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Constrained Low-Rank Representation
for Robust Subspace Clustering
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Abstract—Subspace clustering aims to partition the data points
drawn from a union of subspaces according to their underly-
ing subspaces. For accurate semisupervised subspace clustering,
all data that have a must-link constraint or the same label
should be grouped into the same underlying subspace. However,
this is not guaranteed in existing approaches. Moreover, these
approaches require additional parameters for incorporating
supervision information. In this paper, we propose a constrained
low-rank representation (CLRR) for robust semisupervised sub-
space clustering, based on a novel constraint matrix constructed
in this paper. While seeking the low-rank representation of data,
CLRR explicitly incorporates supervision information as hard
constraints for enhancing the discriminating power of optimal
representation. This strategy can be further extended to other
state-of-the-art methods, such as sparse subspace clustering. We
theoretically prove that the optimal representation matrix has
both a block-diagonal structure with clean data and a semisu-
pervised grouping effect with noisy data. We have also developed
an efficient optimization algorithm based on alternating the
direction method of multipliers for CLRR. Our experimen-
tal results have demonstrated that CLRR outperforms existing
methods.

Index Terms—Low-rank representation (LRR), semisupervised
learning, subspace clustering.

I. INTRODUCTION

MANY real-world applications cluster high-dimensional
data, such as images and videos, into different groups

such that the data in the same group are highly similar [22].
However, the high dimensionality of real data makes direct
clustering in the data space infeasible. To deal with the high-
dimensional data, the subspace clustering (segmentation) has
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been widely applied in machine learning, computer vision and
pattern recognition [19], [26], [34], [48], [53]. It assumes that
high-dimensional data points lie in a union of low-dimensional
subspaces and is defined as [27].

Definition 1: Given a set of sufficiently sampled data vec-
tors V = [V1, . . . , Vn] ∈ R

m×n derived from a union of p
subspaces {Si}p

i=1, where m is the feature dimension, and n is
the number of data vectors. The goal of the subspace clustering
is to characterize the given data as different groups according
to the underlying subspaces they are drawn from.

A. Prior Works on Subspace Clustering

In the past few years, many subspace clustering methods
have been proposed. They can be roughly divided into four
categories: iterative [17], [39], [51], algebraic [9], [42], statisti-
cal [37], and spectral clustering-based [15], [47]. An elaborate
review of these methods can be found in [40]. Recently, the
spectral clustering-based methods have drawn much attention
as they are easy to be implemented, insensitive to initializa-
tion and data errors, and also can be solved efficiently using
standard linear algebra [29]. Such methods usually solve clus-
tering problems by first constructing an affinity matrix of data
points, and then obtaining the final clustering results by apply-
ing the spectral clustering methods such as normalized cuts
(NCuts) [36] to the affinity matrix. The first step is more
important as the success of the spectral clustering methods is
largely dependent on constructing an effective affinity matrix.

Recent methods [8], [10], [11], [13], [27], [41] for construct-
ing the affinity matrix are self-representation based, which
implies that every data point in a union of subspaces can
be represented as a linear combination of other data points,
i.e., V = AW, where V is a data matrix and A is a dictionary
matrix. Typically, the data matrix itself is chosen as the dictio-
nary (A = V). W ∈ R

n×n is the data representation matrix of
n data points. With corrupted data, this combination is relaxed
to V = AW + E, where E denotes errors. These methods are
formulated as the following optimization problem to compute
the optimal data representation matrix W∗:

min
W

λ�(E) + �(V, W)

s.t. V = AW + E, W ∈ C (1)

where λ is the tradeoff parameter and �(E) is the noise term.
�(V, W) and C are the regularizer and constraint set on W,
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TABLE I
CHOICES OF �(V, W), �(E), AND C OF EXISTING

REPRESENTATION-BASED METHODS

respectively. Both noise term and regularizer can be repre-
sented with proper norms.1 For example, ‖E‖2

F is set for
Gaussian noise and ‖E‖1 for entry-wise corruptions. W∗ is
then used to construct an affinity matrix.

The existing methods differ mainly in the choice of norms
for the regularization on W. Specifically, the sparse sub-
space clustering (SSC: �(V, W) = ‖W‖1) [10] seeks the
sparse solution of data representation, which tends to be block
diagonal. The low-rank representation (LRR2: �(V, W) =
‖W‖∗) [27] aims to take the correlation structure of data into
account and find an LRR instead of a sparse representation.
The least squares regression (LSR3: �(V, W) = ‖W‖F) [31]
is effective for subspace clustering. It is also efficient due to
its closed form solution. The correlation adaptive subspace
segmentation (CASS: �(V, W) = ∑n

i=1 ‖VDiag(Wi)‖∗) [30]
simultaneously performs automatic data selection and groups
correlated data. This can adaptively balance SSC and LSR. The
smooth representation (SMR: �(V, W) = tr(WLWT), where
L is the Laplacian matrix) [21], incorporates a weight matrix
(graph) that measures the spatial closeness of data. It enforces
the grouping effect explicitly. Table I summarizes the choices
of �(V, W), �(E), and C of some existing representation
based methods.

These methods are traditionally viewed as unsupervised.
In reality, however, some supervision information is often
available, and can be a valuable guidance for affinity
matrix construction. With the supervision information, stronger
discriminant information can be delivered for clustering per-
formances. Examples of such information are labels or
instance-level constraints including must-link constraints and
cannot-link constraints [43], [44], which indicate whether the
data must be or cannot be in the same cluster. Therefore, it would
be crucial to incorporate these information for constructing dis-
criminative affinity matrix. Although, semisupervised learning
approaches [2], [12], [28], [33], [45], [46], [50], [53] have
received a great attention recently, few have utilized semisuper-
vised representation-based methods. Existing methods extend
an unsupervised learning to a semisupervised setting usually
by graph based regularization. In particular, a graph consists

1In this paper, L1 norm, F norm, L2,1 norm, nuclear norm, and L∞ norm
are represented by ‖ · ‖1, ‖ · ‖F , ‖ · ‖2,1, ‖ · ‖∗, and ‖ · ‖∞, respectively.

2LRR has two versions. We denote LRR1 and LRR2,1 for L1-norm and
L2,1-norm of E, respectively.

3LSR has two implementations, which are denoted as LSR1 and LSR2,
respectively.

of “nodes” (data), and “edges” that indicate the similarity of
data. If two data points are of must-link or have the same label,
a large positive weight is assigned to the edge. Otherwise, a
nonpositive weight is assigned. The graph is then incorpo-
rated into the objective function as a regularizer. CS-VFC [53]
incorporates such a graph into SSC to explore the unknown
relationships among data, followed by adding the constraints
directly to the affinity matrix. The non-negative low-rank and
sparse representation (NNLRR) [12] first employs this graph to
predict label matrix based on LRR. By setting a large weight to
the edges, the predicted labels are enforced to approach label
indicator and then used for guiding the affinity matrix con-
struction. These methods, however, have two limitations. First,
theoretically, they cannot guarantee that data with a must-link
constraint or same label have the same representation. Thus,
such data may not be grouped into the same subspace by
spectral clustering method. Second, they lack a well-defined
rule to select the weights of edges.

To address these issues, we take must-link constraints or
labels as hard constraints and propose a novel constrained LRR
(CLRR) for semisupervised subspace clustering. While seek-
ing the LRR of data, CLRR enforces that data with a must-link
constraint or the same label have the same new representation
without introducing additional parameters. It guarantees that
these data can be clustered into the same subspace by spectral
clustering methods.

B. Contribution

The main contribution of this paper can be summarized in
three aspects.

1) Using a constraint matrix with must-links or labels
as hard constraints, CLRR guarantees the data with a
must-link constraint or the same label have the same
coordinates in the new representation space and simul-
taneously captures the global structure of data. Because
the representation based methods have similar objective
function, the constraint matrix can also be applied to
other methods such as SSC.

2) Importantly, CLRR has two salient properties. When
data are independent and noise free, it can be theoreti-
cally proven that CLRR has a block-diagonal structure if
the subspaces are independent. We are the first to define
the semisupervised grouping effect when data are noisy.
This is used to verify whether a representation based
model in the semisupervised setting has the grouping
effect. This is not achievable by the traditional grouping
effect. We then prove that CLRR has this semisupervised
grouping effect.

3) CLRR incorporates the additional prior information
without introducing extra parameters. This saves the cost
of parameter tuning, which will improve the efficiency
for clustering.

The remainder of this paper is organized as follows. In
Section II, we give the details of how we construct a novel con-
straint matrix. In Sections III and IV, we present our CLRR
framework and theoretical analysis for clean data and noisy
data, respectively. The experimental results on six datasets are
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discussed in Section V. Finally, we draw a conclusion and
discuss future work in Section VI.

II. SEMISUPERVISED REPRESENTATION

WITH HARD CONSTRAINTS

In this section, we begin with a description of how we
construct a discriminative constraint matrix that ensures data
with a must-link constraint or the same label have the same
representation.

Given n data points V = [V1, . . . , Vn] ∈ R
m×n derived

from a union of p subspaces {Si}p
i=1, where each data Vi

is represented by a m-dimensional vector and the unknown
dimension of ith subspace is {di}. Let Vi be collection of ni

data drawn from the ith subspace Si, without loss of generality,
we assume that V = [V1, V2, . . . , Vp] (i.e., the indices have
been rearranged to satisfy the true clustering of the data).

Suppose the l data belong to u sets, with each set having a
must-link constraint, and the rest n− l data with no constraints
are regarded belonging to n − l sets. Thus, the n data are tem-
porally partitioned into n − l + u sets, and all data in the same
set must be grouped into the same subspace. This also applies
to the label information, i.e., data with the same label belongs
to the same set. So in the rest of this paper we discuss our
approach with the must-link constraints only. We then con-
struct a constraint matrix Q ∈ R

n×(n−l+u), where Qi,j = 1 if
Vi in the jth set, or Qi,j = 0 otherwise. This means the ith
row and kth row of Q must be the same if Vi is of must-link
to Vk. Note that the must-link constraint is transitive, which
means if data Vq is of must-link to Vi or Vk, these three data
are of must-link to each other. Accordingly, they belong to the
same set. For example, in a dataset of eight data points, i.e.,
V = [V1, V2, . . . , V8], suppose that there exist three must-link
constraints between V1 and V2, V3 and V5, and V2 and V8,
the remaining V4, V6, and V7 are singletons. Let Pi denotes
the ith set of data, we have P1 = {V1, V2, V8}, P2 = {V3, V5},
P3 = {V4}, P4 = {V6}, and P5 = {V7}. The constraint matrix
Q can be represented as follows:

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

III. CLRR WITH CLEAN DATA

To ensure data with a must-link constraint to have the same
new representation, we incorporate the constraint matrix Q
and introduce an auxiliary matrix Z, such that W = ZQT . As
the ith row and jth row of Q must be the same if Vi and Vj are
of must-link, so the representations of these two data points
are equal, i.e., Wi = Wj. This guarantees that data sharing
a must-link constraint to have the same new representation.
Thus, instead of finding the optimal representation matrix W∗,
we seek for the optimal solution Z∗. With the assumption
that data can be represented by other data within the same

subspace, we aim at exploring the low-rank structure of W,
in order to capture the global structure of data. Hence, we
propose the following objective function:

min
Z

∥
∥ZQT

∥
∥∗

s.t. V = VZQT . (2)

Theorem 1: Assuming that X is a m × n matrix and Y is a
n × p matrix. If the rank of Y is n, then rank(XY) = rank(X).

As QT is a full row rank matrix, we have rank(ZQT) =
rank(Z) according to Theorem 1. Then, (2) can be simplified
by minimizing the rank of Z instead as follows:

min
Z

‖Z‖∗

s.t. V = VZQT . (3)

Note that, without prior information, the constraint matrix Q
becomes an identity matrix I, where Z equals to the data rep-
resentation W. In this case, the objective function (3) becomes
the same as that in LRR2,1 [27].

A. Block-Diagonal Structure

The block-diagonal reveals the membership of data: the
within-cluster affinities are dense while the between-cluster
affinities are all zero. The salient block-diagonal structure of
a new representation can lead to accurate clustering. Below
we provide the proof that the optimal representation matrix
W∗ = Z∗QT obtained by CLRR has this structure.

Theorem 2: Assuming that a data sampling is sufficient,
such that ni > rank(Vi) = di. If the subspaces are independent,
there exists an optimal solution Z∗ to (3) which makes Z∗QT

block-diagonal

Z∗QT =

⎡

⎢
⎢
⎢
⎣

(
Z∗QT

)
1 0 0 0

0
(
Z∗QT

)
2 0 0

0 0
. . . 0

0 0 0
(
Z∗QT

)
p

⎤

⎥
⎥
⎥
⎦

∈ R
n×n

where (Z∗QT)i ∈ R
ni×ni with rank(Z∗QT)i = di,∀i.

The proof of Theorem 2 is based on the following well-
known lemma [26].

Lemma 1: Let A and D be square matrices. Then for any
matrices B and C of compatible dimension

∥
∥
∥
∥

[
A B
C D

]∥
∥
∥
∥∗

≥
∥
∥
∥
∥

[
A 0
0 D

]∥
∥
∥
∥∗

= ‖A‖∗ + ‖D‖∗.

The lemma allows us to reduce the lower-bound of the
objective value at any solution Z through the block-diagonal
restriction of ZQT .

Proof (of Theorem 2): Let Z be any optimizer to (3). We
decompose ZQT to two parts: ZQT = H + G, where H is a
constructed block-diagonal matrix by setting

Hij =
{(

ZQT)
ij, Vi and Vj belong to the same subspace

0, otherwise.

G is a matrix with all diagonal elements are 0.
Assuming that Vj = (VZQT)j ∈ Sl, thus (VH)j ∈ Sl and

(VG)j ∈ ⊕
i	=l Si. But (VG)j = (VZQT)j − (VH)j ∈ Sl.
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Since the subspaces are independent, i.e., Sl ∩ ⊕
i	=l Si = {0},

we have (VG)j = 0. Accordingly, VG = 0 and VH = V,
hence H is feasible for (3). By Lemma 1, with the full row
rank matrix QT we have ‖Z‖∗ = ‖ZQT‖∗ ≥ ‖H‖∗, hence H
is optimal for (3). We can write H as

H =

⎡

⎢
⎢
⎢
⎣

H1 0 0 0
0 H2 0 0

0 0
. . . 0

0 0 0 Hp

⎤

⎥
⎥
⎥
⎦

∈ R
n×n

where Hi ∈ R
ni×ni . For each i, let Pi ∈ R

ni×ni be the projection
onto the null space of Vi. Then Vi(I − Pi)Hi = ViHi = Vi. If
we set (Z∗QT)i = (I − Pi)Hi, then

Z∗QT =

⎡

⎢
⎢
⎢
⎣

(
Z∗QT

)
1 0 0 0

0
(
Z∗QT

)
2 0 0

0 0
. . . 0

0 0 0
(
Z∗QT

)
p

⎤

⎥
⎥
⎥
⎦

∈ R
n×n

is again feasible for (3). Now ‖Z∗‖∗ = ‖Z∗QT‖∗ =∑
i ‖(Z∗QT)i‖∗ = ∑

i ‖(I − Pi)Hi‖∗ ≤ ∑
i ‖Hi‖∗ = ‖H‖∗,

where ‖(I − Pi)Hi‖∗ ≤ ‖(I − Pi)‖‖Hi‖∗ ≤ ‖Hi‖∗ accord-
ing to [18]. Hence, Z∗ is again optimal for (3). Moreover,
for each i, rank((Z∗QT)i) ≤ rank(I − Pi) = di. Since
Vi = Vi(Z∗QT)i and rank((Z∗QT)i) ≥ di, we can conclude
that rank((Z∗QT)i) = di for each i.

IV. CLRR WITH NOISY DATA

The assumption of noise free and independent subspaces
of data may be violated in some applications. In reality, data
are not always clean and may contain noises. Generally, for
small noise (e.g., Gaussian) a reasonable strategy is to use
the F-norm. If we instead consider that a fraction of the data
vectors are grossly corrupted, L2,1 norm is more suitable [23].
By introducing noise term ‖E‖2,1, we propose the objective
function as follows:

min
Z,E

λ‖E‖2,1 + ‖Z‖∗, s.t. V = VZQT + E. (4)

A. Semisupervised Grouping Effect

The grouping effect is strongly desired for accurate clus-
tering, as it leads to a well balanced affinity matrix and
prevents over-fitting in data reconstruction [21]. LSR and
CASS [30], [31] have shown that effectiveness of clustering
comes from the grouping effect defined as follows.

Definition 2: Given a set of dimensional data points V =
[V1, . . . , Vn] ∈ R

m×n, let W∗ = [W∗
1, . . . , W∗

n] ∈ R
n×n be

the optimal representation matrix, W∗ has the grouping effect
if Vi is close to Vj, i.e., Vi → Vj then W∗

i → W∗
j .

Obviously, this is defined in the unsupervised setting. It is
not applicable in the semisupervised setting when data are
of must-link but spatially far away from each other. Here
we extend it to the semisupervised setting and propose a
semisupervised grouping effect, defined as follows.

Definition 3: Given a set of dimensional data points V =
[V1, . . . , Vn] ∈ R

m×n, let W∗ = [W∗
1, . . . , W∗

n] ∈ R
n×n be

the optimal representation matrix, W∗ has the semisupervised

Fig. 1. Grouping effect of the representation based methods. (a) Face
images from the dataset extended Yale B. The red and blue colors repre-
sent two groups of images. The faces of spatially close and far away are
marked with circles and rectangles, respectively. (b)–(d) Optimal representa-
tions computed by SMR, CS-VFC, and CLRR. 10% of faces with must-link
constraints is applied to CS-VFC and CLRR. All images are displayed after
the dimensionalities of their features are reduced to 2-D by PCA.

grouping effect under two conditions: 1) if Vi is close to Vj,
i.e., Vi → Vj then W∗

i → W∗
j and 2) if Vi and Vj have a

must-link constraint then W∗
i → W∗

j .
Below we prove that our optimal representation matrix W∗

i
satisfies both conditions 1) and 2).

Proposition 1: Let Z∗ be the optimal solution to (4), then
W∗ = Z∗QT has the semisupervised grouping effect.

Proof (of Proposition 1):
1) Hu et al. [21] proposed the enforced grouping effect

(EGE) conditions for the problem (1).
a) A is continuous with respect to V and �(V, W) is

continuous with respect to V and W ∈ C.
b) The problem (1) has a unique solution W∗, and

W∗ is not an isolated point of C.
c) W ∈ C if and only if WR ∈ C, and �(V, W) =

�(VR, WR) for all permutation matrix R.
Comparing (1) with (4), we have A = V, �(V, W) =
‖Z‖∗ and C = ∅. Given W = ZQT , it is easy to tell
that (4) satisfies EGE conditions a) and c). The unique-
ness of the optimal solution Z∗ to CLRR can also be
proven as stated in Proposition 2, so W∗ = Z∗QT

satisfies b) and has grouping effect.
2) If Vi and Vj are of must-link, according to the property

of Q and W∗ = Z∗QT , we have W∗
i = W∗

j . That is to
say, even if two data points are not close, i.e., Vi � Vj,
they will get the same optimal representation and are
clustered together so long as they are of must-link.

Hence, Z∗QT has the semisupervised grouping effect. In
other words, CLRR cannot only group the data which are close
spatially, but also group those that are of must-link regardless
their spatial locations. �

The analysis above is illustrated in Fig. 1. It can be seen that
the original faces marked with circles still appear close in the
new spaces presented by SMR, CS-VFC, and CLRR (which
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all have the traditional grouping effect). For the faces marked
with rectangles, however, the results are quite different. Since
SMR only possesses the traditional grouping effect, it fails to
map those faces to spatially close thus may not cluster them
together. With must-link constraints CS-VFC is able to map
them spatially close, but it cannot guarantee these to be clus-
tered correctly. In contrast, CLRR maps these faces to the same
coordinates in the new space that ensures them to be clustered
correctly. As a result, both CS-VFC and SMR achieve 99.22%
accuracy while CLRR manages to reach 100%. Though CLRR
is only 0.78% better with two groups of images, given large
datasets it can achieve much better performance due to its sat-
isfying semisupervised grouping effect in theory, as illustrated
later in our experiments.

Proposition 2: CLRR problem (4) has a unique optimal
solution.

To prove Proposition 2, we first provide two lemmas.
Lemma 1 [20]: Given a subspace S spanned by a set of

orthogonal basis [u1, u2 . . . , ur](ui ∈ R
n×1) and its orthogonal

complement S⊥, for any matrix M ∈ R
n×k), ∀k, there exist a

unique pair M1 ∈ S and M2 ∈ S⊥ such that

M = M1 + M2. (5)

Lemma 2 [21]: Let A and B be matrices of the same size.
If ABT = 0 and ATB = 0, then ‖A + B‖∗ = ‖A‖∗ + ‖B‖∗.

Proof (of Proposition 2): Substituting the constraint condi-
tion V = VZQT + E into objective function (4), we have the
following equation:

min
Z

f (Z) = λ
∥
∥V − VZQT

∥
∥

2,1 + ‖Z‖∗ (6)

where V ∈ R
m×n, Z ∈ R

n×(n−l+u), and Q ∈ R
n×(n−l+u).

Note the singular value decomposition (SVD) of V as
V = U�PT , where U ∈ R

m×r, � = diag(s)(si > 0,∀1 ≤
i ≤ r) and P ∈ R

n×r. Note S as the subspace spanned by
columns of P, and S⊥ as the orthogonal complement of S.

Suppose Z∗ is an optimal solution of problem (6).
According to Lemmas 1 and 2, there exists a unique pair
Z∗

1 ∈ S and Z∗
2 ∈ S⊥ that Z∗ = Z∗

1 + Z∗
2, and ‖Z∗

1 + Z∗
2‖∗ =

‖Z∗
1‖∗ + ‖Z∗

2‖∗. Next we prove that Z∗
2 must equal to 0.

Suppose Z∗
2 	= 0. We have ‖Z∗

2‖∗ > 0. The condition Z∗
2 ∈

S⊥ implies VZ∗
2 = U�PTZ∗

2 = 0. Then

f
(
Z∗) = λ

∥
∥V − VZ∗QT

∥
∥

2,1 + ‖Z‖∗
= λ

∥
∥V − V

(
Z∗

1 + Z∗
2

)
QT

∥
∥

2,1 + ∥
∥Z∗

1 + Z∗
2

∥
∥∗

= λ
∥
∥V − VZ∗

1QT
∥
∥

2,1 + ∥
∥Z∗

1

∥
∥∗ + ∥

∥Z∗
2

∥
∥∗

> f
(
Z∗

1

)
. (7)

Equation (7) indicates Z∗
1 is a better solution of problem (6)

than Z∗, which is a contradiction. Hence Z∗
2 = 0 is proved.

As a result, we have Z∗ = Z∗
1.

The condition Z∗
1 ∈ S indicates that there exists a unique

matrix M ∈ R
r×(n−l+u) that

Z∗
1 = PM. (8)

Substituting (8) into problem (6), we get a new optimization
about M as

min
M

g(M) = λ
∥
∥V − VPMQT

∥
∥

2,1 + ‖PM‖∗

= λ
∥
∥V − U�MQT

∥
∥

2,1 + ‖M‖∗. (9)

Now we have the Hessian matrix of the first term

H = 2(U�)TU�QTTQ (10)

where T is a diagonal matrix with the diagonal element given
by Tii = (1/‖Vi − U�(MQT)i‖), i = 1, 2, . . . , n. Note that
as T is a diagonal matrix, the property of Q implies that all
elements of each row of Q are “0” except one element “1.”
Thus, H � 0. Consequently, the problem (9) is strictly convex
and it has a unique solution M∗. This implies that the solution
of the problem (6), Z∗, is also unique. �

B. Optimization

The optimization problem (4) of CLRR is convex and can be
solved by various methods. For efficiency, we adopt the alter-
nating the direction method of multipliers (ADMMs) [1] for
solving the problem. In this section, we begin by introducing
ADMM, and then deduce the iterative formulas of CLRR.

1) ADMM: The ADMM [1], also called alternating direc-
tion augmented Lagrangian, solves the problems with a con-
vex, nonsmooth objective function and with structured linear
constraints. Due to its simple form and decoupling of vari-
ables, ADMM has been used in many research areas, such
as matrix completion, compressive sensing [49] and image
restoration [1].

2) Application of ADMM to CLRR: Since the problem (4)
can be simplified to the problem (3) by giving a relatively
large λ, here we present our solution to (4) only. First, we
convert (4) to the following equivalent problem by introducing
an auxiliary variable:

min
Z,E,J

λ‖E‖2,1 + ‖J‖∗

s.t. V = VZQT + E, Z = J. (11)

Then, the problem (11) can be solved by ADMM that operates
on the following augmented Lagrangian function:

L
(

Z, E, J, Y1, Y2
)

= λ‖E‖2,1 + ‖J‖∗

+ tr

[(
Y1

)T(
V − VZQT − E

)
]

+ tr

[(
Y2

)T
(Z − J)

]

+ τ

2

(∥
∥V − VZQT − E

∥
∥2

F + ‖Z − J‖2
F

)

(12)

where Y1 and Y2 are Lagrange multipliers and τ is a
penalty parameter. Since L(Z, E, J, Y1, Y2) is separable, we
can update Z, E, J, Y1, Y2 alternately while fixing others. The
solutions of the subproblems are as follows.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

a) J-subproblem: We first update J by fixing Z, E, Y1,
and Y2. Differentiating L with respect to J and setting
unrelated terms to zero, we get

J = arg min
J

1

τ
‖J‖∗ + 1

2

∥
∥
∥
∥J −

(

Z + Y2

τ

)∥
∥
∥
∥

2

F
. (13)

This can be solved by the well-known singular value thresh-
olding operator [6].

b) Z-subproblem: Z is updated by fixing J, E, Y1, and
Y2. We only care about terms that are relevant to Z. Taking
derivative of L with respect to Z, we have the following
equation:

VTVZ + Z
(
QTQ

)−1 = F
(
QTQ

)−1
(14)

where

F = VT
(

V − E + Y1

τ

)

Q +
(

J − Y2

τ

)

.

This equation is a standard Sylvester equation [4]. In the
following, we prove it has a unique solution.

Proposition 3: The Sylvester equation (14) has a unique
solution.

Proof: VTV is positive semidefinite. So all of its eigenvalues
are non-negative: αi ≥ 0,∀i. Since QTQ is positive definite,
all of its eigenvalues are positive: βj > 0,∀j. Hence, for any
eigenvalues of VTV and QTQ : αi+βj > 0. According to [24],
the Sylvester equation (14) has a unique solution.

c) E-subproblem: In a similar way to update J and Z,
we fix J, Z, Y1, and Y2 and update E by solving

E = arg min
E

λ

τ
‖E‖2,1 + 1

2

∥
∥
∥
∥E −

(

V − VZQT + Y1

τ

)∥
∥
∥
∥

2

F
.

(15)

This can be solved via the following lemma.
Lemma 3 [27]: Let S = [s1, s2, . . . , si, . . . ] be a given

matrix and ‖ · ‖F be the Frobenius norm. If the optimal
solution of

min λ‖H‖2,1 + 1

2
‖H − S‖2

F

is H∗, the ith column of H∗ is

H∗(:, i) =
⎧
⎨

⎩

‖si‖ − λ

‖si‖ si, if λ < ‖si‖
0, otherwise.

d) Y1 and Y2-subproblem: We update two multipliers
by fixing J, E, and Z. The update of Y1 and Y2 can be done
via solving the following optimization problem:

Y1 = Y1 + τ
(
V − VZQT − E

)

Y2 = Y2 + τ(Z − J). (16)

Algorithm 1 summarizes the approach on solving (12).

Algorithm 1 Solving Problem (12) by ADMM
Input:

data matrix V, parameter λ, constraint matrix Q
Initialize:

Z = J = 0, E = 0, Y1 = 0, Y2 = 0, τ = 10−6, maxτ =
1010, ρ = 1.1, ε = 10−8.
while not converged do

1. fix the others and update J by (13)
2. fix the others and update Z by solving (14)
3. fix the others and update E by (15)
4. update the multipliers by (16)
5. update the parameter τ by τ = min(ρτ, maxτ )

6. check the convergence conditions
‖V − VZQT − E‖∞ < ε, ‖Z − J‖∞ < ε

end while

3) Convergence Properties: The convergence of ADMM
has been well studied when the number of blocks (i.e.,
unknown matrix variables) is at most two [25], [52]. However,
so far it is still difficult to generally ensure the convergence of
ADMM with three or more blocks [52]. Since there are three
blocks (including Z, J, and E) in Algorithm 1 and the objective
function of (4) is not smooth, it is difficult to prove the conver-
gence of our proposed algorithm in theory. According to the
theoretical results in [26], Algorithm 1 has a good convergence
property if meets the three conditions as follows.

1) The parameter τ in step 5 of Algorithm 1 has an upper
bound.

2) The dictionary matrix V is of full column rank.
3) In each iteration step, the residual produced by εk =

‖(Zk, Jk) − (Z, J)‖ is monotonically decreasing, where
Zk and Jk denote the corresponding solution produced
at kth iteration step, and (Z, J) = arg minZ,J L whose
value is more than that of (Zk+1, Jk+1).

It has been elaborated in [26] that the above conditions can
be satisfied to some extent. Thus, it could be well expected
that Algorithm 1 has good convergence properties. Moreover,
ADMM is known to generally perform well in reality, as
illustrated in [52].

4) Complexity Analysis: The steps 1–3 are the most com-
putational intensive parts of Algorithm 1. The computation
of step 1 is relatively heavy with an O(n3) complexity, as it
involves the SVD of an n× (n− l+u) matrix. The complexity
of step 2 is also O(n3) as it needs to solve a standard Sylvester
equation. Since step 3 involves the matrix inversion and matrix
multiplication, its complexity is O(n3). Therefore, the overall
computational complexity of CLRR is at most O(n3), which is
equal to that of LRR2,1. Hence, we can conclude that CLRR
does not increase the complexity as result of incorporating
prior information, while in the mean time, more effective data
representations can be learnt.

C. Subspace Clustering Approach

After solving the optimization problem (4), we obtain the
optimal representation matrix W∗ according to W∗ = Z∗QT .
Then the affinity matrix (|Z∗QT | + |QZ∗T |)/2 is constructed
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Algorithm 2 Subspace Clustering by CLRR
Input: data matrix V, constraint matrix Q, number of sub-

spaces p
1. Solve problem (9) for each data point in V to obtain
optimal solution Z∗.
2. Obtain the final coefficient matrix by W∗ = Z∗QT .
3. Construct the affinity matrix by (|W∗| + |W∗T |)/2.
4. Segment the data into p groups by Normalized Cuts.

and NCuts [36] is applied on the affinity matrix to produce
the final clustering results. The whole procedure of subspace
clustering by CLRR is summarized in Algorithm 2.

V. EXPERIMENTS

A. Experimental Setup

We conduct experiments on one synthetic dataset, four
benchmark datasets (extended Yale B [14], USPS,4 20 news-
group,5 and Hopkins 1556) and an application on video face
clustering with Notting-Hill dataset [53] to demonstrate the
superior performance of CLRR over several existing state-of-
the-art approaches. These approaches include both unsuper-
vised methods (k-NN using heat kernel distance, SSC [10],
LRR (LRR1 and LRR2) [26], LSR (LSR1 and LSR2) [31],
CASS [30], SMR [21], and TSC [16]) and semisupervised
methods (CS-VFC [53], NNLRR [12], and SemiSMR7 by
modifying the graph structure of SMR with prior informa-
tion). For the synthetic and benchmark datasets, we randomly
pick 10% of data from each dataset as prior information for the
semisupervised subspace clustering. If the selected data points
belong to the same class, they are of must-link. For the appli-
cation, we use the must-link information within each video
track as priors, which are naturally available (more details in
Section V-H).

For each method, we tune their corresponding parameters
to achieve the best performance for comparison. Specifically,
for k-NN, the numbers of nearest neighbors k is tuned from
1 to 10, q ∈ {2, 3, . . . , 10} for TSC, the space of the reg-
ularizer weight on W of SSC is α ∈ {1, 2, . . . 10}, λ ∈
{0.1, 0.2, . . . 5.0} for LSR, λ ∈ {0.001, 0.01, 0.1, 1.0, 2.0, 3.0}
for LRR and λ ∈ {0.0001, 0.001, 0.01, 0.1, 1.0, 2.0, 3.0} for
CASS. For CS-VFC, the weight of the must-link constraint
matrix applied to the affinity matrix is λ ∈ {1, 2 . . . 10}. For
SMR, SemiSMR and CLRR, λ ∈ {0.25, 0.5, 0.75 . . . 5}. For
NNLRR, according to the original paper [12], λ is fixed to 1
and β ∈ {5, 10, 15 . . . 50}. Note that CLRR also involves the
parameter k, which will be fixed in the experiments according
to a k effect testing.

To ensure a fair comparison, the new representation matri-
ces of all approaches are conducted on the typical affinity
measures [14] and NCuts [36] is employed to produce the
final clustering results. The subspace clustering performance

4www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html
5http://qwone.com/∼jason/20Newsgroups/
6http://www.vision.jhu.edu/data/hopkins155/
7Similar to [28], we have modified the weight matrix by setting Wij = 1

if and only if Vi and Vj are of must-link, or Wij = 0 otherwise.

is evaluated by clustering accuracy. To minimize the random
initializations’ influence on the performance, we repeat each
method ten times and report the average performance. Since
CASS and NNLRR need a significant amount of time to pro-
cess some large datasets, the corresponding results are not
available but represented with N/A. All the experiments are
done using MATLAB 2014 in an Intel Core 3.50 GHZ desktop.

B. Evaluation Metrics

In the experiments, we use accuracy/error to measure clus-
tering performance. The results are evaluated by comparing the
available cluster label of each sample with the label provided
by the dataset. Given a dataset of n images, let li and ri be the
obtained cluster label and label provided from each sample
image, respectively. The accuracy is defined as follows:

accuracy =
∑n

i=1 δ(ri, map(li))

n
(17)

where δ(x, y) is the delta function that equals one if x = y and
equals zero otherwise, and map(li) is the permutation mapping
function that maps each cluster label li to the equivalent label
ri from the dataset. The best mapping can be found by using
the Kuhn–Munkres algorithm [32].

C. Synthetic Data

This experiment attempts to compare the robustness of
all compared methods to different levels of noise. Following
the scheme in [26], we construct 5 independent subspaces
{Si}5

i=1 ∈ R
100, whose bases {Ui}5

i=1 are 100 × 3 random
matrices consisting of orthonormal columns. We sample 50
data vectors from each subspace Si by computing Vi = UiCi,
1 ≤ i ≤ 5 with Ci being a 3 × 50 i.i.d. N (0, 1) matrix and
obtain a clean data matrix V = [V1, V2, . . . , V5] ∈ R

100×250.
To compare the robustness, we randomly chose 30% data vec-
tors from V and add Gaussian noise with zero mean and
variance σ‖Vi‖, where σ can be seen as the signal-noise ratio
and it varies from 0 to 0.5 with 0.1 interval. Here σ = 0 means
noise free.

1) Performance Comparison: Table II presents the cluster-
ing accuracies of all the compared methods against different
levels of noises. It can be seen that most of methods achieve
perfect results when data are clean. However, when σ ≥ 0.2,
the accuracies of SSC, CASS, and CS-VFC decrease dramati-
cally to less than 80%. On the contrary, CLRR’s performance
drops gradually and is better than other methods consistently
with different σ . Worth to note that CS-VFC, though being
semisupervised, performs worse than unsupervised methods
such as LSR1. This is because CS-VFC is based on SSC, even
though it utilizes some prior information. The results demon-
strate that CLRR has enhanced the robustness to noises and is
able to achieve better clustering performances compared with
state-of-the-art methods.

D. Extended Yale B

Extended Yale B is challenging for subspace clustering
due to large corruptions by “shadows” or noises. It contains
2414 frontal face images of 38 subjects, with approximately

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://qwone.com/~jason/20Newsgroups/
http://www.vision.jhu.edu/data/hopkins155/
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TABLE II
CLUSTERING ACCURACIES (%) ON SYNTHETIC DATA

TABLE III
CLUSTERING ACCURACIES (%) ON EXTENDED YALE B

64 images per subject taken under different illumination condi-
tions. We resize the images into 32×32 and use the raw pixel
values to form data vectors of 1024 dimensions. We chose
different numbers of subjects in the experiment, ranging from
the first 5, 10, 30, to 38 (i.e., all of the subjects in the dataset).

1) Performance Comparison: Table III summarizes the
clustering performance of different methods. The best results
are highlighted in boldface. As the table shows, CLRR
achieves the highest clustering accuracy on all four cluster-
ing tasks. Besides, with the number of subjects increasing, the
advantage of CLRR gets more significant. Specifically, for the
five subjects task, all methods perform well. No big improve-
ment is made by CLRR, compared with the second best result
(NNLRR). But for the 10 subjects, 30 subjects, and 38 subjects
tasks, CLRR outperforms the second best results by 2.63%,
2.68%, and 9.02%, respectively. We also notice that, for all
tasks, LRR2,1 performs much better than LRR1, which can be
attributed to L2,1 norm being more robust to noises and out-
liers. Comparing SemiSMR with SMR, CS-VFC with SSC, the
performance of semisupervised learning methods (SemiSMR,
CS-VFC) is not significant better than the corresponding unsu-
pervised learning methods (SMR, SSC), and is in fact even
worse in some cases. This is because these semisupervised
methods cannot guarantee that the data with a must-link con-
straint be clustered. In contrast, CLRR not only guarantees
the data with must-link constraint to be clustered together,
but is also robust to noises and outliers that gives superior
performance.

To have a better visual embodiment, Fig. 2 provides exam-
ples of clustering from the two best performers, SSC and
CLRR on the first five subjects. Due to limited space, we
only show a couple of images as examples. Fig. 2 shows that
the results of CLRR are more promising than that of SSC.
For example, the second row in the figure corresponds to the
same individual. While more than half of faces are wrongly
clustered by SSC [Fig. 2(a)], CLRR achieves a more accurate
clustering [Fig. 2(b)]. The robustness of CLRR is illustrated in
Fig. 3, in which, each row shows an example of an individual
image. The original faces, the corrected faces and errors are

Fig. 2. Visual representation of clustering results. Each row denotes a face
cluster output. Incorrectly clustered faces are framed in red. Results examples
of (a) SSC and (b) CLRR.

shown in the corresponding columns from left to right. The
original faces in the first column are fuzzy due to heavy cor-
ruption by “shadows” or noises. The corrected faces through
CLRR in the second column are much clearer after the errors
(third column) of each image are removed. This demonstrates
the robustness of CLRR.

As the objective function of CLRR involves a parameter λ,
which balances the effects of the two terms in the objective
function, we hereby analyze the sensitivity of λ on these four
subdatasets. Fig. 4 shows CLRR achieves stable accuracy with
λ varying from 0.5 in all cases, which means CLRR is insen-
sitive to the parameter λ. In the experiment, λ is set to 2 for
the results given in Table III.

Prior to applying NCuts for clustering, we select the optimal
representations of CLRR among its k-nearest neighborhood.
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TABLE IV
CLUSTERING ACCURACIES (%) ON USPS

Fig. 3. Illustration of error correction. The left column represents original
corrupted faces (V), the middle column is the corrected data (VZ∗QT ), and
the right column is the alleviated errors (E∗) when the optimization converges.

Fig. 4. Clustering accuracy with respect to λ.

Fig. 5. Clustering accuracy with respect to k.

To test the parameter effect of k, we eliminate the effect from
parameter λ by fixing λ = 2. Fig. 5 illustrates performance
with k varying from 2 to 10 with different subjects. It shows
that the accuracy increases dramatically until k = 6. After this,
the results vary very little with k from 6 to 10. Based on this
testing, we fix k = 6 for the experiments.

E. USPS

The USPS dataset contains 9298 handwritten digit images
(16 × 16 each). It consists of ten classes corresponding to the
ten digits, 0–9. We use the first 100 examples of each digit

Fig. 6. Sample images from USPS dataset.

Fig. 7. Visualization of derived affinity matrices on USPS dataset. (a) SSC.
(b) LRR2,1. (c) LSR2. (d) SMR. (e) SemiSMR. (f) CLRR.

for this experiment. The examples are with many variations on
appearance in each class and may share some features (i.e.,
digits 3 and 8) in different classes. This violates the assumption
of independent subspaces and thus increases the difficulty of
clustering. Fig. 6 shows example images.

1) Performance Comparison: Table IV shows the cluster-
ing results on USPS dataset. We can see that the clustering
accuracies of the first four methods (k-NN, SSC, LRR, and
LSR) and TSC are very close to each other, which fluctuate
between 72.20% and 77.70%. The rest (CASS, SMR, CS-
VFC, NNLRR, and SemiSMR) achieve also similar but better
accuracies varying slightly from 82.40% to 87.82%. Although
these methods performs well, CLRR still gets the highest accu-
racy of 92.22% with a large margin improvement. As the
clustering accuracy largely depends on the constructed affin-
ity matrix, that is, a clearer block diagonal structure of affinity
matrix leads to higher clustering performances, we illustrate
corresponding derived affinity matrices of some methods in
Fig. 7. The visualization results in the figure show that the best
performer (CLRR) leads to a clearer block diagonal affinity
matrix than others. It confirms that a more salient block diag-
onal structure leads to a more accurate segmentation result.
This is consistent with the analysis in Theorem 2. To better
demonstrate the superiority of CLRR with different percent-
ages of priors, we compare the performance of CLRR with the
second best performer (SemiSMR) in Fig. 8. It can be seen
that when vary the ratio of selected data increases from 10% to
100% with an increment of 10%, the performances of both two
methods rise gradually. CLRR outperforms SemiSMR nearly
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TABLE V
CLUSTERING ACCURACIES (%) ON 20 NEWSGROUPS

TABLE VI
CLUSTERING ERRORS (%) ON HOPKINS 155

Fig. 8. Clustering accuracy with respect to must-link constraints.

Fig. 9. Convergence of CLRR.

in all cases with a larger gap below 70% of selected data.
Notably, CLRR achieves 100% accuracy when 100% data are
selected, while SemiSMR fails to reach this.

We also test the convergence speed of CLRR as shown in
Fig. 9, in which the objective function value decreases mono-
tonically to the level of 10−8 with about 25 iterations. This
indicates that CLRR converges efficiently. Fig. 10 represents
the computational time of baselines. CLRR takes 104.00 s.
This is slower than SSC (16.67 s), SMR(4.2 s), and CS-VFC
(16.47 s), but much more efficient than CASS (406.72 s). In
addition, CLRR costs similar time as LRR2,1, which is also
in line with the complexity analysis in the previous section.

F. 20 Newsgroups

The 20 newsgroups dataset is a collection of approximately
20 000 newsgroup documents, partitioned evenly across 20
different newsgroups. Same as [5], we choose the four top-
ics which contains autos, baseball, hockey and motorcycles.

Fig. 10. Comparison of computational time.

The documents were preprocessed using the Rainbow software
package with the following options.

1) Skipping any header as they contain the correct
newsgroup.

2) Stemming all words using the Porter stemmer.
3) Removing words that are on the SMART systems

stop list.
4) Ignoring words that occur in 5 or fewer documents.

By removing documents that have less than five words, we
obtained 3970 document vectors in 8014-dimensional space.

a) Performance comparison: The performance compar-
ison of 20 newsgroups is shown in Table V. From the table
we can see that all methods achieve very good results with
more than 80% accuracy. This is reasonable because the num-
ber of subjects in the 20 newsgroups is only 4 and the amount
(sampling) of each subject is more than that of the extended
Yale B and USPS, although the 20 newsgroups dataset is more
challenging with larger number and higher dimensions of data.
Even under this circumstance, CLRR achieves the highest clus-
tering accuracy with 93.38%, outperforming the second best
approach LRR2,1 by 1.19%.

G. Hopkins 155

The Hopkins 155 motion dataset contains 155 motion
sequences, each of which contains two or three motions (one
motion corresponds to one subspace). Similar to [21], we
use PCA to project the data into a 12-dimensional subspace.
All the methods are performed on each sequence with same
parameters. The maximum, mean and standard deviation of
the error on all sequences are reported. Fig. 11 shows some
samples in the Hopkins 155 database.
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Fig. 11. Sample images from Hopkins 155 dataset. Different colors indicate different motions.

TABLE VII
CLUSTERING ACCURACIES (%) ON NOTTING-HILL

Fig. 12. Visualization of derived affinity matrices on a motion sequence of
Hopkins 155 dataset. (a) LSR1. (b) SMR. (c) SemiSMR. (d) CLRR.

b) Performance comparison: Table VI tabulates the
motion segmentation errors of ten methods on the Hopkins
155 database. It shows that CLRR makes only 2.21% segmen-
tation error, while the best previously reported result is 2.25%
by SemiSMR. The improvement of CLRR on this dataset is
moderate. This is mainly because most sequences are actually
easy to segment. As a result, even with big improvements on
some challenging sequences the overall improvement is lim-
ited, as the reported error is the mean of all 156 segmentation
errors. To better demonstrate the advantage of CLRR, we pick
a challenging sequence as an example. The sequence contains
two motions with different number of data and the derived
affinity matrices by their corresponding methods are shown
in Fig. 12. We can see that the affinity matrix obtained by
CLRR has much clearer block-diagonal structure compared
with those by other methods, which undoubtedly will lead to
a more accurate segmentation result.

H. Notting-Hill Dataset

In this experiment, we apply CLRR to video face clustering
with the Notting-Hill dataset, which is derived from the movie

Fig. 13. Sample face images in a face track of Notting-Hill dataset.

Notting-Hill. The dataset includes 4660 face images of 5 main
casts in 76 tracks. The resolution of each image is 120 × 150.
Different from the synthetic and benchmark datasets for which
we need to select a portion of data as supervision information,
the Notting-Hill has the supervision information (must-link
constraints) naturally available: the face images in a face track
are from the same person, as illustrated in Fig. 13.

Same as [7] and [53], we downsize each face image to
40 × 50 and get the 2000-dimensional features. To have more
representative and convincing results, we uniformly sample
from each track different number of images: 5, 7, 9, and 11.
The constraint matrix Q is then constructed by incorporat-
ing must-link constraints within each face track: Qij = 1 if
ith face image belongs to jth track, or Qij = 0 otherwise.
For example, with 5 faces per track, we have 380 faces
belonging to 76 tracks. The matrix Q can be constructed as

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1 0 0 · · · 0
0 M2 0 · · · 0
0 0 M3 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 M76

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
380×76

where Mi ∈ R
5×1 = [1, 1, 1, 1, 1]T , i = 1, 2, . . . , 76. With

the matrix Q, CLRR guarantees that the faces in the same
track are grouped into same subspace. The experimental results
of CLRR as well as other compared approaches are shown
in Table VII. With the supervision information, the semisu-
pervised methods generally show better performances than
the unsupervised methods. Obviously, CLRR outperforms the
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other methods on all the four cases, which further demon-
strates its effectiveness and potentials for applications such as
video summarization [35], [38] and automatic cast listing in
feature-length films [3].

VI. CONCLUSION

This paper presents a novel CLRR for robust semisuper-
vised subspace clustering. While seeking LRR of data, CLRR
ensures that data sharing a must-link constraint or same label
to have the same coordinates in the new representation and
are clustered into a same subspace. We have proved in the-
ory that CLRR possesses not only a salient block-diagonal
structure of new representation when data are noise free with
independent subspaces, but also has a semisupervised group-
ing effect when data are contaminated by noise. Extensive
experiments on a synthetic dataset, four benchmark datasets
(Yale B, USPS, 20 newsgroup, and Hopkins 155) and an
application have demonstrated the superior clustering accu-
racy, robustness and convergence of CLRR in comparison to
a number of alternative leading approaches. The constraint
matrix with must-link constraints or label information can be
flexibly applied to many other existing representation-based
approaches such as SSC, LSR, and SMR, because they all
aim to obtain an effective data representation matrix. This will
be explored in our future work. Furthermore, the constraint
matrix developed in this paper may be extended to ensure that
data with cannot-link constraint are not mapped together. This
will allow wider applications of clustering, such as pattern
recognition and data mining.
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