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Abstract 

This paper presents a comprehensive review of friction modelling to provide an 

understanding of design for durability within interacting systems. Friction is a complex 

phenomenon and occurs at the interface of two components in relative motion. Over the last 

several decades, the effects of friction and its modelling techniques have been of significant 

interests in terms of industrial applications. There is however a need to develop a unified 

mathematical model for friction to inform design for durability within the context of varying 

operational conditions. Classical dynamic mechanisms model for the design of control 

systems has not incorporated friction phenomena due to non-linearity behaviour. Therefore, 

the tribological performance concurrently with the joint dynamics of a manipulator joint 

applied in hazardous environments needs to be fully analysed. Previously the dynamics and 

impact models used in mechanical joints with clearance have also been examined. The 

inclusion of reliability and durability during the design phase is very important for 

manipulators which are deployed in harsh environmental and operational conditions. The 

revolute joint is susceptible to failures such as in heavy manipulators these revolute joints can 

be represented by lubricated conformal sliding surfaces. The presence of pollutants such as 

debris and corrosive constituents has the potential to alter the contacting surfaces, would in 

turn affect the performance of revolute joints, and puts both reliability and durability of the 

systems at greater risks of failure. Key literature is identified and a review on the latest 
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developments of the science of friction modelling is presented here. This review is based on a 

large volume of knowledge. Gaps in the relevant field have been identified to capitalise on 

for future developments. Therefore, this review will bring significant benefits to researchers, 

academics and industrial professionals.  

Keywords: Friction, dynamics, joint clearance, numerical models, impact, durability 

1. Introduction 

Friction is a ubiquitous phenomenon, which occurs at the interface of two surfaces in 

physical contact and are in relative motion. It may be at times beneficial and or detrimental in 

other scenarios. The phenomenon of friction is complex, because it has time dependent non-

linear characteristics and it is influenced by multiple factors. Friction phenomenon applies to 

scales ranging from nanometre level interactions to micron level interfaces to large geological 

interactions [1], [2]. Friction is directly linked to the durability and reliability of interacting 

systems and if it is not fully optimised then it leads to significant efficiency losses. According 

to the Jost report of 1966, “a sizeable portion of the GDP of a nation is spent in alleviating 

friction and its effects namely wear”. Although Tribology is a relatively new area, is formed 

of a confluence of theory and empiricism, continued experimental analyses, mechanics, 

surface engineering, chemical interactions and more recently computational methodology. 

Since the phenomenon has both widespread and deep-rooted influence, this review paper 

seeks to gain an insight into the history of the development of friction and dynamic modelling 

and to enumerate various friction models and their characteristics. 

Friction occurs in both prismatic and revolute mechanisms contacts. In revolute joints, 

increasing the diameter of the contacts can effectively reduce the contact pressure. However, 

the sliding distance increases which may result in accelerated wear [3]. The nature of contact 

in revolute joints in manipulators can vary between conformal and non-conformal contacts 
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depending on whether sliding bearings or anti-friction bearings or have been used. The nature 

of the clearance existing at the revolute joint contact determines whether the contact is 

continuous or non-continuous contact during its operation. Continuous contacts can be 

modelled with a revolute friction model. The non-continuous models require contact models 

that capture the model dynamics as well as follow energy conservation and is therefore much 

more tedious to model. Both these models have been examined in sections 4.1and 4.2 of this 

paper. 

The focus of several recent researches has been the modelling of friction in manipulators [4]–

[8]. The extended problem also requires the formulation of a suitable control system. Some 

researchers have tried to use an un-modelled dynamics approach [9], [10]. Friction introduces 

non-linearity into the dynamics equation, which physically implies phenomena such as stick-

slip in relative motion, limit cycles and introduces difficulties in positioning the end effector 

of the manipulator. However, as of now, friction models are imperative in analysing any 

mechanism. 

Friction modelling has progressed from specific models analysing friction at the interface of 

geometries [11]–[14], to the analysis of friction at manipulator joints [4], [7], [15] with 

clearance and their kinematics and dynamic [16]–[25]. Marques et al [26] have recently 

surveyed friction models in single degree of freedom in planar systems. Lately, researches 

such as Flores, Mukras et al [27], [28] have analysed the computation of joint wear 

calculation along with dynamics. The progress of research is seen in the integration of 

multiple disciplines that include tribology, computational mechanics, control systems, surface 

interaction and chemical interactions.  

This review converges to manipulator joints used in mechanical equipment as excavators and 

search and rescue smart mechanical systems. Excavator is a commonly deployed platform in 
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disaster sites. However there has been a rise in accident numbers in controlled construction 

environments with respect to the number of units being used, which has been a major health 

and safety concern [29]. The manipulator kinematics has been introduced by Koivo et al [30], 

extended to dynamics by Vaha and Koivo [31], [32]. Subsequent works have followed the 

modelling approach proposed by these researchers in attempting to develop the dynamics and 

control methods however ‘til date only some studies based on the real arm [33], [34] have 

shown partial success in implementation. The non-linearity of the dynamics formulation 

makes the numerical solution both complex and computationally expensive. The 

computational effort increases with the increase in the degree of freedom e.g. increase in the 

number of links in the manipulator, transformation from simple open chain manipulator to a 

closed loop mechanism and with the introduction of the nonlinear friction component into the 

dynamic equation. According to Haessig and Friedland [78], “friction is the nemesis of 

precision control”. The phenomenon of friction is often ignored in control theory because of 

its intricacy. For precision control applications, however, the effect of friction cannot be 

ignored. The main impediment can be attributed to the complexity of dynamics i.e. the non- 

linearity in the loads and more importantly the question of mimicking a human being. In this 

respect it is worth noting that Bilandi [4], [35] have studied the friction in an excavator arm.  

Moreover, physical failure of a robot is a major obstacle in search and rescue missions [36], 

[37] and this can only be alleviated through the study of the manipulator mechanism design 

from the material science viewpoint, the need for which can be substantiated by the growing 

attention on natural and man-made disasters and the efforts to minimise causalities.  The 

ingress and egress of rescuers is not the only cause for concern in such sites, bringing such 

sites back to normalcy is part of the post-disaster operation. For these the use of equipment is 

very much a necessity both to speed up operation and to reduce risk to human beings 

however the risk reduction also entails focus on the manipulator mechanism to perform in 

Page 4 of 59

https://mc03.manuscriptcentral.com/friction

Friction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

those environments without catastrophic failures. Very few researches have focussed on this 

aspect since the focus of search and rescue operations has been to detect and replace of live 

rescuers (human and dogs) with robots. When large quantities of chemicals were found in 

large radius after the WTC incident [38], the effect of corrosion inducing species on the 

operating equipment needs to be examined too. Stalwart researchers such as Blau [39] 

recognise that most appropriate method for determining the effect of friction and its effects 

and quantifying it, is still in experimentation and analysis also elucidates that the effects of 

environment on such mechanical joints needs attention. Recently, holistic models combining 

dynamics, friction and wear have begun to appear in literature. 

A multi-disciplinary approach (Figure 1) is needed to fully analyse the problem and to devise 

a meaningful solution for the dynamics and control of manipulators. Friction and wear effects 

in the manipulators incorporating environmental effects need to be fully studied. With the 

increase in available computational power, a transition from simple analytical to complex 

numerical formulations of friction problem, with an analogous improvement in the range and 

precision of friction models have been looked. As part of the effort, a detailed literature 

survey is presented here, which provides an in-depth insight into the modelling of dynamics 

with a focus on friction Figure 2. A similar review for biodiesels has been presented recently 

[40]. The future research directions and gaps have been identified and presented for future 

reference.  

Multidisciplinary techniques to advance design methods to improve efficiency, reliability and 

durability of contacting surfaces is explored in the literature [41]–[44].  The outline of the 

survey methodology has been given in the next section. 
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2. Review methodology 

The review of literature was conducted with a start from significant literature by citation 

index and relevance. Amstrong-Helouvry [45] revealed that a growth of 700 articles in 

tribology is expected yearly. With the available volume of literature, it is an impossible task 

to encompass all research areas. This review focuses on friction modelling which arises from 

the specific case of the manipulator arm deployed in harsh environments. The kinematics, 

dynamics and control of such robotic manipulators have been the subject of interest in the 

recent few decades. Important keywords are identified (refer to keywords as above) relevant 

cited publications. A search on (friction models* AND static* AND dynamics*), in June 

2016 revealed the following statistics (Figure 3).  The focus of this paper is on the 

development of the techniques of modelling mechanisms, the recognition and the inclusion of 

friction into dynamic modelling, some necessary aspects of control and the evolution of the 

modelling methodology of friction along with wear and lubrication which form an integral 

portion of this science. At the outset, the following aspects are addressed, including (1) 

identifying the research development and timeline, (2) to identify key review papers, (3) to 

enumerate the important numerical models and (4) to identify future research directions. The 

history of the manipulator modelling is outlined in the forthcoming section. 

3. History of dynamic modelling 

An encapsulated version of the history of mechanics of manipulators and numerical 

modelling is presented here. The progression in manipulator modelling can be seen with the 

increase in modelling complexities from the late 1980’s to present date. The history of 

multibody dynamics has been presented by Rahnejat [46] and Schiehlen [47]. Computational 

dynamics has been presented in the 20th century. The detailed modelling methodology from 

the robotics and control perspective has been presented by Siciliano and Khatib in their book 
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[48]. Shigley and Uicker [49] has provided the fundamental theory of mechanisms. 

Computational aspects have also been described by Groover [50]. Dynamics of parallel 

manipulator with friction has been presented by Farhat et al [51]. Friction in space 

manipulator is presented in Hachkowski et al [52]. With the advent of computers and 

increased availability of computing power, several techniques incorporating engineering 

design techniques have evolved. The use of CAD and multibody dynamics in the design, 

simulation and analysis of mechanisms have greatly contributed to the efficiency of the entire 

process [53]. 

The free body diagram of a robot with manipulator is given in Figure 4. The first step in the 

modelling of any mechanism is the development of the kinematic relationship between links, 

assigning the appropriate relations between links. The planar kinematics of the manipulator 

arm with three revolute joints has been presented in [30] following the Denavit-Hartenberg 

[54] convention of coordinate system assignment. The computation of the forward kinematics 

of such mechanisms is straightforward. However, in the case of the reverse kinematics of 

multi-link mechanisms multiple solutions exist and therefore the selection of appropriate 

process is tedious.  

The kinematic analysis, which is devoid of force calculations, the development would lead to 

the dynamic analysis which is presented in literature [55], [56]. The dynamics of mechanisms 

can be modelled by using Newton Euler method [31], Euler Lagrange Method [57], Gibbs 

Appel method [58], or Kane’s equation [59], [60]. The method used to model the system 

dynamics depends on the nature of the application and complexity of the design. The 

dynamic model of the manipulator can be expressed as given in [31]: 

������� + ��	�, ����� + ����� + 
�	��� = ��� − ��      (1)  
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where θ = [θ1 θ2 θ3 θ4]
T

 is the vector representation of joint angles ����� represents inertia, 

��	�, ��� represents Corioli’s and centripetal effects, ����� represents gravity forces, 
�	��� 

represents frictional forces, � is the input matrix corresponding to joint torques �� =
�����������, �� represents soil-tool interaction forces. The first angle, θ1 represents the 

rotation of the manipulator about the base of the excavator, which is usually assumed to be 

null magnitude since the manipulator operation is assumed to be immobile in that degree of 

freedom. This means that the manipulator remains planar during digging since it does not 

turn about the base during this task. Therefore, the model complexity and the computational 

effort are reduced.  

From the above equation, it is evident that the friction forces occurring in the revolute joints 

have not been considered. The soil tool interaction force ��, is again a highly non-linear 

component, which acts on the end effector. Several researches are dedicated to the 

computation of soil-tool interaction forces [61]–[64]. The influence of the soil-tool 

interactions on the state variables of the manipulator would also affect the friction torque 

generated at the revolute joints. Therefore, simple friction models would be insufficient to 

capture the resulting frictional dynamics. In joints mechanism the friction forces may be as 

high as 20% of the dynamics [7].  Simplification schemes may include (1) simplifying 

dynamics by ignoring some terms and correcting errors using feedback (e.g. non-linear 

friction effects, Coriolis’s force and centripetal force which can be ignored at low link 

velocities but constitutes a considerable component of forces at high speeds). The 

Coriolis’s/Centripetal components cannot be corrected by feedback method, or (2) tabulation 

lookup.  Tabulation and interpolation method can be used to create a lookup table for pre-

calculated values.  Therefore, this technique cannot be employed when non-linear terms 

occur. Tabulation method cannot be applied to friction due to its high non-linearity. 

Recursive Newton formulation is more efficient than recursive Lagrangian formulation. 
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However, they can be brought down to approximately the same computational time, therefore 

real time solution is possible [65]. A pictorial representation of dynamics and control is given 

below in Figure 5.  

For dynamic systems with clearance, the combination of differential and algebraic equations 

(DAE) resulting in the equation of motion is given by [66]:  

�� ����� 0  !"̈$% = !&γ%           (2) 

where M is the mass matrix, and Φq is the Jacobian matrix for the constraint equations. "̈ 

includes the generalised state accelerations. λ denotes the Lagrange multipliers, & is the 

generalised force vector, γ is the velocity of quadratic velocity terms dependent on velocity, 

position and time. This equation can be solved by using solution methods which are 

applicable to algebraic equations in the absence of redundant constraints. The solution 

method has followed widely Baumgarte stabilisation method. In the case of redundant 

constrains, the augmented Lagrangian method is employed. Detailed formulation method is 

presented by Flores in [66] and the model is employed in the majority of subsequent 

modelling works. 

In the next section the progress in friction modelling has been presented. 

4. History of friction modelling 

While modelling the spatial behaviour, and the dynamics of mechanisms has made significant 

progress, it is necessary to capture the effects of friction in the joints. In classical modelling, 

the effect of friction is not considered. However, friction is defined as the tangential reaction 

force that occurs between two surfaces in contact, dependent on factors that include the 

contact geometry, the topology, relative velocity of surfaces in contact and displacement of 

surfaces, load and lubrication [23], [67]–[70]. Friction is a complex phenomenon caused by 
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the interaction of the surface and near surface regions of two interacting components as well 

as lubricants if present between such surfaces [71].  However, the classical friction model 

does little more than to give an approximation of friction forces in static analyses. 

The selection of friction models is based on the operational condition during application. 

Several mentioned models include evaluation of physical friction and wear. Olson et al [67] 

have examined several friction models which are available in the context of automatic 

control. Within the domain of control theory friction effects are addressed in dynamics by 

quantifying parameters as noise generated from the ensuing effects [72], however such an 

approach falls short to address the overall phenomena of friction and wear from the 

mechanical design approach. 

In the forthcoming section, static and dynamic friction models are examined, with their brief 

history and modelling equations. 

4.1. Static friction models 

Literatures [2], [73] reveal preliminary inquiries into the nature of friction of interacting 

bodies. The postulates of friction according to Guillaume Amontons [74] are given as: 

• The force of friction is directly proportional to the applied load, i.e. ( ∝ * 

• The force of friction is independent of the apparent area of contact 

• Kinetic friction, (+ is not proportional to (independent of) the sliding velocity 

Therefore, the simplest representation of friction can be given as  

�, = (	*             (3) 

Where the coefficient of friction (, is dependent on the mating materials in interaction, 

surface preparation and operating conditions. The force required to initiate movement is 

known as the static friction force. The force required to maintaining motion is called kinetic 
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friction force. These have different magnitudes with the value of frictional force at limiting 

conditions have a greater value compared to kinetic condition.  

Coulomb proposed the simple roughness model in 1785 which is used for friction force 

calculation. It is a static model that has neither history nor states [7] and may be explained 

based on the quasi-static properties of materials. The Coulomb model has no dissipative 

component to it, which is a drawback [75]. It is given by [76]. 

�. = 	(�/01&2�3�           (4) 

Also, shear failure is the predominant cause in sliding with friction. For static and Coulomb 

friction, the friction forces are proportional to the normal load. At low velocities, the shear 

strength of a solid lubricant film is high compared to the corresponding shear forces of the 

fluid film build up at higher velocities.  The viscous friction can be represented by 

�4�3� = 	543            (5) 

If the lubricating film is sufficient to separate the bodies in contact completely, the 

hydrodynamic effects become significant i.e. the friction coefficient may increase with the 

velocity. Therefore, the friction force generated in lubricated systems normally decreases 

when the velocity increases from zero. This is called the Stribeck effect. 

While the Coulomb and viscous friction models account for the fundamental modelling of 

friction at joints, the addition of Stribeck friction accounts for low velocity, high magnitude 

friction. The combined effects of the Coulomb, viscous and Stribeck components of friction 

is shown in Figure 6. The mathematical representation of the combined effects of static 

friction models is given by 

�,�3� = 	(�/01&2�3� + 	543 + �6�3�         (6) 
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These effects, which have been evaluated initially for the linear sliding models, also apply to 

revolute models as revolute friction torque. Above mentioned model does not accurately 

capture friction and its effects. The requirement of dynamic friction models is highlighted 

which have been explained in the next section. 

4.2. Dynamic friction models 

Phenomenon of friction is being increasingly applied to modelling of dynamic systems and 

their control. Several models in literature include Dahl model (1968), Karnopp (1985), 

Bliman Sorin (1995), LuGre (1998) and the Leuven (2000) model. Classical friction model 

does not accurately predict limit cycle unlike any of the other models. For precision control 

applications, however the effect of friction cannot be ignored i.e. micron level motion 

gradient in manipulator junctions may result in positioning various several orders higher at 

the end effector location. Physics motivated models such as generalised Maxwell slip model, 

Frenkel Kontrova, Tomlinson, Frenkel Kontrova Tomlinson model, Barridge Knopoff model, 

and Tomlinson models[76] are not presented here. These models improve accuracy of 

modelling however cannot be employed for control systems. Several dynamic friction models 

have been presented in literature incorporating dynamic friction models to enhance capturing 

the effects of friction. Friction model must account for the transition phenomena between 

static and kinetic contact, account for hysteresis effect and direction reversals. These models 

have been introduced to cover the gap in performance found in the static friction models, 

which have been explained in the previous section. Developments in the dynamic friction 

models have occurred perhaps from the mid half of the twentieth century. The important 

models have been summarised Eq (7)-(12).  

The key aspects included in these models are the genesis of friction, stick-slip phenomenon, 

hysteresis, friction lag and friction memory which make it both more complicated and 

capturing friction effects better compared to static models which are presented in Section 4.1. 
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Dahl model is among the first of such models [77]. According to Olsson [67] the LuGre 

model and the Bliman-Sorin both developments on the Dahl model capture most of the 

friction effects with nearly as much as ease as by the static models. The LuGre model adds 

the effect of damping to the Dahl model. Piatkowski [78] provides a recent analysis of Dahl 

and LuGre models. Dynamic friction models are considered by Karnopp [79], Quinn, 

Kikuuwe [80], [81], Awrejcewicz [82] and Wojewoda [83].  

Dahl Model- 1968 

[77] [78] 

� = 578 

where	z = 3	0&2 >1 − 0&2�3� 578�. @ A1 − 0&2�3� 578�. ABC
 

(7) 

Karnopp Friction 

model-1985, 

2008[79] [84] 

�,DE.FEG/ =
HIJ
IK −�L . 0&2�N� � 	− �O 	N� 				|N� | ≥ �R

−��STF − U. N�		V |N� | < �R|�STF − U. N| ≤ 	�6−�6. 0&2��STF − U. N�	V |N� | < �R|�STF − U. N| > 	�6
 

Where �L is the Coulomb friction coefficient, �O is the viscous friction 

coefficient, �6 is the static friction coefficient, �R is the limit velocityand the 

sgn(.) function is given by  

0&2	�Z� = 	 [ 1	0−1					
Z > 1Z = 1Z < 1   

(8) 

Bliman-Sorin 

Model–1995 [85], 

[86] 

dNd0 = 	]N6 + 
36 

Where � = �N6 

] = ^ _�`ab 0
0 _�ab

c,	
 = de� ∕ 	gh,�−e� ∕ h, i,� = �1	1� 

(9) 

Page 13 of 59

https://mc03.manuscriptcentral.com/friction

Friction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

LuGre Model-

1998[67][87] 

� = 578 + 5�8� + 5�8� 
where	8� = 3 − 57|3|0�3� 8 

0�3� = �. + ��6 − �.�jNk	�−3 36⁄ �Bmn� 

(10) 

Leuven Model -

2000 [71], [88] 

 

d8do = 3	 d	1 − 0&2	 > �p�8�0�3� − �q@ A �p�8�0�3� − �qA
/i 

�, = 	�r�8� + 	5� s8so + 5�3 

�r�8� is the hysteresis force, 2 is a coefficient used to transitions the shape 

curves, 0�3� is function which models the constant velocity behaviour, given 

by: 

0�3� = 0&2�3���. + ��� − �S�j_t|4| uvw xy 

(11) 

Seven Parameter 

Friction model 

1994 [45], [76] 

�,�N� = 	−UFN	�kzj0{1s12&� 

�,�3�o�, o� = 	−��. + �4|3�o�|� − 0&2�3�o��6�3, o�� ��|!4�}~	��mn % (Coulomb and 

viscous sliding) 

�6,�� =	�6,��~� + ��6,� −	�6,��~�� F�F�|4  (Rising static friction -breakaway) 

(12) 

Piedboeuf et al [7] proposed an algorithm for computing joint friction in robotic simulations 

which includes Stribeck regime along with the stick-slip process validated against a planar 

robotic arm. At zero velocity, the friction value may be any value between ± Fs as shown in 

Figure 6. To alleviate the problem introduced by bi-valued function at zero velocity a 

gradient is introduced between the transition [89] and is reflected in Figure 6. The solution to 

overcoming this non unicity is to insert a linear slope across zero crossing where the function 

becomes bi-valued (applied similarly in [89], [90]). Several researchers have attempted to 

incorporate the effects of friction.  
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Dahl Model is similar to the reset integrator model and (1) includes mechanism for zero 

velocity sticking and (2) application independent design. Disadvantages of the model are that 

(1) it does not generate a stiction force exceeding the sliding force unlike the other 4 models 

but can be modified to accommodate it and (2) lower accuracy compared to Karnopp and RI 

model. 

Karnopp used bond-graph method to model the effects of friction for a two body system [79]. 

While this captures the energy aspect of the system the disadvantage of the bond-graph 

equation should be formulated for every model. Karnopp model can be represented by Eq. 

(8). The order of Karnopp model reduces [79], [84], [91] at zero relative velocity between the 

surfaces. Advantages of this model include (1) stick-slip phenomenon is included in the 

model and (2) 30% faster execution. The drawbacks of the Karnopp model are that (1) the 

complexity of the model increases with increasing complexity of the dynamic system and (2) 

all combination possibilities of motion between the bodies must be considered. More detailed 

friction models such as the Dahl model and LuGre model (Eq. (10)) which account for the 

pre-sliding conditions have been presented in literature. Both Dahl and LuGre model are rate 

dependent because of which they cannot capture the reversal point memory. Swevers et al 

[71] uses the LuGre model which performs satisfactorily for constant sliding velocity and 

suggests modification to it. In LuGre model the parameter z can be interpreted as the average 

bristle deflection. A change in the magnitude of frictional force occurs due to the transition 

between static and kinetic phase breakaway phenomenon occurring. Therefore, the 

transitional friction needs to be considered. However, LuGre model does not account for 

hysteresis behaviour. Swevers et al [71] model includes Stribeck friction in sliding, hysteretic 

behaviour in pre-sliding, frictional lag, varying breakaway and stick-slip behaviour, 

supported by experiments but does not account for material characteristics and the effect of 

loads on material variations. The Bliman Sorin model presented in Eq. (9) is modified form of 
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LuGre model [76]. Leuven model Eq. (11) is a modification of LuGre model and includes 

hysteresis with nonlocal memory. The modified Leuven model presented in [88] addresses 

the issues of memory stack size and frictional force discontinuity at closure of frictional loop 

with Lueven model. De Wit et al [92] described the loss of performance of high precision 

manipulators owing to the effects of friction. The effect of friction lag and the existence of a 

hysteretic relationship between friction and velocity are considered. Breakaway force can 

also vary according to dynamics of the contact. At microscopic contact dimensions the 

velocity between the contacts will be non-zero. Stick slip motion is also seen in joints. 

Friction compensation through observer method is used to develop the control system in such 

a case. The model captures friction phenomena while maintaining simplicity. The 

performance of the contact through start of motion to its end and the performance at various 

velocities have been incorporated into the system.  

Haessig and Friedland [93] present two friction models of which one is based on the bristle 

formulation intended to capture ‘sticking’ effect (ref. Figure 7) and the other is called ‘reset 

integrator’ model which does not encompass sticking but is similar to Karnopp model. The 

process of initiation of friction is described as the interaction of peaks that initially resembles 

a spring damper with high stiffness that is reluctant to allow motion. Discontinuity of friction 

at zero velocity causes very short computational time steps and steep slopes where a linear 

bypass is implemented.  

Reset Integrator (RI) model uses an auxiliary integrator to represent the phenomena of 

stiction. Advantages of this model are: (1) it is application independent (2) does not require 

re-derivation to suit each application (3) accurately represents bonding effect of stick-slip 

friction force (4) this is a logical model (5) loads are calculated to accommodate sticking 

loads and damping term (6) damping mode is different from bristle in that there are no two 

separate modes (7) computationally efficient (8) short time steps due to breaking bristles are 
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avoided and (9) selection of parameters is much simpler than that for bristle model. The 

procedure is listed in Haessig and Friedland [93]. Seven-parameter model Eq. (12) consists of 

a spring model to capture pre-sliding and Coulomb, Viscous, Stribeck friction and friction 

lag. 

The Bristle model presented in Figure 7 is a simple algorithm which is (1) more efficient and 

accurate (2) friction represented as many bristles which deflect with stiffness and damping, 

representative of surface contact at joint (3) frictional force is a function of velocity (4) 

accurate model (5) number of bristles control the fineness of the model.  Disadvantages of the 

model are that it is (1) not efficient in terms of computational time (2) fine spaced bristles 

cause successive short computational time steps and can decrease efficiency of the solution 

method or cause algorithm execution to fail and (3) frictional force can become noisy signals. 

Efficiency and accuracy of the models have been compared using fourth order Runge-Kutta 

method. The order of models in terms of computational efficiency are Dahl followed by 

Classical friction model, Karnopp, Reset Integral model and the bristle model. The selection 

of model is a trade-off between accuracy and computational efficiency and the need for 

further comparison between RI and Dahl models is highlighted. The next section examines 

the issue of joint clearances in revolute joint contacts. 

5. Mechanistic models with clearance and friction 

A classification of mechanism models has been presented in Figure 8. While the geometric 

and kinematic analyses give partial insight into the system performance dynamic models are 

required to fully describe complex interacting systems. Joints are introduced to provide some 

constraint on the motion of the mechanism. The joints can be dry or lubricated and contact 

can be intermittent or continuous and is usually determined by the area of application. Major 

simulation studies in the area have employed dry friction model. In an ideal mechanism, the 
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joints would have a close fit leading to the classical mechanism model. In actual joints, 

however the problem of joint clearances exists. Clearances in mechanical systems may occur 

due to assemblage, manufacturing errors and usually undue wear, performance loss, reduction 

in stability, noise, dynamic impact loads and affect the transfer of system loads [94]–[96]. 

This alters the performance of the mechanism and affects the dynamics, control and 

durability of the mechanism. One example of this is the problem of manipulator end effector 

positioning [96]. Several factors such as the contact stiffness, surfaces condition, and 

lubricant need to be considered while developing the contact model for a joint with clearance. 

In literature the revolute joints are considered either in stand-alone configuration [96] or in 

assembled form of the slider crank mechanism [97] and four bar mechanism [20]. Wang and 

Vijaykumar also addressed a similar problem from the perspective of robotic manipulator 

environmental interaction. Multiple friction contacts in mechanical systems have been 

analysed in [98]. 

Modelling and simulation of multibody dynamics with joint clearances is relatively new area 

of research [94]. Three reviews are identified from literature namely Haines [99] – un 

lubricated revolute joints (1979), Flores (2010) [21] and Machado et al – compliant contact 

force models (2012) [100]. The problem of multibody impact with friction was first analysed 

by Routh in 1891 [98]. The model of dynamic systems with mechanical clearance presented 

by Dubowsky and Freudenstein [94], [101] in a two part publication and introduced the 

concept of impact pair model in which the surfaces in contact are modelled as compliant i.e. 

as spring damper contacts as shown in Figure 9.  In 1975, Hunt and Crossley [102] studied 

the influence of the coefficient of restitution between two impacting bodies based on the 

force-law approach and recorded the results from the numerical simulations. The issue of 

impacting multi-bodies with kinematic contacts under the action of impulsive motion or 

impulsive forces has been addressed by Lankarani and Nikravesh in [103]. Lankarani-
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Nikravesh contact model has been subsequently used in literature (Figure 14). Rhee and Akay 

[104] investigated the revolute joint with clearance for a four bar mechanism and found a 

non-linear dependence on both the size of the clearance and coefficient of friction with a 

simple friction model for sliding friction. Friction and impact with joints clearance have been 

presented by Periera and Nikravesh [105] for intermittent motion with dry friction at the 

contact. 

Modelling contact connection method could use a spring-damper pair, which is activated at 

the beginning of the contact. Contacting surfaces are initially assumed rigid. Energy 

dissipation cannot be modelled if the interaction is modelled exclusively by using only a 

spring connection because the spring has no attached component for dissipation. To analyse 

the contact-impact the contact should be split into separate contact and departure events 

where each event is represented by switching function elements as shown in Figure 11. An 

alternative method of impact modelling for such contacts is either energy or Euler-

Lagrangian method. Flores et al, [106] see Figure 10 have used momentum as a state variable 

of integration for two link pendulum and slider crank systems. Bauchau and Rodriguez [95] 

present a similar case in which finite element method (FEM) along with dynamic model has 

been proposed for a slider crank mechanism with flexible links. 

Flores et al [106] have analysed the dynamics of a slider-crank mechanism with clearance in 

the revolute joints. Hertzian contact model and Lankarani-Nikravesh contact impact model is 

used for calculating the contact parameters [107]. Koshy et al [25] have evaluated the 

revolute joint with clearance for a rigid link slider crank mechanism focussing on the 

Hertzian contact model and extending the model to include damping and compared the 

results with experimental values. Hertz law for contacts is a static model as shown in Figure 

14, has only a spring component that prevents energy dissipation. This violates the Law of 

Conservation of Energy at the contact. Hertz contact law is a nonlinear model. Energy 
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transfer and conservation is a highly complex process. Lankarani-Nikravesh model is widely 

applicable comparing to pure elastic force law models [25] . Acceleration parameters from 

the numerical simulations have been compared with values recorded from the slider crank 

mechanism. Clearance joints have an impact on the performance of mechanism as seen from 

experimental data so far [108]. It is worth noting that future analyses need to include joints 

material properties. Flores et al and Zhao et al [97] have concluded that lubrication alone 

alleviates much of the effects introduced by joint clearance owing to the inherent damping 

qualities. This implies that the lubricant properties influence the dynamics of the system. 

Zhao et al [109] presents revolute joint’s dynamics with mixed lubrication model by using 

Lagrange method and incorporating finite element method (FEM) for modelling small end of 

a connecting rod in an internal combustion engine. Machado et al [110] have compared the 

performance of various contact force models graphically. Mukras et al [27] has presented a 

combined model including joint elasticity and viscosity for mechanism dynamics and is 

shown in Figure 15.   

Other models in literature include massless link in 4 bar linkage with clearance [111], three 

step contact model with three configurations, (1) free flight (2) impact and (3) sliding. [112] 

presents the three step model of the slider crank mechanism with reaction only on contact. 

[113] presents a four-link mechanism with three step model, using discontinuous method for 

pre-collision and post collision momentum balance, three mode approach in which the impact 

and sliding computed by using a contact force model. Non-ideal joints use force constraints 

and are modelled by Ravn [114]. According to contact impact pair, flexible mechanisms with 

multiple clearance [115], joint clearance for massless link and clearance joints have been 

proposed by Earles and Wu [116]. Slider crank mechanism with multiple clearance joints has 

been modelled by Yaqubi et al [117]. Flores at el [97] have studied the performance of 

lubricated journal bearings and slider crank mechanism by using Pinkus-Sternlicht revolute 
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model. Results from the publication shows that the model operates within the bounds of 

hydrodynamic lubrication theory. Elasto-hydrodynamic lubrication has been considered by 

Flores et al [66] and Li et al[118].  Several contact force models including Pure elastic 

Hertzian contact force model, linearised Hertzian contact force model, Force Model, 

Dissipative Spring Damper Model, Gonthier model, Zhiying and Qishao model, Flores model 

Visco-elastic Hertzian contact model, Hunt and Crossley model, Lee Wang Hysteresis model, 

Lankarani-Nikravesh model and Hybrid model are presented in Figure 14. A summary of 

these models and their successive improvements are presented in a survey of literature [96]. 

Three challenges that exist in multibody mechanical systems are (1) selection of appropriate 

constitutive law for the contact-impact event (2) selection of appropriate contact stiffness and 

damping coefficient and (3) quantification of energy transfer that occurs in such an event 

which leads to hysteresis [110]. Dynamics of collision may be classified as non-smooth 

dynamics formulation and the regularised approach see Figure 13.  

A solution method for linear complementarity problem which can violate energy 

conservation principles has been used in [119]. Other solution methods include differential 

variation inequality (DVI) and Moreau’s time stepping algorithm [21], [119]. However the 

limitation in [119] can be overcome by choosing appropriate friction and degree of non-

linearity for complex contact conditions. In addition, the problem of energy dissipation 

without violating the energy conservation condition is critical since even for low energy 

impacts, energy is transformed into sound and mechanical vibrations, as a function of the 

coefficient of restitution whose definition is subjective. The coefficient of restitution, which 

is representative of energy dissipation, is dependent on factors such as geometry of the 

contacting surfaces, pre-impact velocity, local material properties, duration of contact, 

temperature and friction [100]. Machado et al [100] and Flores et al [97], [100] have 

highlighted the importance of choosing the appropriate model for the mechanism. The 
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Gonthier model [26] and Flores models are suitable for moderate to low coefficients of 

restitution. These modified models show enhanced accuracy and the possibility of a unified 

model requires further investigation.  

The best solution technique can be chosen such that the simulation results can be validated. 

There is sufficient evidence of consistent improvement in available models, which bring 

simulations closer to reality. 

In joints with clearance, the condition of impact with motion exists and the sum of forces at 

the instance of impact can be represented by 

� = 	�� + ��            (13) 

Although several impact models are presented in literature to compute the normal force at the 

point of impact Figure 14, most literature utilises modified Coulomb friction law for 

computing tangential force at the point of impact. The predominant model for friction 

employed in dynamic models with clearance in joints is Coulomb dry friction model or 

modified Coulomb dry friction model [19], [21], [66], [120]. This can be explained by the 

fact that friction effect is only a minor component of the dynamic contact phenomenon in a 

joint with clearance and therefore is relegated in the analysis. Modified Coulomb friction law 

is given by [18] 

�� = −�,�p�� 4�‖4�‖           (14) 

Where �� is the tangential friction force, �, is the friction coefficient, �p is the dynamic 

friction coefficient, �� is the normal force, and 3�  is the relative tangential velocity. Dynamic 

correction coefficient cd is given by 

 �p = � 0u�_u�4�_4� 									1
1e	3� 	≤ 	 37		1e	37 	≤ 3� 	≤ 	 3�1e	3� 	≤ 	 3�

        (15) 
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where 37 and 3� are the transition velocities.  

The use of dynamic correction factor �p improves time stepping characteristics of the 

solution algorithm. The influence of �� on �� is therefore determined by impact model. The 

analysis of journal bearing with clearance joint is presented by Bai and Zhao [96] which 

incorporates a new contact force model. The essence of applying any such model is to capture 

the actual physical phenomenon of impact, rebound and movement as shown in Figure 11 

and Figure 12. Although several models have been reported in literature, there is scope for 

improvement in the numerical prediction of joint performances and this requires a case by 

case evaluation depending on the number of factors affecting contact conditions and 

performance. Since the contacting surfaces are influenced by several factors, the interacting 

surfaces and their durability have been examined in the following section. 

6. Durability in harsh environments  

Durability is the capacity of the mechanism to perform the designated function and fulfil the 

intended design life without unexpected failure. Durability is critical in all cases especially in 

mechanisms that are designed for deployment in harsh environmental and operational 

conditions. Failure of equipment leads to halting progress, loss in revenues and could cause 

accidents e.g. search and rescue missions in disaster stricken areas. Therefore design life 

cycle analysis is critical for specialised deployment in high risk environments [121].  

The failure of mechanisms deployed in hazardous environments is discussed in literature 

[36], [122], [123]. Design failure was recognised as a major factor. This also includes the 

failure of components. Mechanical durability of mechanisms subject to both constant and 

variable loading is highly desirable. Interacting surfaces of the manipulator revolute joint 

between various links are affected by multiple factors such as load, sliding speed, lubrication, 

heat and the influence of external agents such as corrosive fluids and debris. Therefore, 
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failure in interacting surfaces may occur through a variety of modes such as plastic or visco-

plastic deformation of material, wear of material through breakdown of lubrication, entry of 

debris into contact, crack propagation etc.   

Durability of interacting surfaces can be enhanced through several methods. According to 

Ludema [125] there are three methods of modifying surfaces which are: surface treatment 

[126], surface modification [127] and surface coating [128]. The effects of atmospheric 

agents on exposed metal alloy surfaces are studied and their durability has been evaluated in 

[129], [130], [131]. According to Bhushan [132], wear reduction can occur through non-

uniformly tall, mean pressure of rounded peaks at the contacts should be lesser than the yield 

strength of the softer material in the contact. Surface hardening can also improve durability 

[133]. The use of suitable greases lubricants can also extend the life of the interacting 

surfaces [134], [135]. The durability of grease can be further enhanced through additives 

[136]. Erdemir [137] has presented a review of interfaces with attention to solid lubricants 

which extend wear life. 

The enhancement of wear performance through diamond like carbon (DLC) coatings has also 

been discussed [137]. The use of diamond like carbon coatings has been presented in [138] 

and significantly reduces friction. Results of nano-composite coating, friction and wear 

analyses in rolling contact has been presented in [128]. Analysis of interaction at the joint for 

PEEK and Al 7075 alloys in robotic arms has been presented by Koike et al [139]. Erdemir 

[140] has recommended the texturing of surfaces to improve the retention of lubrication and 

provide superior wear resistance in the contact. The addition of surfactants is also expected to 

enhance the contact durability by modifying the surface characteristics of the contact [141], 

[142].  
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Progress has been made from simple surface hardening to the use of surfactants to enhance 

wear resistance of contacting surfaces. Continued analysis of the influence of external agents 

in joint contacts and the influence on dynamics at the contact and investigation of the 

improvement of wear resistance and friction characteristics of the contact surfaces, surface 

modification and coatings is required for specialised applications. Furthermore, tribological 

testing is required to ensure the resilience of the interacting joints. Virtual prototyping and 

simulation [27], [124], along with  the tribological experimentation is necessary for accurate 

prediction and to enhance the durability of interacting surfaces. 

A rapid progress is desired in the modelling techniques and simulations, which bring it 

asymptotically close to actual physical models. In addition, the increasing reliance on 

simulation packages and virtual prototyping and have been summarised in the forthcoming 

section. 

7. Software packages used in multi-body dynamics 

Several commercial software packages are available for the simulation of multibody 

dynamics [66]. For rigid link multibody mechanics simulation SimMechanics 1st or 2nd 

generation [53], [143] packages can be used. For joints with clearance packages like ADAMS 

[25], [144], [145], COMPAMM, NEWEUL, DAP3D [146], MUBODYNA [100]. RAPID 

and PARASOLIDS have been used [25] for interference detection. The problem can be 

formulated by using programming languages such as C/C++, Python or MATLAB m-code, 

depending on the intended application. However, the process of modelling the mechanics 

from first principles is often too tedious. Increasing reliance on software simulation packages 

has been observed with increasing model complexity. 
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8. Conclusions 

This paper covers literature in friction and dynamic modelling. It captures the evolution of 

mechanism and friction dynamics briefly. Key improvements in the area have been identified 

and presented. The relevance of friction models in manipulator dynamics is seldom discussed 

because of the difficulty of incorporating all the influencing factors into a single model. 

However, with the improvements in computational and numerical modelling techniques, the 

frictional dynamics of mechanisms is more effectively elucidated upon. 

Rapid evolution of mechanical modelling methods over the latter half of the 20th century 

include advances in modelling techniques and computational methods [147]. These enable 

the modelling and the simulation of complex mechanisms with increased accuracy.  The 

progress from simple kinematics to complex dynamics has been affected through the 

implementation of several advanced modelling techniques. Improvements in computational 

capacity has also enhanced the tools available to designers resulting in the reduction of the 

overall process time.  

Friction and wear component requires further research. Friction models have progressed from 

simple Coulomb, viscous and Stribeck friction models to the more comprehensive dynamic 

models such as Leuven model. Some models can account for wear in the contact by 

incorporating finite element computational techniques. High degree of non-linearity of the 

friction model and factors influencing the contact including the surface conditions, material 

properties, contact conditions and lubricating conditions are among several other factors and 

the interlocking nature of these factors ensure that the convergence of a single friction 

modelling equation does not occur. To add to the complexity, the dynamic modelling of 

mechanisms involves additional uncertainties such as the end effector trajectories [148] and 
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environmental interaction [98]. Therefore, it is necessary to examine each case individually to 

determine the important influencing factors in each case.  

Progress in dynamic modelling methods with improved friction modelling is envisaged such 

as a hybrid model that is capable of switching between different regimes. However, the 

unobservable transition conditions in contact makes this task tedious. Until such a unified 

model can be derived, smaller unified models addressing specific conditions of contact and 

frictional force generated in such contacts are useful. This philosophy is consistent with the 

literature. The influence of environments on contacts determines the life of the mechanism 

[128]. Improvement of the dynamic modelling techniques and tribo-analysis of the material at 

the contact is imperative within this context. Further analysis to determine the influence 

between dynamics of mechanism, material properties, coefficient of friction and the influence 

of environments is needed (Figure 16).  

Tribo-testing subject to load, lubrication conditions and environmental influences would 

elucidate the dynamics and tribological outcome of such contacts. The interaction between 

any two or more influencing factors may lead to accelerated failure at the joint or an 

inordinate rise in frictional resistance which are detrimental to the manipulator operation 

especially when precision positioning while handling heavy loads is required. The data 

generated thereof can be used to construct a specific but comprehensive model for the above-

mentioned factors.  

List of symbols 

A Parameter in Bliman-Sorin model 

B Parameter in Bliman-Sorin model 

�p Dynamic friction coefficient in modified coulomb friction law 
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�, Friction coefficient in modified coulomb friction law 

C Parameter in Bliman-Sorin model 

Ci Coordinate systems of the multibody with clearance 

D Damping coefficient 

DLC Diamond like coating 

DV Limit velocity in Karnopp model 

E* Effective modulus of elasticity 

ey The distance between centres along the ordinate 

ex The distance between centres along the abscissa 

eij Vector distance along displacement of centres 

F Friction force generated by friction model 

F1 Force applied on the rigid body 1 

F2 Force applied on the rigid body 2 

Fc Coulomb friction force 

�p Hysteresis force in the Leuven Model 

Fext Force applied by external actuator 

�, Friction force (Seven Parameter model) 

�r Hysteresis force in the Leuven Model 

Fn, FN Normal force at contact 
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Fs Static friction coefficient or Stribeck friction coefficient 

Fs,a 
Magnitude of the Stribeck friction at the end of the previous sliding period (Seven 

Parameter model) 

Fs,∞ Magnitude of the Stribeck friction after a long time at rest (Seven Parameter model) 

FT Tangential friction force in modified coulomb model 

Fv Viscous friction force 

U Spring constant 

K Stiffness at contact 

M Mass matrix 

n Normal along the contact 

2 Shape curve transitioning coefficient 

N Exponential coefficient 

O Origin of the global coordinate system 

Oi Coordinate system i of the journal 

Oj Coordinate system j of the journal 

PEEK Polyether ether ketone 

q�  Generalised acceleration state vector 

r Clearance between the bodies at contact 

Ro Radius of the outer bearing 
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Ri Radius of the journal 

RI Reset Integrator model 

s Space variable in Bliman Sorin model 

0�3� Shape transitioning curve 

t Tangent at contact point 

t2 Dwell time (Seven parameter model) 

TL Time constant of frictional memory 

3 Velocity at contact of the moving body 

37 Threshold values of velocities for dynamic correction factor in the modified 

Coulomb friction model 3� 

36 State variable in Bliman Sorin model 

3�  Relative tangential velocity at contact 

N�  Sliding velocity 

N6�  Characteristic velocity of the Stribeck friction 

N Sliding distance 

Χ Hysteresis damping factor 

X X axis of the global coordinate system 

X1 Displacement of the rigid body 1 

X2 Displacement of the rigid body 2 
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Y Y axis of the global coordinate system 

z State parameter in friction model 

α Baumgarte coefficients 

β Baumgarte coefficients 

� Time parameter of the rising static friction (Seven parameter model) 

�� Time derivative of deflection at contact 

δ Deflection at contact/Penetration depth of journal and bearing  

λ	 Lagrange multiplier 

�� Jacobian matrix for constraint equations, the superscript T denotes its transpose 

57 

Coefficient accompanying the state variable, An equivalent stiffness for position-

force relationship at velocity reversal (LuGre model), the tangential stiffness of the 

static contact 

5� Micro-viscous friction coefficient 

5�, 5� Viscous friction coefficient 
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Figure 2 Factors influencing the manipulator mechanism. This blue box highlights the focus areas of this paper i.e. dynamics 
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Figure 3 Articles published in the domain containing keywords of friction models, static and dynamics  

 

Figure 4 The layout of a robot with a planar manipulator mechanism and the rendered image of a manipulator designed in 

CAD environment; the arrow overlay depicts the friction torques at rotary joints when the manipulator operates in planar 

action. The inset of the figure shows the rendering of a manipulator model generated within the computer aided design 

environment. 
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Figure 5 Representation of the dynamics equation and its components 

 

Figure 6 The combined effect of Coulomb friction, Viscous Friction and low velocity Stribeck effect based on [1] 
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Figure 7 The Bristle model shown above is one in which the contacting surfaces interact through bristles [2] 

Page 53 of 59

https://mc03.manuscriptcentral.com/friction

Friction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

Figure 8 Classification of manipulator dynamics research and problems 
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Figure 9 Simple dynamic link coupling with clearance which leads to the 'impact pair' condition based on [3] 

 

 

Figure 10 Multibody system using slider crank mechanism with clearance  
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Figure 11 The different modes in a revolute joint with clearance[4], and penetration in joints[5] 

 

  

Figure 12 Representation of the journal bearing with clearance for planar case based on [6] 

 

Figure 13 Contact classification according to Machado et al [7] 
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Figure 14 Equations for the different contact models [7]–[9] 

 

Figure 15 Wear analysis integrated with the dynamics based on [10] 
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Figure 16 The relationship between various components of a mechanism requires further study. After several decades of 

research there is no governing principle owing to the sheer complexity of the phenomenon involved. 
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