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Abstract

Solutions to real-world problems often require the simultaneous optimisation of multiple conflicting

objectives. In the presence of four or more objectives, the problem is referred to as a “many-objective

optimisation problem”. A problem of this category introduces many challenges, one of which is the e↵ective

and e�cient selection of optimal solutions.

The hypervolume indicator (or s-metric), i.e. the size of dominated objective space, is an e↵ective

selection criterion for many-objective optimisation. The indicator is used to measure the quality of a non-

dominated set, and can be used to sort solutions for selection as part of the contributing hypervolume

indicator. However, hypervolume based selection methods can have a very high, if not infeasible, computa-

tional cost.

The present study proposes a novel hypervolume driven selection mechanism for many-objective prob-

lems, whilst maintaining a feasible computational cost. This approach, named the Hypervolume Adaptive

Grid Algorithm (HAGA), uses two-phases (narrow and broad) to prevent population-wide calculation of the

contributing hypervolume indicator. Instead, HAGA only calculates the contributing hypervolume indica-

tor for grid populations, i.e. for a few solutions, which are close in proximity (in the objective space) to a

candidate solution when in competition for survival. The result is a trade-o↵ between complete accuracy

in selecting the fittest individuals in regards to hypervolume quality, and a feasible computational time in

many-objective space. The real-world e�ciency of the proposed selection mechanism is demonstrated within

the optimisation of a classifier for concealed weapon detection.
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1. Introduction

Optimisation metaheuristics are composed of two phases: search to generate a new candidate solution

and selection to choose the solutions to retain for the following iteration, e.g. see [25] and [12]. In multi-

objective optimisation, the most critical operation is the selection since the fitness based comparisons must

take into account the fact that a solution can be better performing than another in terms of one objective and

not another. Candidate solutions in this situation are said to not dominate each other. The theoretical set of

solutions which are not dominated by any other solution is referred to as Pareto-optimal (or simply Pareto)

set [20, 65]. Metaheuristics designed to solve multi-objective problems aim to detect an approximation of

the Pareto set (approximation set) [102]. The term approximation set is used to refer to “the set of all

non-dominated points found during the run” [51], that is, the population at each iteration/generation of a

multi-objective optimisation algorithm [52].

Many applications, such as engineering design, require that one solution (or in some cases a few alter-

natives) rather than a large set is ultimately selected. The process of performing this selection is named

Decision Making while the criterion or algorithm that leads to the decision making is said to be the Decision

Maker (DM). In other words, the DM implicitly classifies “interesting and uninteresting” solutions. The area

of the objective space where the interesting solutions fall within is named the Region Of Interest (ROI).

It must be noted that the multi-objective optimisation algorithm that detects the set of non-dominated

solutions and the DM are related entities that perform di↵erent phases of the same task.

A good representation of a Pareto-optimal set, in terms of DM action, is characterised in three key areas,

see [72]. These are illustrated graphically in Figure 1 and listed in the following:

• Proximity: This tells the DM how close the approximation set is to the true Pareto-optimal front. An

ideal approximation set should be as close as possible in proximity to the true Pareto-optimal front.

In practise, proximity cannot be used as a measure of quality of the approximation set during the

optimisation process, because the true Pareto set is not known.

• Diversity: This characterises the distribution of the approximation set both in the extent and uni-

formity of that distribution. The ideal approximation set should be uniformly distributed across the

trade-o↵ surface of the problem.

• Pertinence: This criteria measures the relevance of the approximation set to the DM. Ideally the

approximation set should contain a number of solutions which satisfy the DM’s expressed preferences.

Conventional multi-objective optimisation techniques often fail to satisfy these criteria. For example,

the goal-attainment method [33] and the weighted-sum method [38] both only provide single solutions to

the optimisation problem - thus failing to provide a diverse distribution of solutions. Population based
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Figure 1: Proximity, diversity, and pertinence characteristics in an approximation set in two-objective space.

meta-heuristics, such as Evolutionary Multi-Objective Optimisation (EMO) algorithms, are naturally more

suitable to tackle multi-objective problems since they process a population of solutions which can then

represent the Pareto set, see [22, 44, 54, 64, 78, 94, 97], also when coupled to local search components, e.g.

see [77]. Furthermore, population-based algorithms for multi-objective optimisation can be easily endowed

with simple and e↵ective components to maintain a diversity of high quality solutions. Recently, in [47], it

is proposed a selection mechanism which satisfies at first the diversity of the solutions and then promotes

those with the highest proximity. An alternative approach would make use of a mathematical model to

generate extra surrogate solutions, e.g. see [13].

A study on the e↵ectiveness of variation in EMO algorithms is reported in [2].

1.1. Many-objective Optimisation

The higher the number of objectives, the more challenging the pairwise comparison of solutions and the

subsequent selection process. A multi-objective optimisation problem with more than three objectives is

referred to as many-objective optimisation problem [28], [42, 56].

Analogous to the curse of dimensionality when large scale problems are considered, many-objective

problems can introduce challenging di�culties. These challenges have been analysed in the literature, e.g.

see [16, 17, 42], and summarised in the following list:

• It is likely that almost all candidate solutions found throughout the optimisation process will be non-

dominated, this poses an issue for EMO algorithms which rely on Pareto-dominance for selection

pressure, [29, 53, 73].
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• The number of candidate solutions required to produce an approximation set which reliably represents

the trade-o↵ surface increases exponentially [40, 49].

• The number of generations required to produce an approximation set increases, thus making the

calculation time of a single run infeasible.

• Search operators become ine↵ective at detecting new non-dominated solutions in the presence of many-

objectives [40].

• Approaches which attempt to promote the diversity in the objective space, see [73], can cause issues

in terms of convergence, see [84], [58] and [56]. Indeed, convergence and diversity are conflicting in the

many-objective case, see [73] and [56].

• The visualisation of candidate solutions becomes di�cult, often resulting in the use of heat-maps or

parallel-coordinate plots. This poses a di�culty to the DM as the selection of a final candidate solution

may become non-intuitive [85].

The transition between the multi-objective problem domain and the many-objective problem domain is

not straightforward, such that the methods used to optimise solutions for a multi-objective problem have

little to none of the desired e↵ect when applied to a many-objective problem. A fundamental example of this

is that the selection mechanisms based dominance that perform well on multi-objective problems (two or

three objectives) [18, 20, 79], often do not perform well when four or more problem objectives are considered

as shown in [3, 36, 37, 41, 46, 50, 63, 73, 103]. Selection based on dominance is ine�cient at producing a

strong selection pressure toward the Pareto-optimal front in the presence of many objectives, as throughout

the optimisation process it is likely that the entire population will consist of entirely non-dominated solutions.

Several alternative algorithmic solutions have been proposed to perform the selection. The following

non-exhaustive classification is here proposed.

• Selection methods that use a reference vector. These methods are focussed on the diversity and

ideally aim at achieving an approximation set equally spaced on the Pareto front. In order to achieve

this aim, these methods use a reference vector (or weight) and normal distributions to select along

each coordinate (in the objective space) the points that are su�ciently distant. A prominent family

of algorithms based on this logic consists of the algorithms based on Multi-Objective Evolutionary

Algorithm based on Decomposition (MOEA/D) introduced in [95] and initially proposed for multi-

objective problems. A further development of the MOEA/D algorithm has been presented in [96] where

the MOAE/D with Dynamic Resource Allocation (MOEA/D-DRA) has been introduced. MOEA/D-

DRA decomposes the many-objective space into multiple single-objective spaces (sub-problems) and

then assigns them di↵erent computational budgets. This algorithm, which has been a competition
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winner at IEEE CEC is currently one of the most e↵ective and robust solutions at tackling complex

multi-objective and at least five-objective problems. Another interesting example of this category is

the Non-dominated Sorting Genetic Algorithm III (NSGA-III) [21, 45]. A further feature of NSGA-

III is the use of niching during recombination. This mechanism has been proposed to increase the

exploitation of the algorithm. A recent example of an algorithm based on this logic is given in [93].

Another modern example is given in [48] where although a reference vector is used, a diversity-first

convergence-second selection strategy.

• Selection methods that divide/classify the population. These methods have the same purpose

of the methods based on reference vectors but achieve this goal by mapping and dividing the objective

space. A mapping is then used as a reference to select the points so that they are equally spaced. A

historical example in multi-objective optimisation is the Adaptive Grid Algorithm (AGA), see [52],

where a grid in the objective space is used to control the population diversity. Another important

example is [73] which employed the mechanism to promote diversity. The employment of a grid in the

objective space has been reinterpreted and implemented in [60, 91]. Modern studies are reported in [57]

where a computationally e�cient implementation of a grid-based Pareto approximation is proposed,

[58] which is related also to reference vector methods but makes use of distances in the objective space

to shift the solutions and guarantee equal spacing, and [56] where the population is structured in

multiple layers.

• Selection methods that integrate the DM into the search. These methods bias the selection by

preferring some objectives rather than others. The goal of this approach is to have a high representation

of points falling within the ROI. In [98] the direction of the knee points of the Pareto set (those points

which represent the lack of a clear preference towards a specific objective) is preferred. This approach

shares with [97] the philosophy of avoiding extensive pairwise comparisons and thus handle better large

objective spaces. Furthermore, this approach can be seen as a modern re-interpretation of a weighted

sum approach where each weight coe�cient is set to 1. In [14, 15] the reference vector, i.e. a vector

containing the preference weights for each objective, is integrated within the selection process, in order

to exclude solutions which do not fall within the ROI from the search. The idea of the incorporation

of DM preferences into the algorithmic selection has been proposed in other contexts, e.g. [62, 75, 76].

• Selection methods that make use of indicators. These methods collect other pieces of informa-

tion to extract a scalarized parameter which then assists the selection. An important family is that

of Indicator Based Evolutionary Algorithms (IBEAs) [43, 99, 100]. Recently, in [59] a performance

comparison indicator to evaluate the quality of approximation sets with the aid of a reference point

has been proposed. An interesting indication which does not require any knowledge about the prob-

lem is the hypervolume indicator, e.g. see [30]. The hypervolume indicator measures how much of
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the objective space is dominated by an approximation set. Although the hypervolume indicator can

bias the search towards extremal and knee points of the Pareto, see [59], the way the hypervolume

indicator is constructed makes it very appealing in real-world problems. The main attractive point is

that this indicator requires no information regarding the theoretical Pareto-front (which in real-world

problems is often unknown). Successful examples of incorporating the hypervolume indicator into the

optimisation process during the selection process are in [26] and [6] where an adapted version of the

hypervolume indicator, named the contributing hypervolume indicator, is used. Other successful cases

of the hypervolume used during the selection process are given in [39] and [82] within the context of

the Multi-Objective Covariance Matrix Adaptive Evolution Strategy (MO-CMA-ES).

Although the hypervolume indicator is a very valuable sorting criterion for selection, its calculation

presents the drawback that it depends exponentially on the number of objectives. Consequently, selection

methods incorporating the hypervolume indicator become computationally infeasible in the presence of

many-objectives, see [56, 83]. This paper proposes a method to overcome the high computational cost

of the hypervolume calculation. This aim is achieved by means of a novel selection mechanism, namely

Hypervolume Adaptive Grid Algorithm (HAGA). The proposed HAGA calculates the hypervolume by using

only a small set of solutions by using a grid logic inspired by AGA [52]. With the application of HAGA,

reliable results in many-objective problems are obtained within a feasible calculation time.

As an analogy, the trade-o↵ between the accuracy of the hypervolume indicator and its computational

cost is much like the issues which have been encountered in collision detection in the area of computational

physics. The computational cost is due to the accuracy required for collision detection, and the number of

objects considered in the simulations. A popular and e�cient solution to this issue is the use of a two-phase

approach: a broad phase and a narrow phase [66]. The broad-phase is often a crude but computationally

fast method of eliminating objects from an object pool which are to be considered for collision detection, in

this sense the broad-phase determines which objects do not require further inspection. The narrow phase

will then consider the remaining objects for the actual collision detection.

When moving to many-objective problems, optimisation algorithms can benefit from taking inspiration

from the two-phase collision detection approach, especially in regards to the computational feasibility of

the hypervolume indicator. In a two-phase approach, the contributing hypervolume indicator is well suited

for the narrow-phase. An ideal broad-phase algorithm would be computationally lightweight and allow

partitioning of the objective space in regards to an approximation set available at each generation of the

optimisation process.

In order to have a reasonable computational cost without compromising on the performance of hyper-

volume indicator, this paper proposes a novel approach inspired by the collision detection analogy. The

proposed method makes use of a two-phase approach to selection which incorporates the contributing hy-
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pervolume indicator. The contributing hypervolume indicator is incorporated such that it is only used to

calculate the contributing hypervolume indicator values for sub-populations which are specified by an AGA.

In this sense, the proposed approach makes use of an estimation of the hypervolume indicators combined

with a population mapping. With this approach, population-wide subjection to the contributing hypervol-

ume indicator is avoided and the computational cost of using the contributing hypervolume indicator for

achieving selection pressure remains feasible for many-objectives.

The remainder of this article consists of the following sections. Section 2 describes the HV indicator,

the related concept of Contributing Hupervolume (CHV) indicator, and the AGA. Section 3 introduces the

proposed selection mechanism for many-objective problems. Section 4 provides a full statistical analysis of

the results of the proposed novel two-phase approach in comparison to the CHV indicator, and selection by

random permutation. Section 5 applies the proposed selection mechanism to a real-world many-objective

optimisation problem concerning concealed weapon detection.. Section 6 gives the conclusions of our work,

highlights the e↵ectiveness of the proposed approach and its suitability to many-objective optimisation.

2. Background: Hypervolume Indicators and Adaptive Grid Algorithm

2.1. Hypervolume Indicator

The HV indicator (or s-metric) is a performance metric for indicating the quality of a non-dominated

approximation set, introduced by [101] where it is described as the “size of the space covered or size of

dominated space”. It can be defined as [82]:

HV
�
fref , X

�
= ⇤

 
[

Xn2X

h
f1(Xn), f

ref
1

i
⇥ · · ·⇥

h
fm(Xn), f

ref
m

i!
(1)

where HV
�
fref , X

�
resolves the size of the space covered by an approximation set X, fref 2 R refers to a

chosen reference point, and ⇤ (.) refers to the Lebesgue measure [55]. This has been illustrated in Figure 2

in two-dimensional objective space (to allow for easy visualisation) with a population of three solutions.

The Hypervolume (HV) indicator is appealing because it is compatible with any number of problem

objectives and requires no prior knowledge of the true Pareto-optimal front, this is important when working

with real-world problems which have not yet been solved. The HV indicator is currently used in the field of

multi-objective optimisation as both a proximity and diversity performance metric and also in the decision

making process [34, 81].

Unlike dominance-based criteria which require only two solutions for performing a comparison (which

can be used on an ordinal scale), a reference vector is required to calculate the HV indicator value (i.e. it

requires the objective to be measured on an interval scale). When used for pairwise or multiple comparison

of optimisation algorithms, this reference vector must be the same, otherwise the resulting HV indicator
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Figure 2: An example of the hypervolume indicator in two-dimensional objective space.

values are not comparable. This reference vector can be approximated as large values for each problem

objective in order for all objective values in any approximation set to be within the reference vector. A

more accurate method for selecting a reference vector, is to use the worst objective values from the union

of approximation sets produced on a particular test problem, for each algorithm which is being considered

for comparison. This has been described in the following:

8m 2 h1, . . .Mi. fref
m  max

D
Xm [ fref

m

E
(2)

where fref
m is the highest value for objective m in the previous generations of the optimisation process,

and Xm is a set of objective values for objective m from the current population.

Much e↵ort has been made to speed up the HV calculation, e.g. see [5, 30, 87, 88]

Various implementations of the HV indicator have been presented in [5, 10, 30, 87, 88, 90], all with

the aim to speed up its calculation. The HV indicator implementation employed throughout this study

is a faster method for exact calculation authored by the Walking Fish Group [87]. The HV indicator has

been employed in the performance assessment of algorithms in much of the multi-objective optimisation and

evolutionary computation literature (e.g. [24, 36, 67, 74, 80]).
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Figure 3: An example of the CHV indicator in two-dimensional objective space.

2.2. Contributing Hypervolume

The Contributing Hypervolume (CHV) indicator is a population sorting mechanism based on an adap-

tation of the HV indicator, see [26], [39], and [6]. The HV indicator works by calculating the size of the

objective space that has been dominated by an entire approximation set with respect to a specified reference

point, whereas the CHV indicator assigns each solution in an approximation set with the size of the space

that has been dominated by each solution exclusively. With this information the population can be sorted

by the most dominant and diverse solutions. This has been illustrated in Figure 3 in two-dimensional space

with a population of three solutions.

Calculating the exact CHV indicator is attractively simple. The method begins by first calculating the

HV indicator quality of a population X, and then for each solution in the population, the solution is removed

and the HV indicator quality is again calculated for the new population. The new HV indicator value is

then subtracted from the HV indicator value of the whole population, which results in the CHV indicator

value of the solution which was removed. It is then possible to calculate the CHV indicator values of all the

µ+ � solutions in the population (µ parents and � o↵spring), order them by descending value so that they

are ordered by the greatest explicit HV indicator contribution, and select the first µ solutions to form the

next parent population. This approach has been listed in Algorithm 1.

Although many optimisation algorithms use the CHV as a sorting criterion for selection, its calcula-

tion becomes computationally infeasible as the number of objectives considered increases. Monte Carlo
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Algorithm 1 CHV Indicator execution cycle

CHVIndicator(fref , X)

1: XHV  HV (fref , X)

2: for n = 1 : � do

3: Xt  X\Xn

4: HVn  HV (fref , Xt)

5: CHVn  XHV �HVn

6: end for

return CHV

approximations have been used to speed up the calculation of the CHV in [11], which through empirical

experiments has shown that the method does not impair the quality of the approximation set. However, the

speed increase provided by the Monte Carlo approximation method, still results into an infeasibility of the

CHV indicator on problems consisting of five objectives or more.

2.3. Adaptive Grid Algorithm

The Adaptive Grid Algorithm (AGA) is a diversity preservation scheme which uses an adaptive grid to

keep track of the density of solutions within divisions of the objective space [52]. To achieve this, a grid

with a pre-set number of divisions is used to divide the objective space, and when a solution is generated,

its grid location is identified and associated with it. Each grid location is considered to contain its own

sub-population, and information on how many solutions in the archive are located within a certain grid

location is available during the optimisation process, this has been illustrated in Figure 4.

3. A New Selection Mechanism: The Hypervolume Adaptive Grid Algorithm

The proposed Hypervolume Adaptive Grid Algorithm (HAGA) is a selection mechanism consisting of

two-phases aiming of being computationally feasible in the presence of many objectives.

HAGA incorporates the use of a novel AGA implementation containing a number of features in order to

make the AGA implementation suitable for many-objective optimisation. These novel features consist of:

• A new data structure for storing a solution’s grid number up to any number of problem objectives;

• A new grid-proximity method for grid selection when searching for a solution to remove;

• A new scheme for the maintenance of global extremes for problem objectives.
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Figure 4: An example plot of a population and visualisation of the grid divisions managed by an AGA.

The execution cycle of HAGA is listed in Algorithm 2. With reference to Algorithm 2, HAGA processes

an approximation set composed of µ + � solutions with the aim of selecting µ of them. More specifically,

the inputs of HAGA are µ + � vectors of objective values (Xn, with n = 1, 2, . . . µ + �) and the scalar µ

is the number of solutions to be selected. The data structure containing all these vectors is indicated as

X. The output of HAGA is then a new approximation set whose objective values are vectors allocated in

a data structure A ⇢ X composed of µ solutions. The output approximation set is named parent set and

its corresponding solutions are named parent solutions. The notation |X| refers to the cardinality of the

population X.

� is a grid location consisting of multiple solutions and CHV�t is a vector of entries resulting from the

execution of the CHV indicator on the solutions in the grid population �t, such that min(CHV�t) would

resolve the solution which o↵ers the lowest explicit HV indicator contribution in regards to the observed

grid population.

In Algorithm 2, Line 5 identifies the grid location closest to the candidate solution and resolves a grid

population, the method for which has been described in Section 3.2. This is considered to be the broad-

phase of the two-phase approach. Once a grid location has been identified, it is used in the calculation of

the narrow-phase (Line 7), which depends on the CHV indicator described in Section 2.2.

The basic principle of HAGA is to benefit from the CHV algorithm’s ability to discriminate solutions

based on the explicit HV they contribute to a population, but to do so in a way that doesn’t introduce the
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Algorithm 2 HAGA execution cycle

HAGA(X,µ)

� = |X|� µ

1: for n = 1 : µ+ � do

2: if |A| < µ then

3: A A [Xn

4: else

# Where (�n) is the grid location of the maximally populated grid, described in (4).

5: �t  ClosestGridFromMaximallyPopulated(�n)

6: �t  �t [Xn

7: CHV�t  CHVIndicator(�t)

8:

9: # Where min(CHV�t) is the solution o↵ering the lowest CHV in the grid.

10: if min(CHV�t) = Xn then

11: Discard the candidate solution Xn

12: else

13: Discard min(CHV�t) solution

14: A A [Xn

15: end if

16: end if

17: end for

return A

12



computational infeasibility of using CHV on populations consisting of many-objective solutions.

In order to keep the computational cost feasible, HAGA makes use of the adaptive grid, where the

objective space covered by a population is divided into a grid consisting of grid areas. This grid has a

capacity for the number of vectors it can store, this capacity is set to µ, which is the number of parent

solutions desired for selection. The solutions within the o↵spring are then added to this grid one by one.

Throughout this process, there is no computation of the CHV algorithm until the grid reaches capacity.

When the capacity is reached (the grid is populated by µ vectors) the inclusion of a new vector Xn must

result into the eviction of another vector. In this case, the new vector is temporarily added to the population

(which would be temporarily composed of µ + 1 vectors). Then, a CHV is performed between the newly

added vector and all the other solutions belonging to the same sub-population in the grid. With reference

to Fig. 5, if we add X4 we would need to apply the CHV for X3, X4, X5 to evict one solution.

This procedure ensures that the CHV is computed for only a small number of solutions. This is done

in order to determine which solution is to be evicted from the grid area to prevent the grid from exceeding

capacity. In contrast, the CHV algorithm simply computes the CHV indicator value for every solution in

the population.

3.1. New Grid Number Data Structure

The mathematical procedure for the proposed AGA structure in its entirety is described herein [52]. M

defines the number of problem objectives and N defines the population size, whilst � defines the number

of desired grid divisions for a problem objective within the objective space. The data structure X is an M

by N matrix whose generic element xmn refers to a solution’s objective value:

Xn = hx1n, x2n, . . . , xMni (3)

� is an M by N matrix of entries �mn, where every �mn refers to the grid location of an objective value

xmn in the divided objective space.

�n = h�1n, �2n, . . . , �Mni (4)

To calculate �n, grid location �mn of each objective value xmn for each solution Xn needs to be resolved.

To calculate a solution’s grid location, the padded grid length ⇤, where

⇤ = h�1,�2, . . . ,�M i (5)

for each objective needs to be calculated using the lowest and highest objective value for each objective
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Figure 5: Illustration of the AGA and its elements on a two-objective approximation-set with � = 4.

in the population:

�p
m =

|min(Xm)�max(Xm)|
2(�� 1)

�l
m = min(Xm)� �p

m

�u
m = max(Xm) + �p

m

�m = |�l
m � �u

m|

(6)

where �l
m is the start point of the grid for objective m in the objective space, and �u

m is the end point

of the grid for objective m in the objective space. These elements have been illustrated in Figure 5.

With the grid length and range calculated, it is possible to get the grid location of each solution’s

objective value using:

�mn =

&
xmn � �l

m
�m

�

'
(7)

When the entries of �n have been calculated, it can be used to identify the grid location of a solution

Xn. In this new method, the grid location �n is defined by a vector rather than a scalar, for example in a

five-objective problem a grid location can be described by being at location �n = h2, 4, 1, 1, 2i.

Grid Number Data Structure Worked-Example

As an example, a population X of five (N = 5) solutions Xn for a five-objective problem (M = 5) has

been presented in Table 1 and Figure 6.
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Table 1: An example population X of objective values xmn to be subjected to the proposed AGA scheme.

x1n x2n x3n x4n x5n

X1 0.5 0.5 5.0 2.5 1.5

X2 0.6 0 5.0 3.0 1.4

X3 0.5 3.5 4.5 2.5 1.5

X4 0.8 3.2 4.2 3.0 1.2

X5 1 3 4 2 1
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Figure 6: Parallel-coordinate plot of the Population X used in the proposed AGA example.
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This population X has been subjected to the proposed AGA scheme to resolve the grid location �n of

each solution Xn, with an AGA parameter setting of (� = 4) grid divisions. The grid locations resolved by

the AGA scheme have been presented in Table 2 and the objective values xmn have been plotted in their

respective grid locations �m in Figure 7, where the plot markers correspond to those used in Figure 6.

Table 2: Grid locations � for the example population X of objective values xmn.

�1n �2n �3n �4n �5n

�1 1 1 4 3 4

�2 2 1 4 4 3

�3 1 4 2 3 4

�4 3 4 2 4 2

�5 4 4 1 1 1

0.375 0.5625 0.75 0.9375 1.125

f1

Objective value

1 2 3 4
Grid location

−0.875 0.4375 1.75 3.0625 4.375

f2

Objective value

1 2 3 4
Grid location

3.75 4.125 4.5 4.875 5.25

f3

Objective value

1 2 3 4
Grid location

1.75 2.125 2.5 2.875 3.25

f4

Objective value

1 2 3 4
Grid location

0.875 1.0625 1.25 1.4375 1.625

f5

Objective value

1 2 3 4
Grid location

Figure 7: One dimensional plots illustrating the grid locations resolved by the AGA scheme for each objective value, where the

plot markers correspond to those used in Figure 6.

The results from this example show that the example population does not consist of any solutions which

are in the same grid square (otherwise their � entries would be identical).
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3.2. Selecting a Solution to Replace

The method for selecting a grid location to remove a solution when the archive is at capacity is important

when moving to many-objective problems. Selecting at random from grid locations which are at the same

population density increases the probability of causing genetic drift, and decreases the diversity quality of

the population. This undesirable e↵ect is scaled exponentially as the number of problem objectives increase,

and it is for this reason that many modern EMO algorithms now incorporate a niching approach when

concerned with selection [21, 96]. Therefore, it is desirable to find the grid location which is close to both

solutions in the objective space and also at a higher density.

Storing grid locations as a single scalar value is not helpful when calculating distance between grid

locations or for storing grid locations for a many-objective problem. The grid location structure used in the

proposed AGA scheme described above enables an intuitive method for finding the distance between grid

locations. By establishing the grid location which a candidate solution would be assigned to, it is possible

to find the di↵erence between its grid location and other grid locations which are at high density. This

procedure is performed to find out which one it is closest to by summing the di↵erence of the grid location

vectors.

Selecting a Solution to Replace Worked-Example

For example, if a new solution X6 = h0.6, 0.5, 4, 3, 1.1i was to be included as a candidate solution as part

of the proposed AGA scheme, it would resolve a grid location of �6 = h2, 1, 1, 4, 2i. The distance �6 between

this grid location (�6) and the grid locations of the other solutions can be found by finding the absolute

di↵erence of each corresponding entry of the candidate solution’s grid location and another solution from

the population, and then summing those values.

�(i, j) =
MX

m=1

|�m,i � �m,j | (8)

The distances �n between the grid location �6 of solution X6 and all the other solutions in the population

presented in Table 1 have been presented in Table 3. The results show that the solution closest in proximity

to solution X6 is solution X2, this has been visualised in Figure 8.

Table 3: Grid locations � for the example population X of objective values xmn.

�1 �2 �3 �4 �5

�6 7 4 8 5 9

Using this method of resolving densely populated grid locations which are closest in proximity to a

candidate solution, it is possible to implement the approach listed in Algorithm 3.
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Figure 8: Parallel-coordinate plot of the Population X used in the proposed AGA example. X6 and the solution closest in

proximity to it, X2, have been presented using thicker lines.

Algorithm 3 Closest grid location from maximally populated grid locations

ClosestGridFromMaximallyPopulated(�n)

# If the number of grid locations containing the maximal number of solutions exceeds 1

1: if |max(�)| > 1 then5

# Where maxGamma is the set of grid locations containing the maximal number of solutions.

2: for � in max(�) do

# Calculate the di↵erences between the grid locations

# Where �n is the equivalent of � in max(�) but for �n

3: �c  �(�n, �)6

4: end for

5: �t  �min(�c)

6: else

7: �t  max(�)

# Where max (�) at this point is the single grid location resolved from the singleton set.

8: end if

return �t

5In this case, |�| refers to the cardinality of �
6In these cases,  refers to the assignment of the right operand to the left operand.
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This algorithm is invoked by Line 5 of Algorithm 2 by ClosestGridFromMaximallyPopulated(Xn).

Line 1 checks to see if there is a single grid location which contains the most solutions, if there is more than

one grid location that contains the most number of solutions then the algorithm identifies the grid square

which is closest in proximity to the candidate solution. �nc refers to the di↵erence between the candidate

solution’s grid location and other grid locations, and �min(�c) refers to the grid location which is the closest

in proximity among those containing the maximal number of solutions.

With this feature, it is possible to remove solutions from grid locations which have the highest number of

solutions, to make room for solutions in grid locations which have a low number of solutions. This encourages

diversity in the overall population.

3.3. Maintaining Extreme Solutions

In previous AGA implementations, the extreme values for each objective were preserved at grid level. In

the proposed AGA scheme, solutions containing extreme values for problem objectives (with the candidate

solution taken into consideration) are removed from the population before it is subjected to the AGA.

No special treatment is given to solutions containing locally (within their grid location) extreme objective

values. This ensures candidate solutions are given a better chance of entering the archive than they would

have had if they had come up against those solutions containing extreme values. This preserves the overall

spread whilst encouraging new solutions to enter the archive.

3.4. Further Remarks

• The proposed HAGA has been designed to be integrated within generational schemes. On steady-

state schemes, HAGA would require an extensive calculation at the insertion of each new solution.

Consequently, HAGA could result in being computationally expensive when compared to methods

employing a di↵erent logic.

• The proposed HAGA, although makes use of a grid, is deeply di↵erent in its logic when compared to

grid-based selection mechanisms, see e.g. [91]. While other methods use the grid to select the popu-

lation so that it is diverse (in the objective space), the proposed HAGA uses the grid to approximate

the calculation of the hypervolume indicator which is then guiding the selection.

4. Numerical Results

The observations made throughout this study have led to the definition of the following testable hy-

potheses:

Hypothesis 1. A two-phase approach to selection which incorporates the HV indicator can produce selection

pressure towards the Pareto front.
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Hypothesis 2. A two-phase approach to selection which incorporates the HV indicator can outperform the

CHV indicator in regards to execution time.

Hypothesis 3. A two-phase approach to selection which incorporates the HV indicator can perform com-

parably within a 10% di↵erence in regards to an achieved HV indicator value.

Section 4.1 describes the experimental setup for a number of synthetic test functions used to design

test cases for experimentation for the purpose of proving the hypotheses outlined above. The methods of

performance assessment have been described in Section 4.2, including the performance metrics employed,

the selected sample size, and the use of non-parametric testing. The experiments conclude with an analysis

of the results in Section 4.3.

4.1. Experimental setup

In order to test the proposed HAGA selection scheme, the selection process of a generic algorithm

generation has been simulated. Our test has been performed on the popular Walking Fish Group (WFG)

Tool-kit (WFG1 through to WFG9), see [1, 4, 7, 68, 74]

In order to test the capability of the proposed selection approach to handle very diverse scenarios, this

test suite has been used for the proposed method and its competitors, for several levels of dimensionality of

the objective space. The test suite has been run using configurations for experiments which consider 2, 3,

5, 10, and 15 objectives.

The selection approaches considered for comparison using these test cases are:

• Selection by Random Permutation (RNDPERM), where a random permutation of the integers

from 1 to � (in the case of our experiments, � = 200) are generated, and then the first µ (in the case

of our experiments, µ = 100) integers are used as indices for selecting solutions in the � population;

• Selection by the Contributed Hypervolume Indicator (CHV) described in Section 2.2 according

to the implementation described in [8, 26], see (1). The � population is sorted in descending order by

the returned CHV indicator values and the first µ solutions are selected;

• Selection by the here proposed Hypervolume Adaptive Grid Algorithm (HAGA) according

to the implementation described in Section 3.

In order to compare the performance of the proposed selection approach to the considered alternatives,

the experiments are designed around a comparison between the considered selection approaches independent

of any host optimisation process. As a result of this, the performance of the considered approaches to

selection will not be influenced by external factors. The purpose of these selection approaches is to select a

sub-set of µ (in the case of our experiments, µ = 100) solutions from an existing set of � (in the case of our
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experiments, � = 200) solutions. In the context of an evolutionary algorithm, the � population would be

the o↵spring population from the previous generational iteration, and the µ population would be the parent

population which is to be used as parents for evolutionary operators such as recombination.

It must be observed that the Selection by Random Permutation is a naive approach which is based on a

simple randomisation. The computational cost of this selection mechanism is expected to be very modest.

On the other hand, due to the lack of intelligent and e↵ective components, the performance of this selection

scheme is expected to be not too high. The Selection by CHV indicator is a sophisticated mechanism that

is likely to o↵er very good performance. Unfortunately, the very high computational cost of this method

makes it inapplicable for the many-objective case. Ideally, a selection method for many-objective problems

would have the accuracy of CHV and the computational cost of RNDPERM.

The proposed HAGA mechanism attempts to approximate this ideal situation by calculating the CHV

indicator only for limited groups of vectors. HAGA is a trade o↵ between CHV and RNDPERM philosophies

and is here proposed to be a method that, albeit conceptually sophisticated, is computationally cheap and

capable of o↵ering very good performance in various multi-objective and many-objective problems.

Of the considered approaches, only HAGA requires a parameter setting, the desired number of grid

divisions � (which is a discrete parameter).

The chosen value of � = 3 has been set subsequently to a tuning where the values between 2 and 20

have been taken into consideration, Figure 9 illustrates this exploration for the ten-objective WFG1 test

problem.
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Figure 9: The e↵ect of the number of grid divisions (�) on the Hypervolume performance and execution time of HAGA,

demonstrated for the ten-objective WFG1 test problem.

The � = 3 setting has been chosen as it proved to give the best performance in terms of computational

cost. A lower value of � would result in fewer grid squares and therefore larger grid square populations.

This will result in worst performance in the computation of the CHV indicator which is used at grid level.

In contrast, higher numbers for � will result in many more grid locations which may hold only a few
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Table 4: Settings used throughout the experiments.

Parameter name Parameter value

Test functions considered WFG1 to WFG9

No. objectives considered h2, 3, 5, 10, 15i

Execution sample size 25

� population size 200

µ population size 100

Performance metrics 1. HV Indicator

2.Execution Time (secs)

solutions and often only a single solution. This scenario does not ensure the best performance out of the

CHV indicator, as often only a single solution will be subjected to it.

It is important to note that for all problems, e.g. a fifteen-objective problem, although the value of �

being set to 3 results in 315 grid locations available within the grid’s structure, these are only possible grid

locations. The majority of the possible grid locations available in the grid’s structure are not populated

because they are located at: dominated areas of the objective space; unpopulated areas of the trade-o↵

surface (either as a result of the design of the objective function or poor diversity); or impossible regions of

the objective space. If a grid location does not contain any solutions, it is not considered in any comparisons

and no space is reserved for this location during the algorithms execution.

The conditions under which these mechanisms are tested are summarized in Table 4.

Each test case involves using one of the considered approaches for the selection of µ individuals from a

population of size �, in all our test cases this means selecting the best 100 solutions from a population of 200

solutions. These test cases exist for permutations of all considered problem objectives, test functions, and

with 25 samples for each. Each test case uses a unique � population of 200 solutions, these solutions have been

generated using the competition winning MOEA/D-DRA algorithm (see [96]). The size of the populations

produced by MOEA/D-DRA is restricted to 200 by initialising the algorithm with 200 normalised and evenly

distributed weights.

This approach to designing test cases and generating sample � populations ensured that each considered

approach will be subjected to approximation sets consisting of varying proximity and diversity (with a

su�cient sample size of 25), for every considered test function, and for every considered problem objective

configuration. The HV indicator performs better (in regards to execution time) on some test functions more

than others, this di↵erence in performance is not definitively a result of which test function is used, but

instead the Pareto-optimal shape produced by solutions to the problem. For this reason it is important that

25 unique samples are used, in particular to evaluate each selection approach on “worst-case” scenarios - as
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Table 5: Parameter settings used for the MOEA/D-DRA algorithm used to generate the � populations.

Parameter name Parameter value

Niche size 20

Population size 200

Maximum update number 2

Function evaluations 20,000

Table 6: Hardware and software configurations of the computing cluster used to generate the results.

Configuration name Configuration value

Architecture Linux-x64

RAM 63 GB

CPU Intel(R) Xeon(R) CPU E5-

2650 @ 2.00GHz ⇥16

Total CPU Cores 192

Nodes 16

MATLAB version R2014a 64-bit (glnxa64)

Hypervolume Indicator WFG HV 1.0.3

each approach is only as good as its “worst-case” execution in regards to computational cost.

All test cases have been executed on a computing cluster with the configuration listed in Table 6. A

computing cluster was required due to the computational cost of executing the CHV indicator on many-

objective approximation sets, the same hardware and software was used for all the selection approaches.

4.2. Performance Assessment

Selecting a relevant and su�cient method of performance assessment is a necessity when evaluating or

comparing EMO algorithms. These methods of performance assessment can be used to gauge an EMO

algorithm’s performance in regards to the proximity, diversity, and pertinence of the final approximation

set. Section 4.2.1 describes the performance metrics used to evaluate the considered selection approaches.

Section 4.2.2 justifies the su�ciency of the selected sample size for comparison of the considered selection

approaches. Section 4.2.3 describes the methods of non-parametric testing employed for the statistical

analysis of the selection approaches considered.

23



4.2.1. Performance Metrics

In order to verify the hypotheses described in Section 4, performance metrics must be employed to resolve

the performance of each selection approach considered. Two performance metrics have been considered in

this study.

To gauge and compare the performance of a selection approach in selecting a population which achieves a

high HV indicator quality, the HV indicator HV
�
fref , X

�
described in equation (1) (and here synthetically

referred to asHV ) has been used as the first performance metric. The HV indicator (described in Section 2.1)

is used in conjunction with the reference vector fref which is generated by taking the worst objective values

from the union of approximation sets produced on a particular test problem after 20,000 function evaluations

(calculated using (2)), for each algorithm which is being considered for comparison. This approach to

generating the reference point has been chosen to allow a fair comparison amongst all considered hypervolume

driven approaches, and to simulate a real-world optimisation scenario where such auxiliary information is

often not available before the optimisation process. Through this performance metric the amount of the

objective space covered by each selection approach can be observed.

To gauge and compare the performance of a selection approach in regards to its execution time, the MAT-

LAB R2014a implementation of the stopwatch timer has been used. This can be achieved using the command

“tic;”, followed by the execution of the selection approach, followed by the command “executionT ime =

toc;”. In the following sections of this paper, to keep the notation simple, the cumulative execution time

is indicated with T . This cumulative execution time indicates the time taken in seconds by the selection

approach on a single CPU thread.

The means and standard deviations for both of the selected performance metrics have been presented in

the results section, in order to show the average performance as well as the dispersion of the results.

The CHV indicator can be used to find the µ solutions in a population of size � which o↵er the highest

possible HV indicator quality, in regards to the µ solutions which score the highest CHV indicator values.

This is achieved by selecting the first µ solutions from an ordered (descending) population based on their

CHV indicator values (calculated with Algorithm 1). The lowest possible HV indicator quality which can

be achieved by µ solutions from a population of size � can also be resolved, in regards to the µ solutions

which score the lowest CHV indicator values. This is achieved by selecting the last µ solutions from the

same ordered population. By having the worst and best possible µ solutions in regards to the HV indicator,

it is possible to calculate a score indicating the percentage accuracy of a selection approach. The calculation

of this score has been defined in Algorithm 4.

This score of accuracy is required as it can be di�cult to interpret the magnitude of di↵erence between

selection approaches, this is because the magnitude of di↵erence varies from one problem to another, and

is heavily dependant on the solutions subjected to the HV indicator. Therefore, the accuracy score will be
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Algorithm 4 Calculating the HV indicator accuracy

HVIndicatorAccuracy(fref , X, µ,HV )

1: CHV  CHVIndicator(fref , X))

2: XU  selected from X using first µ CHV indexes

3: XL  selected from X using last µ CHV indexes

4: XU  HV
�
fref , XU

�

5: XL  HV
�
fref , XL

�

6: A = HV�XL

(XU�XL) ⇥ 100

return A
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Figure 10: Histogram showing the distribution of the HV indicator values from 200 executions of MOEA/D-DRA on the WFG6

synthetic test problem.

included in the results for clarity of the di↵erence between the considered selection approaches.

4.2.2. Sample Size Su�ciency

Selecting a su�cient number of samples when comparing optimisers is critical. The sample size of 25,

in order to reduce stochastic noise, is re-occurring in the evolutionary computation literature (e.g.[19, 32,

86, 92, 94]). The su�ciency of this sample size has been tested by producing a large number of hypervol-

ume indicator value samples by executing MOEA/D-DRA 200 times (the distribution of which has been

illustrated in Figure 10) on the WFG6 synthetic test problem.

These 200 samples were then used to identify the relationship between the Standard Error of the Mean

(SEM) and the sample size using:

SEM =
SDp
N

(9)

This relationship has been illustrated in Figure 11 which shows the limited benefit of more than 25

independent executions of the algorithm on the synthetic test problem.
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Figure 11: Relationship between Standard Error of the Mean (SEM) and the sample size of HV indicator values from 200

executions of MOEA/D-DRA on the WFG6 synthetic test problem.

4.2.3. Statistical Set-up

In order to find the significance in contrast amongst the results obtained by algorithms considered for

comparison, a non-parametric test (encouraged by [23, 27]) for pairwise statistical comparison has been

employed. The Wilcoxon signed-ranks [89] non-parametric test (counterpart of the paired t-test) has been

used with the statistical significance value (↵ = 0.05), this is able to rank the di↵erence in performance

between two algorithms (pairwise comparisons) over each approximation set.

The Wilcoxon signed-ranks non-parametric test has been employed to contrast the significance of the

results generated by the proposed HAGA selection approach to every other considered selection approach,

in regards to both the HV indicator and execution time performance metrics. These statistics will allow

greater confidence in the verification of the hypotheses described in Section 4.

The choice of the use of a non-parametric test is experimentally justified by the fact that the data are not

normally distributed. The latter statement has been shown by means of the one sample Kolmogorov-Smirnov

test with the statistical significance value (↵ = 0.05).

Furthermore, in order to strengthen the statistical significance of the results presented and have a general

statistical sense of the significance of the algorithms across all problems, the Holm-Bonferroni procedure has

been applied with confidence level of 0.05, see [35], [32], and [31].

Both Wilcoxon tests and Holm-Bonferroni procedure have been applied twice per each algorithm in order

to evaluate the quality of the results and the time required to achieve them. The quality is expressed as the

Hypervolume metric HV and cumulative execution time (CPU-time) T .
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4.3. Results

This section presents the numerical results considered in this study. For each algorithm and each test

problem, the average values of the HV indicator HV and the ± standard deviations � are reported in Table

7. In the same table, average values of the calculation time with the corresponding standard deviation

values are also displayed. In Table 7 the number of objectives under consideration is indicated with M .

In the following table, a higher mean HV indicator value denoted by HV indicates greater performance in

regards to area of the objective space dominated. In contrast, a lower mean execution time value denoted

by T indicates greater performance in regards to the time taken to complete the execution for a selection

approach, meaning the greater performance indicates less time taken.

The HV indicator values HV have been normalised to avoid the generation of large numbers and to allow

for better comparison between selection approaches. The method of normalisation used has been defined in

(10).

HV =
HV

QM
m=1 f

refm
(10)

With this method of normalisation, the mean HV indicator values HV will always reside between 0 and

1.

The results of the Wilcoxon signed-ranks test have also been included in Table 7, where a ’+’ indicates

that the null hypothesis was rejected, and the HAGA selection approach displayed statistically superior

performance at the 95% significance level (↵ = 0.05) on the considered test case. A ’�’ indicates that the

null hypothesis was rejected, and the HAGA selection approach displayed statistically inferior performance.

An ’=’ indicates that there was no statistically significant di↵erence between both of the considered selection

approaches on the considered test case.

Table 8 displays the results of the Holm-Bonferroni procedure in terms of both the hypervolume indicator

HV and the execution time T .

It can be observed that HAGA has intermediate features with respect to CHV and RNDPERM. As

expected, CHV always returns the best HV value with respect to � because it performs a search over

all the possible � values. In contrast, RNDPERM always has the worst HV performance, and thus never

outperforms the proposed selection approach (HAGA). Furthermore, the intermediate performance of HAGA

is much closer to CHV performance than to the RNDPERM performance as displayed in Table 7, although

HAGA performance on the HV cannot outperform the extensive search performed by CHV.

Regarding the execution time performance, it can be immediately observed that the three methods em-

ploy di↵erent logics with very di↵erent computational costs, especially when the complexity of the methods

with respect to the dimensionality of the objective space is considered. Since RNDPERM simply performs

random permutations it is computationally very cheap and its cost does not depend on the dimensionality
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Table 8: Holm-Bonferroni procedure

j Method Rank zj pj �/j

HV value (reference: HAGA, Rank = 2.02e+00)

1 CHV 3.00e + 00 4.64e + 00 < e � 05 5.00e � 02 HA

2 RND 1.02e + 00 �4.74e + 00 < e � 0.5 2.50e � 02 HA

T value (reference: HAGA, Rank = 1.60e+00)

1 RND 3.00e + 00 6.64e + 00 < e � 05 2.50e � 02 HA

2 CHV 1.40e + 00 �0.95e + 00 0.17e00 5.00e � 02 H0

of the objective space.

On the contrary, CHV performs a HV check of all the entire set of � solutions. Analogous to what

happens in single-objective optimisation when the dimensionality of the decision space is scaled up, the size

of objective space exponentially grows with the number of objectives. Hence, the computational cost of CHV

heavily depends on the number of objectives of the problem and grows exponentially with it. As shown in

Table 7, the computational cost of CHV is very modest in the two-objective case. In the three-objective

case the computational cost of CHV is about ten times higher than for a two-objective problem. In the

five-objective case, the cost of CHV is over a second which may be already approaching a limitation for

real-time applications (taking into account that a many-objective optimisation algorithm requires thousands

of CHV selections). For a higher dimensionality of the objective space, the cost of CHV is very high making

CHV unusable, or at least not very attractive. It can be observed that for a fifteen-objective problem a

single CHV selection may require more than ten calculation days.

The proposed HAGA selection approach performs a search and has a non-null computational cost. Fur-

thermore, the computational cost of HAGA depends on the number of objectives of the problem. However,

its computational cost does not grow exponentially with the size of the objective space. On the contrary,

the computational cost of HAGA grows extremely slowly when compared to the computational cost of CHV

and is around, or within, a second for all of the problems considered in this study. Furthermore, HAGA

appears to reliably o↵er a fairly high HV performance with a modest computational cost. In terms of its

computational behaviour, HAGA can be regarded as a surrogate assisted strategy, e.g. see [61] and [69], that

operates in the multi-dimensional objective space. For example a population selection for WFG1 for fifteen

objectives can be solved by HAGA more than five million times faster that CHV selection still attaining a

very good approximation of the theoretical HV accuracy (0.05871 instead of 0.05879), see Table 7.

These features make the proposed HAGA selection approach attractive for real-world application which

require the solution of many-objective problems in a reasonable time.

Figure 12 depicts the computational cost depending on the number of objectives for the three selection

schemes under consideration. It must be noted that in order to make the di↵erence in cost between CHV

and the other methods visible, the plot is represented in logarithmic scale. The trend displayed in Figure
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Figure 12: Computational cost (T ) of RNDPERM, CHV, and HAGA (logarithmic scale).

12 can be seen as a complexity analysis where the scalability is studied in the objective space instead of in

the decision space.

Figure 13 depicts the HV indicator accuracy depending on the number of objectives for the three selection

schemes under consideration. The HV indicator accuracy has been resolved using the procedure listed

in Algorithm 4 in order to o↵er a normalised measure of performance between the considered selection

approaches. The CHV selection approach scores each solution in the population based on the explicit area

of the objective space which it dominates, with these scores it is possible to identify either the combination

of solutions which cover the most objective space, and also the combination of solutions which cover the

least of the objective space. With these two populations which dominate the most and least of the objective

space, it is possible to use the HV indicator in each of them to resolve the worst achievable HV indicator

score and the best achievable HV indicator score for the test case under consideration. It is possible to

assume that any combination of µ solutions based on CHV indicator values from the � population will score

somewhere between these upper and lower achievable HV indicator values, and with this knowledge it is

possible to arrive at a normalised (between 0 and 1) measure of performance of the considered selection

approaches across all considered test cases. This HV indicator accuracy can also be seen as a percentage,

whereby a HV indicator accuracy of 0% indicates the worst possible combination of µ solutions and a HV

indicator accuracy of 100% indicates the best possible combination of µ solutions in regards to the HV

indicator.

It can be observed in Figure 13 that the CHV selection approach scores a consistent HV indicator accuracy

of 1 (or 100%), this is to be expected as theoretically the CHV indicator by design is able to order a population

based on explicit domination of the objective space. The RNDPERM selection approach is shown to achieve

a mean HV indicator accuracy of 0.7 (or 70%), with the lowest HV indicator accuracy scoring at 0.67 (or
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Figure 13: Hypervolume Accuracy (A) of RNDPERM, CHV, and HAGA.

67%), this is an expected and undesirable score. If the RNDPERM approach to selection was employed

throughout an optimisation process, it can be assumed that at each generation a new parent population of

size µ would be selected from the o↵spring population of size �, and that this new parent population would

consist of solutions that on average represent 70% of the objective space which can be dominated by the

o↵spring population. It can therefore be assumed that many of the solutions forming this new o↵spring

population are: solutions which are dominated by other solutions in the o↵spring population; solutions

which o↵er very little in terms of explicit contribution to the HV indicator; or identical solutions which o↵er

nothing to the quality of the new parent population. Through this process of using the RNDPERM selection

approach, it is possible that the HV indicator quality of populations resolved at each generation oscillate, or

regress due to the lack of selection pressure. The HAGA selection approach is shown to achieve a mean HV

indicator accuracy of 0.966 (or 96.6%), with no HV indicator accuracy score below 0.957 (or 95.7%), this

performance remains consistent from problems consisting of two problem objectives up to at least fifteen

problem objectives. An average HV indicator accuracy score of 96.6% suggests that regardless of the number

of considered problem objectives, the HAGA approach to selection is able to o↵er great selection pressure

towards dominant areas of the objective space.

4.4. Comparison against another approximated HV indicator

In order to to further prove the e�ciency of the proposed HAGA, we have compared it with another

selection method for many-objective optimisation based on an approximated estimation of the hypervolume

indicator, i.e. HypE reported in [6]. The same experiments as above have been repeated and HAGA has

the same parameters used in the previous sections. Regarding HypE, its parameter has been set to achieve

an error of only 1% as suggested in its paper: number of samples 105. Table 9 displays the results of this
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experiment.

Numerical results in Table 9 show that HAGA and HypE achieve comparable results for all the numbers

of objectives in terms of HV . As shown, for all the experiments carried out there is neither of the method

outperforms the other in terms hypervolume. On the other hand, the advantages of HAGA with respect to

HypE are evident when the calculation time is considered. HAGA outperforms HypE in terms of calculation

time in all instances by obtaining similar results in less than a fifth of the HypE calculation time.

5. Application to Neural Systems in Concealed Weapon Detection

The optimisation of the accuracy and e�ciency of classifiers in pattern recognition is a complex problem

that is often poorly understood. Whilst numerous techniques exist for the optimisation of weights in Artificial

Neural Networks (ANNs) (such as the Widro↵-Ho↵ least mean squares algorithm and back propagation),

there do not exist any hard and fast rules for choosing the structure of an ANN - in particular for choosing

both the size (in terms of the number of neurons) and the number of hidden layers used in the network.

However, this internal structure is one of the key factors in determining the e�ciency of the network and

the accuracy of the classification.

This section presents the optimisation of the ANN architecture used for Concealed Weapon Detection

(CWD) in a seven-objective problem. CWD is an important area of research in the defence and security

community. This is due to a number of high profile terrorist attacks which have resulted in loss of life and

damage to public infrastructure. The optimisation of concealed weapon detection classifiers is important

because even a marginal gain in performance can improve the safety and security for the area in which the

system is implemented.

The method here employed for detecting concealed weapons in crowded areas in real-time is by means of

coordinated small portable radars. A number of radar systems have been developed for this purpose [9] and

[70]. These radars use multiple methods of detecting concealed weapons such as time domain reflectometry

and the exploitation of polarisation changes induced by complex objects concealed on the human torso under

clothing.

The radar used in this work is constructed of a Vector Network Analyser (VNA) with pyramid horn

antennas connected to the VNA using suitable cabling. A laptop is used to control the VNA and then

classify the signals. The radar signals are analysed on the laptop using pattern recognition applied to the

time resolved signals in the form of an Artificial Neural Network (ANN), this set-up has been illustrated in

Figure 14. This method has been discussed in detail in a previous publication [71].

One of the shortcomings of this method is that the optimisation of the ANN architecture has previously

been performed using trial and error. This has been done by increasing the number of hidden layers in the

ANN and also increasing the number of neurons on each of these layers. A set of validation data was fed
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Table 9: Mean values ± standard deviation values of hypervolume indicator and calculation time for HypE and HAGA in the

two, three, five, ten, and fifteen-objective case. A value in bold indicates the highest performing approach for the corresponding

performance metric. A greater HV score indicates greater hypervolume indicator performance, and a lesser T score indicates

faster performance.
HypE HAGA

M Fn HV ±� T ±� HV ±� T ±�

2 WFG1 0.26113 ±0.01285 = 1.82753 ±0.13867 + 0.26261 ±0.01084 0.21728 ±0.10040

2 WFG2 0.63536 ±0.01664 = 2.16441 ±0.13458 + 0.63622 ±0.01623 0.05468 ±0.00986

2 WFG3 0.63469 ±0.00569 = 1.95012 ±0.11419 + 0.63460 ±0.00753 0.36607 ±0.07442

2 WFG4 0.46391 ±0.00541 = 1.68275 ±0.10467 + 0.46529 ±0.00457 0.06388 ±0.01354

2 WFG5 0.45122 ±0.00517 = 1.70633 ±0.11013 + 0.45319 ±0.00194 0.41180 ±0.05766

2 WFG6 0.49308 ±0.00965 = 1.74978 ±0.11795 + 0.49418 ±0.00830 0.57747 ±0.06463

2 WFG7 0.51148 ±0.00438 = 1.78621 ±0.12065 + 0.51235 ±0.00442 0.25407 ±0.07760

2 WFG8 0.44846 ±0.00531 = 1.52428 ±0.16853 + 0.44843 ±0.00597 0.23082 ±0.06540

2 WFG9 0.50159 ±0.00406 = 1.28945 ±0.03999 + 0.50195 ±0.00443 0.32247 ±0.11638

HypE HAGA

M Fn HV ±� T ±� HV ±� T ±�

3 WFG1 0.35022 ±0.01226 = 2.19671 ±0.10713 + 0.35036 ±0.01253 0.59704 ±0.04166

3 WFG2 0.82646 ±0.01445 = 2.19649 ±0.10913 + 0.82688 ±0.01454 0.42262 ±0.04688

3 WFG3 0.59555 ±0.00984 = 1.97480 ±0.12437 + 0.59614 ±0.01125 0.52284 ±0.04523

3 WFG4 0.55458 ±0.01205 = 1.89898 ±0.13124 + 0.56026 ±0.01301 0.33683 ±0.04832

3 WFG5 0.57638 ±0.00812 = 1.86686 ±0.14023 + 0.57434 ±0.00965 0.53927 ±0.03212

3 WFG6 0.61379 ±0.00888 = 1.91159 ±0.12394 + 0.61525 ±0.00834 0.60009 ±0.02691

3 WFG7 0.56819 ±0.01339 = 2.02938 ±0.19062 + 0.56834 ±0.01256 0.46005 ±0.05513

3 WFG8 0.51735 ±0.01108 = 1.90151 ±0.55118 + 0.52137 ±0.01184 0.45089 ±0.05183

3 WFG9 0.59525 ±0.01100 = 1.55483 ±0.12383 + 0.59536 ±0.00946 0.48412 ±0.05889

HypE HAGA

M Fn HV ±� T ±� HV ±� T ±�

5 WFG1 0.35593 ±0.00490 = 3.70656 ±0.32810 + 0.35599 ±0.00495 0.78154 ±0.10825

5 WFG2 0.84962 ±0.01318 = 3.63484 ±0.26045 + 0.84966 ±0.01317 0.75523 ±0.13534

5 WFG3 0.53106 ±0.00791 = 3.20888 ±0.37518 + 0.52522 ±0.01116 0.56657 ±0.03422

5 WFG4 0.62804 ±0.01174 = 3.10994 ±0.35588 + 0.62973 ±0.01319 0.44297 ±0.04703

5 WFG5 0.67049 ±0.01567 = 3.02063 ±0.30718 + 0.66853 ±0.01631 0.57354 ±0.03647

5 WFG6 0.72059 ±0.01134 = 3.13576 ±0.38586 + 0.72322 ±0.01302 0.59686 ±0.02849

5 WFG7 0.59135 ±0.01316 = 3.46482 ±0.99753 + 0.59138 ±0.01479 0.53652 ±0.03597

5 WFG8 0.52986 ±0.02035 = 2.16481 ±0.26168 + 0.53255 ±0.02056 0.46476 ±0.05669

5 WFG9 0.65638 ±0.01398 = 2.05873 ±0.16856 + 0.65887 ±0.01413 0.54510 ±0.03100

HypE HAGA

M Fn HV ±� T ±� HV ±� T ±�

10 WFG1 0.20260 ±0.00323 = 6.89606 ±1.31032 + 0.20253 ±0.00325 1.20437 ±1.25042

10 WFG2 0.82300 ±0.02876 = 7.28971 ±0.98003 + 0.82292 ±0.02854 0.83236 ±0.53270

10 WFG3 0.39299 ±0.01647 = 6.51789 ±1.17428 + 0.38837 ±0.01741 0.68271 ±0.02954

10 WFG4 0.56809 ±0.02614 = 6.23768 ±1.11081 + 0.56968 ±0.02868 0.49096 ±0.07500

10 WFG5 0.53959 ±0.02424 = 6.39568 ±1.21359 + 0.53862 ±0.02456 0.65928 ±0.03369

10 WFG6 0.71402 ±0.01719 = 6.85013 ±1.21046 + 0.71643 ±0.01901 0.58623 ±0.06133

10 WFG7 0.50415 ±0.01786 = 6.82064 ±1.46340 + 0.50482 ±0.01700 0.59102 ±0.04497

10 WFG8 0.43684 ±0.02318 = 6.02258 ±2.17669 + 0.43631 ±0.02313 0.44876 ±0.05142

10 WFG9 0.51419 ±0.03100 = 3.64024 ±0.45495 + 0.51589 ±0.03149 0.59211 ±0.03683

HypE HAGA

M Fn HV ±� T ±� HV ±� T ±�

15 WFG1 0.05870 ±0.00085 = 10.77472 ±1.65668 + 0.05871 ±0.00080 0.85870 ±0.19637

15 WFG2 0.68984 ±0.05154 = 10.00911 ±1.26968 + 0.69113 ±0.05203 0.85797 ±0.34234

15 WFG3 0.16148 ±0.01952 = 9.54261 ±1.58181 + 0.16113 ±0.01967 0.75482 ±0.02921

15 WFG4 0.51709 ±0.02985 = 9.32213 ±1.52301 + 0.51678 ±0.03041 0.59002 ±0.05213

15 WFG5 0.43823 ±0.01505 = 9.29506 ±1.55050 + 0.43516 ±0.01571 0.74370 ±0.02826

15 WFG6 0.60976 ±0.04341 = 9.70836 ±1.70848 + 0.61407 ±0.03985 0.58675 ±0.09660

15 WFG7 0.40807 ±0.01708 = 9.79999 ±1.58785 + 0.40279 ±0.01988 0.67919 ±0.04909

15 WFG8 0.37620 ±0.01978 = 10.21248 ±4.10443 + 0.36997 ±0.01853 0.83264 ±1.19337

15 WFG9 0.35752 ±0.02055 = 5.17540 ±0.25897 + 0.35640 ±0.02137 0.71350 ±0.04720
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Figure 14: System block diagram of the arrangement of the transmitter and receiver horn antennas.

into the ANN each time a new layer or neuron was added, and the true positive and false positive rates were

recorded. The best architecture was selected by weighing the achieved true positive rate against the cost in

false alarm rate. Another issue exists with the training of the ANN, which tends to be inconsistent. This is

caused when an initial guess at the weights and biases is taken. As a result of the randomness of this guess

the convergence can be to a local minima rather than the global.

It is of great importance that the false alarm rate is kept low, typically below a few percent, for security

screening of large volumes of people. This is due to the action that must be taken once a potential threat has

been identified. This action could range from further investigation, e.g. stop and search, to the evacuation

of a crowded public area. If the false positive rate goes above a few percent the inconvenience to the security

forces and general public would render the method ine↵ective. Therefore the primary objective in optimising

the ANN architecture must be the reduction of the false positive rate.

The second objective in the optimisation of the ANN architecture must be the preservation of the true

positive rate for targets of interest. The targets that should be detected by the radar include knives and

guns. It is unfortunate that knives and guns are seized by the security forces far too frequently and pose a

significant threat to the safety of the general public. The damage that can be caused with these weapons is

considerable and these targets are easily concealed upon the human body.

A weapon detection system that is capable of classifying a detected threat into target groups would be

an extremely valuable tool to security forces. Such a system would enable the authorities to react to a

detection in a controlled and proportional manner. The action that must be taken to confront an individual

concealing a threat object depends very much on the threat object itself. An individual carrying a knife

could be dealt with easier than an individual with an improvised explosive device.

Besides obvious threat objects such as guns and knives, the detection of objects such as mobile phones

is desirable as they can be seen as a threat in the case of a controlled courtroom (where photographing

witnesses and communicating with witnesses waiting to testify is an issue) where they are banned and when

entering a controlled site.

The extent of the ROI will be determined by the DM based on some pre-determined criteria, for example

the radar may be deployed in an environment where the client has specified a minimum detection rate and
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Figure 15: Encoded chromosome for the seven-objective ANN consisting of 4 hidden layers (HL), input layer (IL), 4 neurons on the
output layer (OL), and associated biases, totalling to 1032 variables.

maximum false alarm rate. It is possible that no solutions may be found within an ROI which has been

confined based on a client’s specifications, in which case the specification would be deemed beyond the

performance of the radar and another solution would be required.

5.1. Encoding the Problem

In order to use evolutionary optimisation to optimise the topology and weights of the ANN classifier for

concealed weapon detection, the ANNs topology and weights must be encoded into a real-valued chromo-

some, which can then be subjected to the various evolutionary operators used in the optimisation process

and then decoded for evaluation. Figure 15 illustrates the chromosome structure used to store the problem

parameters for an ANN with 4 output neurons, a maximum of 4 layers, and 16 input neurons.

Regardless of the topology of the candidate solution ANN (which in this case is defined by the first 2

genes of the encoded chromosome) the maximum number of weights and biases will be stored with each

chromosome, however not all genotypes will manifest and be expressed as phenotypes as only the weights

and biases required to configure the candidate solutions ANN topology will be decoded and used. These

unused weights and biases will remain unexpressed in the phenotype until the first two genes allow them to

manifest and can go through many generations as dormant genes. This introduces the interesting feature of

atavism1 into this problem.

At each function evaluation, a chromosome is decoded from its encoded state described in Figure 15

and used to instantiate an ANN. This ANN is then used to classify the training data and the objective

information is extracted and used to assess the chromosome’s fitness based on the ANN result set.

1“Atavism is the tendency to revert to ancestral type. In biology, an atavism is an evolutionary throwback, such as traits

reappearing which had disappeared generations before.”
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5.2. Experiment

The proposed solution in the experiment uses an implementation of CMA-PAES-II enabled with the abil-

ity to express DM preferences named WZ-CMA-PAES. The algorithm itself is described and benchmarked in

[75] and [76] where it is shown to perform well on problems containing many objectives, this is a requirement

for this problem as it consists of seven problem objectives. The configurations for WZ-CMA-PAES have

been listed in Table 10.

Table 10: Parameter configurations used for the WZ-CMA-PAES algorithm.

Parameter Configuration

Archive Capacity 50

Grid Divisions 3

µ Population 10

Number of Variables 1032

Number of Objectives 7

Zthresh 50

Function Evaluation Limit 1000

Region of Interest 0.05, 0.4, 0.5, 0.5, 0.05, 0.05, 0.05

WZ-CMA-PAES was selected to allow the optimisation process to search within a ROI with the True

Positive (TP) and False Positive (FP) preferences defined as:

• TP rate on classification of bodies � 95%.

• TP rate on classification of guns � 60%.

• TP rate on classification of knives � 50%.

• TP rate on classification of mobile phones � 50%.

• FP rate on classification of guns  5%.

• FP rate on classification of knives  5%.

• FP rate on classification of mobile phones  5%.

The HAGA approach to selection introduced in this paper has been used as the method of selection

throughout the optimisation process. The ROI is used as the reference point that is provided to HAGA

allowing selection based on how much of the search space within the ROI has been covered. HAGA is also
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Figure 16: Parallel-coordinates plot of objective value results for seven-objective threat detection.
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Figure 17: Colour-map of objective value results for seven-objective threat detection, for use by the DM.

used to reduce the size of the final approximation set produced by the optimiser to a size that will not

overwhelm and confuse the DM.

The population of solutions from the WZ-CMA-PAES optimisation are plotted in Figure 16, this plot

shows the solutions for the seven-objective problem. The seven objectives are split into true positives for

the body, gun, knife, mobile phone and the false positives for the gun, knife, and mobile. In this problem

the reduction of false positive rates are the three main objectives, these should be weighted equally. The

remaining objectives are the maximization of the true positive rates for each target included in the training

and validation sets. Also presented is a colour-map, Figure 17, this was used to aid the DM in choosing a

solution from the population. In each of the presented plots there are 7 candidate solutions, one of which

should be chosen by the DM to be implemented in the weapon detection system.

6. Conclusion

This paper proposes a novel mechanism for population selection in many-objective optimisation. The

proposed method overcomes the time limitation of the CHV indicator calculation, especially when more

than five problem objectives are considered, without significantly compromising on the quality of selected

solutions in regards to their HV indicator quality. Extensive experiments have been carried out by studying
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the scalability of the objective space ranging from the two-objective case to the fifteen-objective case.

Numerical results show that whilst the proposed Hypervolume Adaptive Grid Algorithm (HAGA) is not

competitive in contrast to the CHV indicator when only a few problem objectives are considered, HAGA

achieves a reliable accuracy (over 95% of the theoretically achievable value by CHV) when five or more

problem objectives are considered, often being one million times faster than the CHV indicator calculation.

In practice this means that HV indicator driven selection in the many-objective case can be performed in less

than a second instead of days of calculation. This feature makes the proposed approach especially attractive

for real-time applications or, more generally, applications that require the results in a reasonable time.

The proposed selection mechanism has been successfully integrated within the WZ-CMA-PAES optimisa-

tion algorithm to the training and optimisation of an Artificial Neural Network topology or use in concealed

weapon detection. The optimisation has been shown to provide the DM with a number of solutions (trained

ANNs) that all have independent trade-o↵s which are equally distributed across the Pareto-optimal front.

The DM then selected an optimised solution which provided a reduction in false alarm rate and an increase

in detection rate.

All of the hypotheses defined in Section 4 of this paper have been experimentally confirmed.

Future works will consider the integration of information theory techniques within our framework. More

specifically, future works will include an estimation of Shannon-like entropy of the population in order to

enhance the accuracy within the selection process.
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