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Abstract—In the age of Big Data, the real-time interac-
tive visualization is a challenge due to latency of executing
calculation over terabytes (even, petabytes) datasets. The
execution of an operation has to finish before its outcome
is displayed, which would be an issue in those scenarios
where low-latency responses are required. To address such
a requirement, this paper introduces a new approach for
real-time visualization of extremely large data-at-rest as
well as data-in-motion by showing intermediate results as
soon as they become available. This should allow the data
analyst to take decisions in real-time.
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I. Introduction

Big Data, an already familiar term, has been gener-
ally defined as a massive volume of structured, semi-
structured and/or unstructured data, which may not be
effectivelzy managed and processed using traditional
databases and software techniques. Big Data is com-
monly characterized by the 3Vs [1] : volume, velocity,
and variety. Volume refers to the size of the data to be
processed. Variety refers to the nature and structure of
the information that characterize Big Data. Velocity, on
the other hand, refers to the high frequency of data
generation as well as the evolving dynamics of the
data.

There are real-world analytics use cases that are
typically identified by the 3Vs requiring scalability,
low-latency responses and management of diverse and
multi-modal information. Other use cases are geared
towards value (the 4th V of big data definition) that
indicates the quality and the impact of the data. These
two needs are, of course, complementary and this is
the reason why the Big Data field has been split in two
main areas called Data Engineering and Data Science.
A key approach to extract value from data is Visual
Analytics. Visual analytics is commonly defined as the
science of analytical reasoning facilitated by interactive
visual interfaces [2]. It is quite appealing to combine
analytics and interactive visualization to cope with
the size, complexity, and velocity of data by actively
involving the user in the analysis of the data, making

thus this later a lot tractable. A key challenge of visual
analytics is to meet the requirements of Big Data in
supporting real-time interaction while considering the
challenges of volume, velocity and variety. Despite the
emerging advances to achieve low latency for ad-hoc
queries, it is still necessary to rethink efficient software
architecture styles to enable real-time interaction.

The rest of the paper is structured as follows. Section
II overviews the state-of-the art of visual analytics for
Big Data. Section III describes the proposed approach
to achieve interactive visualization for Big Data. Re-
sults are discussed in Section IV. Finally, Section V
concludes the paper.

II. Background and State-of-the-art

The main objective of data visualization [3] is to rep-
resent knowledge more intuitively and effectively by
using different graphs. To convey information easily by
providing knowledge hidden in the complex and large-
scale data sets, both aesthetic form and functionality
are necessary. Information that has been abstracted
in some schematic forms, in addition to attributes or
variables, is also valuable for data analysis. This way is
much more intuitive [4] than sophisticated approaches.

For Big Data applications, it is particularly difficult
to use visualization because of the large size and high
dimensionality of data. However, current Big Data
visualization tools suffer poor functional performance
and lack scalability and efficiency in terms of response
time. It is necessary to tackle these problems. Even,

Contributing to the effort of developing analytics
tools for efficiently dealing with massive datasets and
continuous unbounded streams of data visualization
issues, the present paper introduces a novel architec-
ture using incremental visual methods. The proposed
approach should allow analysts and end-users to ex-
plore Big Data (both data-at-rest and data-in- motion)
faster and help them make important decisions on
time. It consists of developing an Incremental Ana-
lytics Engine that will sit on top of a distributed big
data platform and that use partial results in order of
complexity O(1) to provide outcomes.



successful techniques for data-intensive applications
such as history mechanisms proposed in [5] require
more efficiency.

Big datasets are ubiquitous in many domains, such
as finance, discrete manufacturing, monitoring, inter-
net, telecommunication, biology or even sports [6]. It
is not uncommon that millions of readings from high-
frequency sensors are subsequently stored in relational
database management systems (RDBMS), to be later
accessed using visual data analysis tools. Modern data
analysis tools must support a fluent and flexible use
of visualizations and still be able to squeeze a bil-
lion records into a million pixels [6]. In this regard,
one challenge for the scientific community is the de-
velopment of compact data structures that support
algorithms for rapid data filtering, aggregation, and
display rendering. These issues are yet unsolved for
existing RDBMS-based visual data analytics tools such
as Tableau Desktop [7], SAP Lumira [8], QlikView
[9], Tibco Spotfire [10] and Datawatch Desktop [11].
While they provide flexible and direct access to rela-
tional data sources, they do not consider an automatic,
visualization- related data filtering or aggregation and
are not able to quickly and easily visualize high-
volume historical data. For example they redundantly
store copies of the raw data as tool-internal objects,
requiring significant amounts of system memory. This
causes long response time for the users and even-
tually indefinitely in case the system memory is ex-
hausted and gets stuck. Apart of commercial solutions,
a number of open-source visual toolkits exist (such as
InfoVis Toolkit [12], Prefuse [13], Improvise [14] and
D3 [15].); each covers a specific set of functionalities
for visualization, analysis and interaction. Using exist-
ing toolkits instead of implementing new ones from
scratch provides much efficiency [16], although the
level of maintenance, development and user commu-
nity support of open-source code can vary drastically.
The major shortcoming of exiting tools, commercial
and open-source, lies in the fact that they are dedi-
cated to batch data (data-at-rest), not in data streams
(data-in-motion). However, there exist some successful
domain-specific tools such as ELVIS [17], that is a
highly interactive system to analyze system log data,
but cannot be applied to real-time streams. SnortView
[18] focuses on the intrusion detection, while Event
Visualizer [19] provides real-time visualizations for
event data streams for real- time monitoring as well
as various exploration mechanisms. On the other hand,
authors in [20] propose a real-time visualization system
to enhance situational awareness from network traffic
data using LiveRAC [21]. Once analyzed and aggre-
gated, time-series are displayed in a zoomable tabular
interface to enable interactive exploration. Another tool

Fig. 1. Incremental analytics engine

which focuses on monitoring of time series data is
VizTree [22], [23], that allows to visualize real-time
anomaly detection after transforming the time series
into symbols.

Compared to existing literature, the approach intro-
duced in the present paper aims to deal with: 1) Vi-
sualization of data. 2) Enabling real-time interaction
with big data-in-motion. To deal with these issues,
we propose to build an innovative real-time visual
analytics system, capable of addressing the scalability
issues. Such a system is designed, implemented and
integrated into Apache Flink [24] providing novel in-
cremental visual methods. Incrementality here means
to not process the whole dataset at once, but to split
a dataset into small data chunks and process them,
allowing users to obtain partial approximated results
in real time instead of waiting until the process ends.
The reason of choosing Apache Flink is its superiority
compared to other Big Data streaming engines such
as Apache Spark and Apache Storm in terms of low
latency, fault- tolerance, flexible stream handling (win-
dowing), and high throughput [24]. This approach will
allow both expert as well as users (analysts) to explore
Big Data (both data-at-rest and data- in-motion) faster
to make well-informed decisions on time.

The obtained results are discussed in Section IV.

III. Incremental approach
We propose an incremental multilayered architecture

based on three main components (see Figure 1): Data
Collector, Incremental analytics engine and Visualiza-
tion Layer.

The Data Collector is in charge of continuously
getting new data from data sources and sending them
to the next processing layer. The Incremental Analytics
Engine processes data using the online incremental
algorithms and outputs up-to- date results which are
then visualized by the third layer. The visualization of
the results at various time points allows the users to
track and interact with those results in real-time.

A. Data Collector
This module is in charge of continuously collecting

new stream data points from the data sources. As



soon as a data chunk (window) becomes available, it
is sent the next layer to cope with the high velocity
of the stream. The process of data collection is done
incrementally in line with the approach we propose.

B. Incremental Analytics Engine
The incremental analytics engine processes data in-

crementally, mostly using the concepts of recursivity
and approximation. The algorithmic processing of each
batch will lead to results that are communicated to the
next layer for visualization.

for (double value in values) {
avg+=value;
avg = avg / values.length;

}
end(avg);

Fig. 2. Traditional average computation

Online incremental analytics algorithms can range
from simple statistical moments (e.g., average, median,
sum, max, min, etc.) to advanced machine learning and
data mining algorithms such classifiers and clustering
algorithms. For instance, Figure 2 depicts how the
average of streaming data points is calculated with a
traditional approach.

In order to send the final result to the visualization
layer, the offline AVG computation needs to wait until
all the data points are processed. Instead, Figure 3
summarizes a naive online version of the AVG compu-
tation. This version depicts a poor implementation of
the incremental average, since a new result is sent for
each new element processed leading to communication
overhead. In addition, it assumes that only one partial
result (e.g. there is no avg for each different key)
is generated and the whole computation occurs in a
single node (no distributed architecture). As explained
earlier in section III-A, input data are partially received
and then processed chunk-wise.

for (double value in values){
avg+=value;
cont = cont+1
send(avg/cont);

}

Fig. 3. Incremental average calculation

To realize the incrementallity in an efficient way, we
make use of mechanisms offered by big data streaming
engines. These later introduce concepts such as win-
dowing that splits data streams into finite sequence of
data points. By using windows, it is possible to execute
aggregations on unbounded data streams. We process

data in windows of size N (denoted as WINDOW SIZE in
Figure 4) to generate a partial result. When a window is
filled, it automatically calls to the apply(...) method
that initiates the computation for that window. Ev-
ery incremental operation executed over the window
needs the result of the previous one to successfully
calculate the new average. Normally it is necessary to
save not only the new average, but also the number of
windows used for calculating that partial result. That
information is called state.

Figure 5 of code summarizes the normal flow for
stream processing in Apache Flink, using the win-
dow concept: The IncrementalOperation() class pro-

DataStream dataStream= stream
.keyBy("key")
.countWindow(WINDOW_SIZE)
.apply(new IncrementalOperation())
.addSink(new WebsocketSink());

Fig. 4. Flink average calculation

vides the logic necessary to calculate approximated
results, window by window. As an example of in-
cremental operation, Figure 5 shows the schema of
IncrementalAverageOperation implementation of its
apply (...) function.

As incremental operations continuously send results
to the visualization layer, a continuous and full-duplex
communication between the incremental analytics en-
gine and the visualization layer is required. For this
reason, we have decided to use Websockets [25]. Web-
socket is a protocol providing full-duplex communi-
cation channels over a single TCP connection. It is an
independent TCP-based protocol and it is designed to
be implemented in web browsers and web servers, but
it can be used by any client or server application. We
will use Websocket protocol (ws://) instead of HTTP
or other application protocols because these do not
provide bidirectional communication (in a normal web
scenario, architectures are based on request-response
protocols like HTTP).

When a window computation ends, DataStream
class automatically calls the invoke() method of the
WebsocketSink class, which is in charge of sending
results to the visualization layer. Figure 6 depicts how
incremental analytics engine and visualization layer
are connected. Once a partial result is computed, it is
sent to the websocket server and then to the visualiza-
tion layer.

C. Visualization Layer

This layer is a web-based library that allows users
to real-time graphically visualize results of incremental



ValueState state = getRuntimeContext().getState();
double[] values = getWindowValues();

//calculate new avg using the new elements
//and the previous result
double actualAVG = calculate(state,values);

//Update window state with new values
updateWindowState(state, actualAVG);

//Send partial result to WebsocketSink
collector.collect(actualAVG);

Fig. 5. Flink average calculation

operations carried out by the incremental analytics
enginelayer. Visualizations are performed using a set
of minimalist graphs that visualization layer provides
such as line, bar, pie or stream graphs are some of the
basic visualization elements available in this library.
All of the components of the visualization layer have
been developed using Javascript, since it is the de
facto programming language for creating interactive
applications on the web.

Like all modern programming languages, Javascript
is implemented following a certain scripting language
specifications. Ecmascript6 (commonly known as ES6)
is the latest Javascript specification language which we
use for developing the visualization layer. ES6 is not
fully supported by all the modern browsers yet, but
they are tending to implement the most of its features,
such as arrow functions, class orienting, modulating,
etc.

This layer continuously receives partial results from
the incremental analytics engine layer. To successfully
implement this functionality, we need two core com-
ponents: 1) A websocket connector that receives the
results from the incremental analytics engine layer.
2) A graph library that contains the basic graphical
elements used to visualize data.

Fig. 6. Real-time incremental communication

1) Websocket Connector: Websocket is a technology
[26], based on the websocket protocol ws [25], that
makes it possible to establish a continuous full-duplex

connection stream between a client and a server.
Although the ws protocol is platform independent,
clients are typically based on web browsers. The
visualization layer provides a Javascript websocket
connector that enables a bidirectional communication
between web-browsers and the WebsocketSink com-
ponent developed and explained in Section III-B. This
connector is in charge of receiving and sending data
and acts as a proxy between the visualization and the
analytics layers.

2) Graph Library: Our graph library is a visualiza-
tion tool that allows users to real-time visualize data.
This library has been built using the Scalable Vector
Format (SVG) as the format to show data to users.
SVG is a language for describing two-dimensional
graphics in XML format. It allows for three types of
graphics objects: vector graphic shapes, images and
text. Graphical object can be grouped, transformed and
composited into previously rendered objects. It also
includes nested transformations, clipping paths, alpha
masks, filter effects and template objects [27]. After
analyzing other graphic technologies such as Canvas
[28] or WebGL [29], we opted for SVG due to its
simplicity and easy user-interaction API. To deal with
SVG API and facilitate the graph creation, we have
built the library on top of D3.js [30]. D3.js is a Javascript
[31] library for manipulating documents based on data.
D3.js provides the full capabilities of modern browsers
and is developed using data-driven approach to DOM
manipulation [30].

IV. Results

In order to evaluate our approach, two incremental
functions have been implemented: average (AVG) and
maximum (MAX). These functions calculate approxi-
mate results by taking data chunks and accumulating
partial results for next iterations (see section III-B).

For this experiment we have chosen three sample
datasets in CSV format. These datasets contain data
obtained from a set of different air quality sensors
placed in Asturias, a region of the north-west of Spain.
These sensors emit, every minute, a data register that
contains the current date in ISO format [32], latitude
and longitude of the sensor and the value of chem-
ical compounds such as O3 (ozone) and SO2 (sulfur
dioxide), measured in μg/m3.

The experiment consists of incrementally calculating
the maximum and mean value for a specific chemical
compound (O3) and calculate the time it takes to get
all the partial results in an interval in which margin of
error is less than 5% regarding the real value, as well
as the time taken to process the entire dataset. To carry
out the experiment we have taken different file sizes
for the datasets: 1GB, 8GB and 15GB, all of them with



Table I
Average and maximum computation results

Final Computation (s) ε ≤ 5%(s)

1GB 8GB 15GB 1GB 8GB 15GB

Avg
Conv 11,6 113,1 232,1 - - -

Inc 14,1 118 230,2 1,78 1,58 1,58

Max
Conv 9,3 114 242 - - -

Inc 10,2 126 235,4 1,622 1,45 2,114

a standard window size (WINDOW SIZE) of 100 stream
data points.

For traditional computations, results only show the
time taken to process the entire datasets, whilst for re-
sults of the incremental version show the time needed
to obtain values with a margin of error less than
5% (without processing the entire dataset), as well
as the final computation time. We used a quad-core
processor (Intel R© Core TM I5-4460 3.20 GHz) with
8GB RAM and Ubuntu 14.04.1 LTS.

As Table I depicts, the time taken by incremental
(Inc. row) and conventional (Conv. row) methods for
calculating the final result is very similar, remaining
the complexity of both algorithms to O(N) (where N is
the total number of data points). The main advantage
of the incremental approach is the capability it has
to provide partial and approximate results without
needing to process the entire dataset, unlike traditional
computation methods that output the final result after
processing the whole dataset. Incremental methods
show reliable results (ε ≤ 5%) 100 times faster than tra-
ditional ones, which is ideal for those scenarios where
short response time is required. The main drawback
is that there is a penalization for the final result in
the incremental computation, and it is not completely
exact (due to incremental operations can lose decimal
precision in iterative operations).

V. Conclusions and FutureWork

Despite significant effort made to real-time process
and visualize data, it is still challenging to deal with
large datasets of terabytes or petabytes items. Big
Data technologies provide mechanisms to process data
in a distributed manner, but algorithms complexity
remains depending on the number of data records.

Our incremental approach provides a solution with
complexity O(1). The main benefit of this approach is
that end-users do not need to wait until the Big Data
process ends. They can visualize approximate results.
This is very useful for those scenarios in which a Big
Data process takes so long. Furthermore, incremental

operation can predict final range values by just analyz-
ing a part of data, because some incremental operation
like average tends to stabilize after analyzing a portion
of data.

As a future work it would be interesting to imple-
ment more complex incremental operations such as
variance, standard deviation or coefficient of variation.
The incremental analytics engine layer provides an API
that easily allows developers to add new incremen-
tal operations. Furthermore, it will be interesting to
analyze the possible non-commutative operations and
the applicability that incremental algorithms have to
calculate not only incremental results over stationary
data, but also to detect data anomalies, a scenario in
which results can vary and do not converge to a stable
value.
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