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ABSTRACT

A major challenge in generating high-fidelity virtual environments (VEs) is to be able to provide realism at interactive
rates. The high-fidelity simulation of light and sound is still unachievable in real-time as such physical accuracy is
very computationally demanding. Only recently has visual perception been used in high-fidelity rendering to improve
performance by a series of novel exploitations; to render parts of the scene that are not currently being attended
to by the viewer at a much lower quality without the difference being perceived. This paper investigates the effect
spatialised directional sound has on the visual attention of a user towards rendered images. These perceptual
artefacts are utilised in selective rendering pipelines via the use of multi-modal maps. The multi-modal maps are
tested through psychophysical experiments to examine their applicability to selective rendering algorithms, with a
series of fixed cost rendering functions, and are found to perform significantly better than only using image saliency
maps that are naively applied to multi-modal virtual environments.

1 INTRODUCTION

A major research challenge of Virtual Environments (VEs) is to accurately simulate a real world en-
vironment. This is motivated by the increasing use of VEs in a wide range of applications such as
concert hall and architectural design (Naylor, 1993) and immersive video games (Moeck et al., 2007;
Raghuvanshi et al., 2007; Grelaud et al., 2009). Multi-modal VEs aim to deliver more sensory in-
formation than from a sole domain and yield an increased sense of immersion over single modality
environments (Durlach and Mavor, 1995). Furthermore, such multi-modal VEs can aid object recognition
and placement; identification and localisation; and generating conclusions pertaining to the scale and
shape of the environment (Blauert, 1997).

Limitations of the human sensory system have been used in order to improve the performance of
perceptually-based rendering systems. Examples of this used to decrease the auditory (Tsingos et al.,
2004; Moeck et al., 2007) or visual (Cater et al., 2002; Ramanarayanan et al., 2007, 2008) rendering
complexity with little or no perceivable quality difference to a user have been implemented and verified.
Moreover, it has been shown that it is possible to increase the perceptual quality of a stimulus in one
modality by directing gaze due to the introduction of another modality (Mastoropoulou et al., 2005a). This
can be used for improving the perception of a material’s quality (Bonneel et al., 2010), Level-of-Detail
(LOD) selection (Grelaud et al., 2009) or for increasing the spatial (Mastoropoulou et al., 2005a; Hulusic
et al., 2011) and temporal (Mastoropoulou et al., 2005b; Hulusic et al., 2011, 2010) quality of visuals by
coupling them with corresponding auditory stimuli.

Straightforward applications that take advantage of the human sensory system have attempted to
predict gaze direction and attention. However, spatial sound has been shown to be important in the
perception of a scene in VR and should thus not be ignored; furthermore, spatial visual saliency is not
necessarily the best predictor of visual attention (Marmitt and Duchowski, 2002). In addition to this,
an estimator of the sound intensity alone is not enough (Kayser et al., 2005). Kayser et al. showed
quantitatively that an auditory saliency map extracts a measure of saliency which cannot be obtained from
sound intensity alone. Although typically attention can be controlled, a strong enough novel cue can take
our attention (Pettersson, 1999). A novel auditory stimulus can attract visual attention as this distraction
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aids the detection and spatial localisation of objects (Driver and Spence, 1998). In this paper we propose
a general algorithm to concatenate sound saliency with visual saliency in the spatio-visual domain. In
particular, this paper considers the effect of directional sound on a user’s visual attention towards rendered
images. Based on a sound transport simulation, multi-modal maps are derived. These are used to reduce
render times while maintaining perceptual equality. This is validated in a further user study. Specifically
we make the following contributions:

• Construction of a sound map which encodes directional sound saliency information. These are
produced through a sound simulation based on tracing phonons (Bertram et al., 2005).

• Utilising the sound maps to represent saliency of a directional sound signal and using density
estimation to construct a saliency map for the spatial domain.

• Combination of the traditional visual saliency map with the directional sound saliency map into
a multi-modal saliency map. This is used to reduce rendering time in this paper. The technique
could be more broadly applied to any audio-visual interface requiring a degrade function, such as
compression of video.

• A user study which validates the use of the multi-modal maps to reduce rendering time, but
maintaining similar perceptual quality to reference images computed at higher sampling rates.

2 BACKGROUND AND RELATED WORK

2.1 Images
Saliency models have been used previously in computer graphics, and more so in computer vision
applications. Yee et al. (Yee, 2000; Yee et al., 2001) adapted Itti and Koch’s (Itti et al., 1998) model of
visual saliency in order to speed up the rendering process. For each frame a spatiotemporal error tolerance
map (Daly, 1998) was created based on velocity dependant contrast sensitivity, and a saliency map (Itti
et al., 1998). The two maps were combined to create a new map, termed aleph map. The aleph map was
used to determine where computational resources were to be directed in screen space.

Marmitt et al. (Marmitt and Duchowski, 2002) examined how Itti and Koch’s (Itti et al., 1998) model
performed when predicting visually salient features in virtual scenes. The model had been shown to
perform accurately on real imagery (Painter and Spanias, 2000), however the analysis showed that the
correlation between human saccades and model predicted saccades was quite low. Marmitt et al. (Marmitt
and Duchowski, 2002) hypothesised that the lack of correspondence between real and predicted views
occurred due to the absence of a memory module in the artificial model. The human brain has temporal
memory and remembers what it has seen.

More recent work by Koulieris et al. (Koulieris et al., 2014) showed a method to extend a recent
saliency model, incorporating effects such as object context, uniqueness of objects and temporality. This
allowed an attention based level-of-detail manager to constrain material quality in presented images
whilst maintaining frame rate. The benefit of this technique in a proof of concept was to incorporate
parallax occlusion mapping on a mobile device. For a full overview on perception in graphics please
see (McNamara et al., 2011).

2.2 Sound
The computational bottlenecks in sound rendering can be grouped into two broad types: the cost of
acoustic spatialisation and the cost per sound source. The processing of complex sound scenes is composed
of spatialisation and per source information. This can take advantage of perceptually-based optimisations
in order to reduce both the necessary computer resources and the amount of audio data to be stored and
processed. The MPEG I Layer 3 (mp3) standard (Painter and Spanias, 2000) is one such example of this
which exploits Perceptual Audio Coding (PAC), where prior work on auditory masking (Moore, 1997)
had been successfully utilised. This is implicitly used together with masking to discard information of
audio content deemed perceptually irrelevant from the original sound. The missing audio content is not
perceived in the resultant sound.

The auditory saliency map presented by Kayser et al. (Kayser et al., 2005) has been used to predict the
parts of a sound source that will attract human attention, so that more resources in the acoustic rendering
process could be assigned for their computation.
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This method was adapted by Moeck et al. (Moeck et al., 2007) for acoustic rendering by integrating
saliency values over frequency subbands. They suggested using auditory saliency as a heuristic for the
clustering stage of multiple audio sources. Recent work on the synthesis of sound, showed that combining
the instantaneous energy of the emitted signal and attenuation is also a good criteria (Gallo et al., 2005;
Tsingos, 2005).

The presence of many sensory stimuli, including sound, may influence the amount of cognitive
resources available to a viewer to perform a visual task, this is termed as the modality appropriateness
hypothesis (Welch and Warren, 1980). Research has investigated the influence of auditory cues on visual
attention and visual cues on audition. Mastoropoulou et al. (Mastoropoulou et al., 2005a,b) showed that a
selective rendering technique for Sound Emitting Objects (SEO) can be used to render animations, and
can decrease the rendering time required. Considering the angular sensitivity of the Human Visual System
(HVS) and inattentional blindness, the visual region that contained the SEO was rendered in high quality
at an appropriate angle, whilst low quality visuals were displayed for the rest of the scene and the viewer
failed to notice the quality difference.

Harvey et al. showed via eye tracking that human visual attention is distracted by spatial sound, even
when related objects are omitted (Harvey et al., 2010). Hulusic et al. (Hulusic et al., 2010) investigated
how the perceived quality threshold for renderings is influenced by audio. The authors examined how
related and unrelated audio influences visual perception. This showed that incongruent sound can be used
for increasing the perceived temporal smoothness of graphics, while congruent audio has no significant
effect on the perceived quality threshold. Grelaud et al. (Grelaud et al., 2009) developed a model to
detect when many instances of vibratory and contact synthesis were occurring and to fluctuate resources
accordingly from the visual domain to the auditory domain dynamically. As a result, visuals were poorer
when many objects collided and audio was deemed more important. This directly attempted to exploit
the modality appropriateness hypothesis. However, even though the result showed the technique worked
and perception was unaltered, no empirical technique was used and the variability of resources was user
defined and for a specific task. A generic model for bi-modal scenarios (auditory-visual interaction) has
yet to be considered.

3 MODAL MAP GENERATION

A novel temporal acoustic algorithm for spatial visual saliency prediction is presented in this section. The
algorithm is based upon sound-level-detection on the image plane modulated by the auditory salience
feature vector of an asynchronous acoustic stimulus. Blended with conventional visual saliency predictors
this enables spatial heuristics to guide sample count for rendering to be employed. In Section 4 we show
that this provides better perceptual responses than previous image synthesis sampling strategies.

3.1 Algorithm: Intensity Map
A two step approach to generate the directional intensity of the sound wave on the image plane is used.
The first step utilises the algorithm employed by the sonel and phonon mapping techniques for sound
rendering (Kapralos et al., 2004; Bertram et al., 2005). This is a particle tracing based method where
starting points and directions of paths are generated on the sound source and propagate around the scene.
Information at each hit point is stored and used in a second stage to reconstruct the sound at the listener
position.

Initially, the sound source is approximated by a set of frequencies, and for each sound-carrying particle
one frequency is sampled. Then the starting point and direction of the sound particle is selected according
to the emission distribution of the sound source. This sound particle is then traced into the scene, and
at each intersection (including the initial point on the sound source) a set of information is stored. This
consists of sound intensity values attributed to each hit point: pressure (P), frequency (F), incoming
direction (ωi) and world space position (x′). These points are stored in a KD-Tree for fast searching
in the second step. This could also be implemented through a splatting approach, akin to Progressive
Photon Mapping (Hachisuka et al., 2008). Whilst splatting is fast, our approach avoids heuristically
setting a splat radius, which leads to a smooth intensity map regardless of the number of sound particles
traced. Information such as world space position is used from the KD-Tree later when generating the
binaural audio as the sound paths need to be connected to the Head Related Impulse Response (HRIR) for
evaluation. The reflection type at the intersection is then sampled, the intensity of the sound particle is
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appropriately modulated, and the tracing continues. This process continues until the tracing process is
terminated stochastically via Russian Roulette. This process is shown in Algorithm 1.

Algorithm 1: Sound Particle Tracing
KD-Tree kd
for each sound particle do

Sample frequency F
Sample sound source emission
Store sound particle on sound source in kd
Generate ray starting at sound source
while Path is not terminated do

Store sound particle at intersection in kd
Sample surface reflection and generate ray
Apply Russian Roulette

end while
end for

The second step generates the auditory intensity map through density estimation using the previously
stored sound particles. This is a view-dependent map which encodes the intensity of the sound at points
visible in the scene in the view direction. A ray is generated for each pixel using jittered sampling, and
density estimation is performed at each primary hit point x using a balloon estimator for a KNN-search.
This expands an initial search radius in world space until N sound particles are located. This process is
accelerated using the KD-Tree which stores the sound particles. Once the N nearest sound particles to the
primary ray hit point are found, a density estimate is performed according to the following equation:

So =
1

πr2

N

∑
i=1

P(i) f r(x′(i),ωi(i),ωo,F(i)) (1)

where So is the pressure at the primary hit point x, r is the radius from the KNN-search, P(i) is the pressure
associated with the i’th nearest sound particle, f r(x′(i),ωi(i),ωo,F(i)) is the frequency dependent surface
auditory reflectance function (see Siltanen et al.(Siltanen et al., 2007)) at point x′ parameterised by the i’th
incoming sound particle direction ωi(i), the direction to the listener ωo and frequency Fi. This function
encodes how sound of a certain frequency F reflects off a surface. The value N is a user defined value (we
use 50). This step is shown in Algorithm 2.

Algorithm 2: Auditory Intensity Map Generation
for each pixel p do

Sample pixel and generate ray
Calculate hitpoint x
Find N nearest sound particles
Calculate pressure at x (Equation 1)
Store pressure in map at p

end for

This novel concept of pressure flux through screen space to represent the directionality component
of sound is shown in Figure 1 along with a visualisation of the cache point storage in the scene for one
octave band.

3.2 Temporal Map
Hearing is substantially weaker than vision in spatially related tasks. However, the temporal resolution of
the Human Auditory System (HAS) is higher than the visual temporal resolution. According to Fujisaki
et al. it is 89.3Hz (Fujisaki and Nishida, 2005). In order to make the auditory intensity map applicable
temporally to the spatial domain it is necessary to weight the importance of the generated spatial sound
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Figure 1. Sound Particles Visualisation and Intensity Maps. The Sound Particles are shown as points and
are coloured by stored pressure, red to blue, 1 to 0. The sound sources are denoted by an "S" character in
the images. The lounge sound is a phone ringing, the kitchen sound a microwave starting up and running
and the restaurant sound is a sample of music emanating from the speakers.
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intensity map. The work in auditory saliency maps can do this by predicting important regions of the
acoustic profile into temporal feature vectors. These feature vectors sit as a weight between using the
sound intensity maps and visual saliency maps in a perceptual selective temporal renderer.

In addition, the application of a spline introduces the weight in advance of the predicted onset and
thus allows the selective renderer pipeline to not be reactive to attentional models but to be proactive and
sample an area in advance of predicted attention towards that area. More information on this spline can be
found in Section 4.3.4.

Fusion for audio-visual inputs can be performed at two distinct levels: low-level, at the extracted
saliency; or high-level, at the original feature vector level. Given a video stream, audio-visual salience
would be construed as a temporal sequence of audio-visual saliency values. This would have each value
represent a measure of importance of the multi sensory stream at every frame m. This may result in some
form of fusion of the two features, which may be non-linear, have some form of memory or vary with
time. For example, for the purposes of the experiments presented in Section 4, this paper proceeds with a
linear and memoryless schema for this audio-visual fusion:

S[m] = wA ·SA[m]+wV ·SV [m] (2)

where the weights wA and wV assigned to the fusion can be perceptually guided based upon a high level
load balancing framework. However, in the case of the experiment presented in Section 4 these are
assigned values: wA = FV [m] and wV = 1−FV [m] where FV [m] is the sound saliency feature vector trace
for the relevant audio sample corresponding to frame m. SA and SV are the selective guidance mechanism
for the image plane for the different modalities, audio and visual respectively. This acts as a temporal
slider between the standard visual saliency map and the auditory intensity map based upon the salient
features of the acoustic information.

Figure 2 shows the original visual saliency, the sound intensity map, and a weighted combination for
frame number m = 180, time = 3s. This is shown for the Lounge, Kitchen and Restaurant scenes with the
respective value of FV [m] for the relevant audio on a scene by scene basis guiding the weighting.
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Figure 2. Comparison of visual and auditory intensity render mixes. LLS: Low Level Saliency Map,
AIM: Auditory Intensity Map, MIX: The Mix strategy which combines both techniques together.
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4 PSYCHOPHYSICAL EXPERIMENTAL LAYOUT AND PROCEDURE

The psychophysical experiment outlined in this section intends to validate two frequently used selective
rendering operators against the algorithm reported in Section 3.1 and also a non-temporal intensity-only
version of this.

4.1 Method
Four rendering strategies are used to evaluate the two methods presented in the previous section and
compare with more traditional methods: Uniform (Uni), each pixel is sampled uniformly; Visual Saliency
(Sal), each pixel is sampled based on the visual attention prediction map; Sound Intensity Map (SoSal),
each pixel is weighted based upon the auditory saliency trace and the intensity map from acoustic
simulation only; and, Temporal Map (Mix), each pixel is sampled by a weighted combination of the
visual saliency map and the temporal auditory saliency trace weighted by the directional intensity acoustic
simulation.

Pairwise comparisons amongst all the renderings for three scenes were used to judge the proposed
methods. Pairwise comparisons were chosen as there were not that many techniques to compare against
so a comparison of all methods against each other was feasible within a reasonable time. Participants
were asked to always choose one of the two pairs (forced choice).

The experiment used 18 image pairs, six comparisons for each of three scenes presented in Section
4.3.1. The conditions investigate the effect of various maps against one another in a pairwise performance
test. The rendering strategies are governed, not by the algorithm, but by the pixel sampling strategy and
the render function cost.

4.2 Participants
A total of 28 participants took part in this experiment, 21 males and 7 females. Participants reported no
hearing difficulties and normal or corrected-to-normal vision. The age range of participants was between
21 and 42, with an average age of 27. Each participant was presented with all of the scenes, thus looking
at a total of t(t−1)

2 ×3 = 4(3)
2 ×3 = 18 image pairs.

4.3 Materials
The participant sat on a chair, with the backrest of the chair 115 cm from the display. Binaural headphones
were used for audio delivery and the monitor used was a 37" LCD panel display. The resolution of
the LCD panel was 1024×768 with a refresh rate of 60 Hz and images displayed corresponded to this
resolution so no up or down scaling was necessary and the images were displayed natively. The 2 channel
audio streams encoded the attenuation and delays of the HRIR for every sound contribution path reaching
the user in the simulation. The convolved sound was represented as a two channel lossless 24-bit .wav file.

A significant number of materials and parameters have been used for the user study so they are
discussed in detail in the following subsections.

4.3.1 Scenes
Three different scenes of varying complexity were used, each with a static camera. Figure 4 demonstrates
renders (and saliency maps) of the three scenes termed: Lounge, Kitchen and Restaurant. The sound
sources used in each of these scenes were congruent to the scene and were representative of an object in
the scene. In the Lounge scene there was a phone ringing, in the Kitchen scene the microwave was turned
on and, finally, in the Restaurant there was some music playing from the speakers. Each of the sounds
was spatialised for that point and the listener was positioned at the same position as the camera.

Render Cost Function: In a selective rendering pipeline given a map as a heuristic to weight the sampling
strategy; a cost to compute an image in terms of the degree of sampling used can be given as:

V =
w

∑
x=0

h

∑
y=0

smin +((smax− smin) · sal(x,y)) (3)

where V is the number of samples required to compute an image, smin is the minimum number of samples
used to calculate radiance through a pixel, smax is the most number of samples used to calculate this,
sal(x,y) is the weighting coefficient for a specific pixel in image space, and x and y are pixel coordinates.
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Scene Sampling smin smax Avg. SPP

Lounge Uni 1690 1690 1690
Lounge Sal 1200 5000 1700
Lounge SoSal 500 5000 1719

Kitchen Uni 630 630 630
Kitchen Sal 200 2105 627
Kitchen SoSal 200 2000 613

Restaurant Uni 75 75 75
Restaurant Sal 70 90 73
Restaurant SoSal 70 95 73

Table 1. Render Cost Function Across Scenes. Avg. SPP (Samples per pixel) is the average number of
samples used to generate an image, dictating complexity.

To investigate the perceptual difference between two selective rendering strategies it is necessary
to control this render cost function so that, given a number of samples to generate each image, V , an
optimisation process starts to vary smin and smax such that (S ≈ V )± f where f is some user defined
control of sufficient leeway to compensate for the fact that smin and smax are restricted to integers in the
optimisation process and S is the actual number of samples used in the generation of the image.

Varying render cost functions were used to investigate if the technique was applicable generically or
not. Table 1 shows the various smin, smax for the various sampling methods used.

The Visual Difference Predictor (VDP) (Daly, 1993) results of comparisons between the three
sampling strategies are presented in Table 2 and shown in Figure 3. The VDP results show there are
distinct differences between the selectively rendered images for the same computational costs; effectively
indicating that without sound there are clear differences between the methods.

Scene Uni vs. SoSal Uni vs. Ref SoSal vs. Ref

Lounge 28.8546% 45.8543 % 13.8315%
Restaurant 7.17% 75.6775% 80.0777%
Kitchen 8.4064% 63.4815% 63.0377%

Table 2. Selective Render VDP Analysis at P>75%

4.3.2 Vision
Visual saliency predictor maps are computed using Itti et al’s method (Itti et al., 1998). The saliency
maps are shown in Figure 4. This step used the reference uniform path traced image as the input to the
saliency generation. However a GPU snapshot of the scene could just as easily be used in a real time
implementation of this pipeline, as suggested by Longhurst et al. (Longhurst et al., 2006) and by Yee et
al. (Yee et al., 2001).

4.3.3 Audio
The binaural format was chosen to reproduce acoustic spatialisation features within the multi-modal
VR environment. The pipeline calculates the Room Impulse Response (RIR) in the environment for a
particular sound source location and listener position. This RIR encodes how the sound paths travel from
the source to the listener in the environment. To convert this to binaural, a modelled Head-Related Transfer
Function (HRTF) was implemented using the structural models of the Inter-Aural Time Difference (ITD)
and Inter-Aural Level Difference (ILD) equations. This was done per N paths in the acoustic simulation
for each azimuth and elevation to the listener position. These delays and attenuations are convolved with
the RIR to provide a binaurally encoded impulse response. Figure 5 shows the RIRs from the scenes used.

Simulations were performed on monaural anechoic sound and using the pipeline described above,
rendered to encode spatial features of the presented environments: phones in the lounge, microwave in
the kitchen and speaker playing music in the restaurant. In order to generate the RIRs, accurate material
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Figure 3. Selective Render VDP Image Comparisons. From top to bottom by row; Lounge, Kitchen and
Restaurant scenes respectively. This probability of detection map displays how likely a difference
between two images is noticeable. Red denotes high probability, green - low probability.

absorption coefficients had to be used in the environment to accurately encode the frequency responses of
different material absorption rates. Common material α f values per frequency were used appropriately
throughout the scenes on correspondent surfaces, after (Surfaces, 2012).

4.3.4 Auditory Saliency: Feature Vector Curves:

Using the auditory saliency model suggested by Coath et al. (Coath, 2005; Coath et al., 2009) to extrapolate
salient identities of the transient onsets provides a coarse grained acoustic feature vector for an arbitrary
wave form. The attention curve for the audio signal is constructed from the saliency values, provided by
the set of audio features (transient onsets, cochlear response and spectral change). Conceptually, salient
information is modelled through source excitation and average rate of spectral and temporal change.
The simplest scenario of an audio saliency curve is a weighted linear combination of the normalised
features. A perceptually motivated approach is a non-linear fusion technique, based on time varying
weights. Temporal variation information is extracted by the onset and offset portions, while spectral
change is calculated from the intermediate sustain periods. Energy measurement has previously been used
to detect speech event boundaries (Kayser et al., 2005) and as such is used as an index to an event of a
transitional point.

For use in the selective rendering pipeline the values from the saliency trace need to be absolute values
and then normalised so the trace lies in the range x ∈ 0,1: x = ||x̂||. Fitting a spline to this in order to
smooth map transition states helps to mitigate flickering as weights are altered. Other metrics may be
chosen for this process of regularisation, such as a solid blur. Whilst the HVS supports an element of
flicker fusion at the rate of 26Hz (Hecht and Shlaer, 1936), temporal discrepancies are still picked up.
Due to the temporal sensitivity of the HAS the important parts of the vector are the most salient, and
thus highest values. The saliency trace, x, was processed into ten bins of max values. These values were
used as derivatives for a 1-D bicubic spline interpolation. The bicubic interpolation problem consists of
determining the 1000 coefficients ai j to upsample the vector back to the appropriate size. Figure 6 shows
the original absolute normalised saliency feature vectors (trace), x̂ and the bicubic spline fit version for
the microwave sound in the Kitchen scene. This process is shown for a 1-D spline fit p(x,y) where ai j are
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Figure 4. Low level Saliency Maps and the Path Traced Renders of the three scenes. The audio
reproduced in each room; Lounge - Phone, Kitchen - Microwave, Restaurant - Speaker playing music.
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Figure 5. Scene Room Impulse Responses; (top) Lounge, (middle) Kitchen, (bottom) Restaurant. A
room impulse response is the response of an environment to an input signal, in this case an approximation
to an ideal Dirac Delta function.

constants:

p(x,y) =
1000

∑
i=1

1

∑
j=1

ai jxiy j (4)

4.3.5 Temporal Modal Map
In the absence of animations and just single image exposure it was possible to blend the Sal render and
the SoSal render temporally guided by the relevant feature vectors for Mix. A timer kept track of which
feature value in the vector was appropriate for the current time. A shader read this from a text file of
precomputed feature values and two textures were blended to create the final temporal composite.

4.4 Procedure
The display’s update frequency was controlled to 60Hz to allow v-sync within the experimental code
to easily derive current time and the correct auditory feature vector value for that time. The distance
between equipment was standardised and controlled. The experiment was conducted in a dark room to
avoid any effects of ambient lighting and participants were allowed five minutes in order to adjust to the
environment before commencing the actual experiment. Video presentation order was randomised. The
participants were briefed prior to the experiment in order to gain a clear understanding of their task.

Each participant was assigned the 18 image sets in random order and the A or B image was randomised
within that image (slide) set. Participants were presented videos in the order A→G→B with a decision
slide that waited for an input: “which video A or B is closest, in your opinion, to slide G?”, where G
is the gold standard reference, enforcing two alternative forced choice assessment. This ordering was
chosen as opposed to side-by-side because the sound would be mismatched spatially if the participant had
to look between screens. A→G→B→G heuristic could have been chosen but repeated exposure to the
same material could introduce more bias and was deemed less appropriate. Image videos were presented
asynchronously with the relevant modality for a total of five seconds each. Buffer slides, providing a
visual cue (displaying A or B) as to the current video to be shown were presented for two seconds before
the advent of the respective video. The decision slide halted the experiment and waited indefinitely for
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a response on the pairwise comparison (input A or B on the keyboard). Spatial sound congruent to the
object in the scene was delivered to the participant for the full duration of the relevant videos.

5 RESULTS & ANALYSIS

This section presents the results of the experiment.
The overall similarity results for the 3 scenes are shown in Tables 3, 4 and 5. The paired comparison

data is provided in Table 7 and coloured rings highlight that no significant difference resulted in between
the selective rendering strategies on a per scene and/or overall basis.

5.1 Statistical Analysis
The null hypothesis is given as H ′0, that all conditions are equal under testing (H ′0 : πi =

1
2 ). The alternative

being that not all the conditions πi are equal. pi j is the number of times that an image i is preferred to
image j by a participant. The sum of this result per participant, excluding the condition where i = j, is
given as Σ:

Σ =
t(t−1)

∑
i6= j

( pi j
2

)
(5)

where, t is the number of selective rendering strategies to be considered. Σ is the sum of the number of
agreements between pairs. Kendall and Babington-Smith (Kendall and Babington-Smith, 1940) proposed
a coefficient of agreement (also termed concordance) amongst the experiment participants defined as:

u =
2Σ

( s
2)(

t
2)
−1 (6)

where, s is the number of participants and u = 1 if all s participants made identical choices during the
experiment. The less participants agree in their choices, the smaller u becomes.
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If u is statistically significant then there are differences between the conditions and the null hypothesis
can be rejected. The significance test of summed scores aims to find a value R′ such that the probability
P(R ≥ R′) ≤ α, where α is an arbitrary value α ∈ [0,1] and is typically assigned 0.05. The Σ for each
condition presented which have differences of less than ±R is deemed to not be significantly different
and the conditions can be perceptually grouped into the same categories. However, the conditions with
different perceptual groups are declared to be significantly different when Σ±R does not fall in range
with other values of Σ and the condition is awarded a separate perceptual grouping.

If the score difference for a given scene between two rendering conditions is larger than R+ (the
smallest integer greater than R′), the conclusion is that there is a statistically significant difference between
the two conditions presented and this indicates that one is perceptually closer to the ideal reference image
than the other. A more complete write up of this statistical process is included as part of the supplementary
material for the interested reader.
Preference Tables
Results for the computation are based on preference tables, which can be viewed as matrices in which one
method was better than the other. The preference tables for each scene are presented in Tables 3, 4, 5 and
combined in Table 6.

Uni Sal SoSal Mix Score

Uni * 10 8 6 24
Sal 18 * 11 9 38
SoSal 21 17 * 5 43
Mix 21 19 23 * 63

Table 3. Preference matrix for the lounge scene.

Uni Sal SoSal Mix Score

Uni * 13 5 7 25
Sal 15 * 13 4 32
SoSal 23 16 * 9 48
Mix 21 23 19 * 63

Table 4. Preference matrix for the kitchen scene.

Uni Sal SoSal Mix Score

Uni * 10 10 5 25
Sal 18 * 8 5 31
SoSal 18 20 * 8 46
Mix 23 23 20 * 66

Table 5. Preference matrix for the restaurant scene.

Uni Sal SoSal Mix Score

Uni * 33 23 18 74
Sal 51 * 32 18 101
SoSal 62 53 * 22 137
Mix 65 55 62 * 192

Table 6. Preference matrix for all the scenes combined.
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5.2 Results
The results are shown in Table 7. In all scenes where there was ambiguity in the grouping, more than
one technique was grouped together. The Mix operator came top of every preference table, had fewer
discrepancies and was perceptually distinguishable statistically in two cases of testing whilst being in the
top group of the third case. It is also first in the overall and statistically significantly better than the other
methods.

The coefficient of consistency in this experiment was ζaverage ≈ 0.75 and as such the participant’s
consistency was deemed to be good and can all be included in the paired comparison study. The
results provided an R+ (the smallest integer greater than R′) of 19. χ2

d f=3,p<0.05 = 7.82,χ2
d f=3,p<0.01 =

11.35,χ2
d f=3,p<0.001 = 16.27. This is shown against cumulative votes for each scene and aggregated in

Figure 7. In addition the average coefficients of agreement and consistency are presented. As can be seen
the results were perceptually distinguishable to a degree in all scenes. In all cases the null hypothesis is
rejected and the multiple comparison range test can be used to find any pairwise difference scores equal
to or greater than R+ to be significant.

Lounge Kitchen Restaurant

Uni 24 25 25

Sal 38 32 31

SoSal 43 48 46

Mix 63 63 66
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Figure 7. Method Preference; Error bars indicate the range R+.

uaverage ζaverage χ2 P, df=3 Rank 1 Rank 2 Rank 3 Rank 4

Lounge 0.1658 0.7143 32.86 <0.05 Mix SoSal Sal Uni
Kitchen 0.1825 0.7571 35.57 <0.05 Mix SoSal Sal Uni
Restaurant 0.1975 0.7571 38.00 <0.05 Mix SoSal Sal Uni

All 0.1819 0.7428 35.47 <0.05 Mix SoSal Sal Uni

Table 7. Overall similarity study conclusion for the various scenes presented with spatialised acoustic
stimuli and visual congruency’s.

The Mix model described in this paper performed best in pairwise comparisons in every scene and
render cost function. An ordering of Mix→ SoSal→ Sal→ Uni prevailed throughout. The Lounge
scene has χ2

3,0.001 < 32.8571, Kitchen scene χ2
3,0.001 < 35.5714, Restaurant scene χ2

3,0.001 < 38 and H ′0
is rejected for all cases. The perceptual grouping was not clear cut in all cases, however the multiple
comparison range test has the conspicuous property of making it difficult for true differences to show
themselves. Yet the method allows comparisons to be performed after the initial inspection of experimental
results and preference matrix generation. In addition, the probability of any incorrect declaration of
grouping differences is controlled at the significance level reported in P. As such, any declaration of
grouping is stringently correct. In this case, whilst no clear cut group exists for every set, the fact that
under the same render costs different sampling strategies report a perceptual difference is an important
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result. What is also interesting is that the auditory intensity map presented in this paper also performs
well, in the mid-range grouping with the Sal set. This is likely a result of the spatially encoded directional
features of the audio. The answer may lie in temporal sensitivity of the HAS. However, this would require
further investigation.

6 DISCUSSION

The performance expected from the auditory attention models is limited by the features used in the models:
intensity, frequency contrast, temporal contrast and cochlear response. Conventional auditory saliency
models fail to perform tasks that require features which are not considered. For example, the model used
in this paper uses monaural signals, and spatial cues are not considered. As a result, while the model is
successful for tasks which are represented by at least one of the features of the model, it fails at the tasks
which require spatial cues, such as localisation and sound source separation. This is accounted for by
synergy between the presented auditory intensity map and auditory saliency feature vectors. The intensity
map encodes features of saliency, localisation and separation in the visual domain that are not considered
by the auditory saliency model alone. A combination of the feature vectors, intensity map and visual
saliency map formed the temporal hybrid auditory-visual domain model. As this model proposed in this
paper is a bottom up model, assuming no task driven intervention, this means that the method should be
effective regardless the sensory content, however further work would have to investigate the impact of
tasks on this scenario.

7 CONCLUSIONS AND FUTURE WORK

This paper has presented a novel temporal hybrid multi-sensory saliency detection algorithm for use
in the spatial visual domain. This method exploits the HSS’s bottom-up approach. The results extend
previous work of sound’s combination with graphics and confirms the impact that the inclusion of sound
into a high-fidelity virtual environments has for selective rendering. The algorithm meshes visual saliency
and auditory saliency in a selective rendering pipeline to temporally and dynamically load balance
computation. The algorithm is psychophysically evaluated on a number of scenes, and across a number of
render cost functions to evaluate its performance. It is shown to perform significantly better than simple
image saliency or acoustic intensity maps when they are used as a rendering strategy and is generic in
its formation and application. In visual-auditory VR environments the presented algorithm accounts for
visually important information when the auditory information presented is not deemed to be important
and vice versa.

Future work will investigate the variability of the weighting function used across the different maps,
especially investigating the effect varying frequencies have upon sound and directional attentional capture.
This type of map cannot, currently, be used for realtime processing in virtual environments. The aim of
the approach was to generate the auditory intensity map as a bi-product of the acoustic simulation step
such that when hardware is more able to simulate closer to realtime the technique is more feasible. The
type of simulation may be changed in the future to account for wave based effects of more recent sound
simulation models. Phonon tracing was deemed appropriate for the inherent practicality of the sound
cache schema, but especially low frequency diffraction effects need to be better accounted for. The scene
types could be more varied in order to draw more general conclusions, however in terms of the technique
presented, outdoor type scenes should be invariant to the results. It would be a logical progression to
look into dynamic scenes with moving camera sequences and varying frequency lighting. Sound could
be tested presented spatially, decoding ambisonics to 5.1 instead of binaural. Indeed even stereoscopic
imagery could be an interesting tangent to the research. In evolutionary terms, certain sounds are more
salient, and in fact, the pinna has the effect of amplifying these mid band frequencies down the auditory
canal. In addition it is necessary to study the effect multiple sound sources have on visual attention. A
first hypothesis would be the more salient source in the temporal domain would dominate spatially in the
visual domain. A similar avenue of research is to study the intensity of the sound sources, specifically at
which decibel level does the effect on visual attention come into play. Whilst the human ear can detect
sound, the threshold of audibility remains true, but the effect to which salience takes precedence may not
necessarily be linear in scale.
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