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ABSTRACT    21 

This paper presents thermodynamic modelling and simulation study of a small scale saturated 22 

solar organic Rankine cycle (ORC) which consists of a stationary, flat plate solar energy 23 

collector that is utilised as a vapour generator, a vane expander, a water-cooled condenser and 24 

a pump. Simulations are conducted under constant condensing temperature/pressure and 25 

various cycle pressure ratios (PR) for 24 organic thermofluids including Hydrocarbons 26 

(HCs), Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Hydrofluoroethers (HFEs) and 27 

Hydrofluoroolefins (HFOs). Special attention is given to the influence of PR and fluids’ 28 

physical properties on the solar ORC performance as well as fluids’ environmental and safety 29 

impacts including global warming potential (GWP), flammability and toxicity. The 30 

simulation results indicate that when the same fluid is considered, pressure ratio of the cycle 31 

leads to various operating conditions such as collector (evaporating) pressure which results in 32 

various collector, expander and cycle efficiency. For instance, increasing the pressure ratio of 33 

the cycle enhances the net work output and the thermal efficiency of the cycle, whereas it 34 

decreases the flat plate collector efficiency. The results also indicate that the proposed system 35 

produces the maximum net work output of 210.45W with a thermal efficiency of 9.64% by 36 

using 1-butene. Furthermore, trans-2-butene, cis-2-butene, R600, R600a, R601, R601a and 37 

neopentane (HC), R227ea and R236fa (HFC), RC318 (PFC) and R1234ze (HFO) show 38 

promising solar ORC thermal performances. However, the flammability problem of HCs and 39 

global warming potential issue of HFCs and PFCs limit their applications, owing to the safety 40 

and environmental concerns. 41 

On the other hand, in terms of the environmental impact, thermofluids such as RE347mcc, 42 

RE245fa2 (HFEs) and R1234ze, R1233zd (HFOs) offer an attractive alternative, yet they 43 

were neither the most efficient, nor generated the highest amount of net work output. This 44 



paper provides thermofluids’ selection guidelines to achieve maximum efficiency within 45 

solar thermal energy technologies while keeping environmental impacts into considerations.  46 

Keywords: Solar thermal energy; saturated organic Rankine cycle; vane expander; 47 

thermofluids 48 

Nomenclature Subscripts 
  a ambient 

A area, m
2 

col collector 

Bo boiling number cond condensation 

C constant crit critical 

Cb bond conductance cw cooling water 

Cp specific heat, J/kg K cyc cycle 

Co convection number dsg designed 

d 
radius of the stator to the centre of the 

rotor  
evap 

evaporation 

D diameter, m exh exhaust 

e eccentricity, m exp expander 

f friction factor f fluid 

F fin efficiency g vapour 

F' collector efficiency factor i inner 

FR heat removal factor in inlet, incoming 

Fr Froude number int intake 

G mass flux, kg/m
2 

s  is isentropic 

hsp 
single phase heat transfer coefficient, 

W/m
2
K 

l 
liquid 

htp two phase heat transfer coefficient, W/m
2
K lat latent 

hnc,B nucleate boiling factor max maximum 

hc,B convective boiling factor mec mechanical 

h enthalpy, J/kg nbp Normal boiling point 

hfg heat of vaporisation, J/kg  o outer 

k thermal conductivity, W/m K  out outlet 

kratio heat capacity ratio  ov over 

𝑚̇ mass flow rate, kg/s p plate 

M molecular weight, g/mol pp pinch point 

N dimensionless parameter rot rotor 

n number of vanes s isentropic 

Nu Nusselt number snb sensible 

ORC organic Rankine cycle sp single phase 

P Pressure, bar stat stator 

PR pressure ratio t top 

Pr Prandtl number tp two phase 

r radius, m T total 

rv,built-in built-in ratio of the expander u useful 

Re Reynolds number ud under 

S solar radiation, W/m
2
 wf working fluid 



T temperature, ºC   

U heat loss coefficient, W/m
2
K Greek symbols 

𝑄̇ heat, W υ kinematic viscosity, m
2
/s 

v velocity, m/s 𝜈 specific volume, m
3
/kg 

V volume, m
3
 𝜙 heat flux, W/m

2
 

W tube spacing ρ density, kg/m
3
 

𝑊̇ work, kW 
ɤ angle between the vanes, 

deg 

x vapour quality θ 
angle of a specific vane 

from the origin 

 49 

1. Introduction 50 

The World has been facing numerous environmental problems such as air pollution, 51 

ozone layer depletion, acid rain and global warming, mainly due to increasing consumption 52 

of fossil fuels [1]. Extracting fossil fuels in the future will become gradually challenging.  53 

Increasing demands of energy from non-renewable sources remain unsustainable. Therefore 54 

utilising renewable energy sources as an alternative has been of great importance for 55 

domestic heating and electricity generation [2, 3].  56 

Renewable energy sources such as solar thermal, geothermal, biomass and waste heat can 57 

be categorised as low-grade temperature energy sources and they have potential in reducing 58 

consumption of fossil fuels [4, 5]. However, conventional Rankine cycle is not an economical 59 

and efficient alternative for the conversion of heat from renewable energy sources [4]. A 60 

conventional Rankine cycle employing organic compounds rather than water is called as 61 

organic Rankine cycle (ORC) and it is the most accepted technology for converting low-62 

grade heat energy source into mechanical work [6].  63 

A considerable amount of research has been conducted on the installation of solar ORCs 64 

where non-stationary flat plate collectors are used as a heat source of the cycle. Experimental 65 

study on the performance of such systems with a selected pure fluid including various types 66 

of organic compounds such as HFCs (R134a, R245fa), HFEs (HFE 7000) and inorganic 67 

compounds (CO2) has been conducted. Manolakos et al. conducted an experimental study on 68 



a low-grade solar ORC using pure R-134a as the working fluid. The generated mechanical 69 

work is utilised for reverse osmosis (RO) desalination [7-9]. Wang et al. designed and 70 

constructed a solar sourced ORC, where R245fa is used as the working fluid of the system. 71 

They reported that 1.64 kW average shaft output was obtained from the new designed R245fa 72 

expander [10]. Another experimental study of a small scale solar ORC using R245fa is 73 

established by [11]. The effect of a recuperator for the constant flow rate condition was 74 

analysed in their study, it was concluded that the recuperator does not lead to an increase in 75 

the thermal efficiency of the system [11]. Yamaguchi et al. conducted an experimental study 76 

on supercritical solar ORCs, using CO2 [12]. Another solar ORC, utilising inorganic fluid 77 

(CO2) was also investigated in Ref. [13]. In both studies it is concluded that CO2 offers a 78 

feasible alternative to be used in solar thermal power applications.  79 

On the other hand, selection of the most suitable working fluid for solar ORCs and 80 

optimisation of the system for various operating conditions, including both simulation and 81 

experimental studies has attracted many researchers. Rayegan [14] compared 117 organic 82 

fluids on the basis of their effects on thermal efficiency, net power output and exergetic 83 

efficiency of the solar ORC. They claimed that fluids with higher critical temperature were 84 

considered to be the best [14]. Torres [15] presented a theoretical study of solar ORC where 85 

solar collector is used as thermal energy source of the cycle. In their analysis, they considered 86 

four different models of stationary solar collectors with twelve substances, including organic 87 

(HCs and HFCs) and inorganic (ammonia) fluids. Aperture area needed per unit of 88 

mechanical power output was set as a comparison criteria and it was generalised that dry 89 

fluids need lower values of the unit aperture area than wet fluids. Marion et al. carried out 90 

both theoretical and experimental analyses to show the potential of generating mechanical 91 

energy by combining a solar thermal flat plate collector with an organic Rankine cycle. The 92 

cycle was simulated by using three organic fluids which were R134a, R227ea and R365mfc. 93 



In order to investigate the optimum operating conditions, a parametric optimisation was 94 

conducted. It was found that R365mfc gives the highest performance and it is followed by 95 

R134a and R227ea. They also reported that net mechanical power work generation highly 96 

depends on the working fluid flow rate [16]. A mathematical model was presented to 97 

simulate a solar-sourced regenerative ORC by [17]. In their study they performed a 98 

parametric analysis of the system by using different working fluids. They also presented an 99 

optimisation study where the daily average efficiency was set as the objective function. It was 100 

reported that R245fa and R123 was recommended as the most suitable fluids for the proposed 101 

system. They also claimed that turbine inlet pressure and condensation temperature have an 102 

effect on the system performance [17]. Another working fluid selection study was conducted 103 

by [18]. They modelled the solar organic Rankine cycle with fifteen organic fluids and 104 

evaluated the thermodynamic performance of the system for each case. It was reported that 105 

R134a and R245fa are the most suitable working fluids [18]. In another study of working 106 

fluid selection for solar ORC, R134a was found to be the most appropriate working fluid 107 

[19]. It is also concluded that although hydrocarbons such as R600, R600a and R290 show 108 

good performance characteristics they need safety measures due to their high flammable 109 

nature.  110 

Previously, a theoretical and simulation study of multiphase flow (single and two-phase) 111 

in a flat plate collector was conducted and the effect of single and two-phase flows on the 112 

heat transfer coefficients, as well as the collector performance was investigated for two 113 

working fluids (R134a and HFE 7000) [20]. In the current study, the previous work is 114 

extended by modelling a small scale solar ORC, where the flat plate collector is connected 115 

directly to the cycle. The simulation analysis of the cycle, using 24 working fluids is 116 

conducted under various pressure ratio points. Special attention is given to the effect of the 117 

system pressure ratio on the collector efficiency, expander efficiency, net work output of the 118 



cycle and the cycle efficiency. Investigation of the most suitable working fluid for a small 119 

scale solar ORC is also discussed in terms of its thermo-physical and environmental 120 

properties. This research is also expected to demonstrate the potential of solar ORCs where 121 

flat-plate collectors can be either mounted on or integrated into a roof of a commercial or 122 

residential building to generate mechanical and heat energy simultaneously by utilising 123 

environmentally friendly thermo-fluids. 124 

2. Mathematical modelling 125 

2.1. Solar organic Rankine cycle 126 

The proposed small scale saturated solar ORC is made up of four components which are a 127 

solar collector, a pump, a condenser and an expander (Figure 1). 128 

 129 

Figure 1 A schematic diagram of the proposed solar ORC 130 

In the proposed system, the solar collector is utilised as an evaporator of the cycle where 131 

pressurised vapour is directly generated. This configuration is called ‘Direct vapour 132 

generation’ (DVG) and has been studied and recommended by various researchers [15, 16] 133 

due to its advantage of eliminating additional heat exchanger (evaporator) which would cause 134 

extra cost and heat losses. As represented in Figure 1, the liquid working fluid is pressurised 135 

by the pump and is then sent to the flat plate collector (1—›2). In the collector, solar 136 

radiations are converted to thermal energy and this energy is then transferred to the working 137 

fluid. The working fluid is preheated and evaporated within the collector tube (2—›3). Then, 138 



the pressurised saturated vapour reaches the expander and turns the expander shaft to 139 

generate mechanical energy. This mechanical work could be used to produce electricity when 140 

the expander shaft is connected to a generator (3—›4). In the condenser, low pressure exhaust 141 

vapour coming from the expander is condensed to saturated liquid with a constant pressure 142 

(4—›1). The working fluid is cooled by cold water as it circulates through the condenser (5—143 

›6). Finally, the working fluid is pumped back to the collector to start a new cycle (1—›2). 144 

The thermodynamic process of the saturated organic Rankine cycle on T-s diagram is 145 

represented in Figure 2. 146 

 147 

Figure 2 A typical T-s diagram of saturated ORC (for HFE 7000) 148 

Each component of the system is modelled by considering the following assumptions: 149 

 The system is considered as a steady state 150 

 Pressure drops in the collector, condenser and the pipelines have been neglected  151 

2.2. Flat plate collector 152 

The serpentine  flat plate collector is previously modelled and represented 153 

comprehensively in [20]. The collector consists of a glass cover, absorber plate, copper tube 154 

and insulation as it is shown in Figure 3. 155 



 156 

Figure 3 Schematic of the serpentine tube flat plate collector [20] 157 

As the incoming solar radiation travels through the glass cover (1) some portion of this heat is 158 

lost to the atmosphere and the remaining is absorbed on the absorber plate (2). Solar energy 159 

on the absorber plate surface is calculated as; 160 

𝑄̇𝑝 = 𝐴𝑝[𝑆𝑖𝑛(𝜏𝛼) − 𝑈𝑇(𝑇𝑝 − 𝑇𝑎)]          (1) 161 

where Ap is the collector plate area, Sin is the incoming solar radiation on the collector and 162 

(𝜏𝛼) is the transmittance-absorbance product. UT represents the total heat loss coefficient, Tp 163 

and Ta represent the plate and ambient temperature respectively. Since the heat loss through 164 

the edges has been neglected in this study, the total heat loss coefficient is found to be below:  165 

𝑈𝑇 = 𝑈𝑡𝑜𝑝 + 𝑈𝑏𝑎𝑐𝑘           (2) 166 

Utop and Uback can be calculated by the formula developed by Klein [21]. 167 

Absorbed solar energy on the collector plate (2) is transferred to the working fluid as it 168 

circulates along the collector tube (3). This is called “useful energy gain” of the fluid and it is 169 

estimated as;  170 

𝑄̇𝑢 = 𝐴𝑝𝐹𝑅[𝑆𝑖𝑛(𝜏𝛼) − 𝑈𝑇(𝑇𝑓,𝑖𝑛 − 𝑇𝑎)]         (3) 171 

where FR represents the collector heat removal factor and Tf,in represents the working fluid 172 

collector inlet temperature. 173 

Collector heat removal factor is found to be as below: 174 

𝐹𝑅 =
𝑚̇𝐶𝑝

𝐴𝑝𝑈𝑇
[1 − 𝑒𝑥𝑝 (−

𝐴𝑝𝑈𝑇𝐹′

𝑚̇𝐶𝑝
)]        (4) 175 



In Eq. (4), 𝐹′ is the collector efficiency factor and it can be calculated as: 176 

𝐹′ =
(𝑈𝑇)−1

𝑊[𝑈𝑇(𝐷0+(𝑊−𝐷0)𝐹)]−1+(𝐶𝑏)−1+(𝜋𝐷𝑖ℎ𝑓)
−1         (5) 177 

where W is tube spacing, Do and Di is the outer and inner tube diameter respectively. Cb 178 

represents the bond conductance and it is neglected (1/Cb=0) in the calculation. 179 

F is the fin efficiency and it is determined by Eq. (6): 180 

𝐹 =
𝑡𝑎𝑛ℎ[𝑚(𝑊−𝐷0/2)]

𝑚(𝑊−𝐷0/2)
,   where  𝑚 = √

𝑈𝑇

𝑘𝛿
      (6) 181 

In Eq. (5), hf represents the convective heat transfer coefficient of the fluid in the collector 182 

tube. As mentioned previously, the flat plate collector is utilised as an evaporator of the solar 183 

thermal cycle where the phase change of the fluid takes place. Therefore, the convective heat 184 

transfer coefficient (hf) is evaluated for both single and two phase flows separately in the 185 

model. 186 

2.2.1. Single-phase flow 187 

The heat transfer coefficient in the single phase region for fully developed laminar flow 188 

and for fully developed turbulent flow are calculated respectively as follows [22]: 189 

𝑁𝑢 = 4.36                          where Re<2300                               (7) 190 

𝑁𝑢 =
(

𝑓

8
)(𝑅𝑒−1000)𝑃𝑟

1+12.7(
𝑓

8
)

0.5
(𝑃𝑟2/3−1)

   where (3×10
3
<Re<5×10

6
), (0.5<Pr<2000)                  (8) 191 

In the calculations the Reynolds number is estimated as: 192 

𝑅𝑒 =
𝑉𝐷

𝜐
               (9) 193 

and the Prandtl number is defined as: 194 

𝑃𝑟 =
𝜌𝜐𝐶𝑝

𝑘
                      (10) 195 

where v is the flow velocity, υ is the kinematic viscosity, 𝜌 is the density, Cp is the specific 196 

heat of the working fluid and k is the thermal conductivity. 197 



The single phase heat transfer coefficient of the working fluid in the collector tube is 198 

calculated with the following equation: 199 

ℎ𝑠𝑝 = 𝑁𝑢
𝑘

𝐷
                      (11) 200 

 201 

 202 

 203 

2.2.2. Two-phase flow 204 

Calculation of two-phase flow heat transfer coefficient (htp) is based on the model 205 

represented by Shah [23]. The model consists of two distinct boiling mechanisms (nucleate 206 

and convective) relies on the calculation of a range of dimensionless parameters. 207 

The dimensionless parameter (N) is calculated according to the conditions of Froude number 208 

Frl.  209 

𝐹𝑟𝑙 = 𝐹𝑟𝑜𝑢𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝐺2

𝜌2𝑔𝐷
                   (12) 210 

where; 211 

Frl < 0.04 𝑁 = 0.38(𝐹𝑟𝑙)
−0.3𝐶𝑜                  (13) 212 

Frl > 0.04 𝑁 = 𝐶𝑜                   (14) 213 

Convection number is calculated as follows; 214 

𝐶𝑜 = Convection number = (
1

𝑥
− 1)

0.8

(
𝜌𝑔

𝜌𝑙
)

0.5

                 (15) 215 

Then, nucleate boiling (hnc,B) and convective boiling (hc,B) factors are determined at the 216 

following cases; 217 

Case 1  (N > 1) 218 

ℎ𝑛𝑐,𝐵 = (230𝐵𝑜0.5) × ℎ𝑙   where  Bo > 0.0003            (16a) 219 

ℎ𝑛𝑐,𝐵 = (1 + 46𝐵𝑜0.5) × ℎ𝑙    where  Bo < 0.0003            (16b) 220 

ℎ𝑐,𝐵 = (1. .8𝑁0.8) × ℎ𝑙                  (16c) 221 



Case 2   (1>N >0.1) 222 

ℎ𝑛𝑐,𝐵 = (𝐶𝐵𝑜0.5) × exp (0.47𝑁−0.1) × ℎ𝑙                (17a) 223 

ℎ𝑐,𝐵 = (1. .8𝑁0.8) × ℎ𝑙                  (17b) 224 

Case 3   (N < 0.1) 225 

ℎ𝑛𝑐,𝐵 = (𝐶𝐵𝑜0.5) × exp (2.47𝑁−0.15) × ℎ𝑙                (18a) 226 

ℎ𝑐,𝐵 = (1. .8𝑁0.8) × ℎ𝑙                  (18b) 227 

In all three cases, hl represents the liquid phase heat transfer coefficient and it is calculated by 228 

using Dittus-Boelter equation. 229 

The constant C is calculated by using the following equations: 230 

Bo > 0.0011 C = 14.7                 (19a) 231 

Bo < 0.0011 C = 15.43                  (19b) 232 

where 233 

𝐵𝑜 = 𝐵𝑜𝑖𝑙𝑖𝑛𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝜙

𝐺ℎ𝑓𝑔
                   (20) 234 

Finally, for each case the nucleate boiling and convective boiling factors are calculated and 235 

the larger value is selected. In other words, the larger represents the boiling mechanism and is 236 

taken as two-phase flow heat transfer coefficient.    237 

2.3. Expander 238 

The expander is mathematically modelled in the current study, was tested experimentally 239 

in a small scale solar organic Rankine cycle using HFE 7000 refrigerant in [24]. The 240 

mathematical modelling is divided into two parts which are geometrical and thermodynamic 241 

analyses respectively. The former is developed in order to determine the design 242 

characteristics and the built-in volume ratio of the expander, whereas the latter is built up to 243 

evaluate the expander expansion losses (under or over expansion) where the effect of the 244 

operating conditions of the system is taken into account.  245 



The multi-vane expander mainly consists of a stator (cylinder), a rotor and four vanes Figure 246 

4. The rotor is mounted eccentrically in the stator, has radial slots where the vanes are 247 

positioned. As the working fluid enters the expander through the inlet port, the rotor as well 248 

as the vanes move and compose a working chamber. Due to the continuous rotational 249 

movement of the rotor, the area of the working chamber increases until the working fluid 250 

begins flowing toward the outlet port. Since then, the area of the working chamber starts to 251 

decrease and eventually the vanes close the working chamber. When the fluid begins filling 252 

the chamber again after the minimum area of the working chamber is reached, the cycle of 253 

the expander is completed [25].  254 

 255 

Figure 4 Schematic of the multi-vane expander 256 

In order to evaluate the volume of a working chamber as a function of angular displacement, 257 

initially, the radius of the stator to the centre of the rotor is calculated by using the following 258 

formula;  259 

𝑑(𝜃) = −𝑒 × 𝑠𝑖𝑛𝜃 + √(𝑟𝑠𝑡𝑎𝑡)2 − (𝑒 × 𝑐𝑜𝑠𝜃)2                 (21) 260 



The area of a working chamber can be evaluated if the geometrical parameters of the 261 

expander such as stator radius (rstat), rotor radius (rrot), eccentricity (e) and number of the 262 

vanes (n) are known. 263 

𝐴(𝜃) =
1

2
∫ (𝑑2 − 𝑟𝑟𝑜𝑡

2)
𝜃+

2𝜋

𝑛
𝜃

𝑑𝜃                   (22) 264 

The volume of a working chamber can be given as; 265 

𝑉(𝜃) = 𝐴 × 𝐿𝑠𝑡𝑎𝑡                                 (23) 266 

Volume ratio or built-in ratio of an expander can be defined as the ratio between the volume 267 

of the working chambers at the end and at the beginning of an expansion process [26]. The 268 

volume of the working chambers can be calculated by introducing the intake (θint) and the 269 

exhaust (θexh) angles into the Eq. (22-23). Thus, built-in ratio is calculated by using the 270 

formula below; 271 

𝑟𝑣,𝑏𝑢𝑖𝑙𝑡−𝑖𝑛 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
                     (24) 272 

Following the built-in ratio of the expander, expander designed pressure ratio can be 273 

calculated as [27]; 274 

𝑃𝑅𝑑𝑠𝑔 =
𝑃𝑒𝑥𝑝,𝑖𝑛

𝑃𝑒𝑥𝑝,𝑜𝑢𝑡,𝑑𝑠𝑔
= (𝑟𝑣,𝑏𝑢𝑖𝑙𝑡−𝑖𝑛)

𝑘𝑟𝑎𝑡𝑖𝑜
                 (25) 275 

where k represents the heat capacity ratio of the fluid.  276 

As it is stated in [28, 29] that during the expansion process, under-expansion occurs if the 277 

designed pressure ratio imposed by the expander is lower than the operating pressure ratio of 278 

the system whereas over-expansion happens when the designed pressure ratio is higher than 279 

the operating pressure ratio. The operating pressure ratio of the system is the pressure ratio of 280 

the collector outlet/expander inlet and expander outlet/condenser inlet.    281 

𝑃𝑅𝑐𝑦𝑐 =
𝑃𝑒𝑥𝑝,𝑖𝑛

𝑃𝑒𝑥𝑝,𝑜𝑢𝑡
                     (26) 282 

Figure 5 represents the isentropic expansion process on a P-V diagram for both under and 283 

over expansion cases [29].  284 



 285 

Figure 5 Isentropic expansion process a) under expansion b) over expansion 286 

Then, the work during the expansion process can be calculated according to the areas 287 

represented in Figure 5. 288 

Under-expansion 289 

𝑊̇𝑒𝑥𝑝,𝑢𝑑 = 𝐴𝑢𝑑,1 + 𝐴𝑢𝑑,2 = 𝑚̇𝑤𝑓 × ((ℎ𝑒𝑥𝑝,𝑖𝑛 − ℎ𝑒𝑥𝑝,𝑜𝑢𝑡
𝑑𝑠𝑔,𝑠

) × 10−3 + (𝑣𝑒𝑥𝑝,𝑜𝑢𝑡
𝑑𝑠𝑔,𝑠

× (𝑃𝑒𝑥𝑝,𝑜𝑢𝑡
𝑑𝑠𝑔

− 𝑃𝑒𝑥𝑝,𝑜𝑢𝑡)) × 10−2) × 𝜂𝑚𝑒𝑐              290 

(27) 291 

The efficiency of the expander for under-expansion case is calculated as; 292 

𝜂𝑒𝑥𝑝,𝑢𝑑 =
𝑊̇𝑒𝑥𝑝,𝑢𝑑×103

𝑚̇𝑤𝑓×(ℎ𝑒𝑥𝑝,𝑖𝑛−ℎ𝑒𝑥𝑝,𝑜𝑢𝑡,𝑖𝑠)
                   (28) 293 

Over-expansion 294 

𝑊̇𝑒𝑥𝑝,𝑜𝑣 = (𝐴𝑜𝑣,1 + 𝐴𝑜𝑣,2) − (𝐴𝑜𝑣,2 + 𝐴𝑜𝑣,3) = 𝑚̇𝑤𝑓 × ((ℎ𝑒𝑥𝑝,𝑖𝑛 − ℎ𝑒𝑥𝑝,𝑜𝑢𝑡
𝑑𝑠𝑔,𝑠

) × 10−3 − (𝑣𝑒𝑥𝑝,𝑜𝑢𝑡
𝑑𝑠𝑔,𝑠

× (𝑃𝑒𝑥𝑝,𝑜𝑢𝑡
𝑑𝑠𝑔

−295 

𝑃𝑒𝑥𝑝,𝑜𝑢𝑡)) × 10−2) × 𝜂𝑚𝑒𝑐                                      (29) 296 

The efficiency of the expander for over-expansion case is calculated as; 297 

𝜂𝑒𝑥𝑝,𝑜𝑣 =
𝑊̇𝑒𝑥𝑝,𝑜𝑣×103

𝑚̇𝑤𝑓×(ℎ𝑒𝑥𝑝,𝑖𝑛−ℎ𝑒𝑥𝑝,𝑜𝑢𝑡,𝑖𝑠)
                   (30) 298 

In Eq. (27-30), hexp,in and hexp.out,dsg,s represent the enthalpy at the expander inlet and expander 299 

designed outlet isentropic enthalpy respectively. Pexp,out,dsg and Pexp,out are the designed 300 



expander outlet pressure and expander outlet pressure at operating conditions respectively. 301 

vexp,out,dsg,s and ηmec indicates expander designed outlet isentropic specific volume and the 302 

mechanical efficiency of the expander respectively. Expander mechanical efficiency, which 303 

represents the frictional, leakage and heat dissipation losses is assumed to be 0.7 [25]. 304 

To validate the expander simulation the model is utilised by using the same expander input 305 

conditions as those in [24]; Texp,in = 45.41 ºC, Pexp,in = 1.32 bar and ṁwf = 0.022 kg/s. A good 306 

agreement between the simulation and experimental results are obtained (Table 1). 307 

 308 

Table 1 Expander model validation results 309 

Conditions Current study [24] 

Texp,in (ºC) 45.41 45.41 

Texp,out (ºC) 36.36 36.36 

Pexp,in (bar) 1.32 1.32 

Pexp,out (bar) 0.66 0.66 

ṁwf (kg/s) 0.022 0.022 

𝐖̇𝐞𝐱𝐩(W) 130.3 146.74 

 310 

2.4.   Condenser 311 

The modelled condenser is a water-cooled heat exchanger in which the cooling water 312 

circulates to condense working fluid at desired conditions. The condenser is divided into 2 313 

zones during the analysis, which are sensible heat and latent heat rejection respectively. As it 314 

is previously mentioned, the working fluid leaves the condenser as saturated liquid at 315 

corresponding temperature. The total amount of condensation heat can be calculated as the 316 

sum of the sensible and latent heat rejection of the working fluid in the condenser.  317 

𝑄̇𝑐𝑜𝑛𝑑 = 𝑚̇𝑤𝑓 × (ℎ𝑒𝑥𝑝,𝑜𝑢𝑡 − ℎ𝑔@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝

) + 𝑚̇𝑤𝑓 × (ℎ𝑔@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝.

− ℎ𝑙@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝.

)                          (31) 318 

The first and the second terms of the right hand side of Eq. (31) represent the sensible and 319 

latent heat rejection respectively.  320 

In the condenser modelling, the pinch point temperature (∆Tpp) which is the smallest 321 

difference between the working fluid and cooling water temperature is imposed (Figure 6) 322 



[30]. The pinch point (point pp) takes place at where the working fluid starts to condense and 323 

the pinch point difference at this point is assumed to be 5 ºC. 324 

𝑇𝑐𝑜𝑛𝑑 − 𝑇𝑐𝑤,𝑝𝑝 ≥ ∆𝑇𝑝𝑝                    (32) 325 

Latent heat rejection represents the enthalpy change of the working fluid from the pinch point 326 

to the end of the condenser. This latent heat is equal to the amount of heat that increased the 327 

cooling water temperature from the inlet to the pinch point.   328 

𝑚̇𝑤𝑓 × (ℎ𝑔@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝

− ℎ𝑙@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝

) = 𝑚̇𝑐𝑤 × 𝐶𝑝,𝑐𝑤 × (𝑇𝑐𝑤,𝑝𝑝 − 𝑇𝑐𝑤,𝑖𝑛)               (33) 329 

As the condensation temperature and the minimum pinch point temperature are defined as 25 330 

ºC and 5 ºC respectively, the cooling water pinch point temperature and the cooling water 331 

mass flow rate can be evaluated by utilising Eq. (33) iteratively.  332 

 333 

Figure 6 Temperature profiles and the pinch point in the condenser 334 

Then, the cooling water outlet temperature is calculated by using the formula below; 335 

𝑄̇𝑐𝑜𝑛𝑑 = 𝑚̇𝑐𝑤 × 𝐶𝑝,𝑐𝑤 × (𝑇𝑐𝑤,𝑜𝑢𝑡 − 𝑇𝑐𝑤,𝑖𝑛)                             (34) 336 

2.5. Pump 337 

The consumed work by the pump is determined by the following equation [31].  338 

𝑊̇𝑝𝑢𝑚𝑝 =
𝑚̇𝑤𝑓(𝜈𝑝𝑢𝑚𝑝,𝑖𝑛)×(𝑃𝑒𝑣𝑎𝑝−𝑃𝑐𝑜𝑛𝑑)×10−2

ƞ𝑝𝑢𝑚𝑝,𝑠
                   (35) 339 



where ν is the specific volume of the working fluid, P is the pressure and ƞpump,is is the pump 340 

isentropic efficiency. It is important to note that in Eq. (35), the specific volume at the inlet of 341 

the pump is used instead of the average of the specific volume at the inlet and outlet of the 342 

pump as the difference is small. 343 

3. Numerical process 344 

The simulation model which utilises the developed Matlab computer code is explained in 345 

terms of the iteration procedure of the components as well as the whole system in this 346 

section. The proposed solar ORC model consists of specific sub-codes which are developed 347 

to simulate each component according to the defined input, output and fixed variables. Each 348 

component calculates output variables which are utilised as input variables of an another 349 

component as each sub-code is connected to each other. In the simulations, the component 350 

specifications, the condensing temperature, the ambient and the cooling water temperature, 351 

the pump isentropic efficiency, the expander mechanical efficiency and the incoming solar 352 

radiation were kept constant whereas the pressure ratio of the cycle was the only selected 353 

control variable of the cycle. Properties of each fluid at various operating conditions were 354 

taken from REFPROP 9.1 [32] which was developed by the National Institute of Standards 355 

and Technology was run in parallel with the computer code. Operating conditions of the 356 

system are given in Table 2.  357 

Table 2 Operating conditions of the saturated solar ORC 358 

Parameter Unit Value 

Incoming solar radiation W/m
2
 800 

Condensation temperature ºC 25 

Ambient temperature ºC 15 

Cooling water inlet temperature ºC 12 

Pump isentropic efficiency - 0.6 

Expander mechanical efficiency - 0.7 

Pressure ratio of the cycle - 1.5 - 6  

As the condensing temperature is set constant at 25 ºC, the corresponding condensing 359 

pressure at saturated conditions can be determined. The system operating pressure ratio 360 



represents the ratio between the evaporation and the condensation pressure. Thus, the 361 

evaporating pressure of each fluid at saturated conditions is determined for each pressure 362 

ratio value.  363 

Initially, the fluid properties at given operating conditions is taken from REFPROP (Table 3).  364 

Table 3 Fluid data taken from REFPROP at given operating conditions 365 

Fluid data  
Fluid evaporation temperature at corresponding Pevap Fluid sat. liquid enthalpy at corresponding Pevap 

Fluid sat. liquid density at corresponding Pevap Fluid sat. vapour enthalpy at corresponding Pevap 

Fluid sat. liquid density at corresponding Pevap Fluid condensation pressure at 25 ºC 

Fluid sat. vapour density at corresponding Pevap Fluid saturated liquid enthalpy at 25 ºC 

Fluid sat. liquid conductivity at corresponding Pevap Fluid saturated vapour enthalpy at 25 ºC 

Fluid sat. liquid viscosity at corresponding Pevap Fluid saturated liquid specific volume at 25 ºC 

Fluid sat. vapour viscosity at corresponding Pevap  

As all the necessary fluid data is derived by the computer code, the simulation starts with the 366 

determination of the specific pump work by using the following equation; 367 

𝑤̇𝑝𝑢𝑚𝑝 =
𝑣𝑝𝑢𝑚𝑝,𝑖𝑛×(𝑃𝑒𝑣𝑎𝑝−𝑃𝑐𝑜𝑛𝑑)×10−2

𝜂𝑝𝑢𝑚𝑝,𝑠
                  (kJ/kg)              (36) 368 

Thus, the collector inlet enthalpy can be calculated as the pump inlet enthalpy and the pump 369 

specific work is known. 370 

ℎ𝑐𝑜𝑙,𝑖𝑛 =  (𝑤̇𝑝𝑢𝑚𝑝 × 103) + ℎ𝑝𝑢𝑚𝑝,𝑖𝑛     (J/kg)               (37) 371 

According to the calculated collector inlet enthalpy and given collector (evaporation) 372 

pressure, the collector inlet temperature is identified and sent to the computer code. 373 

3.1. Flat plate collector 374 

Previously, a numerical model of the serpentine flat plate collector was developed and 375 

experimentally validated [20]. The collector specifications which are also used in this study 376 

are given in Table 4. 377 

Table 4 Collector specifications 378 

Collector area (m
2
) 6.96 

Absorber plate thermal conductivity (W/m-K) 50 

Absorber plate thickness (m) 0.001 

Total length of tube (m) 56 

Tube inner diameter (m) 0.008 



Tube outer diameter (m) 0.01 

Effective transmittance-absorbance product (-) 0.81 

In the model, the collector tube was considered as a single flat tube and was divided into 379 

small finite elements. Then, the outlet temperature of the fluid, collector plate temperature, 380 

useful heat gain and the collector heat loss at the end of each element and also at the collector 381 

outlet was evaluated iteratively for given fluid inlet temperature and fluid mass flow rate.  In 382 

this study, the same approach is followed by the difference of investigating the mass flow rate 383 

for given collector inlet and collector outlet temperature (as the cycle is saturated). Basically, 384 

the collector iteration model consists of two parts which are single phase and two phase flow 385 

calculations. Single phase flow represents the region from the fluid temperature at the 386 

collector inlet to its saturation temperature at corresponding saturation pressure. Two phase 387 

flow indicates the region between saturated liquid and saturated vapour points of the fluid. 388 

Initially, the simulation considers only the first element in the single phase region and the rest 389 

of the elements in the two phase region. Then, after each iteration, the model increases the 390 

number of elements in the single phase region until the desired criteria is satisfied. Figure 7 391 

demonstrates the elements and their regions (single or two phase) at two various iteration 392 

steps. 393 

 394 

Figure 7 Simulation iteration steps a) first iteration b) xth iteration 395 



At the start, the flow rate of fluid as well as at which element the fluid goes into the saturated 396 

region is not known. Therefore, an arbitrary value of the fluid mass flow rate for the first 397 

element which represents the single phase flow region is given. Then, in order to calculate the 398 

fluid heat transfer coefficient in the single phase region, the flow type is determined whether 399 

it is laminar or turbulent by using Eq. (7-8). In the inner loop, the heat loss coefficient is 400 

calculated with the given initial plate temperature (Tp) value. (Tp value is considered as 5 °C 401 

higher than the fluid inlet temperature for the first iteration) [20]. After the calculation of 402 

collector heat loss coefficient, the useful gain of the fluid 𝑄𝑢 is evaluated by using Eq. (3). 403 

With the calculated value of 𝑄𝑢, the new plate temperature is evaluated by using the 404 

following equation; 405 

𝑇𝑝 = 𝑇𝑐𝑜𝑙.𝑖𝑛 +

𝑄̇𝑢
𝐴𝑝

𝐹𝑅𝑈𝑇
(1 − 𝐹𝑅)                     (38) 406 

This process is repeated until the difference of two consecutive values of Tp is less than 407 

0.01°C. When the condition of Tp is satisfied in the inner loop, the last value of the useful 408 

heat gain of the fluid represents the amount of the heat for the whole collector tube and it can 409 

be shown as; 410 

𝑄̇𝑢 = 𝑄𝑢
′′𝜋𝐷𝑖𝑛𝐿𝑡𝑢𝑏𝑒                         (39) 411 

where 𝑄𝑢
′′

 represents the useful heat rate, 𝜋𝐷𝑖𝑛 and 𝐿𝑡𝑢𝑏𝑒 indicate the surface perimeter and 412 

the length of the collector tube. Then, the heat gain of each element is calculated by using the 413 

formula below;   414 

𝑄̇𝑔𝑎𝑖𝑛 = 𝑄𝑢𝑠
′′𝜋𝐷𝑖𝑛 ∫ 𝑑𝑥

𝐿

0
                      (40) 415 

In Eq. (40), dx is the length of each element which is obtained by dividing the whole 416 

collector tube into ‘n’ number of small elements. Using Eq. (40), the length of the first 417 

element is multiplied by useful heat rate and surface perimeter to evaluate the heat gain of the 418 



first element. As the collector inlet temperature and the saturation temperature of the fluid is 419 

known, the amount of the sensible heat transfer can be calculated as; 420 

𝑄̇𝑠𝑛𝑏 = 𝑚̇𝑤𝑓,𝑠𝑝 × 𝐶𝑝 × (𝑇𝑒𝑣𝑎𝑝 − 𝑇𝑐𝑜𝑙,𝑖𝑛)                     (41) 421 

Then, the mass flow rate for single phase flow is calculated as the sensible heat transfer is 422 

equal to the heat gain of the first element. 423 

𝑚̇𝑤𝑓,𝑠𝑝 =
𝑄̇𝑔𝑎𝑖𝑛,𝑠𝑝

𝐶𝑝×(𝑇𝑒𝑣𝑎𝑝−𝑇𝑐𝑜𝑙,𝑖𝑛)
                     (42) 424 

New calculated mass flow rate value of the fluid in the single phase region indicates that 425 

the first iteration assumes that the fluid undergoes a phase change in other words reaches its 426 

saturation points after the first element with the calculated mass flow rate. Then, the second 427 

loop starts where the two phase flow calculations are performed. In this loop, again the heat 428 

loss coefficient is evaluated by using the latest calculated Tp value. The useful heat gain of 429 

the fluid is evaluated (Eq. (3)) with another arbitrary value of the fluid mass flow rate for two 430 

phase region. Similar to the single phase part of the code, the new plate temperature is 431 

evaluated with the calculated value of useful heat (Eq. (38)). The process is repeated until the 432 

same convergence criterion is met (0.01°C). Then, the heat gain of the fluid for the rest of the 433 

collector elements is calculated again by using Eq. (39). Differently from the first part, useful 434 

heat rate and surface perimeter are multiplied by another figure which equals to the length of 435 

the first element subtracted from the total length of the tube. Then, similarly like the sensible 436 

heat, the amount of the latent heat transfer can be calculated as; 437 

𝑄̇𝑙𝑎𝑡 = 𝑚̇𝑤𝑓,𝑡𝑝 × (ℎ𝑔 − ℎ𝑙)                            (43) 438 

and the mass flow rate for the two phase region; 439 

𝑚̇𝑤𝑓,𝑡𝑝 =
𝑄̇𝑔𝑎𝑖𝑛,𝑡𝑝

(ℎ𝑔−ℎ𝑙)
                         (44) 440 

At the end of the second loop, the model checks if the difference between 𝑚̇𝑤𝑓,𝑠𝑝 and 𝑚̇𝑤𝑓,𝑡𝑝 441 

is less than 0.0001. If the condition does not meet the convergence criterion (0.0001), the 442 



model increases the number of elements for the single phase part region and the same 443 

calculations are performed. This is continued until the condition satisfies the convergence. 444 

This point represents the element where the flow reaches the saturation point with 445 

corresponding mass flow rate. Finally, the collector efficiency is determined as; 446 

𝜂𝑐𝑜𝑙 =
𝑚̇𝑤𝑓×[(𝐶𝑝(𝑇𝑒𝑣𝑎𝑝−𝑇𝑐𝑜𝑙,𝑖𝑛)+(ℎ𝑔−ℎ𝑙))]

𝑆×𝐴𝑐𝑜𝑙
                  (45) 447 

The flow chart of the simulation model is represented in Figure 8. 448 

 449 

Figure 8 Flow chart of the simulation model 450 



3.2. Expander 451 

The iteration begins with setting the parameters and the inputs of the expander. The 452 

parameters of the expander, inputs and outputs of the expander model are given in Table 5. 453 

Then the expander built-in ratio and expander designed outlet pressure are calculated by 454 

using Eq. (24-25). As it is previously mentioned, the fluid at the inlet of the expander is 455 

saturated vapour at corresponding evaporation pressure. This means the entropy at the outlet 456 

of the expander is equal to the entropy at the inlet of the expander as long as the expansion 457 

process is isentropic. Therefore, at the given entropy and expander designed outlet pressure, 458 

expander designed outlet isentropic enthalpy and isentropic specific volume can be 459 

calculated.  460 

Table 5 Expander model specifications 461 

Parameters Inputs Outputs 

Rotor radius, (rrot) Inlet pressure, (Pexp,in) Built-in volume ratio, (rv,built-in) 

Stator radius, (rstat) Outlet pressure, (Pexp.out) 
Expander designed outlet pressure, 

(Pexp,out,dsg) 

Eccentricity, (e)  
Expander designed outlet isentropic 

enthalpy, (Hexp,out,dsg,s) 

Intake angle, (θint)  
Expander designed outlet isentropic 

specific volume, (vexp,out,dsg,s) 

Exhaust angle, (θexh)  Expander mechanical work, (𝑊̇𝑒𝑥𝑝) 

Expander mechanical 

efficiency, (ƞmec) 
 Expander efficiency, (ƞexp)  

As all the unknowns in Eq. (27-30) are evaluated, now the model compares the designed and 462 

system operating pressure ratio values. Then, the mechanical work generated in the expander 463 

and the expander efficiencies are calculated according to the conditions of under and over 464 

expansion.  The flow chart of the expander model is given in Figure 9. 465 



466 
Figure 9 Flow chart of the expander simulation model  467 

3.3. Condenser 468 

In the condenser simulations, cooling water mass flow rate and outlet temperature are 469 

aimed to be determined. Initially, pinch point condition in the code is set as; 470 

25 − 𝑇𝑐𝑤,𝑝𝑝 ≥ 5 °𝐶                      (46) 471 

This is to evaluate the cooling water mass flow rate. Then, with the given initial cooling 472 

water mass flow rate (0.001 kg/s), cooling water pinch point temperature is calculated by 473 

using Eq. (33) iteratively where the mass flow rate is increased by 0.001 intervals until the 474 

condition (Eq. 46) is satisfied. This point provides the real value of the cooling water mass 475 

flow rate and cooling water pinch point temperature. Thereafter, the cooling water outlet 476 

temperature is evaluated with the use of Eq. (34) as the cooling water mass flow rate is 477 

determined previously. It is important to note that Eq. (31) is valid as long as the fluid leaves 478 

the expander as superheated vapour. However, if the fluid falls in the saturation region after 479 



the expansion process, the first term of the right hand side of Eq. (31) which represents the 480 

sensible heat rejection is omitted and the following equation is utilised to calculate the total 481 

amount of the condensation heat.   482 

𝑄̇𝑐𝑜𝑛𝑑 = 𝑚̇𝑤𝑓 × (ℎ𝑒𝑥𝑝,𝑜𝑢𝑡 − ℎ𝑙@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝

)                                                              (47) 483 

As the sensible heat rejection does not occur, the smallest difference between the working 484 

fluid and cooling water temperature takes place at the point where the cooling water leaves 485 

the condenser. Therefore, Eq. (33) can be rewritten as:   486 

𝑚̇𝑤𝑓 × (ℎ𝑒𝑥𝑝,𝑜𝑢𝑡 − ℎ𝑙@𝑐𝑜𝑛𝑑
𝑡𝑒𝑚𝑝

) = 𝑚̇𝑐𝑤 × 𝐶𝑝,𝑐𝑤 × (𝑇𝑐𝑤,𝑜𝑢𝑡 − 𝑇𝑐𝑤,𝑖𝑛)               (48) 487 

Then, Eq. (48) is solved iteratively with the same condition (Eq. 46) to calculate the cooling 488 

water mass flow rate and outlet temperature.  489 

3.4. The saturated solar ORC 490 

The model of the whole solar ORC is developed by interconnecting all the components 491 

with the given input parameters. The performance analysis of the cycle is evaluated through 492 

the performance parameters. 493 

The first performance parameter is the net work output of the system and it is defined as; 494 

𝑊̇𝑛𝑒𝑡 = 𝑊̇𝑒𝑥𝑝 − 𝑊̇𝑝𝑢𝑚𝑝                               (49) 495 

The other parameter is the solar ORC efficiency and it is calculated as; 496 

𝜂𝑆𝑂𝑅𝐶 =
𝑊̇𝑛𝑒𝑡×103

𝑄̇𝑔𝑎𝑖𝑛
                      (50) 497 

3.5. Simulation model constraints  498 

The boundary conditions of the saturated solar ORC model are listed below; 499 

 Superheating at the expander inlet and sub-cooling at the condenser outlet are zero, in 500 

other words working fluid leaves the collector as saturated vapour and leaves the 501 

condenser as saturated liquid in order to reduce total irreversibility of the cycle [33] . 502 



 The saturated solar ORC is simulated at a constant condensing temperature of 25 ºC 503 

 As the fluids undergo a phase change in the collector, the maximum pressure of the 504 

cycle is limited to 1.5MPa (15 bar) due to the leakage and safety concerns of the 505 

maximum flat plate collector pressure in domestic applications. 506 

 Minimum condenser pressure should be higher than 0.05 bar [34].  507 

 Pump isentropic efficiency is 0.6 [35]. 508 

3.6. Fluid pre-selection 509 

In order to narrow down the list of the potential candidates to be used in the proposed 510 

solar ORC, some of the compounds were eliminated, according to their environmental 511 

parameter (ODP) and their corresponding saturation pressure at 25 ºC in the condenser. 512 

Several Hydrocarbons and Siloxanes have been discarded from the analysis due to having 513 

corresponding condensation pressure less than 0.05 bar at 25 ºC (Table 6). 514 

Table 6 Fluids with a condensation pressure less than 0.05 bar 515 

Fluid 

Condensation 

pressure at 25 ºC 

(bar) 

D4  0.0012 

Decane  0.001 

Dodecane  0.0001 

Ethyl benzene 0.012 

MDM 0.004 

MD2M 0.0005 

MD3M 0.00006 

m-xylene 0.011 

Nonane 0.005 

Octane 0.018 

p-xylene 0.011 

Toluene 0.037 

 516 

 517 

 518 

 519 

 520 

 521 



Table 7 Properties of the investigated fluids [32] 522 

Fluid Alt. Name Type 
Tcrit 

(ºC) 

Pcrit 

(bar) 
Tboiling 

(ºC)
* 

Molar Mass 

(kg/kmol) 

Trans-2-butene  HC 155.46 40.27 0.88 56.106 

Cis-2-butene  HC 162.6 42.25 3.72 56.106 

1-butene  HC 146.14 40.05 -6.31 56.10 

Isobutane R600a HC 134.66 36.29 -11.74 58.122 

Butane R600 HC 151.98 37.96 -0.49 58.122 

Neopentane  HC 160.59 31.96 9.5 72.149 

Isopentane R601a HC 187.2 33.78 27.83 72.149 

Pentane R601 HC 196.55 33.7 36.06 72.149 

Isohexane  HC 224.55 30.4 60.21 86.175 

Hexane  HC 234.67 30.34 68.71 86.175 

Cyclohexane  HC 280.45 40.805 80.71 84.159 

1,1,1,2-tetrafluoroethane R134a HFC 101.06 40.593 -26.07 102.03 

1,1-difluoroethane R152a HFC 113.26 45.168 -24.02 66.05 

1,1,1,2,3,3,3-

heptafluoropropane 
R227ea HFC 101.75 29.25 -16.34 170.03 

1,1,1,2,3,3-hexafluoropropane R236ea HFC 139.29 34.2 6.17 152.04 

1,1,1,3,3,3-hexafluoropropane R236fa HFC 124.92 32.0 -1.49 152.04 

1,1,1,3,3-pentafluoropropane R245fa HFC 154.01 36.51 15.14 134.05 

1,1,2,2,3-pentafluoropropane R245ca HFC 174.42 39.40 25.26 134.05 

Octafluorocyclobutane RC318 PFC 115.23 27.775 -5.97 200.03 

Methyl-heptafluoropropyl-

ether 
RE347mcc HFE 164.55 24.762 34.19 200.05 

2,2,2-trifluoroethyl-

difluoromethyl-ether 
RE245fa2 HFE 171.73 34.33 29.25 150.05 

2,3,3,3-Tetrafluoropropene R1234yf HFO 94.7 33.82 -29.45 114.04 

Trans-1,3,3,3-

tetrafluoropropene 
R1234ze HFO 109.36 36.34 -18.97 114.04 

Trans-1-chloro-3,3,3-

trifluoropropene 
R1233zd HFO 165.6 35.70 18.32 130.5 

 
*
 
Normal boiling temperature at 1 bar 

523 

Ozone depletion potential (ODP) states compound’s potential to contribute ozone degradation 524 

is one of the vital environmental factors for working fluid selection [34, 36]. Due to their high 525 

ODP values Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are 526 

discarded from the analysis. Thus, the fluids belong to Hydrocarbons (HCs), 527 

Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Hydrofluoroolefins (HFOs) and 528 

Hydrofluoroethers (HFEs) are considered and analysed in this study and 24 fluids given in 529 

Table 7 are considered as potential candidates. 530 

4. Results and discussion 531 

In this section, the simulation results of the proposed saturated solar ORC at various 532 

pressure ratio using 24 working fluids are presented. It is well known that the net work output 533 

and the thermal efficiency of an ORC increase with the increasing difference of condenser 534 



and evaporator pressure and temperature. However, as it is previously stated, the flat plate 535 

collector is utilised as the evaporator (heat source) of the cycle in this study and the collector 536 

efficiency, in other words the amount of the heat that is recovered by the working fluid in the 537 

collector is highly related to the collector temperature due to the heat losses to the atmosphere 538 

as the collector efficiency is not set constant. Furthermore, unlike many studies in the 539 

literature, turbine/expander efficiency was not fixed and it varied as the expander inlet 540 

pressure changes due to the different behaviours of expansion (under/over) losses in the 541 

expander. Therefore, special attention is given to the collector and expander characteristics 542 

under various pressure ratio values of the system when the whole system is analysed in this 543 

section.      544 

As it is stated previously, the maximum collector pressure is set to 15 bars. However, fluids 545 

such as R-134a, R-152a, R-227ea, R-236fa, RC-318, 1-butene, R-600a and RE-170 have an 546 

evaporation/collector pressure greater than 1.5 MPa at some pressure ratio points. This is due 547 

to their low saturation temperature behaviours. In the analysis, only the cases where the 548 

evaporation pressure is less than 1.5MPa ±0.75 is taken into account for these fluids (Table 549 

8).     550 

Table 8 Fluid corresponding evaporation pressures at various pressure ratio values 551 

Fluid 

Pressure Ratio 

Pcond at 

25 ºC 

(bar) 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

1-butene 2.95 4.43 5.91 7.39 8.87 10.35 11.83 13.31 14.79 16.27 17.75 

R-600a 3.49 5.23 6.98 8.72 10.47 12.21 13.96 15.71 17.45 19.20 20.94 

R-134a 6.62 9.93 13.2 16.56 19.87 23.18 26.49 29.80 33.12 36.43 39.74 

R-152a 5.93 8.90 11.8 14.84 17.81 20.78 23.75 26.71 29.68 32.65 35.62 

R-227ea 4.52 6.78 9.05 11.31 13.57 15.84 18.10 20.36 22.63 24.89 27.15 

R-236fa 2.7 4.05 5.41 6.76 8.11 9.47 10.82 12.17 13.52 14.88 16.23 

RC-318 3.11 4.66 6.22 7.77 9.33 10.88 12.44 13.99 15.55 17.10 18.66 

R1234yf 6.79 10.1 13.5 16.9 20.3 23.78 27.18 30.5 - - - 

R1234ze 4.96 7.44 9.92 12.4 14.88 17.36 19.85 22.33 24.81 27.29 29.77 

 552 

 553 

 554 



4.1. Collector analysis 555 

The efficiency of the collector for each fluid category (HC, HCF, PFC, HFE and HFO) at 556 

various pressure ratios is represented in Figure 10. It can be seen that the collector efficiency 557 

decreases independently of the fluid category as the pressure ratio of the system increases. 558 

This can be explained by the fact that the higher pressure ratio leads to an increase in the 559 

saturation pressure, as well as saturation temperature in the collector (saturated ORC). As a 560 

result, higher collector temperature causes greater heat loss from the collector to the ambient 561 

[16, 20].  562 

 563 

Figure 10 Collector efficiency a) HCs b) HFC-PFCs c) HFEs d) HFOs  564 

Figure 11 shows the collector heat loss and the saturation temperature of the fluids R600a, 565 

R236ea, RE245fa2 and R1234ze as an example. In general, the collector efficiency for all the 566 

investigated fluids varied between 59.19% and 37.44% and the highest and the lowest 567 

efficiency value is obtained from Hexane and R-600a which ranged from 59.19% to 44.12% 568 

and 55.18% to 37.44% respectively. 569 



 570 

Figure 11 Collector heat loss and saturation temperature with pressure ratio 571 

4.2. Expander analysis 572 

In this section, the vane expander efficiency is analysed in terms of investigating the 573 

relation between the expander designed pressure ratio PRdsg and the system pressure ratio 574 

PRcyc. It can be seen from Figure 12 that for each investigated fluid, the maximum expander 575 

efficiency occurred at the pressure ratio of 2.5 which also represents the designed expander 576 

pressure ratio (PRcyc). The only exception was R134a and R1234yf where the pressure ratio 577 

of 2 provides the highest efficiency due to their saturation pressure limitation.   578 



 579 

Figure 12 Expander efficiency under various pressure ratio a) HCs b) HFC-PFCs c) HFEs d) HFOs 580 

For instance, the efficiency of R600 was to be 49.26% at a pressure ratio of 1.5 which is 581 

lower than its designed pressure ratio and results in over-expansion. Then, the efficiency 582 

increases to 68.2% as the pressure ratio rises to 2 and the efficiency reaches its maximum 583 

(69.98%) at PR of 2.5. After ηexp achieves the maximum value, it decreases gradually with 584 

increasing pressure ratio. This is because further increase in PR causes the expander to 585 

operate under the under-expansion zone. 586 

The minimum expander efficiency (35.61%) is obtained from the pressure ratio of 1.5 with 587 

R134a and the maximum expander efficiency (70.1%) is observed for the pressure ratio of 588 

2.5 with 1-butene among the considered fluids. It is important to note that the analysis shows 589 

that the design parameters of a vane expander and the operating parameters of the cycle has a 590 

significant influence on the expander performance as it is also stated by [25, 29]. It is also 591 

worth mentioning that all the investigated fluids except HFC-152a left the expander as a 592 

superheated vapour which shows that there is no risk of encountering any liquid droplet in the 593 



expander. The only exception was HFC-152a which was in the superheated vapour region at 594 

the pressure ratio of 1.5, then fell into the saturated region and had vapour quality of 0.997, 595 

0.988 and 0.982 at the pressure ratio of 2, 2.5 and 3 respectively. Thereby, superheating 596 

might be necessary when utilising HFC-152a in order to avoid liquid formation in the 597 

expander.   598 

4.3. Condenser analysis 599 

It was previously mentioned that the heat rejection from the proposed cycle was carried out in 600 

the condenser. The working fluid was cooled by water which has an inlet temperature of 12 601 

°C. The amount of the calculated condensation heat varied between 1729 W and 3223.96 W. 602 

Thus, this amount of heat was transferred from the system to the cooling water which 603 

subsequently increased the water temperature at the outlet of the condenser. The cooling 604 

water mass flow rate and the cooling water temperature at the exit of the condenser was 605 

calculated for each considered fluid. The results at pressure ratio of 1.5 are represented in 606 

Table 9. As it can be seen from Table 9 that the cooling water mass flow rate varied from 607 

0.087 kg/s to 0.094 kg/s and the cooling water outlet temperature varied between 18.65 °C 608 

and 20.45 °C. Furthermore, the increased temperature of cooling water at the collector outlet 609 

can be utilised for secondary uses. For instance, the cooling water flow can be directed to a 610 

hot water tank to recover some portion of its heat [24]. 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 



Table 9 Calculated cooling water mass flow rate and outlet temperature at pressure ratio of 1.5 619 

Fluid 
Cooling water mass 

flow rate (kg/s) 

Cooling water inlet 

temperature (°C) 

Cooling water outlet 

temperature (°C) 

Trans-2-butene 0.091 12 20.21 

Cis-2-butene 0.092 12 20.11 

1-butene 0.091 12 20.16 

R600a 0.087 12 20.25 

R600 0.091 12 20.14 

Neopentane 0.09 12 20.33 

R601a 0.092 12 20.16 

R601 0.093 12 20.14 

Isohexane 0.094 12 20.18 

Hexane 0.094 12 20.2 

Cyclohexane 0.094 12 19.99 

R134a 0.093 12 20.13 

R152a 0.093 12 20 

R227ea 0.09 12 20.39 

R236ea 0.092 12 20.22 

R236fa 0.092 12 20.23 

R245fa 0.093 12 20.18 

R245ca 0.093 12 20.18 

RC318 0.09 12 20.45 

RE347mcc 0.091 12 20.43 

RE245fa2 0.093 12 20.23 

R1234yf 0.091 12 19.01 

R1234ze 0.091 12 20.24 

R1233zd 0.09 12 18.65 

 620 

4.4. Solar ORC analysis 621 

In this section the net work output of the cycle with the thermal efficiency of the solar 622 

ORC is investigated. Figure 13 shows the net work output of the cycle for each investigated 623 

fluid. It can be observed that the net work output of the cycle augments initially, reaches its 624 

peak and remains almost constant with the increasing pressure ratio for 1-butene, R600a, 625 

hexane, Isohexane, Cyclohexane, R236fa, R245fa and RE245fa2.  626 



 627 

Figure 13 Net work output versus pressure ratio for a) HCs b) HFC-PFCs c) HFEs d) HFOs 628 

The reason for this behaviour can be explained by the decrease in the mass flow rate of the 629 

cycle and increase in the consumed pump work. The former is due to the rise in the pressure 630 

ratio of the system at a constant condensation pressure, which augments the difference 631 

between the collector and condenser pressure that represent the highest and the lowest points 632 

of the cycle respectively. This results in an increase in the enthalpy difference between the 633 

two points and causes the mass flow rate to decrease due to the energy balance of the cycle. 634 

Figure 14 represents the mass flow rate of four working fluids versus pressure ratio as an 635 

example.  636 



 637 

Figure 14 Mass flow rate of R600, R236ea, RE245fa2 and R1234ze versus pressure ratio 638 

It can be observed that initially, the effect of the increase in the enthalpy drop across the 639 

expander is higher than the decrease in the mass flow rate and the increase in the consumed 640 

pump work. However, after a certain point of the pressure ratio the increase in the enthalpy 641 

drop does not dominate the decrease in the mass flow rate and the rise in the consumed pump 642 

work. This is even more pronounced for the fluids such as trans-2-butene, cis-2-butene, 643 

R600, neo-pentane, R601a, R236ea, R245ca, RE347mcc and R1233zd where the net work 644 

output starts to decline beyond the pressure ratio of the maximum net work output. The same 645 

trend can be found in [17, 30]. On the other hand, fluids such as R134a, R152a, R227ea, 646 

RC318, R1234yf, R1234ze shows an increasing tendency with the rising pressure ratio owing 647 

to the limitations of their saturation pressure points higher than 15 bars.  648 

Another parameter which is investigated in this section is the thermal efficiency of the solar 649 

ORC. As it is stated by [14] it is important to consider net work output along with the thermal 650 

efficiency when comparing various working fluids. It is apparent from Figure 15 that the 651 

cycle efficiency increases with increasing pressure ratio for each investigated fluid. Similar 652 

trend can be found in [19]. 653 

 654 

 655 



 656 

Figure 15 Solar ORC efficiency varies with pressure ratio for a) HCs b) HFC-PFCs c) HFEs d) HFOs 657 

This behaviour is different from the net work output of the cycle as it is demonstrated 658 

previously in Figure 13. The reason for the upward trend of cycle efficiency when there is a 659 

maximum point for the net work output is the decrease in the amount of the heat gained by 660 

the fluid in the collector. Similar results were reported in [33] for R134a refrigerant. The 661 

highest cycle efficiency is obtained by trans-2-butene (9.76%) and cis-2-butene (9.69%) 662 

among the investigated fluids.  663 

Figure 13 and Figure 15 represents that generally, HCs provide higher net work output and 664 

cycle efficiency compared to the others thermofluids and among the hydrocarbons, trans-2-665 

butene, cis-2-butene, 1-butene, R600 and R600a gives the highest results. For HCFs, HFEs 666 

and HFOs R227ea, R236fa, RC318 and R1234ze generate more net power output, whereas 667 

R227ea, R236ea, R236fa and RC318 provide higher thermal efficiency. 668 

It is important to note that the net mechanical work output of R236ea (60.57W-190.39W) is 669 

found to be less than R227ea (58.18W-205.06W) and RC318 (62.94W-206.34W). However, 670 



the cycle efficiency of R236ea (1.87%-8.4%) is greater that of R227ea (1.81%-7.75%) and 671 

RC318 (1.94%-8.25). This can be explained by the fact that R236ea provides less collector 672 

efficiency (58.15%-40.72%) compared to R227ea (57.69%-47.57%) and RC318 (58.16%-673 

44.93%). In other words, less amount of useful heat is transferred to R236ea owing to its 674 

higher saturation (collector) temperature. According to Eq. (50), the higher cycle efficiency 675 

of R236ea shows an interesting potential of converting the heat energy into the mechanical 676 

work.  677 

 678 

Figure 16 Overall efficiency varies with pressure ratio for a) HCs b) HFC-PFCs c) HFEs d) HFOs 679 

In addition to the thermal efficiency of the proposed solar ORC, the overall efficiency which 680 

represents the ratio of the net power output of the cycle to the incoming solar radiation is 681 

calculated as: 682 

ƞ𝑠𝑦𝑠 =
𝑊̇𝑛𝑒𝑡

𝑆𝐴𝑐𝑜𝑙
                      (51) 683 



The overall efficiency shows similar trend with the net work output of the solar ORC (Figure 684 

16). The highest overall efficiency is obtained by 1-butene (3.78 %) and this is followed by 685 

trans-2-butene (3.69%) and cis-2-butene (3.72%).     686 

4.5. Environmental and safety impacts   687 

In this section, the environmental impact of the fluids in terms of the contribution to the 688 

global warming and the safety characteristics of the fluids such as flammability and toxicity 689 

are discussed and the properties of the fluids are given in Table 10. It can be seen from Table 690 

10 that some refrigerants such as HFCs and PFC have considerably high global warming 691 

potential. As an example, R236fa and RC318 have a GWP of 6300 and 10300 respectively. 692 

On the other hand, HFEs, HFOs and HCs have a negligible global warming potential [37-39]. 693 

Another environmental concern of the fluids is the flammability and toxicity. Hydrocarbons 694 

are more flammable compared to the other fluid categories such as HFCs, HFEs and HFOs.  695 

4.6. Overall analysis of the thermofluids 696 

In general, as it is stated by several researchers there is no fluid which can satisfy all the 697 

conditions such as providing high thermal efficiency and net work output, having reasonable 698 

saturation points and low GWP and being non-flammable [19, 28].  699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 



Table 10 Environmental and safety data of the considered fluids 709 

Fluid Alt. Name Type GWP Safety 

Trans-2-butene  HC ~20  [33] - 

Cis-2-butene  HC ~20  [33] - 

1-butene  HC ~20  [33] - 

Isobutane R600a HC ~20  [33] A3 [19] 

Butane R600 HC ~20  [33]   A3 [19] 

Neopentane  HC ~20  [33] - 

Isopentane R601a HC ~20  [33] A3 [40] 

Pentane R601 HC ~20  [33] A3 [41] 

Isohexane  HC ~20  [33] - 

Hexane  HC ~20   [33] - 

Cyclohexane  HC ~20   [33] A3 [19] 

1,1,1,2-tetrafluoroethane R134a HFC 1370 [33] A1 [19] 

1,1-difluoroethane R152a HFC 133   [33] A2 [19] 

1,1,1,2,3,3,3-

heptafluoropropane 
R227ea HFC 3500 [42] A1 [18] 

1,1,1,2,3,3-

hexafluoropropane 
R236ea HFC 1410 [33] - 

1,1,1,3,3,3-

hexafluoropropane 
R236fa HFC 6300 [42] A1 [43] 

1,1,1,3,3-pentafluoropropane R245fa HFC 1050 [33] B1 [18] 

1,1,2,2,3-pentafluoropropane R245ca HFC 726   [33] - 

Octafluorocyclobutane RC318 PFC 10300 [35] A1 [19] 

Methyl-heptafluoropropyl-

ether 
RE347mcc HFE 450   [44] Non-flammable [44] 

2,2,2-trifluoroethyl-

difluoromethyl-ether 
RE245fa2 HFE 659   [45] - 

2,3,3,3-Tetrafluoropropene R1234yf HFO 4       [46] A2L [35] 

Trans-1,3,3,3-

tetrafluoropropene 
R1234ze HFO 6       [47] A2L [35] 

Trans-1-chloro-3,3,3-

trifluoropropene 
R1233zd HFO 7      [48] A1    [48] 

A: Lower toxicity, B: Higher toxicity, 1: Non-flammable, 2: Lower flammability 3: Higher flammability 
710 

The selection of the most suitable thermofluid for the proposed solar ORC depends on the 711 

decision criteria. For instance, R600a, R600 and cyclohexane show high thermal efficiency 712 

and net work output but they have flammability problems. Furthermore, R236fa, R227ea 713 

have high GWP, R134a, R152a, R1234yf, R1234ze represents high saturation pressure, and 714 

R245fa has toxicity issue. One way to restrain the flammability and GWP of the compounds 715 

is blending them with other compounds that have lower flammability and GWP.  716 

In addition to the environmental benefits, the system performance could also be improved by 717 

using a mixture as the limitations on the cycle operating conditions and thermodynamic and 718 

physical properties are enhanced [49, 50]. Lastly, the selected fluid should not be corrosive to 719 

eliminate major corrosion problems in the cycle components in terms of the durability of the 720 

system.   721 



5. Conclusion 722 

A small scale solar ORC has been modelled thermodynamically and the cycle simulations 723 

with 24 working fluids are studied in this research. In the simulation analyses, the effect of 724 

each working fluid on each component as well as the whole cycle at various pressure ratios of 725 

the cycle is investigated.  726 

The simulation results reveal that pressure ratio, in other words evaporating pressure of the 727 

cycle, has a significant effect on the collector and expander efficiency and therefore, on the 728 

net work output and thermal efficiency of the cycle. 729 

The simulation results also showed that, in general, HCs such as trans-2-butene, cis-2-butene, 730 

1-butene, R600a, R600, R601, R601a, neopentane, HFCs such as R227ea, R236fa, and 731 

RC318 (PFC) and R1234ze (HFO) yield higher values of net work output of the cycle.  732 

Furthermore, the working fluid plays a key role in the operation of the solar ORC. For 733 

instance, fluids with relatively low boiling temperature, such as R134a, R152a, R227ea, 734 

R1234yf, and R1234ze, lead to an increase in the evaporation pressure that might limit their 735 

application in the collector. The other important parameter is the environmental impacts of 736 

the thermo-fluids. For example, although the HCs provide high solar ORC performance, one 737 

of the disadvantages of hydrocarbons is their high flammability. In addition to the 738 

flammability issue of the fluids, toxicity for R245fa and global warming potential for RC318, 739 

R134a and R236fai are the other environmental limitations of these fluids. On the other hand, 740 

although, HFEs (RE347mcc and RE245fa2) and HFOs (R1234yf andR1233zd) offer a 741 

moderate system performance, they are viable thermo-fluids for the proposed solar ORC 742 

based on their thermo-physical characteristics, low GWP and safety issues.   743 

Finally, it is suggested that a mixture of two components can be used in order to eliminate the 744 

problems such as flammability, toxicity and global warming potential that might occur when 745 

pure components are utilised in the solar ORC.  746 
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