
DEVELOPMENT OF A PROTOTYPE

SENSOR-INTEGRATED URINE BAG

FOR REAL-TIME MEASURING

Atigorn Sanguansri

A thesis submitted in partial fulfilment of the

requirements of Bournemouth University

for the degree of Master by Research

May 2016

Bournemouth University

Copyright Statement

“This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and due

acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.”

I

Abstract

A PROTOTYPE SENSOR-INTEGRATED URINE BAG

FOR REAL-TIME MEASURING

The urine output is a rapid bedside test for kidney function, and reduced output is the

common biomarker for an acute kidney injury (AKI). The consensus definition of

the symptom is used urine output <0.5 ml/kg/hour for ≥6 hours to define AKI. If a

patient is suspected to have this problem, the urine output monitoring needs to be

done hourly, and this task consumes a lot of time, and easily affected by human

errors. Moreover, available evidences in literatures indicate that more frequent

patient monitoring could impact clinical decision making and patient’s outcome.

However, it is not possible for nurses to dedicate their precious time manually up to

minute manually measurements.

To date, there is no reliable device has been used in the clinical routine. From the

literatures, only a few automated devices were found with the ability to

automatically monitor urine outputs, and could reduce nurse workload and at the

same time enhance work performance, but these still have some limitations to

measure human urine.

In this thesis presents the development and testing for such a device. The research

was aimed at building a prototype that could be measured a small amount of urine

output, and transit information via wireless to a Cloud database with inexpensive and

less complex components. The concept is to provide a real-time measurement and

generates data records in Cloud database without requiring any intervention by the

nurse.

The initial experiment was done measure small amount of liquid using a drop-

volume calculation technique. An optical sensor was placed in a medical dropper to

record number of counted-drops, the Mean Absolute Percent Error from the test is

reported ±3.96% for measuring 35 ml of liquid compared with the ISO standard. The

second prototype was developed with multi-sensors, including photo interrupter

sensor, infrared proximity sensor, and ultrasonic sensor, to detect the dripping and

urine flow. However, the optical sensor still provided the most accuracy of all.

II

The final prototype is based on the combination of optical sensor for detecting drops

to calculated urine flow rate and its volume, and weight scales to measurement the

weight of collected urine in a commercial urine meter. The prototype also provides

an alert in two scenarios; when the urine production is not met the goals, and when

the urine container is almost full, the system will automatically generate alarms that

warn the nurse. Series of experimentation tests have been conducted under

consultant of medical professional to verify the proper operation and accuracy in the

measurement. The results are improved from the previous prototype. The mean error

found of this version is 1.975% or ≈ ±1.215 ml. when measure 35ml of urine under

the average density value of urine (1.020). These tests confirm the potential

application of the device by assisting nurse to monitor urine output with the accuracy

in the measurement. The use of the Cloud based technology has not been previously

reported in the literature as far as can be ascertained. These results illustrated the

capability, suitability and limitation of the chosen technology.

III

Table of Contents

Contents
Copyright Statement .. II	

Abstract I	

Table of Contents ... III	

List of Figures .. VI	

List of Tables .. VIII	

Acknowledgments ... X	

Abbreviations ... XI	

Chapter 1.	 Introduction ... 1	

1.1	 Background ... 1	

1.2	 Problems Statement ... 3	

1.3	 Aim and Objectives ... 7	

1.4	 Research Methodology .. 7	

1.5	 Structure of the thesis .. 9	

Chapter 2.	 Literature reviews ... 12	

2.1	 Fluid balance and urine monitoring in ICUs ... 12	

2.1.1	 General Introduction .. 12	

2.1.2	 Fluid Balance Monitoring .. 15	

2.1.3	 Conventional approach for urine output monitoring 18	

2.1.4	 Information flow in ICUs ... 24	

2.1.5	 Automatic urine output monitoring devices 26	

2.1.6	 Summary .. 34	

2.2	 Technology literature relating to conducting research 35	

2.2.1	 Prototyping development ... 35	

2.2.2	 Classes of prototype ... 36	

2.2.3	 The Benefits of Prototyping ... 38	

2.2.4	 The Problems with using the Prototype ... 39	

2.2.5	 Discussions .. 40	

IV

2.3	 The Internet of Things ... 42	

2.3.1	 Overview .. 42	

2.3.2	 The Internet of Things and the Internet ... 43	

2.3.3	 Cloud computing in the Internet of Things .. 43	

2.3.4	 Current practice of the IoT in hospitals ... 45	

2.3.5	 Discussions .. 50	

Chapter 3.	 Initial design of a prototype system .. 52	

3.1	 The hospital observation ... 52	

3.2	 User requirements ... 55	

3.3	 Design of the prototype system ... 56	

3.3.1	 Drop-volume measurement .. 60	

3.3.2	 Pre-design prototype .. 61	

3.4	 Design of system architecture ... 69	

3.5	 Hardware for Data Acquisition ... 71	

3.5.1	 Sensor input ... 71	

3.5.2	 Microcontroller .. 80	

3.6	 Communication channels .. 86	

3.6.1	 Network setting .. 87	

3.7	 Software design ... 91	

3.7.1	 Given requirements .. 92	

3.7.2	 Data acquisition ... 97	

3.7.3	 Spreadsheets and User interface module ... 99	

3.8	 Designing tools .. 105	

3.8.1	 Computers .. 105	

3.8.2	 Fritzing (Software) ... 106	

3.9	 Summary ... 107	

Chapter 4.	 Development of an Prototyping .. 108	

4.1	 Initial prototype system ... 108	

4.1.1	 Initial hardware setup ... 109	

V

4.1.2	 Evaluation of the initial prototype ... 112	

4.1.3	 Feedback .. 118	

4.2	 The improved version .. 119	

4.2.1	 Second Prototype setup .. 119	

4.2.2	 Evaluation of the new improved prototype 121	

4.2.3	 Error sources .. 124	

4.2.4	 Stress testing .. 125	

4.3	 Information Transmission features .. 126	

4.3.1	 Initialize OAuth ... 126	

4.3.2	 Finalize OAuth ... 129	

4.3.3	 Operation Process .. 133	

4.4	 Data storage and User interface .. 134	

4.4.1	 Interface Design ... 134	

4.4.2	 Data Storage ... 138	

Chapter 5.	 Conclusions ... 147	

5.1	 Review of the goals of the research .. 147	

5.2	 Summary of main finding ... 148	

5.2.1	 How prototype and system should be designed 148	

5.2.2	 The focus on sensor selection .. 148	

5.2.3	 Comparison of a new improved prototype with previous research

described in the published literature .. 149	

5.3	 Novel contribution to knowledge .. 150	

5.4	 Limitation of the research ... 151	

5.5	 Further work .. 152	

List of References .. 153	

VI

List of Figures
Figure 1.1 Urine meter currently used in the Royal Bournemouth Hospital 5	

Figure 1.2 An outline of the research structure and the chapters in the thesis 11	

Figure 2.1 Urinometer ... 20	

Figure 2.2 First urine meter by Medical College of Virginia ... 23	

Figure 2.3 Urinary Catheters ... 24	

Figure 2.4 Urinfo 2000 device .. 27	

Figure 2.5 Design of the containers and component placement 28	

Figure 2.6 Drawing concept designed following siphon principle. 31	

Figure 2.7 Device design based on scale .. 33	

Figure 2.8 Design of capacitive sensor for measuring the height of the column. 34	

Figure 3.1 Demonstration of how to monitor patient’s urine ... 53	

Figure 3.2 Blood-Oxygen level monitoring device .. 54	

Figure 3.3 Breadboard view of a pre-design prototype .. 61	

Figure 3.4 The preliminarily volumetric measurements ... 62	

Figure 3.5 Pseudo code of drop detection and time logger ... 63	

Figure 3.6 Estimation of counted-drop that will be delivered .. 64	

Figure 3.7 Estimation time to empty the container using medical dropper 64	

Figure 3.8 Drop delivering while changes the tip angle from 90°to 45° 67	

Figure 3.9 Different shapes of the liquid drops obtained varying the tilt angle. 68	

Figure 3.10 A variety of drop shapes from different falling height. 68	

Figure 3.11 Design of the system architecture .. 70	

Figure 3.12 HC-SR04 ultrasonic components .. 72	

Figure 3.13 Detection concept diagram of ultrasonic pulse reflective technique 73	

Figure 3.14 The principle of the air bubble sensor ... 74	

Figure 3.15 Ultrasonic sensor timing diagram .. 74	

Figure 3.16 Microphone sensor .. 75	

Figure 3.17 Proto interrupter components .. 77	

Figure 3.18 The output voltage and the position of the detected object 77	

Figure 3.19 Sample of Aruino sketch code to make LED blinks 81	

Figure 3.20 Arduino basic layer (Front and back side) .. 83	

Figure 3.21 Simulated hospital network setting ... 88	

Figure 3.22 If-Elase logical functions for rine measurement guideline 94	

VII

Figure 3.23 System flow chart .. 95	

Figure 3.24 Example of common CVS file format ... 98	

Figure 3.25 OpenID Connect protocol flow ... 100	

Figure 3.26 Fritzing Software User Interface ... 106	

Figure 4.1 Model design for initial prototype .. 108	

Figure 4.2 Sample of experiment results measure two different reflection distances. . 110	

Figure 4.3 Initial Prototype setup .. 112	

Figure 4.4 The values of 3 sensors reading from in different amount of input liquid .. 115	

Figure 4.5 Total drop count of each sensor in different amount of liquid 116	

Figure 4.6 3-D model design for the second prototype .. 120	

Figure 4.7 The experiment setting .. 122	

Figure 4.8 15 cm height of 500 ml in a container ... 122	

Figure 4.9 The drop volumes of 20drop/ml at flowrate 50, 100, 250 ml/h 123	

Figure 4.10 Using OAuth 2.0 in Google Web Server ... 126	

Figure 4.11 The output parameters from registered project in Developer Console 127	

Figure 4.12 Java code for the Initiallize OAuth process ... 128	

Figure 4.13 The consent window to view and mange Spreadsheets in Google Drive. . 129	

Figure 4.14 The POST method to send the token endpoint. ... 130	

Figure 4.15 Sample of an ID token (formatted for readability). 131	

Figure 4.16 Drop-down list to choose range of height ... 136	

Figure 4.17 Calendar applied for date of birth input .. 136	

Figure 4.18 Check box selection to state the reason for fluid chart 136	

Figure 4.19 Displayed GUI in Spreadsheet format ... 137	

Figure 4.20 Sheet!Datalog .. 139	

Figure 4.21 Sheet!Schedule .. 144	

Figure 4.22 Debugging function to test the written scripts ... 145	

VIII

List of Tables
Table 2.1 Basic vital signs monitoring in ICUs .. 14	

Table 2.2 Assessment of fluid balance currently done in the hospitals 16	

Table 2.3 Main constituents of normal urine .. 21	

Table 2.4 Summary of three stages of prototyping ... 37	

Table 2.5 Mapping and comparison of the available IoT applications 49	

Table 3.1 Summary of the previous automatic urine output measurement devices. 59	

Table 3.2. The mean values and the standard deviations from the sensor reading. 63	

Table 3.3 Comparison between estimation using liner equation and with ISO 85364 ... 65	

Table 3.4 Comparison of Extrinsic and Intrinsic optical sensors. 76	

Table 3.5 Properties of Arduino boards .. 82	

Table 3.6 Summary of strengths and weaknesses from the existing toolkits 84	

Table 3.7 Protocol stack of the designed prototype .. 88	

Table 3.8 Packes for mobile modem connection .. 91	

Table 3.9 Configuration detail to connect Arduino Yún to 3G modem 91	

Table 3.10 Urine measurement guideline form the Royal Bournemouth Hospital 92	

Table 3.11 CVS file for information sending to Google Sheets 97	

Table 3.12 Features of Google Apps Script .. 104	

Table 3.13 Properties of computers .. 106	

Table 4.1 A data set from IR sensor using analogRead() ... 110	

Table 4.2 The average drop volumes in 5 different liquid input from each sensor 118	

Table 4.3 Comparison of drop volumes in different flowrate 123	

Table 4.4 The accuracy of the estimation methods between single sensor vs. combined

sensors. .. 124	

Table 4.5 List of test scenarios and test cases ... 125	

Table 4.6 Input Parameters required for an authorisation token 127	

Table 4.7 Output parameters after received an authorization code 128	

Table 4.8 Input parameter required for exchange code for a token 130	

Table 4.9 Sample of token returned from Google Server and its details. 131	

Table 4.10 Google ID token descriptions ... 132	

Table 4.11 Constructor summary of Arduino sketch .. 133	

Table 4.12 Constructor summary of autoDateTime() function. 141	

Table 4.13 Constructor summary of emailAlert() function. ... 142	

IX

Table 4.14 Queries in string arrays from getDate() function .. 146	

Table 4.15 Constructor summary of getDate() sub-function. 146	
	

X

Acknowledgments
The study presented in this thesis was achieved with the help and kindness of many

people for which I am very grateful. I would like to give special thanks to:

My special thanks go to my supervisor, Professor Hongnian Yu whose is more than a

supervisor and supports me through this study with all its difficult moment from the

very beginning. Professor Jim Roach, for his great suggestions, and Dr. Simon

McLauhlin from the Royal Bournemouth Hospital, for his guidance and the most

valuable discussion and consults through the journey.

My gratitude is also extended to all my study colleagues in faculty of Science and

Technology, especially to my friends in the same office with whom I shared wonderful

experiences.

This research was supported by the EU Erasmus Mundus Project-FUSION

(Ref.545831-EM-1-2013-1-IT-ERAMUNDUSEMA21). I am grateful to this

opportunity.

I would like to express my sincere of gratitude for my parents for their love, guidance

and support throughout my entire study.

XI

Abbreviations
Abbreviations used throughout the thesis are defined at first usage and listed below,

where possible in their standard form.

AKI Acute Kidney Injury

API Application Programming Interface

cc. Cubic Centimetres (cm3)

CPS Cyber-Physical System

CQC Care Quality Commission

CRT Capillary Refill Time

CSV Comma Separated Values

ECG Electrocardiography

EGG Electrogastrogram

GND Ground

Hz Hertz

ICUs Intensive Care Units

IDE Integrated Development Environment

IoT Internet of Things

IR Infrared sensor

ITUs Intensive Therapy Units

JSON JavaScript Object Notation

kHz Kilo-Hertz

MI Microphone sensor

ml. Millilitres (10-3) litres

mm. Millimetre (10-3) meter

ms. Mili-second (10-3) second

NHS National Health Service

NICE National Institute for Health and Care Excellence
oC Temperature degree Celsius

pH Potential Hydrogen

PI Photo-interrupter sensor

PWM Pulse Width Modulation

RFID Radio-Frequency Identification

SD Card Secure Digital memory card

XII

US Ultrasonic sensor

V. Volts

VCC Voltage at Common Collator

WEP Wired Equivalent Privacy

WPA Wireless Protected Access

XML Extensible Markup Language

1

Chapter 1. Introduction

1.1 Background

Intensive care units (also known as ‘ICUs’) are a general term for specialist hospital

wards that provide intensive care in the treatment and monitoring of patients with a

critical illness or unstable condition, which require continuously close monitoring

and support from the specialist equipment and medications in order to ensure normal

bodily functions (Mosby's Medical Dictionary 2009). In some cases, ICUs are the

place where life or death decisions are taken on professional judgement, relying on

available evidence (Siegel 2009).

In general, ICUs treated a variety range of illness patients. As recommended in

National Institute for Health and Care Excellence (NICE) clinical guidelines,

monitoring adult patients vital signs in ICUs is often occurred least every 12 hours

(National Institute for Health and Care Excellence 2007), but the diverse health

status of each individuals in ICUs generates different requirements for health

monitoring. Therefore, patients may require a different level of attention depends on

their conditions. Some patients may require frequent care while the others of more

stable conditions may require less. These are based upon the severity of patients’

conditions judged by nurses, which can be subjective.

At simplest, patient monitoring has been considered as a labour-intensive activity

because it involves at least an observer (usually a nurse) to observe and determine

changes in patients’ condition at least hourly. In the UK alone, it was found that an

occupancy rate in intensive care was 80-88% out of around 4050 available beds (The

Government Statistical Service 2015) compared to the number of nurses in average

NHS hospitals, a survey indicated a ratio of nearly nine patients per registered nurse

during daytime, and eleven at night (Ball and Pike 2009). Another survey from Care

Quality Commission (2015) indicated that only 60% out of 57,996 patients felt there

were ‘always or nearly always’ enough nurse on duty and, also found that 18% of

34,812 who pushed the call button for help request and, they claimed they had to

wait for help ‘more than five minutes’ and 1% never got service. To reduce that

number, and save more lives, would encourage hospitals to push up full intensive

2

staffs in their ICUs. Unfortunately, the nursing staff shortage has still occurred. Thus,

important factor that will reflect the patient monitoring and safe outcome is to reduce

nurse since human resources are the most valuable input for this provision (Liu

2010).

Due to the fact of staff shortage, ICUs cannot only rely on a dedicated and hard

working from nurses. A number of studies demonstrated that significant

unintentional harm is caused to patients through nurses’ failure to recognise the signs

of clinical deterioration. The early UK study pointed out that 317 out of 477 hospital

deaths occurred while requiring admission to the ICU during a 6-month period. 13 of

these deaths were considered potentially avoidable: gradual deterioration was

observed in physiological and/or biochemical variables, but the appropriate action

was not taken (McGloin et al. 1999). The authors concluded that patients with

obvious clinical indicators of acute deterioration are not infrequently overlooked or

poorly managed on the ward. Another study from Rogers et al. (2008) reported that

365 errors discovered during the 28-day period from 12-hour worked shifts of nurses.

Only 43 errors (11.7%) were detected before reached the patients, and the rest were

overlooked when medications were ordered or dispensed. Those findings show the

significant problems for nursing, since nurse staffs are in primary position to record

changes in patient’s clinical condition, but human errors still have been found in

modern healthcare, such as diagnoses being written illegibly on paper, doctors not

being able to easily access patient information, as well as limitations of time, space,

and personnel for monitoring patients (Meingast et al. 2006).

Many researchers believed that the automated monitoring technology will help in

replacing human work and at the same time enhance work performance with fewer

mistakes (Kovner and Gergen 1998; Amaravadi et al. 2000; Pronovost et al. 2002).

The automatic clinical tools were being used more frequently in clinical practice for

identifying and monitoring, such as oxygen level indicator, heart rate, and

electrocardiograph (ECG). These systems are variable in terms of physiological

parameters and usages, but they share a common goal that is performing assessments

of clinical changes in patients. However, urine output is the only parameter

consistently used by clinical but not yet monitored electronically.

3

In light of the dramatic growth in the healthcare monitoring technology, only a few

devices have been proposed for automated urine measurement in the last decade. The

Urinfo 2000 is the first electronic and digit urine meter introduced to the market in

2009. It has been designed to especially estimate the urine output produced by the

patients. Apart from a commercial device, a series of research were carried out by

Otero et al. (2009; 2010a. 2010b; 2012; 2013). Those studies were based on sensor

made up of different techniques to automated urine output measurement. However,

most of the previous devices had drawback because some of them did not conform to

regulations of indirect urine contact. Some have huge cost of development. And

some required suppliers to redesign their mass production. Only a few devices are

performed on animals in the University Hospital of Getafe (Otero et al. 2010a; Otero

et al. 2010b; Otero et al. 2012; Otero et al. 2013).

The outcomes of the literature review showed that although the relevant information

and background knowledge are plentiful but a small number of academic studies was

recently address the importance of the urine output in the recognition of renal failure

and kidney dysfunction and the studies in these domain are still in their infancy

(Ricci et al. 2008; Hersch et al. 2009).

1.2 Problems Statement

The urine output is one of the major physiological criteria that used for indicating of

kidney status. It is essential to calculate water balance and use for multi-protocols to

observe the reaction of the patient toward the proper treatment. An adequate amount

of urine produced means well perfused and oxygenated of the kidney (Legrand and

Payen 2011). If a patient’s urine output is too low, then he/she is suspected to have

‘oliguria’ which is defined as patient produced urine less than 400 ml per day (an

average value is around 15 ml per hour or 1 ml/Kilogram/hour) (Bellomo et al. 2004;

McMahon et al. 2010; Cerda 2011). On the other hand, when a patient does not

produce urine output at all, ‘anuria’ will be suspected in most cases. Both oliguria

and anuria are common problems in ICUs. These two conditions can cause variety of

serious symptoms such as:

4

• Prerenal azotemia (Schrier et al. 2012) which leads to infection or heart

failure,

• Postrenal azotemia which causes the blockage of the urine flow in an area

below the kidneys,

• Kidney damage (McMahon et al. 2010), and increased risk of dearth (Uchino

et al. 2010)

The average range for daily urine produced is generally around 800 to 2000 ml with

a fluid intake around 2 litres. However, when the urine outcome is produced higher

than 3000 ml per day, diabetes is most common reason (Tidy 2012).

Lewinton and Kanagasundaram (2011) reports that estimated up to 20% of critical ill

patients in ICU suffered from deterioration of kidney function and they trends to

promote the develop acute kidney injury (AKI) according to these criteria (Lewinton

and Kanagasundaram 2011). An AKI, previously known as acute renal (or kidney

failure) is a condition that relates to loss of kidney function over hours or days. In

fact, not only kidney failure, AKI can also be caused by a problem with low blood

flow which usually in a patient who is already unwell with another health condition

(NHS 2013). If patients suddenly fall ill or have been diagnosis diagnosed with long-

term disease, (e.g. chronic disease, a urinary system disease or signs of a disease

affecting the kidneys and other organs). They are already suspected to be at

risk of AKI (NHS Choices 2014). NHS Kidney Care reported that estimated cost to

the NHS spent on treating AKI in the UK is as high as £620 million which is higher

than combination cost of lung and skin cancer treatment (NHS 2013).

According to the press release of National Institute for Health and Care Excellence,

early detection is a key priority and will prevent the patient's condition to become

critical by following set out in guideline developed by the NICE. These include early

identification of the condition and monitoring patient’s urine output (National

Institute for Health and Care Excellence 2013). When the patient is suspected to have

anuria or oliguria, the urinary output should be monitored hourly, and then ICU

nursing staffs need to manually record the reading and empty a urine container for

every patient under their care. This measurement is a repetitive 24 times a day

protocol.

5

Based on our observation at the Royal Bournemouth Hospital, it was found that the

current protocol for urine measurement is to read the scale from graduated container

which connected to a Foley catheter with patient’s bladder consuming approximately

2-3 minutes per measurement (see Figure 1.1). Dr Simon McLauhlin (MBBS., MD.,

MRCP.) from The Royal Bournemouth Hospital explains that since the measurement

is taken hourly, nursing staffs will spend nearly half hour for every 15 patients under

their care. He also says that such a repetitive task can increase stress and be

considered as overloading work for each nursing staff in the ICU. This may also lead

to human errors which can define as a cause affecting patient’s treatments.

Additionally, it has been found that the fluid input measurement is monitored with

automatic pumps connected to the monitoring system which are installed in the

modern ICUs. However, urine output is still monitored by manual registration as

reference. This issue shows the significant role of fluid management in the ICUs that

should not be overlooked.

Figure 1.1 Urine meter currently used in the Royal Bournemouth Hospital

Implementing an automatic urine meter instead of a manual measurement seems to

help reduce human errors and ease the nurse staff’s workload. The automatic

measurement trends to require less manpower to operate as well as the nurse staffs

make less effort and time to register the patients’ condition hourly. An automatic

device could also provide clinicians for better quality of information to monitor and

plan patient fluid therapy and even offer benefits to patients.

6

Nowadays, there are a few numbers of automatic urine measurement devices

presented. Firstly, as reported in Otero et al. (2009), the Urinfo 2000 was released its

first medical device product initially to markets in Israel. This device is a closed and

standalone system with limitation to transmit data. Therefore, the nurse does not

much advantage from having a digital recording of this parameter even though the

study has proven that there was significantly more accurate of automatic urine data

collection. Since this device does not transmit data to a central station for the

clinician, it is still required a nurse to manually record the measurement from the

device.

Apart from Urinfo2000, a series of research prototypes were built by Otero et al.,

based on sensors made of different techniques (e.g. containers equipped with float

sensor, high-precision industrial scale, capacitor sensors, and siphon container)

offering high accuracy. However, most of the prototypes have drawbacks as only

some of them were compliant with all laws applicable against indirect contact with

urine, some designs need a very high development, some required suppliers to

redesign their mass production, and they were also more complicated and difficult

for nurses to use in practical situations (Otero et al. 2009; Otero et al. 2010a; Otero

et al. 2010b; Otero et al. 2012; Otero et al. 2013). After all, previous studies, it

should be highlighted that though some electronic devices have already been

presented, a fully integrated system for general usage is yet to be developed and the

details of each devices are presented in Chapter 2 Literature reviews.

Clearly, there is a need for carrying out for such studies. A suitable device to

automate monitoring urine output is yet determined. The ICT (Information and

Communication Technology) challenges raised by the integration of health and care

service are large but have not been given as the priority they need. To address these

key problems, we would like to investigate the possible solution of how to measure

filled status of urine fluids, and transmit information with wireless to a secured

database using less complex prototype that alleviates nurse workloads and avoid

human errors. Nevertheless, small inexpensive integrated technologies (e.g., sensors,

controller unit, and open source software) are now available in cheaper price

increasing the possibility to achieve the solution for mentioned problems.

7

1.3 Aim and Objectives

This study aims to investigate the possible solutions of how to measure filled status

of urine fluids, and transmit information via wireless to a Cloud database using

inexpensive and less complex prototype that is alleviates nurse workload while

reduce human errors in monitoring task. This aim will be achieved through the

following objectives:

• To experiment through the feasibility studies of sensor selection and their

attributes.

• To clearly study the capability those sensors to measure the urine output,

epically patients who produce small amount of urine output.

• To identify requirements and expectation of the users.

• To develop a prototype system to collect real-time data with low-cost, off-

the-shelf sensors.

• To implement an application to store transmitted data via a wireless

connection.

• To test, evaluate and analyse the accuracy of the prototype device.

1.4 Research Methodology

This research is mainly conduct an intervention study and embeds qualitative data

within the experiment procedures using prototyping technique, where the qualitative

is used to find a foundation of knowledge in this research area, presented in Chapter

2.

To discover whether our prototype, as an automated urine output measurement

device, could help nurses measuring the urine to compromise and avoid human

errors. The following research questions were posed:

• What are the requirements from the users?

• Which technologies are currently being used in hospital?

• How prototype system should be designed and implemented according to

the given the requirements?

• What is the level of user’s acceptance of the proposed prototype?

8

• How to verify and validate the output of the proposed prototype from

user’s acceptance?

• What will be the next generation of urine monitoring prototype?

The research questions aim to evaluate whether the concept of our prototype would

reduce the nurse’s workload meanwhile reduce human errors by doing monitoring

task automatically using inexpensive and less complex prototype. The quantitative

method will be used to evaluate the prototype in accuracy and level of user’s

acceptance. Therefore, the results of this research expected to be continued in clinical

routine in the hospital. Thus, the experimentation had to conduct under suggestion of

medical professionals and it has to be done similar to what it has been done in the

hospital.

A comprehensive literature review was conducted to investigate the nature of

physical properties and attributes of each selected sensor, comparatively study their

advantages and disadvantages, carry feasibility study out of the current relevant

technologies, and identify the requirement of the real-time integration system.

Through the undertaking of the literature review, the foundation of knowledge in this

research area was built, and the gap between existing studies and the aim of this

research was identified.

In order to further identify the current process for measuring urine output in a

hospital and medical industry, interviews and group discussion were conducted by

medical professionals. Based on the results of a literature review and interviews, a

deep understanding of the medical practice perspective and limitations of the current

process was identified in the requirements to develop a prototype system that can

achieve real-time data collection and defined integration of automatic sensor-based

with wireless data transmitting in the application.

9

Considering the evaluation of drop counting as a volume measurement to be main

basic ideas to solve this problem along with the characteristics of contactless sensor

properties and their advantages in different aspects, a proposed prototype for the

experiment was developed to test the integration of sensors and controller unit, real-

time data integration with Cloud data storage and user interface. This method applied

sensors as the data reading input connected with microcontroller board for

automatically controlled all sensors, recorded the results across the sensor reading,

displayed, and stored in an array for later processing. The wireless local area network

was built to support the wireless data transmitting to Cloud storage.

An experimental study was adopted to investigate the technical feasibility of using

off-the-shelf sensors for reading input data and transmitting them through a wireless

network which controlled by a microcontroller. We were focusing on studying the

sensor reading reliability and data transmission by using wireless network

technology.

A series of tests were conducted to test the performance against the objectives and

requirements. The disadvantages of the traditional method of urine measurement,

benefits and limitations of the proposed prototype system were analysed from our

evaluation tests. Medical professionals were consulted during the design of the

prototype and experiments and discussed the results. They had given their concerns

and suggestion for further improvement. Furthermore, it was an extension part of the

post-development to draw research conclusion from the research knowledge and

users’ suggestions for future work.

1.5 Structure of the thesis

The thesis consists of five chapters, the content of which is briefly summarized as

below:

10

Chapter Two: Literature review.

In this chapter, related research regarding the patient monitoring in ICUs is

presented. It begins by reviewing relevant principle in fluid balance monitoring,

techniques and technologies for monitoring clinical ill patient’s parameter and

provides an in-depth consideration of the urine output measurement. This chapter is

followed by a review of the practical technologies on the necessity to develop a new

model of integrating sensor-based prototype.

Chapter Three: Initial design of the proposed prototype system.

Based on the literature reviews, previous relevant works, and interviews with

medical professionals, a proposed prototype system is introduced in this chapter. It

begins with key requirements which indicated the features of the prototype regarding

the current facts found in a hospital, a theory of operation and goes on the analyses

the prototype design to make feasibility studies and showed technology selection, as

well as systemic architecture design, which indicated benefits and limitation of

selected technologies.

Chapter Four: Development and evaluation of an experimental prototyping

approach.

In this chapter, the developments of two prototypes are presented and they functional

operations will be discussed. Also, the relevant issues associated with the

functionality and performances of the system are mentioned. The objective of the

research is met through a serial of experiment trails. They were carefully conducted

under consulting of medical professionals to provide evidence of the accuracy and to

demonstrate the feasibility of the prototype which is the primary function of this

study. Altogether, they provided the basis for the creation of a set of testing scenarios

to evaluate overall satisfaction.

Chapter Five: Conclusions and suggestions for future work.

The final chapter presents the conclusion drawn from the research work. Discussion

on the research limitations and recommendation for future work were made. The

structure the research followed and the result chapters in this thesis are shown in

Figure 1.2.

11

Chapter One: Introduction

Chapter Two: Literature review and related works

Chapter Three: Initial investigation of the proposed prototype system

Chapter Four: Development and evaluation of the proposed prototype
system

Initial research

Main research

Chapter Five: Conclusions and suggestions for future work

Figure 1.2 An outline of the research structure and the chapters in the thesis

12

Chapter 2. Literature reviews
The aim of this chapter is to review the general background and relevant knowledge.

In the first section, the fluid balance and urine monitoring in ICUs are described,

with emphasis on the existing automated urine monitoring devices. The second

section considers the technology literature relating to conducting research. The

prototyping and the Internet of Things are stated.

2.1 Fluid balance and urine monitoring in ICUs

As described in the previous chapter, the aim of this study is to focus on urine output

measurement. Despite from the urine measurement, we are briefly introduced the

necessary background related to the main work presented in this thesis. In this

section, the fundamental concept of water balance in human body and the basic

methodology of physiological measurements are presented as well as apparent

related studies and applications of the automated urine measurement device is

discussed.

2.1.1 General Introduction

Intensive Care Society has given the definition of Intensive Care as followed:

“A service for patients who have potentially recoverable conditions, who can benefit

from more detailed observation and invasive treatment than can be provided safely in

an ordinary ward or high dependency area” (Intensive Care Society 1997).

The idea of an ‘Intensive Care Units’, ‘Intensive Treatment Units’, and ‘Critical

Care Unit’ are generally considered to have the same meaning where they require

constant medical attention and support to keep critical ill patient’s body function in

good condition. Patients may remain in such care depending on their specific

conditions and recovery process. The Department of Health has defined four

different levels of intensive care in hospital based on individual patients need

(Department of Health 2000). The definitions of those levels of care can be

summarized as listed:

13

• Level 0: Patients whose needs can be met through normal ward care in an

acute hospital.

• Level 1: Patients at risk of their condition deteriorating, or those recently

relocated from higher levels of care, whose needs can be met on an acute

ward with additional advice and support from the critical care team.

• Level 2: Patients requiring more detailed observation or intervention,

including support for a single failing organ system or postoperative care and

those ‘stepping down’ from higher levels of care;

• Level 3: Patients requiring advanced respiratory care and support, or those

who need monitoring and support for two or more organ systems, one of

which may be basic or advanced respiratory support.

It is noted that Level 0 and 1 of care require a minimum of 4-hourly observations on

the basis of clinical need while the patients in Level 2 and 3 need immediate care

following major parameters; cardiovascular, renal and respiratory (Department of

Health 2000).

According to study by Kipnis et al. (2012), monitoring of physical parameters has

been mentioned as an essential in a critical ill patient. Physical parameters can collect

an insight data from patient’s body and can indicate sequential optimization of

patient’s health status, recognising early clinical deterioration and prevent them from

critical harm or any organ failure (Kipnis et al. 2012). Elliott and Coventry (2012)

agreed. They stated that a prompt detection and report of changes in those vital signs

are absolutely essential as delays in the beginning of appropriate treatment can

detrimentally affect the patient’s outcome. The vital signs, as listed in

14

Table 2.1, are minimum physiological observations that should be accurately

assessed before a serious change in a patient’s physiology can be recognised.

15

Table 2.1 Basic vital signs monitoring in ICUs (Elliott and Coventry 2012; Kipnis et

al. 2012)

Vital signs Physiology
Influencing

factors
Assessment issue

Pulse/Heart rate

Rhythmic

expansion of an

increased volume of

blood pushed into

the vessel.

Ages, oxygen

demand, body

temperature, and

consumption

Regularity, strength

and equality should

also be assessed in

30 seconds counted.

Respiratory rate

Presents frequency

of ventilation

(number of breaths).

Varies with age,

O2 level in blood,

and Acidosis

Reference range for

an adult is 16–20

breaths/minute. It is

indicator of an

oxygenation.

Oxygen saturation

Reflects the

peripheral

saturation of

haemoglobin

Cardiac output,

Haemoglobin,

Fraction of O2

Does not reflect

respiratory function

overall

Blood pressure

Refers to the

pressure exerted by

blood against the

arterial wall

Intravascular

volume, Vascular

tone, Contractility

For each heartbeat,

blood pressure

varies between

systolic and

diastolic pressure.

A healthy adult

ranges120/80 mm

Hg.

Level of

consciousness

Activating in the

brain system.

Chemical substance,

insufficient O2 or

blood flow, and the

pressure in a skull.

Influenced by intra-

cranial and extra-

cranial factors.

Commonly used

Glasgow Coma

Scale (GCS) for

assessing brain

injury patients.

16

Body temperature

Represents the

balance between

heat production and

heat loss controlled

by the

hypothalamus

Age, infection, and

medication

Core temperature of

the body.

Pain
Detected by

peripheral nerve
Patient’s perception

Pain is also a nurse-

sensitive patient

outcome and it

should be treated

promptly and

effectively.

Urine output
Kidney’s drain

functional

Renal perfusion,

Cardiac Output

For an adult, the

normal urine output

is at least 0.5

ml/kg/hour

2.1.2 Fluid Balance Monitoring

Monitoring the patient’s fluid balance is usually done to prevent dehydration or

overhydrating because vital signs such as pulse, blood pressure and respiratory rate,

will change when the patient becomes dehydrated.

According to Welch (2010), the fluid balance is described as a balance between the

input and output of fluids in the body which allows metabolic processes to function

correctly. Around 52-60% of total body mass is fluid depending on age and gender

(Shepherd 2011).

In the human body, the cell tissues contain water around two-third of the total water

in body (Williams 1999). Nearly one-fourth of total body fluid is extracellular water

(e.g. blood plasma, interstitial fluid, the space between cells, kidneys and skin).

There is a small amount of water which is contained in joints, eyeballs and the

cerebrospinal system. This fluid consists of water and molecules containing, sodium

(mostly), chloride and potassium. It has been recommended to be one protocol of

patient assessment in ICUs routine because water is the largest component of the

human body (Katch et al. 1996).

17

For healthy adults, total fluid volume should balance between water intake and water

loss, as well as fluctuates by less than 1%. Some evidences demonstrate that ICU

patients who achieve a balance fluid balance status while admitted have had their

desirable outcome and shorten their stay (Vincent et al. 2006; Boyd et al. 2011).

The minimum of fluid intake requirement must be equal to the amount of fluid losses

to prevent insufficient water such as dehydration. However, determining actual

consumption amount is difficult for varies reasons which mainly it affected by daily

physical activities. The average minimum fluid consumption set by the World Health

Organization (WHO) is volumes of 2,900 ml/day for men and 2,200 ml/day for

women (The World Health Organization 2005). The European Food Safety

Authority (EFSA) also suggested that 70-80% of daily intake should come from

drink, and the remaining should come from food diet (European Food Safety

Authority 2010).

In practical term, when the body has less water than it needs to function properly,

‘dehydration’ is mostly suspected. In contrast, if patients obtain high sodium level in

their body, it can cause ‘fluid overload’ where retention of fluid occurred in

extracellular. As a result, retention of fluid can lead to lung injury (Wiedemann et al.

2006) and brain damage (Fletcher et al. 2010).

Hydration status can be observed in several ways, starting from simple non-invasive

measurements, for instance, body mass, intake and output measurements, and

assessment from vital signs (e.g. temperature, heart rate and respiratory rate) in

laboratory tests. There are several methods to evaluate fluid balance and hydration

status as shown in Table 2.2.

Table 2.2 Assessment of fluid balance currently done in the hospitals

Method Protocol

Observations

Vital signs will change if a patient becomes dehydration

(Brooker et al. 2003; Scales and Pilsworth 2008).

Skin elasticity will indicate a well-hydrated person when it

immediately bounces back after pinching (Brooker et al. 2003;

Scales and Pilsworth 2008).

Mouth and tongue (Metheny 1987)

18

Thirst Asked if a patient is thirsty (Epstein 2005).

Body mass Increasing or decreasing of weight can be used to indicate fluid

overloaded or dehydration through the decreasing (Scales and

Pilsworth 2008; Shepherd 2011).

Capillary refill

time (CRT)

Measured the fluid presented in the intravascular fluid volume

(Scales and Pilsworth 2008). The measurement is assessed by

holding the patient’s hand and pressing on the pad of their

middle finger. The pressure is released and the time measured in

seconds until normal colour returns (Shepherd 2011).

Urine output

Colour: Urine should have a pale colour and it should be clear,

with no debris or odour. In contrast, dehydrated patients, the

kidneys attempt to conserve water producing urine with darker

colour, concentrated and reduced in volume (Scales and

Pilsworth 2008).

Volume: Normal urine output is around 0.5 ml/kg of body

weight per hour, in a range of 0.5-2ml/kg per hour (National

PatientSafety Agency (NPSA) 2007; Scales and Pilsworth 2008;

McMillen and Pitcher 2011).

The choice of the methods depends upon on many factors and situations such as a

number of patients being assessed, the available resources and the testing

environment. In most cases, when a patient losses a greater volume of water, the

hypothalamus will evoke a sense of thirst and will cause a dry mouth (Guyton and

Hall 2006). This assessment is only effective for patients who have ability to control

their intake (Scales and Pilsworth 2008) and sensing of thirst can also be impaired in

elderly patients (Cannella et al. 2009).

Assessing skin elasticity is quickly and simple test (Shepherd 2011) but it is

unreliable indicator in elderly as skin elasticity reduces with age. It is highlighted

that the limitation of the CRT method can sometimes be misleading, particularly when

patients are suffered from sepsis (Scales and Pilsworth 2008).

It appears that urine parameter provides more accuracy and reliability (Kavouras

2002) because urine mostly contains water and other various other substances and

the concentration of those substances increases with a reduction in urine volume. If a

19

patient is dehydrated the kidney will attempt to conserve water and the urine output

will be reduced in volume and become dark and concentrated (Scales and Pilsworth

2008). The body will have less water than it needs to function properly (Madden

2000). This increases risk factors for acute febrile illnesses, polypharmacy (diuretics,

laxatives, drugs that decrease appetite or level of consciousness), and being

bedridden (Rosner 2013) and often presents AKI with significant hypernatremia and,

if untreated, the condition has a very high mortality rate (Weinberg et al. 1994).

Given the morbidity and mortality associated with AKI, preventing risk factors are

clearly important. Generally, an early detection is a key priority and will prevent the

patient's condition to become critical. The deterioration of AKI may be discovered

by measure decrease in the urine output (National Institute for Health and Care

Excellence 2013). The 24-hour urine monitoring is used as a simple non-invasive

tool for assessing hydration status as compared with normal adults of similar body

mass, and nursing staffs need to record the monitoring as part of the clinical

assessment same as other vital signs (Health and Excellence 2007).

The NHS had announced the strategies to reduce the risk of AKI, this include

identifying relevant risk factors, appropriate monitoring of urine and blood, rapid

remedial action when AKI occurs, and appropriate referral of patients to specialist

services (NHS 2013; NHS Choices 2014). The National Confidential Enquiry into

Patient Outcome and Death (2009) suggested that the AKI should be easily recognised

by the onset of oliguria, anuria and/or deteriorating biochemistry. However, missed

opportunities to prevention was caused by poor assessment of risk factor. This also

leads to delay in recognising AKI and will result in serious health condition and

ultimately death. (National Confidential Enquiry into Patient Outcome and Death 2009).

The consensus suggestion for preventing and managing the AKI in hospital is trough

monitoring urine output and blood tests. The following section will be presented with

background of urine output monitoring.

2.1.3 Conventional approach for urine output monitoring

In the human urinary system, it consists of two kidneys, ureters, urinary bladder, and

urethra. The urine monitoring process is started with kidney filtration, where waste is

extracted in the bloodstream, as well as excess water, sugar, and a variety of other

compounds. The consequential urine contains high concentration of urea and other

20

substances, including toxins. The urine then passes through the ureters to be stored in

the bladder. During the urination, the urine is discharged from the body through the

bladder and the urethra respectively.

As mentioned in previous chapter, disorders of water balance are exceedingly

common in hospitalised patients, particularly those with critical illness who often get

iatrogenic (Lewinton and Kanagasundaram 2011). A number of fluid balance

assessments have been proposed (as listed in Table 2.2) but most of them are not

established enough to replace urine monitoring as a marker of renal function.

Urine colour is the simplest method to determine the hydration status by using the

amount of urochrome that is a breakdown product of haemoglobin (Ejlal 2012).

Darker urine colour is accepted as an indicator of poor hydration status in individuals

(Kavouras 2002). When a large volume of urine is produced, the solute is also

excreted in large volume that is normally dilution with water which makes urine

colour is very pale (Scales and Pilsworth 2008). A study by Armstrong et al. (1998)

investigated the correlation between urine colour and its specific gravity using an

eight-colour scale. A linear relationship between both the colour of urine and the

amount of urine is found. Mentes et al. (2006) said urine colour testing is often found

to be subjective (Mentes et al. 2006). Armstrong et al. (1998) agreed, they suggested

that the colours can be used in the field setting to estimate hydration status where a

high accuracy is not being needed (Armstrong et al. 1998).

The most accurate and precise biomarkers of hydration status that can show

discrimination whether is a patient is ‘euhydrated’ (a normal state of body water

content) or ‘dehydrated’ is using urine Specific Gravity (Chawla and Kellum 2012).

The first of instrument used in measuring urine the Specific Gravity of urine was

developed in the late 19th century (The National Meseum of American History n.d.).

The principle of this device is often used to define the ratio of urine density to the

density of water at specific temperature (Hall 2010). A scale hydrometer with

graduated small stem is essentially utilised to pump in the sinking weighted float in

test liquid which is proportion to Specific Gravity liquid as shown in Figure 2.1.

21

Figure 2.1 Urinometer (GF HealthProducts Inc. 2007).

In a Dictionary of Nursing (2008) defined the definition of ‘Urinometer’ (A

Dictionary of Nursing 2008) as:

“A hydrometer for measurement the specific gravity of urine. It is important in the

determining the ability of the kidneys to concentrate or dilute the urine, which can be

indicated renal structural damage, metabolic disorder, or endocrine disturbance”.

The operation procedure is based on simple principle of liquid displacement, as

followed instruction:

1. Fill the urinometer with urine sample approximately 20 ml.

2. Give the stem a slight spin for freely floating and do not allow it hung on the

side of the container.

3. Elevate the reading at eye level, and make temperature correction as needed.

The urinometer calibration temperature is 60°F (15.6°C). While increasing

every 5.4°F (3°C), also add 0.001 to the reading. The density is expressed in

grams per millilitre (g/ml).

In adult human, a normal Specific Gravity range is from 1.002 to 1.038 g/ml. A

composition of human urine found in NASA report is described in detail concerning

chemical analyses of urine that it consists approximately 95% of water, with the

other 5% of organic solutes including urea, creatinine, uric acid, and trace amounts

of enzymes, carbohydrates, hormones, and non-organic substance such as, Sodium

22

(Na+), Potassium (K+), Chloride (Cl-), Magnesium (Mg2+), Calcium (Ca2+),

Ammonium (NH4
+), Sulfates (SO4

2-), and Phosphates (e.g., PO4
3-) as shown in

 (Putnam 1971; Rose et al. 2015). Moreover, urine is usually acidic with different pH

values ranging from 4.5 and 8 (Putnam 1971). As stated in Rose et al. (2015), the

normal specific gravity of urine ranged from 1.002 to 1.037 was found in subjects

aged 18–68. The pH value of fresh urine is largely neutral with a median of pH 6.2.

However, an inverse relationship between Body Mass Index (BMI) and urine pH is

found. Factors leading to low urinary pH include; high, weight, old age, and

increased dietary (Rose et al. 2015).

Table 2.3 Main constituents of normal urine

Substance Origin

Water Diet, metabolism

Urea Protein deamination

Creatinine Metabolism of creatinine in muscle

Hippuric acid Liver detoxification of benzoic acid

Uric acid Catabolism of nucleic acid

Ketone bodies Lipid metabolism

Sodium Diet

Chloride Diet

Potassium Diet

Phosphates Diet, metabolism of phosphate-containing compounds

Sulfates Diet, metabolism of sulfate-containing compounds

Ammonia Deamination of amino acids

Calcium Diet and bone demineralisation

Magnesium Diet

In most cases, urine SG increases linearly with increase urine osmolality. This

relationship is altered when there are a significant amount of large molecular in the

urine (Armstrong et al. 1998; Mentes et al. 2006; Ejlal 2012). The result from

urinometer operation can be used to indicate a sign of diabetes or kidney problem

(GF HealthProducts Inc. 2007).

23

A hydrometer scale is divided into four divisions. The highest division was marked

with the letter “W”. This is the level where the instrument rests in pure water. The

next division was marked with the letter “H”, which it rests when immersed in urine.

The mark of letter “S” indicates good condition but not as healthy as “H”. “D” for

diabetes indicates when the instrument rests at the lowest division (The National

Meseum of American History n.d.).

Explained by Dr. Simon McLaughlin (interviewed), this type of urinometer is found

rarely to be used in clinical routine because it requires corrective calculation for

temperature and increasing amounts of glucose and protein, and the urine volume of

urine still requires for regular clinical assessment.

Generally, average urine produced in adult human is approximately 1.4 litres per day

depending on state of hydration, activity level, environmental factors, weight, and the

individual's health. If urine output is less than 30 ml per hour for extended periods of

time in a patient eating an average diet, the patient is suspected as dehydrated and

may risk having kidney problems (Cerda 2011; Legrand and Payen 2011). In other

hand, when the patient is producing an excessive volume of urine, Polyuria is a fairly

common suspected symptom. It is defined as an abnormally large production or

passage of urine that is greater than 3 litres (over 24-hours in adults). Sometimes, the

term “frequent urination” as well fits the definition (Tidy 2012).

In mid-1960, first currently used model of urine volume meter was introduced (see

Figure 2.2). Basically, a 100-cc. graduated plastic cylinder was adapted to fit into a

tube connecting to bladder catheter and pass urine to collecting jug. A simple

pinchcock was applied at the lower end to let the urine flows down the tubing. Nurse

was able to read and record the volume of urine in the cylinder on the hour, releases

the pinchcock allows the urine to drain into collecting jug, as well as set the device

ready for the next period. The graduated cylinder fully contained urine up to 5 cc and

could permits accurate observation of volume within 2-3 cc. This concept provided

accurate hourly measurement and, at the same time, enabled nurse to save all urine

output for sample testing in later stage. The device was found useful, simple to clean

and inexpensive (Haynes Jr. 1960).

24

Figure 2.2 First urine meter by Medical College of Virginia (Haynes Jr. 1960).

The urine meter and catheters nowadays come in a variety of designs, sizes and

materials. The most common type of catheter in current used is the Foley catheter,

developed by the American urologist, Frederick E.B. Foley (Lawrence and Turner

2005). It has been released since 1934 and remains relatively unchanged in design.

This designed has 220 – 380 mm in length and consists a balloon that is inflated with

sterile water to secure the catheter in the bladder at the proximal tip nears the

drainage outlets at the end. The external diameter of a Catheter is measured in

French gauge (F) or Charrier (Ch) unit, where 1 unit is equal 0.33 mm diameter

(Jones 2005). Commonly, an adult catheter ranges between 12 to 30 units (or 4 to 10

mm) with the standard of 14 units (4.6 mm) and the 5 ml to 30 ml balloon size. A

drainage bag is normally attached to the urine outlet managing a closed system.

Some designed of urine meter are needed to be hung alongside the patient’s bed as

some are designed to be strapped to the patient’s leg. Urine can either drain itself

freely by the gravity into the drainage bag or released from the end of the Cather

with a fitted on/off switch.

The tubing was

connected to catheter.

Graduated cylinder

Pinchcock was used to

control the drain.

25

Additionally, it was reported up to 25% of patients who admitted to the hospital in

the UK required a Urinary Cather at some point, and the catheterisation is not only

found in ICUs but also amongst elderly residents in nursing homes (Warren 2001).

Many of them need to be catheterised for months or years.

A main disadvantage of this urine meter model is the need to manually empty the

measuring container hourly into the collecting bag to record urine volume and

release the collecting bag when full (Hersch et al. 2009). Since, this protocol is taken

hourly; nurses will spend nearly half hour for every fifteen patients under their care.

Thus, they will perform the same task for 25 times in 24 hours, 365 days. Such a

repetitive task may have considerably chances to human errors, and may affect the

patient’s treatments.

Figure 2.3 Urinary Catheters

2.1.4 Information flow in ICUs

When the measurement data is not directly go to clinicians, all assessments and

measurement that done by nurses were recorded in accordance called ‘ICU flow

sheets’, manual records of the hour-by-hour (or minute-to-minute) attention given to

the patient in a highly monitored setting. Nurses are responsible for monitoring and

Urinary Catheters

Urine meter

26

recording the findings, as their first main role is reporting the patients’ condition

trend and treatment (Andrews and Nolan 2006). This framework and necessary tools

were provided to evaluate health monitoring and treatment through development of

nursing process (Aust 2013).

The standard flow sheets have been designed as a single-page note for a 24-hour

record in which all existing structures are recorded in real time. The data are

recorded in either written form or as a diagram to be available for all treatment team

members. The main goal of using a flow sheet in ICU is to save time. In Irajpour et

al. (2014), they claimed that use of the monitoring flow sheets in ICU can help

saving time for 2-3 minutes for each patient during the visit by a physician or a

nurse. The time which is saved leads to an increased level of workload satisfaction

and enhances their carefulness in recording. They had given the conclusion

indicating that recording modification in ICU and the necessity of revision of

recorded notes can lead to more effective nursing care (Irajpour et al. 2014). The use

of precise monitoring and recoding leads to reduction of the overlooking from nurses

and provides an early detection for physiological crisis through timely monitoring.

However, Gugerty et al. (2007) argued, they said reporting and recording patient’s

condition are parts of indirect care counted as 20% from all nursing work in each

shift (Gugerty et al. 2007). Collins et al (2013) agreed. The study showed that

sometime nurses recording document beyond what is required. In most cases they

had concerns about the patient’s worsening condition. One might expect this to lead

to improved care giving between nurses and patients. However, the outcome of this

action may reduce quality of cares. In fact, the documentation is often taking time

away from providing hands-on care. Previous researches provide strong evidence

that high nursing workload at the unit have negative impact on patient outcomes

(Amaravadi et al. 2000; Lang et al. 2004). These studies suggested that to improving

patient care are limited to increasing the number of nurses in a unit or decreasing the

number of patients assigned to each nurse. However, it may not be possible to follow

due to costs and the nursing shortage.

Moreover, Gugerty et al. (2007) reported that 25% from human errors was found in

monitoring flow sheets, including calculation errors, deletion of data or formation of

unreadable data. Shortage of standards in designing monitoring flow sheets as well as

27

lack of specific information needed by physicians in ICU can also reduce the quality

of care; consequently, other important information in the records is missing. The

related problems were found when information is transferred from verbal instead of

using flow sheets, around 3-4 additional minutes will be taken for each bedside

visiting (Andrews and Nolan 2006). There is some evidence that conversation

between nurse and doctor can be frustrated to a patient, particularly patient with

serious or life threatening diseases (Kinnersley et al. 2008).

To improve quality of care in ICUs, many technologies were introduced in modern

hospitals, such as Electronic Medical Records (EMRs), automatic vital signs

monitoring devices, etc. These technologies will be discussed in the Section 2.2. Not

surprising, the results from most of the previous research were found that nurses

have positive attitude to a new automatic device to implement into their daily tasks.

They suggested that automated devices can operate with reliability, sending

information directly to responders and saving precious nurse’s time.

2.1.5 Automatic urine output monitoring devices

As compared at the hospital setting, patient’s fluid input is carefully recorded and

mostly administered by the automatic devices. In the same setting, urine output is

practically the only parameter consistently used by the clinic not yet monitored

electronically. Currently, a few devices are presented to claim about the effective

ability to measure urine output in assisting the hospital service.

There are few solutions described in literature that involve automate task in the urine

monitoring process. Two ultrasonic sensor based solutions were developed in late

90’s. The first study was implementing the Vitalmerics VM220 ultrasonic and

temperature sensors interfaced with a Hewlett-Packard 1000 computer (Shabot et al.

1988). Another one was using 20 of Urotrack Plus-220 sensors connected with

Hewlett-Packard 78709A (Shotts and Hauf 1986). Both had capabilities to transmit

the urine volume and core temperature into a computerized patient data management

system and allowed continuous observation, and displayed the data in the computer’s

screen. However, as explained in Otero et al. (2014), these two devices have low

accuracy rate that make them unsuitable to measure minute-by-minute. Moreover,

these products were discontinued and did not put in a market.

28

In 2009, another electronic-automatic urine meter was lunched by Medynamixt

Company which was called ‘Urinfo 2000’. The device was announced to be first

urine monitoring product and it was initially introduced to markets in Israel (Anwar

2010). It consists of three main components: (1) the electronic digital monitor, (2) the

flow detector, and (3) the disposable measurement unit (collecting bag).

The concept of the measurement is based on an infrared sensor as the device turns

the urine into a uniform flow passing through the disposable to the collecting bag

same as the old-fashioned way. The digital display shows opportunely accumulated

urine volume as the clinic requested. A patient’s case history is kept for nine days.

Hersh et al. (200), had compared the accuracy of Urinfo2000 with the accuracy of

standard nurse-handle DK-3460-Unometer. The average error of automatic device

was found at 8% compared with up to 23% from the nurse records. Most of the

nursing staffs we convinced that the use of the digital meter was every handy. This

automatic device has been proven to be significantly more than manually recording.

	
Figure 2.4 Urinfo 2000 device (Anwar 2010)

29

However, this current version is used as a standalone system where it lacks the

ability to transmit the recorded data into centre computerises ICU monitoring system.

Therefore, nurses did not much benefit from the advantage of having a digital

recording parameter even though the device higher accurate. Since this device does

not automatic transmit data into a work station for the clinician, nurse is still required

manual recording the measurement from the device (Hersch et al. 2009; Otero et al.

2010a; Otero et al. 2010b; Bash 2012). As of today, Urinfo 2000 is no longer

available in the market. The company had been bought by Flowsense, and the

improvements had been discontinued.

A. Float sensors

In Otero et al. (2009), they presented the development of a device for automatic

measuring and supervising the critical patient’s urine output. According to their

design, they wanted to achieve a robust and simple monitoring device that is capable

of identifying the filling level of two different size containers as shown in

Figure 2.5. A smaller container has capacity of 15 ml, designed to be trigged in a half

hour for 60 kg patient whereas the larger container has capacity of approximately

165 ml. Both were equipped with float sensor that moves vertically along a pole.

Figure 2.5 Design of the containers and component placement (Otero et al. 2009)

30

The floats allow each sensor to detect when a container is full. The smaller container

is proposed to detect low urine output with a precise and continuous monitoring. The

operation is based on the assumption that if patient produced at least 5 litres per day,

the actuator will be triggered 25 times, but if does not fill in the expected time. Urine

will be emptied after it got full and need to be measured again. For a patient who

produces normal urine or suffers from polyuria, when the small container gets fill,

the urine content will be not releases but it will start to fill the big container instead.

The use of smaller container that leads the release point is more frequently as well as

reducing workloads with much work as possible. To achieve the duty without any

supervision, the detectors must perform exactly at the moment that the container is

completely full because once the container is filled, the urine produced will not be

registered until it has been emptied. These release valves were adapted using linear

solenoids controlled by microcontroller (Atmel AT89S52). This controller has

maximum time to record around 327.5 hours (approximately 2 weeks). As long as

patient produced at least 15 ml every 2 weeks, there will be enough time to read the

filling status, release their content by activate an actuator when it is required, and

trigger an alarm when goal is not being met.

The controlling software was developed using Java programing language that

receives the reading from microcontroller through RS232 port. The therapeutic goals

were established by physician based on weight of the patient. This program

calculated the maximum time that the small container should require of filling, (t1)

refers to state of the urine which is filled in the small container within the expected

time, and (t2) is the maximum time required filling the larger container (as shown in

Figure 2.5). When the microcontroller early receives data that indicates the full status

before t1 period, the goals are met which is not necessary for precise monitoring.

Therefore, the valve will not open and the larger container will be filled.

Nonetheless, if the signal arrives after t1 period, the controller will turn on an LED

light indicating that the goals are not met. In this case, precise monitoring is required.

When the small container is full, the actuator will be active and the timer will be

reset in order to measure the urine output again. At this point, if the small container

is filled within the t1 again but the larger container is not filled before t2, the alarm

will still turn on. In either case, when the larger one is full, the actuator will be

active. Nonetheless, this prototype is beset with various mechanical problems on

31

functioning the valve and actuator while in the operation period. Several legal

problems were stated in this article, precluded the device from moving beyond the

valid phase (Otero et al. 2009).

B. Reed switch and siphon principle

In Otero et al. (2010a), they proposed another device to measure the fluid flowing

through the tube. Siphon principle was applied to empty the container and reed

switches were used to measure the instant level of the containers. The concept of the

device is placed one end in the bottom of the container, the liquid will go up inside

that tube until it reaches the elbow part of the tube. Then, it will fall down the

potation of the tube located on the exterior. Within a design structure, it limited only

vertical movement of liquid sensor located inside the container. The float magnet is

attached inside to interact with the reed switches which attached outside the wall (see

Figure 2.6). The reed switch is operated by an applied magnetic field. It consists of a

pair of magnetized metal reeds sealed in glass envelope. The contacts are normally

opening, and closing when a magnetic field is present.

In general, this measurement is based on liquid that flows into the container from the

time when the container begins to empty through the siphon mechanism to the time

when it completely drained. The operation is described as; N refers to number of reed

switch. At least one switch is located in an empty position (assumed N0 as empty

point). As the liquid begins to flow within the container, the magnet begins to rise.

At first point, the reed switch N1 will be detected, volume V1 is recorded. At the point

of additional volume, V2 are being recorded after the reed switch N2 is detected. The

state of the reed switches continuously indicates the filling status at the same height

as each sensor located until the magnet reaches the top.

An electrical controller is used to monitor the state of the reed switch sensors and

send data through Bluetooth to a PC application based on Java language, similar to

the previous prototype. From volume changes, the application will calculate the

flowed urine and display a chart with information.

32

Figure 2.6 Drawing concept designed following siphon principle (Otero et al. 2010b)

Though this article, they reported the problems they had experienced by this design

as follows:

1. Complexity of the container design: The container must be equipped with top

opening for equalizing the internal and external pressure. It needs to be

equipped with filter to avoid the risk of bacterial contamination. The distance

between top opening and the top of output tube needs determination to keep

liquid continously accumulated in the container and avoid immediat flowing

when liquid reaches the top elbow.

2. The bias toward the output tube’s size: The diameter of the output tube is

needed to be balanced properly. If the output tube is too wide, the siphon

principle will not work because air could rise against the liquid toward the

tube. In contrast, to drain the container as fast as possible, the tube must be as

wide as possible.

3. The volumes will not being recorded during the empty through the siphon

mechanism: Two different sizes of the containers are being used to solve the

problem, each of them working according the same principle. The output tube

of the smaller container connected to the input tube of the big container.

Thus, when the volume of the smaller container is not measured, it will be

measured within the larger one instead.

33

4. The connecting between two containers causes another problem. When the

smaller container releases its content and the larger one is nearly full. In such

case, the content from the small container could not be measured at all.

This study here presented the device that was capable of providing feedback on

patient’s urine produced with at least the same manual supervision by nurse and in

most case within 20-30 minutes. However, its device had several drawbacks from

clinical studies. On the one hand, this device could only measures the instant time at

which urine had been produced, but it did not provide rate of urine production. On

the other hand, it is not easy to build a sterile device which is concerned on laws

applicable to hygienic therapeutics (Otero et al. 2010a).

C. Scale based

That same year, another device was implemented using precision scale (PGW4502e

from Adam Equipment Inc.) to measure the weight of a commercial urine meter, see

Figure 2.7. This scale has advantage features to remove transient artefacts during the

measurement and can be configured to send the reading when the detected weight is

stable. A support framework made up of Bosch profiles focusing on the scale pan is

to isolate the scale from transmission to patient’s bed and guarantee for a continuous

and smooth flow of the liquid through the urine meter’s input tube. The urine meter

consists of two containers, one is a 500 ml plastic container equipped with a top

opening and filter. Another is a flexible polymer plastic bag with 2000 ml of capacity

connected to a tube and valve.

A Java application receives the wireless reading through serial-port-to-Bluetooth

adapter which is connected to RS232 port provided by the scale. When the urine is

not obtained at the expected time, cubic interpolation is used to generate a measure at

the desired instant time. The software part allows nurse to supervise the result by

graph in millilitres per hour. The result of study showed the high accuracy rate, and

has been used for highly accurate monitoring in renal function at the animal hospital

in Spain (Otero et al. 2010b).

This device has shown high accuracy and acquisition rate compared with previously

developed devices by the former authors. However, its size and operation procedure

make it difficult to use in clinical routine, because it is not possible to be carried a

balance scale with a hanger around the hospital while a patient is moving. The cost

34

of development is also a weak point due to the price of the sensor materials.

Furthermore, the new design would require new manufacturing processes and

machinery.

Figure 2.7 Device design based on scale (Otero et al. 2010a)

D. Capacitive containers

The ideal of new add-on part which can be manufactured separately and installed on

the units is presented in (Otero et al. 2012). This article presented a device that

applies with two capacitive sensors to measure the height of the column of liquid

stored in container. The sensor is based on a coplanar-plate capacitor made up of two

elongated conductive blades placed in parallel. The length of the blades is least equal

to the maximum height of the column of liquid to be measured along with the

container’s vertical dimension (see Figure 2.8).

According to this study, it should be able to provide accurate measurement of urine

volume as small as 3–5 ml/hour. The error in measurement will increase

proportionately with the area of the container when calculating the volume of liquid.

Thus, to accurately measure small volume of liquid, the area of the container where

the liquid accumulates must be small. Current clinical protocol specifies that urine

output should be recorded hourly. They built a transparent plastic container with a

dimension of 20 × 3 × 10 cm3 and 3 mm of wall’s thickness, and divided into two

chambers; the smaller one with 3 × 3 × 8 cm3 is separated from the larger one with a

dimension of 15 × 3 × 10 cm3 and a wall of 8 cm in height. Each chamber is attached

to a capacitive sensor, including circuit for providing an analog output ranging from

0.5V to 4.5V that is linearly proportional to the height of the liquid column. The

35

Analog to Digital module allows conversion of each analog output to signal from the

capacitive sensors to a digital number for a full scale measurement between ranges of

0-5V.

Figure 2.8 Design of capacitive sensor for measuring the height of the column

(Otero et al. 2012).

The urine output readings are acquired every 5 seconds using a Java program runs on

the PC. This program displays a graph showing the patient’s urine output on a

minute-by-minute basis. It also allows the healthcare staff to set the therapeutic goals

for urine output by indicating the range of acceptable values.

In the conclusion, it has found that the automation of measuring and supervising

urine output brings about a reduction in the healthcare staff workload. At the same

time, the feedback on the patient’s outcome provides more frequent than other

currently available devices. This could result in patient outcome improvement.

Moreover, the device presented in this article is considered as an added non-

disposable part for further commercial urine meters.

2.1.6 Summary

The current literature has identified that urine output monitoring is an essential part

of patient care in ICU. Since their alteration in vital signs may signify monitoring

inadequacy that leads to harm in patient’s being. They can be also used as multiple

therapeutic protocols to assess reaction of treatment. Maintaining fluid balance is

also important to avoid complications such as dehydration and overhydrating which

36

can result in serious clinical consequences. One in five patient admission to ICUs

trend to promote the development of AKI.

In order to determine whether patient is suspected to be at risk of AKI, the common

indicator of early recognition is monitoring urine output. To measure the urine

output, Foley’s catheter is introduced into the patient’s urethra. The other end of

catheter is connected to a graduated container where the urine is collected and

measured. Nevertheless, the nurse staff does not benefit from the advantages of

having a digital display since it does not send information to patient’s record. To

promote effective care, the nurse needs to ensure that the fluid balance charts are

recorded regularly.

Since urine monitoring protocol has to be processed manually, some studies found

that repetitive and monotonous supervision of the patient’s condition is prone to

errors. Many of these errors can be avoided when they are done automatically. To the

best of our knowledge, a series of prototypes have been proposed to discharge

workload of nurse, reduce human errors, and provide a better care to the patients.

2.2 Technology literature relating to conducting research

Apart from the fluid balance monitoring, the basic concept of ‘Prototyping’ and the

reasons for using a prototype as a demonstrator as a proof-of-concept model is

discussed earlier of this Section, then, ‘The Internet of Things’ from the literature is

introduced. It is apparent that conducting research into aspects of hardware and

software development is fraught with difficulty so that the taxonomy of presented

technologies in the healthcare industry will be utilized. Moreover, providing the

reason why we adopted the Internet of Things to make digital senses the physical

things is explained.

2.2.1 Prototyping development

The best answer of why we use prototyping in this study illustrated by Boar's

justification (Boar 1984):

“Most currently recommended methods for defining business system requirements

are designed to establish a final, complete, consistent, and correct set of requirements

before the system is designed, constructed, seen or experienced by the user. Common

and recurring industry experience indicates that despite the use of rigorous techniques,

37

in many cases users still reject applications as neither correct nor complete upon

completion.”

Because of the automation urine output measurement has only begun to be address in

recently. Build a new device from scratch that provides similar functionality to

previous products has considerable disadvantages and risks from the intellectual

property rights that may be protected. The Royal Bournemouth Hospital has raised

this concern and required a proven model that provides replicability, adaptability,

and standardization to deliver operation efficiency while meeting the high standards

and good value sought by patient. Thus, prototyping provides such a model.

The prototyping model was developed on the assumption that it is often difficult to

know all of requirements at the beginning. Typically, users can identify many of the

objectives that they wish to address with a system but they do not know all the

details of the system features and capabilities (Houde and Hill 1997; Cho and Chung

2007). The Prototyping offers a development approach that yields results without

first requiring all information up-front. Thus, a simplified version of the proposed

system can be built and presented it to the users for consideration as part of the next

development process.

2.2.2 Classes of prototype

As mentioned, prototyping is a technique that attempts to address the problems and

provide possible feasibility. By using the prototype, the development can be

performed much more quickly and cheaply, allowing an early version of the system

to be put together and tried out on the user before the target system is built (Westen

2012). In this way, users can get an actual feeling of the product since the

interactions with prototype can enable the user to better understand the requirements

of their desired final product. Prototyping is an attractive idea for either complicated

or large projects for which there is no manual process or existing system to help

determining the requirements (Houde and Hill 1997). This means that the prototype

is commonly not complete products and many of the details are not built in the

prototype.

The term of ‘Prototyping’ is given to describe a wide range of methods where they

used in multi disciplines. In the domain of product development, a prototype is

referred as “a widely recognised core means of exploring and expressing designs” ,or

38

“a test program, a block of code to try out an algorithm” is a definition for the field

of Human Computer Interaction (Houde and Hill 1997).

Kelley and Littman (2001) said a prototyping is “a mechanism for problem solving”.

They expressed the key to successful use of prototyping is to ensure each prototype

provides something that moves the project forwards, achieving parts of goal (Kelley

and Littman 2001).

Another definition is given by Ulrich and Eppinger (2012) which defined prototypes

as “being an approximation of the product along one or more dimensions of interest”.

They suggested that prototype can be usually be classified within two categories: (1)

‘Physical or Analytic prototype’ which means a tangible artefact that built for testing

and experimentation. (2) ‘Comprehensive to focus’ is one that implements almost all

aspects, closely resembling the final intended design in a working manner (Ulrich

and Eppinger 2012).

Lidwell et al. (2010) agreed, but they introduced a different named for these two
approaches of prototype: Throwaway, and Evolutionary, see in

Table 2.4.

Table 2.4 Summary of three stages of prototyping

Stages Characteristics

Throwaway

(Revolutionary)

• Useful for collecting information about certain aspects of

a product

• Understand and improve upon a design

• Learn about a specific aspect

Evolutionary • Useful when many requirements are unknown

• Used for evaluation, but built upon in next iteration

• A product of continuous refinement

Throw-away (or Revolutionary) presents an interactive simulation of the production

which is usually iteratively refined until it represents a close likeness of the

requirement. When the likeness is achieved, the revolutionary prototype is thrown-

away and then the new product is constructed. In other hand, evolutionary prototypes

39

are constructed for the final product with ever increasing functionality later on

(Overmyer 1991).

2.2.3 The Benefits of Prototyping

Recognised benefits of prototyping are described in this section.

1. Requirement capture and definition: The main reason for prototyping is that it

facilitates communication between developers and users (Acosta et al. 1994;

Kinmond 1995). Wilson and Rosenberg said that this communication also

provides a common reference for both developers and users (Wilson and

Rosenberg 1988). The particular value of prototype is that it can be used to

help understand the functional of the product (Damodaran 1991).

2. Increased chance of product acceptance: Described in users (Mason and

Carey 1983), prototyping is widely recognized with increasing the chances

that a final product will be accepted by users. Wilson and Rosenberg (1988)

also said that a prototyping will increase the chances that the final product

will work as users expected because they believed that prototyping will

reduce the failure due to it generates understanding of requirements from

brings developers and users closer together (Wilson and Rosenberg 1988).

3. Flexible to implementation: By using revolutionary prototype, it has

capability to capture requirements and followed by evolutionary prototyping

to develop the final product is considered as a very flexible way (Overmyer

1991) In this way, prototyping is able to handle with changing requirements.

Although this method is not widely explored in the literature, this approach

seems to represent the best practice of using both revolutionary and

evolutionary approaches to prototypes.

4. Reducing costs: Some researchers regard that prototyping can reduce the cost

of a development (Wilson and Rosenberg 1988). They found nearly 3:1 of

budget is saved due to early changes and fixing problems at the prototype

stage. Sibley et al. (1988) agreed, they claimed that nearly 25% is reduced

compares with the cost when the produce released (Sibley et al. 1988). They

also suggested that prototype should be done when the cost is less than a

quarter of the total project costs, as design changes later would be likely to

cost at least this much.

40

All of these positive attributes make prototyping an attractive approach for both

physical prototype and software system development. However, not all these benefits

are proven or are the inevitable result of prototyping. There are also disadvantages

associated with prototyping. The main problems are seen as follows:

2.2.4 The Problems with using the Prototype

1. Unrealistic expectation: One of the main problems of prototyping in commercial

product is that they trend to create unrealistic expectations (Wilson and

Rosenberg 1988; Overmyer 1991; Kinmond 1995). For example, in short

timescale, the prototype can lead a misunderstanding to users and even to

developers to believe that the project is nearly completed. They may begin to

think that a prototype that intended to be thrown away is actually a final system

that merely needs to be polished. Sometime, users can also become attached to

new features that were included in a prototype for consideration but then they

were removed from the specification for a final product. If users are able to

require all proposed features be included in the final system this can lead to

conflict. Furthermore, adding new features may increase the complexity of the

system as scope of the system may expand beyond original plans and create

unrealistic expectations which can fail the project and dissatisfied users.

2. Constrains and limitations that apply to the real production are usually being

ignored when constructing prototypes (Wilson and Rosenberg 1988). This

overlooking can obviously lead to the unrealistic expectations and

misunderstanding. Overmyer (1991) said the physical production can become

worse than original plans because of constraints and limitations were found

during the development.

3. Management in a prototype process: Wilson and Rosenberg (1988) highlighted

that a prototyping process may be difficult to control and manage because too

many changes can occur during the development. Overmyer (1991) agreed, the

changes can occure due to the high visibility of prototyping. Developers can also

become attached to prototypes because they have spent many efforts to develop

them. It can lead to problems like attempting to convert a limited prototype into a

final system when it does not have an appropriate underlying architecture. For

this reason, throwaway prototyping is suggested to be used, rather than

evolutionary prototyping (Overmyer 1991).

41

42

2.2.5 Discussions

As a solution to the problems we were facing (e.g. intellectual property right, lack of

resources and time, unknown requirements) prototyping has been used and

considered to act as a tool that provides a reflection between design and production

which helps to improve the requirements and common understanding. Prototyping

was used try out our ideas without the pressure of getting everything right straight

away. In this way, we enable to involve users in design, implement, testing, and

providing a better understanding of the requirements. This involvement is the most

important part because it facilitates our design to users and they can have an actual

feeling on the concepts. Moreover, it provides an iterative learning approach so the

concepts can be developed and improved the functionality in the next stages.

In order give users to fully evaluate, it is necessary to create a physical prototype. It

starts from the basic mock-ups written down in a paper to fully working prototypes.

Physical prototype was considered to be a proof of the concept that our proposed

prototype is met all given requirements. However, sometime physical prototype may

require a high initial setup time followed by high running costs for both experiments

and materials in each model. Thus, we need to find an alternative way to do a

product prototyped fast and cost effectively for proof of our concept and get it into

the hands of users.

As it is a part of identifying requirements, it is important to described the current

technologies and compare them to evaluate state of the feasibility. Recently, several

tools specifically designed to execute prototypes have emerged. These tools have the

ability to quickly develop, test, and deploy ideas into prototype devices (Hodges et

al. 2013) due to the impressive reduction of size, cost and energy consumption in

electronic-hardware improvement (Payne and Macdonald 2004), and they are now

available commercially, as open source, or as advanced research project (Kamogawa

and Miranda 2013; Di Gennaro et al. 2014). One of these is the Arduino platform, a

family of embedded processors that can be programmed with the C/C++ language

via an accessible, minimalist integrated development environment (IDE). By using

these tools (or gadgets), either stand-alone objects or online devices can be

prototyped and they allows the prototype to integrate from a wide range of sensors,

43

control a broad spectrum of output devices, and communicate with software running

on a computer or even talk to each other over a network (Pearce 2012).

Stated by Banzi and Shiloh (2014), “With Aduino, a designer or artist can get to

know the basics of electronics and sensors very quickly and can start building

prototypes with very little investment” (Banzi and Shiloh 2014). We agreed on this

statement, to get started with a prototype, the easiest way is implement it with

development tool kits which their ability will accelerating the development process

with fewer resources (including, man powers, budget and times). Additionally, the

most important part of these toolkits is the integration of communication between

machines to other machines, people or even objects. We think empower these

gadgets to gather more information is a success of technology change, just as the

Internet did. The reason is explained by Ashton (2009) "If we had computers that

knew everything there was to know about things—using data they gathered without

any help from us—we would be able to track and count everything, and greatly

reduce waste, loss and cost" (Ashton 2009).

With so many possibilities options across the broad technology, the role of hardware

and software platforms that expedite the reduction of ideas to working prototypes is

an intriguing consideration (Hodges et al. 2013). The outline of the Internet of

Things is further explained along with available services that facilitate the

prototyping of networked embedded devices in next section.

44

2.3 The Internet of Things

2.3.1 Overview

As mentioned, the improvement of hardware is the great interest in nowadays

technology. More devices have capability to collect data and transmit via the Internet

to other devices. They are called ‘The Internet of Things’. It is closely related to

machine-to-machine (M2M) technology (Yu et al. 2012). While the concept had

been around for some time, the term "Internet of Things" was first used in 1999

(Ashton 2009). Since then, the idea has spread rapidly and widely. The original

expression is composed by two words ‘Internet’ and ‘Things’, where ‘Internet’ is

defined as “A world-wide network of interconnection computer network, based on

standard communication protocol, the Internet suite (TCP/IP)” while ‘Things’ is

referred to an object not precisely identifiable (Bassi and Horn 2008). Therefore, the

meaning of IoT is:

“A world-wide network of interconnected objects uniquely addressable, based on

standard communication protocols”

Another definition is given by the International Telecommunication Union (ITU) as:

“A global infrastructure for the information society, enabling advanced services by

interconnecting (physical and virtual) things based on existing and evolving

interoperable information and communication technologies” (ITU (n.d.)).

As point out from Fleisch (2010), when physical things connected to the Internet,

they usually become smarter because they have certain computing resource and can

do more smarter tasks than normal things (Fleisch 2010). Besides the Cyber-physical

system (CPS) has very similar meaning to the IoT. The definition given to the CPS is

‘the combination of embedded software controlling the devices, networking

capabilities and complicated physical dynamics exhibited by physical changes’ (Lee

et al. 2012). Ahsanul Haque et al. (2014) given overview of CPS as connection

between the virtual world and physical world with network integration (Ahsanul

Haque et al. 2014).

45

2.3.2 The Internet of Things and the Internet

‘Is the IoT a separate part of the Internet?’ ‘Is the IoT similar to the Internet?’

These questions have been debated extensively. In one hand, the IoT had described

as an extension of the Internet to reach out to the physical world of things and places

that only can feature low-end computer (Gershenfeld et al. 2004). Fleisch (2010)

argued, he said the IoT is not on the same level as the Internet, but it very much the

same way as many existing Internet-enabled services (Fleisch 2010). We agreed on

Fleisch’s statement and believed that the IoT is not the replacement of the Internet

and they are not on the same level, but it could be considered either as parts or an

application of the Internet.

The embracing the potential of the IoT will inevitably result in the generation of

large amount of data, which need to be stored, processed and accessed. One

paradigm that has long been recognized for such a big data storage and analytics is

‘Cloud computing’ which acts as a backbone to access Inter of Things(Ahsanul

Haque et al. 2014) .

The National Institute of Standards (NIST) is given the definition of Cloud

computing (Mell and Grance 2010) as described as;

“A model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction”

2.3.3 Cloud computing in the Internet of Things

We believed that large volumes of data will be generated as a result from the

combination of many things to the Internet. This is based on the explanation of

Canellos (2013), the combination of the Internet and the IoT will make sensing

services and powerful processing of sensing data stream (Canellos 2013). Linthicum

(2014) agreed, the advanced analytical services will let devices provide more critical

information and it takes place based on remote analysis of this data in a real-time

(Linthicum 2014). According to the Nation Institute of Standard and Technology

46

(NIST), they stated that the essential characteristics of Cloud for enabling a

ubiquitous computing, as followed:

On-Demand Service means that the services from the Internet will be available when

users need them (Gubbi et al. 2013). Cloud resources are normally in form of web-

based services in three different levels: ‘Application as a Services’, ‘Platforms as a

Services’, and ‘Infrastructure as a Services’ and the need is to communicate with an

Internet. These services have greatly helped to reduce cost and management tasks

associated with virtualise resources, lowering the market entry threshold to

businesses, and enabling provision of Sensing-as-a-Services for further services

(Vermesan and Friess 2014).

Broad Network Access means the capabilities to access and connect through

standard mechanisms (Mell and Grance 2010). With the advantages of the IoT,

resources in Cloud can be access with multi-platforms and many devices at the same

time (Gubbi et al. 2013).

Resource Pooling: The resources can be shared for those who authorised to access

resources address. Resource pooling will make cooperation between people from

anytime and anywhere as they want (Mell and Grance 2010) .

Rapid Elasticity: The Cloud computing offers an easy and quickly (in some cases

can be automatically) provision to rapidly increase and decrease computing resources

as needed. This gives the consumer impression that resources are infinite and that the

application can always cope when in demand. When resources are no longer needed

they are relinquished back into the resource pool (Sean and Kevin 2012).

Measured Service can be done as the usage on-demand service (e.g. storage,

processing, bandwidth used). Any resources that were used are carefully monitored,

controlled and recorded which allows the Cloud provider to be completely

transparent with the consumer of the resources and facilities (Mell and Grance 2010).

This means users only pay for the amount of resources they have used and always

made aware of any discrepancies, spikes or abnormal behaviour regarding resources

(Sean and Kevin 2012).

47

The recent advances in wireless sensor networks (WSNs), medical sensors, and

Cloud computing are making both of them a candidate for healthcare applications

including in-hospital and in-home patient care (Ahsanul Haque et al. 2014).

The key functionality of the both the IoT and CPS are to enable interaction between

the ‘things’ and interface. This interface requires the ability for the digital to sense

the physical world and make action on it. Unlikely traditional embedded system,

these smart objects will become significantly more advanced than current embedded

software-hardware system because, they are in particular based on cheap and small

wireless devices with sensing, acting, communication, and advanced signal and

information processing abilities. Secondly, wireless enabled technologies such as

Wi-Fi make it possible to build low cost and reliable solutions and services (Dunkels

et al., 2004) by connected various “things”.

Additionally, the IoT is typically designed as a network interacting elements with

both physical input and output instead of as standalone devices. Conceptually, a

network of medical devices and computer systems cooperating will interact in a

given clinical scenario and provide a better care to patient.

2.3.4 Current practice of the IoT in hospitals

From a literature, there are several researches available to date. In this section, we are

discussed the details and characteristics of each system to help visualize how the

various systems proposed for healthcare applications were designed through the

elements of: system architecture, sensor selection, data management,

communication, and security. The combination between objects, things, or embedded

hardware and Internet plays a significant role in a broad range of healthcare

applications, from e-Medical records, monitoring system and other usage proposed in

hospital. The sample practicable systems are introduced as following:

Simple vital signs monitoring based on Cloud (Rolim et al. 2010)

In this article, they have mentioned problems with the process manually done by

nurses is undesirable and it is an error prone, as there is a possibility of incorrectly

input. The simple architecture has been proposed: (1) sensors module collects the

data from a serial port where it attached to the medical devices, then transforms and

load information (2) the exchange server. (3) Content application displays the

48

information to nurse staff and using (4) unit computing to store, process, and delivery

services. They claimed that the proposed service will help improving the quality of

medical assistance delivery, especially in needy communities where it is difficult to

gather expertise medical staff and the presented proposal will allow medical staff to

remotely monitor patients located at another location. However, a detail of workable

system did not present in this article.

CPeSC3 (Wang et al. 2011)

This architecture is integrated secured wireless sensor network, Cloud computing for

U-life care application that responds intelligently to dynamic changes in real-world.

A case scenario is presented based in two situations. In normal situation, the daily

physical and medication is collected by sensors and stored in 3rd party Cloud via

WSN-Gateway. Caregivers can regularly check for updated records and give some

feedback (suggestions or prescriptions). In urgent situation, information will be sent

to doctors and family members immediately so that fast respond can be taken in

timely. However, authors did not highlight the details of sensors and specific data in

this article.

iMedBox and iPackage (Pang et al. 2014)

The iMedBox architecture is consisted 4 elements: (1) Tracking and monitoring, (2)

Remote service, (3) Information management, and (4) Cross-organization

integration. A typical application scenario of the system has a powerful intelligent

medicine box (iMedBox) that works not only as an in-home medicine container, but

also as a “medication inspector”, and an “on-site examiner” in daily monitoring. The

iMedBox is linked to public areas (e.g. hospital, medicine suppliers, and the

emergency help centre) through wireless network. On the other side, iPackage

controls a set of intelligent medicine packages and a wearable biomedical sensor tags

(iTag) through RFID which links and wireless biomedical sensor network (WBSN)

respectively. The software platform was running Android 3.1 (Honeycomb)

operating system and capable to send all retrieved data into a web-based server as

well as databases which implemented in Java. The system can connect to the

backend system via either 3G or WiFi. A prototype system had been implemented to

confirm the feasibility of the presented intelligent medicine packaging and container

and it has been verifies by field trials.

49

BOX-Cloud-storage

The Oregon Health & Science University (2013) reported that more than three

thousand patients records were stored on Internet-based storage service (The Oregon

Health & Science University 2013) and for providing up-to-date information to other

member in faculty about who was admitted to the hospital under the care of their

division with an application named ‘BOX’, to store files, and share them with

associates. It offers similar functionality with other Cloud providers but with added

protections in place for confidential and restricted data. It was found that storage size

is limited to 10GB with no requests for additional capacity accepted (Wilkes 2014).

Glucose Level Sensing

An m-IoT is found in (Istepanian et al. 2011). It based on IPV6 and 6LoWPAN

protocol architecture where non-invasive diabetes sensors from the patients were

linked low power microprocessor (MSP430) via USB connectivity and connected to

the healthcare provider or the diabetes centre using wireless network based on IPv6

connectivity. An IPv6 access point used to send the relevant data to database. Data

can be sent and collected both periodically or event-driven. Authors claimed to

present a new concept that links the m-IoT connectivity for real-time non-invasive

glucose level measurement. An experimental system had been implemented to verify

the performance of the system.

Oxygen Saturation Monitoring

Ranken Jordan Pediatric Bridge Hospital in US recently announced to use a oximetry

monitoring system into Masimo Radical-7, a monitoring system that uses sensors to

collect patient data and wirelessly transmits into centre storage for ongoing display

and notification. It has shown the more efficiency compared with standard screening.

To date, the device is not available in the market yet (Zacks Equity Research 2015).

Huddle for South Tyneside NHS

Baldwin (2014) reported that South Tyneside NHS Trust in UK has begun to move

the publishing of their board documents from paper to Huddle collaboration platform

in iPads because users were already familiar with the iPad and they were already

regarded as a secure platform (Baldwin 2014). According to report by Kelly (2014),

security was important issue because they are dealing with health information, and

iPad has good reputation for encryption and lower problems with malicious software,

50

said by their Head of IT department (Kelly 2014). To protect their information, all

the data are store inside the country and Mobile Device Management (MDM)

software is used to secure the iPads and the Cloud backend. Moreover, the feedbacks

were given much positive about the introduction of this iPad’s application.

51

Table 2.5 Mapping and comparison of the available IoT applications

Project System architecture Sensor Data management & Communication Security
Assisted Controlled Type Parameters Computation Storage Protocol Privacy Encryption

(Rolim et al.
2010)

Patients
and

clinicians
ICU N/A Multiple Monitoring Central N/A N/A N/A

CPeSC3 Patients
In-home,
hospital

Multi-sensors Multiple Daily living Central WSN Data level Network

iMedBox &
iPackge

Elderly

And
patients

In-home,
hospital,
on-site

RFID (iMedbox)

Temperature,
EEG, and ECG

(Bio-Patch)

Multiple
Monitoring &

Reminding
Distributed RFID-Gen2 Data level N/A

BOX

(The Oregon
Health & Science
University 2013)

Hospital
staffs

Hospital N/A N/A Storage Central N/A Application N/A

(Istepanian et al.
2011)

Patients
In-home

Hospital

Non-invasive

diabetes sensors
Glucose N/A Central

IPV6 &
6LoWPAN

N/A N/A

Masimo Radical7

(Zacks Equity
Research 2015)

Patients Hospital Multi-sensors O2 Monitoring Distributed N/A Data level N/A

Huddle
(Baldwin 2014)

Hospital
staffs

Hospital N/A N/A Storage Central N/A Application Physical

52

2.3.5 Discussions

The IoT is a concept to connect things, devices (e.g. smart phone or tablet to

computers), and human of physical world to the digital world of information to

create a ubiquitous computing world using enabling technologies; wireless

communication and sensors. As explained in (Fleisch 2010), the IoT is not the

replacement of the Internet but it is a future vision where everything will be

connected to share a record of their interactions with people, context, and other

objects. In order to do that, there is a need to extend Internet to things, such as; large

database to store the information, network infrastructures, and software layer to

handle the huge information flow. The database should be available in the Internet

any anytime to be accessed by any device, person or thing. The Cloud computing has

been recognized for such a service and it usually acts as a front-end to access Inter of

Things. The combinations of these two technologies are already existed and can also

be found in hospital settings. To build a ubiquitous computing, existing data,

network infrastructures and identification systems, the services need to be integrated

so that the contents can be exchanged and used seamlessly to realize the dream of

IoT.

As mentioned, hospital staffs are squeezed by economic and regulatory factors;

fewer healthcare professionals now manage sicker hospital patients. This has

increased the demand for using remote-sensor to spot the early warning signs of

patient deterioration. The existing monitoring installed in modern hospitals are

commonly connected as a collaborative setting. The overall design of these systems

is measure patient outcome and transmits information into administrative entities, so

that the nursing staff in charge attending to the patients will be more efficient, and

support needs to share a particular view of the electronic health records to

participants group of clinicians and can also be useful to share links among different

devices for individual clinician such as laptops, table computers, smart phone, or

projector-connected computers.

53

There is no literature to directly mention the architecture of the IoT for hospital used,

because the architecture of IoT-based healthcare hardware is more sophisticated than

other usual devices and requires a real-time operating system with more stringent

requirement, but there are mainly three elements that found in almost previous

application; (1) Data element, (2) Connecting element, and (3) Processing element,

and this can be said as a consensus of architecture design for healthcare and hospital.

So far, it is obvious that many efforts have been performed in this area but there is

still lacking of secured and trustworthy prototype for testing, evaluation, and system

developments. Proposed systems in healthcare to date are mostly still in design and

simulation stage. For the very reason, there is inability to ensure the correctness in

the uncertain environment scenario. The research challenge here is that the need of

practical implementation which will be an excellent research direction and will open

future research problems related to real-world implementation (Ahsanul Haque et al.

2014).

54

Chapter 3. Initial design of a prototype system

As stated in Section 2.1.2, the current protocol of urine measurement is considered to

increase stress and workload for nurses, and it also leads human errors, which may

affect with patient treatments. Many of these errors can be avoided by automating

this task. An alternative solution is needed for non-invasive, less complex, cheap,

portable, reliable and robust monitoring system. The above mentioned reasons have

resulted in a surge of research in this area.

In this chapter, the observation learning from the Royal Bournemouth Hospital is

presented; following by the given requirements by our consulters are identified in

Section 3.2. In Section 3.3 and 3.4 are explained in details of prototype design in

both hardware and software view.

3.1 The hospital observation

In March 2014, we had visited the Royal Bournemouth Hospital. The following lists

are the finding in our visit:

1. Given the interview by Dr. Simon McLauhlin and his colleagues, they explained

that the Royal Bournemouth Hospital is currently focusing on automatically

equipment to measure patents vital signs (i.e. blood pressure, IV therapy, urine

output etc.) to prevent human errors which may affect with patient treatments.

Monitoring patient’s condition is a repetitive task and work stress can be

increased when nurses become overloaded. Furthermore, the demonstration of

how to monitor patient’s urine has been done, the procedure is described as

follows:

1.1. To insert a catherter into a patiant’s body:

I. Nurse will ask the patient to lie down in a supine position relexes the

bladder and urethra, and the legs should also be spread.

II. Ensure tha the catherter assembly came in sealed package and steriled.

III. The nurse needs to sterilize and prepare the patient's genital area.

IV. Then, apply lubricant to the tip of the catheter. If the patient is female,

hold the labia open and insert the Catheter into the urethral meatus. If

the patient is male, hold the penis and insert the catherter into the

urethral opening. Continue pushing until the Catheter sits in the bladder.

55

V. Inflate the balloon with sterile water to ensure that the Catheter will be

sit in place and connect the catherter to the drainage bag.

1.2. To empty a drainge bag:

I. Disconnect the valve at the end of the tube near the bag.

II. Hold the bag over the collecting container and open the spout at the

bottom of the bag.

III. After the draginage bag is emptied, clean the spout with rubbing alchhol

and then close it tighty.

Figure 3.1 Demonstration of how to monitor patient’s urine

2. Patient now have their condition monitored via a protable device system which

automatically alerts staff if they start to deteriorate, using ‘iPad’ and ‘iPad’, and

these devices were found extensively used for record and monitor a patient’s

conditions such as blood pressure, heart rate, and temperature.

2.1. A system called VitalPAC Nurse is mainly used in tables, along with other

in-home softwares in clinical computers.

2.2. Nurses said that tablet based station is incredible protable and simple to use

with a user-friendly interface and easily identifiable pictures.

56

Figure 3.2 Blood-Oxygen level monitoring device

3. However, not all virtal signs were collected automatically. One of physiologicals

that was not collected is fluid balance monitoring (exclude-IV theraphy where

commercial machines are used for delivering and monitoring intake fluid).

4. One of the nurse had been interviewed and she told us that time taken to record

all multitude of patient’s condition is around five minutes per each patient, and it

will be increased if paitient does not have stable condition.

4.1. At the hospital, between 16 and 44 AKI alerts per day.

4.2. Audit of 75 paitnets with AKI, more than half (≈35 patients) develop AKI

after 48 hours of being admitted.

5. We found that incorrect records of fluid intake and output was occurred. The

records were not matched the values displayed on the screen.

5.1. Dr. Simon had raisen this issue and pointed out that under a heavy workload,

nurses may not have sufficient time to perform tasks safely, apply safe

practices, or overlooked some deti als.

5.2. This issue had also found in CQC 2014/15 report, which stated that “The

Trust should ensure that for patients who require their fluid intake and/or

output to be monitored that this is accurately recorded” (Care Quality

Commission 2014).

57

5.3. There is an issue found 15 times where more than 4 hours nothing has been

record records.

6. The UK government had set a new vision for the future of the NHS hospitals,

which promise a ‘paperless’ health service by 2018 (Department of Health 2013).

6.1. As a result, the Royal Bournemouth Hospital is now working on electronic

patient’s records to replace some of the documents, but not all the paper

based patient’s records will be gone.The hospital still needs to kept the

records for at least five years.

6.2. This changes will not direct affect the way they treat patients but instead

medical staffs will be able to access records instantly from anywhere and

anytime with any device and do not lose the time to wait for information to

be sent from other wards or sites, reducing the time patient have to wait.

7. Nurses were having positive reposends when we were gathering requirements

and introduce an automated acquisition of the data for urine measurement.

7.1. They were felt that this concept seem to be useful to in clinical routine

where the accuracy of data collection will be improved, and reduced some

of their workload.

3.2 User requirements

After the observation, and interviews, pre-design for mock-up prototypes are

presented and discussed in a group. A set of user requirements, and product matrices

were identified. Here, the 1st research question has been answered. The represented

requirements presented in this section are key factors to answer the 3rd question

where successfully design and development process is translated into prototype

functionalities from users themselves.

For this study, the specific requirements were mainly given based on guidelines and

consultants of Dr Simon McLaughlin. He had given the following six major

requirements that need be met:

1. All sensor components of the prototype must not contaminate, or enter into urine

for patient’s hygiene reasons.

2. A minimum acceptable accuracy measurement provides by the prototype is 10%.

58

3. Rather than overall accuracy, a prototype must provide information for the

patient with oliguria who produced urine as low as 10-15 millilitres, at least

hourly same as the frequency with currently done by a nurse.

4. The prototype should be less complex and required less physical interaction with

nurse, and provides mobility and comfort to patients.

5. Information must be stored and displayed in a Spreadsheets format. He also

acknowledged that there are multi-level, experience and expertise of nurses in

technology. Some of them may familiar with modern technologies, but some do

not utilize these technologies and donot want incorporate something new.

6. The prototype should be adapted into currently used technologies in The Royal

Bournemouth Hospital:

6.1. Portable tablets are available for a nurse in working station.

6.2. Instant access to records for multiple clinicians and authorised staff at the

same time through the Internet connection within the hospital is required.

3.3 Design of the prototype system

Given the lack of sensors for measuring patients’ urine output, there are no

guidelines that specify the accuracy that they should provide, or any consensus on

what is an acceptable error when measuring this parameter. Although many efforts

have already been made in the design of automated urine measurement devices, as

presented in Chapter 2, but there are still presented some limitations where we

considered not unsuitable to work in actual clinical routine because:

1. Using a balance scale seems to not give enough portability to take the

measurement while patients have movment.

2. The previous devices were designed to achive a high accuracy, so that their

opreation were more complex and difficult to use in the actual situations.

3. Some of them were compliant with laws against indirect urine contaminated.

4. The cost of development was not suitable for generally used in the hospital

because the urine container needs to be changed at least twice a week. If the

equipment is attached to those prototypes, all components need to be thrown

away.

5. Some of them were discontinued on improvement either operation features or

marketing.

59

From the summarised of the previous study presented Table 3.1, it is obvious that the

following issues are worth pursuing as challenges to this research area:

1. Currently, no single prototype was presented and claimed about the ability to

measure human urine output in crinical routines and the hospital services.

Hospital models can create barriers to progress.

2. Most of the previous prototype did not consider to minimized patient’s risk

of infection through invasive. Some of the designs were introduced some

parts of metals directly contract to urine, which usually is acidic. Therefore,

the metals can be corrosive and body fluid will be contaminated.

3. Lacking of economic impact and cost effective study. Commercial device

may improve diagnostic accuracy but it is expensive and difficult to

maintenance whereas a disosable device could be cheap but it usually need to

be changed at least twice a week. Commercialising a new design may

directly affect on preventing copyrights from competitors and also has

disadvantages caused by other new product line that provides similar

functions to the future marketed.

4. As serveral efforts have been done before, but they conceptualizes nursing

workload at a macro level, ignoring the contextual and organizational

characteristics of a particular health care setting (e.g., physical layout,

information technology available) that may significantly affect further

improvement in this topic research.

5. Likewise, the new prototype should be less complex and not require technical

knowledge. It is expected to be easily installed and removed by nurse, and

should not involve any calibration process as long as the sensor is in proper

placement.

Since the purpose of this study has an aim to measure small amount of urine flow as

low as 10-15 millilitres per hour. In the design phase, we strived to develop a

prototype that would follow the requirements and suggestion as it should be less

complex and suitable to apply for continuous usage.

One practicable solution is using an intravenous dripping system which delivers

varying dosage of necessary substances administered to the patient in precise

quantities (Norgia et al. 2014). The intravenous is based on principle of drip by

60

gravity. It is very simple and low cost. The process of operation is stored substances

in a container on a pole connected to intravenous lines and an infusion needle (Husch

et al. 2005). This solution has been applied to measure urine output from patients by

estimating volume using number of counted-drop technique. We believed that the

principle of the intravenous seems to give more benefit for measuring such a small

volume of liquid flow due to its simplicity, widely used, and proposed to measure

small amount of liquid flow presented from the past until now. A fundamental of this

solution is required the physics of drops and drop models to record the falling drops

and estimate from its unknown volume.

61

Table 3.1 Summary of the previous automatic urine output measurement devices.

Device Sensor Used Communication System Architecture Advantages Disadvantages

Specific containers with
vertical float sensors.
(Otero et al. 2009)

Float sensors
Serial-port to

Bluetooth.

Closed system based Java
Programming language.

Central data storage.

• 2 weeks run-time.
• Wireless
communication.
• Colour-code for
warning indicators.
• Alert systems; colour-
code.

• Stress of release vale
mechanical problems.
• Components were
contaminated with urine.

Siphon principle.
(Otero et al. 2010a)

Reed switches
Serial-port to

Bluetooth.
Closed system.

Central data storage.

• Provide feedback more
frequently.
• Wireless
communication.

• Stress of release vale
mechanical problems.
• Reed switches were directly
contract with urine.
• Complex design of the
containers.
• The bias of the tube’s size.

Scale-based.
(Otero et al. 2010b)

Scale
Serial-port to

Bluetooth.
Closed system.

Central data storage.

• High accuracy.
• Wireless
communication.
• Able to contain large
amount of urine.

• Size and operation procedural
make it difficult for clinical
routine.
• Cost of development.

Capacitance containers.
(Otero et al. 2012)

Magnetic
Capacitance

Serial-port to
Bluetooth.

Closed system.
Central data storage.

• High accuracy for small
amount of urine.

• Not viable to use in practical.
• Components were
contaminated with urine.
• Cost of development.

Urinfo 2000 Infrared
N/A

Displayed data from
LED screen.

Stand-alone system. • High accuracy with
range from 1ml to litres.

• No integrated soft-data details
available with centre database.

62

3.3.1 Drop-volume measurement

Typically, the use of a medical dropper is transporting the liquid into continually

single drops falling under the gravity from the liquid storage on the top to the

bottom. The outflow of the liquid product occurs through a dripping chamber and a

terminal (Norgia et al. 2012).

For drop-volume measurement, it is known as a classical, maybe historical

measurement technique that still being used in routine operation in the modern time.

Therefore, the fundamental drop can be measured in volumetric where the estimation

of the speed of the drop at a certain time period or the mass flow of each drop that

falls off a dispense tip of known diameter. Given a certain speed of drop as Q,

amount of liquid volume as V, a time period as T, the formula for working out flow

rates is expressed as:

! =
#	 %&

'(%)	(%(+,-))

# =	Ni	*	D		

3.1

Where the total of counted-drop as Ni and a drop factor as D (gtts/ml). Here, the

volumetric flow rate is a measure of volume of fluid passing a certain point per unit

time. The result of the equation is usually expressed as millilitres per second or litre

per hour, respectively.

Assuming that patient weighted 70 kg is needed to monitor urine output. The

maximum target urine output from the guideline is 35 ml per hour. In this case, how

many drops will be delivered? how long does medical dropper take to deliver 35

ml of urine produced? What is the percentage error of this technique compared

with the standards?

To answer all of the above questions, the experiments of the drop-volume had been

done to obtain characteristics of drop flow rates in different levels of liquid input and

the results will be explained the insight details of each question.

.

63

3.3.2 Pre-design prototype

The simple circuit of optical sensor was built to detect the water drop between the

upper and lower part of dripping chamber. The schematic is shown in Figure 3.3.

The photo interrupter is used, it has 3 pins where POWER is connected pin-10, GND

to pin-8, and OUT to pin-9. Additional LED was added to indicate whether the

emitted beam is broken or not. One end of 1K ohm resistor is connected to pin-13.

The anode leg of the LED is connected to the other end of the resistor and the

cathode leg is connected to the GND-pin.

Figure 3.3 Breadboard view of a pre-design prototype

A graduated cup was used to fill with 5, 10, 15 and 20 ml of water and proceeded to

make the drip from the point prepared, as visible in Figure 3.4. Fifteen-test set of

each volume were performed. It is also necessary to highlight that in terms of a drop

factor in these experiments does not take into account several factors such as; the

morphological diversity of the drops, different temperature and specific weigh of the

liquid, and body substance of the liquid.

64

Figure 3.4 The preliminarily volumetric measurements

To define the speed of drops, each drop that passes through the sensor will be

detected and kept time log where it is executed time range of millisecond, without

using interrupts.

Figure 3.5 described the pseudo code of drop detect and time logger.

unsigned long time = millis();
unsigned long drop = 0;
LED = pin(13);
LED = LOW;

forever do:
 if (digitalRead(sensorPin)>0){
 drop = drop++;
 int sec = (time/1000)%60;
 int mins = ((time/(1000*60))%60);
 int hrs = ((time/(1000*60*60))%24);
 LED = HIGH;
 }
 else {
 LED = LOW;
 }
 print(hrs);
 print(“:”);
 print(min,2);
 print(“:”);
 println(sec,2);
 end
end

65

Figure 3.5 Pseudo code of drop detection and time logger

Nearly 5.5 hours of sensor data reading were collected from 60 times experiments.

Each of the experiment was performed with no time limited to measure the time

duration and the number of counted- drop, starts from the first drop passed the

detected point until the input liquid was emptied. All the data were later transferred

to Microsoft Excel for further transformation and analysis. Mean values and standard

deviation of the performed measurements is illustrated in Table 3.2.

Table 3.2. The mean values and the standard deviations from the sensor reading.

Input (ml) N
Avg. Time

(minute)
STD

Flowrate

(ml/min)

Avg.

Drops-count

5

15

1.58 0.21 3.16 96

10 3.59 0.31 2.78 194

15 6.09 0.44 2.46 289

20 8.17 0.37 2.45 384

From the results, the average of flow rate without any tubing calibration is

approximately 3.16, 2.78, 2.46 and 2.45 ml per minute for 5 to 20 ml of liquid,

respectively. It was observed that increasing volume of liquid (in this case, the height

of liquid column is increased), the flow rate is decreased. The reason is that fluid’s

viscosity is increased caused by increased pressure in the container.

It is a fact that the fluid pressure does not depend upon the total volume of the liquid,

but it arises from the weight of the fluid and is given by the expression:

 3456578	9:7;< = =>? 3.2

Where P is the fluid pressure, H is the height of fluid column (or depth in the fluid),

ρ is density of liquid and G is the gravitational constant at 9.81 m/s2. Regarding to

this equation, the pressure exerted by the column of liquid is directly proportional of

height of the column and the density.

From these statistics, the number of drops and expected duration emptied time can be

estimated using the trend-line forecasting, as show in Figure 3.6 and Figure 3.7.

66

Figure 3.6 Estimation of counted-drop that will be delivered

Figure 3.7 Estimation time to empty the container using medical dropper

5 10 15 20 25 30 35 40 45
x̅SensorRead 96 194 289 384
Estimation 480.50 576.40 672.30 768.20 864.10

96
194

289
384

480.50
576.40

672.30
768.20

864.10

y	=	95.9x	+	1
R²	=	0.99994

0
100
200
300
400
500
600
700
800
900

1000
No

.D
ro
ps

Estimation	Total	Drops

5 10 15 20 25 30 35 40 45
x̅	Timer 1.58 3.59 6.09 8.17
Estimated	time 10.425 12.652 14.879 17.106 19.33

10.425
12.652

14.879
17.106

19.33y	=	2.227x	- 0.71
R²	=	0.99828

0

5

10

15

20

25

M
in
ut
e(
s)

Estimated	Duration	(minutes)

67

Table 3.3 Comparison between estimation using liner equation and with ISO 85364

Volume
(ml)

Est. Time
(minutes)

Est.
Drops

∑(Absolute
Percentage of

Error)

5 1.58 96.90 0.830%

10 3.59 192.80 0.760%

15 6.09 288.70 0.543%

20 8.17 384.60 0.478%

To evaluate the error percentage, the MAPE (Mean Absolute Percent Error) is used

to compare the size of the error in percentage terms where the average of the

unsigned percentage error is presented, as shown in the equation below:

 @ =
1
+

|
C5 − E5
C5

|
F

5GH

 3.3

Where At is the standard (actual) value and Ft is forecast value. The difference

between At and Ft is divided by the actual again. The absolute value in this

calculation is summed for every forecasted point in time and divided by the number

of fitted points n multiplying by a hundred makes it a percentage error. The actual

value is referenced by ISO 85364 :1987/ IS12655 where 20 drops will be delivered

per ml (IEC International Electrotechnical Commission 1998). From these plots,

when a patient produced 35 ml of urine, around 672 drops will be detected and used

approximately 14.53 minutes (or 14.88 before converting a decimal to time format),

and the percentage error of is ±3.96% or ±1.386 ml is different from ISO standard

value.

After the first preliminary experiments, it can be said that the principle of drop-

volume estimation is simple, proves to be of good precision for a small amount of

liquid. The basic principle is simple and can be proceeds by deriving the urine flow

from two basic parameters which can be easily accessible: (1) total of number drop-

counting, (2) duration to empty the liquid input.

The error rate can be affected by increased uncertainty due to the level in infused

container, the vertical alignment of the dropper is not precise, and properties of

68

liquid. This uncertainty can lead a different size of the drop diameter and its weight

(Lovick and Angeli 2004; Van Santvliet and Ludwig 2004). In Lovick and Angeli

(2004), they claimed that the material from which is made will have an effect on

droplet size in flows. Van Santvliet and Ludwig (2004) agreed, they stated that the

size of drops delivered using drops count as volume measurement technique is

influenced by three major factors included:

1. The design and characteristics of the dropper tip: the diameter of the dropper

tip is directly variation to the size of the drop delivered. The surface tension of the

liquid causes it to hang from the tip of the dropper and forming a pendant. When the

drop exceeds a certain size it is no longer stable and detaches itself. The falling

liquid is also a drop held together by surface tension (Cutnell and Johnson 2005).

A dropper tip was designed to delivery fluid flows into a drop followed Tate’s law,

common methods for measuring surface tension (see Equation 3.4), where mg is the

weight when the drop fall,	2JK is the circumference, and L, defined as the surface

tension.

 %M = 2JKL 3.4

These drops grow as long as their weight is less than their holding force on the

capillary. As soon as this weight has reached the same magnitude as the holding

force, the drop falls and the volume of the falling drop is measured. In another word,

the drop is falling when the weight is equal or greater than surface tension at the tip

of dropper.

2. The liquid-chemical properties: The chemical substances in liquid may also

influence surface tension measurement. In this case, urine substance is concerned

that may reduce the accurate and reproducible of the measurement. However, Millis

et al. (1988), they reported that a different only 2 mN/m was found between

substance of water (73.0 mN/m) and urea (71.0 mN/m) at constant temperature. Only

small changes will be found and may have small effect in the final estimation

volume (Mills et al. 1988). This was confirmed by Jho and Carreras (1984), they

concluded that an increasing of viscosity up to 15 mPa·s of liquid solution does not

effect to drop size in different dynamic surface tension substances (Jho and Carreras

1984).

69

3. The manner of handling the dropper: It needs to define the shape form of

drops as related to the drop’s angles and the falling height. Vertical angles were

assessed to indicate effective of the delivered volumes (Van Santvliet and Ludwig

2004). It found that 8.5% smaller drop were delivered due to the changing the

dispensing angle to 45° angle compared to the vertical (90°), as well as different

volume in a variety of drop shapes (see Figure 3.8 and Figure 3.9).

The theory of liquid shape is varying on the tilt manner is confirmed by Mazzola et

al. (2012), they reported that two characteristic lengths of the drop shape that change

with tilt grade. It is possible to see that increasing tilt grade, the drop become

stretched and it shrinks orthogonally on the plate. Moreover, the shape of the drops

is also varies due to the rate of a falling height (Hugli and Gonzalez 2000). They

performed an experiment and obtained the drop shape changes in different falling

heights, as shown in Figure 3.10. Clearly, the shape varies significantly with the

manner of handling. In fact, when the drop leaves the tip, the sudden fall initiates an

oscillation of the drop mass which goes on during the fall and is responsible for

shape changing along the path.

Furthermore, the volume delivered is always smaller than the volume contained in

the measuring instrument. This is caused by the fact, that a certain amount of liquid

remains as a film on the inner surface of the instrument. The volume of this liquid

film depends on the delivery time and should be taken into account when calibrating

the measuring instrument.

Figure 3.8 Drop delivering while changes the tip angle from 90°to 45°

(Van Santvliet and Ludwig 2004)

70

Figure 3.9 Different shapes of the liquid drops obtained varying the tilt angle

(Mazzola et al. 2012)

Figure 3.10 A variety of drop shapes from different falling height.

(Hugli and Gonzalez 2000)

71

3.4 Design of system architecture

At the same time, the study is also focused on automation and real-time

measurement techniques. A number of detailed reviews of flow measurement

devices already exist and presented in many studies, but for this investigation only

some non-intrusive sensors that can take a measurement in a small volume are

considered. Some reasonable concepts were reviewed and provide a brief discussion

of the theoretical and practical basis in Section 3.6.1.

The system architecture design was done by following the requirements and the

general consensus of previous studies, the proposed system architecture is built

under the integration of an embedded system connect and web application. It

distinguished three elements of architectural given in Figure 3.11—(1) Data

acquisition (or ‘data element’) which contains sensors connected to programmable

microcontroller to record patient’s urine output data to help in repetitive monitoring

protocol. (2) Communication channels (or ‘connecting element’) refer either to a

wired or a wireless, are in charge of providing sensor signal reading and

redistributing the signal reading into a storage, and (3) The application (or

‘processing element’) which post those information to data storage and enables

nurses to monitoring the output in real-time.

As mentioned, modern the ICU’s monitoring applications are not only provide the

current data to the clinical computer system but those data can also be shared with

other clinicians who specialised in different areas. We consider our proposed system

can be used to integrate with other bedside devices since they are based on

microprocessor and having digital communication capabilities. However, these

devices have difficult to interface together since each of them uses a different

hardware interface and data representation protocol. Thus, custom software and

hardware connections must be made to support this consideration. Technology of

Cloud computing was applied to the architecture to reduce a cross-platform

complexity between different of operation systems, and provide commonality and

simplification in the software and hardware connections from embedded system to a

web application.

We believed that this design will go beyond simple monitoring system because the

ability that allows connect anything to the Internet lets the device operate with much

72

more functional than usual machines. The automated-remotely data collection will

be take place in the data acquisition (as a fundamental of the IoT concept) and data

will spin out to a remote application where Cloud computing supports intelligently

for smart monitoring and may add more sensor to act with the smart devices in the

nearly future.

System Architecture

A
pp

lic
at

io
n

C
om

m
un

ic
at

io
n

D
at

a
A

cq
ui

si
tio

n

Level

Physical Layer

Controller Layer

Memory Built-in Wi-Fi Digital Sensor

Digital I/O pins

Bridge Libraries

ADC

Analog Sensor TimmerScreen

Serial Terminal
[USB/Comport]

Read()/Write()

SendData()

Read Analog Mills()Serial()

Built-in
Ethernet

Read Digital

Fixed Network WiFi Mobile (3G/4G)

Data Storage

Spreadsheets Application

AppendRow()

OAuthen (2.0)

TimeStamp()Alerts()GetResponders() TimeTrigger()

Figure 3.11 Design of the system architecture

Sensor
Input

Micro
controller

Serial Port/
Network

Data
storage Spreadsheet

Data Acquisition Communication Application

73

3.5 Hardware for Data Acquisition

The hardware architecture of the prototype system can be divided into two modules:

(1) the sensor input (Physical layer) and (2) the microcontroller (Controller layer).

A set of sensors is connected to a microcontroller using jumper wires and breadboard

that helps to build and align electronic circuits. The USB cable can be connected

between a microcontroller and a computer to provide power source and transmit data

to a computer screen in an offline mode. A switch-off switch is included to the active

microcontroller when it is desired to monitoring in order to reduce energy

consumption. The device can be turn off when it is not necessary to measure.

Data transmission frequent can be configured as minimum as one time per hour. It

obtains an increase operation time when microcontroller is connected with external

power (e.g. power bank or batteries). Furthermore, the robustness and flexibility are

key areas that are often insufficiently fulfilled in research prototype. Some embedded

development toolkits were critically reviewed to find a suitable technology which

will help reduce developing barriers.

3.5.1 Sensor input

The physical entity of the architecture is performed by sensing by mean of using

sensor. The word ‘sensor’ means an electronic device used to measure a physical

quantity and convert it into electronic signal. It can be classified into two categories.

Analog sensors most often produce a voltage proportional to measure quality and

must be converted to digital with Analog-Digital Converter (ADC) before processing

it. Digital sensors most often use serial communication to return numeric

information (0 for LOW, 1 for HIGH) directly to the controller through a serial port

(Dictionary.com n.d.).

Sensing is the key concern for the healthcare application as sensed values are used as

input parameters to the system. Haque et al. (2014) stated that sometimes sensing

may often be painful. For example, the blood glucose level (BGL) detection for

diabetic patients requires pricking the finger and collecting sample. To remedy this, a

non-invasive method of monitoring leveraging radio-based sensor is used (Istepanian

et al. 2011) and many other non-invasive sensors had been used very widely.

74

From the literatures, there are different non-invasive sensors that have been used to

detect drop or bubble in liquid flow, and these sensors can be divided into three main

categories: (1) Sound technique, (2) Optical technique, and (3) Image analysing.

Therefore a feasibility study on the effectiveness in each sensor has been carried out

from the pre-prototype, presented in Section 4.1, in order to detect number of

counted-drop within the drip chamber.

A. Sound method

I. Ultrasonic sensor

Ultrasound sensors (US) had been proposed for using to measure of the speed of

liquid, determine size of objects or particles, distance and range finding, or mapping

the image of objects and it has been widely used in many healthcare applications

because of its good beam directivity, penetration ability, harmless, high detection

sensitivity and far transmission distance (Chen and Wu 2012), and there were two

ultrasound urine meters presented in mid of 1980 (Shotts and Hauf 1986; Shabot et

al. 1988).

Figure 3.12 HC-SR04 ultrasonic components

HC-SR04 ultrasonic sensors (as shown in Figure 3.12) were used in the prototype.

We believed that a small amount of sound energy should be reflected by a dripping

in front of the sensors and returned to the detectors. The receiver amplifier will send

this reflected signal to a microcontroller which times them to determine how long it

takes to receive the reflected wave, by using the speed of sound in air.

From the datasheet, the sensor comes with 4 pins where two are dedicated to power

supply and ground. It operates from a 5V DC supply and standby current is less than

75

2mA. Another two more pins are for active ultrasonic sensor generates high

frequency sound waves and evaluate the echo which is received back by the sensor,

measuring the time interval between sending the signal and receiving the echo to

determine the distance to an object. Passive ultrasonic sensor is basically microphone

that detects ultrasonic noise that is present under certain conditions. This sensor

works by emitting a short burst of 40kHx ultrasound from an active transducer.

For the prototype, the ultrasonic was initially designed to emit 40 kHz of sound

waves to detect the crossing drops between the sound fields. This detection method

will be started when ultrasonic transmitter emitted an ultrasonic wave in a one

direction, and the starts timing when it launched. If the emitted sound wave detects

the obstacles on the way, it would return immediately and the different attitude of the

tension will be occurred in the receiver, and timer will stop timing when the sound

wave returns from the reflection. The constant density of air is known as 1.2 kg.m-3

and the speed of sound in the air is around 343 m.s−1. The concept design is

presented in Figure 3.13. The technique here is similarly to the bubbles detector

device.

Initial wave

Bottom wave

Initial wave

Bottom wave
Detection

Ultrasonic Ultrasonic

Figure 3.13 Detection concept diagram of ultrasonic pulse reflective technique

76

Figure 3.14 The principle of the air bubble sensor (SONOTEC 2015)

According to the timing diagram, presented in Figure 3.15, the sensor started when

10µS of HIGH pulse on the Trigger pin initiated an 8-cycle burst of 40 kHz

ultrasonic pulses. The pulse return to the module and it emits on the Echo pin a high

pulse between 150 µS and 25 ms. Approximately 58 µS is used to estimate the sound

wave travel round-trip in 1 cm., this means sound travels forward and return in

distance of 1 cm. The return value will illustrate where the sound waves were

reached before it reflected and this value can calculated the reflected time using the

equation:

 L = C ∗ (T/2) 3.5

Where L represents time travelled of the sound wave, C is the ultrasonic spread

velocity 340 m/s, T is time where half of the time value was transmitted to receiver.

Figure 3.15 Ultrasonic sensor timing diagram

77

In Arduino community, the source code library is provided for the HC-SR04

module. It was written by Tim Eckel1. The code constructor will be provided in the

Appendix section.

II. Microphone Sensor

Another approach for sensing an acoustic signal is the use of microphone sensor

(MI) which we believed it is an effective approach for participatory sensing. It has

been found in common health care applications such as, activity monitoring, noise

detector, and hearing aids. Most microphone sensors today are based on

electromagnetic or piezoelectricity to produce an electrical signal from air pressure

variations. The operation design is to use microphone detecting noise when the drop

fell of the dispenser tip and it hits the bottom part of the drip chamber. This should

generate a noise where the sensor can detects and computes amplitude sound into

digital signals to count numbers of time of the falling drop.

Audio signals in the prototype were recorded via 20 kHz electret microphone

assembled with an amplifier, and it works from 2.5 up to 5V. In circuit, the amplifier

on the board is wired to give a 2.5 volts signal when there is no sound. When sound

has been detected, the return values from function analogRead()will show in voltage

variations around 512 which is the half range of analog value from 0 to 1023.

Figure 3.16 Microphone sensor

B. Optical method

An optical sensor is a device that converts light rays into electronic signals which

similar to a photo resistor. A change in physical environment will modify such

properties of the optical propagating light as its phase, polarization, amplitude or

1 Appendix 5

78

spectre (Lecler and Meyrueis 2012). It measures the physical quantity of light and

translates it into a form read by the instrument. As report in Ahuja and Parande

(2010), one of the features of an optical sensor is its ability to measure the changes

from one or more light beams. This change is most often based around alterations to

the intensity of the light.

Other features of optical sensors include the distinction of whether it is placed

internally or externally in a device (Ahuja and Parande 2012). There are many types

of optical sensors found in numerous research and commercial application, many

based on the use of lasers, imaging sensors, and fiber optics. If the optical sensor is

only used to transmit the light, it is commonly known as an extrinsic optical sensor

but if the modulation of the properties of light takes place in the optical sensor due to

the physical phenomenon to measure, it is about an intrinsic optical fiber sensor

(Lecler and Meyrueis 2012). The comparison of these two types is given in Table

3.4.

Table 3.4 Comparison of Extrinsic and Intrinsic optical sensors.

Extrinsic Intrinsic

Applications measure temperature,

pressure, liquid level and flow.

Applications measures rotation, acceleration

strain, acoustic pressure and vibration.

Less sensitive More sensitive

Easily multiplexed Tougher to multiplex

Ingress/ egress connection problems Reduces connection problems

Easier to use More elaborate signal demodulation

Less expensive More expensive

(Ahuja and Parande 2012)

I. Photo interrupter sensor

 Photo interrupter (PI) is one of the extrinsic-through beam sensors. It made of an

infrared LED for optical emitter on one side and a photo transition detector on the

other to detect the change signal with amplify (Kim et al. 2013). The emitter uses a

beam forming optics to project light onto the detector, and detector used to sense if

the free path between the emitter and the detector called ‘Photogate’ is blocked (see

Figure 3.17).

79

Figure 3.17 Proto interrupter components

According to the technical data sheet, it comes with 3 terminal pins which are:

Power supply (VC), Output (OUT), and Ground (GND), respectively. The output

voltage of the phototransistor depends on the position of the object between the

photogate and it can be obtained from anolog-to-digital converter without an

additional amplifier due to its Transistor-Transistor Logic (TTL) voltage level (0-5

v). Normally, the relationship between the output voltage and the position of the

object is approximate linear close to the centre of the sensor (Gu et al. 2012), as

shown in Figure 3.18. The reflective of output voltage from the phototransistor of the

LED light from the drop changes according to the count.

Figure 3.18 The output voltage and the position of the detected object (Gu et al. 2012)

80

II. Infrared proximate sensor

IR proximity sensors are widely used for sensing the presence of an object, its

distance from a reference, or both. It can be classified into an intrinsic type where

detector determined the wavelength of emitted infrared light. Common applications

include speed detection, sensing of the hand in automatic faucets, automatic counting

or detection of, object-edge detection, and many others.

To sense an object, the proximity sensor transmits IR (infrared) pulses toward the

object, and then wait to detect any pulses reflected back (Figure 1). An LED

transmits the signals, and any reflected signal is detected by a photo-detector. The

strength of this reflected signal is inversely proportional to the distance of the object

from the IR transceiver. Because the reflected IR signal is stronger when the object

is close, this can be calibrated the output of the photodiode detector to determine the

exact trigger distance of an object (the threshold distance for making a decision on

whether the object is present or not).

There are several research report that IR sensor offers lower cost and faster response

in detecting distance measurement of an object compare to the ultrasonic sensor

where it is widely found as proximity detectors in robotic researchs6.

Compare with the ultrasonic sensor, the infrared sensor has higher ability to measure

shorter range compared to the sound7. The wavelength range of the infrared light is

approximately 850 nm ± 70 nm and the transmitter signal from the sensor is

depended on the distance of reflecting object, the signal returns at an angle where the

distance can be determined7.

In this study, the measure the small changes in light reflection that can be detected

by the infrared sensors. IR sensors with part number GP2D120XJ00F (Sharp

Corporation, Osaka, Japan) are specifically for analog output distance measuring

sensor. A major advantage using this GP2D120 is the beam width where a signal that

transmit from the IR sensor point directly to the require object7, which is capable in

detecting any changes in displacement within the range of 4 cm to 30 cm. Results

showed that small changes in displacement can be detected by sensor, and a graph

has been plotted for any changes in distance.

81

C. Image analysing

Another method for the determination of the drop-rvolume is the use of

chromatographic or image analysing. In this way, the volume is calculated using

geometric shape of drops and a specified reference volume to define number of drop

which added to the system. Normally, a digital image acquisition and processing

require high-end and complex technologies. For example, a high resolution camera

was found in Hugli and Gonzales (2000). It has capability to capture an image at

1/16,000 second exposure time (Hugli and Gonzalez 2000). A CCD video camera

was found in Song et al (2003). The video signal is first transformed into a digital

signal and placed in the frame storage. It is converted by the vision logic and

displayed on the terminal and sent to the computer via an interface for data

processing (Song et al. 2003). Moreover, a specific software package and high end

computer are needed to acquire and process 2D or 3D images (Del Río and Neumann

1997; Song et al. 2003; Song et al. 2005; Thurow et al. 2009).

To calculate the volume from the drop image, two coordinates pixel position (X, Y)

of drop images must been known, then computerise with calculation model to

convert those pixel points into volume units. Serval models were proposed (Hugli

and Gonzalez 2000; Song et al. 2003; Song et al. 2005; Thurow et al. 2009) and the

results of each model has presented with more accurate, efficiently and reliable of

measurement drops and contents inside. With the advance technologies, a variety of

physical and chemical parameters (e.g. surface tension, concentration, refractive

index, turbidity, and chemical constitution) can also be potentially obtained directly

or indirectly during a measuring cycle (Song et al. 2005).

Unfortunately, there are some circumstances in which we believe that this method

may not yet suitable for real-time processing in the hospital. Firstly, it is required

very complex measurement technology to support the measurement, and the

expensive equipment are required to integrate hardware and software into a single

system for processing online. Secondly, if 10 of non-kidney injured patients admitted

in ICU and they have been monitoring urine output, more than forty thousand digital

images (considered one image per drop) will be generated daily and they need large

computer resources to preform real-time processing. Consequently, a greater

bandwidth is needed to transmit all the information and this may reduce a computing

82

time. Moreover, the methods presented were largely based on the development of

specific algorithms with the specific hardware to extend its functional scope.

Since our goal is to find less complex solution for a real time measurement. The

accuracy of the presented method here is higher than required, and more likely not

necessary to monitor urine output as higher precision as it permits. Due to these

circumstances, image analysis does not really represent simple method for volume

estimation but it could be used as a reference procedure for the estimation and may

future develop in next version of prototype. These findings also help define the

balance between effort and benefit involved in integrating only some sensor for this

automated task as simple and accurate as possible. This simple described the data

give reason to predict future observations.

3.5.2 Microcontroller

A microcontroller is a small device on a single integrated circuit containing a

processor, ROM memory, and RAM for programmable input and output memory

(Howe n.d.). It is a core of the hardware system for controlling signal sending,

detected changes from signal, and determined the count to an interruption produced

by reflected signal. A microcontroller also controls the communication protocol by

choose the correct configured channel by checking the data of the received signals

and redistribute them to the either storage using or display them on the computer

screen followed the designed communication protocol.

Over the last few years, an open source microcontroller board called ‘Arduino’

platform was introduced and it was quickly became popular and widely used in

scientific community for controlling and monitoring experimental hardware (Faugel

and Bobkov 2013). It was designed with the goal of inexpensive and cross-operation

platform which runs on most common operation system; included Windows, Mac

OS, and Linux, and it is easily to programme (Bell 2013).

Arduino board itself supports both, analog and digital pins that can use to connect to

various sensor components. The basic layout of Arduino consists of a Universal

Serial Bus connection (additionally Micro-USB for Arduino Yún) which also powers

the a microcontroller and exchange information between board and the computer, a

reset switch, LEDs for power and serial communication, and a standard spaced set of

83

headers for attaching shields which allow the use of expansion additional capabilities

such as Bluetooth, Ethernet, or Xbee (Arduino.cc n.d.). Arduino platform is also

provided an intelligence development environment called ‘Arduino Integrated

Development Environment (Arduino IDE)’ where all the source codes are write,

comply and upload into hardware. Moreover, the Arduino IDE comes with a code

editor and several features such as syntax highlighting, brace matching, automatic

indentation to help introduce programming to newcomers who unfamiliar with

software development.

A source code written for Arduino is called ‘sketch’ mainly based on C and C++

programming languages. The sketch only needs define two main function to make an

executable cyclic loop program (Margolis 2012) as shown in Figure 3.19.

• setup () : a function runs once at the start to initialize all setting.

• loop () : a function called repeatedly cycle until the power is off

#define LED_PIN 13

void setup() {
 pinMode(LED_PIN, OUTPUT); // Enable pin 13 for digital output
}

void loop() {
 digitalWrite(LED_PIN, HIGH); // Turn on the LED
 delay(1000); // Wait one second (1000 milliseconds)
 digitalWrite(LED_PIN, LOW); // Turn off the LED
 delay(1000); // Wait one second
}
	

Figure 3.19 Sample of Aruino sketch code to make LED blinks

The official Arduino boards were introduced and commercially produced in twenty

versions. Most of them have same functional with an original board, but they have

different in characteristics. To understand the compatibility of these technologies, six

different versions of Arduino boards were selected and compared based on several

criteria, such as: energy consumption, number of input/output pins, memory, and

communication protocol (as shown in Table 3.5).

84

Table 3.5 Properties of Arduino boards

Board Processor
Operation

Voltage

Digital/Analog

I/O Pins

Memory

[KB]

Serial

Port/USB
Communication Note

Uno ATmega328 5 V 14/6 32
1 port with

Regular USB

USB-to-serial chip,

Built-in Ethernet

Required additional shield for wireless

connection.

Due AT91SAM3X8E 3.3 V 54/12 512
4 ports with 2

Micro USB
2 USB-to-serial chip

Required both Wi-Fi and Ethernet

Shield for Internet connection.

Voltage and pin layout are different.

Mega ATmega2560 5 V 54/16 256
4 ports with

Regular USB

USB-to-serial chip,

Built-in Ethernet

Required Wi-Fi shield for wireless

connection.

Supported Android Development kit for

mobile app.

Mini ATmega328 5 V 14/8 32
1 Port with no

USB

Interfacing with other

software

Required additional components to

connect to Wi-Fi and Ethernet Shield

Nano
ATmega168

ATmega328
5 V 14/8 16

1 port with

Mini-B USB

USB-to-serial chip,

WiFi/Ethernet Shield

Pin layout is different and does not have

a DC power jack

Yún ATmega32u4 5 V 20/12 32
1 Port with

Micro USB

USB-to-serial chip,

Built-in

WiFi/Ethernet

Contains an application processor

running Linux, and modern flexible

connectivity.

85

Arduino Yún is used because of its remarkable in flexible connectivity. According to

a reviews described in an Arduino official blog (https://www.arduino.cc/), Arduino

Yún is based on two processors, ATmega32U4 and Atheros AR9331. It also has

built-in Ethernet and Wi-Fi support, a micro USB, micro-SD card slot, 20 digital

input/output pins (of which 7 pins can be used as Pulse Width Modulation, or PWM,

is a technique for getting analog results with digital means output and 12 pins as

analg inputs), a 16 MHz crystal oscillator, and a 3 reset buttons (as shown in Figure

3.20).

	

Figure 3.20 Arduino basic layer (Front and back side) (Arduino.cc n.d.)

Arduino Yún has the ability to act as an access point, but it can also connect to an

existing network with WiFi 802.11b/g/n support as well as security algorithm

networks that support Wired Equivalent Privacy (WEP), Wi-Fi Protected Access

(WPA), and Wi-Fi Protected Access II (WPA2) encryption. When the Yún is

connected to a wired network with an Ethernet cable, it automatically connects with

86

the DHCP. To give static IP address, or make it act as a DHCP server, can be done

by configure in the computer’s interfaces.

With all built-in facilities, Arduino Yún distinguishes itself from other boards in that

it is able to communicate with Linux distribution on board. A wide range of user-

space application, drivers and file management system are the main advantages of

having Linux operation on Adriano board because it offers a compact solution for

possibilities with developers respect, and it is a step forward in the Internet of

Things. The prototyping time can be significantly reduced through the use of shell

and python scripts that are typical of Linux systems (Balducci 2013).

A comparison the relative strength and weakness of other toolkits associate with

other manufacturers had been made, as shown in Table 3.6. The relative strengths

and weaknesses associated with each of the prototyping toolkits reviewed during the

design phase. The strengths and weaknesses help to select a suitable tool for the

usage during development process, based on its characteristics.

Table 3.6 Summary of strengths and weaknesses from the existing toolkits

Toolkits Strengths Weaknesses

d.tools • Wide choice of I/O devices,

including embedded screen.

• Plug & Play components. This

makes prototyping practicable.

• IDE makes development easier than

Linux.

• Large amount of supporting in

hardware is required. This may

increase complicated barriers towards

rapid development.

• Costumed interface platform is not

widely used.

Beagleboard • Better hardware specification and

good set of input/output features.

• Installed Linux operation system.

• Lack of wireless communication,

makes it less mobility.

• Does not have a supported user

graphic interface. For beginner users,

this makes Beagleboard harder to

develop source code in command

terminal.

87

Raspberry

Pi

• Linux computer with video

processing.

• CPU is 40 times faster and has

capability to run multitasked

processes.

• Have large and active communities

to support to support.

• Lack of interface with external

sensors.

Intel Edison • Intel Atom system-on-a-chip.

• Integrated Wi-Fi, Bluetooth,

memory, and storage.

• A web server on board. It supports

mainly Internet of Thing platform.

• Costly

• Required advance programming

skills.

All models are all readily available, affordable, portable size (around 2x3 inches) and

they can all be used for creating digital gadgets or modern IoTs. Each of them has

the differences that make each of these gadgets shine in their own type of

applications.

Firstly, the Arduino, Raspberry Pi, and BeagleBone are found inexpensive at under

£30. Also worthy of note is that processor clock speed of the Arduino is about forty

times slower than the other two. This makes the BeagleBone and the Raspberry Pi

have a better performance. The reason for this is that they both run the Linux OS.

This OS makes these platforms as tiny computers which are capable of doing

multiple tasks at the same time. However, these two still require external flash

memory (SD Card for Raspberry and Mico-SD Card for BeagleBone). In contrast,

the Arduino is simple. It can run one program and it programmed in level C++.

Secondly, Arduino is found to easily interface with a wide variety of sensors and

effectors without external circuitry. It is recommended for applications that need to

interface with external sensors. There are different version of Arduino board the

operate at different voltages (3.3 – 5 V) to make it easier to connect to external

devices, and they come with a small size, inexpensive, embedded system on a chip

microprocessor from Atmel. BeagleBone only operates with 3.3V and will require a

resistor or other external circuitry to interface to some devices. Both the Arduino and

BeagleBone have analog to digital interfaces that easily connect components that

output varying voltages.

88

Next, the Arduino is recommended as the least power used of the bunch, although,

the BeagleBone is better in terms of computer power per watt. However, the Arduino

has can work with a wide range of input voltages. This allows it to run from a variety

of different types of batteries and keep working until the power is off.

Lastly, for applications that connect to Internet, the BeagleBone and Raspberry Pi

and Intel Edison are considered better than most of the Arduino boards because they

are based OS as tiny computers with Ethernet interfaces and USB, so they can

connect to the network relatively painlessly. Edison is at the high end of the

brunch where it comes with all built-in components that are needed to build an IoT

projects and support advanced network capabilities. However, Intel Edison is cost

twice but the processor speed is lower than others because it is meant to be deeply

embedded IoT computing which reduce the power consumption for the portable

application.

More recently, the Yún was introduced to compete with other toolkits, an application

processor running Linux, and modern flexible connectivity (e.g. Ethernet, WiFi, and

USB) with the same form factors as the typical Arduino. The Yún can be ordered in

store for £38 which is a price that at a first glance competes with BeagleBone. But

the applications for which these two products are targeted are very different. The

Beagle boards are meant to run all process in full Linux environment, while the Yún

is made to interface the sensors and actuators with the networked (either wire or

wireless) or 3rd party web services.

3.6 Communication channels

In the hospital, two groups of patients can be found. First group are patients who

cannot move and lay down on the bed. On other hand are patients who can move

around the hospital’s ward. In order to achieve the objective of real-time monitoring,

both wired and wireless communications should be provided to use in both

situations.

Wired connection is provided for a fixed location system for patients who cannot

move and spend time in their bed. Most microcontrollers are supported through a

serial communication over the USB and appeared as a virtual comport. Serial

monitoring interface is included in Arduino IDE allows simple textual data to be sent

89

from a microcontroller and displayed on the computer screen. Moreover, a

microcontroller can be powered via USB without require an external power supply.

Another wired connection within local area network (LAN) is provided using

Ethernet protocol to the Internet. It is a trend to be more reliable, better performance

in a local-based environment with a theoretical maximum speed of 100 Mbps, and

likely more secured than a wireless connection. However, a wired network required

physical cables that connect a machine to the router. Although this does not lend the

design well to mobility, wired connections typically cost less and reduce the battery

life of the microcontroller.

Wireless connection is provided to support mobility system that can be carried along

within the hospital. An available add-on part such as WiFi Shield, it allows the

connection to microcontroller board and the Internet wirelessly using 802.11

wireless specifications (Wi-Fi). For the most part, wireless connection is reliable. In

this way, a proposed prototype system can be measured and collected information in

real-time from the sensor. Thus, a proposed design is more likely to be achieved

according to a major challenge for a continuous and seamless connectivity in this

case.

3.6.1 Network setting

The structure of the IoT could have the similarity as the other Internet applications.

In the low level, the device needs to be connected with Internet and other online

applications, where the applications communicate using HTTP or HTTPS. The data

is transmission similarly to the current done by either using DNS or TCP/IP.

According to the article ‘Networking Best Practices for Large Deployments2, it said

that Google apps exist in a multi-tenant server environment. All the service shares

the same IPv4 address space with a specific hostname, such as mail.google.com

or drive.google.com. Hence, the network and specific protocol are presented

in as Table 3.7.

The generally hospital’s network is constructed based on the enterprise network

architecture where multiple devices (i.e. mobile phone, workstation, IP phone,

surveillances and monitoring devices) are requiring IP network connectivity, large

capacity network infrastructure is provided to support high bandwidth demands for

2 http://goo.gl/L0ZzlG

90

telemedicine, and wireless facility is available for mobile carts and wireless medical

devices and also covers to visitors. Both wired and wireless combination usually

found in the hospital infrastructure where the original wired network architecture

deploying the wireless network to realize the wireless coverage of all building and

wards, similarly to Figure 3.9.

Table 3.7 Protocol stack of the designed prototype

Protocol stack

Layers Web-application

(Internet Protocol)

Prototype (Arduino)

Application Layer HTTP/HTTPS HTTP

Transport Layer TCP (APIs) TCP

Network Layer IPv4 IPv4/IPv6

Ethernet: 802.3

Wireless: 802.11

Data Layer XML/JSON XML/JSON

Access	Point

Internet

Remote	monitoring
(outside	local	network)

Micro
Controller

Local	configured	(WIFI)	Network
Bedside	display

Wired

Cloud	Storage

Wireless

Switch

Wired

Remote	monitoring
(local	network)

Wireless

Local	gateway

Figure 3.21 Simulated hospital network setting

91

A. Create a virtual Wi-Fi network

The Wi-Fi is based on IEEE 802.11 are the common standard of constructing

hospital wireless network. The wireless access points are used to manage a

centralized authentication and control access to a network. To simulate the similar

environment, a local virtual Wi-Fi network was created. It had been configured to

connect to another network and provides Internet connectivity as term of ‘virtual

router’. At the end, the data from sensor reading will be uploaded on cloud storage.

This Wi-Fi network was followed the latest IEEE 802.11n standard which is

currently the fastest option for the wireless system, and it commonly supports over

IP and MAC address. This Wi-Fi network uses SSID parameter for network name

identification and KEY parameter for a WPA2 Personal Encryption with minimum

of 8 characters password.

B. Configuring the on-board Wi-Fi

This virtual network also has capability to integrate with other features from the

Wireless Hosted Network API’s built-in that came with a modern System

Operations. Two scenarios were tested:

• One computer laptop using its Ethernet connection for the Internet access and

its Wi-Fi adapter to broadcast.

• A mobile modem avaliable with 3G or 4G connectivity.

Ethernet and Wi-Fi connection

Arduino Yún has two processors on board. One is an ATmega32U4 and another one

is an Atheros 9331 with Linux OS and the OpenWRT wireless stack called,

‘OpenWrt-Yun that enables the board to connect to WiFi and Ethernet networks.

OpenWrt-Yun is described as a Linux distribution for embedded devices which

supports IEEE 802.11b/g/n for Wi-Fi connection and IEEE 802.3 10/100Mbit/s for

wired port.

When interfacing with the OpenWrt-Yun system, there are two methods to configure

the system: using command line or a web page that allows configuring. The web

interface called ‘LuCi’ gives the access to the setting as needed for maintaining the

Wi-Fi connection. We preferred to use web interface instead of command line

because it reduces all the complexity and offered a fast and straightforward

92

experience in setting up the Yún. Moreover, it provides an alternative way to use

web APIs to communicate to Arduino sketch directly through browser.

When the Yún is powered, it will automatically act as an access point and it will

create a Wi-Fi network named ‘ArduinoYun-xxxxxxxxx’, and then makes a

connection to this network useing computer’s network management. Once the

Arduino board obtained an IP address, we navigate a web browser to

‘http://arduino.local’ or ‘192.168.240.1’.

Select the specified an ad-hoc network, security type, and enter the password. The

Arduino Yún is able to connect to unencrypted networks, as well as networks that

support WEP, WPA, and WPA2 encryption. After pressed the ‘Configure & Restart

icon’, the board will be reset itself and join the specified network. The Arduino’s

network will shut down after a few moments.

Once the device have been identified and successfully become “Online”. It can be

operated and monitored by using the Bridge library. Bridge commands from the

32U4 are interpreted by Python on the AR9331. Its role is to execute programs on

the Linux side when asked by Arduino, provide a shared space for sharing sensor

reading data between the Arduino and the Internet, and receiving commands from

the Internet and passing them directly to the Arduino.

3G and 4G mobile network

After the board is become ‘Online’, it is required to install the modem driver and

related packages before configuration the specific modem and network. To do that,

the following packages were installed to the board using the command line over

Secure Shell (SSH). The command are available from the OpenWrt.org3:

oot@Arduino:~# opkg install kmod-usb-serial-option kmod-usb-serial-wwan
luci-proto-3g usb-modeswitch-data usb-modeswitch

3 https://github.com/openwrt/packages

93

Table 3.8 Packes for mobile modem connection

Packages Description

kmod-usb-serial-option Modem drivers.
kmod-usb-serial-wwan Modem drivers.
luci-proto-3g Web-interface for configuration of 3G devices.
usb-modeswitch-data Database for modeswitch
usb-modeswitch Handles mode switching devices.

For 3G/UMTS and 4G/LTE networks the following settings are essential to get the

modem working, see Table 3.9:

Table 3.9 Configuration detail to connect Arduino Yún to 3G modem

Required parameter Description

APN uk.lebara.mobi

SIM PIN None (if any)

Username wap

Password wap

Modem interface /dev/tty/USB0

3.7 Software design

From the interviews, the target users of this system are mostly nursing staffs. They

gave the clearly requirements that the user interface should be simple and intuitive.

As the system is not necessarily aimed at high computer skilled users, it should not

require any special training or high level of computer knowledge to successfully run

a prototype.

In general, a user interface should be clear, concise and easy to use. Three keywords

sum up the main aims of good design.

• Simplicity

• Consistency

• Familiarity

94

Likewise, the complex operation functions should be minimised and the results

should be presented in a clear and concise manner displayed similar to a familiar

form, currently used in the hospital.

When creating the user interface for the system, two stage design process was done;

Design and Implementation. The design stage is focused on verifying the best way to

enter data and control the input of that information as well as identifying the

optimum way to display the result. This way mostly conducted by interviewing and

observing the processes done in the hospital. The second stage included coding,

testing, and improving interface to the overall requirements.

3.7.1 Given requirements

• User interface design required a good understanding of the user’s needs.

• Summary daily data in form of chart or graph with the trend line.

• Alerts to responsible nurses when trigger criteria is not fulfilled:

o Catherised patient produced urine output less than expected hourly

guideline (see Table 3.10).

o Non-catherised patient produced urine output less than 8 hourly

guideline.

o Daily goal not being achieved.

• Hourly rows background is set to ‘Yellow’ as defaulted to reminder the nurse

to calculate 4 hourly running total volumes.

• Display the information either on the computer or portable tablet.

• Use calculated weight based on height as shown in guide below.

Table 3.10 Urine measurement guideline form the Royal Bournemouth Hospital

Height

(inches)

Height

(cm)

Calculated

weight

(kg)

Hourly 8Hrs 16Hrs 24Hrs

54 - 61 138- 155 40 - 50 20 160 320 480

62 - 67 158 -169 51 – 60 25 200 400 600

68 – 72 170 – 183 61 – 70 30 240 480 720

73 – 77 184 – 195 71 – 80 35 280 560 840

≥ 78 ≥ 196 ≥ 81 40 320 640 960

95

The rules were developed by condition statement expressions (also known as ‘IF-

ELSE logical functions’) which perform in different conditions depending on

whether a criteria-specified Boolean evaluates to true or false. In this case patient’s

height and calculated weight are the important parameter to check which statement

patient is suitable.

The following statements are defined according from the given guideline:

• If patient has height (inches) between 54 and 61 and/or calculated weight (kg)

between 40 and 50. The minimum urine produced hourly should be 20 ml,

8hourly should be 160 ml; 16hourly should be 320 ml and daily should be 480

ml.

• But if patient has height (inches) between 62 and 67 and/or calculated weight

(kg) between 51 and 60. The minimum urine produced hourly should be 25 ml,

8hourly should be 200 ml; 16hourly should be 400 ml and daily should be 600

ml.

• But if patient has height (inches) between 68 and 72 and/or calculated weight

(kg) between 61 and 70. The minimum urine produced hourly should be 30 ml,

8hourly should be 240 ml; 16hourly should be 480 ml and daily should be 720

ml.

• But if patient has height (inches) between 73 and 77 and/or calculated weight

(kg) between 61 and 70. The minimum urine produced hourly should be 35 ml,

8hourly should be 280 ml; 16hourly should be 560 ml and daily should be 840

ml.

• But if patient has height (inches) more than 78 and/or calculated weight (kg)

more than 81. The minimum urine produced hourly should be 40 ml, 8hourly

should be 320 ml; 16hourly should be 640 ml and daily should be 960 ml.

• Else, patient minimum urine produced should be 20.

96

Start

Enter weight
input

If weight ≤ 50
kg

If weight >50
&& ≤ 60 kg

If weight > 60
&& ≤ 70 kg

If weight >70
&& ≤ 80 kg

No

No

No

No

Goal is 20 ml/
hour Yes

Goal is 25 ml/
hour

Goal is 30 ml/
hour

Goal is 35 ml/
hour

Goal is 40 ml/
hour

Yes

Yes

Yes

Is goal has
been achived? AlertsNo

Continue monitorYes End

Figure 3.22 If-Elase logical functions for rine measurement guideline

97

Start

Initialize all
controller setting

Calibrate Sensors

Reading Sensors
signals

Running Loop()

Is sensor
detecting

drop?

Is sending
data() trigger

working?

No

Serial
Monitoring

Display

Increment the
counter

Yes

Display error(s)

Is internet
connection
success?

No

Server
Authentication

Yes

Is posting
success?

Display error(s)

No

Posting into
Spreadsheets

Returning
counter data

Yes

Yes

Yes

No

Compare with
monitoring goal

(If-Else
statements)

Is the goal has
been

achieved?
Alerts via emailNo

Figure 3.23 System flow chart

98

The operation flow chart is designed and presented in

Figure 3.23. It starts when the microcontroller is powered. The system will called the

function setup() to initialize variables, pin modes and using included libraries. The

setup function will only run once, after each power up or reset of the microcontroller

board. Then, the Arduino takes sensor readings for five seconds during the start-up

and tracks the highest and lowest values it gets from the analog signals. These sensor

readings during the first five seconds of the sketch execution define the minimum

and maximum of expected values for the readings taken during the loop.

After initialized and set the initial values, the loop() function will run loops

consecutively according to programing. In the loop() part, the most important is

detection function. If the drop is detected the number of drops will be added in to

declared variables and display number of drops in the screen, while the timer is

modified using millis() function to return the number of milliseconds since the

Arduino board began running the loop cycle. When the timer is reached 10 minutes

or 600,000 ms (as defaulted setting), the dataSend() will be called where it returns

the value of total drops in .CVS object and set it the counted value back to 0, as

consequently.

Next, the ATmega32U4 will invoke the communication channel to the Atheros 9331

processor using Bridge.begin() function. It is a blocking function. Once it has been

called, the operation will be paused nearly 1 second until it has completed. If there is

connectivity between microcontroller and the Internet, it will return code of zero

indicates the success of connection. If not, it means connecting failure; the function

returns and displays any error messages.

Once it had succeed, the operation will continue proceed to identify user performed

to an authentication server. If the dataSending() is completed the .CSV object will be

posted into Google Spreadsheets, but if not, will read and display any error

messages. In the Google Spreadsheet, the built-in plotting functions were also used

to plot received data as it comes in.

It is designed to establish communication between two different platforms because it

acquires a signal reading from the sensors and microcontroller board, which is

processed. This processing implies a control signal, at the same time, the system will

send data to storage and display in computer device screen. For this reason, the serial

99

communication must support both wired and wireless while the system is acquiring

data, a control signal is received reading input from the sensors to generate a

particular function to send data into the Cloud.

3.7.2 Data acquisition

Data acquisition is the process of sampling signals that measure real world physical

conditions and converting the resulting samples into digital numeric values that can

be manipulated by a computer (National Instruments n.d.). As described in Guo et al

(2014), defined the term of automated data acquisition is receiving, analysing and

displaying important information without intervention from the operator (Guo et al.

2014). The examples are included the widespread use of level detectors, bubble

detectors and pressure alerts and alarms to notify the abnormal clinical status

(Raschke et al. 1998).

To facilitate running data acquisition module, we adopted a simple and extended

framework from TEMBOO (https://temboo.com/). It was introduced in 2013 as a

repository of programming processes that allows developers to connect to code

utilities, databases and more than hundred APIs for online services, and recently

partnered with Arduino (Pullen 2014). TEMBOO is one of the invaluable developer

tools to application builders. It will save thousands of working hours and, their

integrated service between hardware and software means for the future of the

Internet of Things, also known as, hardware-based online processing device

(Rodriguez 2013). Connecting to Internet services is the greatest advantage of

Arduino Yún and TEMBOO service. The communication between hardware and

software platform works by having a comma-seperted values file (CSV) formatted

data record send TEMBOO. Table 3.11 is an example inputs needed to be specified

to those processes.

Table 3.11 CVS file for information sending to Google Sheets

Data Describes (Notes)

Time (Minutes) Return value of timeStamp() function: (millis()/1000/60)

countPI Return value of the sum Photo interrupter sensor increment.

countUS Return value of the sum Ultrasonic sensor increment.

Example: String rowData(now);

100

rowData += ",";
rowData += sensor1Values
rowData += ",";
rowData += sensor2Values

CVS formatted String = “12:00”,240,158
/*(Time, Value 1st Sensor, Value 2nd
Sensor)*/

A general standard for the CVS file format does not exist (Shafranovich 2005).

However, the common format for the .txt/.cvs Internet media type registered with the

Internet Assigned Numbers Authority (IANA) seems to be followed by most

implementation rules:

1. The last record in the file may or may not have an ending line break, and the

file does not required a specific character encoding, byte order, or line

terminator format.

2. All records should have the same number of fields, in the same order.

3. Data within fields is interpreted as a sequence of characters, not as a

sequence of bits or bytes.

4. Adjacent fields must be separated by a single comma. However, CSV

formats vary greatly in this choice of separator character. In particular, in

locales where the comma is used as a decimal separator, semicolon, TAB, or

other characters are used instead.

5. If double-quotes are used to enclose fields, then a double-quote appearing

inside a field must be escaped by preceding it with another double quote.

Time Sensor Model Total No. of Drops

19:27 IR E350:“ Extended Edition”
19:37 US Venture (HC-SR04) “OUT OF RANGE”
19:47 PI OMRON EE-SX461-P11 1285

Year,Make,Model,Description,Price
“19:27”,”IR”,”E350:”Extended Edition””,””
“19:37”,”US”,”Venture(HC-SR04)”,””OUT OF RANGE””
“19:47”,”PI”,"OMRON EE-SX461-P11”,1285

Figure 3.24 Example of common CVS file format

101

Before sending the string into Spreadsheets, a cross application communication

between Arduino board and Google Sheets is required to generate an authorisation

URL that an application can use to complete the authentication process. As stated in

Google Developers blog, any authentication requests to the Google Engine API for

non-public user must be authorised by an authenticated user while keeping the

username, passwords, and other information private (Google Developers 2015).

3.7.3 Spreadsheets and User interface module

The problem found from the process of passing information across the borders of

paper works to electronic records is a labour-intensive task and resource consuming.

In order to reduce nurse workloads, we aimed to collect real-time data by using

online services from programming repository providers. Those services are leading

our proposed system becomes more virtualized. The term of virtualization refers to

the method of allowing the systems to run independently of one another, sharing the

same underlying resources (Jansen and McGregor 2008), this means our proposed

system will be run with a few lines of code with

A. Information Transmission Module

In traditional client-server authentication model the client requests an access-

restricted resource (protected resource) on the server by authenticating with the

server using the resource owner's credentials. In order to provide third-party

applications access to restricted resources, the resource owner shares its credentials

with the third party. This creates several problems and limitations, such as 3rd party

applications required to store the resource for future use, typically a password in

clear-text, or Servers are required to support password authentication, despite the

security weaknesses.

OAuth foundation addresses these issues by introducing an authorization layer and

separating the role of the client from that of the resource owner. The OAuth 2.0

framework is an open standard for authorisation provides client applications a secure

delegated access to server resource on behalf of resource owner which was originally

created in late 2006 (Hardt 2012; Jones and Hardt 2012). OpenID Connect performs

many of the same tasks as OpenID 2.0. Whereas OpenID Connect required of using

resource owner’s credentials to access protected

102

Recently, Google has announced the code engine migration from OpenID version

2.0 to OpenID Conncet which is an authentication layer on top of the OAuth 2.0

protocol for authentication and authorization by April 20, 2015. The Google OAuth

2.0 endpoint supports web server applications that written in most common

programming languages and frameworks, such as PHP, Java, Python, Ruby, and

ASP.NET.

The most widely used protocols and OpenID and OAuth. These protocols have

slightly different functionality and use cases. OpenID provides a user authentication

only, wherare OAuth provides an access to an API of a provider site.

OpenID Connect is a simple identity layer on top of the OAuth 2.0 protocol in

Google Web Server Application. It enables clients to verify the identity of the end-

user based on the authentication performed by an Authorization Server, as well as to

obtain basic profile information about the end-user as illustrated in .

Figure 3.25 OpenID Connect protocol flow (Hardt 2012)

Client is defined as an application making protected resource request on behalf of the

owner and with its authorization. This does not imply any particular implementation

characteristics.

Resources Owner is defined as an entity capable of granting access to a protected

resource. When the resource owner is a person, it is referred to as an end-user.

Authorization Server is defined the server issuing access tokens to the client after

successfully authenticating the resource owner and obtaining authorization.

103

Resource Server is defined the server hosting the protected resources, capable of

accepting and responding to protected resource requests using access tokens.

A. The client requests authorization from the resource owner. The authorization

request can be made directly to the resource owner, or preferably indirectly

via the authorization server as an intermediary.

B. The client receives an authorized grant, which is a credential representing the

resource owner's authorization. The authorization grant type depends on the

method used by the client’s request and the types supported by the

authorization server.

C. The client requests an access token by authenticating with the authorization

server and presenting the authorization grant.

D. The authorization server authenticates the client and validates the

authorization grant, and if valid, issues an access token.

E. The client requests the protected resource from the resource server and

authenticates by presenting the access token.

F. The resource server validates the access token, and if valid, serves the

request.

The combination of a data acquisition module and information transmission module

are collecting data from sensors and sending them from the controller to the storage.

Two type of signal were received from sensory input, and it is applied directly from

both analog and digital pins. Digital signals were received from Photo interrupter

and Ultrasonic. Generally, the digital output value is kept at 0 until interruption

occurs between emitter and receiver; the output will pull up to 1. Analog signals

were received from IR sensor in voltage corresponding to the detection distance.

Data obtained from the sensor reading is saved in a text file (array) in CVS format

for post processing. The serial monitoring function is included in Arduino IDE

installed on a computer, receives the reading from sensors through a serial port and

display on the screen at the moment when sensors were detected signal. Another,

monitoring application is Google Sheets where data is stored on cloud engine and

used for later stage analysed (more details in next section). It was developed by

implementing Google Apps Script to customise automatic functions, such as; update

time logging, sending an alert to nurses, calculate number of drops into millilitres,

104

etc. The acquisition sampling rate can be configured from Arduino source code

itself, ranging from one minute to an hour.

B. User Interface Module

The user interface has been confirmed by interviews, to use a Spreadsheets

application to store and record urine output data for expert analysis at a later stage, it

was decided to reduce the learning curve for using software. The Spreadsheet is the

most widely used End User Computing (EUC) tool, and it is an integral part of the

qualitative analysis and strategic decision-making processes (Madahar 2011).

Indeed, it is multi-purpose and widely used software with simple needs as well as

large companies as an integrated system for informing decision supports (Cunha et

al. 2015).

The Oxford Dictionary (2010) is described a definition of the word ‘Spreadsheets’

as:

“An electronic document in which data is arranged in the rows and columns of a grid

and can be manipulated and used in calculations”

As far as anyone knows, Spreadsheets contain cells in rows and columns, and some

may have specific sets of function defined for the manipulation and presentation of

those data, this issue makes a distributed data to cells can be quite difficult and

complex. Although Spreadsheets are capable of manipulating vast amounts of data,

there is no convenient way for placing data in the Spreadsheets. Typically, an easiest

way to do the transferred a set of data from database into a Spreadsheet is looking up

a file that is stored and copy each record into Spreadsheets. Another conventional

method is retrieving necessary data from a database to input them into a table format.

For this retrieval, it requires user to understand high level knowledge of the database,

as well as the format of the file stored with data. Thus, it might be a very difficult

method for selecting a specific set of data from a data source. Moreover, binding a

data source to a practically cell in Spreadsheet, customised macros and coding need

to be done. Writing macro code requires user who has knowledge of Visual Basic

Programming, Excel objects methods and properties, and Structure Query Language

(SQL).

105

From our point of views, data management needs to support collaboration among

multiple users and at its very core. Second, data management systems need to appeal

to a broader audience of users who are less technically skilled. Third, data

management and the data source need to be integrated seamlessly. It means data

collection; presentation and visualization should be immediately compatible with

any devices.

It has been decided to use Google Drive to store all the data using Googlesheets as

front-end of user interface. Google Drive is one of the popular Cloud service

providers, providing users a cost-effective, and in some cases free, ability to access,

store, collaborate, and disseminate data (Quick and Choo 2014). By using Google

Drive as a data storage has advantages including; a free and secured online Cloud

based storage service with provided tools involved in data collection (Gan and

Okonkwo 2014). It comes with version control, permissions-based sharing and

instant messaging features that enhance the potential for collaboration, enabling

multiple authors to work together in real-time (Rowe et al. 2013).

As a part of Google Drive features, Google launched ‘Google Sheet’, web-based

office suit that allows users to create and edit Spreadsheets online while

collaborating with other users and platforms in real-time. Collaboration features are

the main advantage of this application such task as simultaneous, real-time editing

by a group of people, including chat and commenting with similar functions like

Microsoft Excel. Information collected from any add-on data source from the

Internet can be captured in a worksheet for analysing, tracking, and graphing with

large amounts of data. Functions in Sheets can pull data and information from web-

based sources, updating Spreadsheets, so they remain accurate automatically

(Google 2015).

Google also provided APIs that allows users to create, retrieve, update, and delete,

and collections data in real-time. These APIs scripting based on JavaScript, called

‘Google Apps Script’, and the basic features as listed in

106

Table 3.12.

107

Table 3.12 Features of Google Apps Script

Main

Features

Sub-

feature

Description

ADD

Custom

menus

Extend Google products by adding user-interface elements in

menu bar, with each menu item tied to a function in a script.

Dialog

&

Side bars

Display several types of user-interface elements, such as,

• Alert dialogs: a message and an "OK" button with a

title and alternative buttons.

• Prompt dialogs: a message, a text-input field, and an

"OK" button; a title and alternative buttons are

optional.

• Custom dialogs and side bar: a custom message

display an HTML or UI service.

108

WRITE
Custom

functions

Google Sheets offers hundreds of built-in functions

(AVERAGE, SUM, or VLOOKUP). However, Custom

functions are created using standard JavaScript to support

more complex system.

PUBLISH
Web

apps

It contains a doGet(e) and doPost(e) function, and returns an

HTML, UI, and content service objects.

INTERACT

Other

Google

Service

Google provides more than 30 built-in services for interacting

with data, either internal or external systems including Google

Analytics, Google Drive, Gmail, etc. Additional, Google

Developer blog reported that this feature is based on

JavaScript 1.6, and a few feature from JavaScript 1.7 and 1.8

which is commonly known objects, such as Array, Date, as

well as, mathematical constants and functions, and Object

global object.

With a number of advantages, Google Drive services can be fulfilled the requirement

to store and display patient’s information in secure online server with easy accessible

to authorised staffs for real time monitoring, as well as predict future trends.

Alternatively, the Google Apps Script can be utilized for additional automated

functions. For example, time trigger for the data received from the monitoring

devices, estimate the state of the patient’s health, and automatically inform an alert

to clinicians (in case of patients produced a tiny amount of urine or a container is

full) by email or SMS text via other Google’s services, such as, Gmail, or Google

Text messages.

3.8 Designing tools

3.8.1 Computers

Computers are an additional element involved in this study. The main feature of the

machine is used to develop source code, compiled and upload the source code from

the development environment that is installed on the computers, also validate and

verify the operation output. Two following machines were used in development

process:

109

Table 3.13 Properties of computers

Specification/Computer Laptop Personal Computer

Operation System OS X Windows 7 Enterprise

Model 13-inchMacbook Air (2014) HP EliteDesk 800 G1 SFF

Processor Intel Core i5-1.6GHz Intel Core i5-3.4GHz

Memory 4GB of 1600MHz 4GB

Storage 128GB 500GB

3.8.2 Fritzing (Software)

Knörig and Howell (2010) identified Fritzing as a free Electronic Design

Automation tool (EDAs) for people who are not practicing electrical engineers. It is

open-source and free to use. The advance of graphics formats allows users to

replicate their physical Arduino breadboard circuit using on screen components from

a drag and drop library. Additionally, Knörig et al. (2009) also reported that the aim

of this software is to supports designers and artists of electronic artefacts through

this prototyping barrier. Fritzing offers three alternative views on the circuit: A

breadboard liked view is a classical schematic diagram view, and a PCB design

view (see

Figure 3.26). Such a visualised software can only be described as a positive step

in the drive forwards meeting designers needs for proving them with improved

tools (Loudon et al. 2012).

Figure 3.26 Fritzing Software User Interface (Knörig et al. 2009)

110

3.9 Summary

The proposed system architecture was discussed in the beginning of this Chapter.

Our approach is not a replacement of the currently installed system in the Royal

Bournemouth Hospital but it is a proof-of-concept of alternative solution to improve

the performance for these systems in the nearly future.

The system utilizes off-the-shelf sensors as a data acquisition to detect a multitude of

physical drop attributes. The sensors communicate directly with a microcontroller

that provides ubiquitous communication, making it possible to access and sending

information anywhere anytime. This system is presented under a concept of things

that have capable to connect to Internet and present information from the sensor’s

data feed, as known as ‘The Internet of Things’. This concept allows sensors to

communicate information to people and system where in the most cases, this

information is difficult to access or it was collected manually and frequently.

Meanwhile, nurses are able to control and automated tasks remotely. Moreover, the

IoT can help minimize the use of resources due to the volume and variety of data that

will generated

A local area network provides the used for transmission the data from patients to a

central databased in cloud computing platform. The Cloud computing is used to

store, analyse and display a large amount of data that is generated as a result from

connecting things. We believed that the proposed system has the capability of

monitoring a large number of patients and provides further improvement to clinical

practice and hospitals. Some relevant issues as well as an operational overview were

also discussed. A development of prototype system will be discussed in the

following chapter.

111

Chapter 4. Development of an Prototyping
The development of the physical prototype products is described in this study,

communication and software prototype are also discusses. The approach adopted to

realise a complete measurement, including communication and software system is

detailed in sections 4.2 and 4.3, respectively.

4.1 Initial prototype system

The first version was focusing to evaluate the each custom sensor whether it is

suitable (an overview of proposed techniques is given in Figure 4.1. and make a

comparison of the exposed method for drop volumetric by detecting the same

individual drop. The sensors were placed at sides of the closed environment, as

shown in Figure 4.1. These sensors have two similar components; Emitter and

Detector (or Receiver). An emitter is part where signals are sent to detect a drop, and

a detector is sensed the change of the signal and amplifies it to microcontroller.

When the drop falls down, it will change the path of the light for photo interrupter

and infrared sensor, or sound wave for ultrasonic sensor. So the signal intensity

received by detector is changed as well.

Figure 4.1 Model design for initial prototype

112

4.1.1 Initial hardware setup

In initial prototype, the fluid urine flows into the drip chamber through a 4-mm

internal diameter and 30-cm length flexible plastic tube. One end of the output tube

is connected to the closed container (11 inches length, 9 inches width, and 6 inches

depth) where we placed a set of sensors inside the container, as present in Figure 4.3.

The sealed container is added to facilitate the de-coupling; during the detection of

the signals from the unwanted noises (e.g. sunlight or noises from other sources that

may affect ultrasonic). Another end of the tube is connected to an intravenous bag on

a pole to intravenous lines and an infusion needle. The purpose of the pole is to

ensure that input tube always vertical and the tube does not hinder the flow of urine

and it does not interface with the operation of the measurement. The height was set

about 150 cm. All flow regulator devices, such as lure-connectors and flow control

device were removed because we wanted to reduce the emptying duration and these

devices may increase the resistance to flow in system, making operation less

efficient.

The photo interrupter is used in the light intensity detection as a result of the

passaged drop. It attached at the edge of a medical dropper to provide stable optical

alignment. The medical dropper is adjusted vertical so that drops interrupt the beam

as they form and then fall through a gap between emitter and phototransistor. The

digital output of phototransistor used to calculate drop count. If the drop interrupted

between emitter and receiver, the digital signal is pulled up to 1 until interruption is

gone and it will be kept at.

void loop() {
val = ditialRead(12) // (defined signal pin as pin12)

if (val = 1) {
 count = count++;

 }

The Sharp infrared sensor is placed at the far back inside the container. The theory of

operation behind this arrangement is that the light will be emitted from the source

and will reflect back into the detector after it detected the drop or other objects at the

known reflection distance. The distance between light source and drop reflection is

around 3.5 cm. In the case with no drop, the reflection will be occurred another end,

around 6.3 cm from light source. Moreover, the known distance of the object

113

refection can be determined by increase or decrease the value of the resistor. For the

closer distance, it can be adjusted by adding additional small value of the resistor

into a circuit.

 To determine the optimal reflection distance, the ‘DistanceGP2Y0A21YK.h’ library

has been modified and used for creating a data set of the two reflection distances.

This library is an open-source, written by Jeroen Doggen4. The outcomes from this

test are presented in Table 4.1 and Figure 4.2.

Table 4.1 A data set from IR sensor using analogRead()

Reflection point Maximum Minimum Average
Standard

Deviation

6.3cm (Container’s

wall)

6.4767 6.2874 6.4154 0.07

3.5cm (Dripping

point)

3.6061 3.4416 3.6061 0.08

Figure 4.2 Sample of experiment results measure two different reflection distances.

4 Appendix 7

Determined drop-distance

114

Once the drop passed through the reflection beam, output from sensor reading is

received range between 3.28 - 3.47 cm. In the case of no drops, the light will be

reflected with the container wall where the output range is between 6.28 and 6.47

cm.

In order to count how many drops have been passed the light beam, the control

sketch below were implemented to continually read analog signal and convert it into

distance, then check whether the distance value is more than 3 cm and less than 4

cm.

#include <DistanceGP2Y0A21YK.h>
float distance;

void loop() {

distance = Dist.getDistanceCentimeter();
if ((distance >= 3) && (distance < 4)) {
 count = count++;
 if ((distance < 3) || (distance > 4)) {
 Serial.prinln “Out of Range”;
}

}

Similar principle as the reflection IR-sensor, but ultrasonic sensor use sound instead

of light for ranging and it is placed on the side inside the container. The
‘Ultrasonic.h’ is modified and used to reading digital signals from ultrasonic sensor.

It is original written by Javier Rodrigo5. The distance between ultrasound emitter and

the reflection position is around 3.5 cm, and 6.2 cm away from another side of the

container. If the distance value is more than 3 and less than 4 cm, the total of drop-

counting will be increased by 1.

#include <Ultrasonic.h>
Ultrasonic ultrasonic (5,6) // (define Trigger PIN as pin5, and Echo Pin as
pin 6)

void loop() {

float distance = ultrasonic.Ranging(CM);
if ((distance >= 3) && (distance < 4)) {
 count = count++;
 if ((distance < 3) || (distance > 4)) {
 Serial.prinln “Out of Range”;
}

}

5 Appendix 5

115

Figure 4.3 Initial Prototype setup

4.1.2 Evaluation of the initial prototype

The liquid amount from 5, 10, 15, 20, and 25 ml were being tested. In this scenario is

3 sensors detect the same drops that fall through the emitters and recovers. For a

given time instant t, the collected data can be denoted as; At = ([PIt,1, IRt,1,USt,1],

[PIt,2, IRt,2,USt,2],…, [PIt,n, IRt,n,USt,n]), where n is the total number of drop collected

by each sensors, and A is amount input liquid. For each of these amounts, fifteen

experiments were carried out. The results from the measurements are presented in

Figure 4.4.

The comparisons between average values from sensor reading, estimation using

linear fitting, and the assumption that the medical dropper delivers 20 drops per ml

(with acceptance error value should have per-drop volume of 0.05 ±0.005ml) as

stated in the IEC 60601-2-24 (IEC International Electrotechnical Commission 1998)

are illustrated in

116

Figure 4.5.

-

100.00	

200.00	

300.00	

400.00	

500.00	

600.00	

1 2 3 4 5

Photo	Interrupter

Linear

Mean

Standard

Linear		(Mean)

0

100

200

300

400

500

600

1 2 3 4 5

Ultrasonic

Linear

Mean

Standard

Linear		(Mean)

0

100

200

300

400

500

600

1 2 3 4 5

Infrared

Linear

Mean

Standard

Linear		(Mean)

117

R²	=	0.92326
R²	=	1

R²	=	0.80503

R²	=	0.83353

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 10 20 30 40 50 60 70 80

PI USP–NF US IR

y	=	-0.5821x	+	99.257
R²	=	0.08661

y	=	0.1929x	+	21.59
R²	=	0.03451

y	=	0.3071x	+	59.81
R²	=	0.00617

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5	ml

PI US IR Linear		(PI) Linear		(US) Linear		(IR)

y	=	-0.2536x	+	194.03
R²	=	0.0132

y	=	0.6464x	+	40.095
R²	=	0.09264

y	=	3.1071x	+	103.41
R²	=	0.18381

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10	ml

PI US IR Linear		(PI) Linear		(US) Linear		(IR)

118

Figure 4.4 The values of 3 sensors reading from in different amount of input liquid

y	=	-0.6714x	+	296.37
R²	=	0.08337

y	=	0.625x	+	64.733
R²	=	0.03864

y	=	2.5857x	+	176.78
R²	=	0.19988

0
50

100
150
200
250
300
350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15	ml

PI US IR Linear		(PI) Linear		(US) Linear		(IR)

y	=	-0.0857x	+	390.35
R²	=	0.00131

y	=	-0.6179x	+	94.61
R²	=	0.02425

y	=	-1.0714x	+	301.44
R²	=	0.00542

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20	ml

PI US IR Linear		(PI) Linear		(US) Linear		(IR)

y	=	-0.9536x	+	487.16
R²	=	0.04944

y	=	-1.0571x	+	137.86
R²	=	0.0374

y	=	2.8429x	+	341.72
R²	=	0.0327

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

25	ml

PI US IR Linear		(PI) Linear		(US) Linear		(IR)

119

Figure 4.5 Total drop count of each sensor in different amount of liquid

-

100.00	

200.00	

300.00	

400.00	

500.00	

600.00	

1 2 3 4 5

Photo	Interrupter

Linear

Mean

Standard

Linear		(Mean)

0

100

200

300

400

500

600

1 2 3 4 5

Ultrasonic

Linear

Mean

Standard

Linear		(Mean)

0

100

200

300

400

500

600

1 2 3 4 5

Infrared

Linear

Mean

Standard

Linear		(Mean)

120

Based on this information in Figure 4.5, clearly the results from photo interrupter are

more stable, repeatable and controllable to detect drops at a constant rate. Both

estimated value and mean values of drop detecting from this sensor are well within

the required IEC-standard, as compared the reference point of 0.05 ±0.005ml per

drop whereas ultrasonic sensor is the least effective choice. It should be pointed out

that the experimental were taken place in a closed environment and would cause the

sound wave bounce several time against the obstacles before reaching the receiver

due to the multipath propagation effects of sound waves. These collisions may

bounce off in a strange pattern causing lost echoes or shorten length of sound wave

which directly affected the measurements.

It has been observed that the pulsed echo ultrasonic measurements suffer from some

limitations, including that they need to be placed in the stable position for a correct

angle, also the amplitude results in the receiver were depended on the obstacles that

are between emitter and receiver. The use of the ultrasonic sensor may present future

disadvantages in the clinical used, like the fact that the position of the sensor will be

move when a patient moves, it will lead the ultrasonic detection may be in accurate,

or even not work. Besides, having in mind that the material of the drip chamber is

made of polyurethance, to detect the drop, this technique is required more advanced

sensor to emit high frequency wave trough the thickness of drip chamber.

From these plots, the average weight of individual is presented in

121

Table 4.2. The results were come from the following equation:

 !"#$ℎ&(()*+) 	=
/*012"	(20)

3*&40	5*16&"(()*+
4.1

122

Table 4.2 The average drop volumes in 5 different liquid input from each sensor

Sensor/Amount PI US IR

Calculation Linear Mean Linear Mean Linear Mean
5 ml 0.0519 0.05285 0.22169 0.21614 0.08151 0.0803
Error (%) 3.82 5.7 343.38 332.28 63.02 60.6
10 ml 0.05222 0.05208 0.21478 0.22091 0.08407 0.07796
Error (%) 4.4 4.16 329.56 341.82 68.14 55.92
15 ml 0.05239 0.05155 0.20214 0.21511 0.06958 0.07596
Error (%) 4.78 3.1 304.28 330.22 39.16 51.92
20 ml 0.05146 0.05133 0.24316 0.22305 0.07143 0.06829
Error (%) 2.92 2.6 386.32 346.1 42.86 36.58
25 ml 0.05396 0.05213 0.22435 0.1932 0.06056 0.06859
Error (%) 7.92 4.26 348.7 286.4 21.12 37.18

4.1.3 Feedback

After demonstrated this version to our consulters, some concerns were raised about

the operation procedure:

Firstly, adding more sensors means more power consumption. If the batteries need to

be replaced often, it will not be much benefit, and might consider adding more tasks

to nurse. By expanding functionalities, the number of wiring sensors will be

increased but the mobility will be decreased.

Secondly, the flow control equipment had been removed. This makes the prototype

lacks the ability to adjust the acquisition sample rate. When the volume of liquid is

changed, it will be affected directly to the dripping rate and the drop size generated

by the liquid level transfused. Given the assumption that patient produces normal

amount of urine (or even worse, if they have diabetes), the error gap between the

actual urine produced and the sensor reading may increase or may be exceed more

than the requirements.

In additional, this prototype was relied on a careful positioning of the sensors in

order to function properly. The problem with careful positioning is aggravated by the

fact that after the nurse staff emptied the collecting bag, they would still have to

connect the bag to the prototype, and possibly the position might be changed while

doing so.

123

4.2 The improved version

A new improved version was designed to overcome the problems of the previous

device. By modified some hardware supplies and added two load cells to determine

volume using weight. However a fixed-scale balance that presented in Otero et al.

(2010b) was considered not sufficiently to carry while patients are moving. To

increase the portability of the prototype, we added two hanging weight scales

instead. They were made from bar strain gauge based load cells connected with ‘S’

shaped hooks. These hooks designed to hang the prototype from either the bedside or

a wheelchair, and to ensure that the input tube is always lie horizon for the proper

flows. This issue has been mentioned in Van Santvliet and Ludwig (2004), they

reported that 8.5% smaller drop were delivered due to the changing the dispensing

angle to 45° angle compared to the vertical (90°), as well as different volume in

variety of drop shapes. The theory of drop shape is varying on the tilt manner is

confirmed by Mazzola et al. (2012), they found that two characteristic lengths of the

drop shape that change with tilt grade.

4.2.1 Second Prototype setup

Only water was used to simulate the flow of urine. The input liquid container was

placed around 35 cm above collecting bag. A commercial urine container from

Unomedical is used to collect the fluid sample. It has capable to contain urine up to

2.5 litres. The urine meter is attached with a dropper (Intrafix® SafeSet), supplied by

BRAUN and it equipped with a photo interrupter sensor. Another end of dropper is

connected to another dropper where the dripping rate is controlled, the 3-D model

was also built to generate for helping standardize on details and drafting, see Figure

4.6.

124

Figure 4.6 3-D model design for the second prototype

HX711 amplifiers are connected with each load cells to increase the output signal for

the Arduino board. HX711 is a precision 24-bit analog-to-digital converter (ADC)

designed for weigh scales and industrial control applications to interface directly

with a bridge sensor.

From the datasheet, the HX711 has two selectable input channels. Channel A can be

programmed with a gain of 128 or 64, corresponding to a full-scale differential input

voltage of ±20mV or ±40mV, respectively, when it powered with a 5V. Channel B

has a fixed gain of 32. It comes with an On-chip power supply regulator eliminates

the need for an external supply regulator to provide analog power for the ADC and

the sensor. Clock input is flexible. It can be from an external clock source, a crystal,

or the on-chip oscillator that does not require any external component.

This prototype was built to obtain multiple measures of the volume of liquid released

by the container. The acquisition sampling rate can be configured manually which

regulates the flow rate by nurse, then, the urine will flow though the 12.7 inches

length of plastic tube to the second dripping chamber where it is detecting the drops

before it go to the collected urine. The scales are configured to send measures every

10 minutes. The reason of this configure is to retrieved data more often but also

125

reduced power consumption and the internet bandwidth when posting data to the

storage. The density of urine has been estimated average value of approximately 1.02

g/ml from range between 1.005 and 1.035 g/ml. Thus by using this value, the

additional error in the measurement will be added approximately 1.5%.

Despite from the physical prototype, a real-time processor was developed based

upon a new design and evaluated. We can estimate the volume flow rate from

average numbers of drop that passed through interrupter sensor multiplies by the

weight of each drop in that period. Given is total of drop-count Ni taken at Timei

where Wi is total weight obtained since prototype has started. Assumed average

value of density of urine is 1.02. Therefore, the amount of urine produced during the

interval at Time(i), measured in ml/g will be:

/*012"	 =
2477
density

At	TimeB; 	/*012"	 =
(!B)

DE
BFG
1.02

4.2

4.2.2 Evaluation of the new improved prototype

The equipment in the experiment was set as shown in Figure 4.7 and the volumes

were tested with different flowrate as shown in Table 4.3. From the previous

experiments, we knew that the most important concern is water level in the upper-

container (h) that has to be constant throughout the experiments. The height was set

around 15 cm for 500 ml liquid. Each flowrate had been tested for 15 times for 2

hours duration. The calibration was done for the IV Set corresponds to the standard.

The weight sensors had been calibrated every time when the collecting bag is

emptied. The weight data were collected at every 10 minutes and a photo interrupter

sensor also equipped for solution drop counting. The drop volume of each setting

was calculated as described in Equation 4.2 and will be compared with the reference

value at 0.05±0.005.

Although the precise of these values depends on the patient’s condition and weight,

for usually 10 ml of urine per hour correspond to severe oliguria patient. 50 ml per

126

hour corresponds to a normal—non kidney injured patient, and up to 250 ml/hour

corresponds to polyuria patient.

Figure 4.7 The experiment setting

Figure 4.8 15 cm height of 500 ml in a container

127

Table 4.3 Comparison of drop volumes in different flowrate

Flowrate

(ml/hour)

Counted-drops

(MEAN±STD)

Weight Sensors (grams)

(MEAN±STD)

Avg.

Drop-volume (ml)

10 197.4±8.84 10.08 0.0510

50 974.6±9.80 51.08 0.0524

100 1942.2±10.39 102.29 0.0527

250 4874.5±14.60 258.43 0.0530

Figure 4.9 The drop volumes of 20drop/ml at flowrate 50, 100, 250 ml/h

The average drop volumes are calculated from four different flowrates of same

amount of input liquid were acceptable within ±10% At the highest flowrate, the

calculated volume per drop is around 0.053 ml whereas the slowest flow rate	value

is 0.051 ml per drop. As expected, when increasing the urine production rate, the

weight of each drop is increased but the difference between these two values is

considered very small and does not much affect the overall accuracy.

51.08
102.18

154.69
210.73

260.54
316.54

363.55
406.83

459.94
504.12

102.29

205.57

308.45

410.44

511.07

258.43

516.62

0.00

100.00

200.00

300.00

400.00

500.00

1 2 3 4 5 6 7 8 9 10

W
ei
gh

t	(
gr
am

s)

Measurement	period	(hours)

Weight	measuremtn	in	different	flowrate
(50,	100,	250	ml	/	hr)	

50ml/hr 100ml/hr 250ml/hr

128

The average drop volumes are calculated from four different flowrates, equal

0.0522.Table 2 compares the error values between Equation 3.1, where number of

drops multiplies by reference point (0.05 ml per drop) and Equation 4.2, where the

weight sensors were added to measure the volume individual drop.

Table 4.4 The accuracy of the estimation methods between single sensor vs.

combined sensors.

Flowrate Counted-

drops

(Equation

3.1)

Error

(%)

(Equation

4.2)

Error

(%)

10 197.4 9.87 1.3 10.30 3

50 974.6 48.73 2.54 50.87 1.74

100 1942.2 97.11 2.89 101.38 1.38

250 4874.5 243.725 2.51 254.45 1.78

MAPE 2.31 ////////////// 1.975

4.2.3 Error sources

It should be highlighted that some errors were occurred during the experiments.

Here, we characterised the source of errors found over that period. Firstly,

approximately 1.5% will be added to the weight measurement due to the fact that

using the average urine density of 1.020 g/ml.

The measurements were recorded over period of times and took place in public

building where air conditioner is switched on and off at variety of times. However, in

a hospital, room temperature is usually controlled by computer and remaining

between 20-25 oC. These temperature variations can also affect the measurement and

may produce an additional error.

A third potential source of error is caused by the experiment set up. A plastic input

tube that connected between first dropper and the second one on top of the collecting

bag, sometime it was not stable and it took several seconds to reach its position. The

tube’s movement can caused either increasing or decreasing of drop size and weight.

From this point, it can be said that the accuracy rate is improved by combined

data from counted-drops and weight of collecting bag. This combination model

can be used to monitoring either small or large amount of liquid input since their

error values do not exceed more than 5%. Assume that a patient produces urine

129

around 35 ml during the hour. In the worst case scenario, the maximum error of

this prototype is ±(1.5%*35ml + 1.975%*35ml) ≈ ±1.215 ml.

4.2.4 Stress testing

The Arduino sketch was compiled in to the controller while the software interface is

deployed on Cloud. As mentioned, the weight sensors were configured to send the

measurement data every 10 minutes. When the urine measure is not obtained at the

expected time, the application is needed to alert the nurse immediately. The test

scenarios are listed in Table 4.5.

Table 4.5 List of test scenarios and test cases

Test scenario Test case

When the daily goal is

achieved

[1]Patient’s weight ≤ 50kg, hourly goal must ≥ 20ml.

[2]Weight ≤ 60kg && ≥ [1], hourly goal must ≥ 25ml.

[3]Weight ≤ 70kg && ≥ [2] , hourly goal must ≥ 30ml.

[4]weight ≤ 80kg && ≥ [3], hourly goal must ≥ 35ml.

[5] Else urine goal ≥ 40ml.

• True: filled cell with Green.

• False: filled cell with Red, then send email/sms

[6]Time trigger 4hourly && 4 records were post.

• True: Sum(4 lastest rows record)

• Flause: Send alert nurses to manual record, then

check AppendRowChoreo.available(),

o Return value = 0, then check Spreadsheets.

o Else, inform network connection errors.

When the collecting

container is nearly full

[7] If collecting container is weight > 1800 ml,

• True: send email/sms.

• False: continue monitoring.

The stress testing was performed continually 95 hours. After nearly 4 days, it was

found that this new design prototype is able to work correctly, mainly in the software

part. It still was able to perform drop counting and measure weight within the

expected values.

130

All 100% of data records had been transmitted (557 times with 34.4 MB data size).

These numbers were reported in activity logs from Cloud service. Details of

information transmission and data storage will be presented in the following section.

4.3 Information Transmission features

The sequence of the authentication process before posting data into data storage is

divided in to two stages: InitializeOAuth and FinalizeOAuth , as shown in Figure

4.10.

Users

TEMBOO Service Google Servers

Request Token

Login & Consent

Authorization code

Exchange Code

Token Reponse

Use token to call APIs

InitializeOAuth

FinalizeOAuth

Figure 4.10 Using OAuth 2.0 in Google Web Server

4.3.1 Initialize OAuth

Initialize OAuth needs be done before the application can use Google’s OAuth 2.0

authentication system. It requires end-user to login and register a project in the

Google Developers Console to obtain OAuth 2.0 credentials. The Google Developers

Console is a web terminal where user is capable to manage and viewing traffic data

and authentication for the Google APIs in their projects used. The outcomes from

registration show in figure Figure 4.11, these included ClientID, Google Email

address, Client Secret, Redirect URLs, and JavaScript Origins where they were used

as input parameters in Initialize OAuth

131

Figure 4.11 The output parameters from registered project in Developer Console

The initialize process can be done in TEMBOO web terminal where a Java

repository is provided, see Figure 4.12. The functionality of this code is to generate

an authorization URL that an application can use to complete the OAuth process.

The required parameters are listed in Table 4.6., and the outcomes are presented in

Table 4.7. These parameters will be temporarily stored and displayed in web

terminal for easy retrieving and passing to the Finalize process.

Table 4.6 Input Parameters required for an authorisation token

Parameter Description Sample Values

ClientID
The Client ID provided by Google

after registering the application.
…xxx.apps.googleusercontent.com

Scope

A space-delimited list of scopes to

requests access. Additional, the

scopes and tokens determine what

user data the user gives your app

permission to access.

https://docs.google.com/feeds

https://docs.googleusercontent.com

CustomCallbackID

(*Optional inputs)

A unique identifier that client can

pass to eliminate delay to wait for

Temboo to generate.

Call back identifiers is a random

string that may only contain

numbers, letters, periods, and

hyphens.

ForwardingURL

(*Optional inputs)

The URL that Temboo will redirect

after they grant access to the

application.

http:example.com/library/Google

https:example.com/library/Google

132

session = ("Account", "ApplicationName", "SessionID");

InitializeOAuth initializeOAuthChoreo = newInitializeOAuth(session);

InitializeOAuthInputSet initializeOAuthInputs = initializeOAuthChoreo.newInput
Set();

initializeOAuthInputs.setCredential("GoogleOAuthAccount");

initializeOAuthInputs.set_Scope("https://spreadsheets.google.com/feeds/");

InitializeOAuthResultSet initializeOAuthResults = initializeOAuthChoreo.execut
e(initializeOAuthInputs);

Figure 4.12 Java code for the Initiallize OAuth process

Table 4.7 Output parameters after received an authorization code

Parameter Description Sample Values

Authorization

URL

The authorisation URL that the

application's user needs to go to in

order to grant access to your

application.

https://accounts.google.com/o/oauth2

/auth?client_id=clientID&responsety

pe=Type&redirect_uri=redirectURL

&approval_prompt=force&access_ty

pe=offline&scope=https.xxx.doc.goo

gle.com

CallbackID

An ID used to retrieve the callback

data that TEMBOO stores once your

application's user authorises

Username/xxxxx-xxx-xxxxx

To grant access to Google account, application needs to be confirmed for private

resources approval (see Figure 4.13) by navigating to an authorized URL. Google

will handle the authentication session selection and user consent. This stage will be

completed after the application is retrieving an access URL.

133

Figure 4.13 The consent window to view and mange Spreadsheets in Google Drive.

For additional security and reusable, two additional header files were created,

TembooAccount.h and GoogleAccount.h. Both files are included into Arduino sketch

for declaring authorized parameters in later stage. In Arduino, ‘#defined’ constants

does not take up any program memory space on the microcontroller but instead, the

compiler will replace references to these constants with the defined value when it is

compiled.

In TembooAccount.h, it contains TEMBOO account information included:

#define TEMBOO_ACCOUNT "ACCOUNT_NAME"

#define TEMBOO_APP_KEY_NAME "APP_NAME"

#define TEMBOO_APP_KEY "APP_KEY"

In GoogleAccount.h, it contains Google account information included:

#define GOOGLE_CLIENT_ID "Google-client-id"

#define GOOGLE_CLIENT_SECRET "Google-client-secret"

#define GOOGLE_REFRESH_TOKEN "Google-refresh-token"

4.3.2 Finalize OAuth

Finalize OAuth starts when an authorization code is received. Now, the application

can exchange for an access token and a refresh token. The exchange code for access

token is a one-time authorization between application and Google APIs. The

exchange is made by sending an HTTPS POST request to the token endpoint. The

input parameters are shown in Table 4.8.

134

Table 4.8 Input parameter required for exchange code for a token

Parameter Description Sample Values

ClientID
The Client ID provided by Google

after registering the application.
.apps.googleusercontent.com

ClientSecret
The Client ID provided by Google

after registering the application.
“Abcd1237_Xyz”

CallbackID

Callback token returned by the

Initialize OAuth. Used to retrieve the

authorization code after the authorize

Username/xxxxx-xxx-xxxxx

Timeout

(*Additional input)

The amount of time (in seconds) to

poll callback URL to see if app's user

has allowed or denied the request for

access. Defaults to 20 and max is 60.

60

Token endpoint is the endpoint of the authorization server where the client

application exchanges the authorization code, client ID and client secret, for an

access token. Figure 4.14 shows the sample of requesting code:

POST /oauth2/v3/token HTTP/1.1

Host: www.googleapis.com

Content-Type: application/x-www-form-urlencoded

code=4/{Speadsheets_ID} &

client_id={Clint_ID} &

client_secret={Client_Secret} &

redirect_uri={Redirect_URL} &

grant_type={Authorization_Code}

	

Figure 4.14 The POST method to send the token endpoint.

In

135

Table 4.9, the following parameters are received after the the access token exchange

with Google APIs. Once the access token expired, the refresh token will be used as a

new token.

136

Table 4.9 Sample of token returned from Google Server and its details.

Parameter Description Sample Values

AccessToken
The access token for the user that

has granted access
…XXX…-AuthorizationURL

Expries
The remaining lifetime of the short-

lived access token.
3600

RefreshToken

A token that maybe used to obtain a

new acess when the short-lived

access token is expried code after

the authorize

1/xxxx/xxx-ClientSecret

An ID-Token is a JSON web Token that is a cryptographically signed Base64-

encoded JSON objects (Google Developers 2015). It contains a set of name and

value pairs (see Figure 4.15 and

137

Table 4.10 for details). Generally, it is critical to validate an ID token before use, but

since we are communicating directly with Google over a HTTPS channel and using a

client secret to authenticate ourselves to Google. We can be confident that the

received token is came from Google and it is valid.

{"iss":"accounts.google.com",
 "at_hash":"HK6E_P6Dh8Y93mRNtsDB1Q",
 "email_verified":"true",
 "sub":"10769150350006150715113082367",
 "azp":"1234987819200.apps.googleusercontent.com",
 "email":"atigorn@example.com",
 "aud":"….xxx.apps.googleusercontent.com",
 "iat":1353601026,
 "exp":1353604926,
 "hd":"example.com" }

Figure 4.15 Sample of an ID token (formatted for readability).

138

Table 4.10 Google ID token descriptions (Google Developers 2015)

Parameter Description

iss Provided for the Issuer of the response. Always be:

accounts.google.com or https://accounts.google.com.

at_hash Access token hash. Provides validation that the access token is tied to

the identity token.

email_verified True if the user's e-mail address has been verified; otherwise false.

sub An identifier for the user, unique among all Google accounts and never

reused. A Google account can have multiple emails at different points

in time, but the sub value is never changed.

azp The client_id of the authorized presenter. This claim is only needed

when the party requesting the ID token is not the same as the audience

of the ID token.

Email The email address.

aud Identifies the audience that this ID token is intended for.

iat The time the ID token was issued.

exp The time the ID token expires.

hd The hosted Google Apps domain of the user.

139

4.3.3 Operation Process

The operation process is controlled by Arduino sketch where has been installed into

a microcontroller. After the microcontroller began to run the loop cycle, the timer()

function is also started. This function is modified from the original ‘SimpleTimer.h’

library from Arduino Community written by Marcello Romani6. It runs based on

millisecond, thus when the timer reaches 600,000 milliseconds (or 10 minutes), the

dataSend() will be called while the value of current drop-count and time stamp will

be converted into a string object, and set these two variables back to 0, as

consequently. This function is used for posting the sting to Google Spreadsheets

where these data will be stored and display in 24-hour records. The details of these

functions are presented in Table 4.11

Table 4.11 Constructor summary of Arduino sketch

Functions

timer.setInterval(600000, dataSend);

//Every 600000 ms, dataSend() will be called.

void timeStamp() {

time = millis()
sec = (time/1000)%60;
mins = ((time/(1000*60))%60);
hrs = ((time/(1000*60*60))%24);

while (time>0) {
char currenttime[] = {hrs,“:”,mins,“:”,sec};
return currenttime[]

}

void dataSend() {

unsigned long sensorValue = getSensorValue();
string now =getTimeStamp();

// invoke TEMBOO server with class.begin().
TembooChoreo AppendRowChoreo;
AppendRowChoreo.begin();

// set Temboo credentials
AppendRowChoreo.setAccountName(TEMBOO_ACCOUNT);
AppendRowChoreo.setAppKeyName(TEMBOO_APP_KEY_NAME);
AppendRowChoreo.setAppKey(TEMBOO_APP_KEY);

6 Appendix 4

140

AppendRowChoreo.setChoreo("/Library/Google/Spreadsheets/AppendR
ow");

// set Google account credentials
AppendRowChoreo.addInput("ClientID", GOOGLE_CLIENT_ID);
AppendRowChoreo.addInput("ClientSecret", GOOGLE_CLIENT_SECRET);
AppendRowChoreo.addInput("RefreshToken", GOOGLE_REFRESH_TOKEN);
AppendRowChoreo.addInput("SpreadsheetTitle",

SPREADSHEET_TITLE);

//add string : rowData[n]{"hh:mm:ss", unsigned_int}
String rowData(now);
rowData += ",";
rowData += sensorValue;
AppendRowChoreo.addInput("RowData", rowData);

unsigned int returnCode = AppendRowChoreo.run();
// return code of zero (0) means success
if (returnCode == 0) {
 Serial.println("Success! Appended " + rowData);
 Serial.println("");
} else {
 while (AppendRowChoreo.available()) {
 char c = AppendRowChoreo.read();
 Serial.print(c);

 }
 }

 AppendRowChoreo.close();
 }

 Serial.println("Waiting...");
 delay(5000); // wait 5 seconds between AppendRow calls
}

unsigned long getSensorValue() {
return detectDrop();

}

Char getTimeStamp() {
 return timeStamp();
}

4.4 Data storage and User interface

4.4.1 Interface Design

The interface was almost immediately modified to be simpler and similar to the

record form currently used at the Royal Bournemouth Hospital. An interface was

constructed to establish the best methods for defining the inputs to the system. These

were initially sketched on paper. The design involved selecting the simplest way for

141

the user to define the parameters required by the system. Some of these could be

simple fields (e.g., patient’s name or hospital number). Other parameters were better

viewed, for example, drop-down lists which the user could be select one choice were

applied to be used with height and weight (Figure 4.16), a calendar is tied to a

standard input for patient’s date of birth (Figure 4.17), and check box were applied to

state the reason for using the record (Figure 4.18).

This interface had to be altered when the urine output data does not meet with

criteria. The colour symbolism can be used for an indicator (Nemeth 2004). To

achieve the mentioned requirement, we applied some customised conditional

formatting into cells to indicate the current status of patient by using the colour code

rules as followed:

• If the hourly urine produced data is less than minimum criteria, then the cell

will filled background with ‘Red’.

• If the hourly urine produced data is over the minimum criteria, then the cell

background will turn into ‘Green’.

The colour red and green were standardized as the colour for proceeding control.

Red carried the strongest reaction of all the colours, and it is traditional colour of

warning and danger. For this reason, we used the colour red to indicate the warning

sign in our system. In contrast, the colour green widely used to indicate safety and

permission to proceed which is opposite with red.

Figure 4.19 shown GUI displayed in Google’s sheet format which allows to access

on either on web browser in computer (A) or mobile application via mobile device

by (B and C) the authored staff. In general the interface was improved with the

adoption of clearer fronts and text size. The fields were also rearranged in to a neater

format, and formatting condition are followed the rules given by the requirement. In

one hand, most of the measurement inputs automatically inserted to a column in

numerical vales from the prototype device. On other hand, related patient personal

details are still required nurse to type down to the related cells. Thus version system

has essentially the same format used in a hospital with a few alterations, relating

mainly to the automated inputs.

142

	

Figure 4.16 Drop-down list to choose range of height

	

Figure 4.17 Calendar applied for date of birth input

	

Figure 4.18 Check box selection to state the reason for fluid chart

143

Figure 4.19 Displayed GUI in Spreadsheet format

144

(B) From web browser on iOS

	

(C) From mobile application in iOS

4.4.2 Data Storage

The data storage was also developed by using Google Drive to provide real-time

collaboration as a service between authorised staffs to access files in Cloud. These

collaboration APIs are a JavaScript library hosted by Google came with all of the

functionality necessary for nurse to use a custom application that allows seamless

and simultaneous editing.

145

Two simple Spreadsheets were created to store the necessary information (as shown

in Figure 4.20 and Figure 4.21). In each sheet, additional functions were also

implemented using Google Apps Scripts to programmatically read and edit the

content inside. The scripts are modified using java.text package in Java platform

Standard 7th Edition. It is a common platform for development and deployment

of portable applications, desktop, or even web server environments. It is

implemented by Oracle Corporation's Java Development, and can be applied into

another language-independent application (Oracle Corporation (n.d.)-b, (n.d.)-a).

The java.text is a library that provides classes and interfaces for handling text, dates,

numbers, and messages in a manner independent of natural languages. It is an idea of

long term reuse of code. Once the study is going future, changing the programming

language or switching the operating system should not force a source code to be

completely rewritten; instead we can rely upon separated or dynamical localized

resources, and make it more flexibility to add new localizations at any time.

A. Sheet!Datalog

Figure 4.20 Sheet!Datalog

146

The first sheet is named ‘Sheet!Datalg’, contains eight columns (column A to H).

Each column stores the different types and sources of data. The explanation is

presented as follows:

Column A is representing a runtime of the hardware system which is sending data to

Cloud storage every 10 minutes (by defaulted configuration) in the controller board.

The data in this column came from the return value of function timeStamp() which

has been set based on function millis(), a return value of milliseconds since it began

running the current program, and this number will overflow (go back to zero).

Time variables were declared as unsigned long, making variables used to record in

the elapsed millisecond for a fixed size. In C++ programming, unsigned long able to

stores a 32-bit (4-byte value) range from 0 to 4,294,967,295 (2^32 - 1).

• defined ‘Seconds’ as unsigned long Sec = milli()/1000.

• defined ‘Minutes’ as unsigned long Mins = Sec/60.

• defined ‘Hours’ as unsigned long Hrs = Sec/3600.

Therefore it will overflow after 4294967296 milliseconds or 49.7 days and will

produce strange results across this overflow. To prevent the overflow, we came up

with the solution to reset time units by doing a subtraction of two unsigned numbers

will produce the correct value even if one of them has over flowed.

• Sec = Sec - (Mins * 60).

• Mins = Mins - (Hrs * 60).

Here is an example; at 60 seconds, this function will automatically convert the mins

(minutes) value equal to 1 and multiplies it by 60. When 60 subtract with 60, the

final result will be equalled to zero. (Sec = 60 – (1*60)).

Column B to E is representing an increment number of drop captured by sensors;

photo interrupter sensor, ultrasonic sensor, and infrared sensor, respectively.

Column F is representing the return values of the liquid weight measured by bar

load cells. The liquid will be stored in a collecting bag after passed through the

dropper. The maximum capacity volume of this container is 2000 ml. If the value is

147

more than 1800 ml, the email will be sent to alert the nurse to empty the content of

the container.

Column G is representing a date and time which an event is recorded for

comparison of different records and tracking progress over time. Apps Script called

‘autoDateTime()’, has been written to automatically generate data and time stamp

when Column A has been inserted or edited. The details of the function are

explained in the Table 4.12.

Table 4.12 Constructor summary of autoDateTime() function.

Class Parameters Type Description

Range.getRowIndex() N/A Object Returns the row position for defining

the header row. It will only insert

timestamp if header exists, but not in

the header row itself.

Range.getValues() N/A Object Returns the value of the top-left cell in

the range.

Utilities.formatDate() date Date a Date to format as a String- using:

‘new Date()’ function to create date

objects:

è Date (int year, int month, int date,

int hrs, int min, int sec)

timeZone String The output time zone set defaulted as

GMT.

format String a format per of date-time specification

as "HH:mm:ss, [MM-dd-yyyy]"

Column H is representing a mark in each row every time an email is sent when a

volume of produced urine does not meet the expected conditions. The script is called

‘emailAlert()’, it will set the cells in column H to ‘EMAIL_SENT’ for each row after

the function emailAlert() is called. The details of the function are explained in the

148

Table 4.13.

149

Table 4.13 Constructor summary of emailAlert() function.

Class Parameters Type Description Parameter’s Pattern

Sheet.getRage()

row Integer The row of the

cell to return

sheet.getRange(1, 1)

column Integer The column of

the cell to return

Range.getValues() N/A Object Returns the value

of the top-left cell

in the range.

Mailapp.sendEmail() recipient String The addresses of

the recipients

from return

values in

getDate() sub-

function in

‘Sheet!Schedule’.

"recipient1@example.com",

"recipient2@example.com",

"recipient3@example.com"

subject String The subject line “Sending emails from a

Spreadsheets"

body String The body of the

email. Additional

sub-function has

been

implemented to

render HTML

instead of the

body traditional

argument.

'<body>' +

'<p> This is email sent from

automated function for

reminding you that the

urine out does not meet the

minimum requirement.

</p>’

‘</body>’

or

‘<body>'+ 'Now the urine

collection is equal

'+volume+'

ml.</p>'+'</body>'

150

B. Sheet!Schedule

The details of nurse’s work shift is located in Sheet!Schedule where administrator

needs to insert a list of responders, email, telephone number, and assigned shift

scheduling of seven working day. A scheduling table is divided into three shifts start

from 08:01 to 16:00, 16:01 to 24:00, and 24:01 to 08:00, shown in

Figure 4.21.

An time-trigger function called ‘getDate()’ is implemented in this sheet to

continually check whether each of responder is working in this shift or not by

comparing with today’s date and the current time. This function will continually

update itself every 8 hours by time-driven triggered regarding to nurse working

shifts. The function sequence is described as followed:

It defines the date and time in object, and splits it into an array format as:

(“day”~time[hour]) using syntax ‘getTodaysNumber().split('~')’. The string output of

day’s parameter is range from 1 to 7 (as listed below), and time parameter is range

from 1 to 24 (according to numbers of hour in a day).

1. is represented ‘Monday’.

2. is represented ‘Tuesday’.

3. is represented ‘Wednesday’.

4. is represented ‘Thursday’.

5. is represented ‘Friday’.

6. is represented ‘Saturday’.

7. is represented ‘Sunday’.

The range value of Column A is defined as 0 by defaulted (e.g. Column B, C, and D

are defined with number 1, 2, and 3, respectively). The working shifts were divided

into three slots for each working day. In this case, to define a range in each

dayColumn column, the calculation is done by multiplies by 3 to the results of the

day’s parameter, then, If-Elase statements have been applied to find a column value

in a specified time slot in each working day:

• If current hour is >= 8 and <= 16, then, dayColum + 0.

• If current time is > 16 and <= 24:00, then, dayColum+1.

• Else, dayColum +2.

151

Figure 4.21 Sheet!Schedule

152

The sub-function will store the values range from

(!"#[%], (")*+,[-]: !"# /012 ,(")*+,[3]) where cells are contained ‘Yes’. The stored

values are in a string array formatted: [“Responders”], [“Email”], [“Telephone”].

For example, assume that today is November 04th, 2015 at 08:50.

Here, the result by running a debugging of getTodateNumber() function is [3][8], as

highlighted in Figure 4.22. To find the working day, 3 is multiplied by 3, then add

+0 for time condition, given dayColum = 9, which is indicated Column 9 or Column

J (1st Shift of Wednesday).

Figure 4.22 Debugging function to test the written scripts

153

The results of this function is shown four arrays have been found according to the

given condition as shown Table 4.14, and they will be used as reference to send

email(s) when autoAlert() in Sheet!Datalog is called. The details of the query in

getDate() function are explained in the Table 4.15

Table 4.14 Queries in string arrays from getDate() function

getData() rowcount Number 4.0

count[0] Array ["ATIGORN GMAIL", "a.sanguansri@gmail.com",

"07456152561"]

0 String "ATIGORN GMAIL"

1 String "a.sanguansri@gmail.com"

2 String "07456152561"

count[1] Array ["YAN WANG", " yanwangzzti@gmail.com ",

"07412345678"]

0 String "YAN WANG"

1 String "yanwangzzti@gmail.com"

2 String "07412345678"

count[2] Array ["MUHAMMAD SAJJAD", "sajjad.akr1@gmail.com",

"07123456789"]

0 String "YAN WANG"

1 String " yanwangzzti@gmail.com"

2 String " 7412345678"

count[3] Array ["NURSE SAMPLE", "nurse@sample.com",

"07987654321"]

0 String " NURSE SAMPLE"

1 String "nurse@sample.com "

2 String "07987654321"

Table 4.15 Constructor summary of getDate() sub-function.

Class Parameters Type Description

GetTodaysNumber() N/A Integer Returns the string values of day in week and

time (hours).

mailRange.getValues() Responders String Returns the values from getdate() (see Table

4.14)

154

Chapter 5. Conclusions

Nearly, one-fifth of patients who admitted to ICUs suffered from the deterioration of

kidney function, and nearly half need a body fluid balance measurement. An early

detection is a key to prevent patients to become more critical. However, a fully

functional of urine output is not yet introduced. To this end, the prototype has been

designed, developed, and tested.

In this chapter, the objectives of the research are briefly reviewed and the research

carried out to fulfil these goals is summarised as well as contribution to knowledge.

Limitation of the research is a then discussed. Finally, areas of further work on the

research are considered and the contribution of the research to the field of blood

glucose sensors is discussed.

5.1 Review of the goals of the research

The objective of this research was to develop a prototype capable of continuously

and reliably monitoring urine output. Its development could help reduce nurse’s

workload and prevent human errors in monitoring task.

Research was aimed to investigate existing urine monitoring devices, as discussed in

Chapter 2 and producing a practical prototype that could be put in clinical routine as

quickly as possible if the development proved successful. The concept of drop-

volume measurement is proved to be used in small amount of urine, were it has been

described in Chapter 2. To this end three versions of prototype have been presented.

Details of the feasibility studies of sensor selection are their attributes were presented

in Chapter 3 and Chapter 4.

In Chapter 4, the details of a proposed system implementation in both physical

prototype as well as software for collecting real-time data are presented and its

evaluation and analyse is discussed.

155

5.2 Summary of main finding

5.2.1 How prototype and system should be designed

For the physical prototype, a simple solution to building a law compliant urine meter

capable of monitoring small amount of urine is using drop-volume estimation. This

solution has been common practiced in hospital to delivery precise quantities of

dosage to the patients. The evaluation of drop counting seems to be useful for this

problem.

Furthermore, Though, there are no literatures directly mentioned the architecture of

the IoT for hospital used, but mainly three elements found in almost publication are:

 (1) Data acquisition (or ‘data element’) consists with sensors that connected

to programmable microcontroller to record the sensor reading.

(2) Communication channels (or ‘connecting element’) which provides both

wired and wireless connectivity.

(3) The application (or ‘processing element’) stores those information to data

storage and enables nurses to monitoring the output in real-time.

The details of both physical prototype and software system design are discussed in

Chapter 3.

5.2.2 The focus on sensor selection

There are different non-invasive sensors that have been used to detect drop

obstructions and those sensors can be divided into three main categories:

(1) Sound technique detects of the tension variation produced by a drop that crosses a

beam of ultrasounds. The sound wave response is independent upon the colour or

light reflectivity of the object.

 (2) Optical technique uses light beam to detect a deflection between the beam of

light and the receiver. This method is lower in cost, has simple circuit, and low

energy consumption.

(3) Image analysing acquires the images of the falling drops using high resolution of

video camera. Various geometric parameters are used to estimate the total volume

(e.g. drop shape and its diameter, elongation, etc.), makes this method to have very

high accuracy.

156

A feasibility study had been carried out in initial prototype, presented in Section 4.1.

Only sound (ultrasonic sensor) and optical sensors (photo interrupter and infrared

sensor) were tested, for image analysis, it replied on a complex system and

technology that is not fit in our aims.

The effectiveness of different sensors has been reported, the photo interrupter gave

the most accuracy of all selected sensor, within standard as compared the reference

point of (0.05 ±0.005ml per drop) whereas ultrasonic sensor is the least effective

choice with average of 4.8 drops per ml due to the fact that ultrasonic sound bounces

several time against the objects before reaching the receiver and these collisions

created unwanted noises which directly affected the measurements.

A new designed prototype has presented in Section 4.2, where photo interrupter is

equipped with medical dropper to count number of drop, weight sensors have been

added. The main source of error in weight is produced by using an average urine

density value of 1.020 g/mL to transform the scale measures (grams) to milliliters.

Other sources of error are changes in room temperature, which affect the weight

readings.

5.2.3 Comparison of a new improved prototype with previous research

described in the published literature

In the published literature, the closest group of devices here are based on many types

of sensor described in Chapter 2, namely (Otero et al. 2009; Otero et al. 2010a; Otero

et al. 2010b; Otero et al. 2012; Otero et al. 2013). Float sensor equipped with mirrors

have been proposed to measure the amount of liquid column height contained in a

recipient, but the cost of the sensor makes it prohibitive for a device that must be

disposable. Similarly in measurement functional, a device that has capability to

empty itself autonomous was also presented. It equipped with reed switches to

measure height of the urine in the container. However, it has a number of drawbacks

that prevent it from being taken to the clinical routine and cannot provide an

information minute-by-minute. A device based on capacitive sensors has been

introduced to address the issue of providing information.

Compared with the device presented in this study, it is requiring only two types of

sensors where they are available in the market and can be reduce the manufacturing

cost. None of the above has been employed on Cloud computing where the

157

monitoring data can be shared to another authorised clinical staffs in real-time. The

software is programmed to transmit data every ten minutes which it provides similar

information as done by previous system. Furthermore, the weakness of previous

research is that it conceptualizes reducing nurse’s workload at a macro level,

ignoring the contextual and organizational characteristics of a particular health care

setting (e.g., physical layout, information technology available) that may

significantly affect workload.

However, the prototype presented here, does not have the functional to empty itself

and still requires nurse to the bedside visit but, less often than they usually do.

Another disadvantage is that when compared with the manual urine meter, it

connected with electronic parts (e.g. sensors, hanging bar, microcontroller, etc.)

where they can emit radio waves. If there are at the frequencies close to other

monitoring devices, signals and reading cloud be corrupted. Moreover, this device

needs to be disconnected from the patient’s body before X-Ray or perform MRI.

5.3 Novel contribution to knowledge

The outcome of the research has made several contributions to both technological

and medical practice perspectives as listed as follows:

1. The requirements in urine outcome measurement, espaically for the Royal

Bournemouth Hosptical, have been deeply studied and analysed through

literature review, interviews, and observation. The need for the sensor

integrated for real-time data collection has been identified.

2. A wide range of related techniques were studied and analysed, included the

device that is previously in the commercial market and those still under

research. The limitations of those devices were identified and further

demonstrated the need to improve a different type of integration system.

3. The proposed prototype and its system was developed to integrate off-the-

shelf sensor products, open source software, and public Cloud data storage to

monitoring the urine outcome. The prototype is included the creative

hardware platform, controlled sensors and other components by

microcontroller programmed with open source languages. Several

experiments regarding this system were conducted and the feedback of

medical professionals was analysed.

158

4. The results of the experiments showed that this prototype was compatible

with the off-the-shelf components and available Cloud technologies. This

combination is commonly known as an ‘Internet-Of-Things’ and it was

helpful in shortening lab testing and improving user involvement.

5. This research has been succeeded in as it has identified the requirements for

its proposed integrated sensor-based technology, analysed the weakness of

the related studies, technologies, contribute alnernative approaches, and

finally provided a new solution to address the problem.

5.4 Limitation of the research

1. This research has investigated the technical feasibility in developing an

automatic system for monitoring urine outcome. However due to ethic

concerns, the studies was restricted to a simulated environment only in a

laboraoty. However, it is crucial to validate the designed prototype system on

general hospital before it deploys.

2. Only off-the-shelf sensors have been used. The details on the electronic

components and circuits are not carried out in the study. This leads to the

operation of the sensor input becoming slightly ‘black-box’, means that the

performance of the sensors could only be used in a very low tolerance.

Although the proposed system is only the proof of concept. For futher

development, it is required to improve the quality of the signals and reduce

interfere with measurement environment.

3. Security is an important issue when dealing with patients health and privacy

information. Although some seclected technology have been proposed for

protecting the security of information transmission, there methods have not

met fully tested in the designed prototype system.

4. As mentioned, this study was carried out only in laboratoty due to time and it

must been approved by a ethics committee for the propose of conducting

clinical routine studies. In this regard, the level of user appectance still

reamin to be indetified. The impact of characteristic design (e.g. shapes, size,

obstacles, materials, etc) and operation on this prototype shoulde be further

studied.

159

5.5 Further work

Clearly, the new design prototype needs to be constructed and tested to overcome the

current problems we are facing. With a great number of emerged technologies to

date, this may help reducing the cost of equipment and provide more Cloud engine to

process big data in real-time. The monitoring device must be continually developed

and improved, possibly using an advance technology and different techniques.

To cover the full range of fluid monitoring, device should be integrated with other

monitoring devices such as, IV infusion, liquid food, or smart cups, to cover the

range of intake liquid. Combined with the prototype developed here, which cover the

output liquid, this would enable fully monitoring of fluid balance in patient’s body.

The power consumption when using external power source (e.g. power bank or

battery) needs to be improved. Reducing power consumption means the device will

be able to monitor longer period and may extend to be used as in-home device; this

could possibly be achieved through hardware development, and also the emergence

of IPv6 standard has resolved this issue in communication layer. However, this

requires further investigation through practical testing.

The basic drop-volume calculation presented here is using drop counted by sensor

under the assumption that drop volumes gained standard medical dropper are not

different in sizes and shape. To provide reliable accuracy the calculation here should

be further compared the other drop-volume methods such as, surface tension from

Tate’s Law, and Gravimetric Method. Moreover a new hysteresis in the sensors

response should also be investigated in depth, both through mathematical models

and experimental work to avoid this source of error in the measurement.

Finally, the security of healthcare services is very important for software platform.

The quantitative measurement of security perspective in system architecture is

needed to be guarantee because any type of system disaster can put live at danger in

medical situations. For future work, we would like to investigate more in; (1) Data

protection, (2) Resource-efficient security, (3) Physical security, (4) Data

transparency, and (5) The security of handling big data from the IoT.

160

List of References
A Dictionary of Nursing, 2008. urinometer [online]. Encyclopedia.com: Available

from: http://www.encyclopedia.com/doc/1O62-urinometer.html [Accessed 13
Febuary 2015].

Acosta, R. D., Burns, C. L., Rzepka, W. E. and Sidoran, J. L., 1994. Case study of
applying rapid prototyping techniques in the requirements engineering
environment (pp. 66-73): Publ by IEEE.

Ahsanul Haque, S., Mahfuzul Aziz, S. and Rahman, M., 2014. Review of Cyber-
Physical System in Healthcare. International Journal of Distributed Sensor
Networks, 1-20.

Ahuja, D. and Parande, D., 2012. Optical sensors and their applications. Journal of
Scientific Research and Reviews, 1 (5), 060-068.

Amaravadi, R. K., Dimick, J. B., Pronovost, P. J. and Lipsett, P. A., 2000. ICU
nurse-to-patient ratio is associated with complications and resource use after
esophagectomy. Intensive Care Medicine, 26, 1857-1862.

Andrews, F. J. and Nolan, J. P., 2006. Critical care in the emergency department:
monitoring the critically ill patient. Emergency Medicine Journal, 23 (7),
561-564.

Anwar, H., 2010. Urinfo 2000 Precise Urine Meter from Flowsense [online].
medgadget.com. Available from:
http://www.medgadget.com/2010/10/flowsense_releasing_new_urinfo_2000.
html [Accessed December 10th, 2014].

Arduino.cc, n.d. Arduino Yun [online]. Available from:
http://arduino.cc/en/Main/ArduinoBoardYun [Accessed 8 November 2014].

Armstrong, L. E., Soto, J. A. H., Hacker Jr, F. T., Casa, D. J., Kavouras, S. A. and
Maresh, C. M., 1998. Urinary Indices During Dehydration, Exercise, and
Rehydration. International Journal of Sport Nutrition, 8 (4), 345.

Ashton, K., 2009. That 'Internet of Things' Thing: In the real world, things matter
more than ideas [online]. Available from:
http://www.rfidjournal.com/articles/view?4986 [Accessed

Aust, M. P., 2013. Introduction to Critical Care Nursing, 6th edition. Critical Care
Nurse, 33 (1), 75-76.

Balducci, F., 2013. Features of the new Arduino YÚN [online]. Available from:
https://balau82.wordpress.com/2013/09/02/features-of-the-new-arduino-yun/
[Accessed

Baldwin, C., 2014. Case study: South Tyneside NHS Trust deploys Huddle on iPads
for board meetings [online]. Available from:
http://www.computerweekly.com/news/2240214610/South-Tyneside-NHS-
Trust-deploys-Huddle-on-iPads-for-board-meetings [Accessed September 30,
2015].

Ball, J. and Pike, G., 2009. Past imperfect, future tense : nurses' employment and
morale in 2009: Royal College of Nursing (RCN), Royal College of Nursing
(RCN).

Banzi, M. and Shiloh, M., 2014. Make: Getting Started with Arduino: The Open
Source Electronics Prototyping Platform. Maker Media, Inc.

Bash, R., 2012. FlowSense Medical Ltd.: Updated Company Presentation
[FlowSense Medical Ltd. Available from:
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&c
ad=rja&uact=8&ved=0CCMQFjAA&url=http%3A%2F%2Ftrade.bankleumi.

161

co.il%2FTRADE%2Finfo%2Fshuk%2Fshukgetfile.asp%3Ffileid%3D10706
8%26&ei=AGeIVIGjA4SAU8CCgvgH&usg=AFQjCNFs4mi13HBpIzV8Vt
S8T7ay0zUIWA&bvm=bv.81456516,d.d24. [Accessed

Bassi, A. and Horn, G., 2008. Internet of Things in 2020: A Roadmap for the Future.
European Commission: Information Society and Media.

Bell, C. A., 2013. Beginning sensor networks with Arduino and Raspberry Pi
[online]. New York: Apress.

Bellomo, R., Ronco, C., Kellum, J. A., Mehta, R. L. and Palevsky, P., 2004. Acute
renal failure - definition, outcome measures, animal models, fluid therapy
and information technology needs: the Second International Consensus
Conference of the Acute Dialysis Quality Initiative (ADQI) Group.
CRITICAL CARE, 8 (4), R204-R212.

Boar, B. H., 1984. Application prototyping : a requirements definition strategy for
the 80s [Non-fiction]. New York ; Chichester : Wiley, c1984.

Boyd, J. H., Forbes, J., Nakada, T. A., Walley, K. R. and Russell, J. A., 2011. Fluid
resuscitation in septic shock: A positive fluid balance and elevated central
venous pressure are associated with increased mortality. Critical Care
Medicine, 39 (2), 259-265.

Brooker, C., Nicol, M. and Waugh, A., 2003. Problems associated with fluid,
electrolyte and acid-base balance: Mosby, 2003.

Canellos, D., 2013. How the “Internet of Things” Will Feed Cloud Computing’s
Next Evolution [online]. Available from:
https://blog.cloudsecurityalliance.org/2013/06/05/how-the-internet-of-things-
will-feed-cloud-computings-next-evolution/ [Accessed March 24, 2015].

Cannella, C., Savina, C. and Donini, L. M., 2009. NUTRITION, LONGEVITY
AND BEHAVIOR. Archives of Gerontology and Geriatrics, 49
(Supplement), 19-27.

Care Quality Commission, 2014. Royal Bournemouth Hospital

Quality Report 2014/15 [Care Quality Commission. Available from:
http://www.cqc.org.uk/sites/default/files/new_reports/AAAA1845.pdf [Accessed
Cerda, J., 2011. Oliguria: an earlier and accurate biomarker of acute kidney injury?

Kidney International, 80 (7), 699-701.
Chawla, L. S. and Kellum, J. A., 2012. Acute kidney injury in 2011: Biomarkers are

transforming our understanding of AKI. Nature Reviews. Nephrology, 8 (2),
68-70.

Chen, X. and Wu, H. K., 2012. Ultrasonic Lamb Wave Measurement and Data
Analysis System. Advanced Materials Research, 457 (1), 701.

Cho, I. S. and Chung, E. J., 2007. Assessment of a Prototype Diagnostic Nursing
Decision Support System for Inpatients with Type II Diabetes Mellitus (pp.
[2167]): IOS Press.

Cunha, J., Fernandes, J. P., Mendes, J. and Saraiva, J., 2015. Embedding, Evolution,
and Validation of Model-Driven Spreadsheets. IEEE Transactions on
Software Engineering, 41 (3), 241-263.

Cutnell, J. D. and Johnson, K. W., 2005. Essentials of physics. Essentials of Physics,
by John D. Cutnell, Kenneth W. Johnson, pp. 694. ISBN 0-471-71398-8.
Wiley-VCH, March 2005., 1.

Damodaran, L., 1991. Towards a human factors strategy for information technology
systems. Human factors for informatics usability, 291-324.

162

Del Río, O. I. and Neumann, A. W., 1997. Axisymmetric drop shape analysis:
Computational methods for the measurement of interfacial properties from
the shape and dimensions of pendant and sessile drops. Journal of Colloid
and Interface Science, 196 (2), 136-147.

Department of Health, 2000. Comprehensive critical care: a review of adult critical
care services. London: Department of Health.

Department of Health, 2013. NHS challenged to go paperless by 2018 [online].
Available from: https://www.gov.uk/government/news/jeremy-hunt-
challenges-nhs-to-go-paperless-by-2018--2 [Accessed April 16, 2015].

Di Gennaro, S. F., Matese, A., Mancin, M., Primicerio, J. and Palliotti, A., 2014. An
Open-Source and Low-Cost Monitoring System for Precision Enology.
Sensors (14248220), 14 (12), 23388-23397.

Dictionary.com, n.d. Sensor [online]. The Free Online Dictionary of Computing.
Available from: http://dictionary.reference.com/browse/sensor [Accessed
March 02, 2015].

Ejlal, J., 2012. Water consumption and factors influencing hydration status. (Doctor
of Philosophy). Loughborough University.

Elliott, M. and Coventry, A., 2012. Critical care: the eight vital signs of patient
monitoring. British journal of nursing (Mark Allen Publishing), 21 (10), 621-
625.

Epstein, O., 2005. Pocket guide to clinical examination [Non-fiction]. Edinburgh) :
Mosby, 2004, (2005 printing.

3rd ed.
European Food Safety Authority, 2010. Scientific opinion on Dietary Reference

Values for water. EFSA Journal, 8 (3), Article 1459-Article 1459.
Faugel, H. and Bobkov, V., 2013. Open source hard- and software: Using Arduino

boards to keep old hardware running. Fusion Engineering and Design, 88,
1276-1279.

Fleisch, E., 2010. WHAT IS THE INTERNET OF THINGS? AN ECONOMIC
PERSPECTIVE. Economics, Management & Financial Markets, 5 (2), 125-
157.

Fletcher, J. J., Bergman, K., Blostein, P. A. and Kramer, A. H., 2010. Fluid balance,
complications, and brain tissue oxygen tension monitoring following severe
traumatic brain injury. Neurocritical Care, 13 (1), 47-56.

Gan, A. and Okonkwo, O., 2014. The use of google drive in clinical audit. British
Journal of Hospital Medicine, 75 (7), 397-401.

Gershenfeld, N., Krikorian, R. and Cohen, D., 2004. The Internet of things.
SCIENTIFIC AMERICAN, 291 (4), 76-81.

GF HealthProducts Inc., 2007. GF0700145RevA07-Urinometer: INSTRUCTIONS
for use [Available from:
http://www.grahamfield.com/nosync/Documents/301_GF0700145RevA07_
Urinometers.pdf [Accessed 13 February 2015].

Google, 2015. Check out the new Google Sheets [online]. Google Inc.,. Available
from:
https://support.google.com/docs/answer/3541068?hl=en&ref_topic=20322
[Accessed March 22, 2015].

Google Developers, 2015. Using OAuth 2.0 to Access Google APIs [online].
developers.google.com. Available from:

163

https://developers.google.com/identity/protocols/OAuth2 [Accessed May 15,
2015].

Gu, G. M., Shin, Y. K., Son, J. and Kim, J., 2012. Design and characterization of a
photo-sensor based force measurement unit (FMU). Sensors & Actuators: A.
Physical, 182, 49-56.

Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M., 2013. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29 (7), 1645-1660.

Gugerty, B., Maranda, M. J., Beachley, M., Navarro, V. B., Newbold, S., Hawk, W.,
Karp, J., Koszalka, M., Morrison, S., Poe, S. S. and Wilhelm, D., 2007. The
Maryland Nursing Workforce Commission Releases Documentation Work
Group Report. Maryland Nurse, 8 (4), 14.

Guo, X., Zheng, L., Li, M. and Zhang, Y., 2014. Intelligent data acquisition and
cloud services for apple orchard. International Journal of Agricultural and
Biological Engineering, 7 (2), 146-153.

Guyton, A. C. and Hall, J. E., 2006. Textbook of medical physiology [Bibliographies

Non-fiction]. Philadelphia, Pa. : Elsevier Saunders, c2006.

11th ed.
Hall, J. E., 2010. Guyton and Hall textbook of medical physiology. Elsevier Health

Sciences.
Hardt, D., 2012. The OAuth 2.0 authorization framework.
Haynes Jr., B. W., M.D., 1960. A New Device for Measuring Urinary Output Hourly

(Vol. 174, pp. 890): J.A.M.A (The Journal of the American Medical
Association).

Health, N. I. f. and Excellence, C., 2007. Acutely ill patients in hospital- Recognition
of and response to acute illness in adults in hospital [Available from:
http://www.nice.org.uk/guidance/cg50/evidence/cg50-acutely-ill-patients-in-
hospital-full-guideline3 [Accessed

Hersch, M., Einav, S. and Izbicki, G., 2009. Accuracy and ease of use of a novel
electronic urine output monitoring device compared with standard manual
urinometer in the intensive care unit. Journal of Critical Care, 24, 629.e613-
629.e617.

Hodges, S., Taylor, S., Villar, N., Scott, J., Bial, D. and Fischer, P. T., 2013.
Prototyping Connected Devices for the Internet of Things. COMPUTER, 46
(2), 26-34.

Houde, S. and Hill, C., 1997. Chapter 16: What do Prototypes Prototype? Handbook
of Human-Computer Interaction, 367-381.

Howe, D., n.d. Microcontroller [online]. Dictionary.com,. Available from:
http://dictionary.reference.com/browse/microcontroller [Accessed April 07,
2015].

Hugli, H. and Gonzalez, J. J., 2000. Drop volume measurements by vision.
Proceedings of SPIE, (1), 60.

Husch, M., Sullivan, C., Rooney, D., Barnard, C., Fotis, M., Clarke, J. and Noskin,
G., 2005. Insights from the sharp end of intravenous medication errors:
implications for infusion pump technology. Quality & Safety In Health Care,
14 (2), 80-86.

IEC International Electrotechnical Commission, 1998. IEC 60601-2-24 medical
electrical equipment-part 2-24: Particular requirements for the safety of
infusion pumps and controllers. Technical report, IEC.

164

Intensive Care Society, 1997. Standards for intensive care units. London: Intensive
Care Society.

Irajpour, A., Salimi, M., Mardanian, L. and Rahimi, M., 2014. Developing and
validating a patient monitoring flow sheet in intensive care units. Iranian
Journal of Nursing & Midwifery Research, 19 (4), 354-359.

Istepanian, R. S., Hu, S., Philip, N. Y. and Sungoor, A., 2011. The potential of
Internet of m-health Things "m-IoT" for non-invasive glucose level sensing.
Conference proceedings : ... Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine
and Biology Society. Conference, 2011, 5264-5266.

ITU, (n.d.). Internet of Things Global Standards Initiative [online]. Available from:
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx [Accessed

Jansen, S. and McGregor, A., 2008. Static virtualization of C source code.
SOFTWARE-PRACTICE & EXPERIENCE, 38 (4), 397-416.

Jho, C. and Carreras, M., 1984. The effect of viscosity on the drop weight technique
for the measurement of dynamic surface tension. Journal of Colloid And
Interface Science, 99, 543-548.

Jones, G. L., 2005. The development of a novel strategy for the control of
encrustation and blockage of Foley catheters
[http://search.ebscohost.com/login.aspx?direct=true&db=edsble&AN=ethos.
016615443&site=eds-live&scope=site]. Bibliographies

Theses

Non-fictionCardiff University.
Jones, M. and Hardt, D., 2012. The OAuth 2.0 Authorization Framework: Bearer

Token Usage. RFC 6750, October.
Kamogawa, M. Y. and Miranda, J. C., 2013. USE OF "ARDUINO" OPEN

SOURCE HARDWARE FOR SOLENOID DEVICE ACTUATION IN
FLOW ANALYSIS SYSTEMS. QUIMICA NOVA, 36 (8), 1232-1235.

Katch, V. L., Katch, F. I. and McArdle, W. D., 1996. Exercise physiology: study
guide, Exercise physiology: study guide. Baltimore; USA: Williams &
Wilkins.

Kavouras, S. A., 2002. Assessing hydration status. CURRENT OPINION IN
CLINICAL NUTRITION AND METABOLIC CARE, 5 (5), 519-524.

Kelley, T. and Littman, J., 2001. The art of innovation : lessons in creativity from
IDEO, America's leading design firm / Thomas Kelley ; with Jonathan
Littman [Non-fiction]. London : HarperCollinsBusiness, 2001.

Kelly, W., 2014. How a UK hospital mobilized its board with Huddle for iPad
[online]. Techrepublic.com. Available from:
http://www.techrepublic.com/article/how-a-uk-non-profit-mobilized-board-
with-huddle-for-ipad/ [Accessed September 30, 2015].

Kim, J.-C., Kim, K.-S. and Kim, S., 2013. Note: A compact three-axis optical
force/torque sensor using photo-interrupters. Review of Scientific
Instruments, 84, 126109.

Kinmond, R. M., 1995. Survey into the acceptance of prototyping in software
development (pp. 147-152): IEEE.

Kinnersley, P., Edwards, A., Hood, K., Ryan, R., Prout, H., Cadbury, N., MacBeth,
F., Butow, P. and Butler, C., 2008. Interventions before consultations to help
patients address their information needs by encouraging question asking:
systematic review. BRITISH MEDICAL JOURNAL, 337 (7665).

165

Kipnis, E., Ramsingh, D., Bhargava, M., Dincer, E., Cannesson, M., Broccard, A.,
Vallet, B., Bendjelid, K. and Thibault, R., 2012. Monitoring in the Intensive
Care (Vol. 2012, pp. 20): Critical Care Research and Practice.

Knörig, A., Wettach, R. and Cohen, J., 2009. Fritzing: a tool for advancing electronic
prototyping for designers, Proceedings of the 3rd International Conference
on Tangible and Embedded Interaction (pp. 351-358): ACM.

Kovner, C. and Gergen, P. J., 1998. Nurse staffing levels and adverse events
following surgery in U.S. hospitals. Image: Journal of Nursing Scholarship,
30 (4), 315-321.

Lang, T. A., Hodge, M., Olson, V., Romano, P. S. and Kravitz, R. L., 2004. Nurse-
patient ratios: a systematic review on the effects of nurse staffing on patient,
nurse employee, and hospital outcomes. Journal of Nursing Administration,
34 (7/8), 326-337 312p.

Lawrence, E. L. and Turner, I. G., 2005. Review: Materials for urinary catheters: a
review of their history and development in the UK. Medical Engineering and
Physics, 27, 443-453.

Lecler, S. and Meyrueis, P., 2012. Intrinsic optical fiber sensor. INTECH Open
Access Publisher.

Lee, I., Sokolsky, O., Chen, S., Hatcliff, J., Jee, E., Roederer, E. and
Venkatasubramania, K., 2012. Challenges and Research Directions in
Medical Cyber-Physical Systems. Philadelphia, USA: Dept. of Computer &
Information Sci., University of Pennsylvania.

Legrand, M. and Payen, D., 2011. Understanding urine output in critically ill
patients. ANNALS OF INTENSIVE CARE, 1.

Lewinton, D. A. and Kanagasundaram, D. S., 2011. Acute Kidney InjuryAcute
Kidney InjuryAcute Kidney Injury [online]. Available from:
http://www.renal.org/guidelines/modules/acute-kidney-
injury#sthash.BnpcDvuh.dpbs [Accessed 15 January 2015].

Lidwell, W., Holden, K. and Butler, J., 2010. Universal principles of design : 125
ways to enhance usability, influence perception, increase appeal, make better
design decisions, and teach through design. [Non-fiction]. Beverly, Mass. :
Rockport, 2010.

Linthicum, D., 2014. The cloud is the secret weapon in the Internet of things
[online]. Available from: http://www.infoworld.com/article/2608029/cloud-
computing/the-cloud-is-the-secret-weapon-in-the-internet-of-things.html
[Accessed March 24, 2015].

Liu, Y., 2010. Wireless remote patient monitoring on general hospital wards.
[http://search.ebscohost.com/login.aspx?direct=true&db=cat00012a&AN=bo
urne.599034&site=eds-live&scope=site]. Bournemouth University.

Loudon, G., Gill, S. and Culverhouse, I., 2012. Investigation into the insights
generated through the application of interactive prototyping during the early
stages of the design process: University of Wales, 2012.

Lovick, J. and Angeli, P., 2004. Droplet size and velocity profiles in liquid–liquid
horizontal flows. Chemical Engineering Science, 59, 3105-3115.

Madahar, M., 2011. Spreadsheet Use For Strategic Decision-Making An Analysis of
Spreadsheet Use and Associated Risk
[http://search.ebscohost.com/login.aspx?direct=true&db=edsble&AN=ethos.
016812519&site=eds-live&scope=site.]. Cardiff Metropolitan University.

Madden, V., 2000. Nutritional benefits of drinks. Nursing standard (Royal College
of Nursing (Great Britain) : 1987), 15 (13-15), 47-52; quiz 54-55.

166

Margolis, M., 2012. Arduino cookbook / Michael Margolis [Non-fiction]. 2nd
edition. Sebastopol : O'Reilly,.

Mason, R. and Carey, T., 1983. Prototyping interactive information systems.
Communications of the ACM, 26 (5), 347-354.

Mazzola, L., Bemporad, E. and Carassiti, F., 2012. An easy way to measure surface
free energy by drop shape analysis. Measurement, 45 (3), 317-324.

McGloin, H., Adam, S. K. and Singer, M., 1999. Unexpected deaths and referrals to
intensive care of patients on general wards. Are some cases potentially
avoidable? JOURNAL OF THE ROYAL COLLEGE OF PHYSICIANS OF
LONDON, 33 (3), 255-259.

McMahon, B. A., Phelan, D. and Murray, P. T., 2010. Oliguria and anuria (acute
kidney injury part I) (Update 2010.): European Society of Intensive Care
Medicine.

McMillen, R. and Pitcher, B., 2011. The balancing act: body fluids and protecting
patient health. British Journal of Healthcare Assistants, 5 (3), 117-121.

Meingast, M., Roosta, T. and Sastry, S., 2006. Security and privacy issues with
health care information technology. Conference proceedings : ... Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE Engineering in Medicine and Biology Society. Conference,
5453-5458.

Mell, P. and Grance, T., 2010. The NIST Definition of Cloud Computing.
Communications of the ACM, 53 (6), 50-50.

Mentes, J. C., Wakefield, B. and Culp, K., 2006. Use of a urine color chart to
monitor hydration status in nursing home residents. BIOLOGICAL
RESEARCH FOR NURSING, 7 (3), 197-203.

Metheny, N. M., 1987. Fluid and electrolyte balance : nursing considerations /
Norma Milligan Metheny ; with 18 contributions [Bibliographies

Non-fiction]. Philadelphia : Lippincott, c1987.
Mills, C. O., Elias, E., Martin, G. H., Woo, M. T. and Winder, A. F., 1988. Surface

tension properties of human urine: relationship with bile salt concentration.
Journal Of Clinical Chemistry And Clinical Biochemistry. Zeitschrift Für
Klinische Chemie Und Klinische Biochemie, 26 (4), 187-194.

Mosby's Medical Dictionary, 2009. Intensive Care Unit [online]. Available from:
http://medical-dictionary.thefreedictionary.com/intensive+care+unit
[Accessed March 24 2015].

National Confidential Enquiry into Patient Outcome and Death, 2009. Adding Insult
to Injury: A Review of the Care of Patients who Died in Hospital with a
Primary Diagnosis of Acute Kidney Injury (acute Renal Failure): a Report by
the National Confidential Enquiry Into Patient Outcome and Death.
NCEPOD.

National Institute for Health and Care Excellence, 2007. Monitoring patients in
hospital and caring for them if their health becomes worse [Available from:
http://publications.nice.org.uk/ifp50 [Accessed 15 Jan 15].

National Institute for Health and Care Excellence, 2013. New NICE kidney guideline
to save thousands of lives [online]. Available from:
http://www.nice.org.uk/guidance/cg169/resources/new-nice-kidney-
guideline-to-save-thousands-of-lives [Accessed 12 Feb 2015].

167

National Instruments, n.d. What Is Data Acquisition? [online]. Berkshire: National
Instruments UK. Available from: http://www.ni.com/data-acquisition/what-
is/ [Accessed April 09, 2015].

National PatientSafety Agency (NPSA), 2007. Safer care for the acutely ill patient :
learning from serious incidents: National Patient Safety Agency (NPSA),.

Nemeth, C. P., 2004. Human factors methods for design: Making systems human-
centered. CRC press.

NHS, 2013. Better kidney care could save thousands of lives [online]. Available
from: http://www.nhs.uk/news/2013/08August/Pages/Better-kidney-care-
could-save-thousands-of-lives.aspx [Accessed 10 February 2015].

NHS Choices, 2014. Acute kidney injury [online]. Available from:
http://www.nhs.uk/conditions/acute-kidney-
injury/Pages/Introduction.aspx#who [Accessed April 04,2015].

Norgia, M., Magnani, A., Melchionni, D. and Pesatori, A., 2014. Optical system for
drop volume measurement. 2014 IEEE International Instrumentation &
Measurement Technology Conference (I2MTC) Proceedings, 1322.

Norgia, M., Pesatori, A. and Rovati, L., 2012. Self-Mixing Laser Doppler Spectra of
Extracorporeal Blood Flow: A Theoretical and Experimental Study. IEEE
SENSORS JOURNAL, 12 (3), 552-557.

Oracle Corporation, (n.d.)-a. Java SE 7 Features and Enhancements [online]. Oracle
Corporation. Available from:
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html
[Accessed May 1, 2015].

Oracle Corporation, (n.d.)-b. Java SE at a Glance [online]. Oracle Corporation.
Available from:
http://www.oracle.com/technetwork/java/javase/overview/index.html
[Accessed May 1, 2015].

Otero, A., Fernandez, R., Apalkov, A. and Armada, M., 2012. An Automatic Critical
Care Urine Meter. Sensors, 13109.

Otero, A., Palacios, F., Akinfiev, T. and Apalkov, A., 2010a. A Low Cost Device for
Monitoring the Urine Output of Critical Care Patients. Sensors (14248220),
10, 10714-10732.

Otero, A., Palacios, F., Akinfiev, T. and Fernández, R., 2010b. A Device for
Automatically Measuring and Supervising the Critical Care Patient'S Urine
Output. Sensors (14248220), 10, 934-951.

Otero, A., Palacios, F., Apalkov, A. and Fernández, R., 2013. A Simple and Low
Cost Device for Automatically Supervising Urine Output of Critical Patients.
Biomedical Engineering Systems & Technologies (9783642297519), 15.

Otero, A., Panigrahi, B., Palacios, F., Akinfiev, T. and Fernandez, R., 2009. A
Prototype Device to Measure and Supervise Urine Output of Critical
Patients: InTech, 2009-10-01.

Overmyer, S. P., 1991. Revolutionary vs. Evolutionary Rapid Prototyping:
Balancing

Software Productivity and HCI Design Concerns. Amsterdam:: Elsevier Science
Pulications.
Pang, Z. A., Tian, J. A., Chen, Q. A. and Kth, S. f. i.-o. k. E. O., 2014. Intelligent

packaging and intelligent medicine box for medication management towards
the Internet-of-Things. International Conference on Advanced
Communication Technology, ICACT, 352.

168

Payne, R. and Macdonald, B., 2004. Ambient technology - now you see it, now you
don't. BT Technology Journal, 22 (3), 119-129.

Pearce, J. M., 2012. Building Research Equipment with Free, Open-Source
Hardware. Science, 337 (6100), 1303-1304.

Pronovost, P. J., Angus, D. C., Dorman, T., Robinson, K. A., Dremsizov, T. T. and
Young, T. L., 2002. Physician staffing patterns and clinical outcomes in
critically ill patients: a systematic review. JAMA, 288 (17), 2151-2162.

Pullen, J. P., 2014. THE DEVICE CODE. Entrepreneur, 42 (2), 44-44.
Putnam, D. F., 1971. Composition and Concentrative Properties of Human Urine:

NASA Contractor Report.
Quick, D. and Choo, K.-K. R., 2014. Google Drive: Forensic analysis of data

remnants. Journal of Network and Computer Applications, 40, 179-193.
Raschke, R. A., Gollihare, B., Wunderlich, T. A., Guidry, J. R., Leibowitz, A. I.,

Peirce, J. C., Lemelson, L., Heisler, M. A. and Susong, C., 1998. A computer
alert system to prevent injury from adverse drug events: development and
evaluation in a community teaching hospital. JAMA, 280 (15), 1317-1320.

Ricci, Z., Cruz, D. and Ronco, C., 2008. The RIFLE criteria and mortality in acute
kidney injury: A systematic review. Kidney International, 73 (5), 538-546.

Rodriguez, N., 2013. This Killer New Service Lets You Connect To Any Popular
API—Without Wrappers [online]. Fastcolabs.com. Available from:
http://www.fastcolabs.com/3020690/this-killer-new-service-lets-you-
connect-to-any-popular-api-without-wrappers [Accessed April 24, 2015].

Rolim, C. O., Koch, F. L., Westphall, C. B., Werner, J., Fracalossi, A. and Salvador,
G. S., 2010. A cloud computing solution for patient's data collection in health
care institutions (pp. 95-99).

Rose, C., Parker, A., Jefferson, B. and Cartmell, E., 2015. The characterisation of
faeces and urine; a review of the literature to inform advanced treatment
technology. Critical Reviews in Environmental Science and Technology,
(just-accepted), 00-00.

Rosner, M. H., 2013. Acute Kidney Injury in the Elderly. Clinics in Geriatric
Medicine, 29, 565-578.

Rowe, M., Bozalek, V. and Frantz, J., 2013. Using Google Drive to facilitate a
blended approach to authentic learning. British Journal of Educational
Technology, 44 (4), 594-606.

Scales, K. and Pilsworth, J., 2008. The importance of fluid balance in clinical
practice. Nursing Standard, 22 (47), 50-58.

Schrier, R. W., Shchekochikhin, D. and Ginès, P., 2012. Renal failure in cirrhosis:
prerenal azotemia, hepatorenal syndrome and acute tubular necrosis.
Nephrology, Dialysis, Transplantation: Official Publication Of The
European Dialysis And Transplant Association - European Renal
Association, 27 (7), 2625-2628.

Sean, C. and Kevin, C., 2012. Cloud Computing Technologies. International Journal
of Cloud Computing and Services Science (IJ-CLOSER), (2), 59.

Shabot, M. M., LoBue, M. and Leyerle, B. J., 1988. An automatic PDMS interface
for the Urotrack Plus 220 urimeter. International Journal of Clinical
Monitoring and Computing, 5 (2), 125-131.

Shafranovich, Y., 2005. Common format and MIME type for Comma-Separated
Values (CSV) files.

169

Shepherd, A., 2011. Measuring and managing fluid balance... [corrected] [published
erratum appears in NURS TIMES 2011 Aug 16-29; 107(32-33):9]. Nursing
Times, 107 (28), 12-16.

Shotts, J. F. and Hauf, E., 1986. The Hewlett-Packard 1000 - Vitalmetrics VM220
Connection: A description of the automated ultrasonic urine output
measurement system in the CICU of Genolier Clinic. International Journal
of Clinical Monitoring and Computing, 3 (3), 175-182.

Sibley, E. H., Mantei, M. M. and Teorey, T. J., 1988. COST/BENEFIT ANALYSIS
FOR INCORPORATING HUMAN FACTORS IN THE SOFTWARE
LIFECYCLE. Communications of the ACM, 31 (4), 428-439.

Siegel, M. D., 2009. End-of-Life Decision Making in the ICU. Clinics in Chest
Medicine, 30, 181-194.

Song, Q., Zhang, G. and Qiu, Z., 2003. Drop Growth Monitoring and Drop Volume
Measurement Based on Image Drop Analysis with CCD. Instrumentation
Science & Technology, 31 (1), 1.

Song, Q., Zhang, G. X. and Qiu, Z. R., 2005. Review of drop analysis technology for
liquid property study. OPTO-ELECTRONICS REVIEW, 13 (1), 1-8.

SONOTEC, 2015. Ready for 60601 3rd Edition with Redundant Air Bubble Sensor
SONOCHECK ABD08 [SOTEC, Halle (Saale), Germany. Available from:
http://www.sonotec.eu/fileadmin/media/DE/Produkte/Nicht_Invasive_Fluessi
gkeitsueberwachung/Applikationen/AN_Redundant_Bubble_Sensor_engl_R
ev_2.1_2015-02-05.pdf [Accessed

Teddlie, C. and Tashakkori, A., 2009. Foundations of mixed methods research :
integrating quantitative and qualitative approaches in the social and
behavioral sciences [Bibliographies

Non-fiction]. Los Angeles, [Calif.] ; London : SAGE, c2009.
The Government Statistical Service, 2015. STATISTICAL PRESS NOTICE:

MONTHLY CRITICAL CARE BEDS AND CANCELLED URGENT
OPERATIONS DATA, ENGLAND JANUARY 2015 [Available from:
http://www.england.nhs.uk/statistics/wp-
content/uploads/sites/2/2013/04/MSitRep-Pre-Release-List-September.pdf
[Accessed 24 March 2015].

The National Meseum of American History, n.d. Urinometer [online]. Washington
D.C.,: The Smithsonian Institution. Available from:
http://americanhistory.si.edu/collections/search/object/nmah_735237
[Accessed 31 March 2015].

The Oregon Health & Science University, 2013. OHSU notifies patients of ‘cloud’
health information storage [online]. Portland: The Oregon Health & Science
University,. Available from:
http://www.ohsu.edu/xd/about/news_events/news/2013/07-28-ohsu-notifies-
patients-o.cfm [Accessed April 13, 2015].

The World Health Organization, 2005. WHO Report: Nutrient Minerals in Drinking
Water. WATER CONDITIONING AND PURIFICATION INTERNATIONAL,
62-65.

Thurow, K., Krüger, T. and Stoll, N., 2009. An optical approach for the
determination of droplet volumes in nanodispensing. Journal of Automated
Methods and Management in Chemistry, 2009.

Tidy, C., 2012. Polyuria [online]. Available from:
http://www.patient.co.uk/doctor/polyuria [Accessed 17 November 2014].

170

Uchino, S., Bellomo, R., Bagshaw, S. M. and Goldsmith, D., 2010. Transient
azotaemia is associated with a high risk of death in hospitalized patients.
Nephrology, Dialysis, Transplantation: Official Publication Of The
European Dialysis And Transplant Association - European Renal
Association, 25 (6), 1833-1839.

Ulrich, K. and Eppinger, S. D., 2012. Product design and development [Non-fiction].
London: McGraw-Hill Education.

Van Santvliet, L. and Ludwig, A., 2004. Determinants of eye drop size. Survey of
Ophthalmology, 49 (2), 197-213.

Vermesan, O. and Friess, P., 2014. Internet of Things-From Research and Innovation
to Market Deployment.

Vincent, J. L., Sakr, Y., Sprung, C. L., Ranieri, V. M., Reinhart, K., Gerlach, H.,
Moreno, R., Carlet, J., Gall, J. R. l. and Payen, D., 2006. Sepsis in European
intensive care units: results of the SOAP study. Critical Care Medicine, 34
(2), 344-353.

Wang, J., Abid, H., Lee, S., Shu, L. and Xia, F., 2011. A secured health care
application architecture for cyber-physical systems. Control Engineering and
Applied Informatics, 13 (3), 101-108.

Warren, J. W., 2001. Catheter-associated urinary tract infections. International
Journal of Antimicrobial Agents, 17, 299-303.

Weinberg, A. D., Pals, J. K., Levesque, P. G., Beal, L. F., Cunningham, T. J. and
Minaker, K. L., 1994. Dehydration and death during febrile episodes in the
nursing home. Journal of the American Geriatrics Society, 968-971 964p.

Westen, D., 2012. FORUM: ADVANTAGES AND DISADVANTAGES OF A
PROTOTYPE-MATCHING APPROACH TO PSYCHIATRIC
DIAGNOSIS: Prototype diagnosis of psychiatric syndromes. World
Psychiatry, 11, 16-21.

Wiedemann, H. P., Wheeler, A. P., Bernard, G. R., Thompson, B. T., Hayden, D.,
deBoisblanc, B., Connors, A. F., Hite, R. D. and Harabin, A. L., 2006.
Comparison of two fluid-management strategies in acute lung injury. NEW
ENGLAND JOURNAL OF MEDICINE, 354 (24), 2564-2575.

Wilkes, K., 2014. Cloud storage now available for OHSU researchers [online].
Portland: The Oregon Health & Science Universit,. Available from:
http://www.ohsu.edu/blogs/researchnews/2014/08/05/cloud-storage-now-
available-for-ohsu-researchers/ [Accessed April 13, 2015].

Williams, M. H., 1999. Nutrition for health, fitness and sport, Nutrition for health,
fitness and sport. Boston; USA: WCB/McGraw-Hill.

Wilson, J. and Rosenberg, D., 1988. Chapter 39: Rapid Prototyping for User
Interface Design. Handbook of Human-Computer Interaction, 859-875.

Yu, L., Lu, Y. and Zhu, X., 2012. Smart hospital based on internet of things. Journal
of Networks, 7 (10), 1654-1661.

Zacks Equity Research, 2015. Masimo's Radical-7 Installed by Jordan Pediatric
Hospital [online]. Available from:
http://www.zacks.com/stock/news/190126/masimos-radical7-installed-by-
jordan-pediatric-hospital [Accessed September 30, 2015].

171

	
	
	
	
	
	
	
	
	
	

APPENDIX	

172

Appendix 1. HC-SR04 Ultrasonic datasheet

173

174

175

176

Appendix 2. Sharp GP2Y0A41SK0F: IR-Proximity

177

178

179

180

181

182

183

Appendix 3. OMRON EE-SX461-P11 Photo sensor

184

185

Appendix 4. Source code library for system timer (C++)

SimpleTimer.h

/*
 * SimpleTimer.h
 *
 * SimpleTimer - A timer library for Arduino.
 * Author: mromani@ottotecnica.com
 * Copyright (c) 2010 OTTOTECNICA Italy
 *
 */

#ifndef SIMPLETIMER_H
#define SIMPLETIMER_H

#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif

typedef void (*timer_callback)(void);
class SimpleTimer {

public:
 // maximum number of timers
 const static int MAX_TIMERS = 10;

 // setTimer() constants

const static int RUN_FOREVER = 0;

 const static int RUN_ONCE = 1;

 // constructor
 SimpleTimer();

 // this function must be called inside loop()
 void run();

 // call function f every d milliseconds
 int setInterval(long d, timer_callback f);

 // call function f once after d milliseconds
 int setTimeout(long d, timer_callback f);

 // call function f every d milliseconds for n times
 int setTimer(long d, timer_callback f, int n);

 // destroy the specified timer
 void deleteTimer(int numTimer);

 // restart the specified timer
 void restartTimer(int numTimer);

 // returns true if the specified timer is enabled
 boolean isEnabled(int numTimer);

186

 // enables the specified timer
 void enable(int numTimer);

 // disables the specified timer
 void disable(int numTimer);

 // enables the specified timer if it's currently disabled,
 // and vice-versa
 void toggle(int numTimer);

 // returns the number of used timers
 int getNumTimers();

 // returns the number of available timers
 int getNumAvailableTimers() { return MAX_TIMERS - numTimers; };

private:
 // deferred call constants
 const static int DEFCALL_DONTRUN = 0; // don't call the
callback function
 const static int DEFCALL_RUNONLY = 1; // call the callback
function but don't delete the timer
 const static int DEFCALL_RUNANDDEL = 2; // call the
callback function and delete the timer

 // find the first available slot
 int findFirstFreeSlot();

 // value returned by the millis() function
 // in the previous run() call
 unsigned long prev_millis[MAX_TIMERS];

 // pointers to the callback functions
 timer_callback callbacks[MAX_TIMERS];

 // delay values
 long delays[MAX_TIMERS];

 // number of runs to be executed for each timer
 int maxNumRuns[MAX_TIMERS];

 // number of executed runs for each timer
 int numRuns[MAX_TIMERS];

 // which timers are enabled
 boolean enabled[MAX_TIMERS];

 // deferred function call (sort of) - N.B.: this array is only
used in run()
 int toBeCalled[MAX_TIMERS];

 // actual number of timers in use
 int numTimers;
};

#endif

187

SimpleTimer.cpp

 #include "SimpleTimer.h"

 // Select time function:
 //static inline unsigned long elapsed() { return micros(); }
 static inline unsigned long elapsed() { return millis(); }

 SimpleTimer::SimpleTimer() {
 unsigned long current_millis = elapsed();

 for (int i = 0; i < MAX_TIMERS; i++) {
 enabled[i] = false;
 callbacks[i] = 0;
// if the callback pointer is zero, the slot is free, i.e. doesn't
"contain" any timer
 prev_millis[i] = current_millis;
 numRuns[i] = 0;
 }

 numTimers = 0;
 }

 void SimpleTimer::run() {
 int i;
 unsigned long current_millis;

 // get current time
 current_millis = elapsed();

 for (i = 0; i < MAX_TIMERS; i++) {

 toBeCalled[i] = DEFCALL_DONTRUN;

 // no callback == no timer, i.e. jump over empty slots
 if (callbacks[i]) {

 // is it time to process this timer ?

 if (current_millis - prev_millis[i] >= delays[i]) {

 // update time
 //prev_millis[i] = current_millis;
 prev_millis[i] += delays[i];

// check if the timer callback has to be executed
 if (enabled[i]) {

// "run forever" timers must always be executed
 if (maxNumRuns[i] == RUN_FOREVER) {
 toBeCalled[i] = DEFCALL_RUNONLY;
 }
 else if (numRuns[i] < maxNumRuns[i]) {
 toBeCalled[i] = DEFCALL_RUNONLY;
 numRuns[i]++;

188

 // after the last run, delete the timer
 if (numRuns[i] >= maxNumRuns[i]) {
 toBeCalled[i] = DEFCALL_RUNANDDEL;
 }
 }
 }
 }
 }
 }

 for (i = 0; i < MAX_TIMERS; i++) {
 switch(toBeCalled[i]) {
 case DEFCALL_DONTRUN:
 break;

 case DEFCALL_RUNONLY:
 (*callbacks[i])();
 break;

 case DEFCALL_RUNANDDEL:
 (*callbacks[i])();
 deleteTimer(i);
 break;
 }
 }
 }

 // find the first available slot
 // return -1 if none found
 int SimpleTimer::findFirstFreeSlot() {
 int i;

 // all slots are used
 if (numTimers >= MAX_TIMERS) {
 return -1;
 }

 // return the first slot with no callback (i.e. free)
 for (i = 0; i < MAX_TIMERS; i++) {
 if (callbacks[i] == 0) {
 return i;
 }
 }

 // no free slots found
 return -1;
 }

 int SimpleTimer::setTimer(long d, timer_callback f, int n) {
 int freeTimer;

 freeTimer = findFirstFreeSlot();
 if (freeTimer < 0) {
 return -1;
 }

 if (f == NULL) {
 return -1;
 }

189

 delays[freeTimer] = d;
 callbacks[freeTimer] = f;
 maxNumRuns[freeTimer] = n;
 enabled[freeTimer] = true;
 prev_millis[freeTimer] = elapsed();

 numTimers++;

 return freeTimer;
 }

 int SimpleTimer::setInterval(long d, timer_callback f) {
 return setTimer(d, f, RUN_FOREVER);
 }

 int SimpleTimer::setTimeout(long d, timer_callback f) {
 return setTimer(d, f, RUN_ONCE);
 }

 void SimpleTimer::deleteTimer(int timerId) {
 if (timerId >= MAX_TIMERS) {
 return;
 }

 // nothing to delete if no timers are in use
 if (numTimers == 0) {
 return;
 }

 // don't decrease the number of timers if the
 // specified slot is already empty
 if (callbacks[timerId] != NULL) {
 callbacks[timerId] = 0;
 enabled[timerId] = false;
 toBeCalled[timerId] = DEFCALL_DONTRUN;
 delays[timerId] = 0;
 numRuns[timerId] = 0;

 // update number of timers
 numTimers--;
 }
 }

 // function contributed by code@rowansimms.com
 void SimpleTimer::restartTimer(int numTimer) {
 if (numTimer >= MAX_TIMERS) {
 return;
 }

 prev_millis[numTimer] = elapsed();
 }

 boolean SimpleTimer::isEnabled(int numTimer) {
 if (numTimer >= MAX_TIMERS) {
 return false;
 }

190

 return enabled[numTimer];
 }

 void SimpleTimer::enable(int numTimer) {
 if (numTimer >= MAX_TIMERS) {
 return;
 }

 enabled[numTimer] = true;
 }

 void SimpleTimer::disable(int numTimer) {
 if (numTimer >= MAX_TIMERS) {
 return;
 }

 enabled[numTimer] = false;
 }

 void SimpleTimer::toggle(int numTimer) {
 if (numTimer >= MAX_TIMERS) {
 return;
 }

 enabled[numTimer] = !enabled[numTimer];
 }

 int SimpleTimer::getNumTimers() {
 return numTimers;
 }

191

Appendix 5. Source code for ultrasonic sensor (C++)
NewPing.h

// Created by Tim Eckel - teckel@leethost.com
// Copyright 2015 License: GNU GPL v3
// http://www.gnu.org/licenses/gpl.html
// ---

#ifndef NewPing_h
#define NewPing_h

#if defined (ARDUINO) && ARDUINO >= 100
 #include <Arduino.h>
#else
 #include <WProgram.h>
 #include <pins_arduino.h>
#endif

#if defined (__AVR__)
 #include <avr/io.h>
 #include <avr/interrupt.h>
#endif

#define US_ROUNDTRIP_CM 57
// Microseconds (uS) it takes sound to travel round-trip 1cm
#define ONE_PIN_ENABLED true
#define ROUNDING_ENABLED false
// Set to "true" to enable distance rounding which also adds 64
bytes to binary size
#define URM37_ENABLED false
// Set to "true" to enable support for the URM37 sensor in PWM mode.
Default=false
#define TIMER_ENABLED true
// Set to "false" to disable the timer ISR (if getting "__vector_7"
compile errors set this to false). Default=true

#define NO_ECHO 0
// Value returned if there's no ping echo within the specified
MAX_SENSOR_DISTANCE or max_cm_distance. Default=0
#define MAX_SENSOR_DELAY 5800
// Maximum uS it takes for sensor to start the ping. Default=5800
#define ECHO_TIMER_FREQ 24
// Frequency to check for a ping echo (every 24uS is about 0.4cm
accuracy). Default=24
#define PING_MEDIAN_DELAY 29000
// Microsecond delay between pings in the ping_median method.
Default=29000
#define PING_OVERHEAD 5
// Ping overhead in microseconds (uS). Default=5
#define PING_TIMER_OVERHEAD 13
// Ping timer overhead in microseconds (uS). Default=13
#if URM37_ENABLED == true
 #undef US_ROUNDTRIP_CM
 #undef US_ROUNDTRIP_IN

#define US_ROUNDTRIP_CM 50
// Every 50uS PWM signal is low indicates 1cm distance. Default=50

#define US_ROUNDTRIP_IN 127
// If 50uS is 1cm, 1 inch would be 127uS (50 x 2.54 = 127).

Default=127

192

#endif

// Detect non-AVR microcontrollers (Teensy 3.x, Arduino DUE, etc.)
and don't use port registers or timer interrupts as required.
#if (defined (__arm__) && defined (TEENSYDUINO))
 #undef PING_OVERHEAD
 #define PING_OVERHEAD 1
 #undef PING_TIMER_OVERHEAD
 #define PING_TIMER_OVERHEAD 1
#elif !defined (__AVR__)
 #undef PING_OVERHEAD
 #define PING_OVERHEAD 1
 #undef PING_TIMER_OVERHEAD
 #define PING_TIMER_OVERHEAD 1
 #undef TIMER_ENABLED
 #define TIMER_ENABLED false
#endif

// Disable the timer interrupts when using ATmega128 and all ATtiny
microcontrollers.
#if defined (__AVR_ATmega128__) || defined(__AVR_ATtiny24__) ||
defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) ||
defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) ||
defined(__AVR_ATtiny85__) || defined(__AVR_ATtiny261__) ||
defined(__AVR_ATtiny461__) || defined(__AVR_ATtiny861__) ||
defined(__AVR_ATtiny43U__)
 #undef TIMER_ENABLED
 #define TIMER_ENABLED false
#endif

// Define timers when using ATmega8 microcontrollers.
#if defined (__AVR_ATmega8__)
 #define OCR2A OCR2
 #define TIMSK2 TIMSK
 #define OCIE2A OCIE2
#endif

class NewPing {
 public:
 NewPing(uint8_t trigger_pin, uint8_t echo_pin, unsigned int
max_cm_distance = MAX_SENSOR_DISTANCE);
 unsigned int ping();
 unsigned long ping_cm();
 unsigned long ping_in();
 unsigned long ping_median(uint8_t it = 5);
 unsigned int convert_cm(unsigned int echoTime);
 unsigned int convert_in(unsigned int echoTime);
#if TIMER_ENABLED == true
 void ping_timer(void (*userFunc)(void));
 boolean check_timer();
 unsigned long ping_result;
 static void timer_us(unsigned int frequency, void
(*userFunc)(void));
 static void timer_ms(unsigned long frequency, void
(*userFunc)(void));
 static void timer_stop();
#endif
 private:
 boolean ping_trigger();
#if TIMER_ENABLED == true
 boolean ping_trigger_timer(unsigned int trigger_delay);

193

 boolean ping_wait_timer();
 static void timer_setup();
 static void timer_ms_cntdwn();
#endif
 uint8_t _triggerBit;
 uint8_t _echoBit;
 volatile uint8_t *_triggerOutput;
 volatile uint8_t *_echoInput;
 volatile uint8_t *_triggerMode;
 unsigned int _maxEchoTime;
 unsigned long _max_time;
};

#endif

NewPing.cpp

#include "NewPing.h"

NewPing::NewPing(uint8_t trigger_pin, uint8_t echo_pin, unsigned int
max_cm_distance) {

_triggerBit = digitalPinToBitMask(trigger_pin);
// Get the port register bitmask for the trigger pin.
_echoBit = digitalPinToBitMask(echo_pin);
// Get the port register bitmask for the echo pin.

_triggerOutput =

portOutputRegister(digitalPinToPort(trigger_pin));
// Get the output port register for the trigger pin.
_echoInput = portInputRegister(digitalPinToPort(echo_pin));
// Get the input port register for the echo pin.

 _triggerMode = (uint8_t *)
portModeRegister(digitalPinToPort(trigger_pin)); // Get the port
mode register for the trigger pin.

#if ROUNDING_ENABLED == false
 _maxEchoTime = min(max_cm_distance + 1, (unsigned int)
MAX_SENSOR_DISTANCE + 1) * US_ROUNDTRIP_CM; // Calculate the maximum
distance in uS (no rounding).
#else
 _maxEchoTime = min(max_cm_distance, (unsigned int)
MAX_SENSOR_DISTANCE) * US_ROUNDTRIP_CM + (US_ROUNDTRIP_CM / 2); //
Calculate the maximum distance in uS.
#endif

#if defined (__arm__) && defined (TEENSYDUINO)
 pinMode(echo_pin, INPUT);
 pinMode(trigger_pin, OUTPUT);
#endif

#if defined (ARDUINO_AVR_YUN)
 pinMode(echo_pin, INPUT);
#endif

#if ONE_PIN_ENABLED != true
 *_triggerMode |= _triggerBit;
#endif
}

194

unsigned int NewPing::ping() {
 if (!ping_trigger()) return NO_ECHO; // Trigger a ping, if it
returns false, return NO_ECHO to the calling function.

#if URM37_ENABLED == true
 while (!(*_echoInput & _echoBit)) // Wait for the ping echo.
 if (micros() > _max_time) return NO_ECHO; // Stop the loop
and return NO_ECHO (false) if we're beyond the set maximum distance.
#else
 while (*_echoInput & _echoBit) // Wait for the ping echo.
 if (micros() > _max_time) return NO_ECHO; // Stop the loop
and return NO_ECHO (false) if we're beyond the set maximum distance.
#endif

 return (micros() - (_max_time - _maxEchoTime) - PING_OVERHEAD);
// Calculate ping time, include overhead.
}

unsigned long NewPing::ping_cm() {
 unsigned long echoTime = NewPing::ping(); // Calls the
ping method and returns with the ping echo distance in uS.
#if ROUNDING_ENABLED == false
 return (echoTime / US_ROUNDTRIP_CM); // Call the
ping method and returns the distance in centimeters (no rounding).
#else
 return NewPingConvert(echoTime, US_ROUNDTRIP_CM); // Convert uS
to centimeters.
#endif
}

unsigned long NewPing::ping_in() {
 unsigned long echoTime = NewPing::ping(); // Calls the
ping method and returns with the ping echo distance in uS.
#if ROUNDING_ENABLED == false
 return (echoTime / US_ROUNDTRIP_IN); // Call the
ping method and returns the distance in inches (no rounding).
#else
 return NewPingConvert(echoTime, US_ROUNDTRIP_IN); // Convert uS
to inches.
#endif
}

unsigned long NewPing::ping_median(uint8_t it) {
 unsigned int uS[it], last;
 uint8_t j, i = 0;
 unsigned long t;
 uS[0] = NO_ECHO;

 while (i < it) {
 t = micros(); // Start ping timestamp.
 last = ping(); // Send ping.

 if (last != NO_ECHO) {
 if (i > 0)
 for (j = i; j > 0 && uS[j - 1] < last; j--)

// Insertion sort loop.
 uS[j] = uS[j - 1
 } else j = 0;
 uS[j] = last;// Add last ping to array in position.
 i++; // Move to next ping.

195

 } else it--;

 if (i < it && micros() - t < PING_MEDIAN_DELAY)
 delay((PING_MEDIAN_DELAY + t - micros()) / 1000); //
Millisecond delay between pings.

 }
 return (uS[it >> 1]); // Return the ping distance median.
}

boolean NewPing::ping_trigger() {
#if ONE_PIN_ENABLED == true
 *_triggerMode |= _triggerBit; // Set trigger pin to output.
#endif

 *_triggerOutput &= ~_triggerBit; // Set the trigger pin low,
should already be low, but this will make sure it is.
 delayMicroseconds(4); // Wait for pin to go low.
 *_triggerOutput |= _triggerBit; // Set trigger pin high, this
tells the sensor to send out a ping.
 delayMicroseconds(10); // Wait long enough for the
sensor to realize the trigger pin is high. Sensor specs say to wait
10uS.
 *_triggerOutput &= ~_triggerBit; // Set trigger pin back to low.

#if ONE_PIN_ENABLED == true
 *_triggerMode &= ~_triggerBit; // Set trigger pin to input (when
using one Arduino pin this is technically setting the echo pin to
input as both are tied to the same Arduino pin).
#endif

#if URM37_ENABLED == true
 if (!(*_echoInput & _echoBit)) return false; //
Previous ping hasn't finished, abort.
 _max_time = micros() + _maxEchoTime + MAX_SENSOR_DELAY; //
Maximum time we'll wait for ping to start (most sensors are <450uS,
the SRF06 can take up to 34,300uS!)
 while (*_echoInput & _echoBit) // Wait
for ping to start.
 if (micros() > _max_time) return false; //
Took too long to start, abort.
#else
 if (*_echoInput & _echoBit) return false; //
Previous ping hasn't finished, abort.
 _max_time = micros() + _maxEchoTime + MAX_SENSOR_DELAY; //
Maximum time we'll wait for ping to start (most sensors are <450uS,
the SRF06 can take up to 34,300uS!)
 while (!(*_echoInput & _echoBit)) // Wait
for ping to start.
 if (micros() > _max_time) return false; //
Took too long to start, abort.
#endif

 _max_time = micros() + _maxEchoTime; // Ping started, set the
time-out.
 return true; // Ping started
successfully.
}

#if TIMER_ENABLED == true

196

void NewPing::ping_timer(void (*userFunc)(void)) {
 if (!ping_trigger()) return; // Trigger a ping, if it
returns false, return without starting the echo timer.
 timer_us(ECHO_TIMER_FREQ, userFunc); // Set ping echo timer
check every ECHO_TIMER_FREQ uS.
}

boolean NewPing::check_timer() {
 if (micros() > _max_time) { // Outside the time-out limit.
 timer_stop(); // Disable timer interrupt
 return false; // Cancel ping timer.
 }

#if URM37_ENABLED == false
 if (!(*_echoInput & _echoBit)) { // Ping echo received.
#else
 if (*_echoInput & _echoBit) { // Ping echo received.
#endif
 timer_stop(); // Disable timer interrupt
 ping_result = (micros() - (_max_time - _maxEchoTime) -
PING_TIMER_OVERHEAD); // Calculate ping time including overhead.
 return true; // Return ping echo true.
 }

 return false; // Return false because there's no ping echo yet.
}

// Variables used for timer functions
void (*intFunc)();
void (*intFunc2)();
unsigned long _ms_cnt_reset;
volatile unsigned long _ms_cnt;
#if defined(__arm__) && defined(TEENSYDUINO)
 IntervalTimer itimer;
#endif

void NewPing::timer_us(unsigned int frequency, void
(*userFunc)(void)) {
 intFunc = userFunc; // User's function to call when there's a
timer event.
 timer_setup(); // Configure the timer interrupt.

#if defined (__AVR_ATmega32U4__) // Use Timer4 for ATmega32U4
(Teensy/Leonardo).
 OCR4C = min((frequency>>2) - 1, 255); // Every count is 4uS, so
divide by 4 (bitwise shift right 2) subtract one, then make sure we
don't go over 255 limit.
 TIMSK4 = (1<<TOIE4); // Enable Timer4 interrupt.
#elif defined (__arm__) && defined (TEENSYDUINO) // Timer for Teensy
3.x
 itimer.begin(userFunc, frequency); // Really simple
on the Teensy 3.x, calls userFunc every 'frequency' uS.
#else
 OCR2A = min((frequency>>2) - 1, 255); // Every count is 4uS, so
divide by 4 (bitwise shift right 2) subtract one, then make sure we
don't go over 255 limit.
 TIMSK2 |= (1<<OCIE2A); // Enable Timer2 interrupt.
#endif

197

}

void NewPing::timer_ms(unsigned long frequency, void
(*userFunc)(void)) {
 intFunc = NewPing::timer_ms_cntdwn; // Timer events are sent
here once every ms till user's frequency is reached.
 intFunc2 = userFunc; // User's function to call
when user's frequency is reached.
 _ms_cnt = _ms_cnt_reset = frequency; // Current ms counter and
reset value.
 timer_setup(); // Configure the timer
interrupt.

#if defined (__AVR_ATmega32U4__) // Use Timer4 for ATmega32U4
(Teensy/Leonardo).
 OCR4C = 249; // Every count is 4uS, so 1ms = 250
counts - 1.
 TIMSK4 = (1<<TOIE4); // Enable Timer4 interrupt.
#elif defined (__arm__) && defined (TEENSYDUINO) // Timer for Teensy
3.x
 itimer.begin(NewPing::timer_ms_cntdwn, 1000); // Set timer to
1ms (1000 uS).
#else
 OCR2A = 249; // Every count is 4uS, so 1ms = 250
counts - 1.
 TIMSK2 |= (1<<OCIE2A); // Enable Timer2 interrupt.
#endif
}

void NewPing::timer_stop() { // Disable timer interrupt.
#if defined (__AVR_ATmega32U4__) // Use Timer4 for ATmega32U4
(Teensy/Leonardo).
 TIMSK4 = 0;
#elif defined (__arm__) && defined (TEENSYDUINO) // Timer for Teensy
3.x
 itimer.end();
#else
 TIMSK2 &= ~(1<<OCIE2A);
#endif
}

void NewPing::timer_setup() {
#if defined (__AVR_ATmega32U4__) // Use Timer4 for ATmega32U4
(Teensy/Leonardo).
 timer_stop(); // Disable Timer4 interrupt.
 TCCR4A = TCCR4C = TCCR4D = TCCR4E = 0;
 TCCR4B = (1<<CS42) | (1<<CS41) | (1<<CS40) | (1<<PSR4); // Set
Timer4 prescaler to 64 (4uS/count, 4uS-1020uS range).
 TIFR4 = (1<<TOV4);
 TCNT4 = 0; // Reset Timer4 counter.
#elif defined (__AVR_ATmega8__)
 timer_stop(); // Disable Timer2 interrupt.
 ASSR &= ~(1<<AS2); // Set clock, not pin.
 TCCR2 = (1<<WGM21 | 1<<CS22); // Set Timer2 to CTC mode,
prescaler to 64 (4uS/count, 4uS-1020uS range).
 TCNT2 = 0; // Reset Timer2 counter.
#elif defined (__arm__) && defined (TEENSYDUINO)
 timer_stop(); // Stop the timer.

198

#else
 timer_stop(); // Disable Timer2 interrupt.
 ASSR &= ~(1<<AS2); // Set clock, not pin.
 TCCR2A = (1<<WGM21); // Set Timer2 to CTC mode.
 TCCR2B = (1<<CS22); // Set Timer2 prescaler to 64 (4uS/count,
4uS-1020uS range).
 TCNT2 = 0; // Reset Timer2 counter.
#endif
}

void NewPing::timer_ms_cntdwn() {
 if (!_ms_cnt--) { // Count down till we reach zero.
 intFunc2(); // Scheduled time reached, run the main
timer event function.
 _ms_cnt = _ms_cnt_reset; // Reset the ms timer.
 }
}

#if defined (__AVR_ATmega32U4__)
ISR(TIMER4_OVF_vect) {
 intFunc();
}
#elif defined (__AVR_ATmega8__) // ATmega8 microcontrollers.
ISR(TIMER2_COMP_vect) {
 intFunc();
}
#elif defined (__arm__)
#else
ISR(TIMER2_COMPA_vect) {
 intFunc();
}
#endif

#endif

// ---
// Conversion methods (rounds result to nearest cm or inch).
// ---

unsigned int NewPing::convert_cm(unsigned int echoTime) {
#if ROUNDING_ENABLED == false
 return (echoTime / US_ROUNDTRIP_CM); // Convert uS
to centimeters (no rounding).
#else
 return NewPingConvert(echoTime, US_ROUNDTRIP_CM); // Convert uS
to centimeters.
#endif
}

199

Appendix 6. Source code for weight sensor (C++)
HX711.h

#include <Arduino.h>
#include <HX711.h>

HX711::HX711(byte dout, byte pd_sck, byte gain) {
 PD_SCK = pd_sck;
 DOUT = dout;

 pinMode(PD_SCK, OUTPUT);
 pinMode(DOUT, INPUT);

 set_gain(gain);
}

HX711::~HX711() {

}

bool HX711::is_ready() {
 return digitalRead(DOUT) == LOW;
}

void HX711::set_gain(byte gain) {
 switch (gain) {
 case 128: // channel A, gain factor 128
 GAIN = 1;
 break;
 case 64: // channel A, gain factor 64
 GAIN = 3;
 break;
 case 32: // channel B, gain factor 32
 GAIN = 2;
 break;
 }

 digitalWrite(PD_SCK, LOW);
 read();
}

long HX711::read() {
 // wait for the chip to become ready
 while (!is_ready());

 byte data[3];

 // pulse the clock pin 24 times to read the data
 for (byte j = 3; j--;) {
 for (char i = 8; i--;) {
 digitalWrite(PD_SCK, HIGH);
 bitWrite(data[j], i, digitalRead(DOUT));
 digitalWrite(PD_SCK, LOW);
 }
 }

 // set the channel and the gain factor for the next reading
using the clock pin
 for (int i = 0; i < GAIN; i++) {

200

 digitalWrite(PD_SCK, HIGH);
 digitalWrite(PD_SCK, LOW);
 }

 data[2] ^= 0x80;

 return ((uint32_t) data[2] << 16) | ((uint32_t) data[1] << 8) |
(uint32_t) data[0];
}

long HX711::read_average(byte times) {
 long sum = 0;
 for (byte i = 0; i < times; i++) {
 sum += read();
 }
 return sum / times;
}

double HX711::get_value(byte times) {
 return read_average(times) - OFFSET;
}

float HX711::get_units(byte times) {
 return get_value(times) / SCALE;
}

void HX711::tare(byte times) {
 double sum = read_average(times);
 set_offset(sum);
}

void HX711::set_scale(float scale) {
 SCALE = scale;
}

void HX711::set_offset(long offset) {
 OFFSET = offset;
}

void HX711::power_down() {
 digitalWrite(PD_SCK, LOW);
 digitalWrite(PD_SCK, HIGH);
}

void HX711::power_up() {
 digitalWrite(PD_SCK, LOW);
}

201

HX711.cpp

#include <Arduino.h>
#include <HX711.h>

HX711::HX711(byte dout, byte pd_sck, byte gain) {
 PD_SCK = pd_sck;
 DOUT = dout;

 pinMode(PD_SCK, OUTPUT);
 pinMode(DOUT, INPUT);

 set_gain(gain);
}

HX711::~HX711() {

}

bool HX711::is_ready() {
 return digitalRead(DOUT) == LOW;
}

void HX711::set_gain(byte gain) {
 switch (gain) {
 case 128: // channel A, gain factor 128
 GAIN = 1;
 break;
 case 64: // channel A, gain factor 64
 GAIN = 3;
 break;
 case 32: // channel B, gain factor 32
 GAIN = 2;
 break;
 }

 digitalWrite(PD_SCK, LOW);
 read();
}

long HX711::read() {
 // wait for the chip to become ready
 while (!is_ready());

 byte data[3];

 // pulse the clock pin 24 times to read the data
 for (byte j = 3; j--;) {
 for (char i = 8; i--;) {
 digitalWrite(PD_SCK, HIGH);
 bitWrite(data[j], i, digitalRead(DOUT));
 digitalWrite(PD_SCK, LOW);
 }
 }

 // set the channel and the gain factor for the next reading
using the clock pin
 for (int i = 0; i < GAIN; i++) {
 digitalWrite(PD_SCK, HIGH);
 digitalWrite(PD_SCK, LOW);

202

 }

 data[2] ^= 0x80;

 return ((uint32_t) data[2] << 16) | ((uint32_t) data[1] << 8) |
(uint32_t) data[0];
}

long HX711::read_average(byte times) {
 long sum = 0;
 for (byte i = 0; i < times; i++) {
 sum += read();
 }
 return sum / times;
}

double HX711::get_value(byte times) {
 return read_average(times) - OFFSET;
}

float HX711::get_units(byte times) {
 return get_value(times) / SCALE;
}

void HX711::tare(byte times) {
 double sum = read_average(times);
 set_offset(sum);
}

void HX711::set_scale(float scale) {
 SCALE = scale;
}

void HX711::set_offset(long offset) {
 OFFSET = offset;
}

void HX711::power_down() {
 digitalWrite(PD_SCK, LOW);
 digitalWrite(PD_SCK, HIGH);
}

void HX711::power_up() {
 digitalWrite(PD_SCK, LOW);
}

203

Appendix 7. Source code for IR sensor (C++)
DistanceGP2Y0A21YK.h
/***

DistanceGP2Y0A21YK - Arduino library for IR Distance sensor

Copyright 2011-2012 Jeroen Doggen (jeroendoggen@gmail.com)

**

#ifndef DistanceGP2Y0A21YK_h

#define DistanceGP2Y0A21YK_h

#if defined(ARDUINO) && ARDUINO >= 100

 #include "Arduino.h"

#else

 #include "WProgram.h"

 #include <pins_arduino.h>

#endif

class DistanceGP2Y0A21YK

{

 public:

 DistanceGP2Y0A21YK();

 void begin();

 void begin(int distancePin);

 void begin(int distancePin, int vccPin);

 int getDistanceRaw();

 int getDistanceVolt();

 int getDistanceCentimeter();

 boolean isCloser(int threshold);

 boolean isFarther(int threshold);

 void setAveraging(int avg);

 void setARefVoltage(int refV);

 void setEnabled(bool status);

 private:

 int _mapGP2Y0A21YK_V(int value);

 int _mapGP2Y0A21YK_CM(int value);

 int _distancePin;

 int _average;

 int _transferFunctionLUT3V[];

 int _transferFunctionLUT5V[];

 int _refVoltage;

204

 int _vccPin;

 bool _enabled;

};

#endif

DistanceGP2Y0A21YK.cpp

#include <DistanceGP2Y0A21YK.h>
#include <DistanceGP2Y0A21YK_LUTs.h>

DistanceGP2Y0A21YK::DistanceGP2Y0A21YK()
{
}

/// Begin function to set pins: distancePin = A0.
void DistanceGP2Y0A21YK::begin()
{
 begin (A0);
}

/// Begin variables
/// - int _distancePin: number indicating the distance to an object:
ANALOG IN
/// When you use begin() without variables standard values are
loaded: A0

void DistanceGP2Y0A21YK::begin(int distancePin)
{
 setEnabled(true);
 pinMode(distancePin, INPUT);
 _distancePin=distancePin;
 setAveraging(1); //1: all samples passed to higher
level
 setARefVoltage(5); // 5: default analog reference of
5 volts (on 5V Arduino boards) or 3.3 volts (on 3.3V Arduino boards)
 //setARefVoltage(3); // external analog reference: for 3.3V:
put a wire between the AREF pin and the 3.3V VCC pin.
 //This increases accuracy (and uses a different LUT)
}

/// Begin variables
/// - int _distancePin: number indicating the distance to an object:
ANALOG IN
/// - int vccPin: pin connected to the vcc pin of the sensor (switch
the sensor on/off)
/// When you use begin() without variables standard values are
loaded: A0
void DistanceGP2Y0A21YK::begin(int distancePin, int vccPin)
{
 _vccPin=vccPin;
 begin (distancePin);
 pinMode(_vccPin, OUTPUT);
 setEnabled(true);
 //digitalWrite(vccPin, HIGH);
}

/// setAveraging(int avg): Sets how many samples have to be averaged
in getDistanceCentimeter, default value is 1.

205

void DistanceGP2Y0A21YK::setAveraging(int avg)
{
 _average=avg;
}

/// getDistanceRaw(): Returns the distance as a raw value: ADC
output: 0 -> 1023
int DistanceGP2Y0A21YK::getDistanceRaw()
{
 if (_enabled == true)
 {
 return (analogRead(_distancePin));
 }
 else
 {
 return (1023);
 }

}

/// getDistanceVolt(): Returns the distance as a Voltage: ADC Input:
0V -> 5V (or 0V -> 3.3V)
int DistanceGP2Y0A21YK::getDistanceVolt()
{
 return _mapGP2Y0A21YK_V(getDistanceRaw());
}

/// getDistanceCentimeter(): Returns the distance in centimeters
int DistanceGP2Y0A21YK::getDistanceCentimeter()
{
 return _mapGP2Y0A21YK_CM(getDistanceRaw());
}

/// _mapGP2Y0A21YKV: calculates the input voltage of the ADC
int DistanceGP2Y0A21YK::_mapGP2Y0A21YK_V(int value)
{
 if (_refVoltage == 3)
 {
 return map(value,0,1023,0,3300);
 }
 if (_refVoltage == 5)
 {
 return map(value,0,1023,0,5000);
 }
}

/// _mapGP2Y0A21YK_CM: calculates the distance in centimeters using
a lookup table
/// -> Two different LUTs depending on ADC reference voltage
int DistanceGP2Y0A21YK::_mapGP2Y0A21YK_CM(int value)
{
 if (_refVoltage == 3)
 {
 int sum = 0;
 for (int i=0;i<_average;i++)
 {
 // this code is equivalent to:
sum=sum+transferFunctionLUT5V[(getDistanceRaw()/4)];
 // but this alternative syntax is needed to read the
program memory

206

 sum=sum + pgm_read_byte_near (transferFunctionLUT3V +
(getDistanceRaw()/4));
 }
 return(sum/_average);
 }
 if (_refVoltage == 5)
 {
 int sum = 0;
 for (int i=0;i<_average;i++)
 {
 sum=sum + pgm_read_byte_near (transferFunctionLUT5V +
(getDistanceRaw()/4));
 }
 return(sum/_average);
 }
}

/// setARefVoltage:set the ADC reference voltage: (default value: 5V,
set to 3 for external reference value, typically 3.3 on Arduino
boards)
void DistanceGP2Y0A21YK::setARefVoltage(int refV)
{
 if (_refVoltage == 5)
 {
 analogReference(DEFAULT);
 }
 if (_refVoltage == 3)
 {
 analogReference(EXTERNAL);
 }
 _refVoltage=refV;
}

/// isCloser: check whether the distance to the detected object is
smaller than a given threshold
boolean DistanceGP2Y0A21YK::isCloser(int threshold)
{
 if (threshold>getDistanceCentimeter())
 {
 return (true);
 }
 else
 {
 return (false);
 }
}

/// <summary>
/// isFarther: check whether the distance to the detected object is
smaller than a given threshold
/// </summary>
boolean DistanceGP2Y0A21YK::isFarther(int threshold)
{
 if (threshold<getDistanceCentimeter())
 {
 return true;
 }
 else
 {
 return false;
 }

207

}

/// setEnabled: enable or disable the sensor (only works when sensor
Vcc is connected to digital output pin)
void DistanceGP2Y0A21YK::setEnabled(bool status)
{
 _enabled = status;
 if (_enabled)
 {
 digitalWrite(_vccPin, HIGH);
 }
 else
 {
 digitalWrite(_vccPin, LOW);
 }
}

208

Appendix 8. Source code in Spreadsheets (Java Scripts)

function TimeStamp(event)
{
 var timezone = "GMT";
 var timestamp_format = "HH:mm:ss, [MM-dd-yyyy]"; // Format.
 var updateColName = "Photo Interuptor";
 var timeStampColName = "DateStamp";
 var sheet = event.source.getSheetByName('Datalog');

 var actRng = event.source.getActiveRange();
 var editColumn = actRng.getColumn();
 var index = actRng.getRowIndex();
 var headers = sheet.getRange(1, 1, 1,
sheet.getLastColumn()).getValues();
 var dateCol = headers[0].indexOf(timeStampColName);
 var updateCol = headers[0].indexOf(updateColName); updateCol =
updateCol+1;

if (dateCol > -1 && index > 1 && editColumn == updateCol) {
// only timestamp if 'Last Updated' header exists, but not in the
header row itself!
 var cell = sheet.getRange(index, dateCol + 1);
 var date = Utilities.formatDate(new Date(), timezone,
timestamp_format);
 cell.setValue(date);
 }
}

function GetData() {
 var spreadsheetKey= ‘_SHEETKEY’;
 var sheet = SpreadsheetApp.openById(spreadsheetKey);
 var ssAutomatedAlert =
SpreadsheetApp.openById(spreadsheetKey).getSheetByName('AutomatedAle
rt');
 var ss = sheet.getSheetByName('Contract');
 var value = ss.getDataRange().getValues();

 var startRow = 2;
 var numRow = ssAutomatedAlert.getLastRow()-1;

 var range = ssAutomatedAlert.getRange(startRow, 1, numRow, 3);
 range.clear()

 //define day of week and time in number:[dd][hh] (day~time[hour])
 // Mon = 1,, Sun = 7
 var week_and_time = getTodaysNumber().split('~');

 // define week column
 var weekDay = week_and_time[0];
 var dayColumn = weekDay*3;

 // define time column
 var weekTime = week_and_time[1];
 var timeColumn = 0;
 if(weekTime >= 8 && weekTime <= 16){ //
 timeColumn = dayColumn+0;
 }else if(weekTime > 16 && weekTime <= 24){

209

 timeColumn = dayColumn+1;
 }else if(weekTime < 8){
 timeColumn = dayColumn+2;
 }

 // Loop inside each Column to display only "Yes" column in each
day (Mon-Sun)
 for (var i=1; i < value.length; i++){
 var count = value[i];
 if(count[timeColumn] == "Yes"){
 var responder = count[0];
 var email = count[1];
 var telephone = count[2];
 ssAutomatedAlert.appendRow([responder,email,telephone]);
 }
 }
}

function lastNumber(){
 var spreadsheetKey= ‘_SHEETKEY’;
 var sheet = SpreadsheetApp.openById(spreadsheetKey);
 var startRow = 3;
 var ssDatalog = sheet.getSheetByName('Datalog');
 var numRow = ssDatalog.getLastRow()-1;
 var position = 8;
 var sum = 0;
 //var range = ssDatalog.getRange(startRow, 1, numRow, 3);
 for(var n = startRow; n < numRow; n++){
 var range = ssDatalog.getRange(n, 2, 6);
 var values = range.getValues();

 for (var row in values) {
 for (var col in values[row]) {
 sum += values[row][col];
 //ssDatalog.getRange(row, 12).setValue(row + '-' + col);
 }
 }

 ssDatalog.getRange('L' + position).setValue(sum);
 sum = 0;
 position+=1;

 }

}

function checkContianer() {
 var spreadsheetKey= '1NlSLE74DxEAPPcdh19S5mzwukzNdsTcusy-khlaKynI';
 var sheet = SpreadsheetApp.openById(spreadsheetKey);
 var ssAutomatedAlert =
SpreadsheetApp.openById(spreadsheetKey).getSheetByName('AutomatedAle
rt');
 var ssDatalog = sheet.getSheetByName('Datalog');
 var startRow = 2; // initial row of data to process
 var numRowCheck = ssDatalog.getLastRow()-1; // Number of rows to
process not include header
 var numRowsMail = ssAutomatedAlert.getLastRow()-1;
 // Fetch the range of cells from validated data
 var dataRange = ssDatalog.getRange(startRow, 8, numRowCheck, 3);
 // Fetch the range of cells from list of responders

210

 var mailRange = ssAutomatedAlert.getRange(startRow, 1, numRowsMail,
2)
 var data = dataRange.getValues();

 var limit = 1800; //maximum of therapeutic goals

 for (var n = 0; n < data.length; ++n) {
 var row = data[n];
 var volume = row[0];
 var EMAIL_SENT_RANGE = ssDatalog.getRange(startRow, 10);
 var emailsent = row[2];
 var EMAIL_SENT = "EMAIL_SENT";

 if (volume >= limit) {
 if (emailsent !== EMAIL_SENT) {

 var mail = mailRange.getValues();
 for (i in mail) {
 var list = mail[i];
 var emailAddress = list[1]; // First column

 var html =
 '<body>' +
 '<h2> To '+list[0]+',</h2>
' +
 '<p> <h3> This is email sent from automated
function for reminding you to empty the urine container
'+
 'Now the urine collection is equal (or more than)
'+limit+' cc.</p>'+
 'Regards,</h5>

' +
 'Atigorn'+
 '</body>'

 var message = html;
 var subject = "Sending emails from a Spreadsheet";
 MailApp.sendEmail(emailAddress, subject,
message ,{htmlBody: html});
 ssDatalog.getRange(startRow + n, 10).setValue(EMAIL_SENT);
 }
 }
 }
 }
}

