1 Structural attributes of individual trees for identifying homogeneous patches

2 in a tropical rainforest

3 Cici Alexander*, Amanda H. Korstjens, Ross A. Hill

4 Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Poole, Dorset BH12

5 5BB, UK (*Corresponding author; Email: cici.alexander@gmail.com)

6 Abstract

7 Mapping and monitoring tropical rainforests and quantifying their carbon stocks are important, both 8 for devising strategies for their conservation and mitigating the effects of climate change. Airborne 9 Laser Scanning (ALS) has advantages over other remote sensing techniques for describing the three-10 dimensional structure of forests. This study identifies forest patches using ALS-based structural attributes in a tropical rainforest in Sumatra, Indonesia. A method to group trees with similar 11 12 attributes into forest patches based on Thiessen polygons and k-medoids clustering is developed, 13 combining the advantages of both raster and individual tree-based methods. The structural 14 composition of the patches could be an indicator of habitat type and quality. The patches could also be a basis for developing allometric models for more accurate estimation of carbon stock than is 15 16 currently possible with generalised models.

17 **1. Introduction**

18 Tropical forests play a major role in regulating the Earth's climate, being a large sink for carbon 19 dioxide, and storing much of the terrestrial carbon pool (Dixon et al. 1994). An accurate estimation 20 of carbon components within a forest is a first step in the United Nations initiative for Reducing 21 carbon Emissions from Deforestation and forest Degradation (REDD). However, limited knowledge 22 about the quantity and spatial distribution of biomass at the landscape level has led to considerable 23 uncertainties in the estimation of carbon stocks. Human activities such as logging and clearing of 24 forests for agriculture and agro-forestry continue to alter the extent and composition of tropical 25 rainforests. Natural causes such as death of large trees, and subsequent regrowth in the gaps, also 26 contribute to the generation of patches in the landscape. This increases complexity in carbon 27 estimation and causes fragmentation of habitats. Mapping and monitoring these structural changes are pre-requisites for devising strategies for conservation of many endangered species. 28 29 Airborne Laser Scanning (ALS), an active remote sensing technique based on the technique of Light 30 Detection and Ranging (LiDAR), is now extensively used for describing the three-dimensional

31 structure of forests to understand the habitat requirements of species and to quantify above-ground

32 biomass (AGB), and thereby carbon stocks (Asner and Mascaro 2014). A standard approach to area-

based AGB estimation with ALS data uses grid cells, which has limitations given that ALS datasets are
generally obtained as point clouds. LiDAR metrics aggregated from the attributes of points within
grid cells are highly scale-dependent, and in forests, a grid cell could include part of a large tree, or
many small trees, depending on the cell size. Thus, Ferraz et al. (2016) noted that the predictive
power of ALS-based AGB models decreased with increasing spatial resolution due to edge effects
associated with tree crowns.

39 Patches with different canopy structure and composition can be distinguished in Canopy Height 40 Models (CHMs) derived from ALS data, which could correspond to different habitat types and 41 quality. These could also form the basis for carbon stock estimation which is mid-way between plotbased and individual tree-based approaches, in terms of accuracy, computational time and 42 43 complexity. The aim of this study is to identify forest patches based on the structural composition of 44 individual trees using ALS data in a tropical rainforest to facilitate estimations of habitat 45 fragmentation and carbon stock. The objectives are: (i) to estimate the locations and attributes of 46 single trees based on a Canopy Height Model; (ii) to group the single trees based on their structural 47 attributes into homogeneous forest patches; and (iii) to analyse the attributes of trees within 48 clusters of similar patches.

49 **2. Study Area and Dataset**

50 The study area (centre: 99.00°E; 1.89°N), with an area of 400 ha, is in Batang Toru in the province of

51 North Sumatra, Indonesia. A history of logging and clearing of land for agro-forestry, selective

52 logging to establish "forest gardens" and natural dynamics have created a mosaic of forest patches.

53 The forests are home to a number of unique plant and animal species (Fredriksson et al. 2014),

54 including the critically endangered Sumatran orang-utans (*Pongo abelii*).

55 ALS data were collected by PT McElhanney (Indonesia) between 23rd March and 4th April, 2015, using

a Leica ALS-70 HP LiDAR system from a fixed wing aircraft. The flying height was between 900 m and

57 1350 m above ground level, and the scan half angle was 22.5°. This generated an ALS point cloud

58 with an average density of 23.63 returns m⁻². The returns were classified into ground (0.97%) and

59 non-ground (99.03%) using an algorithm based on adaptive TIN filtering implemented in Terrasolid

60 software (Axelsson 2000; PT McElhanney 2015).

61 **3. Methods**

62 **3.1 Attributes of individual trees**

63 The ground returns, with an average density of 0.23 returns m⁻², were used to generate a Digital

64 Terrain Model (DTM) using FUSION v3.50 (McGaughey 2009). The ground and non-ground returns

were merged, and the 95th percentile height of returns above the DTM was used to generate a CHM 65 with a cell size of 1 m; the 95th percentile height was used instead of the maximum to exclude 66 outliers. Individual tree locations, and their heights and crown radii were estimated from the CHM, 67 68 using the *CanopyMaxima* function in FUSION. This algorithm identifies local maxima using a variable 69 sized filtering window based on canopy height variances (Popescu et al. 2002). The number, mean 70 height and mean canopy radius of all trees within a 25 m radius of each tree were derived, using Generate Near Table in ArcGIS[™] (v10.1), with those summary attributes assigned to each individual 71 tree. A 25 m buffer radius was selected because less than 1% of the trees had a crown radius larger 72 73 than 12.5 m.

The tree location points (X, Y) were converted to Thiessen polygons, with the attributes of the
enclosed tree assigned to the polygons. In fitting the Thiessen polygons the area of the polygon was
determined by the spacing between adjacent points, with adjacency based on a Triangulated
Irregular Network (TIN) generated from the points. The line connecting two points in the TIN was
bisected, and these bisectors formed the edges of the Thiessen polygons.

79 **3.2 Delineation of patches and analysis of clusters**

80 The individual Thiessen polygons were clustered into patches using the five attributes (Height and 81 Crown Radius of each tree, and the Count, Mean Height, and Mean Crown Radius of trees within a 82 25 m radius) in a k-medoids algorithm implemented in MATLAB R2015. Silhouette values, a measure 83 of the separability of clusters, were used to determine the number of clusters; the one with the lowest number of negative Silhouette values was selected as the optimum. All adjacent polygons 84 belonging to the same cluster were merged to generate patches in ArcGIS[™]. All the patches with an 85 86 area less than 0.25 ha were merged based on the longest shared border. Statistical analyses were 87 performed in MATLAB with α set to 0.001. Crown areas and Thiessen polygons were compared using 88 a Pearson correlation. An ANOVA (one-way analysis of variance) was used to test for differences between clusters, using Scheffe's procedure for post hoc pair-wise comparisons. 89

90 **4. Results**

91 4.1 Identification of single trees

The mean height of the CHM (Figure 1) was 20.37 ± 7.31 m. There were 34,484 trees identified with heights ≥ 5 m within the study area, with an overall tree density of 86.21 trees ha⁻¹. The mean tree

height was 21.26±6.98 m, and the mean crown radius was 6.39±2.08 m. The mean number of trees

- 95 within a radius of 25 m for all trees was 22.35±12.37, and their mean crown radius was 6.35±1.01 m.
- 96 The mean crown area calculated from the crown radii was 141.77±93.87 m², whereas the mean area

- 97 of Thiessen polygons was 115.99±84.13 m². The areas of Thiessen polygons correlated only
- 98 moderately with the crown areas (r=0.4; n=34484; p<0.001).

Figure 1: Canopy Height Model generated from the ALS dataset (A); locations of individual trees in a subset of the study area (B); and the
 Thiessen polygons generated from the locations of individual trees (C)

102 4.2 Delineation of forest patches

- 103 The tree clustering process identified an optimum number of five cluster types based on the five
- 104 input structural variables. The shortest trees (Cluster 2) occupied only 4.58% of the area, while
- accounting for 13.38% of the tree count, while the tallest trees (Cluster 3) occupied 21.97% of the
- area, with only 8.86% of the tree count. Cluster 4 (mean tree height: 25.58 m), covered the largest
- area (37.26%), based on the clustered Thiessen polygons (Table 1). There were 1082 patches when
- the Thiessen polygons were merged based on clusters, with a mean area of 0.37±2.94 ha. These

- 109 were merged into 189 patches with a mean area of 2.11±8.71 ha, by iterative merging of patches
- 110 with an area less than 0.25 ha (Figure 2).

111

Figure 2: Thiessen polygons grouped into clusters based on the attributes of individual trees for the whole study area (A) and for a subset
 (C); the merged patches after dissolving the patches with area less than 0.25 ha for the whole study area (B), and boundaries of patches
 overlaid on the Canopy Height Model for a subset (D)

115 4.3 Analysis of clusters

- 116 The mean height, mean crown radius and density of trees in each patch (Table 1; Figure 3) were
- significantly different between the clusters (all *p*<0.001; *F*_{4,183}=1032.41; *F*_{4,183}=132.9; *F*_{4,183}=679.3
- respectively). When the clusters were compared pairwise, all differences were significant except for
- the crown radii for clusters 2 and 5 (*p*=0.002), and the density of trees for clusters 3 and 4 (*p*=0.042).
- 120

121 Table 1: Attributes of patches within the five clusters before (above) and after (below) merging

Cluster ID	1	2	3	4	5
Number of Patches	414	62	181	268	157
	62	20	39	33	35
Total Number of trees	9832	4615	3054	9219	7764
	9573	4256	3057	9693	7905
Total Number of trees (%)	28.51	13.38	8.86	26.73	22.51
	27.76	12.34	8.86	28.11	22.92
Total Surface Area (%)	24.20	4.58	21.97	37.26	11.99
	23.31	4.28	21.52	38.55	12.34
Overall Density (Trees ha ⁻¹)	101.57	251.99	34.75	61.85	161.90
	102.68	248.60	35.51	62.87	160.13
Mean Height of Trees (m)	19.89±3.64	13.93±2.57	35.68±5.05	25.58±3.55	16.54±3.18
	19.99±3.90	13.99±2.61	34.49±6.46	25.32±4.37	16.60±3.29
Mean Crown Radius of Trees (m)	6.33±1.87	4.91±1.40	7.82±2.37	7.33±2.04	5.65±1.69
	6.39±1.89	4.93±1.42	7.62±2.37	7.24±2.08	5.65±1.70

122

123

125 **5. Discussion and Conclusion**

126 Identification of homogeneous patches in tropical forests based on tree heights, crown radii and 127 density could have relevance for estimating habitat fragmentation and biomass. The method 128 developed in this study, based on Thiessen polygons and k-medoids clustering, groups trees of 129 similar structural attributes combining the advantages of raster and individual tree-based methods. 130 The structural composition of the patches could be an indicator of habitat type and quality for 131 species which are increasingly under threat from anthropogenic and natural disturbances. Distances 132 between suitable habitats, in the case of fragmentation, could potentially be more accurately 133 estimated using these tree crown-following tessellations rather than grid cells, especially if they are at a low resolution. 134

135 Natural and anthropogenic factors have contributed to the generation of a mosaic of forest patches

in the study area, which were clearly visible in the CHM. The tallest trees with the largest crown radii

137 (Cluster 3) occupied a large percentage of the area but had relatively low tree density. Mapping the

extent of these tall patches is important, even if the accuracy of estimated tree density is low, sincethe large trees account for most of the biomass in tropical forests. They also serve as a focal point

- 140 for biological activity and create large gaps at death, altering the forest structure dynamics in
- addition to releasing the sequestered carbon (Chambers et al. 2007; Ferraz et al. 2016). Note that
- the average estimated tree density in the study area (86.21 trees ha⁻¹) could be lower than the
- 143 actual density since the algorithm identifies only the dominant and co-dominant trees as
- 144 represented in the CHM (McGaughey 2009).
- 145 The areas of Thiessen polygons did not have a high correlation with crown areas since the polygons 146 were constructed based only on the distances between adjacent points. The associated Thiessen 147 polygon would be larger than the estimated crown area if the distance from a tree to adjacent trees 148 is greater than its crown radius. However, this would not pose a problem in the delineation of patches, and the estimation of patch areas could in fact, be more accurate than one based on crown 149 150 areas if tree crowns overlap. The distance for locating neighbouring trees could be modified based 151 on the study area, especially if there are a high proportion of very large or very small trees. 152 Although generalised allometric models have been developed for tropical forests (Chave et al. 2005),
- 153 species-specific and site-specific models are considered to be more accurate. Even within a single
- 154 species, the biomass may vary depending on environmental factors such as rainfall, soil or
- topography (Litton and Kauffman 2008). The species diversity in tropical forests is extremely high,
- and AGB estimations based on individual tree species may be difficult with the current knowledge of
- 157 taxonomy and tree species distribution. Allometric models based on identified clusters within a
- 158 landscape could be developed based on systematic field surveys, rather than random sampling of
- stands or limited species-specific models, leading to more accurate estimation of carbon stock intropical forests.

161 Acknowledgement

- 162 This research has received funding through EU Marie Skłodowska-Curie Actions (H2020-MSCA-IF-
- 163 2014) under grant agreement n° [657607], and is part of the LEAP (Landscape Ecology and
- 164 Primatology) project. We are grateful to Graham Usher and Gabriella Fredriksson (Sumatran
- 165 Orangutan Conservation Program) and Johannes Sagala (Sarulla Operations Ltd.) for the Airborne
- 166 Laser Scanner data, to PT McElhanney for airborne data collection, and initial processing, and to
- 167 Robert J. McGaughey (USDA) for help with FUSION.

168 **References**

Asner, G.P., & Mascaro, J. (2014). Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR
 metric. *Remote Sensing of Environment, 140*, 614-624

- Axelsson, P. (2000). DEM generation from laser scanner data using adaptive tin models. *International Archives* of Photogrammetry and Remote Sensing, XXXIII, Part B4, 110-117
- 173 Chambers, J.Q., Asner, G.P., Morton, D.C., Anderson, L.O., Saatchi, S.S., Espírito-Santo, F.D.B., Palace, M., &
- Souza Jr, C. (2007). Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. *Trends in Ecology & Evolution, 22,* 414-423
- 176 Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N.,
- 177 Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and
- improved estimation of carbon stocks and balance in tropical forests. *Oecologia*, 145, 87-99
- 179 Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., & Wisniewski, J. (1994). Carbon pools and 180 flux of global forest ecosystems. *Science*, *263*, 185-190
- Ferraz, A., Saatchi, S., Mallet, C., & Meyer, V. (2016). Lidar detection of individual tree size in tropical forests.
- 182 Remote Sensing of Environment, 183, 318-333
- Fredriksson, G., Nowak, M., & Usher, G. (2014). Biodiversity Monitoring Stage 1: Camera trapping and Wildlife
- 184 Surveys. In PanEco / Yayasan Ekosistem Lestari (Ed.), *Biodiversity Monitoring for Sarulla Operations Ltd.*
- 185 Indonesia
- 186 Litton, C.M., & Kauffman, J.B. (2008). Allometric Models for Predicting Aboveground Biomass in Two
- 187 Widespread Woody Plants in Hawaii. *Biotropica, 40,* 313-320
- 188 McGaughey, R.J. (2009). FUSION/LDV: Software for LIDAR data analysis and visualization. US Department of
- 189 Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 123
- 190 Popescu, S.C., Wynne, R.H., & Nelson, R.F. (2002). Estimating plot-level tree heights with lidar: local filtering
- 191 with a canopy-height based variable window size. *Computers and Electronics in Agriculture, 37,* 71-95
- 192 PT McElhanney (2015). LiDAR & DAP Survey. In PT McElhanney (Ed.), Project Report for BUT Sarulla Operations
- 193 Ltd. Indonesia