) for birds to reach DER in Brands Bay consuming one individual 

item of preferred size available (according to their BIM) or smallest-size prey.  Data are based 

on recorded feeding rate for each bid species on varying macroalgal mat coverage 0 (<5%), low 

(5%-50%), high (51%-100%).           12hr           24hr thresholds.  Data are presented on a log10 

scale for clarity.   

<1h 
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Holes Bay 

 

Fig. 6.6b:  Time needed (h) for birds to reach DER in Holes Bay consuming one individual item 

of preferred size available (according to their BIM) or smallest-size prey.  Data are based on 

recorded feeding rate for each bid species on varying macroalgal mat coverage 0 (<5%), low 

(5%-50%), high (51%-100%).            12hr           24hr thresholds. Data are presented on a log10 

scale for clarity.  No data = no recordings of curlew, oystercatcher or redshank on low algae.  

No data 

No data 

No data 
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Ower Bay  

 

Fig. 6.6c:  Time needed (h) for birds to reach DER in Ower Bay consuming one individual item 

of preferred size available (according to their BIM) or smallest-size prey.  Data are based on 

recorded feeding rate for each bid species on varying macroalgal mat coverage 0 (<5%), low 

(5%-50%), high (51%-100%).            12hr           24hr thresholds. Data are presented on a log10 

scale for clarity.   
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6.5 Discussion 

6.5.1 The impact of macroalgal mat on feeding rate 

Macroalgal mats are transforming the invertebrate community with consequential 

transformations evident for bird’s BIM and subsequent foraging behaviour.  Given that 

the algae has been a feature of the intertidal mudflats in Poole Harbour for over 40 

years (Fletcher 1996) it would be reasonable to suppose that birds have made some 

adaptations to their feeding behaviour in response to these transformations.  Results 

have shown site-specific and species-specific responses by wading birds to the 

presence of macroalgal mats.  The five species of wading bird studied responded 

differently to varying levels of macroalgal mat coverage.  Feeding rate varied 

significantly for some species whereas others appeared unaffected by macroalgal 

mats.  Yet, despite the lack of variation in feeding rate by some species, there were still 

apparent behavioural adaptations to the presence of macroalgal mats.   

 

Curlew 

Although distribution did vary in response to levels of macroalgal mat coverage in 

Holes Bay (see Chapter 5, Sections 5.5.2 and 5.5.3), curlew feeding rate did not vary. 

This suggests that the curlews were able to find suitable prey irrespective of the level 

of macroalgal mat coverage.  

 

Curlews will remain faithful to a site provided there are sufficient prey resources 

available and accessible (van de Kam et al. 2004).  As Fig. 6.6a-c shows, curlews 

would need hundreds or even thousands of hours per day to acquire their DER from 

the smallest prey-size.  It is unlikely that they could increase their feeding rate to such 

a level.  In addition, due to the curlew bill length and structure (Davidson et al. 1986), it 

is not possible for the bird to obtain sufficient energy from smaller prey items as 

handling time would be lengthy (van de Kam et al. 2004).  Given that, as suggested in 

Chapter 4 (Section 4.1), it is curlews that are most at risk from high macroalgal 

biomass, an alternative feeding adaptation may be necessary.  Their long bills enable 

large prey to be obtained from deeper in the sediment in areas unreachable by all the 

other wading bird species (Ferns and Siman 1994).  Yet, if these invertebrates move 

upwards in response to changes in the sediment chemistry, interspecific competition 

may have increased.  Curlews, however, are still able to consume much larger prey 

items than black-tailed godwit, redshank and dunlin (Goss-Custard et al. 2006b); only 

oystercatchers could present additional competition for the largest invertebrates (Goss-

Custard et al. 2006b).  The observations of curlews shaking sections of the macroalgal 
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mat and dislodging prey could indicate that they may have switched their preferred 

prey to larger shore crabs on the macroalgal mat or C. edule which may have moved 

upwards into the macroalgal mat (Österling and Pihl 2001).  

 

Black-tailed godwit 

Levels of macroalgal mat coverage had a significant effect on the feeding rate of black-

tailed godwits.  It had been expected that birds would avoid areas with macroalgal 

coverage in favour of areas where there was ‘0’ algae however, the opposite was 

found with feeding rate higher on both low and high algae when compared to ‘0’ algae 

in both Brands Bay and Ower Bay.  This contradicts findings by Lewis and Kelly (2001) 

where black-tailed godwits were shown to prefer areas of bare mud to algae covered 

patches.  Given that black-tailed godwits will forage in patches where there is a greater 

abundance of prey (Dias et al. 2009) this behaviour suggests that the birds may be 

able to obtain a greater amount of energy when algae is present (either at a low or high 

level of coverage).  Although there was no difference in the distribution of black-tailed 

godwits in autumn (see Chapter 5, Section 5.5.2), there were a greater number 

recorded on areas of Brands Bay where there were high levels of previous algae 

coverage (see Chapter 5, Section 5.5.3).  Therefore it is suggested that the change in 

feeding rate may be a response to conditions created by the presence of algae.  Black-

tailed godwit feeding rate was highest in Brands Bay on all three levels of macroalgal 

mat coverage.  The results contrast with the study carried out by Lewis et al. (2014), in 

the Clonakilty Estuary, Ireland, where black-tailed godwits made fewer foraging 

attempts on areas of macroalgal mat coverage than areas of bare mud.   

 

There was a greater abundance of smaller prey sizes under high algae coverage in 

Brands Bay (Chapter 4, Section 4.5.1).  This could indicate a change in feeding 

strategy with birds taking smaller, less profitable prey at an increased feeding rate.  

This scenario was similar in Ower Bay with black-tailed godwits’ feeding rate higher on 

areas where macroalgal mats were present.  As reported in Chapter 4 (Section 4.5.1), 

both these sites contained an abundance of smaller worms and other less energy-

dense prey.  In addition, the composition of the macroalgal mat at both sites was the 

tubular/filamentous forms of Ulva spp. with a higher biomass already shown to have 

altered the invertebrate community (see Chapter 3, Section 3.5.8).  The BIM for black-

tailed godwits was lower in Brands Bay and Ower Bay than Holes Bay - the site where 

there was no variation in black-tailed godwit feeding rate between algae coverage.  
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When looking at the potential implications of energy intake for black-tailed godwits 

consuming preferred prey or less profitable prey, the only site where the bird’s DER is 

achievable within a 24 hour period when consuming the smallest-size prey is Brands 

Bay (Fig. 6.6a).  Although it is acknowledged that birds are not physically able to feed 

constantly for 24 hours, the feeding rate recorded at this site would result in a 

mathematically possible DER being achieved per day if the birds were consuming 

small worms.  Indeed, if the birds were consuming their preferred size of annelid 

worms at the feeding rate recorded, each individual would reach its DER in less than 

an hour.  It could also be argued that if black-tailed godwits were feeding on their 

preferred size of prey there would be an increase in handling time (Goss-Custard et al. 

2006b); this was not apparent from the recordings.  As discussed in Chapter 3, higher 

macroalgal mat biomass resulted in an increased abundance of smaller opportunistic 

species including Chironomidae larvae (categorised as small worms for the purposes 

of this study) - a highly abundant species in Brands Bay.  Black-tailed godwits have 

been recorded feeding on Chironomidae larvae (Santiago-Quesada et al. 2014) 

therefore it is possible that the birds are taking advantage of this abundance and 

feeding at a greater rate on smaller species available on high levels of macroalgal mat 

coverage.   

 

Black-tailed godwits will move within their preferred overwintering region and will 

respond to changes in local prey availability (Gill et al. 2001b); populations are known 

to move to poorer quality sites if density becomes too great at a higher quality site 

(Gunnarsson et al. 2005b).  In addition, although this falls outside the scope of this 

study, black-tailed godwits will use terrestrial areas to support their feeding 

requirements (Durell et al. 2006; Navedo et al. 2013).  Indeed, there is anecdotal 

evidence that the black-tailed godwits overwintering in Poole Harbour have been 

recorded feeding on flooded fields ~10 miles away in Christchurch.   

 

Oystercatcher 

It was not surprising that oystercatcher’s feeding success was unaffected by varying 

macroalgal mat coverage.  The species is highly adaptable and the strength of their bill 

would not present a problem accessing prey from within the sediment (Hulscher 1996).  

Oystercatchers used tactile methods for locating prey at each of the sites studied with 

the exception of one incidence where an oystercatcher caught a fish in shallow water in 

Brands Bay.  However, fish are not regarded as important prey items for 

oystercatchers (Goss-Custard et al. 2006b).  Although it is reported that oystercatchers 

locate their benthic invertebrate prey by touch alone, the prey will reveal clues on the 
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surface from breathing holes which the oystercatcher will see (Hulscher 1996).  Figure 

6.7 shows two oystercatchers foraging in close proximity on high levels of macroalgal 

mat coverage in Ower Bay.  

 

Fig. 6.7: Two oystercatchers (and a redshank) foraging at Ower Bay on high macroalgal mat 

coverage in autumn 2014.  Photo © A Thornton. 

 

Oystercatchers do appear to be able to reach their DER within 24 hours if their 

preferred prey size is available yet, as shown in figure 6.6c, would struggle if prey size 

were reduced to the smallest size category as a result of increase in macroalgal mat 

coverage.  Oystercatchers avoid smaller prey items (Zwarts 1996) and were not 

observed actively foraging beneath the algae sheets in a similar fashion to curlews.  

This strongly suggests that the species do not forage for prey on the surface of the 

algae.  Oystercatchers will remain faithful to a particular overwintering site even if there 

is a decline in their preferred prey (Stillman and Goss-Custard 2010).  Given that the 

macroalgal mat development could have led to an increase in smaller species, this 

could have implications for the oystercatcher population in Poole Harbour if they 

remain in an increasingly poor quality site.  It is worth noting that oystercatchers’ BIM is 

not restricted to bivalves – the birds will consume larger worms (Goss-Custard et al. 

2006b).  This may prove vital in the ‘worm-dominated’ Poole Harbour as larger sizes of 

H. diversicolor remained abundant in Holes Bay under increasing macroalgal mat 

biomass and coverage.    

 

Redshank 

It was not surprising that redshank were unaffected either in distribution or feeding 

success by the presence of macroalgal mats.  Individuals were able to switch between 

visual and tactile strategies in response to the presence of algae (see Fig. 6.6b) and 
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were recorded probing the sediment and also pecking from the surface of the 

macroalgal mat (Fig. 6.8).  However, the findings contrast those by Lewis et al. (2014) 

where a decline in redshank foraging success was recorded on higher levels of 

macroalgal mat coverage.  Maximum macroalgal mat coverage reported during that 

study was 55% whereas the maximum coverage recorded in Brands Bay was 100%.   

 

 

Fig. 6.8:  Redshanks foraging on low algae at Ower Bay in autumn 2013.  Photo © A Thornton.   

 

Redshank appear less susceptible to the impact from a decline in preferred prey size 

as their DER is lower and generally made up of smaller-sized prey (Goss-Custard et al. 

2006b).  However it is still apparent that they would struggle to obtain sufficient energy 

per day should this only be available from small gastropods (e.g. Peringia ulvae) 

Redshank will select alternative prey items to their preferred prey (e.g. Corophium) but 

do not ‘downsize’ by selecting smaller worms to compensate (Goss Custard 1977). If 

prey sizes are reduced as a consequence of increased macroalgal mat biomass, 

redshanks may struggle to reach their DER in Poole Harbour.  However, as discussed 

in Chapter 5, redshanks will move to different sites in search of prey (van de Kam et al. 

2004).   

 

Dunlin 

Dunlin avoided areas of high algae coverage in Brands Bay and Holes Bay yet there 

was no variation in dunlin peck rate between algae coverage within sites.  It had been 

expected that dunlin would avoid areas with even low macroalgal mat coverage as 

these small birds were unable to probe beneath the mat (Mouritsen and Jensen 1992).  

Other studies have shown an increase in peck rate in areas of algae coverage (Múrias 

et al. 1996) although maximum coverage recorded in that study was 36%.  
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Due to the lack of availability of dunlin recordings on all levels of macroalgal mat 

coverage it was not possible to accurately determine any behavioural changes in 

relation to the macroalgal mat.   

 

6.5.2 Conclusion 

There is evidence that macroalgal mats are transforming the behaviour of the studied 

wading bird species with the exception of redshanks.  However, responses to 

macroalgal mats are site-specific with birds appearing to adapt their feeding behaviour 

dependent upon the macroalgal mat conditions and coverage at a particular site.  It 

also appears that the macroalgal mat itself is providing some habitat structure that can 

be utilised by some wading bird species.  The thickness of the mat may benefit curlews 

as, even if the larger prey items are moving upwards in the sediment column, the 

macroalgal mat adds a surface layer that could prevent smaller birds with shorter bills 

from accessing the prey.  However, there is a lag between a decline in algae and the 

sediment anoxic layer returning to a lower level that could result in larger prey items 

remaining in the upper layer of the sediment without protection afforded by the 

macroalgal mat.  This could lead to increased predation by the wading birds.  

 

These results have shown that it is likely to be the larger wading birds (curlew, 

oystercatcher and black-tailed godwit) that will be most affected by the macroalgal 

mats.  The greatest impact will be due to the increase in smaller opportunist species 

such as Tubificoides spp. as a result of increased macroalgal biomass.  Curlews and 

oystercatchers do have an advantage over black-tailed godwits as these species’ BIMs 

include larger C. edule as an additional food source.  By contrast, black-tailed godwits 

appear to have adapted to an increased abundance of smaller prey sizes and 

increased their feeding rate accordingly.  Moreover this species will move to more 

profitable feeding areas should the quality of their preferred site deteriorate (Gill et al. 

2001b). Black-tailed godwits were not recorded adopting visual feeding strategies nor 

were birds observed taking prey from the surface of the macroalgal mat.  

 

It appears that black-tailed godwit’s feeding rate is significantly affected by the 

transformation of the invertebrate community under dense macroalgal mats and the 

increase in smaller prey items that are less profitable for the birds.  This has 

implications for the population under the SPA given that currently Poole Harbour 

supports 2.6% of the overwintering Icelandic population of black-tailed godwits (Limosa 

limosa islandica) (Natural England 2016).  Although all the wading bird species appear 

to be adapting to the continued presence of macroalgal mats this should not lead to 
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complacency.  The cumulative impacts of increasing coverage and biomass of 

macroalgal mats, and reduction in prey size could have serious implications for wading 

bird’s ability to meet their DER with consequences for their winter survival and fitness 

to return to the spring breeding grounds.    
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7.0 Discussion and conclusion 

‘…The connections between causes and effects are often much more subtle and 

complex than we ... might naturally suppose…’ 

(Dirk Gently’s Holistic Detective Agency, Douglas Adams, 1987) 

7.1 Introduction 

Increasing nutrient enrichment and the development of macroalgal-mats are global 

conservation concerns.  The overall aim of this research has been to demonstrate the 

impact of the development of green macroalgal-mats on the overwintering wading bird 

population for which Poole Harbour is a designated SPA.  This aim was addressed 

using extensive fieldwork data to analyse the interactions between macroalgal-mats 

and different trophic levels within a temperate estuarine food-web; impacts from the 

primary production macroalgal-mat on primary/secondary consumers (the benthic 

invertebrate community) upwards to the tertiary consumers/top predators 

(overwintering wading birds).  Previous studies have focused on interactions between 

these trophic levels but there has been a tendency for studies to investigate impact 

only between macroalgal-mats and either benthic invertebrates or wading birds (e.g. 

Jones and Pinn 2006; Lewis et al. 2014).   

 

Studies examining the impacts of green macroalgal-mats on the ecology of soft-

sediment estuarine habitats have been carried out since the 1970s (Fletcher 1996).  

Yet, despite a general consensus that the macroalgal-mats are transforming these 

intertidal habitats (Fletcher 1996; Raffaelli et al. 1998; McLusky and Elliott 2004; Borja 

et al. 2012), there is little agreement on any single, measurable impact resulting from 

macroalgal-mat development.  Indeed, even studies within the same geographical 

region (e.g. the south coast of England) are unable to provide a reliable ‘threshold’ for 

macroalgal-mat biomass above which there is a definite detrimental impact on the 

benthic invertebrate community or wading bird population (Soulsby 1982; Hull 1987; 

Rees-Jones 2004).  Intertidal estuarine habitats are dynamic ecosystems with each 

example subject to a range of environmental conditions (McLusky and Elliott 2004) 

making each site a unique study.   
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7.2 The biomass and extent of macroalgal-mats in Poole 

Harbour 

Results from this chapter demonstrated that the macroalgal-mat develops in response 

to air temperature and sediment temperature and is not affected by heavy rainfall.  

Although the influence of temperature was expected (Raffaelli et al. 1998), it was 

surprising that the heavy rainfall and flooding which occurred during January and 

February 2014 did not result in any change in the overall biomass of the macroalgal-

mat.   

 

Macroalgal-mat biomass did not vary significantly between the two survey seasons 

although peak biomass was recorded at different times of year.  Given that dense 

macroalgal-mats have been a feature of sheltered areas of Poole Harbour for over 40 

years it is perhaps not surprising that no significant variation was found in a relatively 

short survey period.  It is possible that macroalgal-mat development/growth has 

reached a zenith given current environmental conditions.  However, a more likely 

cause is the morphology of the Ulva species within the macroalgal-mat itself with 

sheet-forming Ulva developing into less dense mats with lower biomass but greater 

coverage; possibly limiting light availability to the lower frond development.   

 

From a conservation perspective, consideration needs to be given to the current 

threshold of concern for macroalgal-mat development for the SSSI Condition 

Assessment in Poole Harbour (currently set at 2 kg m-2 wet-weight algal biomass) 

(Underhill-Day et al. 2010).  This biomass was reached in some areas of the harbour 

but the level was not maintained throughout the season and not reached in Holes Bay 

or Newton Bay.  Results demonstrated that the lower threshold of 1 kg m-2 being 

consistently maintained across the study sites may be a more appropriate threshold for 

Poole Harbour. 

 

Although determining the extent of the macroalgal-mat across the whole harbour would 

have provided a measure of the % coverage at a single point during the growth 

season, it was more important to be able to monitor the development on a monthly 

basis and use those data to assess the impact on overwintering wading birds.  As 

discussed in Chapter 2, regular monitoring of macroalgal-mat growth patterns and 

extent within each bay provided records of levels of coverage present during the first 

four months of the overwintering bird season.  In addition, results demonstrated a clear 

correlation between the algae % coverage present in quadrats at the upper shore level 
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and the overall coverage across each survey site.  This provided evidence suggesting 

the macroalgal-mat develops from the upper shore then follows the shore gradient yet 

deteriorates at a similar rate across each bay.  This is important when considering the 

impact from coverage persisting into the wading bird overwintering season.  Terrestrial 

methods are useful to provide an overview of the condition of an area in terms of 

macroalgal-mat development.  In addition, when looking at amenity ecosystem 

services provided by the harbour (e.g. wildlife watching, dog walking, cycling), public 

perception of the problem caused by macroalgal-mats will be based upon the coverage 

in accessible bays.  Anecdotal evidence gathered during fieldwork and bird 

observations support the view that Holes Bay and Brand’s Bay in particular are ‘very 

green and smelly’ during the summer.  

 

7.3 The impact of macroalgal-mats on the benthic 

invertebrate community 

As there was no possibility of using before/after experimental methodology to 

determine the impact of macroalgal-mats on the benthic invertebrate community due to 

a paucity of records for benthic invertebrates in Poole Harbour prior to the development 

of the macroalgal-mat, ABC curves were plotted to establish whether there were any 

areas experiencing environmental stress.  This proved a very useful first phase in 

establishing the status of the invertebrate population at key wading bird overwintering 

sites.  The results showed Poole Harbour is an environmentally ‘stressed’ system with 

species indicative of organically enriched estuarine environments recorded in high 

abundance.  These curves also provided the first indication that there was variation in 

the invertebrate response to environmental stress between sites.   

 

The distance-based linear-models (DISTLM), provided evidence that the intertidal 

mudflats in Poole Harbour support an abundance of opportunistic r-selected rather 

than the slower growing K-selected species.  The exception to this was the presence of 

the highly adaptable Hediste diversicolor.  This was further supported by demonstrating 

that algae biomass and/or % organic content within the sediment were the main 

environmental drivers of dissimilarities between benthic invertebrate community 

structure and distribution.  This is important to consider as previously it was found that 

sediment particle size and/or organic content were the best explanatory variables for 

species distribution.  It is likely that the organic content within the sediment in the areas 

studied comprises decaying macroalgal mat. 
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7.4 The effect of macroalgal-mats on wading bird prey:  

implications for individual bird species   

This chapter tested a novel approach to determining the impact of macroalgal-mats on 

wading birds by assessing individual bird species’ preferred prey rather than an overall 

abundance / biomass of invertebrates.  In doing so, it was demonstrated that, although 

there was an overall abundance of invertebrates, once the smaller species were 

removed as being below the preferred prey size for key overwintering wading birds, the 

effect from macroalgal-mats was more apparent.  The work was based upon the theory 

that non-breeding overwintering wading birds are focussed on obtaining maximum 

energy intake for minimum effort.  Therefore, by establishing site-specific and species-

specific BIM it was possible to determine the impact of macroalgal-mats on each bird 

species at each site.  This enabled a more accurate analysis of the available energy 

under site-specific macroalgal-mat biomass development.   

 

Using a measure of energy required for each wading bird species demonstrated the 

need to record sizes classes of invertebrates in order to obtain these energy values.  

Simply recording abundance of invertebrate taxa is not sufficient to predict impact on 

wading birds from macroalgal-mats.  In addition, it was demonstrated that the BIM for 

each wading bird species increases under low levels of macroalgal-mat biomass then 

begins to decline; further supporting the lowering of the current  threshold of concern 

for macroalgal-mat biomass from 2 kg m-2 to 1 kg m-2 for Poole Harbour.  By removing 

those size classes of invertebrates which are of insufficient quality for wading bird’s 

BIM, it became apparent that the abundance of suitable sized annelid worms 

comprised mainly H. diversicolor.  Whilst this prey item is an abundant food source in 

Holes Bay, it was not as abundant in either Brands Bay or Ower Bay.  Despite 

estuarine sediments being relatively species-poor compared to terrestrial or fully 

marine systems (McLusky and Elliott 2004), the possibility that energy from larger 

worms is derived from a single species raises concern.  Biodiversity is vital to 

ecosystem resilience (Borja et al. 2012); particularly a worm-dominated system such as 

Poole Harbour.  H. diversicolor was one of the top six most abundant species recorded 

under macroalgal-mats and appears to be adapting to the current levels of macroalgal-

mat biomass.  However, there remains the potential for a sudden population decline 

which would have consequences for the overwintering birds’ ability to reach their daily 

energy requirements. 
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7.5 The relationship between macroalgal-mat coverage and 

wading bird foraging behaviour 

This chapter demonstrated that birds may avoid areas of current macroalgal-mat 

coverage and those areas where previous algae coverage was low or high.  This 

particularly affected curlews; a species recently added to the BTO Red List for Birds of 

Conservation Concern (Eaton et al. 2015).  As Europe’s largest wading bird it is the 

species most likely to be affected by the transformation of the invertebrate community 

and presence of macroalgal-mats yet this has not previously been investigated.  

Curlews are positively and negatively impacted by macroalgal-mats with birds in Holes 

Bay appearing to use the dense algae coverage as a structure upon which to stand yet 

avoiding areas where there was previous coverage of algae.   

 

Evidence from analysis of the distribution of wading bird BIM suggested that, despite 

the high BIM in Holes Bay, this area was not used exclusively by wading birds; 

supporting the optimal foraging theory that other factors, apart from availability of prey, 

will determine the location of foraging birds (Sutherland et al. 2005).  Results also 

showed that the macroalgal-mat is having an impact on the distribution of all the 

studied wading bird species (with the exception of redshank) at some point during their 

overwintering period.   

 

7.6 Changes to wading bird feeding rate in response to 

macroalgal-mat coverage 

The success of the video recordings used in this chapter enabled a detailed analysis of 

the feeding rate for four out of the five wading bird species studied.  Observations of 

bird feeding behaviour suggested that the birds are adapting to the presence of the 

macroalgal-mats in different ways and at different sites.  This was supported by 

evidence of curlew actively foraging on the algae and even moving sheets of Ulva in 

Holes Bay to search for prey.  Both curlews and redshanks switched between tactile 

and visual feeding strategies on varying levels of macroalgal-mat coverage.  However, 

it was the behaviour of the black-tailed godwits which has proved noteworthy as their 

feeding rate increased on low and high levels of macroalgal-mat coverage in Brands 

Bay.  This may indicate that birds are feeding at a much higher rate on smaller, less 

energy dense species such as the abundant Chironomidae larvae or Tubificoides spp.  

This behaviour has not previously been recorded. 
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7.7 Limitations to the study 

Control site   

Results from this study demonstrated that a control site would not have been an 

effective experimental methodology given the intrinsic variation in site conditions even 

with macroalgal-mat coverage.  Basing a control site on a lack of macroalgal-mat 

development would be meaningless unless other variables could be controlled.  The 

most suitable control site in terms of size and morphology was Holton Heath.  

However, although this site did not show macroalgal-mat development during 2013, 

there are numerous other factors which may have affected this including possible 

chemical leeching from landfill on the site and residual groundwater leeching of 

chemicals from the former ammunition factory on site.  In addition, extensive reed-beds 

which fringe the site may have mitigated some of the nutrient input thereby rendering 

the site less enriched than others around the bay. 

 

Spatial and temporal limitations 

These results are based upon two ecological cycles of macroalgal-mat development; a 

timescale longer than previous studies in the harbour yet too short to predict the impact 

of macroalgal-mats which have been a feature of the intertidal mudflats for 40 years.  

In addition, it is acknowledged that this study concentrates on a single site, Poole 

Harbour.  However, there is variation in responses of invertebrates and wading bird 

species to macroalgal-mat development between the study areas within the harbour 

suggesting this site-specific approach is appropriate.    

 

Despite every effort to ensure all five bird species were recorded on each level of 

macroalgal-mat coverage at each site, this was not possible.  Some patches, 

particularly the lower shore where macroalgal-mat coverage was generally ‘0’, were 

further away from the raised vantage point in Brands Bay and Holes Bay.  Indeed, 

Holes Bay proved the most challenging as the macroalgal-mat was predominantly 

sheet-forming Ulva spp. which broke down rapidly during the autumn months resulting 

in a lack of patches with low macroalgal-mat coverage.  In addition, the wide bay 

presented problems recording birds’ feeding behaviour.  Although the birds could be 

counted accurately, they were often foraging >500 m from the vantage point.  This 

resulted in a number of recordings being discarded as it was not possible to determine 

feeding rate even when the telescope was on maximum zoom; further compounded by 

the low winter light levels at the low-tide spring observations when the maximum area 

of mudflat was exposed and birds were feeding along the water line.  It had been 



163 
 

anticipated that variation in feeding rate according to shore-level could be analysed.  

However, there were insufficient recordings of birds on the different shore levels to 

make this analysis robust.  It had been hoped that comparisons could be made 

between feeding rates on existing algae and previous algae coverage.  As this was not 

possible, it is acknowledged that there are a greater number of recordings on ‘0’ algae 

in winter than autumn 

 

7.8 Potential further research 

Ecology of the macroalgal-mat 

There is a further gap in our understanding of the ecology of the macroalgal-mat itself.  

It was apparent from the bird behavioural observations and video analysis that there 

was suitable prey available within the macroalgal-mat rather than only in the sediment.  

Invertebrates retained from the macroalgal-mat biomass samples could be analysed to 

determine whether there were any differences between communities.  In addition these 

could be related back to the algae samples (also retained) to determine whether the 

invertebrate community is impacted by different species of algae.  In addition, it might 

be possible to determine whether invertebrate species are moving upwards within the 

sediment column in response to increased macroalgal-mat biomass and resultant 

changes in the sediment chemistry.    

 

Individual-based model 

This research has demonstrated that macroalgal-mats are transforming the intertidal 

habitat and the benthic macro-invertebrate community within Poole Harbour with 

implications for the overwintering bird population.  A logical next-step would be the 

development of an individual-based model (IBM) to predict the wading bird population 

response to the macroalgal-mat coverage and biomass across the whole intertidal 

mudflat habitat in Poole Harbour.  Using existing data and aerial images, an IBM would 

enable predictions of impacts on overwintering wading birds should the macroalgal-mat 

increase in biomass or extent across Poole Harbour.  Developing an IBM would 

address the constraints present in all ecological studies – length of time available for 

studying a system.     

 

Remote sensing 

Aerial photography is acknowledged as an appropriate methodology for assessing the 

extent of macroalgal-mats; particularly when the study site is large (Vadas and Beal 

1987; Nedwell et al. 2002; Patrício et al. 2007; Scanlan et al. 2007).  By using aerial 
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photographs it would have been possible to show the full extent of the macroalgal-mat 

development in Poole Harbour – particularly those areas which are inaccessible on foot 

yet may provide a ‘bare-mud’ refuge for invertebrates or wading birds.   

 

However, had aerial imagery been available, there would remain some limitations to 

this method.  A costly flight would have been scheduled for the month in which peak 

macroalgal-mat growth and extent was anticipated in Poole Harbour (August 2013).  

Although peak % coverage of algae was recorded in August 2013 in Holes Bay and 

Newton Bay, the peak occurred later in Brands Bay (September 2013) and Ower Bay 

(October 2013) (Fig. 2.5); after the aerial images would have been obtained.  This type 

of remote sensing is costly therefore it may not have been possible to schedule a 

repeat flight for October to allow for the increased coverage.  In Poole Harbour there 

are additional constraints from the limited time within each low tide period during which 

the mudflats are exposed and, due to the ‘double high-water’ in Poole, timing for low 

spring tide is often later in the afternoon resulting in a reduced light level for 

photography.  Technology has advanced in the field of remote sensing particularly the 

use of unmanned aerial vehicles (UAVs), also known as ‘drones’ (Ogden 2013; 

Ivoševic et al. 2015).  These could provide a much more cost effective method by 

which the extent of the macroalgal-mat could be determined with flights carried out on 

more than one occasion during a macroalgal-mat growth season; although flights over 

estuaries may be restricted in autumn to avoid disturbance to the populations of 

overwintering wading birds.   

 

7.9 Conservation recommendations 

Management proposals currently being considered in northern France involve the 

wholescale clearance of the macroalgal mat (Smetacek and Zingone 2013).  A similar 

proposal is being considered for Poole Harbour (Capuzzo and Forster 2014; N. 

Hopkins, Catchment Co-Ordinator, Wessex Water, pers. com.)  However, as shown in 

Chapter 4, Fig. 4.4 and 4.5, removing the macroalgal-mat would have a similarly 

negative impact upon the benthic invertebrate abundance and biomass and wading 

bird BIM as algae biomass >2000 g (ww) m-2, resulting in the removal of important prey 

resources within the sediment.  In addition, as the birds appear to be feeding on 

invertebrates on the surface of the macroalgal-mat, clearing this food resource without 

allowing the sediment benthic invertebrate community to recover would further reduce 

the availability of suitable prey.  It is likely that the anoxic/hypoxic conditions would 

remain within the sediment for a longer period before returning to levels where the 
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invertebrate community begins to re-establish; reducing the availability of prey still 

further.  Sediment is currently dominated by smaller, pollution tolerant, species and 

these would be likely to remain until the larger species were able to return.   

 

7.10 Final comment 

Underpinning this research are a number of legislative frameworks emanating from 

Europe; although transposed into UK law.  It is likely that the UK is entering a period of 

unprecedented change as a result of the EU Referendum vote yet as we continue to 

transform the estuarine environment through excess nutrient input, there is a need to 

understand the processes involved in ecosystems through applied and theoretical 

collaborative research.  As discussed throughout this thesis, although there are site-

specific variations in the development of macroalgal-mats, the issue of excessive 

nutrient input into an ‘open’ estuarine ecosystem is a global problem not restricted by 

borders.    

 

As this research developed, it became apparent that the macroalgal-mat itself is not a 

barren green mass of ‘slime’ but a habitat in its own right.  This was further supported 

by recording a diversity of Ulva species and invertebrate taxa within the mat; 

supporting the need for more research on this naturally occurring primary producer 

before it is removed.  Perhaps renaming it an ‘intertidal green-belt’ or ‘intertidal lawn’ 

might encourage people to consider its function within the estuarine ecosystem and 

understand that, just like a lawn, the macroalgal-mat requires controlling and 

maintaining rather than clearing.   

 

But more than mundane weeds are there,  

And mud, celestially fair;      

(from ‘Heaven’, Rupert Brooke 1913) 
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Appendix 1a 

Mean air temperature (oC), sunshine (hours) and rainfall (mm) for 1981-2010 

average and monthly from January 2013 – March 2015 (www.metoffice.gov.uk). 

Month Year Mean temperature 
o
C Sunshine (hours) Rainfall (mm) 

Jan 1981-2010 5.0 66.5 86.9 

Feb 1981-2010 4.9 84.5 62.5 

Mar 1981-2010 6.9 121.4 64.7 

Apr 1981-2010 8.7 185.1 53.9 

May 1981-2010 12.1 218.5 49.5 

Jun 1981-2010 14.8 229.5 51.6 

Jul 1981-2010 17.0 232 47.8 

Aug 1981-2010 16.8 214.6 51.8 

Sep 1981-2010 14.4 159.1 65.3 

Oct 1981-2010 11.2 115.2 100.7 

Nov 1981-2010 7.6 80.1 100.5 

Dec 1981-2010 5.2 60.3 100.0 

Jan 2013 3.9 43.5 81.4 

Feb 2013 3.2 67.6 38.1 

Mar 2013 3.4 66.5 70.3 

Apr 2013 7.6 166.9 41.8 

May 2013 10.7 191.9 56.2 

Jun 2013 14.2 188.1 22.8 

Jul 2013 18.7 291.9 31.9 

Aug 2013 17.6 214.4 38.9 

Sep 2013 14.4 126.8 52.6 

Oct 2013 12.8 97.9 138.7 

Nov 2013 6.7 78.8 71.8 

Dec 2013 6.3 53.8 161.4 

Jan 2014 6.2 63.7 205.2 

Feb 2014 6.7 96.6 147.7 

Mar 2014 8.1 159.7 37.9 

Apr 2014 10.6 167.5 75.1 

May 2014 12.5 201.6 74.1 

Jun 2014 15.8 241.7 37.8 

Jul 2014 18.6 269.2 46.2 

Aug 2014 15.9 199.4 102.0 

Sep 2014 15.8 144.8 14.8 

Oct 2014 13.3 106.9 111.4 

Nov 2014 9.0 58.3 135.6 

Dec 2014 5.5 75 53.9 

Jan 2015 4.9 70.2 99.0 

Feb 2015 4.1 80 60.4 

Mar 2015 6.9 142.2 24.5 
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Appendix 1b 

Site temperature oC and mean sediment temperature oC recorded during algae 

biomass sampling March 2013 – March 2015. 

Site Date 
Site  

temperature  
o
C 

Mean sediment  
temperature  

o
C 

Sediment  
temperature  

95% C.I. 

Brands Bay Mar-13 2 4.62 0.08 

Brands Bay Apr-13 20 19.58 0.18 

Brands Bay May-13 13 14.98 0.05 

Brands Bay Jun-13 15 16.54 0.09 

Brands Bay Jul-13 26 26.02 0.15 

Brands Bay Aug-13 22 20.86 0.06 

Brands Bay Sep-13 19 17.36 0.07 

Brands Bay Oct-13 15 19 0.10 

Brands Bay Nov-13 9 9.7 0.02 

Brands Bay Dec-13 10 11.24 0.04 

Brands Bay Jan-14 7 10.36 0.00 

Brands Bay Feb-14 9 11.99 0.00 

Brands Bay Apr-14 16 16.6 0.13 

Brands Bay Jun-14 18 20.44 0.07 

Brands Bay Aug-14 21 19.9 0.12 

Brands Bay Oct-14 13 14.6 0.02 

Brands Bay Dec-14 10 9.58 0.02 

Brands Bay Feb-15 6 12.12 0.03 

Holes Bay Mar-13 0 5.78 0.09 

Holes Bay Apr-13 7 9.44 0.07 

Holes Bay May-13 10 15.12 0.05 

Holes Bay Jun-13 19 19 0.10 

Holes Bay Jul-13 30 26.72 0.08 

Holes Bay Aug-13 22 20.14 0.07 

Holes Bay Sep-13 17 16.32 0.06 

Holes Bay Oct-13 19 17.4 0.08 

Holes Bay Nov-13 9 12.18 0.01 

Holes Bay Dec-13 6 10.8 0.00 

Holes Bay Jan-14 7 9.84 0.00 

Holes Bay Feb-14 9 10.27 0.00 

Holes Bay Apr-14 18 18.2 0.00 

Holes Bay Jun-14 20 24.26 0.05 

Holes Bay Aug-14 21 21.92 0.16 

Holes Bay Oct-14 17 16.76 0.09 

Holes Bay Dec-14 8 10.68 0.03 

Holes Bay Feb-15 8 12.32 0.04 

Newton Bay Mar-13 2 5.6 0.09 

Newton Bay Apr-13 15 20.48 0.11 
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Site Date 
Site  

temperature  
o
C 

Mean sediment  
temperature  

o
C 

Sediment  
temperature  

95% C.I. 

Newton Bay May-13 15 19.96 0.18 

Newton Bay Jun-13 18 19.36 0.17 

Newton Bay Jul-13 25 26.52 0.24 

Newton Bay Aug-13 23 26.62 0.22 

Newton Bay Sep-13 16 20.9 0.12 

Newton Bay Oct-13 14 15.94 0.05 

Newton Bay Nov-13 9 11.08 0.02 

Newton Bay Dec-13 11 11.2 0.00 

Newton Bay Jan-14 7 10.24 0.00 

Newton Bay Feb-14 9 10.27 0.00 

Newton Bay Apr-14 12 14.94 0.04 

Newton Bay Jun-14 22 22.5 0.19 

Newton Bay Aug-14 21 20.38 0.08 

Newton Bay Oct-14 13 14.5 0.05 

Newton Bay Dec-14 10 10.32 0.02 

Newton Bay Feb-15 10 12.96 0.05 

Ower Bay Mar-13 2 4.76 0.04 

Ower Bay Apr-13 17 17.28 0.75 

Ower Bay May-13 13 18 0.21 

Ower Bay Jun-13 17 16.66 0.08 

Ower Bay Jul-13 27 25.98 0.18 

Ower Bay Aug-13 22 22.62 0.34 

Ower Bay Sep-13 16 19.4 0.07 

Ower Bay Oct-13 16 16.2 0.16 

Ower Bay Nov-13 9 9.72 0.03 

Ower Bay Dec-13 11 11.22 0.03 

Ower Bay Jan-14 7 10.65 0.00 

Ower Bay Feb-14 9 10.43 0.00 

Ower Bay Apr-14 12 14.8 0.08 

Ower Bay Jun-14 22 21.44 0.11 

Ower Bay Aug-14 21 19.34 0.05 

Ower Bay Oct-14 15 15.78 0.03 

Ower Bay Dec-14 10 9.2 0.03 

Ower Bay Feb-15 10 12.62 0.03 

 

  



198 
 

   

 

S4 

Locations of benthic invertebrate core sampling 

stations and vantage point for bird observations.   

 

S1 and S2: lower shore 

S3 and S4: mid shore 

S5 and S6: upper shore 

X   bird observation point 

Each point comprised six replicate core samples 

taken on three dates (September 2013, December 

2013, September 2014).  

Images © Google Earth 2014. 
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Appendix 3a   

Head-width to length conversions calculated for samples collected in Poole 

Harbour September 2013, December 2013, and September 2014. 

 

Hediste diversicolor:  log(e) length = 1.2901*log(e)head + 2.9143, r2 = 0.939, n=507 

Nephtys hombergii:  log(e) length = 3.73375+ log(e)head*0.6082, r2 = 0.391, n=25 

No significant difference was found between actual length and length calculated using 

the equations above (p = >0.05). 

 

Appendix 3b   

Length to AFDM (mg) equations from Thomas et al. (2004) and Herbert et al. 

(2010) for species recorded in Poole Harbour Sept. 2013, Dec. 2013, Sept. 2014. 

Species Length to AFDM (mg) 

Hediste diversicolor EXP(-4.8+1.88*LN(x)+0.5*0.175 

Nephtys hombergii EXP(-6.47+2.4*LN(x)+0.5*0.043) 

Cyathura carinata EXP(-4.3179+2.1435*LN(x)+0.5*0.2182) 

Peringia ulvae EXP(-1.6752+1.1748*LN(x)+0.5*0.0762) 

Corophium volutator EXP(-2.9967+1.5479*LN(x)+0.5*0.129) 

Small worms* 0.019 mg per worm 

Abra tenuis EXP(-2.0287+1.7031*LN(x)+0.5*0.0412) 

Limecola (Macoma) balthica EXP(-2.0287+1.7031*LN(x)+0.5*0.0412) 

Mya arenaria EXP(-2.0287+1.7031*LN(x)+0.5*0.0412)  

Cerastoderma edule  EXP(-5.68+3.315*LN(x)+0.5*0.046) 

Ruditapes philippinarum  EXP(-4.9+2.98*LN(B23)+0.5*0.057) 

Gammarus locusta EXP(-5.2531+2.6753*LN(B10)+0.5*0.0787) 

Melita palmata EXP(-5.2531+2.6753*LN(B10)+0.5*0.0787) 

Microdeutopus gryllotalpa EXP(-5.2531+2.6753*LN(B10)+0.5*0.0787) 

Microprotopus maculatus EXP(-5.2531+2.6753*LN(B10)+0.5*0.0787) 

Carcinus maenas EXP(-1.757+2.2739*LN(B13)+0.5*0.104) 

Arenicola marina 358 mg per individual 

Littorina spp. EXP(-5.6481+3.59194*LN(B12)+0.5*0.09) 

Idotea balthica EXP(-5.2531+2.6753*LN(B10)+0.5*0.0787) 

Retusa obtusa EXP(-2.0287+1.7031*LN(x)+0.5*0.0412) 

*Small worms:  Ampharete acutifrons, Aphelochaeta marioni, Capitellidae, Chaetozone sp., Chironomidae, 

Desdemona ornata, Dolichopodidae, Eteone longa, Glycera tridactyla, Melinna palmata, Phyllodoce mucosa, 

Polydora sp., Pygospio elegans, Scolelepsis sp., Scoloplos armiger, Streblospio shrubsolii, Tubificoides spp.   
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Appendix 4a   

Mean abundance (m-2) and mean biomass (mg AFDM m-2) of invertebrates 

recorded at each site (Brands Bay, Holes Bay and Ower Bay).   

 Brands Bay Holes Bay Ower Bay 

 Mean  

abundance

(m
-2
) 

Mean 

biomass  

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2
) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2
) 

Mean 

biomass  

(mg AFDM 

m
-2
) 

Annelida       

Ampharete acutifrons 
8.25 9.82 0 0 1.18 8.23 

Aphelochaeta marioni 
239.31 284.78 341.88 406.83 190.98 227.27 

Arenicola marina 
3.54 1266.13 1.18 422.04 1.18 422.04 

Capitellid 
180.37 214.64 11.79 14.03 194.52 231.47 

Chaetozone sp. 
1.18 1.4 0 0 0 0.00 

Desdemona ornata 
1.18 1.4 1.18 1.4 2.36 2.81 

Eteone longa 
8.25 9.82 4.72 5.61 30.65 36.47 

Glycera tridactyla 
0 0 0 0 1.18 1.40 

Hediste diversicolor 
163.87 232.76 1936.91 10019.56 403.18 1811.50 

Melinna palmate 
7.07 8.42 0 0 2.36 2.81 

Nephtys hombergeii 
9.43 350.9 8.25 308.25 40.08 1241.17 

Phyllodoce musoca 
10.61 12.63 0 0 7.07 8.42 

Polydora sp. 
5.89 7.01 40.08 47.7 5.89 7.01 

Pygospio elegans 
2.36 2.81 1.18 1.4 1.18 1.40 

Scolelepsis sp. 
0 0 0 0 2.36 2.81 

Scoloplos armiger 
17.68 21.04 0 0 1.18 1.40 

Streblospio shrubsolii 
56.59 67.34 631.88 726.69 48.33 57.52 

Tubificoides spp. 
3653.38 4347.52 1033.89 1230.32 2578.23 3068.09 

Crustacea 
      

Carcinus maenas 
17.68 655.53 4.72 434.01 12.97 375.13 

Corophium volutator 
211.02 87.29 1.18 0.56 5.89 2.84 

Cyathura carinata 
1.18 0.97 2.36 3.67 16.5 9.12 

Dynamene bidentata 
7.07 13.65 0 0 0 0.00 

Gammarus sp. 
5.89 1.82 22.4 4.05 50.69 9.74 

Idotea balthica 
5.89 3.41 3.54 4.6 20.04 21.64 

Melita palmate 
7.07 2.99 21.22 8.3 4.72 1.55 

Microdeutopus grillotalpa 
113.17 17.91 21.22 3.18 55.41 6.92 

Microprotopus maculatum 
1.18 0.07 1.18 0.07 3.54 0.20 

Sphaeroma sp. 
0 0 2.36 2.81 0 0.00 
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 Brands Bay Holes Bay Ower Bay 

 Mean  

abundance

(m
-2
) 

Mean 

biomass  

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2

) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2
) 

Mean 

biomass  

(mg AFDM 

m
-2
) 

Mollusca 
      

Abra tenuis 
196.87 427.24 122.6 389.02 78.99 212.90 

Cerastoderma edule 
30.65 1191.83 18.86 1690.95 21.22 769.73 

Gibbula umbilicalis 
1.18 1.41 0 0 0 0.00 

Lepidochitona cinerea 
1.18 2.28 0 0 0 0.00 

Littorina spp. 
15.33 39.62 4.72 46.06 5.89 12.27 

Limecola (Macoma) 

balthica 
10.61 264.18 4.72 54.74 10.61 104.40 

Mya arenaria 
7.07 5.15 20.04 854.38 15.33 198.90 

Peringia (Hydrobia) ulvae 
1171.82 1608.79 2212.77 3328.87 1549.06 2180.42 

Retusa obtusa 
1.18 0.81 0 0 0 0.00 

Ruditapes philippinarum 
2.36 64.57 21.22 2196.79 7.07 1062.17 

Other 
      

Actinaria 
11.79 14.03 4.72 5.61 5.89 7.01 

Chironomidae 
2403.75 2860.47 8.25 9.82 511.64 608.85 

Dolichopodid 
4.72 5.61 0 0 0 0.00 

Nemertea sp. 
28.29 197.49 7.07 49.37 14.15 98.74 
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Appendix 4b   

Mean abundance (m-2) and mean biomass (mg AFDM m-2) of invertebrates 

recorded in September 2013, December 2013, and September 2014 across all 

sites (Brands Bay, Holes Bay and Ower Bay).   

 September 2013 December 2013 September 2014 

 Mean  

abundance

(m
-2
) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2
) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2
) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Annelida       

Ampharete acutifrons 
3.54 4.21 4.72 5.61 1.18 16.13 

Aphelochaeta marioni 
299.44 356.33 233.42 277.77 239.31 240.94 

Arenicola marina 
0 0 1.18 422.04 4.72 2569.27 

Capitellid 
12.97 15.43 347.77 413.85 25.94 32.14 

Chaetozone sp. 
0 0 1.18 1.4 0.00 0.00 

Desdemona ornata 
3.54 4.21 1.18 1.4 0.00 0.00 

Eteone longa 
5.89 7.01 28.29 33.67 9.43 12.15 

Glycera tridactyla 
0 0 1.18 1.4 0.00 0.00 

Hediste diversicolor 
716.76 3409.04 911.28 3177.9 875.91 3308.40 

Melinna palmate 
2.36 2.81 5.89 7.01 1.18 2.74 

Nephtys hombergeii 
27.11 1045.8 15.33 463.47 15.33 588.59 

Phyllodoce musoca 
2.36 2.81 10.61 12.63 4.72 5.00 

Polydora sp. 
4.72 5.61 23.58 28.06 23.58 33.69 

Pygospio elegans 
1.18 1.4 3.54 4.21 0.00 0.00 

Scolelepsis sp. 
0 0 2.36 2.81 0.00 0.00 

Scoloplos armiger 
8.25 9.82 8.25 9.82 2.36 3.76 

Streblospio shrubsolii 
93.13 110.83 489.24 556.94 154.43 133.01 

Tubificoides spp. 
2261.11 2690.72 3013.24 3585.76 1991.14 769.08 

Crustacea 
      

Carcinus maenas 
15.33 327.07 8.25 445.6 11.79 709.25 

Corophium volutator 
172.12 73.87 25.94 12.46 20.04 5.94 

Cyathura carinata 
2.36 3.67 5.89 3.99 11.79 10.11 

Dynamene bidentata 
4.72 9.1 2.36 4.55 0.00 0.00 

Gammarus sp. 
5.89 1.94 53.05 9.52 20.04 3.51 

Idotea balthica 
5.89 11.91 21.22 15.34 2.36 3.39 

Melita palmate 
15.33 6.82 5.89 1.55 11.79 4.80 

Microdeutopus grillotalpa 
50.69 6.97 37.72 2.43 101.38 27.20 

Microprotopus maculatum 
5.89 0.33 0 0 0.00 0.00 

Sphaeroma sp. 
2.36 2.81 0 0 0.00 0.00 
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 September 2013 December 2013 September 2014 

 Mean  

abundance

(m
-2
) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2

) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mean  

abundance

(m
-2
) 

Mean 

biomass 

(mg AFDM 

m
-2
) 

Mollusca 
      

Abra tenuis 
174.48 499.91 113.17 226.24 110.82 162.46 

Cerastoderma edule 
24.76 1301.03 16.5 782.42 29.47 889.92 

Gibbula umbilicalis 
0 0 0 0 1.18 2.76 

Lepidochitona cinerea 
0 0 1.18 2.28 0.00 0.00 

Littorina spp. 
15.33 67.66 8.25 29.87 2.36 0.76 

Limecola (Macoma) 

balthica 
5.89 43.45 10.61 144.38 9.43 177.81 

Mya arenaria 
9.43 438.79 18.86 267.96 14.15 379.99 

Peringia (Hydrobia) ulvae 
1826.1 2571.72 1710.57 2415.74 1396.98 1074.69 

Retusa obtusa 
0 0 1.18 0.81 0.00 0.00 

Ruditapes philippinarum 
3.54 544.72 11.79 586.37 15.33 1686.15 

Other 
      

Actinaria 
2.36 2.81 9.43 11.22 10.61 12.17 

Chironomidae 
600.05 714.06 1881.51 2238.99 442.08 558.23 

Dolichopodid 
0 0 4.72 5.61 0.00 0.00 

Nemertea sp. 
3.54 24.69 27.11 189.26 18.86 93.55 
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Appendix 5   

Results from SIMPER analysis for significant pairs of sites (Brands Bay and 

Holes Bay, Ower Bay and Holes Bay) for species driving up to 90% of variation in 

community structure between sites. 

Brands Bay and Holes Bay 

Average dissimilarity = 62.27 

 
BB HB                

Species 

Average 

Abundance 

(indiv. m
-2

) 

Average 

Abundance 

(indiv. m
-2

) 

Contributory 

% 

Cumulative 

% 

H. diversicolor 6.06 42.1 15.11 15.11 

Chironomid 36.37 0.93 13.79 28.9 

Tubificoides 57.47 29.04 13.03 41.93 

P. ulvae 25.95 40.97 11.43 53.36 

S. shrubsolii 3.41 21.9 7.78 61.14 

A. marioni 10.11 13.74 5.73 66.87 

Corophium volutator 8.39 0.26 3.57 70.44 

Abra tenuis 13 9.06 3.21 73.65 

Microdeutopus gryllotalpa 6.55 1.49 2.84 76.49 

Capitellid 7.09 1.24 2.83 79.32 

Cerastoderma edule 4.01 2.94 1.67 81 

Nemertine 3.57 1.24 1.48 82.48 

Mya arenaria 0.83 3.28 1.44 83.92 

Polydora sp. 0.96 3.19 1.34 85.26 

Melita palmata 0.83 2.72 1.2 86.46 

Carcinus maenas 2.83 0.87 1.18 87.65 

Ruditapes philippinarum 0.51 2.76 1.16 88.81 

Gammarus sp. 1.13 2.39 1.13 89.94 

Littorina spp. 2.2 0.51 0.97 90.91 
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Ower Bay and Holes Bay 

Average dissimilarity = 53.33 

 
OB HB                

Species 

Average 

Abundance 

(indiv. m
-2

) 

Average 

Abundance 

(indiv. m
-2

) 

Contributory 

% 

Cumulative 

% 

H. diversicolor 14.3 42.1 15.76 15.76 

P. ulvae 32.92 40.97 13.3 29.06 

Tubificoides spp. 48 29.04 12.97 42.03 

S. shrubsolii 2.38 21.9 10.6 52.63 

A. marioni 9.98 13.74 6.79 59.42 

Chironomid 12.78 0.93 6.02 65.44 

Abra tenuis 6.75 9.06 3.9 69.34 

Capitellid 6.96 1.24 3.36 72.7 

Nephtys hombergeii 4.09 1.32 2.53 75.23 

Microdeutopus gryllotalpa 4.09 1.49 2.35 77.59 

Gammarus sp. 2.79 2.39 2 79.59 

Cerastoderma edule 3.47 2.94 1.9 81.49 

Mya arenaria 2.7 3.28 1.76 83.24 

Polydora sp. 0.96 3.19 1.73 84.98 

Ruditapes philippinarum 1.24 2.76 1.61 86.59 

Eteone longa 2.78 0.7 1.54 88.13 

Melita palmata 0.87 2.72 1.48 89.61 

Nemertine 2.3 1.24 1.35 90.96 
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Appendix 6   

Algae biomass (g m-2), algae % cover, % organic content and % sand (particle size >63 µm) for combined core samples.  

0913 = September 2013, 1213 = December 2013, 0914 = September 2014.  S = Station (e.g. 0913BBS1 = September 2013, Brands Bay, Station 1). 

Brands 

Bay 

0913 

BBS1 

0913 

BBS2 

0913 

BBS3 

0913 

BBS4 

0913 

BBS5 

0913 

BBS6 

1213 

BBS1 

1213 

BBS2 

1213 

BBS3 

1213 

BBS4 

1213 

BBS5 

1213 

BBS6 

0914 

BBS1 

0914 

BBS2 

0914 

BBS3 

0914 

BBS4 

0914 

BBS5 

0914 

BBS6 

Algae  

(g m
-2

) 
454.53 302.60 42.02 180.37 851.56 1599.14 167.43 164.88 1282.11 74.70 1006.68 

644.663

33 
0 47.53 268.01 239.36 388.33 2995.84 

Algae. 

% cover 
25 25 25 25 50 50 10 10 10 10 30 30 10 10 10 10 75 75 

% Organic 5.25 4.93 5.09 9.19 1.76 6.01 1.49 5.33 7.90 5.65 0.68 5.92 2.19 4.09 4.39 6.01 1.87 6.43 

% Sand 

>63  µm 
18.97 3.71 3.01 3.32 43.32 18.85 14.97 2.61 8.29 4.02 62.38 17.14 26.72 4.69 3.03 5.79 37.02 14.33 

Holes Bay 
0913 

HBS1 

0913 

HBS2 

0913 

HBS3 

0913 

HBS4 

0913 

HBS5 

0913 

HBS6 

1213 

HBS1 

1213 

HBS2 

1213 

HBS3 

1213 

HBS4 

1213 

HBS5 

1213 

HBS6 

0914 

HBS1 

0914 

HBS2 

0914 

HBS3 

0914 

HBS4 

0914 

HBS5 

0914 

HBS6 

Algae  

(g m
-2

) 
8.70 15.49 0 20.58 446.467 753.73 81.27 12.94 9.97 0.21 336.55 7.85 63.24 0 223.87 168.91 787.69 697.50 

Algae. 

cover 
100 100 0 100 100 100 0 0 0 0 0 0 100 0 75 100 100 100 

% Organic 16.54 5.89 7.95 10.02 7.45 6.50 8.48 8.78 7.54 9.10 8.54 9.02 7.93 7.71 10.04 7.86 9.11 9.26 

% Sand 

>63  µm 
9.49 7.10 4.10 6.66 6.32 12.83 6.09 5.1 6.41 5.11 12.3 13.07 6.01 5.44 6.49 4.71 7.33 8.73 

Ower Bay  
0913 

OBS1 

0913 

OBS2 

0913 

OBS3 

0913 

OBS4 

0913 

OBS5 

0913 

OBS6 

1213 

OBS1 

1213 

OBS2 

121 

3OBS3 

1213 

OBS4 

1213 

OBS5 

1213 

OBS6 

0914 

OBS1 

0914 

OBS2 

0914 

OBS3 

0914 

OBS4 

0914 

OBS5 

0914 

OBS6 

Algae  

(g m
-2

) 
55.81 1465.45 13.79 13.79 884.24 2134.52 0 3.18 1107.89 779.62 377.51 1028.32 101.645 62.38 1449.75 3344.70 1187.68 3146.91 

Algae. 

cover 
50 50 50 50 100 100 0 0 40 40 40 40 10 10 10 10 75 75 

% Organic 4.88 5.32 5.97 4.40 5.26 2.01 5.37 7.72 3.95 6.80 2.90 2.15 5.58 5.19 4.17 7.40 12.91 3.76 

% Sand 

>63  µm 
5.66 3.54 6.2 3.91 15.52 30.94 2.48 6.25 16.82 4.99 31.30 31.53 2.36 5.78 8.63 7.46 13.64 25.86 

 

2
0

6
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Appendix 7  

Mean prey size used to calculate time required for each wading bird species to 

reach its daily energy requirement if consuming preferred-size prey (Goss-

Custard et al. 2006b).  Size class range recorded at each site in parenthesis.   

Brands Bay Annelid worms Bivalves 
Cerastoderma 

edule 

Peringia 

ulvae 
Crustaceans 

Curlew 
81.25 mm  

(55 mm->105 mm) 

20 mm  

(5 mm–35 mm) 

12.5 mm  

(5 mm–20 mm) 
- 

16.25 mm  

(10 mm- 

>20 mm) 

Black-tailed 

godwit 

66.25 mm 

(25 mm->105 mm) 

15 mm  

(5 mm–25 mm) 
 - - 

12.75 mm  

(3 mm->20 mm) 

Oystercatcher 
81.25 mm 

(55 mm->105 mm) 

20 mm  

(5 mm–35 mm) 

20 mm  

(5 mm–35 mm) 
- 

16.25 mm  

(10 mm- 

>20 mm) 

Redshank 
47.5 mm  

(15 mm–80 mm) 

10 mm  

(5 mm–15 mm) 
 - 

3 mm 

(>5 mm) 

12.75 mm  

(3 mm->20 mm) 

Dunlin 
35 mm 

(10 mm-60 mm) 

5 mm 

(1 mm-10 mm) 
 - 

3 mm 

(>5 mm) 

12.75 mm  

(3 mm->20 mm) 

Holes Bay  Annelid worms  Bivalves 
 Cerastoderma 

edule 

 Peringia 

ulvae 
 Crustaceans 

Curlew 
78.75 mm 

(50 mm->105 mm) 

25 mm 

(5 mm-45 mm) 

12.5 mm  

(5 mm-20 mm) 
- 

16.25 mm  

(10 mm- 

>20 mm) 

Black-tailed 

godwit 

66.25 mm 

(25 mm->105 mm) 

15 mm 

(5 mm–25 mm) 
 - - 

12.75 mm  

(3 mm->20 mm) 

Oystercatcher 
78.75 mm 

(50 mm->105 mm) 

25 mm 

(5 mm-45 mm) 

20 mm  

(5 mm–35 mm) 
- 

16.25 mm  

(10 mm- 

>20 mm) 

Redshank 
47.5 mm 

(15 mm-80 mm) 

10 mm 

(5 mm-15 mm) 
 - 

3 mm 

(>5 mm) 

12.75 mm  

(3 mm->20 mm) 

Dunlin 
35 mm 

(10 mm-60 mm) 

5 mm 

(1 mm-10 mm) 
 - 

3 mm 

(>5 mm) 

12.75 mm  

(3 mm->20 mm) 

Ower Bay  Annelid worms  Bivalves 
 Cerastoderma 

edule 

 Peringia 

ulvae 
 Crustaceans 

Curlew 
78.75 mm 

(50 mm->105 mm) 

25 mm 

(5 mm-45 mm) 

12.5 mm  

(5 mm-20 mm) 
- 

15 mm  

(10 mm-20 mm) 

Black-tailed 

godwit 

66.25 mm 

(25 mm->105 mm) 

15 mm  

(5 mm-25 mm) 
 - - 

11.5 mm  

(3 mm-20 mm) 

Oystercatcher 
78.75 mm 

(50 mm->105 mm) 

25 mm  

(5 mm-45 mm) 

20 mm  

(5 mm-35 mm) 
- 

15 mm  

(10 mm-20 mm) 

Redshank 
47.5 mm 

(15 mm–80 mm) 

10 mm  

(5 mm-15 mm) 
 - 

3 mm 

(>5 mm) 

11.5 mm  

(3 mm-20 mm) 

Dunlin 
35 mm 

(10 mm-60 mm) 

5 mm  

(1 mm-10 mm) 
 - 

3 mm 

(>5 mm) 

11.5 mm  

(3 mm-20 mm) 
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Appendix 8 

Calculations to obtain each wading bird species’ daily energy requirement (kJ).  

Body weight data provided by BTO Bird Facts (www.BTO.org). 

 

Species Body weight (kg) Basal metabolic rate 

(BMR) 

BMR = 437* 

(body weight kg)
0.729

 

Daily energy 

requirement (DER) (kJ) 

DER = 2.1*(BMR) 

Curlew 0.784 kg 365.93 768.453 kJ 

Black-tailed godwit 0.299 kg 181.016 380.134 kJ 

Oystercatcher 0.546 kg 281.197 590.514 kJ 

Redshank 0.153 kg 111.363 233.862 kJ 

Dunlin 0.050 kg 49.215 103.352 kJ 
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Glossary of abbreviations 

ABC curve  Abundance/Biomass Comparison curve 

AFDM   Ash-Free Dry-Mass 

ANOSIM  Analysis of Similarity 

BIM   Benthic Invertebrate Menu 

BMR   Basal Metabolic Rate 

BTO   British Trust for Ornithology 

CD   Chart Datum 

CSM   Common Standards Monitoring 

DER   Daily Energy Requirement  

DIN   Dissolved Inorganic Nitrogen 

DISTLM  Distance-based Linear Model 

GAM   Generalised Additive Model 

GPS   Global positioning system 

JNCC   Joint Nature Conservation Committee 

Loess curve  Locally-weighted smoothing curve 

MLWS   Mean Low-Water Spring 

NE   Natural England 

nMDS   non-Metric Multi-Dimensional Scaling  

NVZ   Nitrate vulnerable zone 

PRIMER  Plymouth Routines In Multivariate Ecological Research 

SAC   Special Area of Conservation 

SIMPER  Similarity Percentages 

SPA   Special Protection Area 

SSSI   Site of Special Scientific Interest 

TBT   Tributyltin 

UKHO   UK Hydrographic Office 

WeBS   Wetland Bird Survey 

WFDUKTAG  Water Framework Directive UK Technical Advice Group 

 

 


