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Abstract

This thesis concerns the use of software measures to assess the quality of object-oriented
designs. It examines the ways in which design assessment can be assisted by measurement
and the areas in which it can’t. Other work in software measurement looks at defining and
validating measures, or building prediction systems. This work is distinctive in that it

examines the use of measures to help improve design quality during design time.

To evaluate a design based on measurement results requires a means of relating measurement
values to particular design problems or quality levels. Design heuristics were used to make
this connection between measurement and quality. A survey was carried out to find
suggestions for guidelines, rules and heuristics from the OO design literature. This survey

resulted in a catalogue of 288 suggestions for OO design heuristics. The catalogue was
structured around the OO constructs to which the heuristics relate, and includes information
on various heuristic attributes. This scheme is intended to allow suitable heuristics to be

quickly located and correctly applied.

Automation requires tool support. A tool was built which augmented the functionality
available in existing measurement tools by allowing user definable measures and measure

sets, and taking input from multiple sources of design information (e.g., CASE tools and

source code).

The work described so far presents a potential method for automated design assessment and

provides the means of automation. An empirical study was then required to consider the

efficacy of the method and evaluate the novel features of the tool.

A case study was used to explore the approach taken by, and evaluate the effectiveness of, 15

subjects using measures and heuristics to assess the design of a small OO system (15 classes).
This study showed that semantic heuristics tended to highlight significant problems, but

where attempts were made to automate these it often led to false problems being identified.
This result, along with a previous finding that around half of quality criteria are not

automatically assessable at design time, strongly suggests that people are still a necessary

part of design assessment. The main result of the case study was that the subjects correctly
identified 90% of the major design problems and were very positive about their experience of

using measurement to support design assessment.
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Chapter 1 Introduction

1.1 Motivation for the work

Many people have provided convincing arguments of why measurement is important,
e.g., (Fenton and Pfleeger 1996; Shepperd 1995). Measurement offers control and
sharpens analysis in an objective and repeatable manner. To be able to use
measurement with confidence the validation of measures is not sufficient. Users of
measurement need to know how they should use measures to achieve their particular

goals. To help measurement users with this task, workers in software measurement
need to know how people can, and do, use measurements in practice. This will help to
identify the information and support required for the successful application of

software measures. This thesis seeks to investigate how people use metrics within a

particular measurement application domain - object-oriented design assessment.

This work is essentially an investigation into the use of object-oriented design
measures for design assessment. There is a great deal of work suggesting new

measures or discussing techniques for validation, but less on the practical use of
measurement. The existing work on measurement utility focuses mainly upon
prediction systems (Zhao, Wohlin et al. 1998; Li and Henry 1993b; Basili, Briand et
al. 1996). There is little published work investigating other types of measurement use.

This work is intended to start redressing the balance and to encourage other

researchers to follow suit.

Many existing measures are described as being an indicator of some or other ‘ility’.

This is an indication that product assessment might be a fruitful measurement use to

investigate. The intention is to investigate the extent to which measurement can be

used in assessment and where its limitations lie.



Object-oriented design products were chosen as the focus of the assessment for
several reasons. There are a large number of object-oriented design measures in the
literature. Assessing earlier lifecycle products allows for cheaper and easier corrective
action based on the assessment. This suggests that design products, rather than code,

could be most usefully assessed. Object-orientation is also the current vogue for

designing systems with UML becoming heavily used in industry.

1.2 Statement of the problem

1.2.1 Aims of the work

The goal is to examine the theoretical limitations and practical considerations of
people using measurement to assess design quality in practical situations. This general

goal may be broken-down into four more specific aims.

1. To determine the degree to which quality can be assessed at design time and the

degree to which this assessment can be automated.

2. To consider mechanisms for achieving design assessment and its automation.

3. To explore the necessary and desirable functionality of tools to support design
assessment.

4. To examine empirically how people use measures for design assessment In a

practical situation.

1.2.2 Scope and limitations

Some authors have published work attempting to show correlations between particular
measures and external quality indicators. They attempt to predict future values for
measures such as defect density. That i1s not the aim of this work. This thesis 1s
primarily concerned with the assessment of the quality of the designs themselves,
rather than the prediction of future code quality. The purpose of this assessment is to
help improve the quality of OO designs at design time.

The investigation of measurement utility looks at the extent to which measurement
can be used to assess quality and the degree to which this assessment can be

automated. Essentially, it is an examination of the scope and limitations of software



measurement within the quality assessment of software products. As an illustration of

product assessment, the thesis looks at the assessment of design products for object-

oriented systems. Although a very particular application of measurement is being
examined, and there will certainly be some results specific to object-oriented design, it
1s hoped that much of the work on how measurement should be utilised will generalise

beyond the particular illustrative example.

When the term quality is used within the thesis it has a specific meaning. The thesis
deals with what will be termed the ‘evaluation’ of products, as distinct from validation
and verification (V&V). Evaluation is not concerned with ensuring that the design
meets the user’s real requirements or checking that the design produced matches the
specification. It is the assessment of how good the design is relative to the multitude
of other possible designs for the same problem (assuming V&V have already been

completed). This distinction is discussed more fully in chapter 2.

In examining measurement utility, many of the other aspects often associated with
measurement research are also discussed, e.g., metric definition and measurement
validation. However, this thesis will not suggest any new measures or perform any

measurement validation.

Although it is an aim to empirically examine how people use measures for design
assessment in a practical situation, several potentially useful approaches to such an
empirical study could be taken. This work will not seek to build cognitive models
(Nehaniv 1999) of measurement users or investigate measurement use in the very fine
detail provided by methods such as think aloud protocols (Rosson and Gold 1989; von
Mayrhauser and Vans 1995). Detailed work of this type may well prove to be useful

research, but given the current lack of work in this area it was decided to concentrate

on higher-level questions of the subjects’ efficacy and general approach.

1.3 Position of the research

The most straightforward way to position the work done for this thesis is within

Whitmire’s software measurement framework (Whitmire 1997). This framework



identifies three views onto four objects of measurement. The strategic view considers
the long-term view of the organisation, the tactical view considers the current project,
and the technical view considers specialist design issues. The objects to measure are:
processes, the things we do; projects, instances of processes; products, the
deliverables created; and resources, such as people or time. The framework has a
further dimension that considers the role of measurement. Whitmire identifies the
following roles for measurement: estimation, prediction, assessment, comparison and
Investigation. Assessment is the evaluation of a single software entity without

reference to measurement values from any other entity. Comparison is also used for

evaluation, but compares the measured values of two or more similar entities.

Whitmire makes a distinction between estimation and prediction mainly on the basis
that estimation is used to determine likely resource levels and that prediction is used
to determine likely future values of product measures. Investigation is the use of

measurement data in research to support or refute hypotheses.

This work concerns the measurement of the products of object-oriented design. The
measurement of processes, projects and resources will not be discussed. Although a

limited amount of discussion will be made at the tactical and strategic levels, this
work will focus on the fechnical view. In examining the possible applications of
object-oriented design measures consideration will be given to all of the roles of

measurement suggested by Whitmire, but with particular emphasis on assessment and

comparison.

To recap, this work takes a fechnical view of the measurement of the products of

object-oriented design to perform assessment or comparison on those products.

1.4 Method

The aims outlined in section 1.2.1 are not independent. There is a clear flow of work

through the list from beginning to end, with later aims depending on the earlier ones.

The method of addressing these aims will now be considered aim by aim.



Aim 1: To determine the degree to which quality can be assessed at design time and

the degree to which this assessment can be automated.

The first aim 1s addressed by using the standard McCall quality factors (McCall,
Richards et al. 1977) to illustrate the degree to which they can be assessed with the

information available in a design model and the extent to which this assessment is

objective (and hence, in theory, automatable).
Aim 2: To consider mechanisms for achieving design assessment and its automation.

The second aim is tackled in two ways. Firstly, by looking at existing quality
modelling techniques and design heuristics as mechanisms for design assessment.

Secondly, by looking at the software measurement literature to assess measurement as

a mechanism for automation.

Aim 3: To explore the necessary and desirable functionality of tools to support design

assessment.

Automation implies tool support. The third aim is approached by looking at existing
suggestions regarding measurement automation and the facilities available in existing

measurement tools. Some suggested tool facilities not available in existing tools are

shown to be feasible through the production of a new measurement tool.

Aim 4: To examine empirically how people use measures for design assessment in a

practical situation.

The fourth aim involves studying the actual use of measures in the design assessment
activity. It requires an investigation into how people would actually employ
measurement to aid them in design assessment and whether measurement really aided

their assessments. This clearly cannot be done theoretically and requires an empirical

study. There is a more detailed discussion of the methodology of this study as part of
chapter J.



1.5 Thesis structure

Chapter 1 - Introduction

The introduction is intended to help the reader by providing a context within which to
read the main body of the thesis. It positions the work within the wider context,

makes a clear statement of the problem being solved. The method that will be

followed to tackle the problem is discussed and the structure of the thesis outlined.

Chapter 2 - OO design assessment

This chapter reviews the literature associated with defining and assessing the quality
of software products in general and object-oriented design products in particular. The
first stated aim of the research is 'to determine the degree to which quality can be
assessed at design time and the degree to which this assessment can be automated.’ In
order to investigate the assessability and automatability of design quality, it 1s

necessary to first consider what is meant by quality. Without a clear picture of the

attribute under study the analysis is likely to be meaningless.

The investigation of software quality begins with a consideration of the traditional

approach involving validation, verification and evaluation. Previously published
methods of modelling or quantifying quality are evaluated. The discussion is then
focused more closely on the meaning of quality, and its assessment, when applied to
object-oriented designs. This includes forays into the process of object-oriented
design and a review of object-oriented design heuristics. The final section of this
chapter considers the extent to which quality can be assessed from the information

available at design-time and the degree to which this assessment can be automated.

The particular view taken of automation in design assessment is a measurement-
centric view. To consider automation of design assessment it is necessary to consider
not only the extent to which automation is theoretically possible but also the

mechanisms by which automation may be achieved. Consequently, the mechanisms

of software measurement also have to be considered.



Chapter 3 - Software measurement

A brief history of OO software measures is presented first. This provides background
to the remainder of this chapter and context for the measures used in the case study in
chapter 5. An introduction to software measurement is then given. This includes a
discussion of what software measurement 1s and why measurements are taken, as well
as an analysis of software measurement terminology. The introduction also discusses

the important relationship between measurement and modelling and examines some

OO specific 1ssues in measurement.

If measures are being used to assess quality, it is important that they correctly
represent the attributes they purport to measure and are useful in the task to which
they are being applied. This is the job of measurement validation. The third section
of chapter 3 reviews the literature on measurement validation, critically reviewing
both theoretical and empirical techniques. A discussion of the processes by which

software measures are developed and used is presented in the fourth section.

Chapter 4 - The OO design tool

One point emerging from the discussion of software measurement is the need for
automation. After studying existing software measurement tools it becomes apparent
that they lack some features helpful for both industrial and academic users, e.g., user
definable metrics and cross-source measurement collection. A tool was proposed and
built to provide proof of concept that some of these features could be included 1n a
measurement tool and that they would be useful to end-users. This tool 1s the subject
of chapter 4. A description is given of the main development activities including the
conception, design, building and testing of the tool. The completed tool 1s evaluated

against the criteria for which it was built and compared with a range of other

measurement tools.

Chapter 5 - The empirical study

One of the main aims of the PhD programme is ‘to examine empirically how people
use measures for design assessment in a practical situation.” Chapter 5 describes this

empirical study, which used the tool described in chapter 4. In the study, 15 subjects




(full-time students and industrialists) are asked to assess the architecture of a small

system (15 Java classes) using design heuristics and measurement results.

The first section of chapter 5 presents a review of related empirical work on software
measurement. This review shows the distinct aims of this study and so highlights the
need for a new study rather than the replication of a previous one. The second section
deals with the choice of the research technique (a case study was chosen) and gives a
description of the design of the study. The design looks at the study’s questions, 1ts
unit of analysis, and the data collection techniques. The actual conduct of the study 1S
considered in the third section. This deals with a description of the subjects, their

preparation for the case study, the task itself and the data collection.

The case study results are based on assessment reports produced by the subjects and a

follow-up questionnaire. The case study database has a complex data model
populated by a large amount of data. The results section presents analyses of various

views into this data. Most of the analysis is focused toward examining the approach
the subjects took to the task and how effective they were at using automation to assist

in the assessment.

Chapter 6 - Discussion

The discussion begins with a summary of the work done. The findings presented n
the thesis are summarised and discussed in the second section. Following this 1s an
evaluation of the work done towards the thesis, which highlights its strengths and
weaknesses. Suggestions for further work are then made. These contain possible
extensions to the work presented, work to address weaknesses identified by the
literature surveys and new work suggested by the work presented in this thesis. A
final short section of conclusions completes the thesis. This section sets out what the

author believes to be the main achievements of the work.



Chapter 2 Assessing object-oriented designs

The purpose of this chapter is to examine what 1s meant by quality for software

products in general, and object-oriented design products in particular. It 1s also

intended to show the extent to which quality can be assessed from the information

contained in a design and the extent to which this assessment can be automated.

The chapter starts with a section discussing the standard elements usually associated
with software quality (validation, verification, and evaluation). In the second section,
some previous work on attempts to formalise software quality evaluation is examined.
The third section deals with aspects of software quality specific to object-oriented

design.

2.1 What is software quality

When asking the question ‘what is a good object-oriented design?’ an attempt is being
made to understand how to assess the quality of a design. This section is concerned
mainly with the philosophical aspects of the meaning of quality, rather than the
detailed process of assessing quality. The starting point for the discussion 1s a

consideration of the traditional approach to software quality involving validation,

verification and evaluation.

2.1.1 Validation

Validation is considering whether the system being built is the system the user really

wants. The system being built could be the system the producers mistakenly think the

user wants, or even the system the user mistakenly thinks he wants. Different
individuals in the client body may have different perceptions of their needs from a
piece of software. There will also be problems of imprecision in communicating these
perceived needs, both within customer groups and to the developers. These types of

problem cannot be inferred from the software products themselves and must be

handled between the client and developer. An example of validation is the use of
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prototyping to aid the discussion of system specifications. Validation is inherently

informal and is not automatable.

2.1.2 Verification

Verification is the extent to which the system meets its explicitly stated functional
requirements. A system that fully implements the stated requirements would
generally be taken to be better than one that only partially covers the requirements.
Verification of systems is usually done in an informal manner. Developers examine

the software products during reviews and decide whether the system operations

provided match-up with the functionality described in the specification.

It should be possible (in principle) to perform a thorough formal verification of a
system. Given a formal description of the specification and a formal description of
the product, it should be possible to mathematically prove their equivalence. Since
this seems such a complete and precise way of checking a system’s ‘correctness’, why
aren’t all systems produced in this way? Sommerville (2001) states that ‘verifying a
non-trivial software system takes a great deal of time and requires specialised tools
such as theorem provers and mathematical expertise’. Pressman and Ince (2000) list a
number of issues such as high start-up costs, avoiding over-formalisation and need for
expert training and consultancy that should considered before adopting formal
methods. They also state that traditional development methods should not be
abandoned, i.e., formal methods are an addition to standard development techniques
rather than a replacement for them, and as such, represent an additional cost. The
second problem is one of validation. Even if you produce a correct formal description
of what you think the user wants, you still can’t be sure that it is the system the user
really wants. This is particularly true of the formal approach where the domain
experts are unlikely to have the expertise to spot errors in a formal specification. Other
possible problems include factors such as: requirements creep; and trade-offs between
requirements, and cost or delivery time. This means that your precise formal
specification may soon no longer describe the system you are trying to build. Formal
notations are good at capturing functional requirements but less useful for specifying

other types of requirement such as performance or usability. In short, formal
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verification 1s a very time consuming, expensive and difficult task, after which you

still can’t be sure you have the desired system.

2.1.3 Evaluation

In addition to the above argument for validation, it must be pointed out that there will
be many possible solutions, for any given problem, which fulfil the specified

requirements. How should the decision be made as to which of these solutions to use?

This is the question evaluation attempts to answer.

Evaluation is done by assessing how the system measures up to the implicit
requirements of standard quality factors such as maintainability, reusability,
understandability etc. Such factors are not always independent of each other and may
indeed require trade-off one against the other. In considering the desired qualities for
a particular system, the relative importance of the various types of quality need to be

considered to help resolve such trade-off questions. This set of ‘ilities’ and their
relative importance levels can be thought of as the system’s desired ‘quality profile’.

The major question in software evaluation is how to assess the various software

qualities that comprise this profile.

The creative nature of software design has led to a craft approach to design evaluation,
which is generally done in an intuitive way. Those evaluating a solution know it is
good because it ‘feels right’. Riel (1994) suggests that what they are actually doing 1s
using a set of subconscious heuristics which have been learned through experience (a
more formalised approach to heuristic based evaluation will be discussed later). The
problem with this type of assessment is that the evaluation of a particular alternative

will vary from practitioner to practitioner depending upon their experience.

If the quality of software products is to be usefully assessed, a clear definition is
needed of what is meant by quality. Ideally, the assessment of quality should be both
objective and repeatable. This would allow quantitative, or at least comparative,

judgements to be made consistently by different assessors.
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It 1s intuitively attractive to try to produce a single quality value for a product. This
would facilitate the answering of questions such as ‘if  were to make such-and-such a
change, would the product be improved?’ However, because of the complex nature of
quality it is difficult to calculate that a product A has a level of quality X, or say that
product B is of higher quality than product C. To be able to do this requires a
quantifiable definition of quality. Budgen (1994) states that ‘the ultimate goal of
quality must be that of fitness for purpose’. This is an often-quoted definition of
quality, but it is not quantifiable. So how can a number be put to such a multifaceted

concept as quality?

A software product can be evaluated from several viewpoints, such as academic,

producer, or customer. There are any number of abstract properties which may be
considered to have a bearing on quality, such as portability, maintainability,

reusability, readability and so on. These properties were chosen to help produce good
commercial systems. However, from an academic point of view they are largely
considered in isolation from any higher level commercial goals. In academia a
product can be considered as ‘good’ in itself without considering how it might benefit

the company producing or using the product.

From this academic perspective, the quality of a product can be assessed by
individually assessing each of the software engineering principles. This means
producing a separate set of values representing the portability, reusability,
maintainability and so on, rather than a single value for quality. These individual

measures can be derived from metrics applied to the product.

The quality of a system can also be considered from a producer’s viewpoint. At the
most fundamental commercial level, the best design may be considered the one that
does most to help the company achieve its long-term goals. Yourdon (1994) defined a
good design as ‘... one that balances a series of trade-offs to minimise the total cost of
the system over its entire productive life span’. It may be argued, however, that
Yourdon’s view of minimum cost is too limited a view and may not be the highest

priority for a company. The definition secks only to minimise costs but neglects
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maximising returns or minimising risk. These considerations are also important to

businesses.

A company about to produce a system will want to know not only, how much will this
piece of software cost, but also, how great will the return on the investment be?
Moreover, what are the chances of the project failing? Will coding a particular
product give a greater or lesser return than this alternative product? Another
consideration is that returns on the investment may occur outside of the project itself,
and a wider company view of the value of a product may have to be taken. Designing
or coding for reuse, for instance, incurs costs during the project that have their pay
back outside of the project. As well as the consideration of these direct financial

benefits, there are indirect benefits to consider. Choosing a project that moves the
company into new market areas, introduces them to new customers, or improves

company image, may be considered as more important than immediate financial

return.

To enable assessment of this kind of commercially based quality, requires the ability
to estimate to the likely costs, returns, and risks of a project based on the abstract
values calculated for adherence to the academic principles. This would only be
possible by creating models in terms of the measurable properties used in assessing
the academic principles. Empirical data could be used to statistically derive the
relationships and coefficients between these metrics and the likely costs, returns and

risks of a project. These relationships and coefficients may well prove to be company

specific and so require calibration on a company by company basts.

The other main perspective from which the quality of a piece of software can be

viewed is that of the customer. From this perspective, the view taken is largely that of
the observable behaviour of the system. To this extent the customer’s view of quality
is, at a high level, a subset of the producer’s view. This must be so because one of the
main goals of the producer is to satisfy the customer needs from the software as laid

down in the specification.
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The customer is also concerned with interactions between themselves and the
producer that are affected by the quality of software. An example of this i
maintainability. From the point of view of producers, maintainability might be
defined by the likely cost of making a change to the system. From the customer’s

viewpoint, maintainability might be defined as the time taken for a requested change
to be made. While the time taken doesn’t depend solely on the quality of the product,
the structure of the system architecture will effect the ease with which a change might

be made and so, indirectly, the time it will take.

Some researchers have suggested (e.g., (Kitchenham 1987)) that many aspects of

quality are only measurable during the active life of a product. An alternative view
might be that these attribute levels are intrinsic to the product and independent of what
happens during the product lifetime. To take the first view means that assessing these
attributes whilst the product is under development is attempting to predict what will
happen in the future. To take the second means that when the product is being .
assessed the measurement/estimate is either a direct or an indirect assessment of an

attribute that already exists in the product. Which is the better definition to choose

will depend on the goal of the measurement. These ideas can be further examined by

using maintainability as an example quality factor.

If the definition of maintainability allows it to be measured before release then it 1S
being defined as an intrinsic property of the system. An operationalised version of a
definition such as ‘the propensity of the system to be easily maintained’ could be used.
This 1s an internal measure and not a prediction of any externally observable or
verifiable behaviour (although the result may be used for prediction or its exact

definition selected on the basis of predictive power for some other external attribute).

Measuring the maintainability of a system by a metric such as ‘maintenance effort per
change request’ would require us to take the view that this attribute could only be
measured during the active lifetime of the product. This definition requires a view that
maintainability is dependent not only on the system itself but also on its usage

environment. If this definition is used then any attempt to assess maintainability
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before release i1s prediction rather than measurement. The definitions relate to

different goals. The first definition relates to the quality of the product itself (useful if

the maintenance environment 1s unknown). The second relates to the ability to be able

to allocate funds or estimate costs for maintenance.

What, in an ideal world, would it be most desirable to know about the future
maintenance of a product? This question might lead to defining maintainability as
‘the total maintenance cost over the system lifetime’. However, some systems could
be so unmaintainable that they rapidly cease to be supported. This type of system
degradation is described in Leyman’s ‘law’ of increasing complexity (Lehman and
Belady 1985). It describes the tendency of system structure to degrade over time
unless effort is actively applied to reverse this trend. Even though the cost per change
would be high for such unmaintainable systems, they could have a lower total

maintenance cost due to the shorter supported lifetime.

A better alternative definition for maintainability would therefore be ‘the average cost
per change request over the system lifetime’. It is, however, impossible to look into
the future to see which changes will be made and what their cost will be. An

assessable alternative definition would be ‘the estimated average cost of predictable
changes’. The costs of the various predicted changes could be weighted by their
likelihood of occurrence. With this type of pre-release definition of maintainability,
metrics such as ‘maintenance effort per change request’, measured after release, could
then be used to give an indication of how well maintenance is being done.

Alternatively, it could be used to decide the accuracy of the original maintainability

estimate.

Similar arguments and definitions could be derived for other quality factors;

maintainability i1s used here only as an example. This shows that although words like

maintainability are used as if everyone shares and agrees a common definition, this is
not case. Workers in software quality may talk with a common vocabulary, but they
often intend different meanings. However, it questionable whether a single definition

would be desirable, the precise definitions will depend upon the viewpoint from
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which the assessment is being made; the environment in which it is being made: and
the goal of the assessment. Since many valid viewpoints and goals exist, many valid

definitions for quality factors will also exist.

2.2 Software quality modelling

In an attempt to move towards a wider understanding and a more precise definition of
quality, several researchers have produced so called ‘quality models.” Early work on
software quality modelling was done by Boehm. Brown et al. (1978) who mapped
primitive characteristics (such as device efficiency, or structuredness) to intermediate
characteristics (such as reliability, or modifiability). McCall, Richards et al. (1977)
presented their own extended set of quality criteria (primitive characteristics) and
quality factors (intermediate characteristics) and standardised’ the terminology. This

1s the so-called factor criteria metric (FCM) method.

2.2.1 McCalls quality factors

McCall organised his quality factors into three main areas as shown below.

Maintainability (Can | fix 11?) Portability (Will | be able to use 1t
Flexibility (Can I change it?) on another machine?)
Testability (Can I test 1t?) Reusability (Will I be able to reuse

some of the software?)
Interoperability (Will I be able to
interface it with
another system?)

Product
Transition

Product
Revision

Product
Operation

Correctness (Does it do what | want?)

Reliability (Does it do it accurately all of the time?)
Efficiency (Will 1t run on my hardware as well as it can?)
Integrity (Is it secure?)

Usability (Can [ run 1t?)

Figure 2-1 McCall’s software quality factors

McCall also showed the influences between this set of quality factors and a larger set
of quality criteria. These influences are shown in figure 2-2. For a discussion of the

meaning of these criteria see section 2.4.

"McCall’s work forms part of the IEEE Quality Metrics Standard Committee report IEEE P-1061-D2



Quality Criteria

Traceability

Completeness
Consistency
Accuracy
Error tolerance
Execution efficiency
Storage efficiency
Access control
Access audit
Operability
Training
Communicativeness
Simplicity
Conciseness
Instrumentation
Self-descriptiveness
Expandability
Generality
Modularity

Software system
Independence

Machine
Independence

Communications
commonality

Data commonality

Quality Factors

Reliability
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Figure 2-2 How McCall’s quality criteria influence his quality factors
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Each of the criteria is in turn evaluated on a scale of 1-10 using a set of pre-

determined subjective measures. Each quality factor is evaluated using the following

equation:

Fq=c1*m1+c2*m2+c3*m3+...+c,,*mn

where, F, is a specific quality factor, cj..c, are the predetermined regression

coefficients and m,...m, are the values given to the criteria associated with this quality

factor.

Although McCall's work was useful in drawing researchers' interest into the
quantification of software quality, there are a number of criticisms that may be
levelled against the FCM method. The first problem is that the fixed sets of factors,
criteria, and the relationships between the factors and criteria, makes the method
extremely inflexible. For some products or environments not all of the given criteria
may be needed, in others additional criteria may be needed to address special 1ssues,

in yet other situations the pre-defined relationships between factors and relationships

may no longer hold. Even within a set environment, the exact set of factors and
criteria are open to argument, as are the relationships that exist among them. This will

depend on the goals and perspective of the assessor.

FCM is also a customer-centred approach, but as mentioned earlier quality can also be
assessed from other perspectives and these are not covered. Another problem that

may be highlighted is that McCall focuses on assessing the final product and ignores

the intermediate products.

2.2.2 COQUAMO

The work of McCall was also re-assessed by Kitchenham (1987) in work done for the
REQUEST project. She describes a number of problems with the approach taken by
McCall and Boehm:

e There are overlaps between the various quality factors.

e The simple model of factor-criteria-metric obscures the fact that the nature of the
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factors, criteria and metrics are very different for different qualities.
There 1s no clear indication of the trade-off relationships between factors.
There is no explicit relationship between criteria, metrics and the life-cycle.

There is no objective rationale for including, or excluding, a particular quality
factor.

The quality factors are not defined in measurable terms so validation of the

postulated relationships between quality factors and quality metrics is difficult.

To help solve these problems she proposed the constructive quality model

(COQUAMO). The different natures of the quality factors are dealt with by

classifying the factors into one of four categories.

. Those factors that only apply to certain specialist types of system, i.e., integrity,
and generality. Since this type of factor corresponds to the features of a particular
system, they are best supported by facility checklists rather than quality metrics.

. Those factors that are general to most types of system but which must be defined
with respect to a particular application, i.e., efficiency and usability (in terms of
ease of use). The search for general quality criteria would be inappropriate if the

factors are redefined for each application. This type of factor should then be
approached using the technique of quality specification (Gilb 1986).

. Those factors that are.general to most types of systems and may be defined in an
application-independent manner, i.e., reliability, maintainability, re-usability,
extendibility and usability (in terms of acceptance). These general qualities are all
capable of direct measurement, but only during the active life of the product. Thus
to ensure that these qualities are built into systems, techniques should be
developed which assist quality achievement. Software qualities should be cross-
referenced with software engineering techniques so that the right techniques are
used to achieve the desired quality factors.

. Those factors that relate to software production, i.e., testability, understandability

and correctness.
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Kitchenham proposes the following alternative breakdown of quality factors. This

model includes an explicit relationship between quality factors and the life-cycle. The

diagram shows that each quality factor has a separate checklist for each stage of the

life-cycle. These checklists are made up of standards that must be met. metrics to be

calculated, and procedures that should be used at that stage to help build-in quality.
Although Kitchenham highlights a number of problems with FCM and suggests an

alternative model that alleviates these problems, COQUAMO itself may be criticised

on several points.

m acceptapce test/trial
specification

requirements design coding testing

checklists checklists checklists checklists

standards standards standards standards
procedures procedures procedures procedures

Figure 2-3 Kitchenham’s model of quality factors, criteria, metrics and their

relationship (Kitchenham 1987)

The first point to consider are the criticisms Kitchenham makes of McCall. The first
criticism is that there are overlaps between the various quality factors. Although
Kitchenham tries to minimise these overlaps, they cannot be eliminated. One reason
for this is that, since several factors share criteria, the factors cannot be considered
independent. A second reason is that most of the factors are related to human
understanding of, and problem solving with, software artefacts. This means that most

factors are dependent upon human understanding and so again cannot be considered

truly independent.
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Although Kitchenham points out that McCall gives no clear indication of the trade-off
relationships between factors, COQUAMO also lacks this indication of trade-offs.

Kitchenham adds separate checklists for each lifecycle activity to correct for McCall’s

faillure to give an explicit relationship between criteria, metrics and the lifecycle.
However, there 1s no indication of the relationship between the successive checklists
and no clear process for the evolution of the checklists as the lifecycle moves toward
coding and more detailed information is available. McCall was also criticised for
having no objective rationale for including, or excluding, particular quality factors.

However, other than trying to eliminate unnecessary overlap, Kitchenham also has this

failing (but she does acknowledge this).

I'wo of the other criticisms are that the nature of the factors are very different for
different qualities, and that the quality factors are not defined in measurable terms.

Although both of these criticisms would appear to be valid, Kitchenham’s solution to
these problems seems inconsistent. She groups the quality factors into four
categories: application specific qualities; general qualities requiring application-
specific definition; general qualities with application-independent definitions:
qualities related to the software production process. There seems no reason to

separate process-related measures from the other measures as the difference 1s in how

they are used and not how they are measured.

The first grouping is ‘application-specific qualities’. Kitchenham suggests that these
factors be best supported by checklists rather than quality metrics. Why shouldn't
these qualities simply be either included or left out for a particular project? If they are
included. there is no reason why they shouldn’t be assessed using quality metrics as
for the other qualities. The other groupings are distinguished by the generality of the
qualities being measured. The boundaries between these groups are rather arbitrary
and artificial. Although it may appear when discussing quality factors at a high level
that they may be application-independent, as Kitchenham herself points out, they must

be defined in measurable terms. Once an attempt 1s made to produce this operational

definition of factors it is found that the detail of what must be measured depends on
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the design methods, programming languages, or document standards used. This means
that, even for factors that seem generally applicable, any operationally useful
definition is highly dependent on the specific environment in which the software is
being developed. The result of this is the conclusion that all qualities to be measured
should be defined on an environment by environment basis. This operational

definition could be done for all qualities using Gilb’s technique of quality

specification.

2.2.3 Q1lb’s quality specification

The idea behind Gilb’s quality specifications is that all quality attributes of interest are
clearly and explicitly defined at the beginning of the project. These definitions must
allow direct and repeatable measurement. They must have an explicitly stated object
on which they are measured and a viewpoint from which the assessment is to be
made. An example of a definition for ‘consistency’ taken from (Shepperd 1995) is
shown in figure 2-4.

Consistency definition:

Quality Attribute = consistency
Object = information system
Perspective = customer

Scale = probability of a data element being consistent with all other
elements in the system.

Test = 1000 random record samples checked by the database
consistency testing program

Now = 85-90% (estimated)

Minimum = 90%

Target (11:94) = 99.9%

Figure 2-4 A quality definition framework (Shepperd 1995)

From this example, a number of other aspects of the framework can be seen. The

framework 1s also used to give an indication of the current position, minimum
standard and target for the quality attribute being defined. As can be seen from the
Now' data, values should be given with an indication of their accuracy and degree of

confidence. Estimates must be explicitly stated as estimates.
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This method does allow for the precise definition of quality attributes in measurable
form but 1t does have a number of weaknesses. The first problem is that in trying to
define an attribute in a directly measurable form, the definition of the attribute may no
longer completely and accurately reflect our implicit idea of the meaning of the
attribute. Since targets and standards are defined in terms of the measurable definition
of the attribute, there is a tendency for the definition to ‘become’ the attribute, rather
than describing the attribute. Consequently, measurement processes often optimise

the numbers rather than the product.

Another problem is that defining attributes in this way leads to an overly simplistic
view of quality (Shepperd 1995). The attributes that a manager may need to assess are

rarely independent and these trade-offs need to be taken into consideration. This
examination of the interdependencies between a set of attributes can be shown by

either a quality factor trade-off matrix or the quality factor deployment (QFD) matrix.

A simple example of a quality factor trade-off matrix is shown in Figure 2-5 (taken
from (Shepperd 1995)). This figure shows four quality factors, their priorities and
their inter-relationships. A ‘0’ in the matrix indicates no direct relation between
factors, e.g., usability and security. Where two factors supported each other a ‘+ve’
would be shown. Usability and timeliness are shown as having a ‘-ve’ relationship.
This means that the two factors trade-off against each other. Since timeliness is

prioritised as essential and usability only desirable, it is likely that in this case

usability would be sacrificed in favour of timeliness.

Quality factor Timeliness  Security  Usability

Timeliness Essential

Security Essential Ve

Usability Desirable -ve 0
Maintainability V. Desirable -ve 0 0

Figure 2-5 Quality factor trade-off matrix (Shepperd 1995)
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2.2.4 Quality factor deployment (QFD)

QFD (Kogure and Akao 1983) extends the idea of a quality factor trade-off matrix. It

relates the customer requirements with the design requirements that will implement

them and gives the strength of the relation.
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Figure 2-6 An example of a QFD matrix (Shepperd 1995)
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The strength of the relation 1s shown in the matrix by the numeric weight associated
with one of the following categories: strong (9). medium (3); weak (1); none (0).
Each of the customer requirements 1s also given a weighting value to show its rank in
increasing order of importance to the customer. The values in the relationship matrix
are multiplied by the customer weight and summed for each design requirement. This
value represents the technical importance rating of each design requirement.The
dependencies within the set of design requirements are shown by the correlation
matrix in the ‘roof” of the diagram (figure 2-6). Again the numeric weight associated
with the dependency 1s one of the following categories: strong (9); medium (3); weak
(1); none (0). Since dependencies between two design requirements may be either
supportive or a hindrance, positive and negative values are allowed for the correlation

matrix. As with Gilb, the desired values of the design requirements are explicitly

shown and their units given. This 1s shown in the ‘how much’ section.

There are for QFD. as for the other metric methods, some weaknesses. Firstly, by
taking a customer viewpoint the method focuses on the quality of the delivered
software and ignores intermediate products. As Shepperd (1995) notes ‘this provides
little scope for remedial action’. This customer centred view also ignores any quality

issues that are not apparent in the operation of the final product, such as reuse. In
theoretical terms. the association of numeric values with the ordinal scale attributes
(used to represent the various relationships within the matrix) and the way they are
used in the calculation of the technical importance ratings is somewhat questionable.

In QFD’s favour, it is more flexible than FCM, in that it allows the definition of

relationships and factors on a per application basis.

2.2.5 Goal question metric paradigm (GQM)

Although the COQUAMO and FCM methods are largely concerned with planning,
they are generally weak at deciding which quality factors to assess in the first place.
QFD takes its quality requirements from the customer (who must also have some

means of deciding what they want measured) but this neglects producer quality
concerns other than those that directly affect the customer. A method often used to

define the measurements which should be taken is the goal question metric (GQM)
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paradigm (Basili and Rombach 1988; Rombach and Basili 1990; Basili, Caldiera et al.
1994). This method starts with the high level goals which the measurement program
is seeking to fulfil. From these high-level goals a set of questions are developed
whose answers will help show whether the goals are being fulfilled. Finally, a set of"

metrics 1s produced whose values provide the answers to these questions. Figure 2-7

shows the structure of a GQM hierarchy.

Question 1 |

Figure 2-7 A GQM hierarchy

GQM has the strength that all metrics it generates must directly support a high level |
goal of the software production. It also has the flexibility to be able to measure:
intermediate products. Although an influential method, GQM still has a number of
problems. There is little guidance given in incorporating GQM into the development 7
process. It has been argued that the top-down nature of GQM can lead to a substantial .-

amount of backtracking and re-work if the analysis of data leads to a redefinition of

the goals of measurement (Shepperd 1995).

Shepperd also suggests that GQM can lead to a proliferation of metrics. He cites a
case at Hewlett Packard (Grady 1987) in which the use of GQM led to the definition |
of 35 distinct metrics and states that this is ‘clearly too many’. This seems a bit of a | |
sweeping statement without any reasons being given as to why this is too many, of

what problems having this number of metrics might cause. In a situation where
manual collection and processing of data was necessary then the cost of this level of
measurement may be unjustifiable. In a situation where metrics were collected and
processed automatically this would not be the case. So long as the metrics which are

being collected are related to project goals, there seems no reason why 35 metrics OF
even more might not be usefully and effectively collected. Having said this, there

does seem to be a tendency for GQM to produce large numbers of questions and
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metrics. Strategies for dealing with this include pruning the GQM tree and a staged

introduction of measures on a goal-by-goal basis.

2.3 Quality assessment for OO design

2.3.1 What 1is quality in design?

Quality for software is usually discussed in terms of the final product. The purpose of
the design is to lay the foundations for the final system. This makes it difficult to
consider the quality of the design in isolation from the system produced from that
design. Although a good design is necessary for a quality final system, a good design
needn't always result in a quality final system. If the code is not implemented well, a

poor quality system could still result from a good design.

A good design 1s one that can easily lead to the production of a quality final product.
However, this does raise a number of questions. What attributes of a design lead to a
quality final product? Can the quality of the final product be estimated based on the
information available in the design? How does the assessment of designs fit into the
overall development process? The answers to these questions are largely dependent

on the information available in the particular notation and on the design process being

followed. As this thesis focuses on object-oriented design, a closer look at OO design

and the OOD process is worthwhile.

2.3.2 Object-oriented design

2.3.2.1 Elements of a design method

Budgen (1994) lists the three main components of a design method as representation,

process and heuristics. The representation can be further split between the concepts
being represented and the notation used for the representation (Webster 1996). The
notation is the syntax in which the design products are expressed. The concepts are
those ideas that it is possible to express using the method. The process describes the

sequence of activities performed to produce a design. Pragmatic guidelines to aid in

the construction and evaluation of a design are captured by the set of heuristics.
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Concepts are largely the same across modern OO methods (as evidenced by the recent
successful unification efforts on UML (Booch 1996b) and OPEN (Henderson-Sellers
and Graham 1996; Henderson-Sellers, Graham et al. 1997)). The notation in which
they are expressed should have little impact on design assessment. The heuristics that
accompany a method have a clear bearing on design assessment and this will be
discussed later in the chapter. The design process effects design assessment, 1n an

indirect manner, through the assessment activities included in that process.

2.3.2.2 The OO0 design process

Although the products of design may be diagrammatic, producing diagrams is not
designing. As Booch (1994) points out “designing is not the act of drawing a
diagram: a diagram simply captures a design”. He continues “if you follow the work .
of any engineer ... you will soon realise that the one and only place that a design is
conceived is in the mind of the designer.” What are the mental processes undertaken
during design? Curtis, Kellner et al. (1992) describes software design as “a collection
of interleaved, iterative, loosely-ordered processes under opportunistic control...” and
states that “good designers work at multiple levels of abstraction and detail
simultaneously”. The OPEN method describes the design activity as “perhaps the
most loosely defined of the object-oriented lifecycle activities... and is essentially a.
creative, not a mechanistic process” (Henderson-Sellers 1996b). In their book
describing the Syntropy method, Cook and Daniels (1994) describe the design process

as “informal and organic”. This gives a picture of a somewhat chaotic and

unpredictable design process. How is control possible within such an unstructured

process?

Cook and Daniels state that “it is necessary to separate clearly the software
management process from the software design process, so that designers are not
constrained by the formality needed by managers.” They give the model of design
shown in figure 2-8. In this model, the formal management process establishes
“milestones that correspond to the delivery of functioning code and achieve them In a
series of evolutionary cycles.” This type of management control based on functioning

code makes the separation of design and coding processes almost impossible.



Formal, cyclic,
evolutionary,
management process

Figure 2-8 Management and design process (Cook and Daniels 1994)

The 'design a Iittle, code a little' incremental approach to object system construction
means that designs are often not completed in one go. Instead a high-level

architectural design 1s done and then the more detailed design is done for the classes

and subsystems involved in the various increments before they are coded. Those

classes and subsystems required for the next increment, but not yet built, are then

designed.

Within the informal organic design process performed by individual designers, there is
scope for the comparative assessment of designs. The process of design at this level is
about considering alternatives. Would one way of structuring a system be better than

this other way? If a particular change were made, would the 'new' design be better

than the old one?

Assessment within the formal management process i1s much more of a stand-alone

assessment. The questions are, whether there are any problems with this design, or
whether this design 1s good enough. At this higher level process assessment 1s likely

to take the form of design reviews.

Another 1ssue with object-oriented design is the possible lack of completeness of the
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designs. According to Cook and Daniels (1994), the “completeness of design models
is not always a reasonable or useful goal”. They argue that there is a trade-off
between the total effort spent on a system and the percentage of that time spent on
design. If too little time is spent on design, effort will be higher because of
backtracking and reworking, On the other hand, there are diminishing returns from
spending a higher and higher percentage of project time on design. At some point, the
extra effort spent on design will have insufficient pay back in savings on coding
effort. This tends to mean that systems are not as completely specified at design-time
as the notation would allow (Martin 1995). This means that any assessment of designs
may have to be made on incomplete data and measurements made from design

information may not match equivalent coding measurements.

2.3.3 What is quality in object-oriented design?

When discussing object-oriented designs, consideration needs to be given to whether

the quality factors and criteria given for systems in general still apply under the object-

oriented paradigm. Another question is whether OO requires any factors or criteria

that are not applied to structured designs.

Fenton and Pfleeger (1996) describe quality factors as ‘high-level external attributes’.
Being external attributes, quality factors should remain unchanged whatever the
paradigm, method or tool set used to produce internal design of the software. This
implies that object-orientation should strive to achieve the same quality factors as any
other paradigm. Some quality criteria are more tightly bound than quality factors with
the internal structure of software, and so are more likely to be affected by a paradigm
shift. Such criteria as modularity and data commonality do not have quite the same
meaning in OO design as for structured design. However, many of the criteria would

appear to have the same, or very similar, meaning for both OO and structured systems.

Significant differences between OO and non-OO systems appear when the level of
metrics is reached. The differences in metrics are reflected in the need felt by
researchers to design new metrics specifically for OO systems, rather than simply re-

using those which already existed for structured systems.
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Much of the discussion presented so far on quality deals with the top-down
decomposition of quality. The methods described have started from high-level
aspects of quality (factors) that are then hierarchically decomposed until a set of
directly assessable items are reached. There is an alternative approach. Experience
can be used to identify individual rules or guidelines that indicate quality. These

quality guidelines can then be use to assess quality in a constructive, bottom-up

manner. These quality guidelines are alternatively known as heuristics.

2.3.4 OO design heuristics

This section introduces the subject of design heuristics. Firstly, it looks briefly at the
oeneral idea of design heuristics. A description of a survey and review of the object-

oriented design heuristics literature is presented. The work done in producing this

survey forms the basis for much of the following discussion and is documented in a

technical report by the author (Kirsopp 2001b).

2.3.4.1 What are design heuristics?

Experts in any field appear to act as if there were a collection of unwritten rules that
they were following. OO design heuristics have emerged as an attempt to codify OO

design expertise. The heuristics take the form of rules of thumb that can guide
designers as they choose between various alternatives. They are separately gleaned
pieces of distilled design experience that can be shared. Heuristics are pieces of
advice, on detailed aspects of design, which are held to be true in most cases (at least
by their originators). These partial definitions begin to capture what design heuristics

are about, but the topic is broad and lacks a precise definition.

2.3.4.2 The heuristics survey

The survey began as an attempt to gain an idea from the OO literature of how to
assess OO designs. It finished as a large-scale cataloguing and analysis operation of
OO design heuristics. Not all design advice falls into the heuristics category. Design

patterns are pieces of advice based on design experience. They are recommended

forms for the solution of known recurring design problems. Patterns are not intended
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as a means of design assessment and therefore were not included in the survey (a more
in-depth discussion of the relationship between heuristics and patterns will be

presented 1n section 2.3.4.6).

The survey started by looking at the guidelines provided with particular OO methods.
General bibliographic sources for the subject area (e.g., ISI scientific citation index,
INSPEC) were then searched for both general sets of guidelines and heuristics on
particular aspects of OO design (inheritance, aggregation etc.). The survey looked at
71 different sources of heuristic information and found 288 suggestions for heuristics.
Although this was by no means a small survey, it is almost certainly incomplete.
There are a very large number of publications on OO design, many of which make
suggestions on desirable structures or properties for designs. It is hoped that the
survey was large enough to be representative of the ideas on the topic of design

heuristics from the literature as a whole, as well as capture the majority of distinct

heuristic ideas (if not all of their various incarnations).

Many authors present heuristics that appear to be describing the same underlying idea,
although the exact definition of terms or choice of thresholds may vary slightly.
Clearly, there is some degree of subjective judgement involved in deciding whether
two heuristics are sufficiently similar that they can be treated as the same. However,
the author found that the 288 heuristics from the survey could be replaced by a list of
less than half that number with the minimum loss of meaning. If a ‘capture-recapture’

view is taken of this overlap, it suggests that a good coverage of the available heuristic

1deas was indeed attained.

2.3.4.3 Where do design heuristics come from?

Object oriented design heuristics have arisen in a number of ways, although they have
not always been labelled as heuristics. Sets of general recommendations have
aCcompanied design methods, e.g., (Coad and Yourdon 1991b; Booch 1991).
Guidelines on specific topics have come out of narrowly focused pieces of research,
€.2., an experimentally derived heuristic for inheritance depth (Daly, Brooks et al.

1996), or a heuristic for abstract classes based on theoretical arguments (Hursch
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1994). Experience-based sets of heuristics have been proposed independently of any
particular design method, e.g., (Coplien 1992; Riel 1996). There has also been the
emergence of empirically based heuristics, in which measurement values falling

outside of a statistically derived ‘normal’ range are deemed to be violations (Abreu,

Goulao et al. 1995).

2.3.4.4 Heuristic assessment types

There appear to be two distinct ways in which heuristics can be used in assessment.

These are stand-alone assessment and comparative assessment.

2 .3.4.4.1.1 Stand-alone assessment

In stand-alone assessment, a single version of a single entity is evaluated in isolation.
Firesmith (1995) provides an example of a heuristic for stand-alone assessment,

‘avoid inheritance structures that are too shallow (3) or too deep (7)’. Here the
heuristic contains its own threshold values so that no other entity is required for

comparison. As well as these ‘threshold’ heuristics, there are heuristics that embody
rules. For instance, ‘subclasses should not delete features of their superclasses’

(Firesmith 1995). This type of ‘rule’ heuristic can be considered as a separate type of
heuristic, or as a subtype of threshold heuristics (those in which the threshold is

breached by a single occurrence of the situation described).

In stand-alone assessment, heuristics operate as tests that are either passed or failed.
For example, an inheritance depth of 2 or 8 would fail the above threshold heuristic,

but a depth of 5 would pass. Any classes that deleted any features of their

superclasses would fail the rule-based heuristic given above.

Design comparison is distinct from design assessment because it deals with choosing

between a set of possible designs rather than evaluating a single design. For heuristics
that have clearly defined thresholds a design is assigned to one of two categories,
either the heuristic is broken, or it is not. This means that if one design complies with
the heuristic and another design does not, the designs can be ordered based on the

heuristic.  Clearly, this type of heuristic has a poor discriminatory ability in
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comparison, as it is effectively a restricted ordinal scale with only two categories.

2.3.4.4.1.2 Comparative assessment

Comparative assessment uses another entity (or another version of the same entity) as
the reference point for the assessment. Some heuristics are more directly suited to
comparison because they codify a tendency rather than a threshold, e.g., ‘minimise the
number of classes with which another class collaborates’ (Riel 1996). This type of
heuristic is more likely to be useful in discriminating between designs. In this
example heuristic, a version of a class that collaborates with 3 other classes 1S

considered better that a version that collaborates with 5. However, nothing is said

about absolute quality. There is no implication that 3 is good or that 5 is bad, just that
3 is better than 5. There is also no implication of the degree of difference (either by

interval or by ratio).

Of course, a potential weakness of comparative heuristics is that they require at least
two versions of the entity under consideration. This means that some activities, such
as QA or design reviews, that tend to work with a single design cannot easily utilise
comparative heuristics. However, there are a couple of workarounds for this problem
(as demonstrated by the subjects in the case study presented in chapter 5). Within-
design comparisons can be made by partitioning the design into a number of elements,
which can then be compared. It is also possible to covert a comparative heuristic 1nto

a stand-alone heuristic by adding an arbitrary threshold.

2.3.4.5 Relationship between heuristic and metrics

The review of heuristics for the catalogue has shown that heuristics may have
different styles of assessment. On one extreme, are heuristics whose application
requires a value judgement on the part of the designer. These heuristics will be

termed semantic heuristics as their application depends upon the meaning of the entity

to which they are applied. The example heuristic given below is a semantic heurtstic.

An object removed from the context of the immediate application, should, in isolation,

still represent a coherent and complete object-oriented concept. (Berard 1993)
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On the other extreme of assessment styles, are those heuristics where conformance

may be checked purely based on the structure of the design/code. These will be termed

syntactic heuristics. The next example is a syntactic heuristic.

Avoid having too many services per class. Each class typically has no more than six

or seven public services. (Coad 1991c)

Some heuristics fall between these two classifications. Although they are to some
extent measurable, some semantic interpretation 1s also required. The third example
heuristic falls into this hybrid category. The size of a class and its level of coupling

can be measured, but whether it has too much control and responsibility still has to be

assessed semantically.

Do not create god classes/objects in your system. (Riel 1996)

Metrics are related most naturally to syntactic heuristics. Measurement values may be
used to automatically check the conformance of a design to a syntactic heuristic.
Heuristics may be created as threshold values on particular metrics (Abreu, Goulao et
al. 1995). It is also possible to define metrics specifically to automate the detection of
violations of particular heuristics. Where the heuristic is created independently of any
particular metric, questions arise as to whether it can be assessed using a metric and if
so, which metric would be most suitable. A general heuristic is likely to be phrased in
terms of some product attribute and this attribute may be measured using a number of
distinct metrics. For example, the heuristic “classes should have the minimum of
coupling with other classes” (Love 1991) could be assessed using Chidamber and

Kemerer’s CBO (Chidamber and Kemerer 1994) or Lorenz and Kidd’s ‘class
coupling’ (Lorenz and Kidd 1994).

Heuristics may apply to some syntactic element of the design or to a semantic aspect
of design. Although syntactic heuristics may be assessed using objective metrics,

semantic heuristics are only likely to be amenable to subjective measurements (e.g.,

Likert scales)
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2.3.4.6 Relationship between heuristic and patterns

Patterns and heuristics are similar in that they are both a means of capturing design
experience. The type of experience they capture is however different. Patterns are
reusable pieces of micro-architecture that may be applied in particular semantic
situations (Gamma, Helm et al. 1994). A pattern specifies the shape a section of the
design should take. Heuristics only specify a guideline that particular design entities

should conform to, and do not specify any particular design structure to achieve this.

As well as normal ‘positive’ patterns, so called ‘anti-patterns’ have been suggested
(Brown, Malveau et al. 1998). The idea is that rather than proposing how a standard

design task should be achieved, an anti-pattern captures common ways in which the

task 1s done badly.

Riel (1996) has suggested that heuristics might be used to trigger standard
transformations between ‘a bad design pattern’ and ‘a good design pattern’. Although
the transformation between an anti-pattern and its positive counterpart appears to be a
sound method of design improvement, it seems unlikely that design heuristics can be
used as a means of triggering such changes. Identification of the anti-pattern is what 1s
required to trigger the transformation, not the violation of a heuristic. The violation of
a heuristic cannot be linked to a particular anti-pattern because it is independent of the
semantic situation necessary to identify a pattern. This means that a heuristic
violation could indicate the presence of any one of a number of anti-patterns, or a

problem without any associated pattern.

Riel has suggested that these standard transformations might be used “to automate the
design optimisation process’. A range of possible transformations could be suggested
to a designer upon the discovery of a heuristic violation. It should also be possible to
automatically transform anti-patterns into good patterns, once the designer has
identified the anti-patterns. Neither of these possibilities could be fully automated.

They both depend on the semantics of the design and so would require intervention

from the designer.



37

2.3.4.7 Contradictions and trade-offs

It is reasonable to think of heuristics as similar to those other distillations of useful
experience - proverbs. Proverbs can appear to be in conflict with one another. For
instance, consider the following apparently contradictory examples, ‘too many cooks
spoil the broth’ and ‘many hands make light work’. On the surface, each of these

proverbs seems to be saying the opposite from the other, one appears to argue that

fewer people are better and the other appears to argue that more people are better.

However, we know that the key to correctly applying these proverbs is the context.

The context for the ‘too many cooks’ proverb is that of decision-making whereas the

context for the ‘many hands’ proverb is that of performing a large well-understood
task. The same problem occurs with design heuristics. As soon as we simplify the

advice to make the heuristics short and memorable we lose the connection to the

context and risk applying them inappropriately.

When a number of heuristics are applied to a design, occasional contradictions appear.
These contradictions require explanation. In their abbreviated ‘snappy’ form,
heuristics are presented without any explicit context and this can lead to
contradictions. Where an apparent contradiction appears, consideration of the

rationale for each heuristic, and its associated context, will usually show that the two

heuristics should not be applied in the same situation.

On some occasions, two opposing heuristics can be applied within the same context
and this implies a trade-off. In these cases, each heuristic seeks to improve a different
quality factor of the system to the detriment of the other. An explicit design decision
must be made about which heuristic will be followed and which ignored. The

decision will be based on the strength of the heuristics and on the 'quality profile'

desired for the system. “The strength of a heuristic comes from the ramifications of
violating it” (Riel 1996). The results of violating some heuristics will clearly be
worse than the results of violating others. Where a decision cannot be made on the
basis of strength, consideration must given to which 'ilities' the heuristics support and

which of these ‘ilities’ 1s more desirable for the system under consideration.
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2.3.4.8 Validity

Since heuristics are simply rules of thumb and typically without supporting empirical
evidence, how do we know that they constitute good advice? A high degree of
agreement between the heuristics from different authors might increase confidence 1n
the validity of their heuristics. The heuristics survey highlighted little contradiction
between different authors within the heuristics literature. Differences do exist in the
choice of particular threshold values, but on the general trends, there appears to be
consensus on most issues. However, although for some guidelines there appears to be
overwhelming support, it is hard to tell if different authors proposing the same
heuristic are doing so independently or are feeding off each other’s work. If common
guidelines were arrived at independently, it would give a much stronger indication of
their validity than if the authors merely agreed with heuristics previously proposed by

another writer.

In theory, heuristics may be formally validated using external measurement results.
For instance, if heuristic A is supposed to support maintainability then we can
compare the maintenance costs of systems in which it is used to systems in which it 1s
not. It would be difficult in practice to design an experiment to allow for all of the
possible confounding factors. Many aspects of design not covered by a particular
design heuristic can affect maintenance costs. They may also be affected by the
coding practices used to implement the design. The processes and personnel used
during maintenance can also clearly affect the costs. How can we tell if low
maintenance costs are due to conformance with the heuristic or one (or more) of the
multitude of other possibilities? In practice, the formal validation of individual
heuristics is rarely done. However, Briand, Bunse et al. (2001) have published results
from an experiment looking at the application of a set of design guidelines proposed
by Coad and Yourdon (1991b). They conclude that following these guidelines makes
maintenance tasks significantly easier. This result may not show the validity of
individual heuristics, but it does support the idea that following a set of design

heuristics should lead to a better design.
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2.3.4.9 Application of heuristics

Heuristics application may be divided into two main sections, education and practice.
In education, heuristics are used to help inexperienced designers to learn and apply the
skills and insights of highly skilled and experienced designers (without having to
spend 10 years acquiring them). A study of the use of heuristics in teaching OO
design has been performed (Gibbon and Higgins 1996). In this study, heunistics were

used as a means to transfer object-oriented design expertise to 1inexperienced
designers. They found this to be a ‘resourceful teaching aid’. However, since we are

concerned with the use of heuristics during the design process, we will not consider

their educational use any further here.

In examining the possible uses of heuristics in industrial practice, one approach would
be to consider the use of heuristics within the various development process activities.

In general, design heuristics may be applied during any activity in which the design

(or subsections thereof) is created, modified or assessed. Sommerville (2001) lists
four fundamental activities common to all software processes: specification, design
and implementation, validation, and evolution. The specification is performed before

the design is created and so design heuristics cannot aid specification. Validation is

concerned with the externally observable behaviour of a system, rather than its

internal design, and so design heuristics are not helpful for this activity either.

Heuristics can however be applied during the other activities.

2.3.4.9.1 Design and implementation

The first question to consider here is, could heuristics be used 1n the initial formation
of a design? Heuristics check the conformance of the design to some rule. If we do
not yet have a design how can we check its conformance? This suggests that
heuristics can only be applied after we have an initial design. During the initial
formation, the design may still be wholly within the mind of the designer. The
designer may be applying heuristics subconsciously during design formation, but the
explicit inclusion of heuristics in any element of the design process must wait until the
design exists in some concrete external form. Once there is an external representation

of a design, it can be assessed with the aid of heuristics. Assessment involves
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checking the compliance of a single existing design against a set of rules. This

involves the application of heuristics in a stand-alone manner as described previously.

After the 1nitial design formation, QO designs are usually developed in an iterative
manner. A new iteration of the design may be assessed in a stand-alone manner or 1n
a comparative manner. We may want to know if a change is likely to cause problem
with the design, in which case we are assessing the new design. Otherwise, we want
to know if the changes improve the design, in which case we are comparing designs.
The only heuristics that would apply directly to system refinement would be those
used to control the refinement process. Heuristics could be used to decide when to

stop the iteration in a refinement process.

People other than the actual designer may use design heuristics. An assessment team
may use them during a design review. They may also be included in design standards
to be applied as QA. In both of these cases, heuristics will usually be used on a single

design through stand-alone assessment.

2.3.4.9.2 Software evolution

There are three different strategies of software evolution: maintenance, architectural

transformation, and re-engineering (Sommerville 2001).

Maintenance is further subdivided into corrective, perfective, adaptive and
preventative. Corrective maintenance involves changes made to repair software
faults. These faults may be in the detail of the code and require no changes to the
software’s design. Alternatively, the fault may be at a higher-level and require design

changes. In this case design heuristics could be applied to assess the changed design.

This assessment may be done in either a stand-alone or a comparative manner.

Perfective maintenance involves changes made in response to changed requirements.
This will usually require changes to the design and so can employ design heuristics.
Since there is a change to the requirements, the functionality of the old system 1S

different from that required from the new. This means that it may not be sensible to
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make direct comparisons between the designs and a stand-alone assessment of the

new design is more likely.

Adaptive maintenance involves changes to adapt software to a different operating
environment. Changes to the operating environment impose a different set of design
constraints and so, as with perfective maintenance, direct comparisons are probably

inappropriate and stand-alone assessment 1s likely to be used.

Preventative maintenance involves changes intended to make future maintenance

easier, but do not change the system’s functionality. In this case an attempt is being

made to improve the design whilst keeping the functionality the same. This is a clear

case for application of comparative heuristics.

Architectural transformation is moving from one architectural style to another, e.g.,

centralised to client-server. This is a really an extreme case of adaptive maintenance

and so the same arguments apply.

Re-engineering is restructuring without adding functionality, This 1s an extreme case

of preventative maintenance and so those arguments apply.

2.3.4.10 The heuristics catalogue

Having a large number of heuristics describing how designs should be structured, or
how the design process should be performed, 1s only useful if you can select a suitable
subset of heuristics for your particular purpose. To use the entire set of heuristics
would mean including those irrelevant to the goal or inappropriate to the context. To
select a subset of heuristics for a given purpose requires a catalogue of the available

heuristics and means of searching the catalogue based on the intended use of the

heuristics.

The survey data was used as the basis for a catalogue of object-oriented design
heuristics (presented in appendix A). Producing the catalogue was not simply a case

of finding heuristics. The heuristics were grouped into 20 categories each related to a
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particular OO concept or construct. For example, categories include heuristics for

multiple inheritance, polymorphism and message passing. The catalogue also includes
additional information about each heuristic, such as their trade-offs, lifecycle
applicability and objectivity. This information is intended to improve usefulness of

the catalogue to those trying to apply OO design heuristics.

As has been mentioned, there is considerable duplication of heuristics ideas from

different authors. One of the tasks involved in producing the final catalogue was 1o
try to remove much of the duplication. Appendix A shows both the initial catalogue,

containing all of the heuristic suggestions found in the survey, and summarised set of

guidelines. It also includes the rationale for the inclusion/exclusion of particular

heuristics and. the rationale for ‘collapsing’ several heuristics into one prototypical

version.

2.4 Automation in OO design assessment

This section considers the degree to which software quality can be assessed solely
from the design documentation and the extent which this assessment can be
automated. As has already been discussed, there is no single quality model applicable
in all situations. Therefore, little can be said in general about the assessability and
automatability of design assessment. One potential way to further this discussion is to
analyse an exemplar quality model. A static model would be the most suitable as it
does not vary from system to system. McCall’s FCM model is the most widely cited
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