
DESIGN SYNTHESIS FOR

DYNAMICALLY RECONFIGURABLE

LOGIC SYSTEMS

MILAN VASILKO

A thesis submitted in partial fulfilment of the requirements
of Bournemouth University for the degree

of Doctor of Philosophy

October 2000

Bournemouth University

Design Synthesis for Dynamically

Reconfigurable Logic Systems

Copyright © 2000
Milan Vasilko

All rights reserved.

Abstract

Design Synthesis for Dynamically

Reconfigurable Logic Systems

Milan Vasilko

Bournemouth University

Dynamic reconfiguration of logic circuits has been a research problem for

over four decades. While applications using logic reconfiguration in prac-

tical scenarios have been demonstrated, the design of these systems has

proved to be a difficult process demanding the skills of an experienced re-

configurable logic design expert.

This thesis proposes an automatic synthesis method which relieves de-

signers of some of the difficulties associated with designing partially dy-

namically reconfigurable systems. A new design abstraction model for re-

configurable systems is proposed in order to support design exploration

using the presented method. Given an input behavioural model, a tech-

nology server and a set of design constraints, the method will generate a

reconfigurable design solution in the form of a 3D floorplan and a config-

uration schedule. The approach makes use of genetic algorithms. It facili-

tates global optimisation to accommodate multiple design objectives com-

mon in reconfigurable system design, while making realistic estimates of

configuration overheads and of the potential for resource sharing between

configurations. A set of custom evolutionary operators has been developed

to cope with a multiple-objective search space.

Furthermore, the application of a simulation technique verifying the

lll

results of such an automatic exploration is outlined in the thesis.

The qualities of the proposed method are evaluated using a set of bench-

mark designs taking data from a real reconfigurable logic technology. Finally,

some extensions to the proposed method and possible research directions

are discussed.

IV

To Maria, Dominika, Viktoria

and my parents,
for their love, patience and support.

V

Contents

List of Figures x

List of Tables xiii

List of Algorithms xiv

List of Abbreviations xv

Acknowledgements xvii

1 Introduction 1
1.1 Reconfigurable Logic 3

1.1.1 Software Acceleration 5
1.1.2 Hardware Virtualisation 6
1.1.3 Fault Tolerance 7
1.1.4 In-Field and Remote Hardware Modification 8

1.2 Reconfigurable Logic in Real-World Applications 9
1.3 This Thesis 11

2 Reconfigurable Systems: Background 13
2.1 Typical Architecture of a Reconfigurable System 14
2.2 Reconfigurable Logic Technology 16

2.2.1 Support for Reconfiguration
............ ... 17

2.2.2 Configuration Interface 19
2.2.3 Configuration Data Distribution 19
2.2.4 Configuration Activation 23

2.3 Reconfiguration Latency 25
2.4 Summary

....... 33

3 Previous Work on Reconfigurable System Design 35
3.1 Design for Non-Reconfigurable Systems

............ 35
3.1.1 Synthesis Design Flow 36
3.1.2 Automatic Design Synthesis

.... 38

vi

3.2 Design for Reconfigurable Systems 39
3.2.1 Evolution of Design Methodologies for Reconfigurable

Systems
...........

40
3.2.2 Partitioning at Behavioural Level

42
3.2.3 Partitioning at Register-Transfer Level

45
3.2.4 Partitioning at Gate Level

46
3.2.5 Floorplanning

48
3.3 Solution Feasibility

........ 48
3.3.1 Synthesis for Full versus Partial Reconfiguration ...

49
3.4 Summary

..............................
51

4 Reconfigurable System Synthesis Problem Formulation 52
4.1 Fundamental Assumptions

...................
53

4.1.1 Input to Reconfigurable System Synthesis
53

4.1.2 Design Goal 56
4.1.3 Target Architectural Model

56
4.2 Reconfigurable System Design Synthesis Transformations ..

57
4.2.1 Behavioural Architectural Level

59
4.2.2 Architectural -4 Physical Level

64
4.3 Comparison with a Traditional High-Level Synthesis Formu-

lation.... 67
4.4 Summary of the Model Features 69

5 DYNASTY Framework 71
5.1 Introduction 72

5.1.1 Architecture 72
5.1.2 Design Manipulation and Visualisation.. 74
5.1.3 Technology Server 78
5.1.4 Design Simulation

.... 79
5.1.5 Third-Party Interfaces 79
5.1.6 Synthesis of Configuration Controllers and Static De-

sign Modules 80
5.2 Designing with the DYNASTY Framework 80
5.3 Design Example 82
5.4 Conclusions 83

6 Synthesis of Dynamically Reconfigurable Systems with Evolution-
ary Algorithms 86
6.1 Restricted Problem for Synthesis of Reconfigurable Systems 87
6.2 Synthesis Process Overview (Temporal Floorplanning) ... 93

6.2.1 Technology Independence 95
6.3 Optimisation Algorithm Selection 96
6.4 Genetic Algorithms 98

vii

6.5 Implementation of an Automatic Reconfigurable System Syn-
thesis 102
6.5.1 Problem Representation 102
6.5.2 Population Initialisation 103
6.5.3 Selection of Genetic Operators

105
6.5.4 Crossover Operators

. 106
6.5.5 Mutation Operators

108
6.5.6 Overall Synthesis Procedure 110
6.5.7 Solution Feasibility 110
6.5.8 Problem-Specific Fitness Function 115
6.5.9 Selection of a Genetic Algorithm Procedure and Con-

trol Parameters
115

6.5.10 Implementation 116
6.5.11 Summary

... 116

7 Experimental Results 118
7.1 Benchmark Problems 118
7.2 Target Technology 122
7.3 Experimental Procedure

. 122
7.3.1 Design Verification 124
7.3.2 Design Implementation 126

7.4 Summary of Results 126

8 Conclusions 135
8.1 Summary of the Contribution

.......... 135
8.1.1 Applications of the Proposed Approach 138

8.2 Areas for Improvement and Future Directions 140
8.2.1 Composite Cost Function 140
8.2.2 Evaluation with Large and Multi-cycle Modules .. . 140
8.2.3 Routing Consideration 141
8.2.4 Architectural-Level Resource Sharing

....... . . 142
8.2.5 Register Allocation, Pipelining and Retiming 143
8.2.6 Summary

... 143

Appendix 146

A Model Reconfigurable Logic Technology 147
A. 1 Architecture 148

A. 1.1 Device Size
......... 148

A. 1.2 Logic Block 149
A. 1.3 Routing Resources 150

A. 2 Configuration Subsystem 151
A. 3 Library Modules

. 152
A. 4 Support for Design Verification 160

vu'

Glossary

References

161

163

ix

List of Figures

1.1 Typical architecture of a configurable logic device.
4

2.1 Typical architecture of a reconfigurable logic system.. 14
2.2 Propagation of the configuration data through the reconfig-

uration subsystem 18
2.3 Serial configuration data distribution 20
2.4 Random-access configuration memory

22
2.5 One-to-one versus many-to-one configuration activation. .. 24
2.6 Multiple-context configuration memory 25
2.7 4-bit subtractor configuration experiment.. 27
2.8 Csub =f (0x, ay), subtractor module configuration latency

Cs�b as a function of the offset (0x, Ay) against the adder
module (8-bit parallel random access configuration interface). 28

2.9 X-Y cross-sections for the diagram shown in Fig. 2.8 (8-bit
parallel random access configuration interface). 29

2.10 Csub =f (Ax, ay), subtractor module configuration latency
Cs�b as a function of the offset (0x, Ay) against the adder
module (32-bit parallel random access configuration interface). 30

2.11 X-Y cross-sections for the diagram shown in Fig. 2.10 (32-bit
parallel random access configuration interface). 31

2.12 Subtractor module configuration latency Csub as a function
of the offset (Ax, Ay) against the adder module (serial column-
access configuration interface) 32

2.13 Subtractor module configuration latency Csub as a function
of the offset (Ax, Ay) against the adder module (multiple-

context configuration memory pre-loaded with the configu-
ration data)

..... 32

3.1 A typical design flow for non-reconfigurable systems..... 37
3.2 Temporal partitioning at behavioural level.

........ .. 43
3.3 Temporal partitioning at RTL 45
3.4 Temporal partitioning at gate level

........ 47

X

4.1 Example of a Control/Data Flow Graph model with the cor-
responding behavioural code fragment

.............
55

4.2 Transformation of a reconfigurable design during synthesis. 58
4.3 Example of a feasible schedule in a reconfigurable system. 63

5.1 DYNASTY Framework architecture 73
5.2 Typical DYNASTY session. 74
5.3 Laplace operator data-flow graph and 3D floorplan after schedul-

ing 83
5.4 Laplace operator 3D floorplan and data-flow graph after schedul-

ing 84

6.1 Architectural-level resource sharing controlled by an FSM. 89
6.2 Architectural-level resource sharing with module ao shared

between behavioural computations bo and b1.. 90
6.3 Relationship between the system and configuration clock sig-

nals 91
6.4 A Laplace operator mask 3D floorplan and data-flow graph

during temporal floorplanning
................ .. 94

6.5 An example of a chromosome coding in a genetic algorithm
(1-dimensional binary string). The binary value encoded in
the chromosome is linked to the system variable under opti-
misation 99

6.6 An example of a crossover operator (one-point crossover). . 100
6.7 An example of a mutation operator (random 'flip' mutation). 100
6.8 Reconfigurable system synthesis problem GA representation. 104

7.1 Laplace operator data-flow graph 120
7.2 Differential equation solver data-flow graph. 120
7.3 Elliptic wave filter data-flow graph. 121
7.4 An example of a CM-based simulation model used during

verification. 125
7.5 Design schedule example 127
7.6 Solution stability over 10 GA-synthesis runs (Laplace oper-

ator benchmark, 24 x 24 array, 8-bit parallel random access
configuration subsystem) 130

7.7 Comparison of a manually constructed design solution with
a design obtained automatically (Laplace operator bench-

mark, 24 x 24 array, 8-bit parallel random access configura-
tion subsystems, no configuration cycles are shown). (a)-(b)

show the placement of the design modules, (c)-(d) show the
design execution schedule 131

A. 1 XC6200 logic block
......................... 149

A. 2 Model XC6200 technology logic array 150

xi

A. 3 4-bit adder (a + b): schematic diagram
... 154

A. 4 4-bit adder (a + b): detailed layout
. 155

A. 5 4-bit subtractor (a - b): schematic diagram.
.......... 156

A. 6 4-bit subtractor (a - b): detailed layout 157

xii

List of Tables

7.1 Behavioural benchmarks used in the synthesis evaluation. . 119
7.2 Relative module latencies used during the synthesis of ex-

amples 123
7.3 Synthesis results for an 8-bit parallel random access config-

uration subsystem (XC6200)
. 127

7.4 Synthesis results for multiple contexts configuration subsys-
tem (DPGA)

....... 128
7.5 Results for an 8-bit parallel random access configuration sub-

system (XC6200) optimised by hand
............... 132

A. 1 A selection of XC6200 library modules used in experiments
described in Chapter 7 153

A. 2 Characteristics for 4-bit and 8-bit adder modules.. 158
A. 3 Characteristics for 4-bit and 8-bit subtractor modules. 158
A. 4 Characteristics for 4-bit and 8-bit 'greater than' comparator

modules 159
A. 5 Characteristics for 4x 4-bit and 8x8-bit multiplier modules.. 159

Xlii

List of Algorithms

6.1 Simple Genetic Algorithm 101
6.2 Population initialisation 103
6.3 First-come first-served allocation and binding 105
6.4 3D floorplan placement 106
6.5 Module binding crossover 107
6.6 2D floorplan crossover 107
6.7 3D floorplan crossover 108
6.8 Module binding mutation 109
6.9 2D floorplan mutation 109
6.10 3D floorplan mutation 110
6.11 Floorplan 'shaking' mutation 111
6.12 Overall GA-based synthesis procedure 112
6.13 3D floorplan correction and reconfiguration latency calculation 113

xiv

List of Abbreviations

ASIC Application Specific Integrated Circuit

CAD Computer Aided Design

CDFG Control/Data Flow Graph

CDS Configuration and Data Store

CM Clock Morphing

CMOS Complementary Metal Oxide Silicon

DFG Data Flow Graph

DRL Dynamically Reconfigurable Logic

FPGA Field Programmable Gate Array

FPL Field Programmable Logic

FSM Finite-State Machine

FSMD Finite-State Machine Datapath

GA Genetic Algorithm

HDL Hardware Description Language

ILP Integer Linear Program(ming)

xv

OTP One-Time Programmable

RCU Reconfiguration Control Unit

RL Reconfigurable Logic

RLU Reconfigurable Logic Unit

RS Reconfigurable System(s)

RTL Register Transfer Level

RTOS Real-Time Operating System

SLU Swappable Logic Unit

SRAM Static Random Access Memory

VLSI Very Large Scale Integration

VHDL VHsic HDL

VHSIC Very High Speed Integrated Circuit

WCS Writeable Control Store

xvi

Acknowledgements

This thesis would have not existed without the efforts of many kind in-

dividuals. It gives me a great pleasure to acknowledge their contribution

here.

I would like to thank my first supervisor, Graham Benyon-Tinker, for

his advice and encouragement, generous support, and dedication to see

this project through to its successful end. I am very grateful to my second

supervisor, David Long, for his help, constructive criticism and support on

this and other related projects. Special thanks to Jim Roach and the rest of

the management team of the School of Design, Engineering & Computing

who have provided generous support throughout my studies.

My special gratitude goes to Djamel Ait-Boudaoud who was the first to

suggest a research topic in the field of FPGAs, and later offered his support

and advice as my first supervisor in the early years of my PhD studies. Pro-

fessor Sa'ad Medhat also provided encouragement and support through-

out this period.

I am grateful to my past and present colleagues, Steve Holloway, Petr

Voles, Radovan Cemes, David Cabanis, Darrell Gibson for their friendship,

help and an excellent working environment they have provided over the

years.

Many individuals from the community of scientists, engineers and in-

xvii

dustrialists have helped to provide suggestions, guidance and shape the

ideas presented in this thesis. While I cannot name all here, I would like to

express my gratitude to Patrick Lysaght from University of Stathclyde and

Wayne Luk from Imperial College for their encouragement and discussions

on the topics of dynamically reconfigurable logic from the very beginning.

I am also indebted to Patrick Schaumont and Serge Vernalde at IMEC, for

their views and suggestions on modelling aspects of reconfigurable sys-

tems.

I am grateful to Tom Kean, John Gray, Jason Feinsmith and Patrick Kane

and the companies they have been representing, namely Xilinx Develop-

ment Corporation and Xilinx, Inc., for their advice, support and donations,

which made work on aspects of this research possible.

Financial support provided during my PhD studies by the UK CVCP

Overseas Research Award Scheme, the NATO ASI grant and the EC LSF

programme grant is gratefully acknowledged.

My work on this research would have never been possible without the

support from my family. I am grateful to my parents for their continuing

support and encouragement in my pursuit of the university studies and

the scientific career. Above all, I am indebted to my wife Maria and daugh-

ters Dominka and Viktoria, who have firmly supported me throughout my

PhD studies and have patiently suffered all the consequences.

xviii

Chapter 1

Introduction

Techniques for the design of computing systems have been attracting inter-

est since the invention of the first computing machines. Early design tech-

niques have relied on the engineering excellence of computing pioneers

and offered little assistance with the laborious procedures involved in the

construction of even the simplest system components.

Advances in microelectronic technologies and system integration in the

second half of the 20th century have moved computing machines from spe-

cialised research laboratories into everyday-life products. Many thousands

of designers are developing embedded computing products today in an

environment very different from that of fifty years ago.

Short product life cycles and increased competition are forcing design

teams to minimise the 'time-to-market' of their products. While only a few

years ago it was common for the development of an embedded computer

product to take 1-2 years, the current market situation for many products is

forcing design teams to deliver increasingly complex and powerful systems

within only several months.

In this market environment, product design techniques and method-

1

ologies are of paramount importance. Computer-aided design tools and

methodologies have helped to automate the laborious and repetitive de-

sign tasks, while increasingly higher levels of abstraction are being used to

cope with system complexity. 'Push-button' design methodologies are be-

ing used to generate large portions of designed systems automatically, thus

dramatically reducing the design time. Short development cycles demand

'first-time right' design methodologies which can guarantee the correctness

of the automatically generated designs and minimise or completely ehm-

inate design iterations. Objectives such as design time and performance

now often dominate product development, rather than the previously de-

sired silicon area efficiency.

Furthermore, many computing systems today are subjected to modifi-

cations during their product life cycles. These modifications can be caused

by changes in protocol or interface standards, changes in user require-

ments, correction of product faults, and others. The period of such changes

may vary from years to months, when products need to be upgraded for

example with a new version of an embedded operating system. Changes

may be also required in matters of seconds or milliseconds, when systems

have to react to requirements changing in real-time. For example, where

the type of data to be processed depends on system locality, or coding pro-

tocol depends on the type of processed data.

This flexibility has traditionally been provided via modifications of sys-

tem software components-programs stored in re-writable memories. Such

programs can be modified or completely replaced without the need to phys-

ically replace the memory devices. However, this 'software' approach to

design flexibility is limited to processor-based components. While these

can achieve high performance, timing-critical system components often

2

have to be implemented using custom integrated circuits.

With the commercial availability of reconfigurable logic (RL) devices,

a similar level of flexibility can be provided in custom high-performance

circuits.

The following sections outline some of the benefits and uses of recon-

figurable logic technology and illustrate further the motivation for the pre-

sented work. This chapter concludes with a brief summary of the topics

covered in the thesis.

1.1 Reconfigurable Logic

With in-field programmable or configurable logic technology it is possible to

construct logic circuits in-field, after the technology devices have been man-

ufactured.

A typical configurable logic architecture is composed of logic blocks sur-

rounded by the routing wires (Fig. 1.1). Boolean functions and storage ele-

ments implemented in the individual logic blocks, together with the con-

nectivity of reconfigurable routing elements, can be configured via a set of

configuration switches. The on/off state of these switches is controlled by

individual memory cells contained within a device configuration memory.

The collection of states stored within the configuration memory is called

a (hardware or device) configuration. It is the type and organisation of the

configuration memory cells which determine the level of flexibility avail-

able in these technologies.

For example, one-time programmable (OTP) technologies store hard-

ware configurations in distributed programmable read-only memories.

Once a selected configuration is transferred into an OTP device, the con-

3

logic blocks routing wires

1-bit
memory

cell
1-bit

memory
cell
1-bit

memory
cell

1-bit
memory

cell

configurable
Boolean function

d IQ aQQ

routing switch

Q 111711HIE111 QQQ
Q Q Q 1111111
Q Q Q [111 Qm

cep°f
y

look-up table

configurable routing

Figure 1.1: Typical architecture of a configurable logic device.

figuration becomes permanent and cannot be modified'.

Reconfigurable technologies store hardware configurations in a re-

writable memory. While many different reconfigurable logic technologies

have been developed, most of the contemporary RL technologies use dis-

tributed configuration memories based on conventional 5-transistor static

CMOS memory cells (Trimberger, 1994). In the remainder of this text we

will refer to this type of RL technology as 'SRAM reconfigurable logic'.

The suitability of a reconfigurable logic technology for a specific ap-

plication is determined by the technology characteristics, including its ar-

chitecture, granularity of logic cells, interconnection structures, availability

of special architectural blocks (memories, clock generators, interface cores,

etc.) and others. Detailed discussions of various such reconfigurable archi-

tectures can be found in field-programmable logic textbooks (e. g. (Oldfield

and Dorf, 1995; Trimberger, 1994)).

With SRAM reconfigurable logic it is possible to change the configura-

'In some OTP technologies it is possible to change the state of configuration memory
cells, if these were left unprogrammed (in their default states). However, the state of pro-
grammed memory cells cannot be changed.

4

tion in a manner similar to how a program stored in the SRAM of a proces-

sor system can be changed. Thus it is possible to load or modify the circuits

implemented in reconfigurable logic.

This flexibility of reconfigurable logic has attracted considerable re-

search interest in recent years. Much of the excitement is focused around

the promising application of this technology in the following areas:

" software acceleration

" hardware virtualisation

" fault tolerance

" in-field and remote hardware modification

1.1.1 Software Acceleration

In his early work Estrin (1960) has highlighted the potential of computer

systems with 'flexible' architectural structures. If the processor architecture

could be adapted to each computation executed on it, the speed of each

computation could be improved.

Later technological advances based on work by Minninck (1964) and

others have led to the development of reconfigurable technologies capable

of supporting these flexible architectural features. Commercial availability

of reconfigurable devices, such as SRAM Field-Programmable Gate Arrays

(FPGAs) in the 80's, has allowed the practical implementation of systems

based on Estrin's ideas.

Software acceleration aims to achieve computational speed-up for a

specific algorithm/program by using a processor with its architecture tai-

lored to the computational requirements of the input algorithm. The speed-

up is measured as the ratio of the algorithm execution time on a processor

5

designed for a variety of different algorithms (general-purpose processor) to

the execution time on a processor with its architecture customised for the

accelerated algorithm (custom processor).

Processor architectures based on reconfigurable logic technologies can

be customised for a large variety of algorithms. Some impressive speed-up

results have been demonstrated for many algorithms running on reconfig-

urable computing machines. The early Splash-I system (a 32 FPGA linear

array accelerator) was reported to outperform a standard general-purpose

processor in a Sun3 workstation by a factor of 2700, while a single Cray-2

processor was outperformed by a factor of up to 300 (Gokhale et al., 1991).

High speed-up figures have been demonstrated with many specialised

algorithms, however, the architectural limitations of custom-computer plat-

forms and inherent limitations on the computational speed-up (Amdahl's

law, (Amdahl, 1967)) do not allow for significant speed-up figures to be

achieved for many other algorithms (Albaharna et al., 1994; Guccione,

1995). Speed-up figures in the order of tens to hundreds are being routinely

reported in the custom computing community.

1.1.2 Hardware Virtualisation

With reconfigurable logic it is possible to implement designs with sizes

larger than the available hardware logic resources through hardware re-

configuration. This concept of 'hardware virtualisation' is similar to the

concept of virtual memory available in most modern operating systems

(Silberschatz and Galvin, 1998). Hardware virtualisation is also known as

logic 'time-sharing' (Lautzenheiser, 1986).

The maximal size of a program which can be executed on a given pro-

cessor is limited only by external factors, such as program storage size.

6

Similarly, the size of a hardware circuit implemented on a reconfigurable

logic device is limited only by the size of storage for RL configurations.

Hardware virtualisation has been explored for the implementation of

high-performance applications of large sizes. Several implementations of

neural networks on small reconfigurable logic devices have been demon-

strated (e. g. (Lysaght et al., 1994; Eldredge and Hutchings, 1994)). In this

approach, the computations in the neural networks are evaluated in small

incremental configurations. Jones and Lewis (1995) have demonstrated a

system capable of emulating large logic circuits partitioned over a number

of configurations on a reconfigurable FPGA emulation platform.

1.1.3 Fault Tolerance

Early pioneers of computer science have envisaged difficulties with the op-

eration of complex computing machines. In his theoretical work, von Neu-

mann (1966) argued that complex computing machines will have to tolerate

unreliability of their individual components as a normal part of their oper-

ation. He discussed self-repair and self-reproduction mechanisms, which

could improve the reliability of complex systems.

With reconfigurable logic, the structure and connectivity of imple-

mented circuits can be changed during the life-time of a reconfigurable

system. Provided that it is possible to identify the failure of a circuit compo-

nent, the functionality of such a component can be 'replaced' via hardware

reconfiguration. This suggests that a significant amount of spare reconfig-

urable resources need to be available in the reconfigurable logic for such

a system to continue to function correctly. Such redundancy, however, is

commonly incorporated in the design of systems demanding high reliabil-

ity (Lala, 2000), although not at such a fine-grained level.

7

Successful implementation of 'defect-tolerant' systems based on recon-

figurable logic was demonstrated by Culbertson et al. (1997) and others.

The feasibility of self-reproduction and self-repair mechanisms in a re-

configurable logic system were demonstrated with a purpose-built dynam-

ically reconfigurable logic system (Mange et al., 1995).

The applications of systems based on the above principles range from

mission-critical or life-support systems to computing machines based

on unreliable computational structures (e. g. chemical nanostructures

(Heath et al., 1998) or biomolecular technologies (McCaskill and Wagler,

2000)).

1.1.4 In-Field and Remote Hardware Modification

The ability to modify reconfigurable logic designs allows for errors to be

corrected and new features to be added after the product was released.

These updates can be performed in the field and even remotely over a dis-

tributed network. Such features become vital in the environment where

short time-to-market and short product life cycles force application devel-

opers to accommodate new features late in the development cycle or during

the product life-time (Kean, 1999).

Slow standardisation efforts fail to keep up with the customer demand

for new products. This situation is forcing manufacturers to develop prod-

ucts with incomplete draft standards and then update the final products to

comply with the final standard documents.

The above features of reconfigurable logic have gained much impor-

tance with the recent development of large-complexity and single-chip sys-

terns. In these systems the reconfigurable logic will provide the required

flexibility to cope with the uncertainties of product design, reliability, stan-

8

dards or feature demand.

Remote changes of reconfigurable logic circuits will provide benefits to

many systems requiring hardware changes during their life cycle. These

systems include reconfigurable communication systems, consumer elec-

tronics products (e. g. digital TV), automotive systems, and others. One

other example of such a promising application are the systems using hard-

ware reconfiguration in remote and harsh environments (Brebner and Berg-

mann, 1999).

Although the above features of reconfigurable logic have gained con-

siderable interest only recently, this concept has been known to processor

architects for many years. Early implementations of IBM 370 and DEC VAX

computer architectures developed in the 70's utilised a Writeable Control

Store (WCS)-an SRAM which could hold custom microcode (Hennessy

and Patterson, 1990; Edwards, 2000). Through WCS it was possible to 're-

place' faulty instructions with the new ones, thus allowing corrections of

hardware bugs after the entire computer system was manufactured. Simi-

lar features can be found in many contemporary processors today.

1.2 Reconfigurable Logic in Real-World Applications

Recent technological advances in the area of reconfigurable logic have pro-

duced technologies capable of integrating designs with over one-million

gates operating at system clock frequencies of hundreds of megahertz. In

contrast, other ASIC technologies (gate arrays, standard cells, full-custom)

can provide an order of a magnitude better performance and capacity. De-

spite these limitations reconfigurable logic technologies are becoming in-

creasingly popular for design implementation in low to medium volumes.

However, to date applications using hardware reconfiguration in practical,

9

real-world scenarios are rare.

Let us examine two principal difficulties which contemporary users of

reconfigurable logic are confronted with:

" Limited reconfiguration performance. The reconfiguration latency

overhead of current reconfigurable technologies is prohibitive for

many practical applications. While the system clock period of con-

temporary general-purpose processors reduces below 1 ns, the recon-

figuration time for typical commercial devices remains in the order of

tens of microseconds and more.

Furthermore, the flexibility gain of reconfigurable technology can of-

ten be outweighed by alternative approaches using microprocessor or

non-reconfigurable technologies. Several technological approaches

have been proposed to reduce the reconfiguration overheads (e. g.

(Brown et al., 1994; Vasilko and Ait-Boudaoud, 1996b)), however, a

practical commercial implementation of these technologies is yet to

be demonstrated.

Chapter 2 discusses further the various approaches used for the con-

struction of reconfigurable logic devices.

" Lack of suitable CAD tools and methodologies. Most of the de-

sign tools and methodologies available for reconfigurable systems are

based around static (i. e. non-reconfigurable) design flows.

Using such design flows for the design of reconfigurable systems can

lead to a large number of design iterations due to an inability to

accommodate reconfiguration overhead metrics early in the design

flow. Automation of this process has been limited due to its com-

putational complexity and the difficulties in estimating the low-level

10

design metrics at higher abstraction levels. A more detailed discus-

sion of the topic of automatic design for reconfigurable logic, and a

review of the past work in this area, is provided in Chapter 3.

1.3 This Thesis

This thesis addresses the need for an automatic design flow for dynami-

cally reconfigurable systems. A new approach is proposed, which allows

simultaneous searching through the design space of a reconfigurable sys-

tem at behavioural and layout levels, while attempting to satisfy the overall

design constraints.

The presented approach uses a new model for the process of re-

configurable system synthesis, which permits technology-dependent and

solution-dependent characteristics (such as position-dependent configura-

tion latency) to be calculated and inserted into the model during the solu-

tion search. Therefore realistic estimates of reconfiguration overheads can

be considered during the solution search. This approach guarantees that

the automatically produced design solutions are feasible, i. e. they can be

implemented using the target reconfigurable device without the occurrence

of resource or dependency conflicts.

This thesis is composed as follows. Chapter 2 provides background for

reconfigurable systems with a particular emphasis on the reconfigurable

logic technologies. The chapter examines the characteristics of several tech-

nological approaches used for the construction of reconfigurable logic de-

vices in order to demonstrate how the technology-specific features com-

plicate the design considerations during the reconfigurable system design.

Chapter 3 outlines the various techniques used for the design of recon-

figurable systems, summarises the previous work significant to the area

11

of automatic synthesis for reconfigurable systems and highlights some of

the shortcomings of the previously proposed approaches. Chapter 4 intro-

duces a new model for the process of synthesising a design for a reconfig-

urable system. The model provides the formalism necessary for the discus-

sion of the design techniques presented in the following chapters. Chap-

ter 5 presents a new experimental CAD framework developed to support

the work presented in this thesis. Chapter 6 presents an automatic synthe-

sis technique for a restricted instance of this problem based on the use of

genetic algorithms. The qualities of this approach have been tested using a

number of benchmark problems. These experimental results are presented

in Chapter 7. The contribution of this thesis is summarised in Chapter 8,

which also provides suggestions for future work in this area.

12

Chapter 2

Reconfigurable Systems:

Background

Reconfigurable systems combine features which have previously existed

individually in either software or hardware systems. Reconfigurable sys-

tems provide flexibility similar to that of processor-based software systems,

while their performance is close to custom hardware circuits. Reconfig-

urable systems are therefore often viewed as a 'missing link' between soft-

ware and hardware systems.

The previous chapter has discussed the historical motivation for the de-

velopment of reconfigurable logic systems. This chapter provides a back-

ground for reconfigurable systems and reconfigurable logic technologies.

The design difficulties resulting from the availability of different techno-

logical approaches for supporting reconfiguration are discussed using a

simple example at the end of this chapter.

13

RECONFIGURABLE SYSTEM

configuration
RLU 0 synchronisation RCU

RECONFIGURABLE RECONFIGURABLE
LOGIC CONTROL
UNIT UNIT

configuration data
and

RLU state

CDS
CONFIGURATION

application-specific configuration data
data and DATA and

STORE RLU state

Figure 2.1: Typical architecture of a reconfigurable logic system.

2.1 Typical Architecture of a Reconfigurable System

A variety of reconfigurable systems and applications has been demonstrated,

including those exploiting the less traditional concepts of self-reconfiguration

(e. g. (French and Taylor, 1993; Sidhu et al., 1999; McGregor and Lysaght,

1999)) and hardware evolution (e. g. (Thompson, 1996; Tangen, 2000)). The

majority of these systems are built around a typical architecture shown in

Fig. 2.1.

A typical reconfigurable system architecture includes:

" The Reconfigurable Logic Unit (RLU) which contains reconfigurable

logic and routing resources, but may also provide memory blocks,

configurable dock generators, etc. The state of all RLU resources

can be accessed via the RLU's configuration interface. In many con-

temporary systems, the RLU is represented by a single FPGA device,

14

while the FPGA configuration interface provides access to its config-

uration memory.

" The Reconfiguration Controller Unit (RCU) which manages the RLU

reconfiguration. The RCU typically allows loading and retrieval of

the RLU resource data states and configurations, although the avail-

ability of these features depend on the RLU-specific capabilities.

The RCU unit can be implemented in a hardware controller or a pro-

cessor. It can operate either as a unit dedicated to the task of configu-

ration control, or its functionality can be provided by units shared be-

tween other system functions (e. g. on a processor running a real-time

operating system (RTOS)). Furthermore, the RCU may be integrated

within the RLU. In such a scenario, the RCU can either control the

RLU's reconfiguration via a single configuration interface or the RCU

may provide a distributed reconfiguration control mechanism.

" The Configuration and Data Store (CDS) which provides memory

storage for both the RLU configuration and state data, and application-

specific data.

There are many options for the CDS implementation, including a sin-

gle memory block, two memory blocks (one for configuration data

and one for application data), hierarchical memory structures, and

others.

A reconfigurable system can operate either as a self-contained unit or it

can be embedded in a larger system. The complexity of the individual RS

units and the complexity of the overall operation will vary greatly with the

application requirements.

Simple reconfigurable systems may implement the RLU on a single

15

FPGA device, the RCU on a dedicated configuration controller with an

address counter and control generator, while the CDS can store the RLU

configurations in a read-only memory. Reconfiguration of such a system

can be initiated by an external control signal and may occur more or less

frequently.

Complex reconfigurable systems may be part of a larger real-time sys-

tem, implementing the RLU using several FPGA devices and field pro-

grammable crossbar switches, the RCU on a processor running a real-time

operating system, responsible for the management of real-time event initi-

ated reconfiguration, while also servicing other system functions. The CDS

may be placed on a shared system memory with the system's RTOS being

responsible for the management of memory sharing between system com-

ponents.

2.2 Reconfigurable Logic Technology

Several technological approaches are available for the implementation of

the RLU discussed in the previous section. The technological features of

reconfigurable technologies can be separated into two main categories:

" Architectural features:

- logic block functionality and granularity

- structure of routing resources

- architectural organisation of logic and routing

- availability of application-specific architectural components (fast

local memory, fast carry-chains, etc.)

- availability, characteristics and number of external connections

16

" Configuration capabilities:

- organisation of configuration memory and data

- reconfiguration interface throughput and characteristics

Reconfigurable logic has evolved from technologies developed for FPGAs.

Therefore architectural tradeoffs for the implementation of reconfigurable
logic are similar to those of FPGAs. A detailed discussion of the architec-

tural tradeoffs for FPGA architectures can be found in a number of FPGA

technology textbooks (e. g. (Trimberger, 1994; Oldfield and Dorf, 1995)).

A number of techniques have been developed to provide configuration
interfaces optimised for reconfigurable logic. The main techniques are sum-

marised in the following section.

2.2.1 Support for Reconfiguration

This section summarises the main techniques used in reconfigurable tech-

nologies for the construction of circuits supporting reconfiguration. The

performance of reconfiguration for a specific type of reconfigurable tech-

nology is determined by the performance of its individual components:

1. External configuration interface, which transfers configuration data

from the external sources (e. g. CDS in Fig 2.1) to the internal struc-

tures of a reconfigurable device (Fig. 2.2(a)).

2. Configuration data distribution network, which transports the con-

figuration data to the individual configuration memory cells (Fig. 2.2(b)).

3. Configuration activation scheme, which activates the configuration

data by connecting the selected configuration memory cells with the

configurable components of a reconfigurable system (Fig. 2.2(c)).

17

ý- 1-1-0 1ý0

O-ý
Iý7-Q

P-Q 4D-El

0-0 ¢D 6-0 110

6-0

configuration
interface

configuration data

(a) external transfer (b) distribution

LýJ ýJ

logic blocks

LýJ

LSý! J

ail

ýJ

ýJ

ýK

Lý

l. Ti'J

&, I
configuration

interface

(c) activation

Figure 2.2: Propagation of the configuration data through the reconfigura-
tion subsystem.

Although in the following the implementation of these components in

FPGA technologies is discussed, these considerations are applicable gen-

erally to the implementation of the RLU; regardless of whether the RLU

contains a single FPGA device or a combination of FPGA and other recon-

figurable technologies.

The configuration performance depends on the throughput of all of the

above components. Unbalanced configuration subsystems require configu-

ration buffering between the configuration components with different through-

put. The overall bandwidth of a reconfiguration subsystem is limited by

the throughput of its slowest component.

18

local configuration
stores

2.2.2 Configuration Interface

The connection of the configuration interface to the external world deter-

mines the speed at which the configuration data can be transferred to the re-

configurable device. A high-throughput parallel configuration interface con-

nection is well suited for fast configuration transfers. However, it requires

that a number of device I/O ports are assigned to this function. In those

implementations where external ports are in demand or when fast reconfig-

uration is not required, the parallel interface might not be desired. In such

cases, the serial configuration interface provides a low-throughput and low-

cost alternative. Most of the contemporary reconfigurable devices provide

a dual parallel/serial interface allowing users to select the interface best

suited for the targeted application.

After the configuration data has been received from an external source,

the configuration interface circuitry will arrange the data in the format suit-

able for distribution within the reconfigurable logic array.

2.2.3 Configuration Data Distribution

Similar tradeoffs between serial and parallel access apply for the distribu-

tion of the configuration data in the reconfigurable logic array. The follow-

ing are two examples of common serial and parallel distribution mecha-

nisms.

2.2.3.1 Serial distribution

Early commercial reconfigurable logic devices were designed for config-

uration only during the system power-up. This scenario required a con-

figuration interface, which is simple and has only minimal area and pin

overhead in the reconfigurable logic array.

19

(0,9)

logic

serial configuratior
data

000101... 00010111

(0,0)
configurable logic array

serial configuration memory

Figure 2.3: Serial configuration data distribution.

(9,9)

(9,0)

A serial configuration distribution (Fig. 2.3) was used in these tech-

nologies. Typically, the configuration memory is arranged as a long shift-

register. In order to program a device, the configuration data is shifted from

the configuration interface to the configuration store bit-by-bit. The device

is activated for normal operation once the entire configuration memory has

been filled with the configuration data. Xilinx XC2000/3000/4000 (Xilinx,

1994) and Altera FLEX 8k/10k (Altera, 1995) FPGA families are examples

of the technologies with serial distribution of the configuration data.

In order to improve the throughput of the configuration interface these

families also provide parallel access to their configuration interfaces. These

configuration interfaces internally reformat the parallel configuration data

into a serial configuration 'bitstream'.

Early implementations of configuration distribution mechanisms required

that with each reconfiguration the entire configuration memory must be

filled with configuration data before the new configuration can be used.

20

The term full reconfiguration is used to denote this type of reconfiguration.

Later configuration distribution mechanisms have allowed for only a

portion of the reconfiguration memory to be modified, while the rest of the

system remains unchanged. This type of reconfiguration is called partial

reconfiguration.

The term dynamic reconfiguration is used to refer to cases when it is pos-

sible to perform reconfiguration while the system remains in operation. In

this text, the term 'dynamic reconfiguration' denotes a temporal quality of

a reconfigurable system, while the terms 'partial/full reconfiguration' de-

note its spatial qualityl.

The Atmel AT6000 (Atmel, 1994) is an example of an FPGA technology

with serial configuration data distribution, which supports both partial and

dynamic reconfiguration2.

The main drawback of the serial configuration data distribution mech-

anism is its low configuration data throughput. Although partial reconfig-

uration can reduce average configuration time, in the worst case it is still

necessary to shift the configuration data through the entire array (e. g. con-

sider the configuration of the block at position (0,9) in Fig. 2.3).

On the other hand, this type of reconfiguration distribution mechanism

is simple to implement as it does not incur a large area overhead. It pro-

vides sufficient performance and flexibility for many applications which do

not require rapid reconfiguration.

2.2.3.2 Parallel distribution

With the development of reconfigurable computing, it became desirable to

provide a faster and more direct method of accessing configuration data

'The use of this terminology is summarised in the Glossary on page 161.
2 Atmel use the term Cache LogicT M to refer to this feature.

21

column address decoder

(0,9) (9,9)

......... o. o a.
aQaQaö_o aQ o_. oQ ao0..

0
logic blocks

aQaQoaQ T
Qoa_ooaao RAM interface

7711 DDII
control

Q: Q QQiQ. Q El QQ

EI: address
11:

_1 _a

77Q Q

QQQQQQQQQQ data QQQ, QQQ, Q.
_Q,

7'_.

(0,0)
configurable logic array

(9,0)

random-access configuration memory

Figure 2.4: Random-access configuration memory.

and the RLU state (e. g. from a coupled microprocessor). A configuration

distribution mechanism allowing random access to the RLU configuration

memory was developed in response to these needs (introduced by Kean

(1988), prototyped in the Algotronix CAL1024 device (Algotronix, 1991)

and later improved in the Xilinx XC6200 FPGA family (Churcher et at,

1995; Xilinx, 1997b)).

This is an example of a parallel configuration distribution mechanism,

where the internal configuration memory is organised in a structure simi-

lar to that of a conventional single-port RAM (Fig. 2.4). The configuration

data and the RLU state can be set and retrieved through addressing the

appropriate location in a random-access configuration memory.

Through this configuration distribution mechanism, the configuration

memory appears as an ordinary RAM, which can be easily interfaced to

standard processor-based systems.

22

The main advantage of this approach is that individual words in the

configuration memory can be accessed quickly at any address (e. g. in Xil-

inx XC6200 technology, a 32-bit configuration data word can be written in

the configuration memory within a 30 ns write cycle). This approach also

provides a partial reconfiguration capability.

The approach requires an increased reconfigurable logic array area due

to the necessity to provide the configuration address/ data routing and the

logic supporting the random memory access.

2.2.4 Configuration Activation

A configuration activation scheme determines how the distributed config-

uration data is transferred to the programmable switches within the recon-

figurable array. The following are examples of two approaches used for the

activation of the configuration data:

2.2.4.1 Direct one-to-one activation

Traditional reconfigurable logic devices provide one configuration mem-

ory cell for each configurable switch in the array (Fig. 2.5(a)). In this case,

the configuration memory cell is directly connected to the configurable

switch. The new configuration is activated immediately after the configu-

ration memory cell has been written with the new data. Examples of recon-

figurable devices with direct one-to-one activation, include Xilinx XC2000/

3000/4000 (Xilinx, 1994), XC6200 (Xilinx, 1997b) and Altera FLEX 8k/10k

(Altera, 1995) FPGA families.

23

C
C 1-bit 0

local configuration ° n-1 memory
cc cell

memory
rn o c E

1-bit V E
1-bit "f---

ö
0

memory 1 memory
cell V cell ZT

0
1-bit

0 memory 0
cell

configuration switch configuration switch

(a) one-to-one (b) many-to-one (n-to-1)

Figure 2.5: One-to-one versus many-to-one configuration activation.

2.2.4.2 Many-to-one activation

Configuration sub-systems connecting several configuration cells to one

configuration switch were proposed to accelerate the speed of reconfigu-

ration (e. g. (Brown et al., 1994; Trimberger et al., 1997)). These systems

provide a multiple-context configuration memory, which contains more than

one 'layer' of the configuration data storage (Fig. 2.6). Once the configura-

tion data has been pre-loaded into the context layers, the configuration can

be activated by selecting configuration cells in one of the memory layers

(Fig. 2.5(b)). This process is often referred to as a 'context switch' because

of its similarities to CPU context switching in multi-process operating sys-

tems.

The main advantage of this system is the speed of reconfiguration. Pro-

vided that all configuration memory contexts can be pre-loaded with the

desired configuration, the configuration for the entire device context can

24

multiple-context
configuration memory

active
configuration º

context

context n-1

context 1

context 0

(9,9)

blocks

Figure 2.6: Multiple-context configuration memory.

be changed within several nanoseconds (e. g. 3 ns in MIT DELTA proto-

type (DeHon, 1996) and 30 ns in Xilinx Time-Multiplexed FPGA (Trim-

berger et al., 1997)).

The main drawbacks of this approach are a large silicon area overhead

required for the configuration context memory and its control signals, longer

routing delays due to the increased spacing between the logic blocks and

unpredictable power consumption during reconfiguration (Trimberger et al.,

1997).

2.3 Reconfiguration Latency

The various reconfiguration mechanisms provide a tradeoff between the

configuration throughput and the area overhead required for the imple-

mentation of a reconfiguration sub-system. In particular, the time needed

for the configuration of a design module will vary with the technology. For

25

(0,0)
reconfigurable logic array

(9,0)

partially reconfigurable technologies, the required configuration time will

also vary with the current contents of the configuration memory and there-

fore is dependent on the placement of modules in the design solution and

their mapping to primitive device elements. This is demonstrated using

the following example.

Consider a reconfigurable logic array of size 31 x 31 with an architec-

ture similar to that of the Xilinx XC6200 FPGA family (Xilinx, 1997b). The

reconfigurable logic array has a fine-grained architecture and offers several

different configuration modes. The relevant details of this technology and

the modules used in this experiment are summarised in Appendix A.

In the example, first the content of the configuration memory was cleared,

and then a 4-bit adder was configured at coordinate (0,0). We will examine

the configuration latency required for the configuration of a 4-bit subtrac-

tor onto this array at different coordinates within a 17 x 17 square area

(Fig. 2.7). The reconfiguration overhead was measured as the minimal

number of configuration cycles required to complete the configuration of

the entire 4-bit subtractor (Club).

Reconfiguration overhead routines calculate the differences between

the two configurations (i. e. an empty XC6200 device + adder configura-

tion versus subtractor configuration) for all model XC6200 technology con-

figuration subsystems, while accommodating the addressing restrictions

of their respective configuration interfaces. The configuration differencing

routine compares the configuration of XC6200 technology primitive ele-

ments (i. e. logic and routing multiplexors), while ignoring the elements

which are not used in the subtractor module circuit.

The entire experiment was implemented within the DYNASTY Frame-

work (Chapter 5). Reconfiguration using the following configuration sub-

26

Ay
,

Lx

Figure 2.7: 4-bit subtractor configuration experiment.

systems was examined:

1. Partial reconfiguration via an 8-bit parallel random access configura-

tion interface: Figs 2.8 and 2.9 show Csub as a function of the offset

from the base coordinate (0,0). Due to similarities between the adder

and subtractor modules, the minimal reconfiguration latency is at off-

set (0,0). Configuration latency varies with the subtractor module

position between 15 and 54 configuration cycles.

2. Partial reconfiguration via a 32-bit parallel random access configura-

tion interface (Figs 2.10 and 2.11). Compared to the previous case, the

reconfiguration interface offers a higher configuration throughput (32

configuration data bits/cycle). The minimal reconfiguration latency

is lower and also varies with the module position. Note that the la-

tency also varies in the locations with empty configuration memory

27

CSut

15

20

25

30

35

40

45

50

55

-8

8

,y

Figure 2.8: Cs�b =f (Ax, ay), subtractor module configuration latency
Cs�b as a function of the offset (Ax, Ay) against the adder module (8-bit
parallel random access configuration interface).

(e. g. Ay =2 in Fig. 2.11(b)). This is caused by the column-based

alignment of the 32-bit configuration words within the configuration

memory.

3. Partial reconfiguration via a serial column access configuration in-

terface (Fig. 2.12). Throughput of the configuration interface is lower

then in the previous two cases (less then 1 configuration data bits/cycle)

resulting in much higher absolute reconfiguration latency. The ad-

dressing structure of the configuration memory requires that the en-

tire column is reconfigured even if only one bit in a column needs to

be changed.

In the case of the subtractor module reconfiguration, the reconfigura-

tion time is reduced only at coordinate (0,0). Also the reconfiguration

28

Ax 08 -o

10

15

20

25

30

35

40

45

50

55

a
Uý

Ay = -6 x--- Ay -4 ... R.. _

ay =1_. -0-. -
py=5
Ay =, 7

O'

"

-8 -7 -6 -5 -4 .3 -2 -1 012345678

Ox

(a) Csub =f (Ox), Ay={-8, -6, -4, -2,0,1,3,5,7}

I Ox=-2-ý
Ox = -1 ---x---

r_ Ox =0... *... Ox=1..... ß.....
Ox 2

r

-8 -7 -6 -5 -4 -3-2 -1 012345678

Ay

(b) Csub =f (Dy), Ax=1-2, -1,0,1,21

Figure 2.9: X-Y cross-sections for the diagram shown in Fig. 2.8 (8-bit par-
allel random access configuration interface).

29

Csub

4

6

8

10

12

14

16

18

20

22

24

8

,y

Figure 2.10: Cs�b =f (Ax, Ay), subtractor module configuration latency
Csub as a function of the offset (Ax, Ay) against the adder module (32-bit
parallel random access configuration interface).

latency function has been simplified considerably.

4. Full reconfiguration with multi-context configuration memory, pre-

loaded with the subtractor module configuration data (Fig. 2.13). With

this type of reconfiguration memory, it is possible to switch between

the pre-loaded context within one configuration cycle. If the full con-

text switch is performed, the time required for reconfiguration is con-

stant regardless of module position or previous contents of the con-

figuration memory.

However, if the new configuration has to be loaded via the external

configuration interface during the run-time, the performance of the

reconfiguration will decrease considerably. Such a situation is not

considered in this example.

30

Ax °$ ro

6

8

10

12

Um
14

16

18

20

22

9d

4

6

8

10

12

614

16

18

20

22

7d

-8 -7 -6 -5 -4 -3 -2 -1 012345678
Ax

(a) Csub =f (Ax), Ay=1-8, -6, -4, -2,0,1,3,5,7}

-8 -7 -6 -5-4 -3 -2 -1 012345678

Ay

(b) Csub =f (Dy), Ox = {-2, -1,0,1,2}

Figure 2.11: X-Y cross-sections for the diagram shown in Fig. 2.10 (32-bit

parallel random access configuration interface).

31

Csub

1000

1200

1400

1600

1800

2000

2200

-E

8

,y

Figure 2.12: Subtractor module configuration latency Csub as a function of
the offset (tx, Ay) against the adder module (serial column-access config-
uration interface).

!
sub

0

1

2

3

8

,y

Figure 2.13: Subtractor module configuration latency Csub as a function of
the offset (Ax, Ay) against the adder module (multiple-context configura-
tion memory pre-loaded with the configuration data).

32

Ax b8 -o

8 -o 0

The above examples demonstrate that the reconfiguration latency varies

greatly with the type of reconfiguration sub-system. In the simplest case,

the reconfiguration latency is constant and does not depend on the mod-

ule position or previous contents of the configuration memory (Fig. 2.13).

Therefore the reconfiguration latency can be calculated accurately at a high-

level.

In the most complex case, the reconfiguration latency is a function of

module position and the previous contents of the device configuration mem-

ory (Fig. 2.8). The reconfiguration latency function becomes a complex

non-linear function, which can be accurately determined only after physi-

cal synthesis has been completed. The corollary is that simple reconfigura-

tion latency estimating techniques used prior to accurate knowledge of the

physical design layout can be seriously misleading.

The availability of alternative configuration sub-systems has fuelled re-

search into techniques allowing minimisation of the configuration latency

for specific technologies. For example Hauck et al. (1998) and Shirazi et al.

(1998) have investigated various such techniques for Xilinx XC6200 tech-

nology.

2.4 Summary

The approaches presented for the construction of the reconfiguration sup-

port circuitry provide tradeoffs between the reconfiguration speed and the

size of reconfigurable array devoted to the reconfiguration circuitry. Recon-

figurable technologies may combine these approaches to provide a balance

suitable for a selected application domain.

For example, a Xilinx Virtex FPGA (Xilinx, 2000b) uses a serial config-

uration interface allowing partial reconfiguration. The configuration sub-

33

system provides an addressed access to configuration memory at coarse

granularity (column-based). This solution provides a tradeoff between fast

partial random-access to the configuration memory and its slow serial re-

configuration.

As many different approaches exist for the implementation of the con-

figuration interface, configuration data distribution and activation, the speed

of reconfiguration will depend greatly on the characteristics of each such

implementation in a specific reconfigurable logic technology. In general,

the reconfiguration latency is a non-linear and technology-dependent func-

tion.

Considering that in practical systems the period of the configuration cy-

cle is often comparable to the period of the system clock cycle, the impact

of the selected reconfiguration mechanism on the design execution latency

will vary considerably with the technology, but for some technologies also

with the module placement. This dependency on the low-level layout char-

acteristics makes it very difficult to consider realistic configuration latency

during reconfigurable system design. A solution to this problem is one of

the principal results of this thesis.

34

Chapter 3

Previous Work on

Reconfigurable System Design

Reconfigurable systems have evolved to bridge the gap between flexible

processor-based programmable systems and high-performance systems with

'static' hardware functionality. Research in automatic reconfigurable sys-

tems design therefore has origins in two scientific disciplines: program

compilation and high-level synthesis. This chapter examines the relevant

work of researchers in both of these fields to date.

First the design process for non-reconfigurable systems is summarised

in the following section in order to facilitate the comparison between the

reconfigurable and non-reconfigurable design approaches.

3.1 Design for Non-Reconfigurable Systems

Design methodologies for non-reconfigurable systems have been the sub-

ject of active research since the invention of electronic circuits. Automatic

synthesis of digital circuits from high-level descriptions became viable with

35

the development of numerous optimisation algorithms combined with de-

sign flows based on hierarchical design abstraction and hardware descrip-

tion languages (HDL).

3.1.1 Synthesis Design Flow

A typical design flow for non-reconfigurable systems is shown in Fig. 3.1.

This is typically a hierarchical top-down process, composed of individual

transformation and optimisation steps performed in a sequence.

During behavioural (also architectural) synthesis an abstract behaviou-

ral design model is translated into one of the possible architectural design

models, while attempting to meet the design constraints. The architectural

model is a collection of interconnected computational blocks and a system's

controlling finite state machine(s) (FSM). This model is often referred to as

register-transfer level (RTL) architecture to emphasise that at this level data

transfers between each block's registers become visible.

In the following step, the architectural model is translated into a gate-

level model. The gate-level model is a netlist capturing the connectivity be-

tween the instances of cells from the target technology library. This model

is equivalent to a schematic diagram in a traditional schematic-based de-

sign flow. Whereas the behavioural and architectural models are indepen-

dent of the target technology, the gate-level model is target-technology spe-

cific. The process of automatic transformation of an architectural design

model into a gate-level model is known as logic or RTL synthesis. This pro-

cess involves the mapping of all computational design blocks into their

gate-level representation and the synthesis and optimisation of the design

FSMs.

The design flow is completed by mapping the gate-level design model

36

DESIGN DESIGN
CONSTRAINTS PROBLEM

.2 . io

BEHAVIOURAL
SYNTHESIS

......................

s,
ALU w. ý.

LOGIC
SYNTHESIS

=ý,
, 1ýý ý
PHYSICAL

SYNTHESIS

+

behavioural model

architectural model
(RTL)

gate-level model

device model

0101001001011.... 101010 configuration bitstream

Figure 3.1: A typical design flow for non-reconfigurable systems.

37

onto a target technology physical model. This process is known as the place-

ment & routing (P&R) stage or physical or layout synthesis, and normally in-

volves placement of the target technology cells and their routing within the

target technology physical model. The exact nature of this process depends

on the type of the target technology. For programmable logic technologies,

the gate-level model has to be mapped onto the primitive logic and routing

elements available in the targeted programmable logic device.

The result of physical synthesis is a design implemented in the target

technology. From such a physical design model, it is possible to extract the

detailed timing characteristics of the design, which can be used to verify the

overall timing and its conformance to the timing design constraints. The

contents of the configuration memory needed for the implementation of the

design in a selected programmable technology can be also determined from

the physical model of the design. A tool performing this task is commonly

denoted as a configuration bitstream generator.

3.1.2 Automatic Design Synthesis

All the synthesis steps of the design flow outlined in the previous sec-

tion have been subjected to design automation. Numerous algorithms and

methodologies have been proposed for automatic translation between the

various design abstraction levels. A detailed description of these algo-

rithms is outside the scope of this thesis, but can be found in several VLSI

design automation textbooks (e. g. (Gajski et al., 1992; De Micheli, 1994;

Sherwani, 1995; Gerez, 1999)).

Typically, synthesis is performed in small steps at each of the design

abstraction levels. Accurate design metrics, such as design size, power

consumption, or detailed timing characteristics, are not known before the

38

design flow has been completed. However, these metrics can be estimated

using a variety of techniques available at each abstraction level.

Such a design approach does not normally lead to the most optimal

results. Often design iterations are necessary to accommodate strict tim-

ing constraints. However, in many cases the inefficiency of the automatic

design techniques can be tolerated for a large part of the designed system.

Automatic design techniques offer a productivity gain, which in many real-

world situations out-weighs the design inefficiency for all but a very small

proportion of a designed system.

3.2 Design for Reconfigurable Systems

With the introduction of dynamically reconfigurable systems, design tech-

niques capable of supporting the dynamic operation of these systems be-

came desirable. Initial efforts were focused on techniques known from non-

reconfigurable system design with the expectation that these techniques

could be adapted for reconfigurable systems. Later new approaches to the

design for reconfigurable systems were proposed to address specific prob-

lems not present in the traditional non-reconfigurable design methodolo-

gies.

The design process for reconfigurable systems can also be seen as a

task with synthesis steps identical to those of non-reconfigurable systems

(Fig. 3.1). The difference is in the type of the intermediate results produced

at various abstraction levels. During the design for reconfigurable systems,

the goal is to partition the design model into temporal segments so that the

set of input design constraints could be satisfied.

This problem of temporal partitioning is different to the problem of parti-

tioning into multiple FPGA devices (spatial partitioning). While both prob-

39

lems address the partitioning of design computational and design storage

elements, temporal partitioning must also consider the temporal relation-

ships between the individual design partitions to ensure that no depen-

dency violations or other conflicts occur during execution.

Temporal partitioning can be performed at either behavioural level,

register-transfer level, or at gate-level. The previous work in the area of

design techniques for reconfigurable systems, and specifically that which

addresses the automatic design of dynamically reconfigurable systems, is

summarised in the following sections.

3.2.1 Evolution of Design Methodologies for Reconfigurable Sys-

tems

The difficulties with the design of reconfigurable systems have been high-

lighted by the work of several researchers. Hadley and Hutchings (1995)

have described a manual design methodology for partially reconfigurable

systems, noting the difficulties of using the conventional tools designed for

non-reconfigurable systems.

The DISC system (Wirthlin and Hutchings, 1995) used a library of cus-

tom 'instructions' created using the standard FPGA CAD tools. The in-

structions were required to align with a dedicated communication and con-

trol architecture provided by the DISC system. The encapsulation of units

of computations in such well-characterised instructions have allowed for

dynamic instruction reconfiguration and placement to be managed during

run-time.

The approach has been generalised by Brebner (1997), who introduced

the Swappable Logic Unit (SLU) as a new computing paradigm to support

dynamic reconfiguration and placement in reconfigurable computer sys-

40

tems.

This 'library-based' approach has been further advocated in the recon-
figurable systems design methodologies in order to reduce the difficulties

in designing reconfigurable systems (e. g. (Luk et al., 1996; Luk et al.,
1997b)).

In such methodologies, a low-level library of target-technology mod-

ules is provided as a part of the design flow. Using these modules, which

were pre-placed and pre-routed using the target reconfigurable technology,

it is possible to estimate both the computational performance and worst-

case configuration latency of the system with a good degree of accuracy for

many reconfigurable technologies.

However, for many partially reconfigurable technologies, the actual re-

configuration latency is a non-linear function of module size, shape and

the previous content of the configuration array (e. g. Xilinx XC6200 or At-

mel AT6000 FPGA families), which is difficult to estimate even with the

library-based approach.

For example, consider the experiment from Section 2.3. While the worst-

case configuration latency for a 4-bit subtractor module configured via the

8-bit random access interface is 67 configuration cycles (Table A. 3 in Ap-

pendix A), in the best case the latency reduces to only 15 (Fig. 2.8). This

is a considerable reduction of 78%, which can be determined only after

the place & route stage. These difficulties are forcing designers to iterate

through the entire design flow several times in order to quantify the recon-

figuration latency.

Luk et al. (1997b) and Robinson et al. (1998) reported design method-

ologies, which attempt to find the individual temporal design partitions in

a sequential and iterative design process. Govindarajan and Vemuri (2000)

41

describe SPARCS-a system capable of performing both temporal and spa-

tial (multi-FPGA) partitioning within one design flow.

These sequential design methodologies suffer from their inability to

consider the strong interdependencies between the design decisions at high

and low levels. For all but the simplest designs, these problems will lead to

an excessive number of design iterations, which in turn will require several

passes through the physical design tools.

Automatic temporal partitioning has been shown to be possible at var-

ious abstraction levels, although the quality of such partitioning varies de-

pending on the applied method. The following sections summarise the

past achievements in automatic temporal partitioning and run-time floor-

planning for reconfigurable systems.

3.2.2 Partitioning at Behavioural Level

Conceptually this process is depicted in Fig. 3.2. Starting from a behaviou-

ral design model and a set of constraints, the temporal partitioning is per-

formed directly on the behavioural model. As the partitioning is performed

at high-level, it is possible to explore the tradeoffs between the problem im-

plementations using different architectural options.

The product of such a temporal partitioning after the behavioural syn-

thesis is a set of reconfigurable system partitions and a configuration con-

troller for the design.

Automatic techniques which fall in the category of behavioural level

temporal partitioning have been reported by several authors. This work

includes methods based on heuristics and exact combinatorial optimisa-

tion.

Ling and Amano (1993a) have implemented a priority-list scheduling

42

temporal
I'ý"'ý) -ýýý

partitions

... behavioural model

*2 *10

. :I

BEHAVIOURAL
SYNTHESIS

I

-- 10

,o
architectural model

.....
-- m (RTL)

F11:
ý. L

Figure 3.2: Temporal partitioning at behavioural level.

based technique for partitioning data-flow problems into multiple config-

urations. The technique has been further improved by Takayama et al.
(2000). These heuristic techniques specifically target the WASMII platform

which offers multiple-context memory for the configuration storage. These

techniques do not consider partial reconfiguration.

Gokhale and Marks (1995) have proposed a partitioning approach for

reconfigurable computing platforms, where each program function is par-

titioned into a separate FSM. This allows large programs to be executed on

a limited reconfigurable computing platform. Each such FSM was imple-

mented on a single FPGA.

A list scheduling based synthesis technique was developed by Vasilko

and Ait-Boudaoud (1996a), which allows synthesis for partially reconfig-

urable systems. The technique assumes a constant reconfiguration time,

while a simple approach was used for the high-level estimation of the avail-

43

able reconfigurable device area. Both of these considerations limit the prac-
ticality of this technique with the current reconfigurable technologies. Fur-

thermore, architectural-level sharing between the design modules is not

considered in this approach.
GajjalaPurna and Bhatia (2000) have presented two different heuristic

methods for temporal partitioning and scheduling data-flow graphs for re-

configurable computing. These heuristics partition an input design prob-

lem into a set of full partitions, while using a simple area metric to express

the reconfigurable technology resource constraint. The two techniques pro-

vide tradeoff between maximum parallelism and minimum communica-

tions cost. A correction factor based on the FSM communication cost is

devised in order to deal with the routability problems.

Sels (1996) has addressed the problem of temporal partitioning for a

reconfigurable device using integer-linear programming (ILP). However,

only a one-dimensional model of the reconfigurable system was used in

order to simplify the ILP problem formulation.

Kaul and Vemuri (1998) have presented an ILP-based temporal parti-

tioning technique which optimises the communication and memory band-

width between the individual configurations. The technique has consid-

ered a target system with reconfigurable devices of fixed size, while no

partial reconfiguration was considered.

More recently Zhang et at (2000) have proposed a temporal partition-

ing technique based on Constraint Logic Programming, which permits the

design modules to be shared between configurations.

The problem of temporal and spatial partitioning has been also consid-

ered in the SPARC system by Govindarajan and Vemuri (2000). The SPARC

partitioning process does not consider device-level partial reconfiguration.

44

,... _
temporal

'
ýo sp

partitions

` .. 1.., neuer

"-------- architectural model
(RTL)

I LOGIC
SYNTHESIS

gate-level model ;;
Mý

Figure 3.3: Temporal partitioning at RTL.

3.2.3 Partitioning at Register-Transfer Level

Conceptually this process is shown in Fig. 3.3. Given a non-reconfigurable

register-transfer level architecture, the RTL temporal partitioning will pro-

duce a gate-level reconfigurable implementation. This approach explores

the partitioning of both the design structure and its finite-state machine(s)

for one RTL design architecture.

The RTL partitioning alone is unlikely to be a practical approach for

synthesis of reconfigurable systems. This is because at RTL several de-

sign decision have been already fixed (including design module allocation,

binding and scheduling) without any consideration for the design reconfig-

uration. While the RTL design architecture can be partitioned into separate

configurations, the design optimisation is limited at this level to FSM opti-

misation/partitioning.

45

However, in a combination with other approaches (e. g. a reconfigurable

system synthesis from behavioural level), the RTL partitioning could pro-

vide a valuable optimisation technique allowing optimisation of the design

architecture and FSM partitioning at the same level.

While no previous work has been reported to date which directly ad-

dresses this problem, the use of reconfigurable finite-state machines was

considered in (Skylarov and de Brito Ferrari, 1998; Oliveira et al., 1998).

3.2.4 Partitioning at Gate Level

Once a gate-level design model has been generated, it is not possible to

modify the architecture or execution schedule of a design. Temporal parti-

tioning at gate-level becomes attractive if the final gate-level model cannot

fit into the target device. In such a case, one possibility is to 'fold' the im-

plementation of the gate-level netlist over multiple design configurations

(Fig. 3.4).

This approach has been shown to be beneficial in the field of logic em-

ulation where hardware emulation resources are limited (Jones and Lewis,

1995; Trimberger et al., 1997). Both of these techniques are based on prior-

ity list scheduling heuristics operating on a gate-level design netlist.

Shirazi et al. (1998) describe an optimisation technique based on graph

bi-partitioning, capable of optimising the layout in two configurations. The

algorithm maximises the overlap of similar blocks in two configurations in

order to minimise the overhead associated with the reconfiguration of the

partitions.

Canto et al. (1999) describe a heuristic gate-level bi-partitioning tech-

nique. The technique will split the gate-level circuit into two configura-

tions, which can be mapped on the target device with two configuration

46

temporal
partitions

\

gate-level model

I PHYSICAL

__j L SYNTHESIS

=ODD OÖÖÖÖO.
Qaoo0= device model

oýýý oooao= R 0* ^0ý00
=ooo©o oöoao:
000000 130000 Qoooo= <aýýýý ý Qoooa=
=aoooQ . 00000oo00000

Figure 3.4: Temporal partitioning at gate level.

context layers.

Other authors have improved partitioning techniques at gate-level, in-

cluding recent works by Liu and Wong (1999) and Chang and Marek-Sadowska

(1998).

The advantage of gate-level partitioning is that the granularity of the

design structure representation is close to that of the target architecture. It

is therefore possible to estimate whether the design will fit into the target

device and predict how successful routing will be.

The limitation of this approach is that the architectural implementation

of the system, as captured in the gate-level netlist, cannot be changed to

match the properties of the target reconfigurable technology. The original

gate-level netlist was produced while targeting a non-reconfigurable system

under a set of constraints intended for non-reconfigurable design imple-

mentation. Whilst considering the properties of the target reconfigurable

47

system (such as reconfiguration latency dependencies or resource limita-

tions), the gate-level temporal partitioning cannot guarantee that these con-

straints will be satisfied.

3.2.5 Floorplanning

The problem of automatic placement and dynamic rearrangement of com-

putational modules in reconfigurable computing systems has been addressed

by several researchers. Brebner (1996) has discussed SLUs and their use in

the context of an operating system for a reconfigurable computing plat-

form.

A method for automatic placement of SLUs in a 3D floorplan based on

simulated annealing has been proposed by Bazargan et al. (1999). A model

reconfigurable system is used to conduct their experiments, while assum-

ing a constant reconfiguration latency for each of the configured blocks.

Diessel et al. (2000) have proposed three different scheduling techniques

for dynamic placement and rearrangement of tasks in reconfigurable com-

puter systems. In this approach, the partial reconfiguration latency is as-

sumed to be a linear function of the module size.

3.3 Solution Feasibility

The above approaches provide useful methods for temporal partitioning

at behavioural and gate levels. However, few of these techniques consider

partial reconfiguration. Even if the partial reconfiguration is considered, its

properties are modelled using simplified and inaccurate models. In most

cases, the above techniques attempt to reduce the complexity of the search

space by working with a very simplified model of the reconfigurable ar-

chitecture, often over-simplifying the impact of reconfiguration, ignoring

48

partial reconfiguration and routing implications.

If a partitioning technique for this design problem is to produce prac-

tical results, it must use a realistic model of the target reconfigurable tech-

nology. Furthermore, the advanced features of the configuration interfaces

which allow reduction of the configuration overheads must be considered

as a part of the partitioning process. For example, Luk et al. (1997b) have

demonstrated that the latency required for reconfiguration of a 32-bit adder

to become a 32-bit subtractor can be reduced 8-fold (from 32 to 4 configura-

tion cycles) if the wildcard feature of the target XC6200 FPGA technology

is used.

A further difficulty for the design of dynamic systems is that there are

tight temporal and spatial interdependencies between the design entities

at all abstraction levels. For example, a small modification of a floorplan

at the physical level may cause a violation of the behavioural data depen-

dencies due to an increased configuration latency. The interdependencies

between the individual design problems for reconfigurable systems are fur-

ther discussed when a formal model for this design process is introduced

in Chapter 4.

From the above discussion it is apparent that the design of reconfig-

urable systems is much more difficult that that of non-reconfigurable sys-

tems. Indeed, non-reconfigurable system design can be perceived as a spe-

cial case of reconfigurable system design, but where the entire design solu-

tion can be fitted into one configuration.

3.3.1 Synthesis for Full versus Partial Reconfiguration

The design of reconfigurable systems is further complicated by the variety

of available reconfigurable technologies. Section 2.2 discussed the various

49

approaches for the implementation of reconfiguration sub-systems (partial

vs full reconfiguration, random-access vs serial distribution mechanisms,
various configuration activation techniques) and the resulting tradeoffs.

When temporal partitioning is performed for a technology offering full

reconfiguration only, the goal of the partitioning is to split an input prob-
lem model into a number of configuration 'pages'. Each such page must fit

within the resources available in the targeted reconfigurable device. Tradi-

tional design techniques used for non-reconfigurable systems can often be

used to synthesise each such configuration page.

While these techniques cannot guarantee that each page can be fully

placed and routed for the targeted reconfigurable device, simple meth-

ods can be used to avoid such problems. For example, temporal parti-

tion techniques may be permitted to use only a proportion of the total

resources available in order to provide redundancy in case of placement

or routing difficulties (e. g. used in (Govindarajan and Vemuri, 2000) or

(Takayama et al., 2000)).

If the latency of full reconfiguration is prohibitive, a technology sup-

porting partial reconfiguration would be a preferred option.

Temporal partitioning for partially reconfigurable technologies is a much

harder problem. Additional constraints and features must be considered,

such as ensuring that partially reconfigured modules do not overlap, whether

the state of device flip-flops can be shared between configurations, the po-

sition of the design blocks to minimise the configuration overheads, and

others. The design optimisation is further complicated by the fact that in

many partially reconfigurable technologies, the partial reconfiguration la-

tency is a non-linear function of the position of a design module and the

previous contents of the configuration memory (see Section 2.3 for further

50

discussion on the reconfiguration latency function).

3.4 Summary

Various technological approaches have been developed for the design of

reconfigurable systems offering tradeoffs between device area, reconfigu-

ration speed and other design metrics. The reconfiguration performance of

reconfigurable systems is dependent on a specific technology and is deter-

mined by the speed of its reconfiguration sub-system.

However, the review of the published work to date reveals that there

is not yet a solution to the problem of automatic design synthesis which

can reliably exploit the features of partially and dynamically reconfigurable

logic systems.

The design of reconfigurable systems differs from the design for non-

reconfigurable systems, because it must consider the temporal partition-

ing of the input design problem and technological dependencies of the de-

sign metrics associated with the selected target technology. Partially re-

configurable systems offer many technological advantages over fully re-

configurable systems. However, their features together with placement-

dependent reconfiguration latency further complicates the design process.

Given the availability of various reconfigurable logic technologies, it is

important that a synthesis methodology for reconfigurable systems con-

siders the dependency of the reconfiguration latency function at a high level.

This thesis present an example of one such approach to reconfigurable sys-

tem synthesis.

51

Chapter 4

Reconfigurable System

Synthesis Problem Formulation

High-level synthesis is a multiple-level transformation process involving

translation of an initial design problem represented by a behavioural model

into a design implementation model, while considering both design perfor-

mance constraints and the constraints imposed by the selected target tech-

nology.

The success of a solution search for any optimisation problem is deter-

mined by the qualities of the model characterising the problem. The qual-

ity of any such model is measured by its ability to capture the fundamental

problem characteristics, while simplifying or neglecting the factors, which

have only a minor or no contribution to the success of the solution search.

This chapter presents a new formulation of the problem of synthesis for

reconfigurable systems. The formulation captures the low-level technology-

dependent characteristics and can therefore guarantee the feasibility of a

generated solution, while permitting the optimisation algorithm to explore

the solution search space efficiently.

52

The following section summarises the initial assumptions about the re-

configurable system synthesis problem and models used in its formulation.

The formulation of the synthesis problem for reconfigurable systems is pro-

vided in the reminder of this chapter. The formulation highlights the im-

pact of the technology-dependent design characteristics on the synthesis

process.

4.1 Fundamental Assumptions

Various techniques can be used to implement circuits using reconfigurable

logic technologies, working in various operational modes. These range

from systems implemented without any reconfiguration (non-reconfigurable

systems), systems which will reconfigure more or less frequently, systems

with a separate configuration control, self-repairing, self-reproducing or

self-reconfiguring circuits, circuits constructed and controlled via simu-

lated run-time natural evolution and possibly many others.

This section summarises the fundamental assumptions made about the

problem of high-level synthesis for reconfigurable systems. These assump-

tion also characterise the target computational model for reconfigurable

systems considered in this thesis. While this formulation is restrictive and

does not cover all possible applications of reconfigurable logic, the pre-

sented formulation is feasible for many reconfigurable systems of practical

interest.

4.1.1 Input to Reconfigurable System Synthesis

The process of reconfigurable system synthesis considered here begins with

a behavioural problem model and a set of design constraints. However, real-

world design projects rarely start at this level. This level of abstraction

53

is normally preceded by a design problem analysis leading to a formula-

tion of a system specification. From the system specification it is possible

to derive a system-level model, which can be used to establish and verify

the desired system functionality at this level. Once the system-level func-

tionality has been established, a behavioural design model together with

design constraints can be extracted in a suitable form. If the system is to be

implemented on a heterogeneous platform, including hardware, software,

reconfigurable hardware, etc., this step has to be preceded by system-level

partitioning. This problem is not considered here.

4.1.1.1 Design Problem Model

A variety of different design models have been developed in the field of

high-level synthesis research. A Control/Data Flow Graph (CDFG) model

(developed by McFarland et al. (1990) and others) was selected here to

represent the design behaviour. This choice was motivated by the model's

ability to capture both data and control characteristics of an input design

problem in a single design model. The CDFG model is popular in high-

level synthesis tools because of this ability. Similar models capturing both

control and data characteristics of an input design problem could have been

used as alternatives.

Definition 4.1.1 (Control/Data Flow Graph) A CDFG is a directed graph

G(V, E), where the set of vertices V represents a set of operations and

the set of edges E represent dependencies between the pairs of oper-

ations.

The vertex set V can be decomposed into a set of data vertices Vd rep-

resenting behavioural data operations (multiplication, subtraction, in-

crement, etc.) and the set of control vertices VV representing control

54

ab C

d-a+b

if (d > c) then d

x -2 *d
T F

else
*2 *1

x -16 *d
ýT

Ff

end if

a;

(a) code fragment (b) CDFG

Figure 4.1: Example of a Control/Data Flow Graph model with the corre-
sponding behavioural code fragment.

operations (control flow fork/join), where Vd U VV = V. Similarly, the

edge set E can be decomposed into a set of data edges (those carrying

data token values) Ed and control edges (carrying control tokens) E,

where Ed U EE = E.

In the following, where the distinction between V and E is not impor-

tant, the set B=VUE is used to denote all elements of a CDFG model.

An example of a CDFG model and its corresponding behavioural pro-

cedure is shown in Fig. 4.1.

4.1.1.2 Design Constraints

Design constraints restrict the set of possible design implementations to a

set of solutions which can accommodate them. Design constraints fall into

two categories:

. Performance constraints which represent bounds on the desired per-

55

formance of the implementation, such as execution latency, through-

put, size, power consumption, testability, etc. In the following, a set of

performance constraints W is used to encapsulate all such constraints

imposed on the design.

" Technology constraints enforced by the selection of the target im-

plementation technology. For reconfigurable logic technologies these

might include propagation delays of reconfigurable logic and rout-

ing, device architecture, quantity of the available resources, limitation

on module placement, throughput and capabilities of the reconfigu-

ration interface, etc. A set of technology constraints is referred to as O.

4.1.2 Design Goal

It is assumed that the goal of reconfigurable system synthesis is to con-

struct a design implementation (also called design solution) using the se-

lected target technology, such that all design constraints are satisfied. It is

further assumed that the aim is to implement the entire input design model

using the selected reconfigurable logic technology. The problem of hard-

ware/software partitioning for the input design problem is not considered

here.

There is no a priori assumption that the design problem is to be imple-

mented using dynamic reconfiguration. Given the set of design constraints

and the selection of the target technology, the synthesis process may result

in either a reconfigurable or a non-reconfigurable design implementation.

4.1.3 Target Architectural Model

The target architecture for the reconfigurable system synthesis problem

considered is the architecture discussed in Section 2.1. It is assumed that

56

each of the main architectural components is represented by a single device

(spatial partitioning between multiple reconfigurable devices, controllers

or memories is not considered). No initial assumptions are made about the

architecture and capabilities of the targeted reconfigurable logic technol-

ogy.

4.2 Reconfigurable System Design Synthesis Transfor-

mations

This section presents a formal framework for the definition of design prob-

lems in reconfigurable system design. The definitions presented here are

derived from the traditional definitions of high-level synthesis problems

for non-reconfigurable systems (Gajski et al., 1992; De Micheli, 1994; Gerez,

1999), whilst new or modified definitions are provided for problems which

exist in the synthesis of reconfigurable systems. The aim is to provide a

macroscopic view of the entire synthesis process, while highlighting a new

formulation of problems resulting from the use of reconfigurable systems.

The following formulations do not make any assumptions about whether

the synthesis is performed during compile-time or run-time, rather they pro-

vide a formalism for the problems which need to be addressed by either of

these two approaches.

A design solution is constructed by finding associations between the

elements of a design model, library and target technology device elements

at several abstraction levels. This process is illustrated in Fig. 4.2.

There are number of individual transformation tasks (problems) which

need to be solved during the reconfigurable system synthesis. The individ-

ual problems are inherently interdependent. In the following, the individ-

57

Ä........ 8....... C.......: BEHAVIOURAL
DESIGN ABSTRACTION

behavioural
operatorltask

allocation __
OOO

*2 *10

<<

etc.
BEHAVIOURAL

X
LIBRARY

n architectural resource

instance binding

architectural A

resource

allocation

uu
O

wir

etc.

ARCHITECTURAL

V
.......................................

BC

RESOURCE LIBRARY

layout resource
binding

ARCHITECTURAL
DESIGN ABSTRACTION

.........................
s0

s1

x

....................

0000oaoaa
PHYSICAL

00000000

a01111QQ011Q0 Q0
DESIGN ABSTRACTION

a0Qooo000QQ0 0110 QQ011Q11 Q0
00 0 QQ01111 QQ0

0 000 ===

0QQQQ0
a0QQQQ0
0Q0 QQ0

a0QQQQ0
0000 ...

Figure 4.2: Transformation of a reconfigurable design during synthesis.

58

ual transformations are described in a hierarchical order.

4.2.1 Behavioural -+ Architectural Level

During transformation from a behavioural to an architectural abstraction

level it is necessary to perform the operations of resource allocation, re-

source binding and scheduling.

4.2.1.1 Architectural resource allocation

This selects a set of resources from the resource types available in the tar-

get technology library at the architectural level. This selection must ensure

that resources providing the implementation for all types of behavioural

model elements are available. In the following, the term 'architectural re-

source library' is used to refer to a collection of (parametrisable) functional

resources available for the target technology at architectural level (Fig. 4.2).

Resource allocation involves allocation of library computational resources

for behavioural model vertices (e. g. multipliers, subtractors, comparators,

etc.) and allocation of library connectivity resources for behavioural model

edges (e. g. buses, permanent and 'virtual' registers, register files, FIFOs

and other memory elements, etc.).

Definition 4.2.1 (Resource allocation problem) Given a behavioural

input model G(V, E) with a set of behavioural model elements B and

a set of resource types R from the architectural resource library, find a

set of architectural resource instances A such that the following con-

dition is satisfied for all bEB (resource availability):

3a E A. F(b) 9 F(a) (4.1)

where F(b) and F(a) represent the set of operations performed by

59

the behavioural element b and the set of operations performed by the

architectural resource instance a respectively.

The result of resource allocation can be characterised by mapping
ar :A --4 R, which represents associations between all architectural
resource instances and their corresponding library resource types.

The technology-specific architectural resource library provides resources

specific to the features of the targeted technology. For example, if a recon-
figurable technology permits the transfer of register states via the config-

uration interface, the architectural library will provide a 'virtual register'1

resource available for allocation to behavioural model edges.

4.2.1.2 Architectural resource binding

Architectural resource binding creates a mapping between the set of archi-

tectural resource instances and the behavioural model elements. The prob-
lem of resource binding at architectural level can be defined as follows:

Definition 4.2.2 (Architectural resource binding problem) Given an

input behavioural model G(V, E), its set of behavioural elements B,

and the set of resource instances A find mapping ,8: B -+ A such that

the following condition is satisfied (functional compatibility):

Vb E B. F(b) 9 F(ß(b)) (4.2)

Once both vertices and edges from the behavioural model have been

allocated and bound to specific architectural instances, it is possible to de-

termine the implementation characteristics associated with the behaviou-

'Virtual register is a register, whose state is transferred via the configuration interface
to/from an external memory storage (CDS in Fig. 2.1). Virtual registers are used in reconfig-
urable systems to transfer the values stored in hardware registers between either different
configurations or different modules/ports in one configuration. Such registers can be also
used in 'virtual pipelines' (Luk et al., 1997c).

60

ral model elements (e. g. latency, pipeline stages, area, signal quantisation,
buffering, etc.), while other characteristics can be only quantified in the
later stages.

The resource allocation may result in some of the architectural resources
in the set A to be shared between the elements of the behavioural model
G(V, E):

Definition 4.2.3 (Architectural-level resource sharing) The resource

sharing at architectural level occurs when given the behavioural model
G(V, E), the set of its behavioural model elements B and the resource

binding mapping ß, the following condition is satisfied (architectural-

level resource sharing):

3b b'. O(b) = ß(b') (4.3)

where ß(b) =, 6(b') EA is the shared resource.

4.2.1.3 Scheduling

Scheduling can be performed once the timing characteristics of architec-

tural resources associated with the behavioural model elements can be es-

timated. Scheduling can be performed in a variety of scenarios, depending

on the type of the design constraints. In order for a design implementa-

tion to be feasible, the behavioural model has to be scheduled such that no

violations of data or control dependencies occur.

In the following, the integer delay function Delay (ß (vj)) represents the

latency2 of the resource(s) bound to vj and the token transport latencies

from the edges connecting from vj to v2, where vj is a predecessor to v2.

The integer setup function Setup(ß (vz)) represents the latency required

to setup the resource bound to v2. This may include configuration of the

2the integer latency represents the latency relative to the system control step period

61

library resource instances and associated routing resources, and other tasks

which need to be completed before the operation v2 can be executed.
A general constrained scheduling problem for reconfigurable systems

can be then formulated as follows:

Definition 4.2.4 (General constrained scheduling problem) Given a

set of operations V and a partial order on operations E, find an inte-

ger labeling of operations a, p: V -+ Z+, representing a design

execution schedule v and a design configuration schedule p, while the fol-

lowing condition is satisfied for all i, j such that (vj
, v2) EE (schedule

feasibility condition):

a(vi) > Q(v1) +Delay(ß(vj)) A o(vi) > p(v2) + Set'up(ß(v2)) (4.4)

and the set of performance constraints I is satisfied.

The execution schedule time o(v2) represents the execution start time

of the resource bound to the behavioural operation vi, while cr(vj)

represents the execution start time of the resource bound to vj.

The configuration schedule time p(v2) represents the configuration

start time of the resource bound to v2.

An example of a feasible schedule for the design behavioural model

G(V, E) is shown in Fig. 4.3.

The integer labels in a, p represent system 'control steps', which usually

correspond to the system clock cycles. Thus labeling p represents the recon-

figuration schedule in terms of system time units. The detailed timing of

the reconfiguration process can be controlled by a separate synchronisation

mechanism.

In the case when Setup(ß(vi)) = 0, there is either no need to setup the

resource associated with the operation vi or the contribution of the setup

62

p(v3) (configuration start for v3)

Q(v3) (execution start for V3)

configuration for V3

VI +
J..........

.............. ^
MN

V2
................................ .. *......

CaL..........

w
In 3

................................
..

o(v2) (execution time for v2)

Figure 4.3: Example of a feasible schedule in a reconfigurable system. Con-
figuration latency for V3 resources (represented by Setup(ß(v3))) has no
temporal impact on the design execution latency as the configuration is
performed in parallel with execution of operations vl and v2.

latency is considered as a part of the system clock cycle.

For this special case, the Eq. 4.4 becomes:

a(vi) > o(va) + Delay(ß(vj)) A o(va) > p(vi) (4.5)

As was demonstrated in Section 2.3, the reconfiguration latency is a

technology and design-dependent function, which may vary greatly with

the physical design characteristics (e. g. design module floorplan position

or overlap). In traditional design approaches, no physical design character-

istics are available at the time of scheduling. If for a selected target technol-

ogy the actual Setup() function is not known at the time of scheduling, then

only an estimate of the reconfiguration latency can be made. It is therefore

difficult to ensure that the schedule feasibility condition (Eq. 4.4) is satisfied

at this stage.

The result of behavioural synthesis for a specific set of performance

constraints IF is a 4-tuple (A,, 8, o, p), representing the design architectural

63

model with the selection and binding of its architectural elements, and their

execution and reconfiguration schedules. The target technology in this pro-

cess is represented by the architectural resource library providing the set of

resource types R and their Setup() functions.

4.2.2 Architectural -+ Physical Level

The transformation process from architectural to physical level has to trans-

late the architectural abstract model into a physical design model, which

can be mapped onto the target technology device. The following problems

need to be solved during this process.

4.2.2.1 Logic synthesis

This translates architectural model elements into a set of connected, technology-

specific primitive cells representing a technology cell netlist. The following

is a macroscopic definition of the logic synthesis problem for reconfigurable

systems.

Definition 4.2.5 (Logic synthesis problem) Given an architectural de-

sign model (A, ß, o,, p) find a design logic model (U, N) representing

the set of target technology primitive logic blocks U and nets N such

that the model (U, N) preserves the functionality of architecture A,

execution schedule o, and reconfiguration schedule p of the architec-

tural model.

The process of logic synthesis may involve the following tasks:

" synthesis and optimisation of the logic representation for each

element of the architecture A (if the logic representation of ar-

chitectural elements in the target technology is not known)

Ö4

" synthesis and optimisation of the design state-machines which
implement the schedule defined by a

" synthesis and optimisation of the configuration controller au-

tomata implementing the schedule p. Configuration controller

synthesis will produce a cycle-accurate reconfiguration schedule

p,, indicating the exact activity of the reconfiguration interface in

each configuration clock cycle

A description of the individual tasks involved in logic synthesis is out-

side the scope of this thesis. Details can be found in the logic synthesis

literature (e. g. (De Micheli, 1994; Murgai et al., 1995; Gerez, 1999)).

The reconfiguration controller can be implemented by a dedicated logic

circuit using traditional finite-state machine synthesis methods, or its oper-

ation can be provided by a processor-based system which implements the

reconfiguration schedule p, The implementation of dedicated reconfigu-

ration controller circuits has been studied by Robinson and Lysaght (1999)

and others.

Once the design logic model is obtained, the netlist elements can be

mapped onto a target technology device.

4.2.2.2 Physical synthesis

This involves finding a solution to both placement and routing problems.

In the case of reconfigurable systems this can be generally defined as fol-

lows:

Definition 4.2.6 (Physical synthesis problem) Given the design logic

model (U, N) with the set of logic model elements L=UUN, the tar-

get technology device with a limited set of resources D, the design

execution schedule Q and cycle-true configuration schedule pc, find

65

the mapping 0: L --* D such that the functionality of the logic model
L is preserved and the schedule feasibility condition (Eq. 4.4) is not
violated.

If the design implementation is non-reconfigurable then the device re-
sources are not shared between the elements of the logic model:

di j. 0 (lz) 0(1j) (4.6)

For a reconfigurable design implementation it is possible to share the
device resources between the elements of the logic model (physical re-

source sharing):

3i j" o(lz) = q5(lj) (4.7)

Once the mapping between the design logic model and the physical
device is known, it is possible to construct a configuration controller im-

plementing the cycle-accurate reconfiguration schedule pc for the design.

4.2.2.3 Solution feasibility

The feasibility of the final design solution is defined as follows:

Definition 4.2.7 (Solution feasibility) The design solution is feasible

if and only if it can be implemented on the target technology device

resources D with behavioural functionality identical to that of an in-

put behavioural model G(V, E), while the schedule feasibility condi-

tion (Eq. 4.4) is not violated.

In the above definition, the solution feasibility itself does not imply that

the design solution meets all of the performance constraints IF.

The result of physical synthesis for the target device is a 4-tuple (L, ¢, 0, pc) -
This physical design model can be analysed for physical timing character-

66

istics and used to generate device configuration data necessary for the im-

plementation of the design functionality on the device resources D.

4.3 Comparison with a Traditional High-Level Synthe-

sis Formulation

This section compares the problem formulation introduced in Section 4.2

with the traditional formulation of high-level synthesis for non-reconfigurable

systems (e. g. (Gajski et al., 1992; De Micheli, 1994; Gerez, 1999)).

The main differences between the two formulations are as follows:

" The scheduling problem (Definition 4.2.4) for reconfigurable systems

considers the latency required to setup the architectural resources

bound to their respective behavioural model elements. The schedule

feasibility condition (Eq. 4.4) ensures that the data and control depen-

dencies between the behavioural operations are not violated, and the

architectural resources are setup before they can perform any compu-

tations. Furthermore, the function Setup() expresses the interdepen-

dence between the design schedule (high-level characteristic) and the

setup latency (typically a low-level technology-dependent character-

istic).

The formulation of the scheduling problem for non-reconfigurable

systems requires that only the data and control dependencies between

the behavioural operations are not violated. When such a formulation

is applied to reconfigurable system synthesis, the reconfiguration la-

tency is not considered at the time of scheduling. Therefore the design

schedule may be invalidated at a later stage in the design flow, when

the target technology-specific reconfiguration latency is inserted into

67

the design schedule.

" The presented formulation of a physical synthesis problem (Defini-

tion 4.2.6) allows for a clear distinction to be made between synthe-

sis for reconfigurable and non-reconfigurable systems (Eq. 4.7 versus
Eq. 4.6). In the context of the presented formulation, the reconfigu-

ration is viewed as an instance of a resource sharing problem; note

similarities between the architectural resource sharing (Eq. 4.3) and

device resource sharing (Eq. 4.7). This observation suggests that sim-

ilar methods could be used to search for solutions to these problems,

while working at different abstraction levels.

" Reconfigurable technologies may provide new possibilities of 'con-

necting' behavioural model operations V. For example, it might be

possible to connect two operations using 'virtual registers' or using

a pair of overlapping registers which share their contents3. The pre-

sented formulation allows for these special features to be considered

as a normal part of the synthesis transformations for B=VUE (Defi-

nitions 4.2.1-4.2.4). These special features are supported via the avail-

ability of specific connectivity resource types in R. Timing character-

istics of such resources may be considered as a part of Setup() and

Delay() functions.

In the traditional high-level synthesis formulation, the problems of

resource allocation and binding are considered only for behavioural

model operations V. This is because the implementation of behaviou-

'For a pair of overlapping registers the register state is transfered directly between the

overlapping registers, i. e. without the need for the state to be transfered via the configu-
ration interface to the external memory storage (as for virtual registers). For example by

overlapping the count register between up-counter and down-counter configurations, it is

possible for the counters in two different configurations to share their count values (Vasilko

and Cabanis, 1999).

68

ral model edges E (i. e. wires, multiplexors and registers) at the later

stage is assumed not to introduce a significant timing overhead into
the design schedule.

"A separate reconfiguration schedule pc was introduced in the pre-
sented formulation to capture the configuration cycle-true activity of
the configuration interface. No equivalent of a reconfiguration sched-

ule exists for non-reconfigurable systems.

The presented problem formulation generalises the problem of system

synthesis. The synthesis problem for non-reconfigurable systems is viewed
as a special case of this general formulation.

4.4 Summary of the Model Features

The following are the main features of the formulation presented for the

problem of reconfigurable system synthesis as compared to other approaches

to reconfigurable system synthesis discussed in Chapter 3:

" Resource sharing with architectural granularity only is considered

during behavioural synthesis. This type of resource sharing is iden-

tical to that of non-reconfigurable behavioural synthesis, where for

example one functional unit (e. g. ALU) can be shared between the

behavioural operations which require that functionality (it must sat-

isfy the condition of functional compatibility, Eq. 4.2).

" Resource sharing via reconfiguration is considered at a fine-grained

physical level. This allows sharing of primitive physical components

at the layout level. Therefore an optimisation algorithm working

within this framework will be able to evaluate not only sharing be-

69

tween architectural elements with identical architectural functional-

ity, but also sharing between unrelated architectural elements based

on the similarities of their configurations.

" Contrary to other approaches discussed in Sections 3.2.2-3.2.4 no 'con-

figuration partitioning' is performed during the behavioural -ý archi-

tectural translation. Rather the temporal dependencies resulting from

reusing the architectural elements via reconfiguration are annotated

as a part of the configuration schedule p.

A cycle-accurate configuration schedule is generated based on the

mapping of the logic design model to the physical device model gen-

erated during physical synthesis. This schedule represents the set of

reconfigurations performed at the granularity determined by the ca-

pabilities of the target technology reconfiguration sub-system.

" As there is no a priori assumption that the design should be imple-

mented as a reconfigurable system, the optimisation techniques work-

ing within this framework are free to explore the tradeoffs between

the reconfigurable and non-reconfigurable implementations. There-

fore, the result of the synthesis is a solution which accommodates the

input design constraints and which may be either a reconfigurable or

a non-reconfigurable design implementation.

70

Chapter ,5

DYNASTY Framework

This chapter presents DYNASTY-an experimental CAD framework de-

veloped as a part of this project to support the research on reconfigurable

system design techniques. This Framework was used throughout the work

presented in this thesis for the development of the presented algorithms,

techniques, but also for the experimentation with the target technologies,

new simulation techniques and methodologies.

The presentation of the Framework in this chapter is based on the au-

thor's previous publications from this project (Vasilko et al., 1999; Vasilko,

1999; Vasilko, 2000).

The following section provides the details about the Framework fea-

Lures and its implementation. In Section 5.2 a user's view of the DYNASTY

design flow is presented, while Section 5.3 illustrates the Framework ca-

pabilities using a simple design example. The chapter concludes with the

summary of the DYNASTY Framework's features in Section 5.4.

71

5.1 Introduction

DYNASTY Framework is an extensible generic CAD tool-suite, designed to

support research of reconfigurable system design techniques and method-

ologies.

The Framework fully supports the problem formulation presented in

Chapter 4. The design methodology currently implemented in the DY-

NASTY Framework is based around the temporal floorplanning (Vasilko, 1999),

which allows simultaneous reconfigurable design space exploration at mul-

tiple levels of design abstraction in both spatial and temporal design di-

mensions.

The Framework implements several novel concepts, including tempo-

ral floorplanning, technology server1 based design methodology and a va-

riety of the design visualisation techniques allowing designers to interact

with the design process throughout the entire design flow.

5.1.1 Architecture

The overall architecture of the DYNASTY Framework is shown in Fig. 5.1.

The core of the Framework is the internal design representation provid-

ing design model view at (i) behavioural, (ii) architectural, and (iii) layout

abstraction levels.

Design manipulation tools are provided to facilitate construction of the

design solution. Design analysis tools help to evaluate the quality of the

constructed solution. Design visualisation techniques provide visual feed-

back about the design structure, characteristics and performance. Inter-

faces to third party tools are provided to allow importing designs into the

'Some of author's previous publications use the term library server to refer to a technol-

ogy server.

72

DYNASTY Framework
...

- DehevlouraJ model
-20 and 3D p acement
- d. teib0 cNl [onfigurotbn
- o. o n sýMaul.
-

eepsndency/DRC
Notations

technology-. p. cMlc
bftrtrNm famif

Ndpn coM7g at on blt brm

- Layout device mo eis o
PiT 11

C

4

54

®
- cell, tnc

co module, IP IP core Iibrvbs

- technology specific algorithm °Z
(config. overhead & delay estinutbn
PI. Cem nt routing, etc.)

3rd-PARTY TOOLS
VHDL 's - Denevwunl b timing VHOL simulation % (clock morw+r+g. Ica)
EDIF post-layout delay enalysd

oondguret on contmlbr ryntnes6

Figure 5.1: DYNASTY Framework architecture.

Framework, communication with a VHDL simulator and other technology-

specific analysis tools.

A selectable technology server provides technology-specific libraries,

device models and algorithms (estimation, placement & routing). Other

DYNASTY components not shown in Fig. 5.1 include design and technol-

ogy server database, and an internal Tcl command interpreter. A typical

DYNASTY design session is shown in Fig. 5.2.

The internal design representation allows a combination of design views

during a reconfigurable design exploration. For example during temporal

floorplanning various portions of the design could be available in the archi-

tectural and behavioural views. Incomplete design representations are also

supported to facilitate late insertion of configuration controllers or other

static circuits.

design entry I

- modu4IsignaVng. allocation design Import

- aonfiguntion partitioning
- 30 pavement
- oonstlalnt spedfical' n

a"thm I-ocitgn DiTEMAL
DESIGN

REPRESENTATN

- cwfiguralbn w. rMIE
- design latency
- routing fe"bility

ýpnfl9uratbn
- date/canwucoflgurnon ah. port depanancy vWaUons

73

Behavioural model
(CDFG) viewer

_ý aMeq

Design browser
7u ewr'

9 GI ý'{ Lib ,y Senen

yz - teezoo
Technology server cy LIoruIes

browser 7a rO acooo
... Su .: fý *c6000_ wcros

G Vi ýC Nlgonmmt

xctzie

. cJO V: ew Czl^.

02 ss67

Schedule editor

at I.

7
.

Command console

Technology server
cell configuration

dialog

2D floorplanner

Figure 5.2: Typical DYNASTY session (not all tools shown).

5.1.2 Design Manipulation and Visualisation.

Unlike non-reconfigurable system designers, the designers of dynamically

reconfigurable systems are required to analyse numerous design character-

istics simultaneously. The search for a good design solution requires anal-

ysis of various temporal and spatial design properties, including design

latency, throughput, configuration time, spatial conflicts, sharing of recon-

figurable resources in different configurations, impact of placement on the

RLU reconfiguration time, size of configuration data, power consumption,

etc.

A set of novel design visualisation techniques have been developed

to support design visualisation and manipulation within the DYNASTY

Framework. The aim was to achieve visualisation of the following recon-

figurable design properties:

9 reconfiguration overhead effects

" configuration partitioning

fc

j FDJ

oLItflo
Zew Layer ArIWV\ýs

74

" spatial conflicts (overlaps) between blocks in different configurations

" design execution and configuration schedule

Furthermore, the goal was to support the variety of reconfigurable logic

technologies and so the visualisation techniques should be technology-independent.

The following are the key design manipulation and visualisation tools

provided in the DYNASTY Framework (Fig. 5.2):

" Design browser provides a list of designs, with details about their de-

sign elements at all abstraction levels. The browser allows manipula-

tion of the individual design elements in order to perform allocation,

module placement, invoke specific design algorithms, etc. The fol-

lowing models are used to represent the design at three abstraction

levels:

- Control/Data Flow Graph (CDFG) represents design behaviour

- Finite-State Machine Datapath (FSMD) represents design archi-

tecture.

- 3D structural netlist is used to represent the design layout

. Technology server browser provides list of supported technology servers,

with the details of their libraries, devices and technology-specific al-

gorithms. The most suitable algorithm for a given design stage can

be chosen interactively. This is typically used to chose an estimation

technique with the desired accuracy/run-time tradeoff.

" Behavioural model viewer provides a CDFG view of the system behaviour.

" Schedule Editor allows tracking the execution and reconfiguration sched-

ule for the system during the design space exploration.

75

" Floorplanner provides design structure visualisation in either spatial
2D or 3D floorplan. It provides two views:

- Configuration view (e. g. Fig. 5.3(b)) represents partitioning of the
design into individual configurations. Such a view is useful in

the early design stages when a designer needs to perform this

partitioning on a behavioural design model. At this stage, only

sequencing of design block execution is determined, while the

cycle-accurate execution schedule will be calculated at a later

stage.

- System clock view (e. g. Fig. 5.4(b)) is a cycle-true display of the de-

sign activity. This view includes visualisation of both execution

and configuration processes for all design blocks. The cycle-true

schedule can be recalculated by the technology server as the de-

sign is being manipulated.

" Cell configuration dialog allows manipulation of the configuration for

the detailed layout elements, e. g. routing and logic switches.

The structure and parameters of the reconfigurable logic design solu-

tion can be directly manipulated via the DYNASTY Framework graphical

user interface. A change in any view will be propagated to the relevant de-

sign representation in the other design views. For example, when a design

module is placed in a configuration which results in a violation of data de-

pendencies in the design CDFG, the execution and configuration schedules

can be automatically recalculated to reflect the resulting design latency and

reconfiguration overhead.

76

5.1.2.1 Reconfiguration Overhead Effects

In the DYNASTY Framework, the reconfiguration overhead is calculated

by a technology-specific algorithm provided by the technology server. In

the current implementation, the Framework supports reconfigurable logic

designs with one configuration controller. The period of reconfiguration is

identified in the Schedule Editor using a red bar on the top of schedule dis-

play (seen as dark-grey in Figure 5.2). In the Floorplanner tool, the configu-

ration of individual blocks is indicated using a pyramid (3D Floorplanner)

or a triangle (2D Floorplanner). The number of pyramids/ triangles in the

direction of the z-axis indicates the configuration interface activity during

the system clock cycles.

With these techniques designers can assess the configuration overheads

for the current placement, partitioning and clock/ configuration cycles of a

reconfigurable logic design.

5.1.2.2 Execution and configuration schedule for the design

Due to the interdependencies between the execution and configuration de-

sign scheduling, both schedules have been merged into a single Schedule

Editor tool. Here the overall execution schedule is displayed, which com-

bines the execution and configuration latencies of the individual design

blocks. Schedule steps are identical to the system clock cycles. If the config-

uration clock is different from the system clock, the configuration latencies

are scaled to the system clock units.

5.1.2.3 2D versus 3D Floorplanner

The Floorplanner has been designed to provide design visualisation in both

2 and 3 dimensions. While a 3D floorplan view represents the overall de-

77

sign structure and partitions well, its manipulation may become tedious

for large designs. With the 2D Floorplanner, designers can examine each of

the layers individually and also the locations which are 'difficult to reach'

in a 3D view. The 2D Floorplanner is also better suited for the exploration

of the desired sharing between configuration layers (users can display se-

lected number of layers to examine their similarities).

5.1.3 Technology Server

Available reconfigurable technologies support a wide variety of reconfigu-

ration mechanisms and device architectures as was discussed in Section 2.2.1.

The use of technology servers in our Framework offers technology inde-

pendence as the technology-specific features can be provided as a 'plug-in'

technology server.

In its basic configuration, the technology server includes the following

components:

"A set of target-technology cell and module libraries. These are a com-

mon part of modern FPGA design tools and provide a selection of

technology-specific components which can be used in the design.

" Reconfigurable architecture device models provide a detailed model for

each of the available devices. Such models contain all logic, routing

and configurable resources available in the target technology.

" Technology-specific algorithms. These include algorithms for estimation

of configuration overheads at various levels, placement and routing

algorithms, delay estimation, and other routines required to support

the specific features of the target reconfigurable technology.

Compared with the other approaches used to implement a generic tech-

78

nology support, the technology server is unique in providing technology-

specific algorithms along with the technology libraries and device models.

5.1.4 Design Simulation

The simulation of reconfigurable logic designs in DYNASTY is supported

at two abstraction levels:

"A VHDL simulation model can be generated for the design at any

stage during the design. Clock Morphing simulation (Vasilko and
Cabanis, 1999) was selected as a primary simulation method in the

Framework for its ability to provide simulation of a reconfigurable

design at various abstraction levels.

" The completed design can be exported (via the EDIF third-party tools

interface) to Xilinx XACT6000 (XC6200 P&R tool (Xilinx, 1997a)), where

a detailed timing model can be generated and then simulated using a

third-party VHDL simulator.

5.1.5 Third-Party Interfaces

A design can be imported into the Framework in the EDIF 200 format (Stan-

ford and Mancuso, 1990), which can be exported from many popular de-

sign entry tools. A design behavioural model can be stored in EDIF as a

structural representation of the design CDFG.

The design can be exported from the DYNASTY Framework in both

EDIF and VHDL formats. This can be used for simulation, synthesis or de-

lay analysis using third party tools. The reconfigurable design configura-

tion data can be generated using a technology-specific bitstream generator,

which produces design configuration files.

79

5.1.6 Synthesis of Configuration Controllers and Static Design

Modules.

Automatic synthesis of configuration controllers is not directly supported
by the DYNASTY Framework. However, the Framework can generate a

configuration control schedule in a text file, from which such controllers

can be constructed using standard ASIC/FPGA design tools or processor

compilation tools.

The Framework could provide a library of various reconfiguration con-

trollers suitable for the selected target reconfigurable logic technology. Such

a library could be used by the technology server configuration overhead

estimation algorithms in order to provide estimates on non-deterministic

metrics such as overheads due to random interrupts or memory contention,

etc.

DYNASTY's built-in Tcl language command interpreter allows for all

of the technology server components to be defined using Tcl commands.

Such a capability allows for the technology server to reside on a network

and communicate the technology-specific characteristics and algorithms to

the DYNASTY Framework remotely.

5.2 Designing with the DYNASTY Framework

From the user's perspective the DYNASTY Framework provides a collec-

tion of tools allowing the designer to construct and analyse various recon-

figurable logic design solutions in an interactive environment. A typical

design sequence in the Framework includes the following steps:

1. Design capture using either schematic or HDL design entry.

2. Selection of the static parts of the design which should not be subjected

80

to reconfigurable logic design exploration. These are marked as static
throughout the design flow.

3. Design exploration of a reconfigurable design search space using temporal
floorplanning. This involves the use of the tools described in Sec-

tion 5.1.2. Typically, a good candidate solution is created first and

various implementation and scheduling options are then explored in

order to meet the design criteria.

An initial solution can be created by allocating modules from the tech-

nology libraries to nodes in the design CDFG (using Design browser)

and placing these modules in the design floorplan (using 3D floor-

planner). The design performance can then be estimated (using Sched-

ule Editor). Design exploration is performed by gradual modification

of design parameters (module allocation & placement, execution and

reconfiguration schedule, spatial and temporal partitioning, etc.). Ex-

ecution and configuration schedules are analysed throughout the de-

sign exploration in order to (i) verify design performance and (ii) en-

sure that no data, control and configuration dependencies have been

violated.

Once a satisfactory design solution has been created, it can be ex-

ported from the Framework for a detailed timing analysis. Any vi-

olations of timing constraints are used to adjust design solution pa-

rameters until all design constraints are met.

4. Generation of final solution. The configuration bitstreams are generated

for the final design.

81

5.3 Design Example

A simple example is used in this Section to demonstrate some of the capa-
bilities of the DYNASTY Framework. Other examples are provided in the

core text of this thesis. In the following only the 3D Floorplanner visuali-

sation tool will be used. The example will be implemented on a model dy-

namically reconfigurable FPGA architecture, derived from the Xihnx XC6200

FPGA technology (Appendix A).

A Laplace transform operator mask design is used here as an example

to demonstrate the design flow (its data-flow graph is shown in Fig. 5.3(a)).

This design is also used later in the thesis (Chapter 7) to benchmark the

performance of the developed synthesis technique.

Let us consider an implementation of the Laplace operator on a resource-

limited FPGA architecture (20 x 20 array). The size of the reconfigurable

array does not allow for the entire Laplace operator to be implemented

in a single configuration. A designer may opt to consider an alternative

implementation where the data-flow computation is 'folded' over several

configurations.

In this case the designer would construct a 3D floorplan from the avail-

able design blocks. The main design objective in most cases will be to min-

imise latency of the execution for the entire design. The latency is deter-

mined by both module execution latency and the configuration latency2.

While the module execution latency is fixed for a given module type, the

configuration latency can be reduced if module resources can be shared

between configurations. The designer needs to identify design solutions,

'In order to maintain clarity of the presented example, the configuration clock frequency

was chosen so that the number of system clock cycles needed for configuration does not

exceed four. Selection of ratio between the system and configuration clock will normally
depend on design objectives and constraints.

82

Tonfiguration
partitions

partition 1
et na

"partition 2

ns
2
1

(a) Data-flow graph. (b) 3D floorplan (configuration

partition view).

Figure 5.3: Laplace operator 3D floorplan and data-flow graph after
scheduling. Each layer in the 3D floorplan represents one design config-
uration as partitioned by a designer.

where such resource sharing is maximised.

First the design modules can be partitioned into individual configura-

tions. The 3D Floorplanner tool in a configuration view can be used to

visualise such an initial solution (Figure 5.3(b)). Once initial partitioning

was decided, the designer would aim to minimise configuration overhead

with a module placement which would maximise module sharing. The ac-

tual execution latency can be measured in the Schedule Editor and seen in

the 3D Floorplaner using a system clock view (Figure 5.4(b)).

5.4 Conclusions

The DYNASTY Framework provides a combination of techniques, which

allow simultaneous exploration of a reconfigurable design search space in

both temporal and spatial dimensions. Technology-dependent features are

provided by a technology server, which is unique in providing device mod-

83

121 ux

1

schedule
execution

order

File

n3 n2 n4 n5

n1

system
dock
cycles

9
8
7
6
5
4
3
2

0

(a) Sequenced (b) 3D floorplan (system clock view).
data-flow graph.

Figure 5.4: Laplace operator 3D floorplan and data-flow graph after
scheduling. Each layer in the 3D floorplan represents one system clock cycle;
a pyramid indicates that a block is being reconfigured and a cube denotes
its execution.

els and technology-specific algorithms along with the cell and module li-

braries.

The experience with using DYNASTY for the design of various partially-

reconfigurable circuits in the XC6200 technology, confirms that temporal

floorplanning leads to a considerable reduction of the design time com-

pared to the other iterative XC6200 design methodologies (e. g. (Robinson et al.,

1998)).

Such a reduction can be attributed to the capabilities of the Framework,

which provide designers with an immediate visual feedback about design

characteristics throughout the entire design flow, and allow design manip-

ulation at multiple abstraction levels simultaneously. Bad design decisions

can be identified early, while the feasibility of the final design solution is

guaranteed through checking the dependency violations.

The Framework allows an expert human designer to control the entire

ö4

reconfigurable logic design process, while automatic design and estimation

techniques can provide guidance and acceleration of computationally in-

tensive tasks. Further 'push-button' techniques for automatic exploration

of a multiple-level reconfigurable design search space will provide a fast

design route in scenarios where design time is a primary objective, while

possible implementation inefficiencies can be tolerated. One such auto-

matic technique is presented in this thesis.

Although further development of automatic synthesis and estimation

algorithms for reconfigurable systems can be expected to reduce the em-

phasis on manual reconfigurable logic design manipulation, the presented

visualisation techniques will still be able to provide an intuitive visual frame-

work for the analysis and manipulation of auto-generated design solutions.

85

Chapter 6

Synthesis of Dynamically

Reconfigurable Systems with

Evolutionary Algorithms

The theoretical model for the synthesis of reconfigurable systems presented

in the previous chapter provides a framework in which various optimisa-

tion algorithms can search for design solutions.

In order to confirm the viability of this formulation an evolutionary al-

gorithm based optimisation technique has been developed for the synthesis

of reconfigurable systems, which is presented in this chapter.

The following section defines a restricted problem for the synthesis of

reconfigurable systems, which is considered by the presented evolutionary

optimisation technique. Section 6.2 presents a newly developed temporal

floorplanning representation of this problem. Section 6.3 discusses the suit-

ability of various optimisation algorithms for the solution search using the

temporal floorplanning representation. Genetic algorithms are briefly in-

troduced in Section 6.4. The implementation of the newly developed re-

86

configurable system synthesis technique based on genetic algorithms is de-

scribed in Section 6.5.

6.1 Restricted Problem for Synthesis of Reconfigurable

Systems

The formulation of the reconfigurable synthesis problem presented in Chap-

ter 4 defines a generalised and complex set of interdependent transforma-

tions. In order to simplify the initial search for algorithms capable of solv-

ing this problem, the formulation was restricted into a simplified instance

of the original reconfigurable synthesis problem.

This section presents the restricted formulation which constrains the

type of reconfigurable system into a system, which can be synthesised us-

ing the presented approach. Furthermore, the assumptions about the de-

sign methodology within which this algorithm operates provide a simplifi-

cation of several processing steps to allow practical verification of the pre-

sented technique.

The following are the assumptions and practical considerations which

restrict the RS synthesis problem considered here:

1. Only acyclic data-flow problems are considered. With respect to

Definition 4.1.1, in the input behavioural model G(V, E) the sets of

control vertices and control edges are assumed to be empty:

VV=O A EE=O (6.1)

and thus for G(V, E), it is assumed that V= Vd and E= Ed. In this

case G(V, E) represents a data flow graph.

This assumption ensures that no cycles and no conditional execution

branches exist in the input problem. Therefore the design execution

87

and reconfiguration schedules can be determined and fixed during

synthesis.

While only acyclic graphs are considered, it should be noted that

cyclic data-flow graphs can be easily transformed into acyclic graphs

representing algorithm iterations with non-overlapping schedule. This

approach is commonly used in high-level synthesis (Gerez, 1999, Chap-

ter 12).

2. The input design problem is deterministic. It is assumed that the

input design problem is fully specified prior to synthesis and there-

fore all behavioural design characteristics and dependencies can be

determined during the synthesis.

3. Logic synthesis is performed via direct mapping to 'hard' library

modules. It is assumed that the architectural resource library for the

targeted technology provides a set hard macro modules which are

available during synthesis.

The term 'hard macro modules' refers to target technology modules,

in which primitive cells were placed relative to the module origin and

routed locally. The use of only local routing allows for modules to be

placed in more than one location within the target technology array.

In respect to Definition 4.2.5, given the design architectural model

(A, 0, a, p), the design logic model (U, N) can be constructed by re-

placing the architectural resource instances by their corresponding

'hard' macro modules from the target technology library.

4. Architectural modules can be connected only via register transfers.

It is assumed that the architectural module input/output register val-

ues are transferred between the modules via the RLU's configura-

88

BEHAVIOURAL LEVEL

dbc

bo ßo

>......... bi

a1
x

ARCHITECTURAL LEVEL

abc

x
-v

....................

s0

sl

.........................
FSM

Figure 6.1: Architectural-level resource sharing controlled by an FSM.

tion interface. No physical wiring is allowed between the architectural

modules.

In order to allow for inter-module wiring to exist, the synthesis pro-

cess would have to address the routing problem for reconfigurable

systems. This is a complex problem, for which solutions have not

yet been proposed and therefore the routing problem is not consid-

ered here. The routing problem in reconfigurable systems is further

discussed in Section 8.2.

5. Only a restricted case of architectural-level resource sharing is con-

sidered.

Implementation of resource sharing at the architectural level may re-

quire that a finite-state machine (FSM) is constructed for each in-

stance where such sharing occurs. This FSM controls the access of

input/output signals and registers to the ports of the shared architec-

tural resource (Fig 6.1). The existence of such a FSM would require

that both the FSM and its supporting logic are synthesised as a part

of the RS synthesis. Such FSM synthesis is not considered here.

89

BEHAVIOURAL LEVEL ARCHITECTURAL LEVEL

abCab
a+bo

bo ..
00 Zo IT, 11-T ii

ý"""""""".., Configuration
........................ bi . --":::::: ADD aý interface data

1 transfers

00
x

a+b

x

Figure 6.2: Architectural-level resource sharing with module ao shared be-
tween behavioural computations bo and b1. The values stored in registers
to, il, oo are transferred via the configuration interface.

However, an architectural module can be shared between two behavi-

oural computations without any additional logic in the arrangement

shown in Fig. 6.2. In this case, the shared module remains configured

in the RLU, while its input/output registers are programmed with

new values via the configuration interface.

This type of architectural-level resource sharing is considered by the

presented restricted synthesis problem. Resource sharing at physical

level is also considered

6. Target architecture assumptions. It is assumed that synthesis is tar-

geting the reconfigurable system architecture depicted in Fig. 2.1, with

the following restrictions/features:

" the target architecture is a synchronous system. Both the compu-

tations in the RLU and the system's RCU are synchronised with

one system clock signal. The communication between the RLU

and RCU is controlled by a separate configuration clock, which

90

T sys_cik

Tconfig_clk

(a)

Tsys_c1k =3X Tconfig_clk

Zsys_c1k

Tconfig_clk

(b) Tsys_c1k > Tconfig_clk

Tsys_clk

Tconfig_clk

t

(c) Ts s_clk < Tconfig_clk

Figure 6.3: Relationship between the system and configuration clock sig-
nals. Tconfig_cuk and Tsys_cik are the periods of the configuration clock signal
and system clock signal respectively.

is synchronised with the system clock at the beginning of the

system clock cycle, although it may run asynchronously within

the system cycle. Examples of possible timing relationships be-

tween the system and configuration clock signals are illustrated

in Fig. 6.3.

This ensures that the relationship between the system and con-

figuration clock signals is well defined.

9 the RLU is implemented on a single reconfigurable logic device

and therefore partitioning between multiple reconfigurable de-

vices will not be considered

" reconfiguration is controlled by a dedicated RCU, which is ex-

ternal to the RLU and therefore all RLU resources are available

for the design implementation

" the RCU-CDS and RCU-RLU interfaces are implemented as ded-

icated interfaces which are not shared between other system corn-

portents. The data transfers across these interfaces will be fully

91

deterministic and therefore there is no need to consider delays
due to bus sharing and arbitration.

" the configuration and data stored within the CDS can be read/written

within one configuration clock cycle. Furthermore, the CDS has

a storage capacity sufficient for the storage required for the con-
figuration, RLU state and application-specific data.

7. Synthesis goals. It is assumed that there are two main goals for re-

configurable logic system synthesis:

" The primary goal is to produce a feasible reconfigurable logic sys-

tem (Definition 4.2.7).

" The secondary goal is to produce a system which meets the con-

straint on its execution latency.

These goals guarantee that even if the solution violates the secondary

design goal (execution latency constraint), it will be guaranteed to

operate correctly in the target reconfigurable system. Therefore the

approach can be used for feasibility evaluation of the given design

constraints (e. g. design latency and the targeted technology).

The above assumptions restrict the application domain for which the

presented synthesis technique will be applicable. However, these assump-

tions are representative of many practical reconfigurable systems imple-

menting real-time applications, such as digital signal and image process-

ing, but also other applications which use data-flow computations.

92

6.2 Synthesis Process Overview (Temporal Floorplan-

ning)

The first problem in the reconfigurable synthesis formulation is resource

allocation and binding. Then a scheduling problem can be considered. The

feasibility of a reconfigurable design schedule for the selected type of tar-

get technology may depend greatly on the feasibility of the design layout,

where there should be no spatial or temporal conflicts between the design

configurations.

The restricted RS synthesis problem assumes that the logic synthesis

is replaced by direct mapping of the architectural modules onto the target

technology hard macro modules. Such an approach allows for the physical

characteristics of the technology modules, e. g. module dimensions and la-

tency, to be known at a high level. Furthermore, as no wiring is considered,

physical synthesis translates to a problem of design module placement.

Due to the interdependent relationship between the above problems,

i. e resource allocation, resource binding, design scheduling and module

placement, it would be useful to consider the problems together. This is

possible within a 3D floorplan model (see Fig. 6.4(a)).

In the 3D floorplan the horizontal x/y-coordinates represent spatial po-

sitions of the design modules, while vertical z-coordinate represent the sys-

tem dock cycles. In Fig. 6.4(a) the execution of the system proceeds from

the bottom (z = 0) towards the top of the floorplan. The 3D dimensions

of the design module represent its spatial and temporal characteristics, ex-

tracted from the library cell linked with the design block as a result of re-

source allocation and binding.

The 3D floorplan can be therefore represented as a 4-tuple (A, ß, 0', ý).

Considering the above interpretation of the 3D floorplan, the 4-tuple can

93

system
clock

cycles

10
9
8
7
6
5
4
3
2
1

Eva -9 nx
File View

n4 n5
n3 n2 I

---ý(,

n1

122 i21 112 ßi32 i23

nl

n2 a3
+11

schedule
execution

order

(a) 3D floorplan.

Device reconfiguration Block/CDFG node
intervals execution

File View /Calculate

0 Vi 234 5& 67

U0

ut
:
ý, yR2

u2

u3 eää94

u4

(b) Scheduled DFG. (c) Design execution and configuration schedule.

Figure 6.4: A Laplace operator mask 3D floorplan and data-flow graph dur-
ing temporal floorplanning. Each layer in the 3D floorplan represents one
system clock cycle; a pyramid indicates that a block is being reconfigured
while a cube denotes its execution.

94

be expressed as (A,, 8, z, x, y)
In the following, the process of design synthesis using the above 3D

floorplan model is referred to as temporal floorplanning. Temporal floorplan-

ning involves finding a solution to the following problems:

9 resource allocation and binding, i. e. finding the set A in Eq. 4.1 and ,Q
in Eq. 4.2

" design execution scheduling, i. e. finding o" in Eq. 4.4

" reconfiguration overhead calculation and configuration scheduling,

i. e. finding p, in Definition 4.2.5 and scaling the reconfiguration over-

head to Setup() function in Eq. 4.4

" design block placement, i. e. finding 0 in Definition 4.2.6

while the solution feasibility condition is not violated (Definition 4.2.7) and

the set of performance constraints b is satisfied.

Once the final solution has been found, the information contained within

the 3D floorplan can be used to extract the configuration data necessary

for the implementation of the design functionality in the target reconfig-

urable logic technology. Furthermore, the configuration schedule p, can

be extracted and used to construct a reconfiguration controller, which will

control the system's reconfiguration.

6.2.1 Technology Independence

In the 3D floorplan model, the base 2-D floorplan array is composed of

blocks which encapsulate the primitive components of the target technol-

ogy. For example in Fig. 6.4(a) a primitive floorplan block corresponds to a

logic block and a set of routing multiplexors in the Xilinx XC6200 technol-

ogy (see Fig. A. 1 in Appendix A, page 149). While different reconfigurable

95

devices provide different primitive physical components, their abstraction
in the 3D floorplan is the same. Therefore, the 3D floorplan abstraction

allows algorithms to operate within one common model, while targeting

different technologies.

6.3 Optimisation Algorithm Selection

Chapter 4 has formulated the problem of synthesis for reconfigurable sys-

tems. Although only a restricted case of this problem is considered for auto-

matic synthesis here, the formulation demonstrates tight interdependence

between the individual tasks. Most importantly, the technology-specific

features such as partial reconfiguration and sophisticated features of recon-

figurable logic configuration interfaces, can further complicate these inter-

dependencies.

In the search for a suitable optimisation algorithm for this problem a

number of options were examined.

In non-reconfigurable system synthesis, simple and fast heuristics are

used to solve the individual synthesis problems. These techniques cannot

guarantee the feasibility of the generated solution because they operate on

simplified problem models, which do not consider the low-level design

characteristics and technology constraints. In the case of reconfigurable

systems, examples which use simple heuristic search techniques include

(Ling and Amano, 1993b) and also the author's previous work (Vasilko and

Ait-Boudaoud, 1996a).

Given the complex formulation of the problem of synthesis for recon-

figurable systems, and the tight interdependence between the individual

synthesis problems, techniques capable of considering all the interdepen-

dencies should be more appropriate. The following techniques were con-

96

sidered:

" Integer Linear Programming (ILP) (e. g. (Nemhauser and Wolsey,

1988)) is a robust optimisation technique capable of finding a glob-

ally optimal solution for any problem which can be formulated as a

set of linear relations. However, the run time of these techniques is

prohibitive for large and interdependent problems. Examples of us-
ing ILP optimisation on simplified models of reconfigurable system

synthesis include (Sels, 1996; Kaul and Vemuri, 1998).

" Simulated Annealing (Kirkpatrick et al., 1983) is a stochastic optimi-

sation method based on a mathematical model of annealing in natu-

ral systems. The technique gained its popularity through its ability to

climb out of local minima.

Although the run time of simulated annealing based optimisation can

be significantly shorter than that of an ILP method, it can still be pro-

hibitive for large problems. The long run times can be attributed to

the technique using relatively small steps to progress towards new

solutions during the search. A simulated annealing based algorithm

for the synthesis of reconfigurable systems in a simple 3D floorplan

was demonstrated by Bazargan et al. (1999).

" Evolutionary Algorithms (Holland, 1975; Goldberg, 1989) are a global

optimisation technique based on a model of a Darwinian evolution.

Like simulated annealing, this technique is capable of 'hill-climbing'.

Evolutionary algorithms operate on a large set of solutions rather

than on a single solution. This allows for a large number of alter-

native solutions to be examined within a short period of time. The

application of evolutionary algorithms to a simplified problem of re-

97

configurable system synthesis was considered by Zhang et al. (1998).

Evolutionary algorithms were selected as a suitable candidate for the

evaluation of reconfigurable system synthesis using the presented problem
formulation. One category of evolutionary algorithms, genetic algorithms
(GAs), have attracted a considerable interest over recent years for their ap-

plications to complex real-world problems.

Evolutionary algorithms have also been demonstrated to successfully

solve multi-objective and interdependent problems in VLSI CAD (e. g. (Dodhi et al.,

1995; Ohmori, 1995; Morris and Nowrouzian, 1996; Sait et al., 1996)).

The ability of genetic algorithms to search a large pool of very differ-

ent solutions early during the solution search will be beneficial for recon-

figurable system synthesis. While the overall objective of reconfigurable

system synthesis is to produce a feasible solution which meets the perfor-

mance constraints, it is often only necessary to quickly evaluate the feasi-

bility of the target technology or a performance constraint for a given input

problem. A genetic algorithm will produce many different solutions early

during the solution search, allowing designers to assess the suitability of

the target technology from these early results.

6.4 Genetic Algorithms

Genetic algorithms (Goldberg, 1989; Holland, 1975) are a stochastic opti-

misation technique based on principles of natural evolution. They operate

using a mathematical model of natural evolution based on the 'survival of

the fittest' strategy, which is similar to the process thought to occur in na-

ture, and which can lead to the selection of the best solution for a given set

of environmental conditions.

98

GA chromosome encoded value
d

100101= 37
MSB LSB

Figure 6.5: An example of a chromosome coding in a genetic algorithm (1-
dimensional binary string). The binary value encoded in the chromosome
is linked to the system variable under optimisation.

An optimisation problem which is to be considered by the genetic al-

gorithms is encoded so that it can be manipulated by the algorithm. The

individual solutions are coded in a data structure representing chromosomes.
The values encoded in the chromosome are linked to system variables, the

values of which are the subject of GA optimisation. For example in Fig. 6.5,

the solution is represented by a binary string of a fixed size. Its encoded in-

teger value can be linked to a single one-dimensional system variable, e. g.

an angle, velocity, position, priority, etc.

The chromosomes are grouped to form a population of possible solu-

tions, which is manipulated by two types of genetic operators during the

evolutionary process: crossover and mutation.

The crossover operator selects pairs of chromosomes from the old gen-

eration ('parents') and performs their 'mating' to generate two new chro-

mosomes ('children') in the new generation (Fig. 6.6). These children may

combine some of the 'good' characteristics of their parents. Therefore there

is a likelihood that the crossover operator will produce at least some new

chromosomes which will have better characteristics then the parents.

The mutation operator selects a chromosome from the old generation

and introduces a random change to the chromosome which is then stored

in the new generation (Fig. 6.7). This allows for the generation of new

'offsprings' which do not inherit the entire set of parents' characteristics.

99

old individuals new individuals

parent 1 child 1

1001 ;

r2:

1 `1 1000

ent child 2

0110p101

Figure 6.6: An example of a crossover operator (one-point crossover).

old individual

parent
L1 101011 [oil

T

new individual

child

11o1,0 0
invert

Figure 6.7: An example of a mutation operator (random 'flip' mutation).

This is the mechanism which allows genetic algorithms to escape the 'lo-

cal minima' during the evolutionary search process. There is a possibility

that new characteristics introduced by the mutation operator may provide

some chromosomes with different and better characteristics than those of

the parents.

A generic simple genetic algorithm can be expressed by the procedure

shown in Algorithm 6.1.

Initialisation of a population creates a set of individuals with popula-

tion size selected by one of the parameters of the genetic algorithms. This

initialisation is often performed by a simple random assignment of the

chromosome values.

100

Algorithm 6.1 Simple Genetic Algorithm
initialise a population

evaluate the population fitness

while stopping criteria is not satisfied do

select individuals for the next generation

apply crossover

apply mutation

evaluate the population fitness

end while

After initialisation the genetic algorithm enters into an iterative loop

which simulates natural evolution by performing a sequence of genetic op-

erations.

First, the fitness of each individual in the population is evaluated. The

fitness provides a measure of the individual's quality and is traditionally

represented by a scalar value.

The fitness evaluation is followed by a selection procedure, which selects

the individuals which will survive in the next generation. This selection is

based on the individuals' fitness: those individuals with high fitness are

more likely to survive than the individuals with low fitness. After selec-

tion a new generation of individuals is stored as the current population to

generate a new generation.

Then both crossover and mutation operators are applied to individuals

randomly selected from the current population.

The entire process repeats until one or more stopping criteria are satis-

fied. Various stopping criteria have been used with genetic algorithms.

The limit on the total number of generations, and population convergence

(similarity of individuals within the entire population), are most commonly

101

used.

6.5 Implementation of an Automatic Reconfigurable

System Synthesis

When genetic algorithms are considered for the optimisation of any given

problem, it is necessary to examine several problem-specific issues:

" problem representation

" population initialisation

" selection of genetic operators (crossover and mutation)

" fitness function

" selection of a genetic algorithm procedure and control parameters

6.5.1 Problem Representation

Conventional GA-based optimisation techniques use simple data structures

to represent the problem variables. Examples include binary (Fig. 6.7) or

integer strings, arrays and trees.

The problem of reconfigurable system synthesis represents a collection

of complex and interdependent relationships. Although temporal floor-

planning provides a simplification of this process, it still involves a solution

search for several interdependent problems.

In order to use genetic algorithms successfully, the problem represen-

tation and the genetic operators must match well the characteristics of the

problem. For the problem of temporal floorplanning a problem-specific

representation was developed together with a set of problem-specific ge-

netic operators.

102

Algorithm 6.2 Population initialisation
Require: G(V, E), n- population size

1. Create n individuals in population P

for all p2 EP do

2. Perform resource allocation (Algorithm 6.3)

3. Place the design in a 3D floorplan (Algorithm 6.4)

4. Calculate the reconfiguration latency and correct the 3D floorplan

using a technology-specific procedure (Algorithm 6.13).

end for

A composite chromosome was designed, where the chromosome genes

are linked with behavioural model elements and represent the following

behavioural element properties: (Fig. 6.8):

" resource binding, represented as a link to the library or a shared de-

sign module implementing the desired behavioural functionality

" 2-D position in the target technology device represented as a pair of

integer floorplan x/y coordinates

" temporal position which represents the system's execution schedule

time slot

6.5.2 Population Initialisation

An individual in a population is initialised by the procedure in Algorithm 6.2.

First a population of the required size is created. Then all individu-

als in the population are initialised to hardware modules using a greedy

'first come - first served' allocation and binding algorithm (Algorithm 6.3),

followed by a random placement of the design modules in a 3D floorplan

(Algorithm 6.4). The placement is followed by a procedure (Algorithm 6.4)

103

FIIN Vlies

n4 n5
n3 n2
ýj eit r

n1

i ý1

SYSTEM CLK CYCLE 7

(X, Y) FLOORPLAN POSITION 32

RESOURCE BINDING ADD

GENES

CHROMOSOME

GA POPULATION

ARCHITECTURAL

RESOURCE LIBRARY

Figure 6.8: Reconfigurable system synthesis problem GA representation.

ALU
.......

ADD

MOLT
0

104

Algorithm 6.3 First-come first-served allocation and binding
Require: G(V, E), B=VUE, R, A=0

for all bi EB do

for all r3 ERdo

if F(bi) 9 F(TC) then

create a2, A=AU ai

rj ai

ai +- bi

break

end if

end for

end for

Ensure: Eq. 4.1 and Eq. 4.2 are satisfied.

which checks and corrects any data or configuration dependency conflicts.

All such conflicts are corrected in order to guarantee that the pool of initial

solutions is feasible.

6.5.3 Selection of Genetic Operators

A set of genetic operators was developed for the above problem representa-

tion. The operators exploit the problem knowledge to perform operations

similar to those a human designer would do during manual optimisation of

such a problem in a 3D floorplan.

The generic operators were selected to be able to manipulate each of

the properties encoded in the composite chromosome described in Sec-

tion 6.5.1. For each property both crossover and mutation operators were

developed to ensure that good partial solutions are preserved across gener-

ations (using crossover), but also new alternative solutions can be explored

105

Algorithm 6.4 3D floorplan placement
Require: G(V, E), A, ß

for all ay EA do

1. Randomly select the next module aj =ß (vj) such that all the mod-

ules of vg's predecessors were already placed.

2. Place aj at a random (x, y) position in the next available system

clock cycle such that Eq. 4.4 is satisfied assuming Setup() =0 and the

module fits within the target device.

end for

to escape local minima (using mutation).

A special mutation operator (Section 6.5.5.4) was developed after it was

observed that many solutions could be improved by slightly changing the

locations of the design modules. These slight changes would allow mod-

ules to 'descend' into lower locations in a 3D floorplan, which could create

new solutions with reduced design latency.

The operation and implementation of all generic operators is further

discussed in the following Sections 6.5.4 and 6.5.5.

The probability of application of the operators is controlled by an evo-

lution control strategy designed for this algorithm (Section 6.5.9).

6.5.4 Crossover Operators

The crossover operator simulates 'mating' between two parent individuals

which produces two child individuals in the new generation. The follow-

ing problem-specific crossover operators were developed:

106

Algorithm 6.5 Module binding crossover
Require: parentl, parent2, px_bind (crossover probability)

for all v2 EV do

if toss_coin(PX_bind) then

exchange ß(v2) between v2 in parentl and parent2

end if

end for

Algorithm 6.6 2D floorplan crossover
Require: parentl, parent2, PX-2D (crossover probability)

for all vi EV do

if toss_coin(pX-2D) then

exchange (x, y) coordinates between vi in parentl and parent2

end if

end for

6.5.4.1 Module binding crossover

This exchanges modules bound to identical CDFG nodes in parent solu-

Lions (Algorithm 6.5). This operator aims to preserve binding of modules

between the generations.

6.5.4.2 2D floorplan crossover

This exchanges X-Y positions between the modules in one floorplan layer.

This operator will preserve the relative spatial positions between the mod-

ules in a 3D floorplan (Algorithm 6.6).

6.5.4.3 3D floorplan crossover

This exchanges the positions of a randomly-sized group of modules be-

tween the two parent 3D floorplans. This will copy the X-Y-Z positions of

107

Algorithm 6.7 3D floorplan crossover
Require: parentl, parent2, PXSD (crossover probability)

for all v2 EV do

if toss_coin(pX_3D) then

exchange (x, y, z) coordinates between v2 in parentl and parent2

end if

end for

the selected modules (both horizontal and vertical placement). This oper-

ator preserves both spatial and temporal relationship between the design

modules in a 3D floorplan. Relative module position in Z-direction char-

acterises the possibility for physical resource sharing between the blocks

(Algorithm 6.7).

6.5.5 Mutation Operators

A mutation operator simulates random changes to one or more individuals.

The following problem-specific mutation operations were developed:

6.5.5.1 Module binding mutation

This changes the module bound to a given CDFG node to a module of a

different type, but with the same functionality (e. g a ripple-carry adder can

be swapped for a carry-lookahead adder). Both the architectural module

library and the modules already instantiated in the design are searched for

new architectural modules with identical functionality. This allows for ei-

ther new module types to be introduced in the design solution or for mod-

ules with identical functionality to be shared (Algorithm 6.8).

108

Algorithm 6.8 Module binding mutation
Require: parent, Pmut_bind (mutation probability)

for all v2 EV do

module-selection-set +- lib modules(F(v2)) U design-modules(F(vi))
if toss_coln(px_bind) then

remove old 0 (vi) from parent

select mj from module-selection-set at random

create new binding 0 (v2) = mj

end if

end for

Algorithm 6.9 2D floorplan mutation
Require: parent, Pm-2D (mutation probability))

for all vi EV do

if toss_coin(pm D) then

calculate_validi(Y-range(ß (vi))

change (x, y) coordinates for vi at random (within the valid range)

end if

end for

6.5.5.2 2D floorplan mutation

This randomly changes the X-Y coordinates of the selected module. This

operator changes the module position(s) relative to the entire design floor-

plan (Algorithm 6.9).

6.5.5.3 3D floorplan mutation

This changes the X-Y-Z coordinates of the selected module(s) in a 3D floor-

plan layer.

109

Algorithm 6.10 3D floorplan mutation
Kequire: parent, pm-3D (mutation probability))

for all vi EV do

if toss_coin(Pm-3D) then

calculate_validXYZ-range(ß (v2))

change (x, y, z) coordinates for vi at random (within the valid range)

end if

end for

6.5.5.4 3D floorplan 'shaking'

This special mutation operator was developed to simulate the effect of ran-

domised 'shaking' of the entire 3D floorplan. This is a greedy algorithm,

which generates new X-Y coordinates for randomly selected modules in

the solution.

The floorplan 'shaking' may lead to further compaction of the 3D floor-

plan in Z direction as modules from bottom layers may create sufficient

space to allow modules from higher layers to 'descend'.

6.5.6 Overall Synthesis Procedure

The overall procedure using the proposed technique is outlined in Algo-

rithm 6.12.

6.5.7 Solution Feasibility

Application of each of the genetic operators introduced above may lead

to a spatial or temporal conflict. In order to guarantee the feasibility of

each individual solution in the population, the procedure in Algorithm 6.13

recalculates the design schedule for the entire 3D floorplan.

110

Algorithm 6.11 Floorplan 'shaking' mutation
Require: parent, Pm-shake (mutation probability)

if toss -coin
(pm. shake) then

for all vi EV do

Vtmp +- V

while Vt�Lp 00 do

choose integer j at random from interval (1, n Vtmp
)

Xdir = toss coin()

Ydir = toss coin()

calculate_validi(Y-range(ß(va), Xdir, Ydir)

change (x, y) coordinates for ß(vj) at random (within the valid

range)

remove vj from Vtmp

end while

end for

end if

111

Algorithm 6.12 Overall GA-based synthesis procedure.
Require: G(V, E), Amax, T, r, Px_bindý PxJCY. Px-XYZ/ Pm-bind" PmXY, Pm-CYZ,

Pmshake

1. Read G(V, E) and analyse its dependencies

2. Initialise target technology device

3. Initialise GA:

Pold = initialise(G, T, n) {initial population}

F= evaluate chromosome- itness(Poid)

4. Do the evolution:

while stopping criteria is not satisfied do

Pnew = selectjndividuals(Pold, F)

Pnew = apply_crossover(Pnew)

Pnew = applysnutation(Pnew)

F= evaluate_chromosome_fitness(Pnew)

end while

5. Store the best solution

s= select best individual(Pnew, F)

extract 3D floorplan positions & reconfiguration schedule p, from s

112

Algorithm 6.13 3D floorplan correction and reconfiguration latency calcu-

lation
Require: B=VUE, A, L (3D floorplan model)

1. Perform ASAP resource-constrained scheduling dbi E B, ai EA so

that (Eq. 4.4) is satisfied, while assuming Setup(a2) = 0.

2. Calculate reconfiguration latency using a technology-specific proce-

dure

block-list <- A

while block_list 0 do

select available block ai from block-list (selected at random if 2 or more

are available)

cai f- calculate reconfiglatency(ai, L) {Technology-specific}

o, p i- update_design_schedules(az, ca, i, o, p, L)

remove ai from block-list

end while

113

First the design blocks are rescheduled using the 'as soon as possible'
(ASAP) scheduling algorithm constrained to operate within the 3D floor-

plan. This removes any behavioural dependency violations between the

modules positioned in the 3D floorplan. The ASAP scheduling affects only

z-coordinates of the design modules.

In the second step, the actual reconfiguration latencies for all modules

in the design are calculated. The procedure selects modules from the list

of 'available" modules and then calculates the reconfiguration latency for

the selected module. A technology-specific function evaluates the actual

reconfiguration latency. If two or more modules are available, one of the

available modules is selected at random.

In the presented approach a simple greedy algorithm from the DYNASTY

Framework's XC6200 technology server was used to evaluate the module

reconfiguration latencies. The algorithm inserts additional system clock cy-

cles for the violating modules until all conflicts in the design schedule are

resolved. The algorithm uses an intermediate content of the configuration

memory to evaluate the possibility of reusing previous configurations. Al-

ternatively, a more sophisticated approach could have been used to explore

specific features of the target technology (e. g. (Hauck et al., 1998)).

After the reconfiguration latency has been calculated, the cycle-accurate

reconfiguration schedule pc is updated and scaled to the execution sched-

ule v and configuration schedule p. This ensures that the accurate reconfig-

uration overheads are considered throughout the temporal floorplanning

process.

'Design module is 'available' if and only if reconfiguration latency of all its predecessors

was already calculated.

114

6.5.8 Problem-Specific Fitness Function

A simple fitness function extracts the overall execution latency of the gen-

erated solutions from the 3D floorplan. The fitness is calculated as the ratio

of the desired execution latency to the latency extracted from the 3D floor-

plan.

Other design characteristics could be examined during the fitness eval-

uation, including the size of the configuration data, power consumption,

device usability, etc. These are not considered here.

6.5.9 Selection of a Genetic Algorithm Procedure and Control Pa-

rameters

The simulated evolution is being controlled by a core steady-state genetic

algorithm with tournament selection. A supplementary monitoring algo-

rithm is implemented, which is used to control the frequency of application

of the selected genetic operators. These can change probabilities dynami-

cally in response to population convergence changes during the course of

the evolution. The control function and the individual probabilities can be

changed by the designer.

The overall strategy is to apply the operators which produce big changes

(e. g. 3D floorplan crossover) in the design solution early during the evolu-

tion (when the population divergence is large). As the confidence in the

generated solutions increases (observed as decreasing population diver-

gence) the probability of the fine-tuning operators (e. g. 2D floorplan mu-

tation) increases at the expense of operators producing big changes. The

evolution terminates once a solution satisfying the design objectives has

been generated or on command from the designer.

115

6.5.10 Implementation

The genetic algorithm based synthesis technique presented in this chapter
was implemented using the MIT GAlib library (Wall, 1996) and the DY-
NASTY Framework (Chapter 5).

6.5.11 Summary

A new genetic algorithm based technique has been developed for a specific

case of the complex problem of reconfigurable systems design. A problem-

specific chromosome representation was constructed together with a set of

problem-specific genetic operators.

The presented approach represents a combination of technology-specific

heuristics responsible for ensuring the solution feasibility, and knowledge-

based and problem-specific genetic algorithm manipulations within a de-

sign 3D floorplan.

In contrast to traditional applications of genetic algorithms, the chro-

mosome problem representation is 'corrected' after the application of ge-

netic operators in order to rectify possible conflicts or inefficiencies result-

ing from a different reconfiguration overhead distribution in the newly cre-

ated individuals.

The correction procedure evaluates the reconfiguration overheads and

reschedules the execution of the problem in order to guarantee the feasibil-

ity of each such potential design solution.

The correction procedure can completely change all absolute 3D floor-

plan coordinates. This, however, does not destroy the main design char-

acteristics, which are determined by the relative placement of the design

modules in the 3D floorplan. The relative 3D placement represents the

module overlaps at fine-grained level, but also their relative execution de-

116

pendencies resulting from the schedule feasibility condition (Eq. 4.4).

A number of experiments were conducted using the presented synthe-

sis technique in order to ascertain its capabilities. The results from these

experiments are discussed in the following chapter.

117

Chapter 7

Experimental Results

The previous chapter has outlined a reconfigurable systems synthesis tech-

nique, which uses genetic algorithms to search for a solution in a complex,

multi-dimensional search space. This chapter presents a selection of the

experimental results used to assess the capabilities of the technique.

7.1 Benchmark Problems

No standard set of benchmarks exists for the evaluation of synthesis tech-

niques for dynamically reconfigurable logic. Therefore, different methods

for the evaluation of the qualities of previously reported techniques have

been used. For example, Chatha and Vemuri (1999) use a single benchmark

of a JPEG algorithm to explore the partitioning between software and re-

configurable hardware, Bazargan et al. (1999) use a set of random graphs

to illustrate the capabilities of their 3D floorplanning technique, Lysaght

and Stockwood (1996) and Luk et al. (1997b) use a simple pattern matcher

circuit to demonstrate the capabilities of the low-level modelling features

of their respective techniques, while Vasilko and Ait-Boudaoud (1996a) and

Zhang et al. (2000) use a high-level synthesis benchmarks originally devel-

118

Benchmark Graph Source
Laplace filter operator Fig. 7.1 (Heron and Woods, 1996)
Differential equation solver Fig. 7.2 (Paulin et al., 1986)
Elliptic wave filter Fig. 7.3 (Dewilde et al., 1985)

Table 7.1: Behavioural benchmarks used in the synthesis evaluation.

oped for non-reconfigurable systems.

In the evaluation of the approach presented in this thesis, the following

requirements were placed on the selection of benchmark problems:

9 all benchmarks should be behavioural design problems, which satisfy

the restricted formulation presented in Section 6.1

9a reference design implementation designed by hand or other near-

optimal method should exist for at least some of the benchmarks

used. This will allow assessment of the quality of the synthesised

results

" benchmarks should be of various sizes so that the presented synthesis

technique can be exercised for problems of different sizes

" benchmarks should be composed of functions for which modules ex-

ist in the target technology library

Table 7.1 shows the set of behavioural design problems selected to demon-

strate the performance of the presented synthesis technique (their data-

flow graphs are shown in Figs 7.1-7.3). The implementation of these bench-

marks using a dynamically reconfigurable system is considered here.

119

Figure 7.1: Laplace operator data-flow graph.

Figure 7.2: Differential equation solver data-flow graph.

120

Figure 7.3: Elliptic wave filter data-flow graph.

121

7.2 Target Technology

A model technology for the implementation of the target RLU was used

and implemented for this purpose in the DYNASTY Framework (Chap-

ter 5). The technology is based on the Xilinx XC6200 series of partially re-

configurable FPGAs (Xilinx, 1997b), while the original technology was en-

hanced to include several different reconfiguration subsystems. Appendix A

summarises the relevant details of the implementation of the model target

technology.

The availability of different reconfiguration subsystems (Section A. 2)

allows comparison of the tradeoffs between the implementations using dif-

ferent types of subsystem within the same logic array architecture.

A small library of modules suitable for the experiments using the pre-

sented synthesis approach was derived from the existing XC6200 module

libraries (Section A. 3).

Note that because in the presented approach a design solution is con-

structed only from the modules available in the target technology module

library, the efficiency of design implementation is limited by the implemen-

tation of the library modules. For example, the constant multiplication by

4 in the Laplace operator benchmark (Fig. 7.1) could be implemented using

a simple shift operation. However, because only a full A*B multiplier is

available in the target technology module library (Table A. 1), the multipli-

cation will be implemented using this multiplier module.

7.3 Experimental Procedure

Each of the benchmark problems was synthesised using the algorithm pre-

sented in Chapter 6. A selection of target reconfigurable device array sizes

122

Module Operation Relative latency = TS 0d-ß 1

ADD + 1
SUB - 1
GTN > 1

MULT * 3

Table 7.2: Relative module latencies used during the synthesis of examples.

have been used. Library modules with 8-bit operands were used for all

of the presented experiments. All experiments were conducted using the

model XC6200 technology with a 8-bit parallel random access configura-

tion subsystem (Section A. 2).

A system clock cycle of 50 ns was used. The functional unit module

latencies (shown in Tables A. 2-A. 5 in Appendix A) scaled to the system

clock cycle of 50 ns are shown in Table 7.2.

The configuration clock cycle was assumed to be equal to the system

clock cycle (Tconfig_clk = Tsys_clk)"

The genetic algorithm synthesis technique was run until the population

converged and no further improvement to the best design solution in the

population was found.

The following configuration subsystems of the targeted model XC6200

technology (Section A. 2) were used to compare the algorithm performance

with different types of configuration mechanisms:

" 8-bit parallel random access (original Xilinx XC6200)

9 pre-loaded multiple contexts (similar to MIT DPGA)

After automatic synthesis, the benchmark design implementations were

sample tested for cycle-accurate functionality using the following method.

123

7.3.1 Design Verification

A simulation model for each benchmark design was created in order to ver-

ify the correctness of the design reconfiguration schedule. A 'clock morph-

ing' (CM) simulation model (Vasilko and Cabanis, 1999) has been used for

this purpose.

The simulation model provides behavioural models for all design mod-

ules. These are connected to a global reconfiguration controller (RCU)

model via separate clock signals (Fig. 7.4). The RCU implements the de-

sign reconfiguration schedule. During the simulation the module reconfig-

uration is modelled by assigning special signal values to the module clock

signals. A direct connection of the system clock signal to the module clock

signal indicates that the module is active (rd and n4 in Fig 7.4). Clock sig-

nals of inactive design modules (n2, n3 and n5 in Fig 7.4) are driven to

special 'V' values, which indicate that these modules are in virtual states.

The CM simulation model was preferred to other approaches to recon-

figurable system simulation because of its flexibility and the capabilities

to highlight the problems with design reconfiguration scheduling and re-

source sharing.

Only one VHDL model had to be written for each benchmark design.

In order to simulate the various design solutions, the design modules in the

simulation model are annotated with their respective spatial floorplan po-

sitions during the simulation. There is no need to recompile or regenerate

a new simulation model for each design solution.

The functionality of the simulation model required to support the vir-

tual state propagation has been implemented in a modified version of the

IEEE st d_1 og ic _116 4 VHDL package. Details of this implementation can

be found in (Vasilko and Cabanis, 1999).

124

RLU register array config_clk II sys_clk

(0,15)

(0,1

(0,15)

MULT ADD

n1 n2

(15,15)

ADD

n3

register values
transfer

/ýý
ý --i

))

(9,8)

ADD
11M

k

cn
o -ý

'v'

, . V

sys_clk

n5

SUB

IV,

Figure 7.4: An example of a CM-based simulation model used during veri-
fication (Laplace operator design). The modules nl and n4 are active, posi-
tioned at specific coordinates in the RLU and their registers are connected
to the RLU array registers. Inactive modules are disconnected from the
RLU register array by driving their respective clock inputs to the virtual
state "V'. The operation of the entire system is controlled by an RCU model.

125

A small set of test vectors was used to confirm the functionality of the

reconfigurable design implementation.

7.3.2 Design Implementation

While the results from the experiments in this chapter were not imple-

mented on real FPGAs, the route from a design solution to design imple-

mentation is straightforward. The following two additional steps are re-

quired:

" Provided that the target technology sever (Section 5.1.3) provides mod-

els and algorithms for the targeted device and its configuration sub-

system, it is possible to generate a configuration bitstream file for all

configurations in the design. This can be then stored in a configura-

tion data store for a specific reconfigurable application.

" Design and configuration schedules need to be generated for the de-

sign to be implemented. The schedules are provided as human-readable

text files, which can be used to implement the design reconfigura-

tion controller in either hardware or software. The configuration con-

troller synthesis is not directly supported by the DYNASTY Frame-

work (see Section 5.1.6).

7.4 Summary of Results

Tables 7.3-7.4 display a selection of results generated using the benchmarks

from Table 7.1. These were selected as best results out of specific 10 runs of

the synthesis algorithm. The following symbols are used in the following

tables (Fig. 7.5):

126

)total

vl v2
Aexe

Acom

Areconfig

tl t2 t3 tq t5 t6 t7 t8 tg tlo tll

Figure 7.5: Design schedule example. Aexe =3 (t5, t9, tio), Acom =4 (t3, t7,
t8, t1J, Areconfig =5 (tl, t2, t4, t5, t6).

Laplace operator
Array size Atotal Aexe Acom Areconfig

24 x 24 979 7 75 897
32 x 32 82 7 75 0
48 x 48 82 7 75 0
64x64 82 7 75 0

Differential eauation
Array size Atotal Rexe Acom Areconfi

24 x 24 1337 23 336 978
32 x 32 1303 23 336 944
48 x 48 1281 23 336 922
64x64 359 23 336 0

Elliptic wave filter
Array size Atotal Aexe Acom Areconfi

24 x 24 1584 50 564 970
32 x 32 1747 50 564 1133
48 x 48 1663 50 564 1049
64x64 1782 50 564 1168

Table 7.3: Synthesis results for an 8-bit parallel random access configuration
subsystem (XC6200).

127

Laplace operator
Array size %'total Aexe Acorn Areconfig

24 x 24 83 7 75 1
32 x 32 82 7 75 0
48 x 48 82 7 75 0
64x64 82 7 75 0

Differential equation
Array size Atotal Aexe 'com Areconfi

24 x 24 364 23 336 5
32 x 32 366 23 336 7
48 x 48 361 23 336 2
64x64 360 23 336 1

Elliptic wave filter
Array size Atotal Rexe Acorn Areconfig

24 x 24 627 50 564 13
32 x 32 626 50 564 12
48 x 48 620 50 564 6
64x64 618 50 564 4

Table 7.4: Synthesis results for multiple contexts configuration subsystem
(DPGA).

128

Aexe is the number of system clock cycles spent executing the individual

computations in the design

Arom is the number of system clock cycles spent transferring RLU register

values from/to the RLU (used for the transfer of arguments and re-

trieval of the results of computations implemented in the RLU). The

data transfer can be performed in parallel with execution of the com-

putations.

)reconfig is the number of system clock cycles spent reconfiguring the RLU.

The RLU configuration can be performed in parallel with execution

of computations.

, Xtota1 denotes the total design execution latency as the number of system

clock cycles required to complete the entire design computation. As

the register and configuration data transfers can be performed in par-

allel with the computations, the following relationship holds

Atotal C %'exe + Acom + Areconfig (7.1)

An example of the results for the Laplace operator benchmark over 10

runs of the synthesis algorithms is shown in Fig. 7.6. For each run, the ini-

tial population was generated using a different random seed. This demon-

strates that genetic algorithms cannot guarantee that an identical solution

will be found with the same design problem and constraints. Close exam-

ination of the generated results reveals that the displayed variation is due

to the algorithm's inability to share one adder resource for all add opera-

tions (some solutions provide 1 adder block while others provide 2) and

also the adder and subtractor resources did not fully overlap in some cases

(an example of a solution with 2 adder blocks, 1 subtractor and 1 multiplier

is shown in Fig. 7.7(b)).

129

1000

800

id

600

400

200

0
1 c3456789 10

synthesis run No.

Figure 7.6: Solution stability over 10 GA-synthesis runs (Laplace operator
benchmark, 24 x 24 array, 8-bit parallel random access configuration sub-
system).

The effect of a multiple-level resource sharing can be also observed in

Fig. 7.7. The design optimised by hand (Fig. 7.7(a)) requires only 3 modules

(adder, subtractor and multiplier), while an example of the automatically

generated solution (Fig. 7.7(b)) requires 4 modules (1 additional adder) due

the inability of the synthesis algorithm to fully overlap all 3 adder opera-
Lions.

Architectural-level resource sharing allows for 2 behavioural add op-

erations (n3 and n4) to be bound to a single adder module (Fig. 7.7(b)).

Physical-level resource sharing allows for the subtractor (n5) to share rout-

ing and logic resources with this adder module. The effects of resource

sharing from both architectural and physical levels are combined in the de-

sign 3D floorplan.

Some of the designs presented above were optimised by hand to pro-

vide the most efficient implementation given the size of an array, module

library and an input design problem. These results are summarised in Ta-

130

oX Elle View

n5

4aM,.

t\ý

n3 n2, n4

(a) optimised by hand (modules) (b) automatically synthesised

(modules)

9 Mma

File

mý

View -M
oY

n5
n1

.F
/

n4

n3 n2

(c) optimised by hand (schedule) (d) automatically synthesised

(schedule)

Figure 7.7: Comparison of a manually constructed design solution with a
design obtained automatically (Laplace operator benchmark, 24 x 24 array,
8-bit parallel random access configuration subsystems, no configuration cy-
cles are shown). (a)-(b) show the placement of the design modules, (c)-(d)

show the design execution schedule.

131

n2, n3, n4 nl

Laplace operator
Array size Atotal Rexe Acorn Areconfi

24 x 24 803 6 75 724
64x64 78 5 75 0

Differential eauation
Array size Atotal)exe Acorn Areconfig

24 x 24 1240 23 336 888
64x64__

__342
8 336 0

Table 7.5: Results for an 8-bit parallel random access configuration subsys-
tem (XC6200) optimised by hand.

ble 7.5.

The results demonstrate that given the size of the target technology de-

vice (technology resource constraint) and the desired design latency (de-

sign performance constraint), the synthesis technique is able to find sev-

eral design solutions. The results are consistent with manually optimised

results, although it is apparent that the automatic synthesis results are sub-

optimal.

Given the performance and the target technology constrains the syn-

thesis algorithm will explore both reconfigurable and non-reconfigurable

design implementation options. If all of the design blocks can be placed

in a single configuration, the design can be treated as non-reconfigurable

(represented by Areconfig = 0)"

The results from using the XC6200-compatible reconfiguration interface

(Fig. 7.3) demonstrate that the large overhead required for the reconfigura-

tion of the design modules (Ar, onng) and communication of design data

(Aýoý) results in a very inefficient design implementations.

The results from using the reconfiguration subsystem with pre-loaded

multiple-context configuration memory (Fig. 7.4) show that although the

132

reconfiguration latency is negligible, the communication latency (Aýom) lim-
its the performance of the generated design implementations.

The imbalance between Aexe and acorn / Areoonfig (Tables 7.3-7.5) suggests
that if a reconfigurable design implementation using the above configura-

tion subsystems is to be efficient, the design modules should spend much
longer time in executing useful computation than in configuration or com-

munication. In this context, a reconfigurable design is more efficient when

the reconfiguration of design modules can be performed while others are

executing useful computations. Thus long reconfiguration and communi-

cation latencies could be amortised over many execution cycles. Alterna-

tively, if the design implementation can operate with a clock period much

longer than that of configuration clock, the reconfiguration and communi-

cation overhead could be accommodated during the system clock period.

One difficulty with using genetic algorithms for the optimisation of

complex problems is that the algorithm runtime may vary considerably be-

tween optimisation runs. For the experiments presented in this chapter, the

synthesis algorithm usually converged to a final solution within only sev-

eral minutes on a PentiumIIl/400MHz PC, while runtime increased with

larger problems. However, in some cases the synthesis algorithm runtime

exceeded one hour and the synthesis had to be terminated, while accepting

the current best solution.

An advantage of genetic algorithms over other global optimisation tech-

niques is that a large pool of different solutions is generated early in the

algorithm execution. If it is not necessary to search for the most optimal

solution (for example when it is only necessary to access the suitability of

the target technology for the implementation of the design problem), it is

possible to terminate the synthesis early and use the best solution gener-

133

ated so far. Although the quality of such a solution is low, this may provide

sufficient indication of the implementation feasibility, while the algorithm

runtime is greatly reduced.

For the practical implementation of the presented synthesis algorithm

the runtime must be improved. Several opportunities exist here, including

the combination of GA with knowledge-based heuristics and other optimi-

sation techniques (such as simulated annealing). These would allow ge-

netic algorithm to converge faster once a global minimum is thought to be

found, but also could lead to more optimal results.

134

Chapter 8

Conclusions

This chapter summarises the contribution of the presented work and out-

lines the areas for further improvements. Possible future directions of this

research are outlined at the end of this chapter.

8.1 Summary of the Contribution

This thesis has presented a new formulation for the problem of synthesis

for dynamically reconfigurable logic systems. A new synthesis and optimi-

sation algorithm working on a restricted formulation of this problem was

presented to demonstrate the feasibility of a special case of the proposed

model.

The features provided by the presented problem formulation were dis-

cussed at the end of Chapter 4 and are summarised below:

"A generic framework for the construction of various synthesis/compilation

techniques. The problem formulation allows encapsulation of a vari-

ety of techniques for reconfigurable system synthesis. Given the con-

straints and assumptions about the targeted technology and the im-

135

plementation methodology, a specific problem instance can be char-
acterised using this formulation (as demonstrated in Section 6.1).

Synthesis and optimisation techniques can then operate within such

a problem instance. For example, design for non-reconfigurable sys-
tems can be treated within this framework as a special instance of the

problem model (Eq. 4.5). Another example is the technique presented
in Chapter 6, which assumes compile-time synthesis and emphasises
detailed analysis of the reconfiguration overheads. Other techniques

aiming to achieve different synthesis objectives at either compile-time

or run-time can be characterised through a definition of a specific in-

stance of this general problem.

" Multiple-level resource sharing. The presented formulation allows for

resources in the design to be shared at both architectural and fine-

grained physical level. It is therefore possible to consider the re-

duction of the reconfiguration overhead not only through sharing of

architectural modules between identical behavioural operations, but

also through sharing of primitive physical resource configurations be-

tween the modules implementing different behavioural operations.

The synthesis technique presented in Chapter 6 provides an example

of a technique operating on an instance of the problem characterised by

the assumptions in Section 6.1. The following are the main features of this

technique:

" Solution feasibility guarantee. As the approach combines the explo-

ration of low-level design characteristics (layout position, reconfig-

uration overhead, etc.) with the high-level considerations (design

scheduling, resource allocation and binding) it can guarantee that

136

the implementation of the synthesised solution will be feasible. This,

however, is possible only if the reconfiguration overhead calculation
function provides an estimate of the reconfiguration latency with suf-
ficient accuracy.

The solution feasibility ensures that no design flow iterations are re-

quired in order to generate an implementation which will operate on

the selected target technology. However, design iterations while se-
lecting different target technologies or performance constraints may

be required if the implementation with the originally chosen target

technology cannot satisfy the original performance constraints.

" Tradeoff analysis between reconfigurable and non-reconfigurable design im-

plementation. As there is no a priori assumption that the design imple-

mentation has to be reconfigurable, the optimisation technique can

freely explore design implementations for these two options. Whether

the design solution will operate as a reconfigurable or non-reconfigurable

system depends on the selected target technology and the design con-

straints.

is Technology independence. The temporal floorplanning process, together

with a model of a 3D floorplan, provides an abstraction which allows

design optimisation for many common reconfigurable logic technolo-

gies. The technology architecture abstraction offered by the 3D floor-

plan model allows for complex technology-specific features to be 'hid-

den' from the synthesis technique, while these features can be ex-

ploited through the availability of a suitable technology server. The

technology-specific considerations (such as the availability of specific

library modules, specific technology resources or features, reconfig-

uration overhead calculation procedures, etc.) can be then 'plugged-

137

in' to the synthesis technique. Therefore it can be expected that many

other reconfigurable logic technologies, such as Xilinx Virtex, Atmel

AT40k and others, can be used within such a framework.

Furthermore, the results from the synthesis experiments presented in

Chapter 7 appear to provide the expected results. Although no exact anal-

ysis of the optimality of these solutions has been conducted, in several

known cases the results are consistent with previous hand implementa-

tions.

8.1.1 Applications of the Proposed Approach

The synthesis technique presented in Chapter 6 can be used in several ap-

plications:

" Synthesis for reconfigurable systems. As was demonstrated in Chapter 7,

the developed technique can be used to produce working reconfig-

urable implementations. The practicality of these implementations

depends greatly on the features provided by the target technology.

Contemporary commercial reconfigurable logic devices suffer from

large reconfiguration overheads, which makes reconfigurable design

implementations practical only (i) when system reconfiguration does

not occur very often or (ii) when a relatively long system clock cycle

can accommodate many configuration cycles, thus reducing the im-

pact of the reconfiguration overhead on the design latency. Future

improvements may provide technologies with faster reconfiguration

times and therefore make frequent reconfiguration a more practical

design option.

. Reconfigurable technology architecture/features analysis. The approach

138

can be also used to evaluate the suitability of a specific reconfigurable
logic architecture, reconfiguration subsystem and other technological

features for the implementation of design problems from a specific

application domain. Given an input set of typical design problems
it would be possible to synthesise their implementation over a set of

variations of the target technology. A domain-specific reconfigurable
logic technology could be then derived from such experiments.

" Retargetable compilation for reconfigurable computing platforms. Many

different reconfigurable computing platforms and technologies have

been developed for use in software acceleration. The design of a re-

configurable implementation for a specific algorithm and a specific

type of reconfigurable computing platform can be difficult, especially

when partial reconfiguration is considered as a part of this process.

Even if a high-level languages such as VHDL, C or Java were used to

implement the algorithm on a specific reconfigurable platform, the

implementation of the reconfiguration-related functionality will be

specific to a given reconfigurable computing platform. Porting such an

application to a different platform may involve a complete redesign

of such algorithm hardware implementation (consider for example

porting an algorithm implementation from a Xihnx XC6200 FPGA to

Xilinx Virtex FPGA based platform).

The synthesis technique presented in Chapter 6 offers a technology-

independent model of the synthesis / compilation process. Technology-

specific architecture and reconfiguration capabilities are provided through

a technology server. For a compiler targeted to a reconfigurable com-

puting platform, the technology server can be represented as a part

of the target platform architecture model. If such a model is pro-

139

vided for each targeted reconfigurable computing platform, the port-
ing of an algorithm to these platforms involves mere re-compilation
(re-synthesis) of the algorithm with a different architectural model.

The guaranteed feasibility of the implementation will ensure that an
input algorithm will operate on the target reconfigurable computing

platform, while the actual latency of the computation will depend on
its speed and reconfiguration features.

8.2 Areas for Improvement and Future Directions

The presented synthesis technique limits the category of technologies (as

detailed in Section 6.1) and applications which can be considered using

this approach. Some of the possible areas for improvement are identified

below:

8.2.1 Composite Cost Function

While the synthesis technique presented in Chapter 6 uses latency as a mea-

sure of quality for the generated solutions, the fitness evaluation may in-

clude further considerations. These might include constraints on the size

of the storage available for the configuration and application data, con-

straints on power consumption, constraints on the individual placement

and scheduling of the design modules, and others.

8.2.2 Evaluation with Large and Multi-cycle Modules

The synthesis examples presented in Chapter 7 provide only a small set

of benchmarks, limited to data-flow problems with behavioural graph el-

ements being primitive arithmetic computations. It is necessary to bench-

140

mark the performance of this technique using larger problems with com-
plexity approaching that of industrial applications. While primitive arith-
metic operations of data-flow graphs provide many opportunities for archi-
tectural exploration, without the ability to synthesise finite-state machines

and route these primitive operations, it will not be possible to construct

reconfigurable system design implementations at such a fine-grained level.

It is foreseeable that the presented technique will be useful for synthe-

sis from other system-level models. For example, task graphs are being

used successfully in hardware /software co-design for reconfigurable sys-
tems (e. g. (Chatha and Vemuri, 1999)). Each task in the model can be rep-

resented by a complex hardware module. In this scenario, the presented

algorithm should be able to explore any similarities between the configu-

ration in order to produce systems which share primitive reconfigurable

technology resources. This remains a topic for further investigation.

8.2.3 Routing Consideration

In the presented approach all data transfers between the architectural de-

sign modules are performed via registers. It would be desirable to evaluate

the opportunities for direct wire routing between the modules in a recon-

figurable array. Routing may reduce the overheads required for the transfer

of the computational data and also offer more implementation options.

While this is a desirable feature, routing for reconfigurable systems is a

very difficult problem. Routing algorithms have not only to select the rout-

ing paths with limited reconfigurable routing resources, but also consider

the impact of the routing on future re-configuration and the impact of the

overhead due to configuration of routing switches on the overall execution

latency.

141

Furthermore, direct routing in a reconfigurable system may not always
be a desirable option. If the design implementation reconfigures frequently,

it might be preferred to transfer register data via the configuration interface,

rather than reconfigure many distributed routing resources. For example,

a 32-bit data word in the Xilinx XC6200 FPGA technology can be transfered

via its configuration interface in only 1 configuration interface cycle (in the

best case). The number of configuration interface cycles required for the

configuration of routing resources for a 32-bit wired bus depends on the

position of the source and destination of the data transfer and the avail-

ability of routing resources. This latency may be considerably longer than

that of an equivalent register value transfer via the configuration interface.

Such tradeoffs must be considered during the routing process.

The routing problem is a part of physical synthesis and can be viewed

within the framework presented in Chapter 4. The contribution of the rout-

ing configuration and the delay is considered as a part of the Setup() func-

tion in Eq. 4.4.

In the presented synthesis technique, the routing could be considered as

a part of the configuration correction procedure presented in Section 6.5.7.

Routing techniques, however, must provide a worst case estimate of the

impact of the routing on the execution latency so that the solution feasibility

could be maintained.

8.2.4 Architectural-Level Resource Sharing

The presented technique has considered only one specific type of resource

sharing at the architectural level (assumption 5 in Section 6.1). With the

availability of routing algorithms suitable for dynamically reconfigurable

systems it will be possible to consider architectural-level resource sharing

142

in scenarios when other components (e. g. FSM and its control logic) need
to be placed and routed into the design.

8.2.5 Register Allocation, Pipelining and Retiming

If the synthesis approach can consider the routing problem, it will also be

possible to consider different arrangements for the distribution of registers

and data transfers in the design. This opens possibilities for the exploita-

tion of different approaches aimed at the improvement of throughput and

resource usage of the design implementation.

Furthermore, the possibilities for design module pipeliriirtg and their

reconfiguration through 'pipeline morphing' (Luk et al., 1997c) could be

considered as an extension to the presented approach.

While various design optimisation techniques could be applied to the

presented synthesis method, there are several options how these could

be implemented: (i) provided as new genetic algorithm operators, (ii) in-

cluded as a part of the 3D floorplan correction routine (Algorithm 6.13),

(iii) included into a fitness calculation routine, or (iv) provided as a pre- or

post-processing algorithms. Further work is needed to establish suitable

implementations of various optimisation techniques in the context of the

presented synthesis method.

8.2.6 Summary

The presented technique allows automatic design synthesis for a category

of reconfigurable systems. The result of such a synthesis is a reconfigurable

system implementation represented as a set of configuration data for run-

time reconfiguration of the RLU and a schedule for the control of this re-

configuration process from the RCU.

143

Many problems in the design automation for reconfigurable systems re-

main unsolved. While all areas of improvement listed in Section 8.2 should

receive attention in the future, its is the routing problem for reconfigurable

systems which demands high priority. Understanding of routing in recon-
figurable systems and its impact on the system performance, will allow for

future synthesis approaches to consider wire routing as a central part of the

reconfigurable system synthesis.

Improvements to the presented synthesis method are necessary to im-

prove its efficiency and speed, and to include more advanced optimisation

transformations. Furthermore, the interdependence between the reconfig-

urable architectures, technologies, modelling and design tools needs to be

studied to improve our understanding of reconfigurable systems and their

applications.

The synthesis results using the model XC6200 technology demonstrate

some of the limitations of the current reconfigurable technologies. While

better reconfigurable technologies are needed, these have to be developed

to consider the targeted application domain. Furthermore, the reconfig-

urable technology features should be developed in conjunction with the

design tool development to ensure that the efficient algorithms can be con-

structed which will use the technology features efficiently.

In many practical systems where reconfigurable logic is considered as

one of the implementation options, the system will include a combina-

tion of software implemented on an embedded processor(s), fixed function

hardware and reconfigurable hardware. In order to explore the high-level

partitioning of the system's functionality between these three options, the

system-level tools need to estimate the expected performance of each target

technology option for various partitioning scenarios.

144

The presented technique for the design of reconfigurable systems should

integrate with other design tools operating at a system-level. Such an in-

tegration would allow system-level designers to consider reconfigurable

logic implementation as one of the options equivalent to those of fixed

hardware and processors, but providing different implementation trade-

offs.

145

Appendix

146

Appendix A

Model Reconfigurable Logic

Technology

A Xilinx XC6200 FPGA (Xilinx, 1997b) based model reconfigurable logic

technology was used in the experiments presented in this thesis. To differ-

entiate between this model technology and the original Xilinx XC6200 tech-

nology, the model technology is referred to as a model (XC6200) technology,

while the original (XC6200) technology denotes the technology as originally

developed by Xilinx.

The model XC6200 technology was implemented as a technology server

in the DYNASTY Framework (Chapter 5). The implementation includes:

" logic arrays of various sizes

"a set of libraries, including primitive technology cell libraries and

macro libraries

" various configuration subsystems and supporting configuration la-

tency estimation algorithms

"a low-level device simulation model

147

The model XC6200 technology does not implement the full set of fea-

tures available in the original XC6200 technology. While preserving the

overall architecture and the basic functionality of the original configura-

tion interface, the model technology was further enhanced to include other

reconfiguration subsystems, which are not available in the original XC6200

technology.

This appendix highlights the features and incompatibilities of the model

XC6200 technology as used in this thesis. Further detailed description of

the original XC6200 technology and its configuration interface can be found

in the relevant literature (Xilinx, 1997b; Churcher et al., 1995).

A. 1 Architecture

A compatible subset of the original XC6200 architecture was implemented

in the model XC6200 technology, thus allowing for many of the circuits

developed for the original XC6200 technology to be implemented in the

model technology. The aim of the architectural implementation was to pre-

serve the architectural features required by the XC6200 module library, but

also to maintain functionality similar to the original XC6200 technology,

so that the newly developed design techniques could use a realistic target

technology model.

A. 1.1 Device Size

The original Xilinx XC6200 technology provides a selection of devices with

array sizes of 48 x 48,64 x 64,96 x 96 and 128 x 128. The model XC6200 tech-

nology implementation provides additional devices of other sizes, includ-

ing 8x8,16 x 16,24 x 24,32 x 32. While these smaller devices are probably

not useful for practical real-world applications (other than small coproces-

148

N N SEW N4 S4 E4W4
S
E

W
N4
S4- X2 xi
E4

W4
1

CS mux
N 0

m s-
E

:
F:

W
Q

N4

:

S4
E4

4
p

MAG IC

Wo N NOUt NS N EOUt t
S EE
W WW E
F FF SOUL F

Figure A. 1: XC6200 logic block. The configuration multiplexers (shown in
grey) are in their default states after the device reset.

sors or reconfigurable ALUs), these devices were used in the experiments

presented in Chapters 2 and 7 to enforce tighter resource constraints for

small design problems.

A. 1.2 Logic Block

Xilinx XC6200 logic block architecture (including its functional unit and the

local routing multiplexers) is depicted in Fig. A. 1. An identical logic block

was implemented in the model XC6200 technology.

The XC6200 logic block provides two 2-input look-up tables with out-

puts connected to a 2: 1 multiplexer, one D flip-flop, and a number of rout-

ing multiplexers. The special RP multiplexer can disable access to the D

flip-flop from within the array, thus allowing for the flip-flop value to be

read/written only via the XC6200 configuration interface.

149

nearest-neigh
routing

length-4
routing

logic blocks

Figure A. 2: Model XC6200 technology logic array (not all length-4 connec-
tions are shown).

A. 1.3 Routing Resources

Only the nearest-neighbour and length-4 interconnections were provided

in the model XC6200 technology. While other longer interconnections from

the original XC6200 technology (length-16 and chip-length) could have been

easily implemented, this was unnecessary as the modules in the model

XC6200 parametrised library do not use interconnections other than nearest-

neighbour and length-4. As no inter-module routing is used in the ap-

proach presented in this thesis, the longer routing resources would remain

unused.

An example of the implemented model XC6200 logic array is shown in

Fig. A. 2.

The model XC6200 technology does not provide any input/output blocks.

The routing lines connecting to these blocks in the original XC6200 technol-

ogy were left unconnected in the model XC6200 technology. Also MAGIC

150

routing connections originating in the logic blocks (Fig. A. 1) were left un-
connected.

A. 2 Configuration Subsystem

The original XC6200 technology provides a combined serial and parallel

configuration interface, with parallel random-access configuration data dis-

tribution and one-to-one activation mechanism'.

The model XC6200 technology was enhanced to provide several con-

figuration subsystems with different configuration speed. These were pro-

vided to facilitate testing of new synthesis algorithms while targeting tech-

nologies with different configuration subsystems. The following configura-

tion subsystems were implemented as typical representatives of the current

trends:

1. A subset of the original Xilinx XC6200 configuration subsystem. Only

the parallel configuration interface is provided; 8,16 and 32-bit con-

figuration data words are supported. The configuration distribution

does not support the wildcard feature available in the original XC6200

technology. Also many of the original configuration memory loca-

tions are inactive due to lack of the corresponding configurable re-

sources.

2. A Xilinx Virtex-like configuration subsystem (Xilinx, 2000a) provid-

ing frame-based configuration data distribution. The individual frames

are aligned with the device columns. There are 3 frames for each col-

umn. The frame length depends on the device size (8-bit control and

address word + configuration data):

'This categorisation of reconfigurable technologies was introduced in Section 2.2.1 on

page 17.

151

8+8x logic blocks per 1 column [bits]

The subsystem further provides a serial configuration interface and
direct one-to-one configuration activation.

3. A subsystem with a multiple-context configuration memory (similar

to MIT DPGA (Brown et al., 1994)) providing an unlimited number of

layers (many-to-one configuration activation). The memory contexts

can be accessed through the original XC6200 parallel random-access

distribution mechanism and the parallel configuration interface.

In all of the above cases, the access to the device cell register values is

assumed to be through the original XC6200 configuration interface.

Reconfiguration latency calculation algorithms have been provided for

each of the above configuration subsystems. Given a design solution rep-

resented as a 3D floorplan these calculate the number of reconfiguration

cycles required for the design implementation using the selected configu-

ration subsystem.

A. 3 Library Modules

The model XC6200 technology uses a library of parametric modules de-

rived from the original XC6200 macro library (Luk et al., 1997a; Xilinx,

1998).

A selection of arithmetic modules shown in Table A. 1 was adopted for

the model technology library. All model XC6200 technology library mod-

ules support signed numbers (negative numbers are represented in a 2's

complement system). The modules were provided with input and output

registers to allow data transfer from and to the modules via the configura-

tion interface.

152

Name Function Description
ADD A+B signed ripple-carry adder
SUB A-B signed ripple-carry subtractor
GTN A>B signed greater than comparator

MLJLT A*B signed multiplier

Table A. 1: A selection of XC6200 library modules used in experiments de-
scribed in Chapter 7.

In the original XC6200 macro library, the relative placement of logic

blocks within each macro module was fixed using the positional constraints,

while the detailed routing was performed by the Xilinx XACT6000 place &

route tool. In the model XC6200 technology module library, each module

was fully routed when the library was constructed. This ensures that the

configuration of all routing multiplexors and look-up tables in the mod-

ule is known during the synthesis process. Therefore the reconfiguration

latency, which considers the configuration of both logic and routing re-

sources, can be calculated accurately.

As only the local and length-4 routing wires were used for the mod-

ule routing, the modules can be positioned at any array location (if only

the local routing wires were used) or locations with coordinates which are

multiple of 4 (when the length-4 wires were used).

Examples of fully placed and routed modules for 4-bit adder and sub-

tractor modules are shown in Figs. A. 3-A. 4 and Figs. A. 5-A. 6 respectively.

Detailed configuration data for these modules can be derived from the con-

figuration of logic and routing resources shown in Figs. A. 4 and A. 6.

The summary of module characteristics for adder, subtractor, compara-

tor and multiplier modules are shown in Tables A. 2-A. 5.

153

B(3)

A(3)

B(2)

A(2)

B(1)

A(+)

9(0)

A(O)

roue

C(J)

C(2)

G1)

C(O)

Figure A. 3: 4-bit adder (a + b): schematic diagram.

154

8)3)

_

II

rýQ

to r
ýa ý

ilLLLLLL

C(3)

tR

S(2)

mgwlo

C(1)

A(2)
ýp

rý

p

IR. r
Rp

Fit.,

sýrro
Ire_r

a
pY

B(O)

ýaOJ
ýei0

YJro

q0)

Figure A. 4: 4-bit adder (a + b): detailed layout.

155

B(3)

A(3)

B(2)

A(2)

B(1)

A41)

B(c)

A(O)

tout

C(3)

C(2)

C(+)

C(O)

Figure A. 5: 4-bit subtractor (a - b): schematic diagram.

156

B(7)

A(s)

C (c)

Figure A. 6: 4-bit subtractor (a - b): detailed layout.

157

4-bit ADD 8-bit ADD
size 3x8 3x16

execution latency 17 ns 37 ns
data retrieval latency (in/out) 1 1 4/2 c/cycles 4/2 c/cycles

Worst-case configuration latency (in c/cycles)
Configuration interface 4-bit ADD 8-bit ADD

8-bit XC6200 65 129
16-bit XC6200 44 80
32-bit XC6200 27 45

frame-based (Virtex) 2376 2376
multiple contexts (DPGA) 1 1

Table A. 2: Characteristics for 4-bit and 8-bit adder modules.

4-bit SUB 8-bit SUB

size 3x8 3x16

execution latency 22 ns 42 ns
data retrieval latency (in/out) 4/2 c/cycles 4/2 c/cycles

Worst-case configuration latency (in c/cycles)
Configuration interface 4-bit SUB 8-bit SUB

8-bit XC6200 67 131
16-bit XC6200 44 80
32-bit XC6200 27 45

frame-based (Virtex) 2376 2376

multiple contexts (DPGA) 1 1

Table A. 3: Characteristics for 4-bit and 8-bit subtractor modules.

158

4-bit GTN 8-bit GTN
size 3x8 3x16

execution latency 22 ns 44 ns
data retrieval latency (in /out) 1 1 4/2 c /cycles 4/2 c/ cycles

Worst-case configuration latency (in c/cycles)
Configuration interface 4-bit GTN 8-bit GTN

8-bit XC6200 64 136
16-bit XC6200 41 77
32-bit XC6200 27 45

frame-based (Virtex) 2376 2376
multiple contexts (DPGA) 1 1

Table A. 4: Characteristics for 4-bit and 8-bit 'greater than' comparator mod-
ules.

4x4-bit MULT 8x8-bit MULT
size 10x9 18x17

execution latency 62 ns 141 ns
data retrieval latency (in/out) 1 1 13/14 c/cycles 25/26 c/cycles

Worst-case configuration latency (in c/cycles)
Configuration interface 4-bit MULT 8-bit MULT

8-bit XC6200 204 790
16-bit XC6200 124 442
32-bit XC6200 84 246

frame-based (Virtex) 7920 14256

multiple contexts (DPGA) 1 1

Table A. 5: Characteristics for 4x4-bit and 8x 8-bit multiplier modules.

159

A. 4 Support for Design Verification

A low-level VHDL model of the device architecture was implemented for

the model XC6200 technology server. The model can be used to verify the

validity of the configuration data produced by the design synthesis.

The VHDL device model provides a model of the configuration inter-

face and a structural netlist of primitive device blocks (look-up tables, rout-

ing multiplexers, wires, etc.). The individual primitive blocks are modelled

at behavioural level. The configuration of all primitive elements can be read

from a configuration text file during the VHDL simulation. The configura-

tion text file can be changed by another program (e. g. another simulator

or a debugger), which allows co-simulation of software and reconfigurable

hardware system components.

160

Glossary

compile-time refers to time during program (or design) compilation (or

synthesis). Compile-time is an opposite to run-time.

configurable is used here as a synonym for (in-field) programmable.

dynamically reconfigurable refers to a quality of a system of being changed

during its own operation as opposed to requiring the system power-

down. Note that the term dynamic is used here to denote a temporal

quality only. Dynamic reconfigurability does not automatically imply

partial reconfigurability, which is a spatial characteristic. Dynamically

reconfigurable is a synonym for run-time reconfigurable.

Note that currently two interpretations of this terminology are in com-

mon use. The above interpretation is consistent with Lautzenheiser

(1986) and other early works in this field.

The other interpretation of dynamically reconfigurable implies both tem-

poral and spatial characteristics (e. g. (Lysaght and Dunlop, 1994)), i. e.

systems which can be changed during their operation and partially.

dynamically reconfigurable logic is a logic system, which is dynamically

reconfigurable.

full reconfiguration refers to a type of reconfiguration, when only the en-

161

tire reconfigurable system can be modified in one configuration. Full

reconfiguration is an opposite of partial reconfiguration.

(in-field) programmable refers to a quality of a system (or a device, circuit,

sub-system, etc.) such that the system's configuration can be changed

away from the system vendor's manufacturing facility.

partial reconfiguration refers to a type of reconfiguration, which permits

that only a portion of the reconfigurable system is modified. Depend-

ing on the context where this term is used, the 'system' may include a

single reconfigurable logic device, but also a complex reconfigurable

system with several reconfigurable logic devices, and other compo-

nents. Partial reconfiguration is an opposite of full reconfiguration.

reconfigurable system is a system which can be configured more than once.

run-time is time during system's operation. Run-time is an opposite to

compile-time.

run-time reconfigurable is a synonym of dynamically reconfigurable.

162

References

Albahama, 0. T., Cheung, P. and Clarke, T. (1994). Virtual hardware and
the limits of computational speed-up, In: IEEE International Symposium

on Circuits and Systems, pp. 159-162.

Algotronix (1991). CAL1024 Datasheet, Algotronix Ltd. Version 004.

Altera (1995). 1995 Data Book, Altera Corporation, 2610 Orchard Parkway.

Amdahl, G. M. (1967). Validity of the single processor approach to achiev-

ing large scale computing capabilities, In: Proc. AFIPS 1967 Spring Joint

Computer Conference, Atlantic City, NJ, April, pp. 483-485.

Atmel (1994). Configurable Logic Design and Application Book 1994/1995, At-

mel Corporation, 2125 O'Nel Drive, San Jose, CA, 95131.

Bazargan, K., Kaster, R. and Sarrafzadeh, M. (1999). 3-D floorplanning:

Simulated annealing and greedy placement methods for reconfig-

urable computing systems, In: Proceedings of the IEEE Workshop on

Rapid System Prototyping (RSP'99), Clearwater, FL, USA, June 16-18.

Brebner, G. (1996). A virtual hardware operationg system for the xil-

inx XC6200, In: R. W. Hartenstein and M. Glesner (editors), Field-

Programmable Logic: Smart Applications, New Paradigms and Compilers

(FPL '96 Proceedings), LNCS 1142, Springer-Verlag, pp. 327-336.

163

Brebner, G. (1997). The swappable logic unit: a paradigm for virtual hard-

ware, In: IEEE Symposium on FPGAs for Custom Computing Machines,

Napa Valley, CA, USA, April 16-18, pp. 77-86.

Brebner, G. and Bergmann, N. (1999). Reconfigurable computing in re-

mote and harsh environment, In: P. Lysaght, J. Irvine and R. Harten-

stein (editors), Field-Programmable Logic and Applications, LNCS 1673,

Springer-Verlag, Glasgow, UK, August 30-September 1, pp. 195-204.

Brown, J., Chen, D., Eslick, I., Tau, E. and DeHon, A. (1994). DELTA: Pro-

totype for a first-generation dynamically programmable gate array,

Transit Note 112, MIT Artificial Intelligence Laboratory.

Canto, E., Moreno, J. M., Cabestany, J., Faura, J. and Insenser, J. M.

(1999). A bipartitioning algorithm for dynamic reconfigurable pro-

grammable logic, In: P. Lysaght, J. Irvine and R. Hartenstein (editors),

Field-Programmable Logic and Applications, LNCS 1673, Springer-Verlag,

Glasgow, UK, August 30-September 1, pp. 134-143.

Chang, D. and Marek-Sadowska, M. (1998). Partitioning sequential circuits

on dynamically reconfigurable FPGAs, In: International Symposium on

Field Programmable Gate Arrays, Monterrey, CA, February, pp. 161-167.

Chatha, K. S. and Vemuri, R. (1999). Hardware-software codesign for dy-

namically reconfigurable architectures, In: P. Lysaght, J. Irvine and

R. Hartenstein (editors), Field-Programmable Logic and Applications,

LNCS 1673, Springer-Verlag, Glasgow, UK, August 30-September 1,

pp. 175-184.

Churcher, S., Kean, T. and Wilkie, B. (1995). The XC6200 FastMapTM proces-

sor interface, In: W. Moore and W. Luk (editors), 5th International Work-

164

shop on Field Programmable Logic and Applications, LNCS 975, Springer-

Verlag, Oxford, UK, August 29-September 1, pp. 36-43.

Culbertson, W. B., Amerson, R., Carter, R. J., Kuekes, P. and Snider, G.

(1997). Defect tolerance on the teramac custom computer, In: IEEE

Symposium on FPGAs for Custom Computing Machines, Napa, CA

(USA), April, pp. 116-123.

De Micheli, G. (1994). Synthesis and Optimisation of Digital Circuits, McGraw-

Hill.

DeHon, A. (1996). E-mail conversation.

Dewilde, P., Deprettere, E. and Nouta, R. (1985). Parallel and pipelined

VLSI implementation of signal processing algorithms, In: S. Kung,

H. Whitehouse and T. Kailath (editors), VLSI and Modern Signal Pro-

cessing, Prentice Hall, pp. 257-264.

Diessel, 0., ElGindy, H., Middendorf, M., Schmeck, H. and Schmidt,

B. (2000). Dynamic scheduling of tasks on partially reconfigurable

FPGAs, IEE Proceedings Computer and Digital Techniques 147(3): 181-

188.

Dodhi, M. K., Hielschner, F. H., Storer, R. H. and Bhasker, J. (1995). Datap-

ath synthesis using a problem-space genetic algorithm, IEEE Transac-

tions on CAD of Integrated Circuits and Systems 14(8): 934-944.

Edwards, C. (2000). Vax all, folks, Electronics times. September 11, pp. 42-44.

Eldredge, J. G. and Hutchings, B. L. (1994). RRANN: A hardware imple-

mentaion of the backpropagation reconfigurable FPGAs, In: Proceed-

ings of the IEEE World Conference on Computational Intelligence, IEEE,

Orlando, Florida, June, pp. 77-80.

165

Estrin, G. (1960). Organization of computer systems-the fixed plus vari-

able structure computer, In: Proc. Western Joint, Computer Conference,

San Francisco, CA, USA, May 3-5, pp. 33-40.

French, P. C. and Taylor, R. W. (1993). A self-reconfigurable processor,
In: D. A. Buell and K. L. Pocek (editors), IEEE Workshop on FPGAs

for Custom Computing Machines, IEEE Comput. Soc. Press, Napa, CA,

USA, April 5-7, pp. 50-59.

GajjalaPurna, K. M. and Bhatia, D. (2000). Temporal partitioning and

scheduling data flow graphs for reconfigurable computers, IEEE

Transactions on Computers 48(6): 579-590.

Gajski, D. D., Dutt, N. D., Lu, A. C. and Lin, S. Y. (1992). High-level synthesis:
Introduction to Chip and System Design, Kluwer Academic Pubishers.

Gerez, S. H. (1999). Algorithms for VLSI Design Automation, John Wiley &

Sons.

Gokhale, M. and Marks, A. (1995). Automatic synthesis of paral-

lel programs targeted to dynamically reconfigurable logic arrays,

In: W. Moore and W. Luk (editors), 5th International Workshop on Field

Programmable Logic and Applications, LNCS 975, Springer-Verlag, Ox-

ford, UK, August 29-September 1, pp. 399-408.

Gokhale, M., Holmes, W., Kopser, A., Lucas, S., Minnich, R. and Sweely,

D. (1991). Building and using a highly parallel programmable logic

array, IEEE Computer 24(1): 81-89.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimisation, and Ma-

chine Learning, Addison-Wesley.

166

Govindarajan, S. and Vemuri, R. (2000). Tightly integrated design space ex-

ploration with spatial and temporal partitioning in SPARC, In: R. W.

Hartenstein and H. Grünbacher (editors), Field Programmable Logic and
Applications (FPL 2000 Proceedings), LNCS 1896, Springer-Verlag, Vil-

lach, Austria, August 27-30, pp. 7-18.

Guccione, S. A. (1995). Programming Fine-Grained Reconfigurable Architec-

tures, PhD thesis, University of Texas at Austin.

Hadley, J. D. and Hutchings, B. L. (1995). Design methodologies for par-

tially reconfigured systems, In: Proc. IEEE Symposium on FPGAs for

Custom Computing Machines, Napa, CA, USA, April 19 21, pp. 78-84.

Hauck, S., Li, Z. and Schwabe, E. (1998). Configuration compression for the

xilinx XC6200 FPGA, In: Proceedings of IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM'98), Napa, CA, USA, April 15-17,

pp. 138-146.

Heath, J. R., Kuekes, P. J., Snider, G. S. and Williams, R. S. (1998). A de-

fect tolerant computer architecture: Opportunities for nanotechnol-

ogy, Science 280: 1716-1721.

Hennessy, J. L. and Patterson, D. A. (1990). Computer architecture: a quanti-

tative approach, Morgan Kaufmann Publishers.

Heron, J. R and Woods, R. F. (1996). Architectural strategies for imple-

menting an image processing algorithm on XC6200 FPGA, In: R. W.

Hartenstein and M. Glesner (editors), Field-Programmable Logic: Smart

Applications, New Paradigms and Compilers (FPL '96 Proceedings), LNCS

1142, Springer-Verlag, pp. 317-326.

167

Holland, J. H. (1975). Adaptation in natural and artificial systems, The Univer-

sity of Michigan Press, Ann Arbor, Michigan, USA.

Jones, D. and Lewis, D. M. (1995). A time-multiplexed FPGA architecture
for logic emulation, In: Proceedings of IEEE Custom Integrated Circuits

Conference, pp. 495-498.

Kaul, M. and Vemuri, R. (1998). Optimal temporal partitioning and synthe-

sis for reconfigurable architectures, In: Design, Automation and Test in

Europe Conference, Paris, France, February 23-26.

Kean, T. (1988). Configurable Logic: A Dynamically Programmable Celluar Ar-

chitecture and its VLSI Implementation, PhD thesis, University of Edin-

burgh, Dept. of Computer Science.

Kean, T. (1999). FPL in the era of system level integration, In: FPL'99 Special

One-day Seminar, ISLI, The Alba Campus, Scotland, September 2.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimisation by sim-

ulated annealing, Science 220(4598): 671-680.

Lala, P. K. (2000). Self-Checking and Fault-Tolerant Digital Design, Morgan

Kaufmann Publishers.

Lautzenheiser, D. P. (1986). Using dynamic reconfigurable logic in a

XC2064 logic cell array, Electro'86 and Mini/Micro Northeast Conference

pp. 26/2/1-10.

Ling, X. -P. and Amano, H. (1993a). Performance evaluation of WASMII: a

data driven computer on a virtual hardware, In: Proceedings 5th Inter-

nalional PARLE Conference, LNCS 694, pp. 610-621.

168

Ling, X. -P. and Amano, H. (1993b). WASMII: A data driven computer on

a virtual hardware, In: D. A. Buell and K. L. Pocek (editors), IEEE

Workshop on FPGAs for Custom Computing Machines, IEEE Comput. Soc.

Press, Napa, CA, USA, April 5-7, pp. 33-42.

Liu, H. and Wong, D. F. (1999). Circuit partitioning for dynamically re-

configurable FPGAs, In: International Symposium on Field Programmable

Gate Arrays, Monterrey, CA, February, pp. 187-194.

Luk, W. et al. (1997a). Parametrised libraries for Xilinx 6200 FPGAs, Prelimi-

nary documentation, Dept of Computing, Imperial College, 180 Queen's

Gate, London SW7 2BZ, United Kingdom. Version 2.1.

Luk, W., Guo, S., Shirazi, N. and Zhuang, N. (1996). A fremework for

developing parametrised FPGA libraries, In: R. W. Hartenstein and

M. Glesner (editors), Field-Programmable Logic: Smart Applications, New

Paradigms and Compilers (FPL '96 Proceedings), LNCS 1142, Springer-

Verlag, pp. 24-33.

Luk, W., Shirazi, N. and Cheung, P. Y. (19976). Compilation tools for run-

time reconfigurable designs, In: Proc. IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM'97), Napa, CA, USA, April 16-18,

pp. 56-65.

Luk, W., Shirazi, N., Guo, S. R. and Cheung, P. Y. K. (1997c). Pipeline

morphing and virtual pipelines, In: W. Luk, P. Y. K. Cheung and

M. Glesner (editors), Field Programmable Logic and Applications (FPL '97

Proceedings), LNCS 1304, Springer-Verlag, pp. 111-120.

169

Lysaght, P. and Dunlop, J. (1994). Dynamic reconfiguration of FPGAs,

In: W. R. Moore and W. Luk (editors), More FPGAs, Abingdon EE&CS
Books, pp. 82-94.

Lysaght, P. and Stockwood, J. (1996). A simulation tool for dynamically

reconfigurable field programmable gate arrays, IEEE Transactions on
VLSI Systems 4(3): 381-390.

Lysaght, P., Stockwood, J., Law, J. and Girma, D. (1994). Artificial neu-

ral network implementation on a fine-grained FPGA, In: 4th Interna-

tional Workshop on Field Programmable Logic and Applications, LNCS 849,

Springer-Verlag, Prague, Czech Republic, September 7-9, pp. 421-431.

Mange, D., Durand, S., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P.

and Piguet, C. (1995). A new self-reproducing automaton based on a

multi-cellular organization, Technical Report No. 95/114, Logic Synthe-

sis Laboratory, Dept of Computer Science, Swiss Federal Institute of

Technology, Lausanne, Switzerland.

McCaskill, J. and Wagler, P. (2000). From reconfigurability to evolu-

tion in construction systems-spanning electronic, microfluidic and

biomolecular domains, In: R. W. Hartenstein and H. Grünbacher (ed-

itors), Field Programmable Logic and Applications (FPL 2000 Proceedings),

LNCS 1896, Springer-Verlag, Villach, Austria, August 27-30.

McFarland, M. C., Parker, A. and Camposano, R. (1990). The high-level

synthesis of digital systems, IEEE Proceedings pp. 301-318.

McGregor, G. and Lysaght, P. (1999). Self controlling dynamic reconfigura-

tion: A case study, In: P. Lysaght, J. Irvine and R. Hartenstein (editors),

170

Field-Programmable Logic and Applications, LNCS 1673, Springer-Verlag,

Glasgow, UK, August 30-September 1, pp. 144-154.

Minninck, R. (1964). Cutpoint cellular logic, IEEE Transactions on Electronic

Computers EC-13: 685-698.

Morris, R. and Nowrouzian, B. (1996). A novel technique for pipelined

scheduling and allocation of data-flow graphs based on genetic algo-

rithms, In: T. J. Malkinson (editor), 1996 Canadian Conference on Elec-

trical and Computer Engineering. Conference Proceedings. Theme: Glimpse

into the 21st Century (Cat. No. 96TH8157), Vol. 1, Calgary, Alta., Canada,

May 26-29, pp. 429-432.

Murgai, R., Brayton, R. K. and Sangiovanni-Vincentelli, A. (1995). Logic

Synthesis for Field-Programmable Gate Arrays, Kluwer Academic Pu-

bishers, Boston.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Opti-

mization, Chichester & Wiley.

Ohmori, K. (1995). High-level synthesis using genetic algorithm,

In: 1995 IEEE International Conference on Evolutionary Computation

(Cat. No. 95TH8099), Perth, WA, Australia, November 29-December 1,

pp. 209-213.

Oldfield, J. V. and Dorf, R. C. (1995). Field Programmable Gate Arrays: Recon-

figurable Logic for Rapid Prototyping and Implementation of Digital Sys-

tems, John Wiley and Sons.

Oliveira, A., Lau, N. and Sklyarov, V. (1998). Synthesis of VHDL code from

the hierarchical specification of control circuits for dynamically recon-

171

figurable FPGAs, In: Proceedings of VUIF Fall '98, Orlando, Florida, Oc-

tober 26-28.

Paulin, P. G., Knight, J. P. and Girczyc, E. F. (1986). Hal: A multi-paradigm

approach to automatic data path synthesis, In: Proc. 23rd IEEE Design

Automation Conference, Las Vegas, NV, USA, July, pp. 263-270.

Robinson, D. and Lysaght, P. (1999). Modelling and synthesis of configu-

ration controllers for dynamically reconfigurable logic systems using

the dcs cad framework, In: P. Lysaght, J. Irvine and R. Hartenstein (ed-

itors), Field-Programmable Logic and Applications, LNCS 1673, Springer-

Verlag, Glasgow, UK, August 30-September 1, pp. 41-50.

Robinson, D., McGregor, G. and Lysaght, P. (1998). New CAD frame-

work extends simulation of dynamically reconfigurable logic, In: R. W.

Hartenstein and A. Keevallik (editors), Field Programmable Logic and

Applications (FPL '98 Proceedings), LNCS 1482, Springer-Verlag, pp. 1-

8.

Sait, S. M., All, S. and Benten, M. S. T. (1996). Scheduling and allocation in

high level synthesis using stochastic techniques, Microelectronics jour-

nal 27(8): 693-712.

Sels, P. (1996). Scheduling for dynamically reconfigurable FPGAs, Master's the-

sis, Keble College, Oxford University.

Sherwani, N. (1995). Algorithms for VLSI Physical Design Automation, 2nd

edn, Kluwer Academic Pubishers.

Shirazi, N., Luk, W. and Cheung, P. Y. (1998). Automating production of

run-time reconfigurable designs, In: Proceedings of 6th IEEE Symposium

172

on Field-Programmable Custom Computing Machines (FCCM'98), Napa,
CA (USA), April 14-17, pp. 147-156.

Sidhu, R. P. S., Mei, A. and Prasanna, V. K. (1999). Genetic programming us-
ing self-reconfigurable FPGAs, In: P. Lysaght, J. Irvine and R. Harten-

stein (editors), Field-Programmable Logic and Applications, LNCS 1673,

Springer-Verlag, Glasgow, UK, August 30-September 1, pp. 301-312.

Silberschatz, A. and Galvin, P. B. (1998). Operating System Concepts, 5th edn,
Addison-Wesley Longman.

Skylarov, V. and de Brito Ferrari, A. (1998). Design and implementation of

control circuits based on dynamically reconfigurable FPGA, In: Proc. of
IEEE Internatinal Conference on Electronics, Circuits and Systems, Lisbon.

Stanford, P. and Mancuso, P. (editors) (1990). EDIF Electronic Design Inter-

change Format Version 200,2nd edn, Electronic Industries Association.

Takayama, A., Shibata, Y., Iwai, K. and Amano, H. (2000). Dataflow par-

titioning and scheduling algorithms for WASMII, a virtual hardware,

In: R. W. Hartenstein and H. Grünbacher (editors), Field-Programmable

Logic and Applications (FPL 2000 Proceedings), LNCS 1896, Springer-

Verlag, Villach, Austria, August 27-30, pp. 685-694.

Tangen, U. (2000). Self-organisation in micro-configurable hardware,

In: M. A. Bedau et al. (editors), Artificial Life VII: Proceedings of the 7th

International Conference.

Thompson, A. (1996). An evolved circuit, intrinsic in silicon, entwined with

physics, In: Proc. 1st Int. Conf. on Evolvable Systems (ICES 96).

Trimberger, S., Carberry, D., Johnson, A. and Wong, J. (1997). A time-

multiplexed FPGA, In: Proc. IEEE Symposium on FPGAs for Custom

173

Computing Machines (FCCM'97), Napa, CA, USA, April 16-18, pp. 22-
28.

Trimberger, S. M. (1994). Field-Programmable Gate Array Technology, Kluwer

Academic Publishers.

Vasilko, M. (1999). DYNASTY: A temporal floorplanning based
CAD framework for dynamically reconfigurable logic systems,
In: P. Lysaght, J. Irvine and R. Hartenstein (editors), Field-Programmable

Logic and Applications (FPL'99 Proceedings), LNCS 1673, Springer-

Verlag, pp. 124-133.

Vasilko, M. (2000). Design visualisation for dynamically reconfigurable

systems, In: R. W. Hartenstein and H. Grünbacher (editors), Field-

Programmable Logic and Applications (FPL 2000 Proceedings), LNCS 1896,

Springer-Verlag, Villach, Austria, August 27-30, pp. 131-140.

Vasilko, M. and Ait-Boudaoud, D. (1996a). Architectural synthesis tech-

niques for dynamically reconfigurable logic, In: R. W. Hartenstein and

M. Glesner (editors), Field-Programmable Logic: Smart Applications, New

Paradigms and Compilers (FPL '96 Proceedings), LNCS 1142, Springer-

Verlag, pp. 290-296.

Vasilko, M. and Ait-Boudaoud, D. (1996b). Optically reconfigurable

FPGAs: Is this a future trend ?, In: R. W. Hartenstein and M. Glesner

(editors), Field-Programmable Logic: Smart Applications, New Paradigms

and Compilers (FPL '96 Proceedings), LNCS 1142, Springer-Verlag,

pp. 270-279.

Vasilko, M. and Cabanis, D. (1999). A technique for modelling dynamic re-

configuration with improved simulation accuracy, IEICE Transactions

174

on Fundamentals of Electronics, Communications and Computer Science

E82-A(11): 2465-2474.

Vasilko, M., Gibson, D., Long, D. and Holloway, S. (1999). Towards a consis-

tent design methodology for run-time reconfigurable systems, In: IEE

Colloquium on Reconfigurable Systems, Digest No. 99/061, Glasgow, Scot-

land, March 10, pp. 5/ 1-4.

von Neumann, J. (1966). Theory of Self-Reproducing Automata, University of

Illinois Press.

Wall, M. (1996). GAlib: A C++ Library of Generic Algorithm Components, ver-

sion 2.4, MIT, available from http: //lancet. mit. edu/ga/, Au-

gust.

Wirthlin, M. J. and Hutchings, B. L. (1995). A dynamic instruction set com-

puter, In: Proceedings IEEE Symposium on FPGAs for Custom Computing

Machines, Napa Valley, CA, USA, April 19-21, pp. 99-107.

Xilinx (1994). The ProgrammableLogic Data Book, Xilinx, Inc., 2100 Logic

Drive, San Jose, CA 95124.

Xilinx (1997a). XACTstep Series 6000 User Guide, Xilinx, Inc.

Xilinx (1997b). XC6200 Field Programmable Gate Arrays, Xilinx, Inc., April 24

(Version 1.10). Product Description.

Xilinx (1998). Parametrised Library for XC6200, Xilinx, Inc., January. Velab

documentation.

Xilinx (2000a). Virtex Series Configuration Architecture User Guide, Xilinx,

Inc., September 27. XAPP151 (vl. 5).

175

Xilinx (2000b). VirtexT M 2.5 V Field Programmable Gate Arrays, Xilinx, Inc.,

September 19. DS003 (v2.3).

Zhang, X. j., Ng, K. -w. and Luk, W. (2000). A combined approach to

high-level synthesis for dynamically reconfigurable systems, In: R. W.

Hartenstein and H. Grünbacher (editors), Field Programmable Logic and

Applications (FPL 2000 Proceedings), LNCS 1896, Springer-Verlag, Vil-

lach, Austria, August 27-30, pp. 361-370.

Zhang, X. -j., Ng, K. -w. and Young, G. H. (1998). High-level synthesis using

genetic algorithms for dynamically reconfigurable FPGAs (Abstract),

In: Proceedings of the 1998 ACM/SIGDA 6th International Symposium on

Field Programmable Gate Arrays (FPGA'98), ACM, Monterey, CA (USA),

February 22-25, p. 258.

176

