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Abstract 

Virtual screening in drug discovery involves processing large datasets 

containing unknown molecules in order to find the ones that are likely to have the 

desired effects on a biological target, typically a protein receptor or an enzyme. 

Molecules are thereby classified into active or non-active in relation to the target. 

Misclassification of molecules in cases such as drug discovery and medical diagnosis 

is costly, both in time and finances. In the process of discovering a drug, it is mainly 

the inactive molecules classified as active towards the biological target i.e. false 

positives that cause a delay in the progress and high late-stage attrition. However, 

despite the pool of techniques available, the selection of the suitable approach in 

each situation is still a major challenge.  

This PhD thesis is designed to develop a pioneering framework which enables 

the analysis of the virtual screening of chemical compounds datasets in a wide range 

of settings in a unified fashion. The proposed method provides a better 

understanding of the dynamics of innovatively combining data processing and 

classification methods in order to screen massive, potentially high dimensional and 

overly imbalanced datasets more efficiently. 
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1. Introduction 

Virtual screening in drug discovery involves screening datasets containing 

unknown molecules in order to find the ones that are likely to have the desired 

effects on a biological target. The molecules are thereby classified into active or non-

active compared to the target. Misclassification of molecules in cases such as drug 

discovery and medical diagnosis is costly, both in time and finances. In the process 

of discovering a drug, it is mainly the inactive molecules classified as active towards 

the biological target i.e. false positives that cause a delay in the progress and high 

late-stage attrition. 

1.1. Background 

Chemoinformatics (Cheminformatics) as defined by Frank Brown (1998) is 

the mixing of resources in order to transform data into information and information 

into knowledge in order to make faster and better decisions in the field of drug 

identification and optimisation. In short, computational methods are used to process 

chemical data in particular the chemical data structure. Some of the techniques used 

in Chemoinformatics such as computational chemistry and QSAR (Quantitative 

Structure-Activity Relationship) are very well-known and –established and have 

been practiced for years in the industry and laboratories. 

Drug discovery is the process by which new medicinal candidates are 

discovered. To achieve this, compounds which are likely to have wanted effects on a 

biological target (disease) are identified and isolated. High-Throughput screening 

(HTS) is used to assess the binding ability –activity of compounds against the target. 

This is also known as empirical or physical screening. HTS screens thousands of 

compounds in order to find new candidates in a fast and accurate manner. There are 

two stages of screenings: primary and secondary (confirmatory). The biological 

relevance of the compounds identified as hits from the primary stage are assessed. 

These compounds are then screened for a second time. Confirmed hits from this 

stage are called leads which will be further optimised to become candidates for 

clinical tests. Advances in molecular biology and the use of combinatorial chemistry 

have resulted in an increase in the number of biological targets and compounds in 

libraries. HTS is characterised by its screening capacity which is about 10000 – 
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100000 compounds per day. The significant increase in the number of available 

compounds as well as biological targets requires scientists to reduce the size of HTS 

assays (Mayr & Bojanic 2009). Considering the fact that HTS is a very costly 

process, alternative techniques such as virtual screening could be utilised in order to 

filter compounds which are selected for screening. 

Virtual screening or biophysical screening is the in-silico screening of 

compounds. It uses computational methods to score, rank or filter a set of compound 

structures. Virtual screening can be used to determine which compounds to screen 

against a given target. It has been acknowledged that in order to identify desirable 

compounds from a library there needs to be an increase in the quality of the library 

rather than the quantity (Bajorath 2002). This helps carry out fewer but smarter 

experiments. Virtual screening assists the detection of new bioactive compounds by 

reducing the number of compounds that are to be screened based on scoring criteria. 

This reduction is achieved by eliminating the compounds which do not show activity 

towards a given target.  

HTS has become an important source for identifying new compounds for 

optimisation in medium to large pharmaceuticals. It has proven to be a useful 

technology for providing new hits for the drug discovery process. However not all 

hits identified by HTS are appropriate leads for further medicinal optimisations. In 

fact the overall HTS success rate currently is estimated at 45-55% (S. Fox et al. 

2006; Keserü & Makara 2009). HTS suffers from two types if errors: type 1 and type 

2 (Martis et al. 2011). Type 1 errors are false positives. These are compounds which 

are regarded as actives but later turn out to be non-active. Type 2 errors are false 

negatives. These are active compounds which are regarded as non-actives in the 

screening process. One of the main challenges in HTS is to differentiate between 

compounds which are genuinely active towards a target and false positive 

compounds. In biological terms a compound that is genuinely active against a target 

has a high tendency to form a non-covalent bond with the target which is reversible 

(Thorne et al. 2010). All other compounds that form bindings with the target but do 

not possess the characteristics of the genuine interaction are false positives. These 

compounds are generally active in an assay, but their activity is target-independent. 

They can affect by forming aggregates, they can be protein-active or interfere with 

assay signalling. This all leads to them being considered as active and therefore the 
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secondary screenings normally include a great deal of false positive compounds. 

Manually filtering compounds using the knowledge of chemists is a good way of 

reducing false positives but as mentioned in (Sink et al. 2010) an analysis of such a 

method showed inconsistency in the compounds which were to be taken out.  

False positive compounds escape various screenings undetected. They are 

one of reasons there is high late-stage attrition in the drug discovery process. These 

are compounds which fail to qualify as being suitable lead compounds for drug 

optimisation. The costs of the process increase as we get to the later stages of it, as 

seen in Figure 1. 

 

Figure 1: Compound attrition and cost increase of drug discovery process by time (Bleicher et al. 

2003, p.371) 

It can also be seen in Figure 1 that as we get to the later stages of the process the 

number of compounds decrease (the number of arrows). There are fewer compounds 

to work with and the processes become more expensive. For example in the 

pharmaceutical industry, the main pre-clinical expense is the lead optimisation 

process (Jorgensen 2012). It makes sense to have more suitable compounds 

(opportunities) at hand in order to increase the chances of discovering better leads. 

1.2. Project description and goals 

The main objective of this project is to explore and investigate the application 

and the effects of using various fingerprinting methods combined with the Synthetic 

Minority Oversampling technique on the classification of highly imbalanced, high-

dimensional datasets. 

This research tends to examine different methods of manipulating big 

imbalanced datasets that have not been cleared of noise, and to see how they can 

affect the various classification evaluation metrics. In other words we look at how 

the false positive numbers in specific change. 
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The main goal of this project is to examine the different techniques by which 

big and highly imbalanced datasets that have not been cleared of noise, can be 

manipulated in order to see the effect on classification evaluation metrics. 

In order to achieve the project goal the following objectives are pursued: 

 Critically investigating the various methods to classify big imbalanced datasets 

 Generating fingerprints from raw datasets  

 Using Synthetic Minority Oversampling TEchnique to oversample training and / 

or test sets 

 Classifying the various resulting oversampled datasets and comparing the 

metrics 

 Identification and recommendation of appropriate techniques 

1.3. Methodology and organisation of thesis 

In order to better understand this thesis a general knowledge of the drug 

discovery process and how Chemoinformatics has influenced it, is necessary to 

explore the basics behind the science of Chemoinformatics. This introductory 

information will be expanded in Chapter 2, accompanied by a literature review and 

discussion of the important contributions in the areas. 

Chapter 3 will provide the reader with information about the datasets; their 

origin, size and class distribution. Some detail about how the datasets were collected 

and transformed in the format to be used for this research will also be provided. 

Chapter 4 discusses the methods that were used in this research for gathering 

the results. 

Chapter 5 will display the results from the datasets used. In this chapter a brief 

description of the datasets is given followed by a discussion of the results for each. 

This is followed by Chapter 6 where an overall and in depth discussion of the 

results is given. 

Finally Chapter 7 will provide the reader with the conclusion of this thesis 

and an overview of the future work. 
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1.4. Publication 

 List of publications:  

 

 Rafati-Afshar, A.A. and Bouchachia, A., 2013, October. An Empirical 

Investigation of Virtual Screening. In 2013 IEEE International Conference 
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2. Representation and Visualization of Chemical Structures 

This chapter consist of a detailed critical review of the Data Visualization and 

Chemical Structures Analysis techniques. The first two sections discuss visualization 

and searching aspects in large chemical structures datasets, a necessary pre-

processing step for the novel approach developed in this PhD. Since this is not a 

primary aspect in this dissertation, the description will be succinct. Hence, the focus 

will be put next on High-throughput and virtual screening methodologies, which is 

the main topic addressed of this project. The last two sections discuss the two major 

challenges involved in preforming an effective screening, the strong class-imbalance 

and the difficulties of handling big datasets. 

2.1. Visualizing of Chemical Structures 

The first step before analysing large datasets of chemical structures is the 

efficient database design and display. In a nutshell, there are several means by which 

a chemical structure can be effectively stored and displayed; drawing the structure 

using specialised programs such as ChemDraw (Ultra 2001) or scanning the 

structure as an image or in text format. In Chemoinformatics chemical compounds 

need to be stored in databases for search and retrieval based on chemical structure 

(Leach & Gillet 2007).  

There are various ways of representing the chemical compound structures. 

Some of the more popular ones have been explained below. The popular type of 

representation is the two-dimensional chemical structure (Brown 2009). This 

representation is shown in Figure 3 in a basic form and in using Caffeine as the 

example compound, where the lines that connect Nitrogen and Carbon atoms are 

single bonds and the double lines connecting Carbon and Oxygen atoms are double 

bonds (Carbon atoms are not explicitly shown in Figure 3 for simplicity). 

Graph  

A graph is an abstract structure that has nodes connected by edges (please see 

Figure 2). It shows how the edges and nodes in a molecule are connected. Molecular 

structures are normally stored in a database using Molecular Graphs; a type of graph 
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where the nodes are the atoms and the edges are the bonds (Leach & Gillet 2007; 

Brown 2009). 

Figure 2: A graph with nodes (a, b and c) and edges (lines that connect the nodes ab, ac and bc) 

One important use of the graph theory in Chemoinformatics is its application 

in determining structural similarity between a set of molecules (Basak et al. 1988). A 

requirement for two graphs to be the same or isomorphs is for both to have the same 

number of nodes and edges and for every one of them to have a corresponding match 

in the other graph (Leach & Gillet 2007). 

Molecular graphs such as the example shown form the basis for molecular 

structure demonstration. The main reason for using this representation is simply that 

molecular graphs are easy to read and understand by chemists, but they are not trivial 

to map into databases due to the intricate nonlinearity and complexity of the graphs 

involved (Burden 1998; Kearnes et al. 2016); and the mapping into a database 

requires a nontrivial pre-processing (Polanski 2009); as will be further discussed 

next. 

 

Figure 3: A Hydrogen-depleted molecular graph of Caffeine (Brown, 2009) 

 

 

 

a 

c 

b 
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Connection Table 

A connection table is a scheme which enables the efficient coding of molecular 

graphs. Connection tables record the data in a tabular form. This allows for a 

decrease in the amount of data with the increase in the size of the molecule 

(Polanski, 2009). This scheme was developed with the purpose of storing and 

transferring chemical structure information at the Molecular Design Limited labs 

(now called Symyx and merged with Accelrys), details of which can be found in 

Dalby et al. (1992) and in the specifications document produced by Symyx at 

www.symyx.com (Symyx, 2010). A very simplified example of a connection table 

together with an example molecule can be seen in Figure 4.  

 

Figure 4: Connection table example with an example molecule 

In the connection table shown in Figure 4, each rectangle represents a “block” 

as referred to in the descriptions. The header block contains information about the 

molecule name, user, programme used and any other comments. The count block (in 

Figure 4) includes information about the number of atoms and the number of bonds 

(any of several forces by which atoms are bound in a molecule) available in the 

molecule. In the atom block, there is a line of information per atom. This block 

contains the node information. If we consider the first line of the atom block in 

Figure 4, the first three real numbers indicate the x, y and z spatial coordinates of the 

Count Block: # of atoms 

and bonds respectively 

Bond Block 

Atom Block 

Header 

Block 
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atom. The capital letter shows the atom type (i.e. C for Carbon and O for Oxygen). 

This block can also contain information about the atom-charge, stereochemistry (the 

three-dimensional arrangement of atoms and molecules and the effect it has on 

chemical reactions), associated hydrogens, etc., all related to the specified atom. The 

bond block as shown in Figure 4 contains information about the different bond types 

available between the atoms (the edges) in the molecule. The information in this 

block is also organised in a line by line manner i.e. if we look at the first line, the 

first two columns are the atom numbers connected by a bond in the molecule; and 

the third column is the type of the bond between the two atoms (1 = single, 2 = 

double). So as an example in Figure 4, the first line of the bond block has the 

numbers 1, 2 and 1 in it. We could refer to the picture of the molecule next to the 

connection table and see that atoms 1 and 2 are indeed connected by a single bond. 

Respectively one can see that in the same block, the third line contains the numbers 

5, 6 and 2 which mean atoms 5 and 6 are connected in the molecule through a double 

bond. 

Linear Notation 

Linear notations are alternative ways of representing and communicating 

molecular graphs. Here alphanumeric characters are used to encode the molecular 

structure (Leach & Gillet 2007). This notation allows the molecule to be displayed in 

the form of a string similar to that of line formulae. A line formula is made up of 

atoms that are joined by lines representing single or multiple bonds without any 

indication of the spatial direction of the bonds (Polanski 2009). Please see Figure 5. 

Line notation became popular because it represents the molecular structure by a 

linear string of symbols which is quite similar to natural language (Weininger 1988). 

 

 

 

Figure 5: Example of a line formula for the molecule shown in Figure 4.  

Weininger (1988) mentions in his influential review” SMILES, a Chemical 

Language and Information System” that in the early days processing and storing 

chemical information was dependent on the description of the chemical structure. 

Many systems were therefore developed in order to generate unique machine 
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descriptions amongst which were application of graph theory to chemical notation 

(Balaban 1985) and chemical substructure search systems (Stobaugh 1985). As 

mentioned a above, over the years research in molecular representation has switched 

towards encoding molecular structures as a simple line notation, mainly for data 

storage capacity which is particularly favourable in these compressed 

representations. Linear notations are indeed more compact than connection tables 

thus they take less space and are ideal for storing and sharing large molecules 

(Weininger 1988; Brown 2009). 

The most widespread linear notation currently in use is SMILES (Simplified 

Molecular Input Entry System). It is simple, easy to use and understand. Only a few 

rules are needed in order to write most SMILES strings (Leach & Gillet, 2007; 

Toropov & Benfenati, 2007; Brown, 2009; Polanski, 2009; Sammadar et al. 2015). 

This encoding system can be found in Appendix A. An example of SMILES notation 

for the caffeine molecule can be seen in Figure 6a. 

Connection tables and SMILES notations can be constructed in many different 

ways. For example with SMILES, one can start writing the alphanumeric string 

starting at any atom and follow a different sequence through the molecule. Same 

issue can arise with a connection table as one can specifically select to number the 

atoms in a molecule different to another one (Leach & Gillet, 2007; Brown, 2009).  

Therefore it is not possible to distinguish whether two SMILES notations or two 

connection tables are similar. To solve this problem, the Canonical (standardised) 

representation was introduced so that the atoms in a molecular graph would be 

ordered in a unique manner. Such representations manifest themselves in code 

systems such as IUPAC (International Union of Pure and Applied Chemistry) and 

InChi (International Chemical Identifier) which can uniquely encode a molecule in 

very compact form (Brown 2009; Fuchs et al. 2015; Heller et al. 2015).  

 

Figure 6: SMILES, IUAPC and InCHi representations for Caffeine (Source: Brown 2009) 
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2.2. Searching for Compounds in Databases 

A significant aspect to consider in Chemoinformatics is the design of 

Databases, which is necessarily high specific of this setting due to the complexity of 

the information stored. Databases that hold information about chemical structures 

tend to be specialised due to the nature of the methods which are used to store and 

manipulate the chemical structures. One can query a database containing chemical 

structures in order to find similar molecules. Brown (2009) defines this issue as “the 

rationalisation of a large number of compounds so that only the desirable remains”. 

2.2.1. Structure and Sub-Structure Searching 

Molecules can be sought in a database based on their structure. For this to 

happen, the user query needs to be translated into a standard representation (relevant 

to the database). If the database is arranged in a way so that Hash-Keys correspond 

to the locations of structures, then information retrieval can happen almost 

immediately by comparing the key produced from the query to the database 

structure-key. Sometimes however there is a slight chance that one hash-key can 

match to more than one structure. This phenomenon will be explained further on in 

the literature when describing hash-key fingerprints. 

An alternative way to search for structures which also decreases the search 

time is looking for specific sub-structure(s) in the molecules in a database. A 

chemical sub-structure is a part of a molecule; sub-structure search involves 

checking for the presence of a certain partial structure in the whole molecule (Willet 

2009). If a query is made for a sub-structure in a set of molecules, then that specific 

sub-structure needs to appear completely in the matching molecule (Schomburg et al. 

2013). The molecules in the database being searched either match the query or not 

(Hood et al. 2015). This action removes the molecules that do not contain that sub-

structure. Afterwards the more time-consuming sub-structure search algorithms (i.e. 

graph isomorphism) can be applied to the remaining molecules to see which of them 

truly match the query (Leach & Gillet 2007; Brown 2009). A chemical sub-structure 

must not be confused with a chemical pattern. A chemical pattern can be a generic or 

highly specific description of a chemical function. Chemical functions are used in 
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many contexts, mainly to comprehensively describe a large collection of sub-

structures (Schomburg et al. 2013). 

Structure and sub-structure searching involve the design of a precise query and 

are useful for selecting compounds that have not yet been screened from a database 

but they have some limitations:  

• The formulation of the query can be complex for the non-expert; one is required 

to have enough knowledge about a structure or sub-structure in order to be able 

to form a meaningful query (Lemfack et al. 2014). This can become a challenge 

when only a few active compounds are known. 

• When performing this kind of search, as mentioned before, the molecules either 

match the query or they do not. As a result the database is effectively partitioned 

into two sections (matched items and non-matched items), but there exists no 

relative ranking of the compounds in comparison to the structure in question 

(Leach & Gillet 2007). In other words the output is not ranked in any way other 

than by the date the database was accessed (Willet 2009). 

• User has no control over the volume of the output. This means that if the query 

is too general there can be a large number of hits, and if the query is too specific, 

the output could be very small and limited (Willet et al. 1998). 

In order to overcome these drawbacks, an alternative method was developed 

called “Similarity Searching” (Downs & Willet 1996) which allows for a more 

flexible molecular database search; as discussed in the next sub-section. Similarity 

searching suffers from none of the drawbacks mentioned for sub-structure searching. 

2.2.2. Similarity Searching 

The concept of similarity plays an important role in Chemoinformatics 

(Maggiora & Shanmugasundaram 2011; Willet 2014). Similarity (fuzzy) searching is 

an alternative and complimentary to exact (structure and sub-structure) searching; it 

retrieves the exact matches to the query object and other similar ones (Monev 2004). 

Here a query is used to search a database for compounds that are most similar to it 

(Leach & Gillet 2007). A ranked list is then generated according to the similarity to 

the query compound. This allows the results to be ordered based on the likelihood 

that they would produce the same effects as the reference compound (Brown 2009). 
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Similarity searching is used within the family of techniques called virtual screening 

which we shall discuss in the next section. 

Similarity searching is based on the Similarity Property Principle first 

enunciated by Johnson and Maggiora (1990), which assumes that molecules which 

are structurally similar to the query molecule have similar properties i.e. biological 

activity (Monev 2004; Brown 2009). Also according to the principle, a similar 

molecule which is higher in the ranking is more likely to be active than another 

molecule at a lower level (Willett 2006). However in some cases structurally similar 

molecules have shown similar biological activities and some dissimilar molecules 

have shown similar biological activity (Medina-Franco 2012; Rivera-Borroto 2016). 

But this does not invalidate its use in drug discovery. After all if it were not for some 

relationship between chemical similarity and biological activity of two molecules, it 

would be really difficult to formulate approaches for drug discovery which take into 

account the structures of molecules (Willet 2009). 

Assessing the extent of similarity is a pure subjective matter (Leach & Gillet 

2007); there are thus no “hard and fast” rules. The methods used to measure the 

similarity between two molecules require three components (Willet 2009; Bajorath 

2011; Willet 2014): 

1) The molecular representation or descriptor: For characterising the two molecules 

being compared. 

2) The weighting scheme: Used to assign the relative importance of the different 

parts of the representation.  

3) The similarity coefficient: This component is used to measure the similarity 

between two molecules based on their appropriately weighted representations. 

These components control the effectiveness of the search. A more detailed 

explanation for the components mentioned is provided next. 

2.2.3. Molecular Representation 

Molecules contain many features (properties). On their own, the individual 

features are not particularly informative. However a combination of them will 

provide a better and richer characterisation of the molecule being studied. Molecular 

descriptors are descriptions of molecules that aim to characterise the most noticeable 

aspects of a molecule (Leach & Gillet 2007; Brown 2009). They are the final results 
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of logic and mathematical procedures which transform the chemical information 

encoded in the structure of a molecule, into useful numbers (Todeschini & Consonni 

2009; Yap 2011).  

Representation (describing) of molecules means converting molecules into a 

series of bits that can be easily read and interpreted by computers. Todeschini & 

Consonni (2009) define it as a way that a molecule is symbolically represented using 

specific formal procedures conventional rules. Under the concept of similarity, this 

involves a series of comparisons between a structure or sub-structure query (the 

reference molecule) and an unknown molecule from a database. Molecular 

descriptors are of high importance in Chemoinformatics since generating them 

allows chemical structure information to be statistically analysed (Brown 2009; Yap 

2011). There are different techniques for representing chemical molecules. Many 

authors (Leach & Gillet 2007; Todeschini & Consonni 2009; Bajorath 2011; Warr 

2011; Willet 2014) have classified these techniques into three main groups: 

1) Whole molecule descriptors (1D) 

2) Descriptors that can be calculated from 2D representations of the molecule 

3) Descriptors that are calculated from 3D representations of the molecule 

2.2.4. 1D Molecular Descriptors 

Whole molecule descriptors are measured or computed numbers which 

describe bulk molecular properties such as the molecular weight or the number of 

rotatable bonds. 1D descriptors (on their own) do not allow for meaningful 

comparison between different molecules. Therefore a molecule is normally 

represented by many such descriptors (Bajorath 2011; Willet 2014).  

2.2.5. 2D Molecular Descriptors 

2D molecular descriptors are calculated from a chemical structure diagram 

called the connection table (explained earlier on) which details all of the atoms and 

bonds in a molecule. The most important 2D molecular descriptors are topological 

indices and fragment sub-structures. A topological index is a single number that 

characterises a structure according to its size and shape (Bajorath 2011). Sub-

structure based descriptors characterise a molecule by the sub-structural features it 

has, either with the help of the molecules 2D chemical graph or by its fingerprints.  
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Currently different 2D molecular descriptors exist, each from distinct 

descriptor classes. Brown (2009) categorises molecular descriptors into two main 

classes, Information-based and Knowledge-based descriptors. Information-based 

descriptors describe what we have. These types of descriptors tend to capture as 

much as possible information within a molecular representation. On the other hand 

knowledge-based descriptors describe what we expect. The descriptors that calculate 

molecular properties based on existing data or models based on such data are of the 

knowledge-based type.  

When searching for chemical molecules of interest (to the user) in a large 

chemical database, the use of sub-structure searching is often time-consuming and 

slow because it is a nondeterministic polynomial time problem. For this reason, most 

chemical databases use a widely used two-stage approach sub-structure search in 

order to save time and quickly filter out non-matching ones. The aim is to discard 

and eliminate most of the molecules that cannot possibly match the sought sub-

structure. The molecules which remain are then subjected to the more sluggish sub-

structure searching algorithms (Leach & Gillet 2007; Brown 2009). This elimination 

process is assisted by the use of molecule screens. Molecule screens are binary string 

representation of the molecules and the query sub-structure and they are called bit-

strings (Leach & Gillet 2007). Bit-strings are sequences of zero(s) and one(s); a one 

shows the presence of a structural feature and a zero shows its absence. The great 

advantage about using bit-strings is that they are the natural currency of computers 

and therefore can be very quickly manipulated and compared. If a feature is present 

in the query sub-structure (bit is set to 1) and the corresponding bit in the molecule is 

set to zero (feature is absent) then from the bit-string comparison it is clear that the 

molecule does not contain the sub-structure in question and cannot be selected. The 

opposite does not hold as there can be features in the molecule that are not present in 

the query sub-structure. These bit-strings are vector-based representations which can 

also be referred to as fingerprints.  

Most binary screening methods are performed using one of the following two 

approaches: 

1. Using a Structural-Key fingerprint 

2. Using a Hash-Key fingerprint 
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2.2.6. Structure-Key Fingerprints (Dictionary-Based) 

The structure-key (also known as dictionary-based) fingerprint utilises a 

dictionary of pre-defined sub-structures, which can be identified through chemists’ 

intuition or from empirical information mined from drug-like molecules databases 

(Brown et al. 2005), in order to generate bit-strings where each bit corresponds to the 

presence of certain features in the molecule that are present in the dictionary. This 

makes interpreting the structure-key fingerprints easier (Brown, 2009; Willet 2011; 

Willet 2014). Structural keys were the first kind of screening technique which were 

applied to chemical databases (DAYLIGHT Chemical Information Systems 2008).  

When a molecule is added to a database, it is checked against each sub-

structure in the dictionary. The bit-string for that particular molecule has all its bits 

initially set to zero. If a sub-structure in the dictionary is matched to a part in the 

molecule then that bit is set to 1. The structure-key fingerprints can contain 

information about the numbers and the quantity of a particular type of feature (for 

example particular chemical groups, rings). Therefore when designing the dictionary, 

the goal is to produce structure-keys which provide optimal performances when 

searching for chemical structures in a database. For that to happen, one needs to 

decide which patterns are important, the type of molecules expected to be stored in 

the database and the typical search queries.  

Structure-key fingerprints are considered knowledge-based descriptors (Leach 

& Gillet 2007; Brown 2009; Bajorath 2011; Willet 2014) since the dictionaries are 

designed based on the knowledge of existing chemical entities and in particular, 

what is expected to be to be of interest for the domain the dictionary was designed 

for. In structure-key fingerprints each bit often corresponds with a specific sub-

structure. This makes the interpretation of the analysis results easier and more 

straightforward, especially if it is shown that some activity is related to the presence 

of specific bits (Leach & Gillet 2007; Willet 2011; Willet 2014). This is the so-called 

reversibility of the molecular descriptor. 

Figure 7 shows an example of a structure-key fingerprint. The Boolean 

fragment represents a generated structural key where the bits set to one (1) are each 

assigned to a structure and no other one. 
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Figure 7: Example of Structure-key fingerprint (Brown 2009) 

 

2.2.7. Hash-Key Fingerprints (non-Dictionary-Based) 

Hash-Key fingerprints are an alternative to their Structure-key counterparts. 

They do not require a pre-defined dictionary of sub-structures of interest. In fact they 

can be generated directly from the molecules themselves. These fingerprints are also 

vector-based representations just like the structure-key fingerprints. 

When generating this type of fingerprints, each atom (the smallest particle of a 

substance that can exist by itself or be combined with other atoms to form a 

molecule) in a given molecule is iterated over, with all atom-bond paths from that 

atom being calculated between a defined minimum and maximum (usually between 

0-7). Each of these paths are then used as an input to a hash function such as Cyclic 

Redundancy Check (CRD) in order to generate a larger value integer(Leach & Gillet 

2007; DAYLIGHT Chemical Information Systems 2008; Brown 2009; Bajorath 

2011). This integer can be folded using modulo arithmetic algorithm so that it 

conforms to the length of the binary string used to represent the molecule. 

Alternatively the output from the CRD is passed as a seed to a random number 

generator (RNG) and a few indices, usually 4-5, are taken from the RNG result. Each 

of these indices are reduced to the length of the fingerprint being used by applying 

modulo arithmetic algorithm. The set of resulting indices are used to set or update 

relevant positions in the fingerprint. 
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Because each path in a molecule is now represented using a number of indices 

(4-5 as mentioned before), in order to reduce the chances of another molecular path 

having the same bit pattern and to avoid a molecular path collision, the RNG is used.  

The pseudocode for a typical hash-key fingerprint is shown in Figure 8: 

foreach atom in  molecule 

  foreach path from  atom 

   seed = crc32(path) 

   srand(seed) 

   for I = 1 to  N 

    index  = rand( ) % bits 

    setBit(index) 

Figure 8: Pseudocode of a typical Hash-key fingerprint (Brown 2005) 
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Figure 9: The structuring on a Hash-Key fingerprint (Brown 2009) 

Figure 9 demonstrates an example of a hash-key fingerprint produced for the 

caffeine molecule. The Nitrogen atom circled (section a) is considered as the starting 

point for the generating the fingerprint. In this figure a path of up to three bonds has 

been encoded resulting in the binary fragment. Each of the chosen paths is converted 

into integer values using a random number generator to result in n bit positions (in 

this case 3). One can also see a case of a bit collision in Figure 9 (section c). 

Hash-Key fingerprints fall into the information-based descriptors category as 

they are highly effective in encapsulation molecular information (Brown 2009; 

Willet 2009). 
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Structure-key based and hash-key based fingerprints have proven to be very 

effective in similarity studies. However they both suffer from some limitation 

courtesy of the characteristics of knowledge-based and information-based methods. 

When using the structure-key fingerprints one must be aware of the fact that due to 

the definition of the dictionary of sub-structures being fixed, the encoding process 

might fail to find some of the features in the molecules being encoded. Using this 

method some molecules may produce fingerprints that contain little or no 

information in them due to their sub-structures not occurring in the dictionary. This 

should be considered when applying the method to novel chemical classes (Brown 

2009; Willet 2009). Hash-key fingerprints do not suffer from this limitation since the 

information already present in the molecule being encoded is used. Unfortunately 

there is a lot of assumption involved in the making of the structural keys due to the 

idea of pre-defined patterns. As mentioned above this method is partially dependent 

on the chemists’ intuition and the results from mining drug-like databases. The 

patterns included in the generated structural key is crucial in the effectiveness of the 

search, as a bad choice can lead to many false hits and a very slow search 

(DAYLIGHT Chemical Information Systems 2008; Willet 2014). 

Hash-key fingerprints are quick to calculate and are very effective in many 

applications in Chemoinformatics since they encapsulate vast amounts of 

information. Because they are not dependent on a dictionary, every fragment in the 

molecule will be encoded. This feature however prevents mapping between bits and 

‘unique’ sub-structure fragments (Leach & Gillet 2007), therefore hash-key 

fingerprints are not readily interpretable and the resultant descriptors can be highly 

redundant (Brown 2009). On the other hand hash-key fingerprints are very difficult, 

almost hard to interpret since there is no direct mapping between the indices in the 

bit-strings and the features. Structure-key fingerprints have the advantage of having 

the pre-defined dictionary as reference. The fact that hash-key fingerprints describe 

atoms in terms of their associated properties allows them to be used in similarity 

searching to retrieve molecules that have similar properties to the query structure but 

contain different atoms. This permits the identification of new classes of molecules 

with the necessary bioactivities (Willet 2009). 
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2.2.8. 3D Molecular Descriptors 

3D descriptors are more complex since they need to take into account that 

many molecules are “conformationally” flexible. This topic is out of scope for this 

research therefore we shall not describe it further. 

2.2.9. Similarity and Dis-similarity Coefficients 

Some coefficients are measures of similarity (Dice and Tanimoto) and some 

other are measures of distance or dissimilarity (Hamming and Euclidian). 

Normalised similarity measures range between zero and one, with one indicating a 

full match and zero indicating no similarity. Dissimilarity measures can range 

between zero and a maximum value (N). With these measures zero means that there 

is a match (Willett et al. 1998; Leach & Gillet 2007). Similarity and dis-similarity 

measures can be normalised so that the output values fall in the range [0-1]. Such 

values allow for the inter-conversion between a similarity coefficient and its 

complementary dissimilarity coefficient so that: Distance = 1 – Similarity. This is 

called the ‘Zero-to-Unity’ or ‘Subtraction from Unity’ (Willett et al. 1998). 

The most commonly used similarity methods are based on 2D fingerprints. The 

similarity between two molecules described by binary fingerprints is usually 

represented by the popular Tanimoto coefficient. This gives a measure of the number 

of bits that the two molecules have in common. Note that only the bits set to one 

(ON bits) determine similarity, not the ones set to zero (OFF bits). Tanimoto 

coefficient is popular for a number of reasons; it can be used to measure similarity 

between molecules represented by binary (dichotomous) fingerprints as well as 

continuous data i.e. Topological Indices (Leach & Gillet 2007; Bajorath 2011), the 

calculation (see formula in Figure 10) does not involve square roots therefore 

making it faster (Willett et al. 1998) and it still remains a yardstick against which 

alternative methods are judged despite the years that have passed since the study was 

initially done by Willet and Winterman in 1996. 

An important fact to be aware of is that similarity coefficients (such as 

Tanimoto) depend on the number of bits two molecules have in common. 

Contrariwise in distance coefficients the common absence of features is regarded as 

similarity (Leach & Gillet 2007). Previous work done has shown that as a result 

smaller molecules tend to have lower similarity measures than larger ones because 
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they have fewer bits set to one in common with the target (Willett 2006; Leach & 

Gillet 2007). Tanimoto coefficient includes a degree of size normalisation via the 

denominator term. This helps reduce the bias towards the larger molecules which 

have more bits set to one compared to smaller ones. Figure 10 demonstrates an 

example of two binary fingerprint fragments and the similarity and dis-similarity 

between them is calculated.  

In Figure 10, we see two fragments of fingerprint for two molecules that are 

being compared for similarity and dissimilarity. Note that the measures used 

(Tanimoto and Euclidean are two different measures and not complimentary so the 

Zero to Unity concept does not apply). In the figure, “a” is the number of bits set to 

one in fragment A and “b” is the number of bits set to 1 in fragment B. “c” is the 

number of bits set to one and common (set to one in the same place) between both 

fragments. As mentioned the Tanimoto coefficient produces values between zero and 

one. This can be interpreted as follows: a value of zero means the molecules have no 

fragments in common therefore no similarity and a value of one means unity and 

therefore the molecules are identical. The closer the number to one means the more 

similar the two compared molecules are. 

Coefficient formula Result  

 

Similarity 

(Tanimoto) 
 

 

0.375 

Dis-similarity 

(Euclidian)  

2.236 

 

Figure 10: Example of two fingerprints and the similarity and distance coefficient calculated. 
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2.3. High-Throughput Screening 

In drug discovery compounds with unknown biological activity are screened 

against specific target(s) to determine if they interact with the target(s) in a 

productive way; that is showing binding activity. Compounds which are active 

against a target pass the first test on the way to becoming a drug, the ones that fail 

this test are sent back to the compound (screening) library to be screened later 

against other targets. Screening compounds against targets has been an on-going 

activity in the pharmaceutical industry. The process of discovering a new drug 

normally involves High-Throughput Screening (HTS). In HTS groups of compounds 

are screened against a target to assess their ability to bind to the target. Advances in 

molecular biology and human genetics produce increasing number of molecular 

targets. This is combined with increases in compound collection generated by 

combinatorial technologies has resulted in huge libraries of compounds ready to be 

screened against targets. In such cases conventional screening methods are not 

feasible.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Iterative process during HTS between various research groups (Stephan & Gilbertson 

2009) 
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HTS allows the researcher to screen hundreds of thousands of compounds 

against a target in a very short time. If the compound binds to the target then it 

becomes a Hit. If the hit is open to Medicinal Chemistry optimisation and is proven 

to be non-toxic  

 

 

 

 

 

 

 

 

 

Figure 12: Showing the key factors towards a successful HTS process (Stephan & Gilbertson 2009) 

in pre-clinical trials, then it becomes a Lead for a specific target (Schierz 2009). 

However with the increase in the size of compound libraries, the disadvantages of 

HTS increase too; the quality of the library, sequence miss-readings or 

reproducibility of assay protocol can result in incompleteness of the screening (Kato 

et al. 2005). As found by Schierz (2009) there is a lack of publicly available bioassay 

(a bioassay involves the use of tissue or cell in order to determine the biological 

activity of a substance) data due to HTS technology being kept at private commercial 

organisations and the data from freely available resources (PubChem) is not curated 

and potentially erroneous. 

2.4. Virtual Screening 

Leach and Gillet (2007) define Virtual Screening as “the in-silico screening of 

biological compounds”. The goal is to score, rank and / or filter a set of structures 

using one or more computational procedures. Virtual screening complements the 

HTS process by helping with the selection of compounds to be screened (Willett 

2006; Schierz 2009). 

HTS Screening 
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Virtual screening utilises an array of computational techniques for the selection 

and prioritisation of those molecules that may have the probability of being active 

for a target (Willett 2006). This is done based on the type and the amount of 

information available about the compounds and the target (Leach & Gillet 2007; 

Schierz 2009).  

Wilton et al. (2003) identified four main classes of virtual screening: 

• If only a single active molecule is known for a target, then similarity searching 

can be done where the database is ranked in decreasing order of similarity to the 

known structure. 

• If several molecules are known to be active for a target, then Pharmacophore 

(Specific 3D arrangement of chemical groups common to active molecules and 

essential to their biological activity) mapping can be done to determine common 

features responsible for activity, with later a 3D sub-structure database search to 

find other molecules with the pharmacophore. 

• If a reasonable amount of active and non-active molecules are known, then the 

active ones can be used as training material to build predictive models which 

discriminate between active and non-active compounds. Goal is to apply the 

models to unscreened molecules to select ones that are most likely to be active. 

• If the 3D structure of the target is known, then a docking study can be carried 

out where candidates are docked into the binding site of the target and a scoring 

function is applied to estimate the likelihood of binding with high attrition. 

Willet (2006) categorises these classes as two main types: 

• Structure-based approaches: such as docking. 

• Ligand-based approaches: such as pharmacophore methods, machine learning 

methods and similarity searching. 

 

A schematic illustration of a typical virtual screening flowchart is shown in 

Figure 13. As seen in the figure, many virtual screening processes involve a 

sequence of methodologies. 
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Figure 13: A schematic illustration of a typical virtual screening flowchart (Leach & Gillet 2007) 

In both cases, handling large datasets is a major challenge and requires specialized 

methodology discussed in the next subsection. 

2.5. Handling the Mining of Large Datasets 

Big data also referred to as massive data has been said to be one of the major 

challenges of the current era (Kahng 2012; Anand 2013; Hammer et al. 2013; 

Cuzzocrea 2014). One might ask what can be referred to as big data. The answer can 

be viewed from different angles. For example the number of data points, the 
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dimensionality or the complexity of the data at hand. Douglas Laney (2001) pointed 

out the characteristics of big data as follows: 

 Volume: this refers to the size of the datasets, which can be caused by the 

number of data points or its dimensionality or both. 

 Velocity: this refers to the speed of data accumulation, the need for rapid model 

adaptation and lifelong learning. 

 Variety: this refers to heterogeneous data formats caused by distributed data 

sources, different representation technologies, multiple sensors, etc. 

 Veracity: this refers to the fact that data quality can vary significantly for big data 

sources and that manual curation is almost impossible. 

Recent advances in computing allow for the collection and storage of 

inconceivable amounts of data, leading to the creation of very large datasets in data 

repositories (Kumar et al. 2006). Scientists can now predict the properties of 

chemical compounds which have not yet been synthesised. Methods such as Virtual 

Screening take advantage of data mining techniques in order to make hypotheses 

based on many observations. Important decisions can be made based on this 

information-rich data. However the fast-growing amount of data has far exceeded the 

human ability to analyse and comprehend it without powerful tools (J. Han & 

Kamber 2001).  

Data mining tools analyse the data stored in a database and unravel hidden data 

patterns which can contribute to business strategies and scientific researches. One 

problem that may arise is the ability to analyse the vast amount of information 

hidden in large datasets. Developing powerful computers is costly and it is easy to 

build datasets which are too big for even the most powerful computers. Some 

strategies which are commonly used to deal with large datasets are listed below. In 

this section we only highlight these methods but are not going into detail about them. 

This section mostly emphasises the physical aspect of the data (i.e. where it is 

stored). 

Data can be stored centrally or distributed. The various distributed data mining 

systems differ in several ways (Grossman et al. 1999). Data Strategy: the decision to 

move the data (centralised-learning), the intermediate results, the predictive models 

(local-learning) or the final results of a data mining algorithm, Task Strategy: The 
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decision to apply data mining algorithms independently at each site or coordinate the 

tasks within an algorithm over several sites and Model Strategy: The decision of 

choosing a method to combine the models built at sites. 

There are various infrastructures (methods) which assist the mining of large 

distributed datasets, such as Cluster-Computing, Grid-Computing and Cloud-

Computing. The goal of clustering is to partition a set of patterns into disjoint and 

homogeneous clusters. Clusters offer two main roles which satisfy the two main 

steps every data mining process involves; data clusters provide storage and data 

management services for the datasets being mined and compute clusters provide the 

services needed for data cleansing, preparation and data mining tasks. 

In Grid-Computing, several machines work together by linking through a 

network to execute a common task (Naqaash et al. 2010). The desire for sharing 

high-performance computing resources amongst researchers led to the development 

of Grid-Computing technology and some of its infrastructure (Abbas 2003). Grid-

Computing has been distinguished from conventional distributed computing by its 

focus on large-scale resource sharing and high-performance orientation (Cannataro 

et al. 2004). 

 

Figure 14: Typical Grid protocol computing architecture (Foster et al. 2008) 
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The grid architecture consists of a few layers (Please see Figure 14). The fabric 

layer provides access to different resources such as compute, storage and network. 

The connectivity layer defines the core communication and authentication protocols 

for easy and secure transactions. The resource layer defines protocols for 

publication, discovery, negotiation, monitoring, accounting and payment of sharing 

operations on individual resources. The collective layer captures the interactions 

across a collection of resources such as Monitoring and Discovery Services. The 

application layer comprises of the user applications built on top of the other 

protocols and operate in the virtual organisation environments. Each virtual 

organisation can consist of either physically distributed institutions or logically 

related projects (Foster et al. 2008). 

Cloud in computing terms means an infrastructure that provides resources and 

/ or services over the internet (Grossman & Gu 2008). Cloud computing refers to the 

applications delivered as services over the internet and the hardware and software in 

the data centres providing the services (Armbrust et al. 2010). Cloud computing has 

some benefits such as easy installation, centralised control and maintenance and 

safety. But it also suffers from disadvantages such as data lock-in (proprietary API), 

difficulty of a scalable storage and bugs in large-scale distribution systems such as 

not often being able to reproduce errors in larger configurations in smaller 

environments. 

Cloud computing can be viewed as a collection of services which can be 

presented as a layered cloud computing architecture as seen in Figure 15. Clouds in 

general provide service at three levels. The “infrastructure as a Service” layer 

provides hardware, software and equipment to deliver software application 

environments. The “Platform as a Service” layer offers a high-level integrated 

environment to build, test, and deploy custom applications. The “Software as a 

Service” delivers special-purpose software that is remotely accessible by consumers 

through the internet (Foster et al. 2008). In addition to these difficulties in database 

storage and retrieval, a major challenge in analysing complex data of chemical 

compounds characterised by hundreds of variables is the so-called heavily 

imbalanced data scenario which will be discussed next. 
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Figure 15: Typical Cloud computing architecture (Foster et al. 2008) 
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2.6. Summary of challenges in this chapter 

In this chapter we discussed how chemical molecules are shown and 

introduced to the computer in order to be investigated, manipulated and studied for 

Chemoinformatics purposes. We saw the different notations that can be used to 

present molecules to the computer. As a result molecules can be stored in databases. 

Databases can be sorted based on the needs or based on the molecules stored in them 

and to be able to search them efficiently different methods were devised; structure 

and sub-structure searching. Both methods have advantages in that they are fast and 

precise, however the preciseness of the methods requires their queries to be very 

specific and the slightest mistake could lead to no hits or too general queries could 

return too many results. 

Similarity searching was devised as an alternative and this method would 

calculate the similarity between two or more molecules. We touched on molecular 

representation which characterises the molecules being investigated. In order to asses 

similarity between molecules there are metrics defined. 

We discussed high-throughput screening which screens millions of molecules 

against specific targets and assesses their affinity to the target. Virtual screening is 

the more feasible, computer-based version of HTS which allows the quicker 

selection and prioritisation of those molecules that may have the probability of being 

active for a target. 

With chemical datasets the libraries hold millions of unknown molecules ready 

to be screened. Hundreds of new molecules are added to these libraries regularly. 

When selecting the molecules for screening, this could result in datasets that span 

over hundreds or thousands of molecule samples and once some features are 

generated for these samples one could be faced with problem of handling large 

datasets. In the final part of the chapter we discussed some methods that could be 

utilised to handle this phenomenon. 

 In the next chapter we shall be introducing the datasets chosen for this study. 

Afterwards we will be coming back to the topic of data representation and we will be 

introducing the reader to the various molecular representation techniques we will be 

utilising to represent our datasets. 
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3. Datasets Description and Pre-Processing Strategies  

Predictive modelling (the process that uses data mining and probability to 

forecast outcomes) is a data analysis task where the goal is to build a model of an 

unknown function Y = f(X1, X2, …, Xp) based on a training sample {<xi, yi>}  with 

examples of this function. The type of the variable Y determines whether the task at 

hand is classification or regression. For some applications, it is of utter importance 

that the obtained models are accurate at some sub-range of the domain of the target 

variable (Branco et al. 2016). As an example one can refer to the literature and 

observe that this problem is faced in different application areas such as credit card 

fraud detection (Yang & Wu 2006; Dal Pozzolo et al. 2014), detection of oil spill 

from satellite images (Chi et al. 2014) and medical diagnostic imaging (Mazurowski 

et al. 2008). These are only a few prominent examples of a phenomenon which has 

put imbalanced data learning in the top 10 challenges of data mining (Bekkar & 

Alitouche 2013). Frequently, the sub-ranges of the target variable are poorly 

represented in the available training sample. In these cases we face the phenomenon 

called data imbalance. Data imbalance occurs when the cases that are more 

important for the user are rare and few of them exist in the training set. The main 

challenge here, which is often the case with real-world datasets, is that the class with 

the lower number of instances is precisely the more useful class and misclassifying 

this class can often be costly 

Technically, every dataset that has non-balanced / unequal distribution 

between classes is considered imbalanced. Chawla (2005) mentions, a dataset is 

imbalanced if the classification categories are not approximately equally represented. 

The common understanding is that imbalanced datasets correspond to the ones 

exhibiting extreme imbalances such as 1:100, 1:1000 and 1:10000 active to non-

active samples respectively (Chawla et al. 2004; He & Garcia, 2009; Ganganwar 

2012; Maldonado et al. 2014). Further elaboration has been done on the topic of data 

imbalance in section 4.1. The reader is reminded here that in this study we work with 

binary datasets, therefore the classes are referred to as 0 and 1, with class 1 being the 

minority class (class of interest).  
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As indicated in the introduction, the general goals of this study is to devise an 

effective approach that should be ubiquitously applied regardless the dataset 

characteristics; since in real life screening applications the imbalance ration is often 

not known beforehand. As an example one can refer to the number of fraudulent 

transactions in comparison to honest ones (Chawla et al. 2004; Longadge & Dongre 

2013). Hence, the datasets chosen for this study have been selected because they 

represent a wide range of scenarios; comprising the whole spectrum of typical 

challenges in virtual screening.  

In order to overcome the effects of data imbalance in our datasets, SMOTE 

(Synthetic Minority Over-sampling TEchnique), the data pre-processing technique 

(Chawla 2002) was employed to re-establish balance of classes. In this approach, the 

minority class is over-sampled by creating synthetic examples rather than by over-

sampling with replacement. Here the synthetic data are generated by operating in the 

feature space rather than the data space. In a nutshell, the generation of new synthetic 

samples by SMOTE is as follows: The difference between the feature vector under 

consideration and its nearest neighbour is taken and this number is multiplied by a 

random number between 0 and 1. The resulting number is then added to the feature 

vector under consideration. This action causes the selection of a random point along 

the segment line between two specific points (Pears et al. 2014). The default 

implementation uses five nearest neighbours (Chawla et al. 2002; Oreski & Oreski, 

2014). The details of how this method generates the synthetic samples are further 

introduced in section 4.2 and in Figure 19. 

Three of the datasets, Formylpeptide Receptor Ligand Binding Assay, VCAM-

1 Imaging Assay in Pooled HUVECs (National Centre for Biotechnology 

Information) and the Mutagenicity Dataset (Kazius et al. 2005) were downloaded 

from PubChem Open Chemistry Database (Wang 2009). The other one is the Factor 

XA Dataset (Fontaine et al. 2005) downloaded from the chemoinformatic.org 

database. The two first datasets are noisy, highly imbalanced datasets. The 

Mutagenicity dataset is the rather balanced dataset and in the Factor XA the number 

of instances from the class of interest exceeds the number of the other class, making 

it an imbalanced dataset. 

This chapter begins with a detailed description of the datasets gathered for this 

study in section 3.1. The chapter continues with section 3.2 wherein the various 
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methods used to manipulate the data from its original form into a more useable form 

are explained. 

3.1. Background 

In this section we shall introduce the reader to our selection of the datasets used for 

this study. The datasets vary in the number of instances and their imbalance ratio. 

This ratio is defined as the ratio of the number of instances of the majority class to 

the number of the examples in the minority class (García et al. 2008; López et al. 

2013). For each dataset there exists a summary table breaking the dataset down by its 

instances and classes. 

Formylpeptide Receptor Ligand Binding Assay (AID362) 

This dataset is a whole-cell assay for another inhibitor of peptide binding 

associated with tissue-damaging chronic inflammation (Jabed et al. 2015). On 

PubChem this dataset has been described as the formylpeptide receptor (FPR) family 

of G-protein coupled receptors (GPCR) which contributes to the localization and 

activation of tissue-damaging leukocytes at sites of chronic inflammation. The 

number of instances, active and inactive and the imbalance ratio information can be 

found in Table 1. The dataset is a highly imbalanced one, with an imbalance ratio of 

1.4%. 

Dataset #Total 

Instances 

#Active Instance 

(class ‘1’) 

#Inactive Instance 

(class ‘0’) 

Active/Inactive 

Ratio 

AID362 4279 60 4219 0.0142 

Table 1: AID362 specifications. Class of interest has a 1 next to the label 

VCAM-1 Imaging Assay in Pooled HUVECs (AID456) 

The description on PubChem describes this dataset as follows: VCAM-1 

(vascular cell adhesion molecule-1) mRNA and protein levels are potently induced 

by pro-inflammatory agents (TNFa, IL-1) resulting in enhanced VCAM-1 surface 

expression in HUVECs (human umbilical vein endothelial cells). The information 

relating to the number of instances for each class in this dataset is included in Table 

2. This dataset is extremely imbalanced and hence is particularly challenging. It has 

a very large imbalance ratio and has a rather low number of instances of the class of 

interest compared to the majority class. 
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Dataset #Total 

Instances 

#Active Instance 

(class ‘1’) 

#Inactive Instance 

(class ‘0’) 

Active/Inactive 

Ratio 

AID456 9982 27 9955 0.0027 

Table 2: AID456 specification. Class of interest has a 1 next to its label 

Mutagenicity Dataset (Bursi) 

The dataset was prepared by Bursi and co-workers (Kazius et al. 2005). It 

contains 4337 diverse organic molecules. Of this number, 2401 were mutagens and 

1936 were non-mutagens. A mutagen is a physical or chemical agent that changes 

the genetic material, usually the DNA of an organism therefore causing increased 

frequencies of mutations. They used this dataset to identify sub-structures (called 

toxicophors) which could help classify whether test molecules were mutagenic 

(Langham & Jain 2008).  

At the time of performing the experiments for this study, the original Bursi 

dataset was not available to download therefore with the help of the Entrez system 

available from the National Centre for Biotechnology Information (NCBI), it was 

downloaded from PubChem. Entrez is the retrieval tool which allows the retrieval of 

set of sequences based on various descriptor fields such as source organisms, 

accession numbers, etc. Table 3 contains information about the number of instances 

for this dataset. 

Dataset #Total 

Instances 

#Active Instance 

(class ‘1’) 

#Inactive Instance 

(class ‘0’) 

Active/Inactive 

Ratio 

Bursi 4893 2556 2337 1.09 

Table 3: Mutagenicity dataset specification. 

Factor XA Dataset (Fontaine) 

A drug can be classified by the chemical type of its active ingredient or by how 

it is used to treat a condition, resulting in a drug being classified into one or more 

classes. Factor XA inhibitors are anticoagulants (an agent that is used to prevent the 

formation of blood clots). They block the activity of the clotting Factor XA and 

prevent blood clots from developing or getting worse. This is especially useful in the 

case of people receiving organ transplants or knee and hip replacement surgeries in 

order to prevent blood clots from forming and leading to deep vein thrombosis and 

pulmonary embolism. 
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The data in this dataset were used to discriminate between Factor XA 

inhibitors of high and low activity. Since the dataset includes molecules from diverse 

chemical classes, the objective in the main study by Fontaine et al. (2005) was to 

produce a discriminant model which is potentially useful for screening molecular 

libraries. Table 4 contains details about the number of instances and imbalance ratio 

for Factor XA dataset. 

Dataset #Total 

Instances 

#Active Instance 

(class ‘1’) 

#Inactive Instance 

(class ‘0’) 

Active/Inactive 

Ratio 

Fontaine 435 279 156 1.79 

Table 4: Factor XA dataset specification. 

3.2. Data Preparation 

The transformations which prepare the data for further analysis are part of data 

pre-processing. Some examples of the activities are normalisation and filtering. Data 

made available on the public domain does not always contain correct values, 

therefore if any incorrect inputs, out of range and missing values they need to be 

corrected. This is the most time-consuming activity in the pre-processing phase. 

Throughout the years attempts have been made to create a unified and standard 

format for chemical data most notably the Chemical Markup Language (Murray-

Rust et al. 2001; Spjuth et al. 2010), a dialect of XML. Such formats are yet to 

become widespread standard due to different application areas for chemistry, 

difference in the data stored by different formats, competition between software and 

lack of vendor-neutral formats (O’Boyle et al. 2011).  

Chemical datasets available to download are normally stored in online 

repositories by depositors in various formats such as sdf (structure-data file), smi 

(SMILES format) and MOL. In order to perform similarity searching these formats 

need to be translated into structural properties. Open-source as well as proprietary 

software are available online to perform the necessary transformations. Some 

examples of such software are described next. 

PaDel 

A molecular descriptor is the product of logical and mathematical procedures 

which transform the chemical information encoded in the symbolic representation of 

a chemical molecule into a useful number or the result of some standardised 
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experiment (Todeschini & Consonni 2009). The molecular descriptors are calculated 

for the chemical molecule in order to develop a quantitative Structure Activity 

Relationship (QSAR) for predicting the activity of novel molecules. Currently there 

are a number of freely available software for calculating molecular descriptors.  

Some of the characteristics a good molecular descriptor calculator should have 

are (Yap 2011): 

 Free or cheap to purchase for easy access for researchers 

 Open source so researchers can add their own libraries / algorithms to them 

 Having a graphical user interface and command line interface 

 Able to install and operate on multiple platforms 

 Able to accept different molecular formats 

 Able to calculate many molecular descriptors 

 A software tool which possesses most of the above mentioned characteristics 

is PaDel by Yap (2011). It produces molecular fingerprints from information 

encoded in symbolic chemical representations such as connection tables. The result 

can be described as matrix where the compounds are placed on the rows and the 

structural properties are on the columns (Huang et al 2015). The cells in between 

indicate the presence or absence of the structural properties by 1 or 0 respectively.  

Other features include having a graphical user interface, platform 

independence, accepting multiple file formats and producing several molecular 

fingerprints. Some of these fingerprints are available in the Chemistry Development 

Kit (Steinbeck et al 2003) library. Some of these fingerprints have been used to 

produce descriptors for our datasets, therefore we shall describe the fingerprints 

further in the chapter. In addition to structural descriptors, PaDel has the ability to 

calculate 2D and 3D descriptors, which unlike their structural counterparts that have 

binary outcomes, have positive or negative numerical values.  

PowerMV 

PowerMV (Liu et al. 2005) is a software designed for statistical analysis, 

molecular viewing, descriptor generation and similarity search. Its environment 

allows for the viewing of the compound structure in 2D and 3D. This software 

calculates six molecular descriptors describing properties of the compound.  It 
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produces four bit-string (binary) and two continuous descriptors. In the binary 

descriptors a bit is set to 1 if a certain feature is present and zero if absent. 

Continuous descriptors are used for searching the nearest neighbours. Bit-string 

descriptors use the Tanimoto (Jaccard 1901) coefficient is and continuous descriptors 

use the Euclidean distance. 

With PowerMV one can: 

 Import, view and sort files in the .sdf format.  

 The software automatically generates descriptors for the input molecules and 

save the descriptors, attributes and chemical structures. This will become an 

annotated database for similarity searching that users can save and view. 

 Searching is really fast as the descriptors for the candidate databases are pre-

computed so for a search, only the descriptors of the target molecule need to be 

calculated. The databases are stored using an index-based file format which leads 

to faster searching. 

OpenBabel 

As mentioned above, in the introductory chapter, due to there being no 

standard format for storing chemical data, a noticeable problem in computational 

modelling is the conversion of molecular structures from one format to another. This 

process involves the extraction and the interpretation of the chemical data and the 

semantics of molecular structures. 

The OpenBabel project, is a full-featured open chemical toolbox, designed 

specifically to speak to many representations of chemical data. It allows one to 

search for, convert, analyse and store data from molecular modelling, chemistry, 

biochemistry or related areas. It also provides a complete and extensible 

development toolkit for developers to develop Chemoinformatics software (O’Boyle 

et al. 2011).  
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Figure 16: Schematic overview of chapter 3.  

Fingerprints marked with * are bit-string fingerprints and ones marked with ^ are continuous 

(numeric) fingerprints. 
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Figure 16 illustrates (schematically) the process of gathering data from 

different sources and the preparation done in order to make the data ready for further 

manipulations by the various methods acquired in this study which will be discussed 

in detail in chapter 4. 

PubChem 

The National Institutes of Health (NIH) launched the Molecular Libraries Initiative 

(MLI) in 2004 which set out to provide academic researchers with the tools to explore 

potential starting points for drug discovery. At the heart of MLI is PubChem. PubChem is 

an online public repository for biological properties of small molecules hosted by the 

US National Institutes of Health (Wang et al. 2009). It comprises of three inter-

linked databases; substance, compound and bioassay. The substance database 

contains chemical information deposited by individual contributors to the PubChem. 

The compound database has the unique chemical structures extracted from the 

substance database (Kim et al. 2015).  

PubChem contains (as mentioned above) compound information from the 

scientific literature, but it is considered a data repository and no special effort is 

dedicated to the curation of the information deposited by various contributors 

(Fourches et al. 2011). Professor Alexander Tropsha, director of Exploratory Center 

for Chemoinformatics Research at North Carolina University states that PubChem 

does not curate the data as deposited by screening centres (Bradley 2008; Schierz 

2009). The deposited data are not curated by the contributors (PubChem; Go 2010). 

The datasets deposited in PubChem are highly imbalanced with a ratio of active to 

inactive compounds on average of 1:1000 (Bradley 2008).  

The bioassay database (where two of the datasets for this study, AID362 and 

AID456, were acquired from) is intended for archiving the biological tests of small 

molecules generated by High-Throughput Screening experiments, medicinal 

chemistry studies and drug discovery programs. PubChem aims at providing this 

information free to the research community (Wang et al. 2014). PubChem bioassay 

database is integrated with the National Centre for Biotechnology Information, 

making it even easier to search by Entrez queries. 
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Molecular Fingerprints 

Molecular fingerprinting is nowadays an essential tool for determining 

molecular similarity. By allowing the addition of different fingerprinting methods, 

the user is given the choice and freedom to utilise the best method for their case. 

Below we shall give a description of the different fingerprinting techniques used in 

this study. 

Fingerprinter (Fin) 

The Fingerprinter class from CDK (refer to section 3.2 under the PaDel sub-

section) produces Daylight-type fingerprints (James et al. 2000). This class works by 

searching the molecule, starts at each atom in it and creates string representations of 

the paths up to the length of six atoms. It works very much like the Hash-Key 

fingerprints (refer to section 2.2.7. and Figure 7). Based on all the paths computed 

from a molecule, a molecular fingerprint is obtained. The fingerprinter class assumes 

that the hydrogens are explicitly given. This class generates 1024 bits. 

Extended Fingerprinter (Ext) 

The Extended Fingerprinter class is also from the CDK and it extends the 

Fingerprinter class by including additional bits describing ring features. This class 

contains the information from the Fingerprinter class and bits which tell if the 

structure has 0 rings, 1 or less rings, 2 or less rings (this refers to the smallest set of 

smallest rings). There are also bits which indicate if there is a fused ring system with 

1, 2,… 8 or more rings in it. The list of rings given by the specified bits must be the 

list of all rings in the molecule. The number of bits produced by this fingerprint is 

1024. 

Graph-Only Fingerprinter (Gra) 

This class constructs a fingerprint generator which creates a specialised version 

of the Fingerprinter that does not take bond orders into account. This fingerprint 

produces 1024 bits. 

EState (ESt) 

The electro-topological state indices (EState) was introduced initially by Kier 

& Hall (1992). According to this paradigm, each atom in the molecular graph is 

represented by an EState variable. This variable encodes the essential electronic state 
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of the atom as affected by the electronic influence of all the other atoms in the 

molecule within the topological character of the molecule. Therefore the EState of an 

atom differs from molecule to molecule and depends on the detailed structure of the 

molecule (Hall & Kier 1995). EState indices encode important electronic and 

topological information and this enables them to show significant pharmacological 

information for database characterisation (Todeschini & Ringsted 2012). 

MACCS Fingerprint (MAC) 

The MACCS (Molecular Access System) fingerprint uses a set of structural 

features that is used to encode the molecule into a binary representation. The version 

of the MACCS fingerprint used in this study only has 166 bits. The fingerprint 

consists of a set of indicators showing whether each of these bits were present in a 

given molecule (Wei et al. 2007). 

Pharmacophore Fingerprint (Pha) 

The pharmacophore fingerprints (generated by PowerMV) are binary 

descriptors that are built to indicate the presence or absence of features based on bio-

isosteric principles. According to this principle, two atoms or groups that have 

roughly the same biological effects are called bio-isosteres (Hughes-Oliver et al. 

2011). There are a total of 147 bits generated by this fingerprint. 

PubChem Fingerprint (Pub) 

The PubChem system generates binary fingerprints for chemical structures. 

There are 881 bits in each fingerprint representing the Boolean determination of or 

test for an element count, atom pairing, a type of ring system, etc., in a molecule. 

Substructure Fingerprint (Sub) 

This fingerprint (Hert et al. 2009) contains the SMILES patterns for 

approximately 1000 chemical features such as common functional groups as 

classified by Christian Laggner or ring systems. This fingerprint contains 307 bits. 

The 8 fingerprints mentioned above are the substructure fingerprints, all 

indicating the presence or absence of certain features in the encoded molecule, in the 

form of bit-strings. 
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In addition to these we have used continuous (numerical) fingerprints, 

Weighted Burden Number and Properties, variation on the original Burden Number 

by Burden (1989) and both generated by PowerMV. 

Weighted Burden Number 

This numerical fingerprint is achieved by placing one of the properties: electro-

negativity, Gastgeiger partial charge or atomic lipophilicity on the diagonal of the 

Burden connectivity matrix, and weighting the off-diagonal elements by one of 2.5, 

5.0, 7.5 or 10.0, twelve connectivity matrices are obtained. The largest and smallest 

eigenvalues are retained from each matrix resulting in 24 numerical descriptors (Liu 

et al. 2005; Hughes-Oliver et al. 2011). 

Properties 

These descriptors are useful for judging the drug-like nature of a molecule.  

Dataset Structure 

Each separate dataset is encoded by the 8 different substructure and the two 

numerical fingerprints. This will result in 32 substructure fingerprints and 8 

numerical ones. The results are shown in Table 5. 

Fingerprint # Bits Abbreviation Structural / Numeric 

CDK Fingerprinter 1024 Fin Structural 

CDK Extended Fingerprinter 1024 Ext Structural 

CDK Graph-Only 1024 Gra Structural 

CDK Substructure 307 Sub Structural 

CDK EState 79 ESt Structural 

MACCS Keys 166 MAC Structural 

PubChem 881 Pub Structural 

Pharmacophore 147 Pha Structural 

Weighted Burden Number 24 WBN Numeric 

Properties 8 --- Numeric 
 

Table 5: Detailing the properties of the various fingerprints used 
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The prepared datasets have been introduced to the classifiers in two distinct 

formats: 

 Structural-only: in this format the datasets are presented to the classifiers using 

structure-only fingerprints.  

 Structure-Numerical: in this format, the numerical fingerprints have been 

amended to the structure-only fingerprints.  

A schematic overview of the operations performed in order to prepare the 

datasets for the next stages has been illustrated in Figure 17. One can see in this 

figure how many features have been generated for the dataset by each fingerprint. 
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Figure 17: Illustrating the generation of fingerprints  

Binary and Numerical descriptors. The numbers in the parenthesis are the number of features. 
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3.3. Summary of Data Pre-processing 

In this chapter we explored data imbalance briefly. In a nutshell, datasets, their 

origins and what the levels of imbalance in them are and the number of instances in 

them were succinctly introduced. Next we described the data preparation and how 

the features for the datasets were generated. The various software used was 

described. Also we became familiar with the fingerprints that were used for this 

study. 

As mentioned in the introduction to this chapter, the aim of this study was to 

devise a new and novel approach to classifying imbalanced high dimensional data so 

that it would apply to all dataset regardless of their characteristics. Importantly, the 

datasets that were chosen for this study are representative of a wide range of 

scenarios comprising the whole spectrum of typical challenges in data mining and 

virtual screening.  

In the next chapter, we shall discuss the algorithmic tools that will enable us to 

analyse and perform effective virtual screening under such heterogeneous settings. 

We talk about data imbalance and the complications it brings with itself to 

classification. We also touch on how to tackle the imbalance problem and introduce 

the reader to SMOTE. The reader shall also become more familiar with the 

methodology used in this research. 



 

47 

 

 

4. Dataset Processing  

In this chapter we embark on a journey to delve deeper into to the data 

imbalance problem and how it affects classification. We also explore the different 

methods that have been utilised to battle this phenomenon. Finally we talk about the 

novel methodology used in this work in order to provide a unified process (not 

tailored to a particular type of dataset) for classifying heavily imbalanced high-

dimensional datasets regardless of the origins or the type of data used. 

At this point it is worthy to remind the reader that the main novelty of the work 

presented is to show that the combination of over-sampling using SMOTE in 

specific and the utilisation of four main classifiers furnishes a generic, unified 

analysis for a wide range of cheminformatics data;; unlike other methods of dealing 

with imbalanced data in which the classifier is altered to meet the classification 

requirements for a specific type of data.  

Therefore, in this chapter, a description based on pseudocode has been 

preferred over a detailed mathematical formulation since the focus is not that much 

on the algorithm-specifics as will be clear in the next chapters and no mathematical 

alterations were implemented on the classifiers used. However, where possible the 

mathematical equations have been shown for the readers’ convenience. 

In summary, this approach can be used on various datasets regardless of the 

imbalance ratio affecting it. This enables the cheminformatics data analysis to follow 

a robust protocol in cases where the unbalance changes over time and may not be 

representative of the scenario in future datasets at the time of the analysis. 

4.1. Data Imbalance 

A question which will come to the reader in this section is: what is data 

imbalance (imbalanced dataset) and how do we determine whether the data being 

studied is imbalanced? In the context of classification, an imbalanced dataset is a 

dataset in which the classes have an unequal number of instances. But it is only in a 

very ideal world where the different classes in a dataset are represented by the exact 

same number of instances. So the next question might be what are the requirements 
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for a dataset to be considered imbalanced? In truth there are no concrete or standard 

requirements for this definition.  

But most practitioners would agree on the following (He & Ma 2013): 

 A dataset where the most common class is less than twice as much as the rarest 

class is considered marginally imbalanced. 

 A dataset in which the imbalance ratio (most common class to rare class) is 10:1 

can be considered modestly imbalanced. 

 A dataset in which the imbalance ratio is 1000:1 and above is considered a highly 

imbalanced dataset. 

Most Chemoinformatics-related problems are related to datasets that are highly 

imbalanced and it is these rare classes that are of interest in data mining (DM). 

Standard chemical molecular classification techniques assume equality between 

classes therefore will not be very effective (Ganganwar 2012; Zięba et al. 2015). 

When classifying imbalanced datasets, it is more important to correctly classify 

minority classes.  These rare classes often get misclassified because most classifiers 

optimise the overall classification accuracy (Ertekin et al. 2007), but one must keep 

in mind that using global accuracy as an evaluation metric will obviously not reflect 

the true performance of the classifier since minority classes have less impact on the 

accuracy than majority classes (He & Ma 2013). Most original classifiers tend to 

minimise the error rate: the percentage of incorrect prediction of class labels. They 

assume that all misclassification errors cost equally. But as we know in real world 

problems misclassifying errors is costly indeed, such as an error in diagnosing cancer 

in a patient. 

Researchers (Visa & Ralescu 2005; Ganganwar 2012; He & Ma 2013; Cai et 

al. 2014) agree that the reasons for the poor performance of the existing 

classification algorithms on imbalanced datasets are: 

 Original classifiers (classifiers in their original unaltered state) are accuracy-

driven. This means that their goal is to minimise the overall error to which the 

minority class has very little or no contribution. 

 They assume that the distribution of the data for all classes is the same. 

 They assume that errors originating from the different classes have the same cost. 
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Some of the other reasons (Weiss 2004; He & Garcia 2009; Cai et al. 2014) for 

the complications caused by imbalanced datasets fir classification are: 

 Absolute lack of data: Here the instances of rare class only cover a small area 

of the data in the dataset therefore it becomes very difficult to detect patterns 

from the data due to the misclassification and error rates introduced by the rare 

instances. This situation arises from the fact that the minority class instances are 

very rare in the whole dataset. 

 Relative lack of data: This is when the frequency of occurrence of the instances 

in the dataset is much less than the whole data. Because some patterns depend 

on the combination of many conditions, many DM algorithms which examine 

conditions in isolation might not provide much information due to other more 

common patterns obscuring the rare patterns. This is when the minority class is 

not rare in its own right, but rather relative to the majority class. 

 Data fragmentation: In most DM approaches the search space is divided into 

smaller spaces resulting in a fragmentation; DM algorithms employ a divide and 

conquer strategy whereby the original problem is decomposed into a smaller and 

a smaller problem. Now in the case of rare classes, detecting the presence of 

instances and a pattern will become very difficult since the very existence of the 

regularities within these decomposed spaces becomes scarcer. 

 Noise: Classes with fewer instances are very sensitive to the existence of other 

instances, so for example if in a chosen data space there are many instances of 

the greater class, the presence of a few rare instances will not affect the learning 

process of the algorithm. But the presence of the greater class instances amongst 

the rare instances, however few in number, will have a great impact on the 

learning process as illustrated in Figure 18. Here the minus represents the 

majority class and the plus sign represents the minority class. 
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Figure 18: Illustrating how the introduction of noise can affect the learning classifier’s ability to learn 

decision boundaries. (Source Weiss 2004) 

In the right side of Figure 18, introduction of noise into the A1 space (adding 

negative classes) has had no effect on the classifier’s ability to learn the decision 

boundary, because of the classifier’s ability to generalise. But the two noisy 

instances in A3 have caused the classifier the inability to learn this rare instance at 

all. In this case the classifier cannot distinguish between the rare instance and noise.  

As indicated in the abstract of the thesis, Virtual Screening (VS) in drug 

discovery involves processing large datasets containing unknown molecules in order 

to find the ones that are likely to have desired effects on a biological target. These 

molecules are different from each other and the interaction between them is not part 

of the screening process. The level at which this framework applies to the drug 

discovery process (as seen in Figure 1), is at the very early stages of it. Thus, the 

whole process boils down to identifying molecules that are active or non-active to a 

specific target. Hence the scenario is naturally described as a binary classification 

problem (Reddy et al. 2007; Vyas et al. 2008; Lavvecchia & Di Giovanni 2013; 

Lionta et al. 2014); therefore, this approach is followed here. Hypothetically, as an 

alternative a multi-class problem can be used but as pointed out in the answer to the 

first question in this document, classification of multi-class imbalanced high-

dimensional datasets will be less robust considering the various types of data and 

computationally expensive. Plus, one may easily lose performance on one class 

while trying to gain it on another (Sáez et al. 2016). In addition, some heavily used 

robust classifiers such as support vector machines, are typically more effective in 

binary classification problems (Yang et al. 2013; Meyer & Wien 2015). As 
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mentioned above, to this date, most multi-class problems in this area are typically 

broken down into binary problems for an optimal solution. 

Chemoinformatics data is typically imbalanced in general with a small ratio 

of active compounds to non-active ones. This could be seen from the observations 

made in the literature by various authors (Han et al. 2008; Weis et al. 2008). Data 

deposited in public and private repositories such as PubChem bring great 

opportunities for researchers in Chemoinformatics, however the imbalanced nature 

of the data from High-Throughput Screening in these repositories hinders the 

classification process (Li et al. 2009). The main problem with imbalanced datasets is 

that standard classifiers are often biased towards the majority class since these 

algorithms assume a relatively balanced distribution of classes (Chawla et al. 2004; 

Cieslak et al. 2006; Sun et al. 2009; López et al. 2013; Imran et al. 2014) and as a 

result they fail to identify the minority class. In this thesis, we have replicated these 

results in Figures 255 and 256. Some results can be seen in the tables below:  

  

Sensitivity Specificity FP Rate FN Rate Accuracy 

NB EState 0.0151515 0.995705733 0.004294 0.984849 0.993004 

 

Extended 0.0878787 0.936514333 0.063486 0.912121 0.934177 

 

Fingerprinter 0.0636363 0.953013567 0.046986 0.936364 0.950563 

 

Graph-Only 0.1272726 0.933073767 0.066926 0.872727 0.930854 

 

MACCS 0.218181633 0.952636933 0.047363 0.781818 0.950614 

 

Pharmacophore 0.1060605 0.982061 0.017939 0.89394 0.979648 

 

PubChem 0.2060604 0.903557733 0.096442 0.79394 0.901636 

 

Substructure 0.090909 0.979909633 0.02009 0.909091 0.977461 

Table 6: Misclassification of raw PubChem datasets #1 

  

Sensitivity Specificity FP Rate FN Rate Accuracy 

SMO EState 0 0.999966533 3.35E-05 1 0.997212 

 

Extended 0.0757575 0.9783778 0.021622 0.924243 0.975891 

 

Fingerprinter 0.0575757 0.9795999 0.0204 0.942424 0.97706 

 

Graph-Only 0.0424242 0.981307567 0.018692 0.957576 0.978721 

 

MACCS 0.0242424 0.9961075 0.003893 0.975758 0.99343 

 

Pharmacophore 0 0.999070833 0.000929 1 0.996319 

 

PubChem 0.030303 0.985978533 0.014021 0.969697 0.983346 

 

Substructure 0.0030303 0.9989871 0.001013 0.99697 0.996243 

Table 7: Misclassification of raw PubChem datasets #2 

These are more prevalent in the figures placed in the appendix for AID362 and 

AID456. 
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4.2. Tackling Imbalanced Data Problem 

Many strategies have been suggested to address the data imbalance problem 

throughout the years (Weiss 2004; He & Garcia 2009; He & Ma 2013; Cia et al. 

2014; Maratea et al. 2014; Shi et al. 2015). Below are only some of the more 

prominent techniques that have been used to tackle the data imbalance in datasets. 

Cost-Sensitive Classification 

In a case where some class instances in a dataset are rare, not detecting patterns 

belonging to the rare class or predicting them as the common class can happen (false 

negatives). This can affect business decision-makings but in some cases such as 

medical diagnosis it can be fatal, in machine learning terms it has greater cost.  

The classification results using Weka Toolkit (Hall et al. 2009) are presented 

as a matrix called the Confusion matrix (contingency table). This matrix has four 

sections as True Positive (TP), False Positive (FP), False Negative (FN) and True 

Negative (TN) (reference in such stats, anything will do). For bioassay data and 

screening compound selection, it is better to minimise the number of the FNs; these 

are the active molecules which have been incorrectly classified as inactive. This can 

be done at the cost of increasing the number of FPs. Cost-sensitive classifiers offer 

the advantage of being able to control the number of FPs. By applying penalty on the 

FNs the number of FPs will increase. The number of TPs and TNs does not get 

affected much by applying the cost. Table 8 shows a Weka cost matrix. For example 

if a cost of 8 is applied to False Negatives whilst keeping the default cost for all the 

other misclassification schemes, this means that it is more costly misclassifying 

positives than misclassifying negatives. Schierz (2009) concluded that there are no 

guidelines for setting the misclassification costs. 

 Actual Positive Actual Negative 

Predicted Positive 0 TP 1 FP 

Predicted Negative 8 FN 0 TN 

 (+) (-) 
 

Table 8: A cost matrix showing the misclassification cost for positives and negatives 
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Sampling 

Sampling is a very common method when dealing with imbalanced data. Here 

the data is rebalanced i.e. the number of instances of each class is changed so that 

standard machine learning algorithm classifiers can be applied to the problem. The 

goal is to minimise the problems related to imbalanced data (as mentioned above) by 

reducing class imbalance. Sampling can be done either randomly or intelligently; 

according to some rule (Weiss 2004; Chawla 2009; He & Garcia 2009). Popular 

methods of sampling are: 

Over-sampling: This method works by re-sampling the minority class 

instances till it has as many instances as the majority class. In random over-sampling 

a set of instances are randomly selected from the minority class. They are replicated 

and added to the whole dataset in order to balance the distribution of classes. A more 

informed way of over-sampling is called SMOTE which stands for Synthetic 

Minority Over-sampling Technique (Chawla et al. 2002; Blagus & Lusa 2012; 

Ramezankkhani et al. 2014; Verbiest et al. 2014; Saéz et al. 2015). SMOTE 

introduces non-replicated artificially created data into the dataset based on the 

feature space similarities between existing minority examples. 

Under-sampling: In this method of sampling, instances from the majority 

class are removed in order to gain balance between the majority and minority 

classes. In random under-sampling a set from the majority class is randomly selected 

and removed from the whole dataset to adjust the balance between classes and make 

the rare class less rare. A more intelligent method is to remove majority instances 

which are on the borderline (close to the boundary of majority / minority), those that 

suffer from class-label noise and those which are redundant (Kubat & Matwin 1997). 

The two methods mentioned above reduce the class imbalance but they do 

have their own disadvantages. Over-sampling often duplicates the same instances 

from the minority class which lead to over-fitting and because it does not produce 

any new data, it is not assisting with the lack of data problem associated with 

imbalance. Another issue is that over-sampling might increase the time needed to 

build a classifier due to increasing the number of instances. 

Under-sampling removes majority class instances but by doing so it would be 

discarding potentially important information. This can reduce the classifier 
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performance because the classifier might miss important concepts about the majority 

class. It is unclear which of the mentioned sampling methods works better; results 

show that the choice of method is domain-specific (Weiss 2004). 

SMOTE: As mentioned in Chapter 3, SMOTE is a sampling approach 

whereby the minority class samples are over-sampled by creating synthetic samples. 

Here we explore the creation of these synthetic samples a bit further and more 

technically. The schematic sample generation is demonstrated below in Figure 19. 

For a positive class sample Xi, its distance from other samples of the same class is 

calculated, then a sample Xj from the k-nearest neighbour sample of the positive 

class is randomly chosen and a new sample is generated (Li et al. 2014). Xnew = Xi + 

rand(0,1) x (Xj – Xi) (Figure 19). 

 

 

 

 

 

 

 

 

 

Figure 19: Generating synthetic samples by SMOTE 

In Figure 19 Xi is the selected point and Xi1 to Xi4 are some selected nearest 

neighbours and r1 to r4 are the synthetic samples created through randomised 

interpolation.  

In Chawla et al. (2002) and Zhang et al. (2016), the authors state that SMOTE 

corrects the simple over-sampling technique’s side-effect, over-fitting, by creating 

synthetic instances rather than over-sampling with replacement. These instances are 

generated in the feature space rather than the data space. In SMOTE, the minority 

class is over-sampled by taking a minority class sample and introducing synthetic 

examples along the line segments joining any / all of the k minority class nearest 
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neighbours. The new instances stem from interpolation rather than extrapolation, so 

they still carry relevance to the underlying dataset (Pears et al. 2014). The 

neighbours are randomly chosen based on the amount of over-sampling required. 

This forces the decision region of the minority class to become more general 

(Chawla et al. 2002; Chawla 2005; Han et al. 2005; He 2010; Elrahman & Abraham, 

2013; Branco et al. 2016; Ng et al. 2016). As a result, more general regions are now 

learned for the minority class rather than those being included by the majority class.  

SMOTE forces focused learning and introduces a bias towards the minority class. 

Thus, it is evident that the cross-validation method used must carefully consider this 

bias and make sure that true performance metrics in test sets (described below in 

section 4.3) refer to real data samples. 

The pseudocode for SMOTE is as follows: 

 

Algorithm SMOTE(T, N, k) 

 

Input: Number of minority class samples T; Amount of SMOTE N%; Number 

of nearest neighbours k 

Output: (N/100)* T synthetic minority class samples 

1.  (∗ If N is less than 100%, randomize the minority class samples as only a   

random 

      percent of them will be SMOTEd. ∗) 

2.   if N <100 

3.   then Randomize the T minority class samples 

4.   T = (N/100) ∗ T 

5.   N = 100 

6.   endif 

7.   N = (int)(N/100)( ∗ The amount of SMOTE is assumed to be in integral 

multiples of 

      100. ∗) 

8.   k = Number of nearest neighbours 

9.   numattrs = Number of attributes 

10.  Sample[ ][ ]: array for original minority class samples 

11. newindex: keeps a count of number of synthetic samples generated,  

initialized to 0 

12.  Synthetic[ ][ ]: array for synthetic samples 

      (∗ Compute k nearest neighbours for each minority class sample only. ∗) 

13.  for i ← 1 to T 

14.  Compute k nearest neighbours for i, and save the indices in the nnarray 

15.  Populate(N, i, nnarray) 

16.  endfor 

      Populate(N, i, nnarray) (∗ Function to generate the synthetic samples. ∗) 

17.  while N ≠ 0 

18.  Choose a random number between 1 and k, call it nn. This step chooses 

one of the k nearest neighbors of i. 
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19.  for attr ← 1 to numattrs 

20.  Compute: dif = Sample[nnarray[nn]][attr] − Sample[i][attr] 

21.  Compute: gap = random number between 0 and 1 

22.  Synthetic[newindex][attr] = Sample[i][attr] + gap ∗ dif 

23.  endfor 

24.  newindex++ 

25.  N = N − 1 

26.  endwhile 

27.  return (∗ End of Populate. ∗) 

 

End of Pseudo-Code. 

When and how SMOTE does cause over-fitting has been addressed from 

different angles in the literature. As a case study on potential over-fitting of SMOTE, 

in the research performed by Kothandan (2015), the classification of the miRNA 

datasets associated with cancer was performed using SMOTE as one of the 

techniques in overcoming class imbalance. The results obtained from using SMOTE 

indicated a precision of > 0.9 in all independent test runs, indicating over-fitting. 

This could be due to the fact that SMOTE focuses on specific regions of the feature 

space as the decision region for the minority class rather than increasing the overall 

number of the instances. As a result, SMOTE over-populated a region rather than 

increasing the overall instances.  

One of the drawbacks of SMOTE is that it generates synthetic samples for 

the minority class while disregarding the majority class samples (Branco et al. 2016), 

which in turn increases the overlapping between classes. This may lead to over-

generalisation (Zhang et al. 2010; López et al, 2013; Sáez et al. 2015). This combined 

with making the decision regions of the minority class more general, could lead to 

the creation of borderline examples (Sáez et al. 2014). SMOTE is unable to provide a 

scalar control of the number of the newly created instances and cannot guide the 

selection of them, resulting in not very good quality instances (Li et al. 2014). 

Extensions to the original SMOTE have been developed in order to combat 

some of the side effects of SMOTE such as over-generalisation. They act as cleaning 

methods removing any data samples that could be on the borderline of classes, noisy 

samples and outliers. Examples of these methods are: SMOTE-IPF (Sáez et al. 2015) 

which can be used to battle the noisy and borderline examples produced by over-

sampling the minority class, SMOTE-ENN (Luengo et al. 2011) which uses the 

Wilson’s Edited Nearest Neighbour Rule (ENN) as a pre-processing method to 
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remove outliers, Borderline-SMOTE (Han et al. 2005) which over-sample the 

borderline samples of the minority class. These methods are additions to the original 

SMOTE algorithm. Utilising them with the datasets in this study would have 

potentially increased the computational costs extremely as additional processes 

would have needed to be run before receiving the balanced and over-samples 

datasets, adding to the processing time and probably extending the processing times 

dramatically. Plus, the original SMOTE algorithm is readily available to all 

researchers with different knowledge and can be used out of the box or some 

parameters can be changed. 

After using SMOTE on our imbalanced datasets, the number of minority 

class samples were increased to match the number of majority class samples making 

our datasets balanced in order to perform our classifications. Tables 7 and 8 show the 

original number of samples in each dataset and how that changed after over-

sampling by SMOTE. 

Dataset # Total # Class 1 # Class 2 Class Ratio 

Fontaine 435 279 156 1.7884 

AID362 4279 60 4219 0.0142 

AID456 9982 27 9955 0.0027 
 

Table 9: Original number of samples in unbalanced datasets 

 

Dataset # Total # Training # Test 

 
Fontaine 588 335 253 

Method 1 AID362 8438 5063 3375 

 
AID456 19910 11946 7946 

 
Fontaine 508 334 174 

Method 2 AID362 4787 3075 1712 

 
AID456 15944 11951 3993 

 

Table 10: Number of samples in balanced datasets 

Various elements lead to an imbalanced classification problem becoming a 

rather difficult one. Class imbalance on its own makes the learning task complicated 

by having a disproportion between class examples (Sun et al. 2009). However, that is 

not the only problem. The number of minority class examples might not be sufficient 

to train a classifier, the validation scheme used to estimate the classifier might lead 

to high error rates and minority class samples might form small distributed groups 



 

58 

 

(Chawla et al. 2002; Bunkhumpornpat et al. 2009; Sáez et al. 2016). In short, the 

difficulty in classification depends on the degree of imbalance but also on the 

characteristics of the data in a non-trivial fashion. In conclusion, the challenging 

problem in Chemoinformatics is the screening of overly imbalanced datasets and this 

scenario is thus the main focus of this study. Thus, there is no rule of thumb and the 

degree of imbalance in the test set cannot be assumed to be known in advance in a 

real setting. The main goal of this thesis is to devise a unified protocol to apply to all 

datasets regardless of the data characteristics. In conclusion, the challenging problem 

in Chemoinformatics is the screening of overly imbalanced datasets and this scenario 

is thus the main focus of this study. 
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4.3. Evaluating Imbalanced Learning Outcomes 

In order to assess the effect of the algorithms used on imbalanced data one 

needs to apply standard evaluation metrics to the outcomes of the classification 

process. Metrics can be dependent or independent of the distribution of the data. 

When looking at the confusion matrix (please see Table 8) one can observe that the 

left column of the table represents the positive instances and the right column 

represents the negatives. The ratio of the two columns characterise the class 

distribution. An evaluation metric which uses both columns in its calculation 

becomes sensitive to (dependent on) any imbalance in the dataset (He & Garcia 

2009). Imbalance-sensitive metrics cannot assess the performance of classifiers 

because variations in the distribution of data cause a change in the measures of 

performance even though the performance of the classifier has not changed. 

Examples here can be precision and accuracy. Precision determines the fraction of 

the instances classified by the classifier that actually belongs to that class. But as the 

formula reads, it depends on both column of the confusion matrix and it does not 

declare the false negatives. Accuracy measures how error-free the model’s 

predictions are. Accuracy does not include cost information; it assumes equal cost 

for data being classified as false positive (false alarm) or false negative 

(misclassified). 

 

 

One metric which is not dependent on the imbalance is recall. Recall is the 

ability of an algorithm to select instances of a certain class from the dataset. If we 

look at how recall is calculated we can see that this metric uses only one column 

from the table, making it non imbalance-sensitive. This makes it ideal for assessing 

the performance of the algorithm used. Unfortunately recall does not provide 

information about the false positives.  
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F-measure is a metric which combines recall and precision (harmonic mean of 

both).  

 

It can provide more information about the classifier than accuracy and at the 

same time it is sensitive to the data distribution. β is a coefficient to adjust the 

relative importance of precision and recall, usually β = 1. 

4.4. Classification 

Classification is the act of assigning items in a collection to target classes. The 

goal here is to accurately predict the target class for each of the instances in the 

dataset. The classification task begins with a dataset in which the class assignments 

are known. Therefore, the model is built based on the observed data. In this model, 

the algorithm used find relationships between the values of the predictors and the 

values of the target. Different algorithms use different techniques to establish these 

relationships; but in general classification models are tested by comparing the 

predicted values to known targets. The data used for classification is usually divided 

into two datasets: the training set for building the model and the test set for testing 

the built model. 

The datasets for this study were split into test and train sets as 60% training 

and 40% test. The split was done randomly and 30 runs for each experiment so that 

the dataset could be explored in most possible ways and the combinations could be 

tested in order to get a statistically sound result. The split was done in a stratified 

manner so that the class distribution in all the train / test cases would be the same 

(Bouckaert et al. 2013). 

The first balancing method in this study was developed in order to analyse the 

effect of the SMOTE technique before computing a “genuine” out-of-sample 

prediction. In other words, we first evaluate the classification metrics when using the 

both real and synthetic data from SMOTE in the test set (“SMOTE” operates before 

the out-of-sample prediction), as opposed to when the test set consists exclusively of 

samples from the original test dataset and not artificial data generated by SMOTE 

(what we term here a “genuine” out-of-sample prediction). This is still interesting, 
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because SMOTE has an effect on data that is often not trivial and depends on the 

sparseness of the data in the space of variables (Chawla, 2005; Sruthi et al. 2015).  

Thus, it will enable us to discuss more specifically the potential reasons for the 

success or failure of the genuine validation (on non-oversampled test datasets) 

computed in the next balancing method where only the training set was balanced and 

the test set was not. 

Nonetheless, is interesting to stress that the results shown, correspond to a 

thorough cross-validation for the over-sampled dataset. After balancing, the whole 

dataset was then split into training (60%) and test (40%); we performed the splitting 

30 different times and in a stratified manner so that the test set does not always 

contain the same instances from the same classes. As a result, each random given 

instance has the chance to appear in both training and test sets. Using cross-

validation decreases the chances of SMOTE causing over-fitting; yet of course a 

genuine cross validation in non-oversampled data performed next is the only fully 

reliable analysis. 

In order to perform the classification for this study, the open source machine 

learning software Weka (Hall et al. 2009) was used due to its outstanding capabilities 

in large datasets processing unlike other commercial platforms. The 32-bit version of 

Weka only utilises 2GB of physical memory and the 64-bit version only 4GB. All 

the acquired datasets are originally in the structured data format (sdf). These files are 

converted to the available molecular fingerprints using PaDel and PowerMV. The 

datasets produced by PaDel fingerprints contain binary structural descriptors. In 

order to include numerical properties without the memory issue, the numerical 

descriptors generated by PowerMV (only 32 attributes) are added to the structural 

descriptors. The datasets are then imported into Weka and classification is performed 

using four main algorithms Random Forest, J48, Naïve Bayes and SMO. A 

description of the utilised classification algorithms is as follows:  

 Sequential Minimal Optimisation (Weka’s implementation of Support 

Vector Machine) 

This algorithm implements John C. Platt’s sequential minimal optimisation 

algorithm for training a support vector classifier. Training a Support Vector Machine 

requires solving a large quadratic programming optimisation problem. Sequential 

Minimal Optimisation (SMO) breaks down this large quadratic problem into a 
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succession of smaller quadratic problems. These smaller problems are then solved 

analytically in order to avoid becoming optimisation inner-loops in the code of the 

algorithm, therefore saving time. The amount of memory used for SMO is linear in 

the training set size allowing it to handle large training sets (Platt 1998; Flake & 

Lawrence 2002; Wu et al. 2013). 

Support Vector Machines (SVM) offer high performance at classifying 

datasets with either a very small subset of features or with extreme ones (Wald et al. 

2013). SVM models depend on the samples on the margins of each class, also called 

support vectors (Liu et al. 2013), unlike other classifiers that use all the samples in 

the dataset in order to determine the boundaries between classes. Support Vector 

Machines are believed to be less susceptible to class imbalance than the other 

classification algorithms. The reason behind this is that the boundaries between 

classes in SVMs are calculated with respect to only a few support vectors (as 

mentioned above) and class size should not affect the class boundaries too much. 

However, previous research (Wu & Chang, 2003; Akbani et al. 2004; Batuwita & 

Palade, 2013; Prati et al. 2015) shows that SVMs can be rendered ineffective in 

determining class boundaries if the class distribution is too skewed (1000:1 majority 

to minority rate). The reason behind this is that as the training data becomes more 

imbalanced, the support vector ratio between the classes also becomes more 

imbalanced. The small amount of cumulative error on the minority class instances 

count for very little in the trade-off between maximising the width of the margin and 

minimising the training error. As a result SVMs learn to classify everything as the 

majority class so that the margin becomes the largest and the error the minimum 

(Sun et al. 2009). 

Given a set of training data (xi, yi), where i = 1, …, N, xi ϵ Rd, yi ϵ {-1, 1}. If 

there are some hyperplanes that separate the data points with different classes, then 

hyperplane H is defined as wx + b = 0 and the perpendicular distance between the 

hyperplane and the origin is  when w is normal to H (Zheng et al. 2015). For a 

binary classification problem such as the case of our project, two hyperplanes are 

defined as H1: wx + b = -1 and H2: wx + b = 1, where the data points in the majority 

class satisfy wx + b ≤ -1 and the data points in the minority class satisfy wx + b ≥ 1. 

Training data vectors unquietly defining such delta-margin hyperplane(s) are termed 
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support vectors; because the entire classification of the test data solely relies on these 

vectors. Vectors “support” the optimal solution of the classification algorithm and 

will determine the predicted class of the test data (Scholkopf and Smola, 2002; 

Bishop, 2006). 

The pseudocode for SMO (Platt 1999) can be seen below: 

1. target = desired output vector 

2. point = training point matrix 

3.  

4. procedure takeStep (i1, i2) 

5.     if (i1 == i2) return 0 

6.     alph1 = lagrange multiplier for i1 

7.     y1 = target [i1] 

8.     E1 = SVM output on point[i1] – y1 (check in error cache) 

9.     s = y1*y2 

10.     Compute L, H via equations (13) and (14) 

11.     if (L == H) 

12.         return 0 

13.     k11 = kernel (point[i1], point[i1]) 

14.     k12 = kernel (point[i1], point[i2]) 

15.     k22 = kernel (point[i2], point[i2]) 

16.     eta = k11 + k22 – 2*k12 

17.     if (eta > 0) { 

18.         a2 = alph2 + y2 * (E1 – E2) / eta 

19.         if (a2 < L) a2 = L 

20.         else if (a2 > H) a2 = H 

21.     } 

22.     else  

23.     { 

24.         Lobj = objective function at a2 = L 

25.         Hobj = objective function at a2 = H 

26.         if (Lobj < Hobj – eps) 

27.             a2 = L 

28.         else if (Lobj > Hobj + eps) 

29.             a2 = H 

30.         else 

31.             a2 = alph2 

32.     } 

33.     if (| a2 – aplh2| < eps * (a2 + alph2 + eps)) 

34.         return 0 

35.     a1 = alph1 + s * (alph2 – a2) 

36.     Update threshold to reflect change in Lagrange multipliers 

37.     Update weight vector to reflect change in a1 & a2, if SVM is linear 

38.     Update error cache using new Lagrange multipliers 

39.     Store a1 in the alpha array 
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40.     Store a2 in the alpha array 

41.     return 1 

42. endprocedure 

43.  

44. procedure examineExample (i2) 

45.     y2 = target [i2] 

46.     Alph2 = Lagrange multiplier for i2 

47.     E2 = SVM output on point [i2] – y2 (check in error cache) 

48.     r2 = E2 * y2 

49.     if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0)) { 

50.         if (number of non-zero & non-C alpha > 1) { 

51.             i1 = result of second choice heuristic  

52.             if takeStep (i1, i2) 

53.                 return 1  

54.         } 

55.         Loop over all non-zero and non-C alpha, starting at a random point { 

56.             i1 = identity of current alpha 

57.             if takeStep (i1, i2) 

58.                 return 1 

59.         } 

60.         loop over all possible i1, starting at a random point { 

61.             i1 = loop variable 

62.             if (takeStep (i1, i2) 

63.                 return 1 

64.         } 

65.     } 

66.     return 0 

67. endProcedure 

68.  

69. main routine: 

70.     numChanged = 0; 

71.     examineAll = 1; 

72.     while (numChanged > 0 | examineAll) { 

73.         numChanged = 0; 

74.         if (examineAll) 

75.             loop I over all training examples 

76.                 numChanged += examineExample (I) 

77.         else 

78.             loop I over examples where alpha is not 0 & not C 

79.                 numChanged += examineExample (I) 

80.         if (examineAll ==1) 

81.             examineAll = 0 

82.         else if (numChanged == 0) 

83.             examineAll = 1 

84.     } 
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 J48 (Weka’s implementation of C4.5) 

J48 implements a state of the art Quinlan’s C4.5 algorithm (Quinlan 1993; 

Quinlan 2014) for generating a pruned or un-pruned C4.5 decision tree. Decision 

trees as a predictive model, map observations about an item to the conclusions about 

the item’s target value. In tree structures the leaves represent class labels and 

branches represent conjunction of features that lead to those class labels. J48 builds 

decision trees from a set of labelled training data using information entropy. This 

employs the fact that each attribute of the data can be used to make a decision by 

splitting the data into smaller subsets. In order to make a decision, J48 examines the 

information gain that comes from choosing an attribute for splitting the data. The 

attribute with the highest normalised information gain is used. The algorithm moves 

on to smaller subsets. The splitting stops when all instances in a subset belong to the 

same class. 

The pseudocode for C4.5 is as follows (Yasin et al. 2014): 

1. Input: a dataset D 

2.  

3. begin 

4.     Tree = {} 

5.     If (D is “pure”) || (other stopping criteria met) then terminate; 

6.     For all attribute a α ϵD D do  

7.         Compute criteria impurity function if we split on  α; 

8.     αbest = Best attribute according to above computed criteria 

9.     Tree = Create a decision node that tests αbest in the root 

10.     D v = Induced sub-datasets from D based on αbest 

11.     For all D v do 

12.         begin 

13.             Tree v = J48(D v) 

14.             Attach Tree v to the corresponding branch of tree 

15.         end  

16.     return tree 

17. end 

 

 Random Forest (RF) 

Random Forests are combinations of tree predictors such that each tree 

depends on the value of a random vector sampled independently and with the same 

distribution for all trees in the forest (Breiman 2001). In short a Random Forest is an 

ensemble of decision trees that will output a prediction value. Each decision tree is 

constructed by using a random subset of the data and gives a classification and votes 
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for that class. The forest chooses the classification having the most votes; the most 

popular class. 

The element that has contributed to its popularity is that it can be applied to a 

wide range of problems and has only a few parameters to tune. Apart from this, it is 

known to be able to deal well with small sample sizes, high-dimensional feature 

spaces and complex data structures (Scornet et al., 2015).  

Random Forest has an excellent performance in classification tasks that can 

outperform other classifiers. Some of its features which allow for this to happen are 

as follows (Díaz-Uriarte & Alvarez de Andrés, 2006; Khoshgoftar et al. 2007): 

 This classifier can be used where the number of features are greater than the 

number of observations.  

 It can be used for binary and multi-class problems. 

 Performs well with noise and shows robustness to large feature sets. 

 As the number of trees increase, the chance of over-fitting decreases. 

The mathematical equation for Random Forest can be shown as below: 

Assuming a dataset D = {(x1, y1), …, (xn, yn)} 

Drawn randomly from a probability distribution (xi, yi) ~ (X, Y) 

Given the ensemble of classifiers h = {h1(x), …, hk(x)} 

If each hk(x) is a decision tree then the ensemble is a Random Forest. 

The parameters of the decision tree for the classifier hk(x) are Өk = (Өk1, Өk2, …, Өkp) 

The decision tree k leads to a classifier hk(x) = h(x|Өk) 

The following shows the pseudocode for Random Forest classifier (Kouzani et 

al. 2009): 

 

1. select the number of tress to be generated 

2.  

3. for (k = 1; k <= K; k++) 

4.     draw a bootstrap sample Өk from the training data 

5.     grow an unpruned classification tree h(x, Өk) 

6.     for (i = 1; i = number-of-nodes; i++) 

7.         randomly sample m predictor variables 
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8.         select the best split from among those variables 

9.     end 

10. end  

11. e 

12. each of the K classification tress casts 1 vote for the most popular class at input 

x 

13. e 

aggregate the classification of the K tress and select the class with maximum 

votes 

 Naïve Bayes (NB) 

This is a specialised form of the Bayesian network. The algorithm relies on 

two assumptions: first that the predictive attributes are conditionally independent 

given the class and second that no hidden attributes affect the prediction process 

(John & Langley 1995). 

The pseudocode for Naïve Bayes can be seen as below (Yang & Webb 2003): 

 

1. “F”: frequency tables 

2. “I”: number of instances 

3. “C”: how many classes 

4. “N”: instances per class 

5.  

6. Function update (class, train) { 

7. I++ 

8. if (++N[class]==1 

9.     then C++ 

10. fi 

11. for <attr, value> in train 

12.     do  

13.         if (value != “?”) 

14.             then F[class, attr, range] ++ 

15.         fi 

16.     done 

17. } 

Each of the four algorithms used has its own advantages and disadvantages. 

NB can be used in HTS as a simple classifier for actives and non-actives. It is guided 

by the frequency of the occurrence of molecular descriptors in the training set. NB 

depends on the two assumptions mentioned above namely the independence of 

attributes from each other and that all attributes are equally important. Normally 
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these assumptions are violated but NB is a robust algorithm and very tolerant 

towards noise and handles large datasets very well (Plewczynski et al. 2006). 

With decision trees (or forests) the molecular descriptors which describe the 

molecular features of the training set are systematically added to a decision tree 

model one at a time until compounds that have different biological properties are 

adequately separated. Decision trees take in objects and situations described by 

properties and output a yes or a no. In general they represent a disjunction of 

conjunctions of constraints on the attribute value of instances. RF can handle 

thousands of attributes and gives estimates of which variables are important during 

classification. RF does not over-fit and is a fast method (Muegge & Oloff 2006; 

Plewczynski et al. 2006). 

There is much interest in using Support Vector Machines (SVMs) for 

compound classification and label prediction. One may question that whether using 

low-dimensional space representation is necessary for better virtual screening or 

molecular similarity results. SVMs project compounds as descriptor vectors into 

high-dimensional spaces and then construct a maximum-margin hyperplane by linear 

combination of training set vectors to optimally separate two classes of compounds. 

SVMs are one of few methods that have been developed to navigate high-

dimensional descriptor spaces (Eckert & Bajorath 2007). 

Table 11 contains the advantages of the classifiers used in this study. Of 

course, the simple, qualitative comparison in the figure refers exclusively to 

cheminformatics dataset (Galathya et al., 2012) although some of the differences 

have been observed in benchmark data. 

Decision Trees Naïve Bayes Support Vector Machine 

Easily observed and 

develop generated 

rules 

Fast, highly scalable model 

building (parallelised) and 

scoring 

More accurate than 

decision tree classification 

Table 11: Advantages of decision trees, Naïve Bayes, SVM classifiers. (Source: Galathiya et al. 

2012) 
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Table 12 summarises some feature comparisons between the classifiers used in 

this work. 

Feature Decision Trees Naïve Bayes Support Vector Machine 

Learning Type Eager Learner Eager Learner Eager Learner 

Speed Fast Very Fast Fast with Active Learning 

Accuracy Good Good Significantly High 

Interpretability Good - - 

Transparency Rules Black Box Black Box 

Table 12: Some of the features from classifiers used in this study. (Source: Galathiya et al. 2012) 

 Ensemble Learning 

Ensemble learning is a general term for combining the prediction of several 

learning models which may be assumed weak, into a single model which is a 

combination of the different classifiers it is made up of (Murphree et al. 2015). The 

ensemble model is often found to perform better (Friedman et al. 2001). Ensemble 

learning can be regarded as machine learning techniques whose decisions are 

combined in a way to improve the performance of the overall system. The concept 

states that no single approach can claim to be superior to any other and the 

integration of several single approaches will enhance the performance of the final 

classifier. Therefore, an ensemble classifier can have overall better performance than 

the individual base classifiers. The effectiveness of the ensemble methods is highly 

dependent on the independence of the error committed by the base learners (Tan & 

Gilbert, 2003). One type of ensemble methods is Majority Voting. Majority voting 

counts the class prediction of all the base models and assigns a class based on the 

majority opinion. If there are n independent classifiers that have the same probability 

of being correct, and each of them can produce a unique decision regarding the 

identity of the unknown pattern, then the pattern is assigned to the class for which 

there is a consensus; when at least k of the classifiers agree. k is defined as:  

  

The assumption is that each classifier makes a decision on an individual basis 

and is not influenced by any other classifier. The probabilities of various different 
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final decisions when x + y classifiers are trying to reach a decision can be defined as: 

(Pc + Pe)
x+y  where Pc is the probability of each classifier making a correct decision 

and Pe is the probability of each making a wrong decision (Pc + Pe = 1) (Rahman & 

Fairhurst 2000). 

Majority voting technique has the advantage that it creates a sense of decision 

census among the participating classifiers. Instead of the classifiers competing, the 

final decision is agreed by the majority, which allows for an overall moderation in 

the final decision (Bertolami & Bunke 2008). In short, for an ensemble of classifiers 

to produce a better solution than all of its members, it needs to have classifiers that 

are accurate and diverse. What is meant by accuracy is that a given classifier should 

have an error rate that is better than random guessing on new values. Diversity 

among classifiers can be defined as them making different errors on new data points 

(Dietterich 2000; Kuncheva & Whitaker 2003; Džeroski & Ženko 2004; Zhou 2012). 

4.5. Principal Component Analysis 

High-dimensional datasets have many instances and features which makes 

them very large datasets. The problem is not simply not having enough computing 

power to handle the data. The main issue is to make sense of the underlying structure 

in the data and to reach sensible conclusions about it, especially if there are hundreds 

of variables and thousands of individual observations involved. 

PCA is therefore used to reduce the complexity and the available variables 

(features) to a much smaller and manageable set. The goal is to reduce the 

information to meaningful combination of variables without losing too much useful 

information (Wang 2012). In other words, PCA is a simple and non-parametric 

method for extracting relevant information from confusing datasets. During this 

process, the dimensionality of the dataset is also reduced (Shlens 2014). PCA is a 

data analysis technique which is used to identify some linear trends and simple 

patterns in datasets (Xanthopoulos et al. 2013). 

The goals of PCA can be summarised as follows: 

 It reduces the attribute space from a larger number of variables to a smaller 

number of factors and therefore it is considered a non-dependent procedure. This 

means that it does not assume that a dependent variable is defined. 
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 PCA reduces the data dimensionality and as such it is a data compression 

method. It aims to extract the most important data from the dataset (Abdi & 

Williams 2010), however when dimensionality reduction happens there is no 

guarantee that all resulting dimensions are interpretable. 

Principle component analysis selects a subset of variables from a larger set of 

variables based on which variables have the highest correlations with the principal 

component. It identifies the most meaningful basis to re-express a dataset (Shlens 

2014; Jolliffe & Cadima 2016). 

In the pilot studies for this project, various attribute evaluators from the Weka 

software were employed in order to select attributes and reduce the dimensionality of 

our datasets. Some of these evaluators are CfsSubsetEval, InfoGainAttributeEval and 

OneRAttributeEval. However, these methods did not render any improvements and 

we then decided to use the Principal Component Analysis method. The goal of this 

project is to create a uniform protocol for all datasets and PCA behaved uniformly in 

all cases that it was applied to. One reason for its uniform behaviour could be that 

the datasets have very few outliers and in these conditions PCA is known to capture 

the most interesting part of the data variance (Zou et al. 2006). 

Other more sophisticated approaches could include but are not limited to 

Recursive Feature Elimination (Guyon et al. 2002; Maldonado et al. 2014). The goal 

here is to find a subset of size r among n variables (r< n), eliminating those feature 

whose removal leads to the largest margin of class separation. The other method 

proposed by Yin et al. (2013) suggests a three phase framework where in phase K-

mean clustering on class i (i=1,2,…,C) according to the user preset cluster number 

K(i) to decompose the majority class into relatively balanced pseudo-subclasses. The 

labels of class i are replaced with the subclass labels provided by the K-means 

clustering. This way a multi-class dataset is formed with  sub-classes. The 

pseudo-labels are acquired using the pseudo sub-classes. In phase 2, the measure of 

goodness of each feature is measured using the pseudo-labels and traditional 

measurements, and the features are ranked according to goodness based on the 

calculated scores. The top k good features are selected and the pseudo-labels are 

released to the original labels. In phase 3 classification can be done with the selected 

features.  
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4.6. Specific Methodology for Cheminformatics Data Screening  

In this section, we are going to explain the different techniques used to assess 

the results of our novel method. As a reminder to the reader, in this study we deal 

with highly imbalanced datasets, some of which are extremely high dimensional. 

Usually the common remedy is to alter the classifiers and tailor them to the type of 

data being used. However, in our work we do not modify the used classifiers from 

their original states and settings. Instead we use the combination of utilising SMOTE 

together with various fingerprinting techniques and applying PCA. 

To recap, the datasets used in this study were downloaded in the .sdf format. 

Using the PaDel and PowerMV software various fingerprints were developed for the 

said datasets. In addition to keeping the original imbalanced datasets as one sub-

study (Sub1), the dimensionality of a copy of the same imbalanced datasets were 

reduced using PCA (Sub2). Then two separate options were used on both Sub1 and 

Sub2 in order to prepare them further for classification. In the first option (Option1), 

the datasets were first balanced using SMOTE and then they were split into training 

and test sets. In the second option (Option2), the datasets were first split (in a 

stratified manner) into training and test sets and afterwards only the training set was 

balanced using the SMOTE technique. 

As a result, we obtain 6 separate states for all our datasets: 

 Original imbalanced 

 Balanced using Option1 

 Balanced using Option2 

 PCA imbalanced 

 PCA balanced using Option1 

 PCA balanced using Option2 

The focus of data mining activity in this work is on classification. As 

mentioned before, four main classifiers were used for this study: J48 (Weka’s 

implementation of C4.5), Random Forest, Naïve Bayes and SMO (Weka’s 

implementation of Support Vector Machine). 
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Individual classifier approach: 

In this approach, each pre-processed dataset will have 16 unique sub-datasets 

for classification (that is 8 different fingerprints and each fingerprint being binary 

only and binary plus numerical features). The number of generated features for the 

whole 16 sub-datasets can vary between 79 and 1056 depending on the fingerprint 

type used. A summary of these numbers has been shown in Table 4. 

Ensemble classifier approach: 

In this section, we have combined our four base classifiers in an attempt to 

investigate the effect this combination has on the classification accuracy of our 

datasets. An ensemble of classifiers is a set of classifiers whose individual decisions 

are combined by some method. Our method of choice for combining is majority 

voting, a robust approach in the case of heterogeneous solution spaces (Dietterich 

2000; Murphree et al. 2015). In majority voting the predictions done by all classifiers 

for each instance in a dataset are counted (predictions can be correct or wrong) and 

the most predicted label is considered the final vote for that instance. If there is a tie 

between predictions then a label is randomly chosen. 

Combining the predictions of multiple classifiers is more accurate than that of 

a single classifier. An ensemble of classifiers has stronger generalisation ability than 

a single classifier. A single learning algorithm searches a space of hypotheses in 

order to identify the best hypothesis in that space. If the amount of training data is 

too small compared to the size of the hypothesis, then the learning algorithm can find 

many hypotheses that give the same accuracy on the training data. By making an 

ensemble of the different accurate classifiers, their votes can be averaged and the risk 

of choosing the wrong classifier can be reduced. Sometimes even when there is 

enough training data it may still be computationally difficult for the learning 

algorithm to find the best hypothesis; the learning algorithm cannot guarantee 

finding the best hypothesis. If an ensemble is formed then a search for the hypothesis 

can be initiated from different starting points in the space (Dietterich 2000). 

Instance-based approach: 

This section with its experiments has been set up to observe how different 

fingerprinting techniques could affect the manifestation of the active (and 

structurally similar) compounds at the top of the dissimilarity ranking. This is 
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basically to observe how many of the compounds which rank the most similar to the 

query compound have the same effect (in our case the activity per class). 

Fingerprinting Technique # Binary Feat # Binary + Numerical Feat 

EState 79 111 

Fingerprinter 1024 1056 

Extended Fingerprinter 1024 1056 

Graph-Only 1024 1056 

MACCS 166 198 

Pharmacophore 147 179 

PubChem 881 913 

Substructure 307 339 

 

Table 13: Summary of the number of features generated by various fingerprinting techniques 

For each of the fingerprints generated for a particular dataset, a Euclidean 

distance measure is calculated which will show how dissimilar each of the instances 

in the dataset are to a target molecule. The result can be sorted based on similarity or 

dissimilarity; in our case similarity was chosen. Once the results were in hand, the 

next step was to combine the datasets. The non-repeating combinations were done in 

groups of two, three, four … and eight. To find out how many non-repeating 

combinations this would result in, the formula in Figure 20 was used. 

 

 

Figure 20: An example of how to calculate non-repeating combinations for a group of 7 fingerprints 

Here n is the pool of the options to choose from which in our case is the 

number of fingerprints (8) and r is the number of unique combinations required, 

which in this case varies from 1 to 8. Thus, if for example we decide to select 7 

unique fingerprints from the available 8 that would give us 8 unique non-repeating 

combinations. 
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ESt-Ext-Fin-Gra-MAC-Pha-Pub 

ESt-Ext-Fin-Gra-MAC-Pha-Sub 

ESt-Ext-Fin-Gra-Pha-Pub-Sub 

ESt-Ext-Fin-Gra-MAC-Pub-Sub 

ESt-Ext-Gra-Mac-Pha-Pub-Sub 

ESt-Ext-Fin-MAC-Pha-Pub-Sub 

ESt-Fin-Gra-MAC-Pha-Pub-Sub 

Ext-Fin-Gra-MAC-Pha-Pub-Sub 

Each sheet containing the generated fingerprints for each dataset has the 

instances on the rows (horizontally) and the features on the columns (vertically). 

Once the Euclidean distance measure is calculated for all fingerprints, the distance 

measures are added up according to the possible combinations. Extra attention 

should be paid when adding up to ensure that the measures from the corresponding 

instances are added up. Once the sheets are transposed, the instances will be on 

columns and the distance measures on rows. Therefore, each single instance can be 

sorted based on its distance measure from the target molecule.  

From this we can observe how many of the instances that are similar to the 

target molecule are actually from the rare (positive) class and whether or not 

combining distance measures has increased the chance of these positive and similar 

instances to show up on top of the list; whether or not this would increase the 

accuracy of the method used. We calculated the positive and similar instances 

appearing in the top5, top10 and top20 of the combinations. 
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4.7. Summary of Data Mining Methods 

In chapter we discussed data imbalance, what it means and is; reasons behind it 

and some of the consequences of imbalance in datasets during pre-processing and 

classification. The most common approaches for dealing with data imbalance were 

shown; and for our particular study we chose the SMOTE method from the 

oversampling technique. In order to evaluate imbalanced classification results we 

need to use class-specific metrics. 

Then we delved into the different classifiers that we employed for our study; 

focusing on the specific implementation that yields an effective computational cost 

in high dimensional datasets. We then carried on by describing the various methods 

used in order to make our study more feasible and to reduce the computing cost of 

having to classify high dimensional imbalanced datasets. 

The novelty of the methods used in this thesis lies in demonstrating empirically 

that the specific combination of oversampling SMOTE techniques together with 

classification provides a method valid for wide range of imbalance degrees; designed 

to be universally useable for the laboratory professional not expert in machine 

learning. This approach contrast with the alteration of inner settings of the classifiers 

in order to suit them to specific datasets i.e. specific level of imbalance; 

notwithstanding the strength of this approach in scenarios where dataset properties 

are known and the level of imbalance is expected to be relatively stable. 

In the next chapter, we shall reveal the results from the various methods used 

for classifying these highly heterogeneous datasets. 
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5. Analysis of the Datasets 

In previous chapters, we discussed the datasets used for this study. In chapter 3 

we mentioned how and where the datasets were collected from and how various 

fingerprints were generated for them, creating 64 unique datasets for us to examine 

and perform experiments on. We also got familiar with the nature of the imbalance 

in the datasets and realised the extent of their dimensionality in the context of the 

number of features and instances they have. We will also briefly remind the reader 

about those factors in this chapter. 

Chapter 4 described the data mining methods that were utilised to acquire the 

confusion matrix from classifying each one of the datasets. From the matrix we 

extracted true positives and false positives in order to assess the performance of the 

classifier used, towards the goal of out-of-sample testing our proposed unified 

approach on classifying potentially highly imbalanced high-dimensional datasets. 

In this chapter, we present the analysis of the datasets used and we will show 

the results achieved from classifying the datasets together with visual aids in order to 

provide a better view of the results. As indicated earlier, the main challenge we face 

is the highly heterogeneous imbalance ratio between the datasets.  

Datasets have been classified initially according to their original imbalanced 

state. Afterwards they have had their dimensionality reduced by applying the 

principle component analysis (PCA) and then classified again according to the 

literature in the area as discussed previously (section 4.4). With both the original 

state and the PCA-applied state, datasets have been classified using the following 

methods: 

1. Whole datasets were balanced using the SMOTE technique and then split into 

training and test sets. 

2. The datasets were split into training and test sets and then only the training set 

was balanced using the SMOTE technique. 

In all datasets, the splitting into training and test sets was performed stratified, 

randomly and 30 times to achieve statistically sound results (May et al. 2010; Yuan 

et al. 2014; Zhou et al. 2016). In a stratified sampling one makes sure that the 

balance between the two classes in a sample of instances chosen is the same. In other 
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words, there are the same number of positive and negative classes available in the 

sample. 

We initially start with our benchmarked dataset; the mutagenicity dataset. This 

dataset is the most balanced of all datasets used and has been used numerous times in 

various experiments (Ferrari & Gini 2010; Ferrari et al. 2012; Seal et al. 2012; 

Salama et al. 2014). The results for the Factor XA dataset will be shown afterwards. 

Then we will proceed to the more challenging datasets; AID362 and AID456 which 

have never been successfully analysed before. 

Results shall be discussed from different angles: 

 How well the methods performed compared to the original classification 

 How well different fingerprints performed within the same method and across 

different methods used 

There will also be a comparison between the different classifiers used for this 

study within the different methods utilised. 

5.1. The Benchmark Dataset 

As mentioned in chapter 3, this dataset was prepared by Bursi and co-workers 

(Kazius et al. 2005) in order to identify sub-structures that could help classify 

whether unseen test molecules were mutagenic. The dataset prepared for this study 

has a total of 4893 instances of which 2556 are active (mutagens) and 2337 are 

inactive (non-mutagens). Table 1 summarises the number of instances present in the 

training and test set of this dataset. 

Dataset #Total 

Instances 

#Active 

Instances (1) 

#Inactive 

Instances (0) 

Active/Inactive 

Ratio 

Mutagenicity 4893 2556 2337 1.09 

Table 14: Mutagenicity dataset specification. Class of interest labelled as 1. 

This dataset according to He and Ma (2013) is only a marginally imbalanced 

dataset. As seen in the above table that the ratio of active to inactive is very close to 

1 (almost balanced ratio). In the next section, we classify the original dataset and 

show the classification metrics used. 
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Bursi Classification Results per Fingerprint used – Original Dataset 

In this section, the Bursi dataset was exposed to our four chosen classifiers; 

Naïve Bayes, J48, Random Forest and SMO (Weka’s specific implementation 

SVM). In the case of the SMO various kernels available with Weka were used and 

the results were similar regardless of the chosen kernel. Therefore, the default linear 

kernel was used for this study. Each of these classifiers learn the training set and 

create a model which then is applied to the unseen test set.  

In the first part of this section we look at the classification metrics for each of 

the used fingerprints per classifier. In the graphs the bars represent the classification 

metrics; sensitivity, specificity, false positive, false negative and accuracy. The 

standard deviation for each bar is situated on top of the bar as a capped thinner bar. 

First we look at the results from J48. 

 

Figure 21: Classification results from classifying the Bursi dataset by J48. 

In Figure 21 we see that with almost all of the fingerprints (except for 

Pharmacophore), there is a high percentage of true positive and true negative rate. 

False positive (FP) and false negative (FN) rates are particularly low, with false 

negatives slightly above false positives, albeit non- significantly (FP vs FN, pairwise 

T test, p>0.05). This condition is preferred since for example in a critical situation 

such as medical diagnosis, diagnosing healthy patients wrongfully as sick patients is 

better than diagnosing sick patients as healthy. The fingerprints MACCS and 

PubChem have performed best on this dataset with the highest sensitivity, specificity 

and accuracy and the lowest false positive and false negative of all eight fingerprints 

used. 
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Figure 22: Classification results from classifying the Bursi dataset by Naïve Bayes. 

The results from NaïveBayes (Figure 22) show better sensitivity and 

specificity rates and lower, more stable false positive and negative among all of the 

fingerprints. 

 

Figure 23: Classification results from classifying the Bursi dataset by Random Forest. 

The results produced by Random Forest are not all at the same level. MACCS 

and Pharmacophore are the two fingerprints producing the better results where the 

false positive and false negative results are lower than the other fingerprints, despite 

having slightly lower sensitivity and specificity. 
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Figure 24: Classification results from classifying the Bursi dataset by SMO. 

Next, the results from classifying the datasets with the classifier SVM/SMO 

are shown in Figure 24. From observing the graph we see that MACCS and 

PubChem have yet again produced better results. 

 

Figure 25: Classification results from classifying the Bursi dataset by Majority Voting. 

To conclude the analysis, the results from Majority Voting present yet the best 

out of all classifiers. As mentioned before, in Majority Voting, the power of multiple 

models is leveraged in order to achieve better accuracy levels than the individual 

models could have achieved on their own. We observe this effect in Figure 25. By 

comparing to the other 4 figures shown before in this section (Figures 21-24), we can 

see the here we have the highest sensitivity and specificity and accuracy levels and 

the lowest false positive and false negative between the classifiers used. A summary 

of such results and a discussion on the criterion for the best approach is at the end of 

this chapter. In the next section, we will observe how adding numerical fingerprints 

affects our classification results with the original dataset and whether the changes are 

statistically significant or not. 
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Analysis of the Improvement with Numerical Fingerprints 

The results reported above stem from applying classifiers to binary 

fingerprints. In our study, we have included numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results are shown below. With the metrics sensitivity, specificity and accuracy, if the 

difference of the two numbers is a positive number, then that is considered an 

improvement (a green arrow pointing upwards) and if the difference is negative then 

it is considered not to have improved (a red arrow pointing downwards). With false 

positive and false negative it is the other way round. That means that if the resulting 

number is a negative number, then that mean that these metrics have become smaller 

and we have less of them occurring, resulting in an improvement (green arrow 

pointing down). 

The summary of results from adding the numerical fingerprints are shown in 

Figures 26-30. In these figures which relate to the results of adding numerical 

fingerprints, whilst the improvement and non-improvement is shown with the 

arrows. The significance of this change is calculated by utilising a standard two 

tailed t-test (since normality was verified in all cases, Lilliefors test p<0.001) and 

illustrated with the help of asterisks (*if the resulting change is less than 0.01 but 

bigger than 0.001, ** if the change is less than 0.001). The significant results have 

been made bold to make them clearer. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑* ↓* ↓** ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑** ↑** ↓** ↓** ↑**

MACCS ↑** ↑** ↓** ↓** ↑**

Pharmacophore ↑** ↑* ↓* ↓** ↑**

PubChem ↑ ↑* ↓* ↓ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 26: Results from adding numerical fingerprints to binary fingerprints for J48 
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↓**

Extended ↑** ↓** ↑** ↓** ↑ 

Fingerprinter ↑** ↓ ↑ ↓** ↑**

Graph-Only ↑** ↓ ↑ ↓** ↓**

MACCS ↑** ↓** ↑** ↓** ↑**

Pharmacophore ↓** ↓** ↑** ↑** ↓*

PubChem ↑** ↓** ↑** ↓** ↑ 

Substructure ↑** ↓** ↑** ↓** ↓**  

Figure 27: Results from adding numerical fingerprints to binary fingerprints for Naïve Bayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↑ ↑** ↓** ↓ ↑*

Fingerprinter ↑ ↑** ↓** ↓ ↑**

Graph-Only ↑** ↑** ↓** ↓** ↑**

MACCS ↑ ↓** ↑** ↓ ↑**

Pharmacophore ↑** ↓** ↑** ↓** ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 28: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑** ↑** ↓** ↓** ↑**

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↓** ↑ ↓ ↑** ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 29: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↑ ↓ ↑ ↓ ↑**

Fingerprinter ↑ ↓* ↑* ↓ ↑*

Graph-Only ↑** ↑** ↓** ↓** ↑**

MACCS ↑** ↓* ↑* ↓** ↓ 

Pharmacophore ↑** ↑ ↓ ↓** ↑**

PubChem ↑* ↓ ↑ ↓* ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 30: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

In summary, result shown in Figures 26-30 show a complex scenario, in the 

sense that the no particular fingerprint has consistently performed the best. Of 
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course, the settings have been different due to the classifiers used. But in general 

(except for when Naïve Bayes is used), metrics have improved with the addition of 

numerical fingerprints. In the next section, we classify the original dataset and show 

the classification metrics used. 

Bursi Classification Results per Classifiers Used – Original Dataset 

In this section, we look in more detail at the classification results per 

fingerprint used and for each classifier. We want to observe with every classifier, 

which fingerprint performed better regarding the classification metrics. In the next 

few pages we shall be showing these results.  

Each chart belongs to one specific fingerprint and shows the five main 

classification metrics used for this study and for each of those there will be five bars 

corresponding to each classifier. 

 

Figure 31: Classifier performance for EState – Original 

 

Figure 32: Classifier performance for MACCS – Original 
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Figure 33: Classifier performance for Pharmacophore – Original 

 

Figure 34: Classifier performance for PubChem – Original 

 

Figure 35: Classifier performance for Substructure – Original 

From observing Figures 31-35 is evident that Majority Voting has consistently 

performed better once more than all the other classifiers for this dataset. In the next 

section, we will observe how adding numerical fingerprints affects our classification 

results and whether the changes are statistically significant or not. 
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Analysis of the Improvement with Numerical Fingerprints 

In the next few figures we shall see the result of adding numerical fingerprints 

to binary fingerprints and how that has affected the performance of our classifiers. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑* ↓* ↓** ↑**

NB ↓** ↑** ↓** ↑** ↓**

RF ↓** ↑** ↓** ↑** ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↑** ↑** ↓** ↓** ↑**  

Figure 36: Results from adding numerical fingerprints to binary fingerprints for EState  

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↑** ↓** ↑** ↓** ↑**

RF ↑ ↓** ↑** ↓ ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↑** ↓* ↑* ↓** ↓  

Figure 37: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑* ↓* ↓** ↑**

NB ↓** ↓** ↑** ↑** ↓*

RF ↑** ↓** ↑** ↓** ↑**

SMO ↓** ↑ ↓ ↑** ↑**

MV ↑** ↑ ↓ ↓** ↑**  

Figure 38: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑* ↓* ↓ ↑ 

NB ↑** ↓** ↑** ↓** ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↑* ↓ ↑ ↓* ↑  

Figure 39: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↑** ↓** ↑** ↓** ↓**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 40: Results from adding numerical fingerprints to binary fingerprints for Substructure 
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The results here show that, as a direct consequence of adding the numerical 

fingerprints, classifier performance has improved greatly in the cases of PubChem 

and Substructure, as will be discussed below. In this next section, the PCA feature 

selection method is applied and the original dataset is classified and we see the 

metrics used. 

Bursi Classification Results per Fingerprint used – PCA Original 

In this section, we analyse how applying the PCA method to our dataset affects 

the classification metrics and classifier performance when looked at from the point 

of view of the fingerprints used and from the classifiers’ aspect. This is a common 

approach in the cheminformatics dataset analysis (similar results are typically 

obtained with other dimensionality reduction methods) (Zou et al. 2006; Maji et al. 

2013; Bro & Smilde 2014). The comparison with the coloured bars show the 

classification metrics and standard deviation is shown as capped thinner bars on top 

of the coloured bars. 

 

Figure 41: Classification results from classifying the Bursi dataset by J48 – PCA 

 

Figure 42: Classification results from classifying the Bursi dataset by Naïve Bayes – PCA 
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Figure 43: Classification results from classifying the Bursi dataset by Random Forest – PCA 

 

Figure 44: Classification results from classifying the Bursi dataset by SMO – PCA 

 

Figure 45: Classification results from classifying the Bursi dataset by Majority Voting – PCA 

Figures 41- 45 show that in the cases of J48, Naïve Bayes and Majority Voting, the 

fingerprints have performed very well keeping sensitivity and specificity high and 

false positive and false negative low and very consistently. As indicated in Chapter 

4, section 4.4 under Random Forest, it seems that this classifier (RF) is typically 

more sensitive than SVMs and ensemble approaches to high variance in certain 

fingerprints, which may be due to intrinsic characteristics of the algorithm which in 
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our datasets often provides a flexible “more optimistic” but on occasion less robust 

solution than the other classifiers, like in these alluded figures. The conclusions 

steaming for this result is that Random Forest is not always the optimal approach as 

seen in Figure 32. Yet in some scenarios it is still the optimal one per the metrics we 

have defined in the summary Figures that will be discussed in following chapters 

(62, 184 and 254). However, the overall differences between the three optimal 

classifiers are small and therefore this has no significant consequences in the 

robustness of the proposed protocol as will be discussed in the following chapters. In 

the next section, we will observe how adding numerical fingerprints affects our 

classification results and whether the changes are statistically significant or not. 

Analysis of the Improvement with Numerical Fingerprints 

Similar to the analysis performed on the original datasets; by adding numerical 

fingerprints, we endeavour to see the effects that this action has on the performance 

of our fingerprints in the case of each classifier. This has been shown in Figures 46-

50. As a gentle reminder for our readers, a green arrow upwards means the same as a 

green arrow downwards with the difference that with sensitivity and specificity a 

green arrow upwards means an improvement in the metric; the number has grown 

and there’s a positive difference when adding numerical features.  

In the case of false positive and false negative a green arrow downwards is the 

sigh of improvement meaning that the numbers have become smaller and we have 

less of each metric. The significance of the change (difference) is shown using 

asterisks and calculated by using two-tailed t-test assessment (normality accepted at 

p>0.05, Lilliefors test). 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑* ↑** ↓** ↓* ↑**

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↑* ↑ ↓ ↓* ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 46: Results from adding numerical fingerprints to binary fingerprints for J48 
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↓ ↑ ↑ ↓*

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓ ↑ ↓ ↑ 

Pharmacophore ↓ ↓ ↑ ↑ ↓ 

PubChem ↑** ↑** ↓** ↓** ↑ 

Substructure ↓** ↓** ↑** ↑** ↓  

Figure 47: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↓ ↑** ↓** ↑ ↑ 

Pharmacophore ↓** ↑** ↓** ↑** ↑**

PubChem ↓** ↑ ↓ ↑** ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 48: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↑ ↑ ↓ ↓ ↑*

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑** ↓ ↑ ↓** ↑**

MACCS ↑* ↑ ↓ ↓* ↑**

Pharmacophore ↓** ↑ ↓ ↑** ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓** ↑* ↓* ↑** ↑**  

Figure 49: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓** ↑** ↓** ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑** ↑* ↓* ↓** ↑**

MACCS ↑** ↓ ↑ ↓** ↓ 

Pharmacophore ↑** ↓** ↑** ↓** ↑**

PubChem ↑** ↓* ↑* ↓** ↑ 

Substructure ↑** ↓** ↑** ↓** ↑**  

Figure 50: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

By observing Figures 46-50 one can see that J48, Random Forest and SMO 

show great improvements in specificity and lower rates of false positives. Majority 
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voting, once again, shows improvements in sensitivity and false negative rates. In the 

next section, we classify the original dataset and show the classification metrics 

used. Note that PCA was applied to the dataset. 

Bursi Classification Results per Classifiers Used – PCA Original 

In this section, we present the classification results for the Bursi dataset 

explored from a fingerprint-classifier relationship side; in other words, which 

classifier performed better at the presence of an individual fingerprint. In the 

previous section, we explored the opposite; we wanted to asses which fingerprint 

performed better in the presence of a single classifier. 

 

Figure 51: Classifier performance for EState – PCA 

 

Figure 52: Classifier performance for MACCS – PCA 
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Figure 53: Classifier performance for Pharmacophore – PCA  

 

Figure 54: Classifier performance for PubChem – PCA Applied 

 

Figure 55: Classifier performance for Substructure – PCA Applied 

After studying Figures 51-55 we see that PubChem, Substructure and MACCS 

have the better results. The classifiers that performed better than others appear to be 

SMO, Random Forest and Majority Voting. In the next section, we will observe how 

adding numerical fingerprints affects our classification results. 
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Analysis of the Improvement with Numerical Fingerprints 

As with other sections we have added numerical features to our fingerprints in 

order to observe the difference in performance. J48 has constantly delivered the best 

results throughout the five fingerprints shown in Figures 56-60. Naïve Bayes has 

good results when used with PubChem. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑* ↑** ↓** ↓* ↑**

NB ↓ ↓ ↑ ↑ ↓*

RF ↓ ↑** ↓** ↑ ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↑** ↓** ↑** ↓** ↑**  

Figure 56: Results from adding numerical fingerprints to binary fingerprints for EState – PCA  

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑* ↑ ↓ ↓* ↑**

NB ↑ ↓ ↑ ↓ ↑ 

RF ↓ ↑** ↓** ↑ ↑ 

SMO ↑* ↑ ↓ ↓* ↑**

MV ↑** ↓ ↑ ↓** ↓  

Figure 57: Results from adding numerical fingerprints to binary fingerprints for MACCS – PCA  

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↓ ↓ ↑ ↑ ↓ 

RF ↓** ↑** ↓** ↑** ↑**

SMO ↓** ↑ ↓ ↑** ↑**

MV ↑** ↓** ↑** ↓** ↑**  

Figure 58: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore – 

PCA  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑** ↑** ↓** ↓** ↑ 

RF ↓** ↑ ↓ ↑** ↑ 

SMO ↓ ↑ ↓ ↑ ↑ 

MV ↑** ↓* ↑* ↓** ↑  

Figure 59: Results from adding numerical fingerprints to binary fingerprints for PubChem – PCA  
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Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↓** ↓** ↑** ↑** ↓ 

RF ↓ ↑** ↓** ↑ ↑**

SMO ↓** ↑* ↓* ↑** ↑**

MV ↑** ↓** ↑** ↓** ↑**  

Figure 60: Results from adding numerical fingerprints to binary fingerprints for Substructure – PCA  

Summary of the results and receiver operating characteristics analysis  

The next figure summarises previous observations for the mutagenicity dataset. 

Figure 61 shows the Sensitivity versus false positives for the different classifiers and 

averaged across Fingerprints with and without using numerical descriptors. A 

possible criterion for selection of the best classifier is simply the one that is closest to 

the top left corner on the graph, which is reminiscent of the ROC analysis i.e. min 

Euclidian distance to (0,1). 

  

 

 

  

 

 

 

  

Figure 61: Sensitivity versus False Positive rate for the methods used on the Mutagenicity dataset. 
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Figure 62: Sensitivity versus False Positive rate per classifier for the Mutagenicity dataset. 

S and S+N in figures 60 and 61 indicate structural and structural plus 

numerical descriptors respectively. 

Table 15 contains the Euclidean distances calculated for both figures. This 

calculation is based on the distance each point on the graph has from the top left 

corner, the point with the coordinates (0,1). The point with the least distance to the 

coordinates (0,1) is considered the more optimal choice (method or classifier). 

Methods Used Euclidean Distance 

Binary Descriptors Original 0.3502 

PCA 0.4138 

Binary + Numerical Descriptors Original 0.3193 

PCA 0.3937 

Table 15: Euclidean distance for the methods used 

 

Classifiers Used Euclidean Distance 

 

 

Binary Descriptors 

 

 

 

J48 0.3571 

NaïveBayes 0.5479 

Random Forest 0.3249 

SMO 0.3509 

Majority Voting 0.3254 

 

 

Binary + Numerical Descriptors 

 

 

 

J48 0.3344 

NaïveBayes 0.5491 

Random Forest 0.2877 

SMO 0.3244 

Majority Voting 0.2934 

Table 16: Euclidean distance for the classifiers used 
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On average, the Majority voting classifier and Random Forest are the optimal 

classifiers according to this criterion, as it is suggested by the previous figures and 

tables. 

Perhaps the most interesting aspect to stress is that no significant average 

improvement is observed for the best classifier, the Majority Voting (p>0.05 in all 

pairwise comparisons) and hence, on average, the data evenly populating the space 

spanned by fingerprints contains sufficient information for a standard approach to 

perform a successful classification. This is not surprising giving the balanced 

characteristics of the dataset, which is used here merely as a benchmark. 

Conclusion  

In this chapter we observed the results for classifying the mutagenicity dataset. 

The classification results were discussed from the aspect of the fingerprints used and 

the classifiers used. We essentially looked at how different fingerprints performed in 

the presence of each classifier and then how different classifiers performed when 

looked at the presence of each single fingerprint. Afterwards we looked at how 

adding numerical fingerprints to binary fingerprints affects classifier performance 

and classification metrics. All this was studied with the dataset at its original state 

and when PCA was applied. 

Initially we saw that in the presence of each single classifier, the fingerprints 

behaved differently. There was no consistent better-performing fingerprint that could 

be pointed out. But as a generalisation, the fingerprints PubChem and MACCS 

seemed to perform better than the rest for this dataset in its original state. When we 

looked at the classifier performance in the presence of each fingerprint, the one 

classifier which stood out was Majority Voting. 

The application of PCA in this case did not affect the performance of the 

classifiers as much as anticipated. J48 and Naïve Bayes were the two consistent 

performers and Majority Voting produced the better results, yet the mean 

improvement across fingerprints was not significant 

Adding numerical fingerprints did affect the classification metrics positively in 

many situations, however in some cases it did worsen our results and again statistical 

significance was not concluded on average. This should be discussed on a specific 

fingerprint or classifier level and cannot be generalised to the whole study. 
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Results of this benchmark, nearly fully balanced, dataset indicate that despite 

its complexity, a classical approach consisting of data management and pre-

processing followed by any competitive classification approach directly operating in 

the original space of the data (i.e. the fingerprints) would suffice. Hence, the critical 

bottleneck for the standard approach seems to be not in the dimensionality of the 

space i.e. the number of fingerprints but rather specifically on how imbalanced they 

are. 

The challenge we address in the next chapters is to discern whether similarly 

competitive results can be obtained in general regardless of the imbalance degree. 

We will also investigate which are the steps that have to be present in order to devise 

a systematic screening approach valid for all datasets. 
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5.2. The Slightly Imbalanced Dataset 

In the previous section we studied our almost balanced dataset, the 

mutagenicity dataset. In this section we investigate the Factor XA dataset (Fontaine 

et al. 2005). The data in this dataset were used to discriminate between Factor XA 

inhibitors of high and low activity. Since the dataset includes molecules from diverse 

chemical classes, the objective in the main study by Fontaine et al. (2005) was to 

produce a discriminant model which is potentially useful for screening molecular 

libraries. 

Dataset #Total 

Instances 

#Active 

Instances (1)  

#Inactive 

Instances (0) 

Active/Inactive 

Ratio 

Factor XA 435 279 156 1.79 

Table 17: Factor XA dataset specification. Class of interest labelled as 1 

This dataset has an imbalance ratio of 1.79 indicating there is a clear imbalance 

between the classes (Table 17). We shall employ additional pre-processing 

techniques in order to balance this dataset and investigate the effect it has on or 

classification metrics. Thereafter the dimensionality of the dataset will be reduced 

using the Principle Component Analysis (PCA) method and again the pre-processing 

and balancing techniques will be applied so we can see the results. 

As a gentle reminder to the reader, the datasets are taken in their tabular form 

and with the help of software such as PowerMV (Liu et al. 2005) and PaDel (Yap 

2011), descriptors are generated for them. Afterwards the newly populated datasets 

take a journey through two options: 

 Option 1: the imbalance in the dataset is altered by using the SMOTE (Chawla 

2005) technique, by generating synthetic samples for the minority class. 

Afterwards the resulting balanced dataset is split into training and test set, 60% 

and 40% accordingly. As mentioned above this splitting is done in a stratified 

manner so all resulting sets have the same proportion of the classes. Plus this 

operation is performed 30 times to ensure the resulting sets are representative of 

the original population. 

 Option 2: here, at first the imbalanced dataset is split according to the procedure 

mentioned in route 1, and thereafter only the training set is subjected to the 

balancing technique. The test set is kept in its original imbalanced state. 
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As a result there will be six different sets of the same dataset available to us for 

classification (as previously mentioned in section 4.6): 

1. The dataset in its original state (referred to as original in text) 

2. The dataset that has been balanced and then split into training and test set 

(referred to as original SMOTEd All in text) 

3. The dataset that has been split into training and test set and then only training set 

has been balanced (referred to as original SMOTEd Training in text) 

4. The original dataset with reduced dimensionality (referred to as PCA in the text) 

5. The dataset that has been balanced and then split into training and test set with 

reduced dimensionality (referred to as PCA SMOTEd All in text) 

6. The dataset that has been split into training and test set and then only training set 

has been balanced with reduced dimensionality (referred to as PCA SMOTEd 

Training in text) 

Once the pre-processing procedures have completed the datasets are ready to 

be classified using our chosen classifiers; J48, NaïveBayes, Random Forest, SMO 

and Majority Voting. In the next few sections we will look at these results using 

graphs and charts and will make comparison between different methods and 

classifiers used. 

Factor XA Classification Results per Fingerprint– Original  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 63: Classification results from classifying the Fontaine dataset by J48  
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Figure 64: Classification results from classifying the Fontaine dataset by NaïveBayes 

 

Figure 65: Classification results from classifying the Fontaine dataset by Random Forest 

 

Figure 66: Classification results from classifying the Fontaine dataset by SMO 
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Figure 67: Classification results from classifying the Fontaine dataset by Majority Voting 

By looking at previous Figures (63-67) we see that the fingerprints used have 

produced consistent high sensitivity and specificity and low false positive and 

negative rates when used with J48, Random Forest and Majority Voting. The CDK 

Fingerprint family (Steinbeck et al. 2003; Kristensen et al. 2010), Fingerprinter, 

Extended Fingerprinter and Graph-Only, have a standard fingerprint size of 1024 and 

produce very similar results to one another. Next, we observe how adding numerical 

fingerprints affects our classification results with the original dataset. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓** ↑** ↓ ↓ 

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↑ ↓ ↑ ↓ ↑ 

Pharmacophore ↑ ↑ ↓ ↓ ↑ 

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑ ↑ ↓ ↓ ↑  

Figure 68: Results from adding numerical fingerprints to binary fingerprints for J48 
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑ ↓ ↑ ↑ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↓ ↑ ↓ ↓ 

MACCS ↓** ↑ ↓ ↑** ↓*

Pharmacophore ↓** ↑* ↓* ↑** ↓**

PubChem ↓** ↓ ↑ ↑** ↓**

Substructure ↑ ↑** ↓** ↓ ↑**  

Figure 69: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↑ ↑ ↓ ↓ ↑*

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↑ ↑* ↓* ↓ ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 70: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑ ↓ ↓** ↑**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↑ 

Graph-Only ↑ ↓ ↑ ↓ ↓ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↑ ↑** ↓** ↓ ↑**

PubChem ↑ ↓ ↑ ↓ ↑ 

Substructure ↑* ↑ ↓ ↓* ↑*  

Figure 71: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑* ↓ ↑ ↓* ↑ 

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑* ↑ ↓ ↓* ↑ 

Pharmacophore ↑ ↑ ↓ ↓ ↑ 

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑* ↑ ↓ ↓* ↑  

Figure 72: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

By adding numerical descriptors to the binary-only descriptors we see that the 

most significant improvement among our classification metrics has happened with 
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the Pharmacophore, Substructure and MACCS fingerprints. In the next part, we 

classify the original dataset and show the classification metrics used. 

Factor XA Classification Results per Classifiers – Original  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 73: Classifier performance for by EState - Original 

 

Figure 74: Classifier performance for MAACS - Original 

 

Figure 75: Classifier performance for Pharmacophore - Original 
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Figure 76: Classifier performance for PubChem - Original 

 

Figure 77: Classifier performance for Substructure - Original 

By looking at Figures (73-77), the classifiers have their best performances 

when used with the PubChem fingerprint. The false positive and false negative rates 

are at their lowest compared to the other figures in this group. In the next section, we 

will observe how adding numerical fingerprints to the original affects our 

classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓** ↑** ↓ ↓ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑** ↑ ↓ ↓** ↑**

MV ↑* ↓ ↑ ↓* ↑  

Figure 78: Results from adding numerical fingerprints to binary fingerprints for EState 
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↑ 

NB ↓** ↑ ↓ ↑** ↓*

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↑* ↑ ↓ ↓* ↑  

Figure 79: Results from adding numerical fingerprints to binary fingerprints for MACCS 

 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓** ↑* ↓* ↑** ↓**

RF ↑ ↑* ↓* ↓ ↑**

SMO ↑ ↑** ↓** ↓ ↑**

MV ↑ ↑ ↓ ↓ ↑  

Figure 80: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓ ↑ ↑ ↓ 

NB ↓** ↓ ↑ ↑** ↓**

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑ ↓ ↑ ↓ ↑ 

MV ↓ ↓ ↑ ↑ ↓  

Figure 81: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑ ↑** ↓** ↓ ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑* ↑ ↓ ↓* ↑*

MV ↑* ↑ ↓ ↓* ↑  

Figure 82: Results from adding numerical fingerprints to binary fingerprints for Substructure 

The classifier Random Forest has consistently had the most improvement after 

adding the numerical descriptors to it, regardless of the fingerprint it was used with. 

The other two that stand out are SMO and Majority Voting, similar to what we 

observed in the benchmark dataset. In the next section, we classify the dataset that 

was balanced before splitting and show the classification metrics used. 

Factor XA Classification Results per Fingerprint– Original SMOTEd All  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 
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fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 83: Classification results from classifying the Fontaine dataset by J48 

 

Figure 84: Classification results from classifying the Fontaine dataset by NaïveBayes 

 

Figure 85: Classification results from classifying the Fontaine dataset by Random Forest 

 

Figure 86: Classification results from classifying the Fontaine dataset by SMO 
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Figure 87: Classification results from classifying the Fontaine dataset by Majority Voting 

When looking at the results from this section one must keep in mind that the 

imbalanced dataset has been balanced by adding synthetic samples to the minority 

class. The minority class samples could be in clusters in the dimension space or 

scattered among other samples of the other class. Therefore the results that we have 

in this section could be extremely optimal but it also may be that the added samples 

contributed to the classifier bias towards the majority class. 

All fingerprints have produced good results especially when used in 

combination with J48, Random Forest and Majority Voting. EState and Substructure 

appear to have produced the least optimal results with NaïveBayes and SMO. With 

the same two classifiers MACCS, Pharmacophore and PubChem produced higher 

false positive rates than false negative ones. In most cases a higher percentage of 

false negative is preferred to false positives. Next, we will observe how adding 

numerical fingerprints to the balanced dataset affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓** ↑** ↓ ↓**

Extended ↓ ↑ ↓ ↑ ↓ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↓ ↓ ↑ ↑ ↓ 

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑* ↓ ↑ ↓* ↑  

Figure 88: Results from adding numerical fingerprints to binary fingerprints for J48 
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓** ↑** ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↓* ↑ ↓ ↑* ↓ 

Pharmacophore ↑** ↓ ↑ ↓** ↑ 

PubChem ↓** ↑** ↓** ↑** ↑**

Substructure ↑** ↓ ↑ ↓** ↑**  

Figure 89: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑* ↑ ↓ ↓* ↑**

Pharmacophore ↑* ↑ ↓ ↓* ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑ ↓ ↓** ↑**  

Figure 90: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↓ ↑ ↓ ↑ 

Graph-Only ↑ ↓ ↑ ↓ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↑ ↓ ↑ ↓ ↑ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑ ↓ ↓** ↑**  

Figure 91: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓ ↑ ↓** ↑**

Extended ↓ ↑ ↓ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↑ ↓ ↑ ↓ ↑ 

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↑ ↓ ↑ ↓ ↑  

Figure 92: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

The fingerprints MACCS, PubChem and Substructure have been fitted most 

from the addition of numerical descriptors and have had the most significant 

improvements especially when combined with Random Forest and in the case of 
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Substructure, with SMO too. In the next part, we classify the dataset that was 

balanced before splitting and show the classification metrics used. 

Factor XA Classification Results per Classifiers – Original SMOTEd All  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 93: Classifier performance for EState – Original SMOTEd All 

 

Figure 94: Classifier performance for MACCS – Original SMOTEd All 

 

Figure 95: Classifier performance for Pharmacophore – Original SMOTEd All 
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Figure 96: Classifier performance for PubChem – Original SMOTEd All 

 

Figure 97: Classifier performance for Substructure – Original SMOTEd All 

Of the five classifiers used (four single and one ensemble), J48, Random 

Forest and Majority Voting have consistently performed the best in figures (93-97). 

SMO performed exceptionally well when used with the PubChem fingerprint. In the 

next section, we will observe how adding numerical fingerprints affects our 

classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓** ↑** ↓ ↓ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑** ↑ ↓ ↓** ↑**

MV ↑* ↓ ↑ ↓* ↑  

Figure 98: Results from adding numerical fingerprints to binary fingerprints for EState 
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↑ 

NB ↓** ↑ ↓ ↑** ↓*

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↑* ↑ ↓ ↓* ↑  

Figure 99: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓** ↑* ↓* ↑** ↓**

RF ↑ ↑* ↓* ↓ ↑**

SMO ↑ ↑** ↓** ↓ ↑**

MV ↑ ↑ ↓ ↓ ↑  

Figure 100: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓ ↑ ↑ ↓ 

NB ↓** ↓ ↑ ↑** ↓**

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑ ↓ ↑ ↓ ↑ 

MV ↓ ↓ ↑ ↑ ↓  

Figure 101: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑ ↑** ↓** ↓ ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑* ↑ ↓ ↓* ↑*

MV ↑* ↑ ↓ ↓* ↑  

Figure 102: Results from adding numerical fingerprints to binary fingerprints for Substructure 

The classifiers Random Forest, SMO and Majority Voting have certainly 

benefited from the addition of numerical descriptors in Figures (98-102). The not so 

good results were achieved when in combination with PubChem and EState, with 

NaïveBayes producing the worst results except for when used with Substructure. In 

the next section, we classify the dataset where only training set has been balanced 

and show the classification metrics used. 

Factor XA Classification Results per Fingerprint – Original SMOTEd Training  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 103: Classification results from classifying the Fontaine dataset by J48 

 

Figure 104: Classification results from classifying the Fontaine dataset by NaïveBayes 

 

Figure 105: Classification results from classifying the Fontaine dataset by Random Forest 

 

Figure 106: Classification results from classifying the Fontaine dataset by SMO 
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Figure 107: Classification results from classifying the Fontaine dataset by Majority Voting 

With this method only the training set was balanced and the trained classifier 

exposed to the imbalanced unseen test set. The added synthetic minority samples 

may have improved the learning of the classifier or may have simply helped 

maintain the bias towards the majority class, depending on how the minority class 

samples are situated in the dimension space. 

EState and Substructure can be considered the two fingerprints that have 

higher false positive and false negative results than the other fingerprints used in the 

presence of all five classifiers. Otherwise most results achieved from this set of tests 

seem promising. In the next section, we will observe how adding numerical 

fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓** ↑** ↓ ↓ 

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↓ ↑ ↓ ↑ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↓ ↑ ↓ ↑ ↓ 

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↑ ↑ ↓ ↓ ↑  

Figure 108: Results from adding numerical fingerprints to binary fingerprints for J48 
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓ ↑ ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↓ 

MACCS ↓ ↑* ↓* ↑ ↑ 

Pharmacophore ↑** ↑ ↓ ↓** ↑**

PubChem ↓** ↑** ↓** ↑** ↑ 

Substructure ↑** ↑ ↓ ↓** ↑**  

Figure 109: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↓ ↑ ↓ ↑ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↓ ↑ ↓ ↑ 

MACCS ↑* ↑** ↓** ↓* ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↑ ↑** ↓** ↓ ↑**  

Figure 110: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑* ↓* ↓** ↑**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↑ ↑* ↓* ↓ ↑*

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑* ↑ ↓ ↓* ↑  

Figure 111: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓* ↑* ↓** ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓ ↑ ↓ ↓ 

Pharmacophore ↑ ↑ ↓ ↓ ↑*

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↑* ↑ ↓ ↓* ↑**  

Figure 112: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

MACCS and Pharmacophore have the better results with Random Forest; and 

SMO and Substructure has done exceptionally well with Random Forest and 

Majority Voting in terms of all criteria. In the next section, we classify the dataset 

where only training set has been balanced and show the classification metrics used. 
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Factor XA Classification Results per Classifiers – Original SMOTEd Training  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 113: Classifier performance for EState – Original SMOTEd Training 

 

Figure 114: Classifier performance for MACCS – Original SMOTEd Training 

 

Figure 115: Classifier performance for Pharmacophore – Original SMOTEd Training 
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Figure 116: Classifier performance for PubChem – Original SMOTEd Training 

 

Figure 117: Classifier performance for Substructure – Original SMOTEd Training 

The classifiers have performed better in the presence of the MACCS and 

PubChem fingerprints. Overall using this method J48, Random Forest and Majority 

Voting have the better results of the overall classifiers. In the next section, we will 

observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓** ↑** ↓ ↓ 

NB ↑** ↓ ↑ ↓** ↑**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑** ↑* ↓* ↓** ↑**

MV ↑** ↓* ↑* ↓** ↑**  

Figure 118: Results from adding numerical fingerprints to binary fingerprints for EState 
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓ ↑ ↑ ↓ 

NB ↓ ↑* ↓* ↑ ↑ 

RF ↑* ↑** ↓** ↓* ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↑ ↓ ↑ ↓ ↓  

Figure 119: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↓ 

NB ↑** ↑ ↓ ↓** ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑ ↑* ↓* ↓ ↑*

MV ↑ ↑ ↓ ↓ ↑*  

Figure 120: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓** ↑** ↓** ↑** ↑ 

RF ↓ ↑ ↓ ↑ ↑ 

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↔ ↑ ↓ ↔ ↑  

Figure 121: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑** ↑ ↓ ↓** ↑**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑* ↑ ↓ ↓* ↑ 

MV ↑* ↑ ↓ ↓* ↑**  

Figure 122: Results from adding numerical fingerprints to binary fingerprints for Substructure 

In short, Figures (118-122) indicate that Random Forest and SMO have the 

better and more significant improvements in the case of the EState, MACCS, 

Pharmacophore and Substructure fingerprints. Substructure has exceptionally good 

results with all of the classifiers. In the next section, we classify the original dataset 

with PCA and show the classification metrics used. 

Factor XA Classification Results per Fingerprint – PCA Original 

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. Here PCA technique has been applied. 
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Figure 123: Classification results from classifying the Fontaine dataset by J48 

 

Figure 124: Classification results from classifying the Fontaine dataset by NaïveBayes 

 

Figure 125: Classification results from classifying the Fontaine dataset by Random Forest 

 

Figure 126: Classification results from classifying the Fontaine dataset by SMO 
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Figure 127: Classification results from classifying the Fontaine dataset by Majority Voting 

All fingerprints show good results in producing the metrics. EState and 

Substructure appear to have less desirable results compare to the other fingerprints 

when it comes to false positive and false negatives. In the next section, we will 

observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↑ 

Extended ↓ ↑ ↓ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↑ ↑ ↓ ↓ ↑ 

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓ ↑ ↓ ↑ ↓  

Figure 128: Results from adding numerical fingerprints to binary fingerprints for J48 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑ ↓ ↑ ↑ 

Extended ↓ ↓* ↑* ↑ ↓*

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↑* ↓* ↑ ↑ 

MACCS ↓** ↑ ↓ ↑** ↓ 

Pharmacophore ↑* ↓* ↑* ↓* ↑ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  

Figure 129: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 
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Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑*

Pharmacophore ↑ ↑ ↓ ↓ ↑ 

PubChem ↑ ↓ ↑ ↓ ↑ 

Substructure ↑* ↑ ↓ ↓* ↑*  

Figure 130: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↑** ↑ ↓ ↓** ↑**

Pharmacophore ↑ ↓ ↑ ↓ ↑ 

PubChem ↑ ↑ ↓ ↓ ↑*

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 131: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↑ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↑ ↑* ↓* ↓ ↑*

Pharmacophore ↑** ↓ ↑ ↓** ↑ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↑* ↓* ↓ ↑**  

Figure 132: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

The levels of improvement in classification metrics in Figures (128-132) vary 

in the sense that no particular fingerprint shows continuous improvement and if so it 

is not significant. However, Random Forest has the most improvement in its 

fingerprints followed by SMO and Majority Voting. In the next section, we classify 

the original dataset with PCA and show the classification metrics used. 

Factor XA Classification Results per Classifiers – PCA Original 

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. The PCA technique was applied here to the 

dataset. 
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Figure 133: Classifier performance for EState – PCA Dataset 

 

Figure 134: Classifier performance for MACCS – PCA Dataset 

 

Figure 135: Classifier performance for Pharmacophore – PCA Dataset 
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Figure 136: Classifier performance for PubChem – PCA Dataset 

 

Figure 137: Classifier performance for Substructure – PCA Dataset 

In this set of tests it seems that the classifiers have performed very well with 

the Pharmacophore fingerprint. In this case the levels of false positive and false 

negative are both relatively low, unlike the other four figures. In the next section, we 

will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↑ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑ ↓ ↑ ↓ ↑  

Figure 138: Results from adding numerical fingerprints to binary fingerprints for EState 
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓** ↑ ↓ ↑** ↓ 

RF ↑ ↑ ↓ ↓ ↑*

SMO ↑** ↑ ↓ ↓** ↑**

MV ↑ ↑* ↓* ↓ ↑*  

Figure 139: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑* ↓* ↑* ↓* ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑ ↓ ↑ ↓ ↑ 

MV ↑** ↓ ↑ ↓** ↑  

Figure 140: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↑ ↑ ↓ ↓ ↑ 

RF ↑ ↓ ↑ ↓ ↑ 

SMO ↑ ↑ ↓ ↓ ↑*

MV ↑ ↑ ↓ ↓ ↑  

Figure 141: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↓ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↑* ↑ ↓ ↓* ↑*

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑ ↑* ↓* ↓ ↑**  

Figure 142: Results from adding numerical fingerprints to binary fingerprints for Substructure 

The results for SMO and Majority Voting have improved in the presence of 

MACCS, PubChem and Substructure fingerprints. The significance of the 

improvement is especially visible in Figure 142. In the next section, we classify the 

dataset that was balanced before splitting and show the classification metrics used. 

Factor XA Classification Results per Fingerprint– PCA SMOTEd All  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 143: Classification results from classifying the Fontaine dataset by J48 

 

Figure 144: Classification results from classifying the Fontaine dataset by NaïveBayes 

 

Figure 145: Classification results from classifying the Fontaine dataset by Random Forest 

 

Figure 146: Classification results from classifying the Fontaine dataset by SMO 
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Figure 147: Classification results from classifying the Fontaine dataset by Majority Voting 

The majority of the fingerprints have produced good results in the presence of 

J48, Random Forest and Majority Voting. With NaïveBayes, PubChem, 

Fingerprinter and Extended Fingerprinter have the better results. All but EState have 

good results with SMO. In the next section, we will observe how adding numerical 

fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓* ↑* ↓** ↑ 

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↓ ↑ ↓ ↑ ↓ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↓ ↑ ↓ ↑ ↑ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↑ ↑ ↓ ↓ ↑  

Figure 148: Results from adding numerical fingerprints to binary fingerprints for J48 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓ ↑ ↓** ↑ 

Extended ↓** ↓ ↑ ↑** ↓**

Fingerprinter ↓ ↓ ↑ ↑ ↓*

Graph-Only ↑ ↑* ↓* ↓ ↑ 

MACCS ↓** ↑ ↓ ↑** ↑ 

Pharmacophore ↑** ↓ ↑ ↓** ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  

Figure 149: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 
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Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑** ↑ ↓ ↓** ↑**

Pharmacophore ↑ ↑* ↓* ↓ ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↑* ↓* ↓ ↑**  

Figure 150: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↓ ↓** ↑** ↑ ↓ 

PubChem ↑* ↑ ↓ ↓* ↑*

Substructure ↑** ↑ ↓ ↓** ↑**  

Figure 151: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓ ↑ ↓** ↑*

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑** ↓ ↑ ↓** ↑ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↑ ↓ ↓ ↑  

Figure 152: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

The most significant improvements in metrics can be seen with all fingerprints 

but Extended Fingerprinter with Random Forest. With all other classifiers, 

Substructure and Graph-Only Fingerprinter seem to be the ones benefitting from the 

additional of numerical descriptors. In the next section, we classify the dataset that 

was balanced before splitting and show the classification metrics used. 

Factor XA Classification Results per Classifiers– PCA SMOTEd All  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 153: Classifier performance for EState – PCA SMOTEd All 

 

Figure 154: Classifier performance for MACCS – PCA SMOTEd All 

 

Figure 155: Classifier performance for Pharmacophore – PCA SMOTEd All 
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Figure 156: Classifier performance for PubChem – PCA SMOTEd All 

 

Figure 157: Classifier performance for Substructure – PCA SMOTEd All 

The classifiers that have consistently performed well in these set of tests are 

J48, Random Forest and Majority Voting. NaïveBayes and SMO have especially 

performed well when used with the PubChem fingerprint. In the next section, we 

will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↓* ↑* ↓** ↑ 

NB ↑** ↓ ↑ ↓** ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↓ ↑ ↓** ↑*  

Figure 158: Results from adding numerical fingerprints to binary fingerprints for EState 
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓** ↑ ↓ ↑** ↑ 

RF ↑** ↑ ↓ ↓** ↑**

SMO ↓ ↓ ↑ ↑ ↓ 

MV ↓ ↑ ↓ ↑ ↑  

Figure 159: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↑** ↓ ↑ ↓** ↑**

RF ↑ ↑* ↓* ↓ ↑**

SMO ↓ ↓** ↑** ↑ ↓ 

MV ↑** ↓ ↑ ↓** ↑  

Figure 160: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↑ ↑ ↓ ↓ ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑* ↑ ↓ ↓* ↑*

MV ↑ ↑ ↓ ↓ ↑  

Figure 161: Classifier performance for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↑ ↑* ↓* ↓ ↑**

SMO ↑** ↑ ↓ ↓** ↑**

MV ↑ ↑ ↓ ↓ ↑  

Figure 162: Classifier performance for Substructure 

The classifier with the most significant and consistent improvement in these 

tests is Random Forest, followed by SMO and Majority Voting. In the next section, 

we classify the dataset where only training set has been balanced and show the 

classification metrics used. 

Factor XA Classification Results per Fingerprint– PCA SMOTEd Training  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 163: Classification results from classifying the Fontaine dataset by J48 

 

Figure 164: Classification results from classifying the Fontaine dataset by NaïveBayes 

 

Figure 165: Classification results from classifying the Fontaine dataset by Random Forest 

 

Figure 166: Classification results from classifying the Fontaine dataset by SMO 
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Figure 167: Classification results from classifying the Fontaine dataset by Majority Voting 

In this set of tests the fingerprints have produced good optimal results with 

Random Forest in Figure 165. In this figure all fingerprints have consistent good 

outcome for all metrics. In the next section, we will observe how adding numerical 

fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↓ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↓ ↑ ↓ ↑ ↑ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↑* ↓* ↓ ↑*  

Figure 168: Results from adding numerical fingerprints to binary fingerprints for J48 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓ ↑ ↓** ↑ 

Extended ↓* ↑ ↓ ↑* ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↓** ↑ ↓ ↑** ↓ 

Pharmacophore ↑** ↓ ↑ ↓** ↑*

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  

Figure 169: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 
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Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑* ↑ ↓ ↓* ↑ 

Pharmacophore ↑ ↑ ↓ ↓ ↑*

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↑* ↓* ↓ ↑**  

Figure 170: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↑ ↓ ↑ ↓ ↑ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↓ ↑ ↓ ↑ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↓ ↓ ↑ ↑ ↓ 

PubChem ↑ ↑ ↓ ↓ ↑*

Substructure ↑** ↑* ↓* ↓** ↑**  

Figure 171: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓ ↑ ↓** ↑*

Extended ↓* ↓ ↑ ↑* ↓*

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑* ↓ ↑ ↓* ↑ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑** ↑ ↓ ↓** ↑**  

Figure 172: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

By adding numerical descriptors, Substructure fingerprint has shown good 

and significant improvement in metrics (except for when in the presence of 

NaïveBayes). In the next section, we classify the dataset where only training set has 

been balanced and show the classification metrics used. 

Factor XA Classification Results per Classifiers– PCA SMOTEd Training  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 173: Classifier performance for EState – PCA SMOTEd Training 

 

Figure 174: Classifier performance for MACCS – PCA SMOTEd Training 

 

Figure 175: Classifier performance for Pharmacophore – PCA SMOTEd Training 
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Figure 176: Classifier performance for PubChem – PCA SMOTEd Training 

 

Figure 177: Classifier performance for Substructure – PCA SMOTEd Training 

The classifiers Random Forest, J48 and Majority Voting have the better results 

among all other classifiers in this set of tests. NaïveBayes has produced the highest 

false positive and false negative rates together with SMO. In the next section, we 

will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↑** ↓ ↑ ↓** ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↓ ↑ ↓** ↑*  

Figure 178: Results from adding numerical fingerprints to binary fingerprints for EState 
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓** ↑ ↓ ↑** ↓ 

RF ↑* ↑ ↓ ↓* ↑ 

SMO ↓ ↓ ↑ ↑ ↓ 

MV ↓ ↑ ↓ ↑ ↑  

Figure 179: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↑** ↓ ↑ ↓** ↑*

RF ↑ ↑ ↓ ↓ ↑*

SMO ↓ ↓ ↑ ↑ ↓ 

MV ↑* ↓ ↑ ↓* ↑  

Figure 180: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑ ↑ ↓ ↓ ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑ ↑ ↓ ↓ ↑*

MV ↑ ↑ ↓ ↓ ↑  

Figure 181: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑* ↓* ↓ ↑*

NB ↑ ↓ ↑ ↓ ↓ 

RF ↑ ↑* ↓* ↓ ↑**

SMO ↑** ↑* ↓* ↓** ↑**

MV ↑** ↑ ↓ ↓** ↑**  

Figure 182: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Random Forest has a consistent improvement between all the other classifiers, 

followed by SMO and NaïveBayes.  

Summary of the results and receiver operating characteristics analysis  

At the end of this chapter we would like to summarise the observations made 

throughout the chapter and different set of tests for the Factor XA dataset. We have 

averaged the sensitivity and false positive rates across all fingerprints and then across 

all classifiers, once without the numerical descriptors and once with the numerical 

descriptors. Then we have plotted those points using the sensitivity and false positive 

rate as coordinates. The criterion for selecting the better method is the one closest to 

the top left corner of the graph, closest to the point (0,1). Figures 183 and 184 show 

this summarisation.  
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Figure 183: Sensitivity versus False Positive Fontaine methods 

 

 

 

 

 

 

 

Figure 184: Sensitivity versus False Positive Fontaine classifiers 

 The distance of the resulting points to the point (0,1) is calculated using the 

Euclidean distance measure and the results are shown in Table 18 and Table 19. The 

points with the least distance have been bolded for the reader’s attention. 

Methods Used Euclidean Distance 

 

 

 

Binary Descriptors 

 

Original 0.156 

Original SMOTEd All 0.1235 

Original SMOTEd Training 0.1579 

PCA 0.2497 

PCA SMOTEd All 0.1832 

PCA SMOTEd Training 0.2332 

 

 

 

Binary + Numerical 

Descriptors 

 

 

Original 0.1488 

Original SMOTEd All 0.1139 

Original SMOTEd Training 0.1447 

PCA 0.2414 

PCA SMOTEd All 0.1703 

PCA SMOTEd Training 0.2228 

Table 18: Euclidean distance for the methods used 
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Classifiers Used Euclidean Distance 

 

 

Binary Descriptors 

J48 0.1655 

NaïveBayes 0.2866 

Random Forest 0.1257 

SMO 0.1895 

Majority Voting 0.1423 

 

 

 

Binary + Numerical Descriptors 

J48 0.1666 

NaïveBayes 0.2826 

Random Forest 0.1084 

SMO 0.1673 

Majority Voting 0.1362 

Table 19: Euclidean distance for the classifiers used 
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Conclusion 

In this chapter we investigated the classification results for the Factor XA 

dataset. This dataset is a moderately imbalanced dataset and we performed some pre-

processing in order to balance it. We observed the classification process results 

through 5 different methods. We classified the dataset as it was to begin with. Then 

we balanced the dataset and then split it into test and training set. In another method 

we split the dataset and then only balanced the training set. The three mentioned 

methods were repeated when the dataset dimensionality was reduced using the PCA 

method. 

With this dataset, the different fingerprints behaved differently in the presence 

of the classifiers. Overall the fingerprint MACCS and then PubChem showed to be 

the ones with the better performances. Again the reader must be reminded that there 

were no consistently better performing fingerprints. 

In the classifiers, Random Forest was definitely the better performing classifier 

for this set of tests and the one that benefitted most from the addition of the 

numerical descriptors. 

In the next chapter we shall be looking at the datasets with a significantly 

higher imbalance ratios that were used for this study. 
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5.3. The Heavily Imbalanced Dataset – AID362 

So far in our study we have investigated the Mutagenicity dataset (Kazius et al. 

2005) and the Factor XA dataset (Fontaine et al. 2005). The first one was marginally 

imbalanced and the second one moderately imbalanced. The next two datasets to be 

studied are greatly imbalanced datasets. The first dataset we present here is the 

Formylpeptide Receptor Ligand Binding Assay. For the purposes of making it easier 

for the reader we will refer to it simply as AID362. 

This dataset is a whole-cell assay for another inhibitor of peptide binding 

associated with tissue-damaging chronic inflammation (Jabed et al. 2015). This 

dataset has been described as a contributor to the localization and activation of 

tissue-damaging leukocytes at sites of chronic inflammation.  

The number of instances, active and inactive and the imbalance ratio 

information can be found in the table below. The dataset is highly imbalanced, with 

an imbalance ratio of 1.4%. 

Dataset #Total 

Instances 

#Active Instances 

(class ‘1’) 

#Inactive Instances 

(class ‘0’) 

Active/Inactive 

Ratio 

AID362 4279 60 4219 0.0142 

Table 20: AID362 dataset specification. Class of interest labelled as 1 

In the next section, we classify the original dataset and show the classification 

metrics used. 

AID362 Classification Results per Fingerprint– Original  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 185: Classification results from classifying the AID362 dataset by NaïveBayes 

 

Figure 186: Classification results from classifying the AID362 dataset by Random Forest 

 

Figure 187: Classification results from classifying the AID362 dataset by Majority Voting 

In this section the dataset AID362 has been classified in its original state. No 

pre-processing techniques were used. We look at how different fingerprints 

performed in the presence of each of our classifiers. From looking at the Figure 185 - 

Figure 187 we can see that except for EState, Pharmacophore and Substructure 

fingerprints, all other ones  have more varied results with NaïveBayes and with the 

other classifiers the results seem very skewed and almost biased. In the next section, 

we will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 
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Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↓ ↑* ↓* ↑ ↑ 

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↓** ↑* ↓* ↑** ↑ 

PubChem ↑ ↑* ↓* ↓ ↑**

Substructure ↓** ↑** ↓** ↑** ↑**  

Figure 188: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓** ↑** ↓** ↓**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓ ↑ ↓ ↓ 

Pharmacophore ↑* ↓** ↑** ↓* ↓**

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑** ↓** ↑** ↓** ↓**  

Figure 189: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

By adding numerical descriptors we do not see and fingerprints improve in a 

consistent manner. But we do observe a significant improvement in specificity, 

accuracy and false positive rates when using Random Forest. This is followed by 

Majority Voting with improvements in sensitivity and false negative rate. In the next 

section, we classify the original dataset and show the classification metrics used. 

AID362 Classification Results per Classifiers – Original  

In this section we look at how various classifiers performed. Each figure 

represents one separate fingerprint. 

 

Figure 190: Classifier performance for MACCS – Original 
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Figure 191: Classifier performance for Pharmacophore – Original 

 

Figure 192: Classifier performance for PubChem – Original 

Here we see that with MACCS, Pharmacophore and PubChem, NaïveBayes 

seems to be the classifier that has produced results different to all other classifiers. It 

has a higher sensitivity and false positive rate and a lower false negative, specificity 

and accuracy rates compared to the other classifiers. In the next section, we will 

observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 
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Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↓** ↑** ↓** ↓*

NB ↑ ↓** ↑** ↓ ↓**

RF ↓** ↑* ↓* ↑** ↑ 

SMO ↑* ↓ ↑ ↓* ↓ 

MV ↑* ↓** ↑** ↓* ↓**  

Figure 193: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↓ ↓ ↑ ↑ ↓ 

RF ↑ ↑* ↓* ↓ ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↓ ↓ ↑ ↑ ↓  

Figure 194: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑* ↓** ↑** ↓* ↓**

NB ↑** ↓** ↑** ↓** ↓**

RF ↓** ↑** ↓** ↑** ↑**

SMO ↑ ↓** ↑** ↓ ↓*

MV ↑** ↓** ↑** ↓** ↓**  

Figure 195: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Adding numerical descriptors has certainly improved the sensitivity and false 

negative rates in these set of tests. If one classifier could be named as the most 

improved significantly, it would be Random Forest. The figures shown are related to 

the fingerprints with the most significant improvements. In the next section, we 

classify the dataset that was balanced before splitting and show the classification 

metrics used. 

AID362 Classification Results per Fingerprint– Original SMOTEd All  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. The dataset AID362 has been pre-processed 

here by balancing using SMOTE technique first and then splitting it into training 

(60%) and test (40%). 
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Figure 196: Classification results from classifying the AID362 dataset by NaïveBayes 

 

Figure 197: Classification results from classifying the AID362 dataset by SMO 

The fingerprints in these set of tests have less biased results when combined with 

SMO and NaïveBayes, except for the three CDK fingerprints in SMO; Extended 

Fingerprinter, Fingerprinter and Graph-Only. In the next section, we will observe 

how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓* ↑ ↓ ↑* ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↓ ↑** ↓** ↑ ↑**

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↓* ↑* ↓* ↑* ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 198: Results from adding numerical fingerprints to binary fingerprints for J48 
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↓** ↑** ↓** ↑** ↑**

Fingerprinter ↑ ↑* ↓* ↓ ↑**

Graph-Only ↓ ↑ ↓ ↑ ↓ 

MACCS ↑** ↑** ↓** ↓** ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↓** ↑** ↓** ↑** ↓ 

Substructure ↑ ↑** ↓** ↓ ↑**  

Figure 199: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↓ ↑* ↓* ↑ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 200: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↑* ↓* ↑ ↑ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↓ ↑** ↓** ↑ ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↑ ↑* ↓* ↓ ↑*

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 201: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

The one thing that stands out with these results from Figure 198 - Figure 201 is 

that we see great improvements in specificity, false positive and accuracy rates, 

except for with SMO. With Majority Voting the improvements are not as significant. 

Almost all fingerprints show great improvement with Random Forest. In the next 

section, we classify the dataset that was balanced before splitting and show the 

classification metrics used. 

AID362 Classification Results per Classifiers– Original SMOTEd All  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 202: Classifier performance for Pharmacophore – Original SMOTEd All 

 

Figure 203: Classifier performance for PubChem – Original SMOTEd All 

 

Figure 204: Classifier performance for Substructure – Original SMOTEd All 

Looking at Figure 202 - Figure 204 we see that the classifiers J48, Random 

Forest and Majority Voting have produced better results especially with false 

positive and false negative. Pharmacophore fingerprint has especially good false 

positive results. However one should keep in mind that the dataset has been balanced 

so it might also be the case that the very good results are actually extremely biased 
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towards the majority class. It has been shown that SMOTE on occasion can cause 

overfitting (Kumar & Ravi 2008; Fernández-Navarro et al. 2011; Maldonado & 

López 2014). In the next section, we will observe how adding numerical fingerprints 

affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑** ↓** ↓ ↑**

NB ↑** ↑** ↓** ↓** ↑**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑** ↑ ↓ ↓** ↑**

MV ↓ ↑** ↓** ↑ ↑**  

Figure 205: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↑** ↑** ↓** ↓** ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 206: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↑ ↑** ↓** ↓ ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 207: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Results show impressive improvements from adding numerical descriptors to 

binary only ones. Not all classifiers show consistent improvement but the specificity, 

false positive rates show great and significant improvements, especially with 

MACCS, Pharmacophore and Substructure fingerprints. In the next section, we 

classify the dataset where only training set has been balanced and show the 

classification metrics used. 
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AID362 Classification Results per Fingerprint– Original SMOTEd Training  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. With these set of tests the dataset was 

initially split into training (60%) and test (40%) and then only the training part was 

balanced using SMOTE technique. The test set was left intact. 

 

Figure 208: Classification results from classifying the AID362 dataset by NaïveBayes 

 

Figure 209: Classification results from classifying the AID362 dataset by SMO 

 

Figure 210: Classification results from classifying the AID362 dataset by Majority Voting 

Results in this section contrast the results from the previous section (Original 

SMOTEd All) in that the sensitivity levels are much lower and the false negative 

rates are higher. In the next section, we will observe how adding numerical 

fingerprints affects our classification results and whether the changes are statistically 

significant or not. 
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Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↑* ↓* ↑ ↑*

Graph-Only ↓ ↑** ↓** ↑ ↑*

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↓** ↑** ↓** ↑** ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↓** ↑** ↓** ↑** ↑**  

Figure 211: Results from adding numerical fingerprints to binary fingerprints for J48 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↓ ↑** ↓** ↑ ↑**

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↓** ↑** ↓** ↑** ↑**

PubChem ↑ ↑* ↓* ↓ ↑*

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 212: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↓ ↑ ↓ ↓ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓ ↑* ↓* ↑ ↑*

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 213: Results from adding numerical fingerprints to binary fingerprints for SMO 

The specificity, false positive and accuracy levels show promising significant 

improvements throughout Figure 211 - Figure 213. Pharmacophore has produced 

less than optimal results with most of the classifiers. In the next section, we classify 

the dataset where only training set has been balanced and show the classification 

metrics used. 
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Classification Results per Classifier– Original SMOTEd Training  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 214: Classifier performance for Pharmacophore – Original SMOTEd Training 

 

Figure 215: Classifier performance for PubChem – Original SMOTEd Training 

 

Figure 216: Classifier performance for Substructure – Original SMOTEd Training 
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NaïveBayes and SMO have given us the least optimal results from the group of 

classifiers used. They have higher false positive rates than the other ones. On the 

other hand J48, Random Forest and Majority Voting have good results overall. In the 

next section, we will observe how adding numerical fingerprints affects our 

classification results. 

Analysis of the Improvement with Numerical Fingerprints  

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑** ↓** ↓ ↑**

NB ↓** ↑** ↓** ↑** ↑**

RF ↓ ↑** ↓** ↑ ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↑ ↑** ↓** ↓ ↑**  

Figure 217: Results from adding numerical fingerprints to binary fingerprints for EState 

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑ ↑* ↓* ↓ ↑*

RF ↑ ↑** ↓** ↓ ↑**

SMO ↓ ↑ ↓ ↑ ↑ 

MV ↑ ↑** ↓** ↓ ↑**  

Figure 218: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓** ↑** ↓** ↑** ↑**

NB ↓ ↑ ↓ ↑ ↑ 

RF ↓ ↑** ↓** ↑ ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↓ ↑** ↓** ↑ ↑**  

Figure 219: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Specificity, false positive and accuracy have benefited from the addition of 

numerical descriptors. However sensitivity and false negative rates have declined 

especially with Substructure and EState fingerprints. In the next section, we classify 

the original dataset with PCA and show the classification metrics used. 
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AID362 Classification Results per Fingerprint– PCA Original 

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. The PCA feature selection technique was 

used here. 

 

Figure 220: Classification results from classifying the AID362 dataset by NaïveBayes 

 

Figure 221: Classification results from classifying the AID362 dataset by SMO 

In these set of tests, ones with PCA incorporated, the dimensionality of our 

dataset (AID362) has been reduced. The dataset was exposed to the classifiers in its 

original state. By looking at Figure 220 and Figure 221 we see that MACCS, 

Substructure and the CDK Fingerprinter family (Extended Fingerprinter, 

Fingerprinter and Graph-Only) have produced better sensitivity results, however the 

false positive results are slightly higher than desired with NaïveBayes than SMO. In 

the next section, we will observe how adding numerical fingerprints affects our 

classification results. 
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Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑* ↓* ↑ ↑ 

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓* ↑** ↓** ↑* ↑ 

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓* ↑** ↓** ↑* ↑**  

Figure 222: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↓ ↑ ↑ ↓ 

Extended ↑* ↑ ↓ ↓* ↑ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓ ↑ ↓ ↓ 

Pharmacophore ↑* ↓* ↑* ↓* ↓ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓* ↑* ↓ ↓  

Figure 223: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

When adding numerical descriptors for the PCA results, we see that with 

Random Forest (Figure 222) there are improvements in Specificity, false positive 

and accuracy rates, some of which are significant. With Majority Voting (Figure 

223), Sensitivity and false negative improve, yet not much significant improvement 

either. In the next section, we classify the original dataset and show the classification 

metrics used. Note that PCA has been applied to the original dataset. 
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AID362 Classification Results per Classifiers– PCA Original 

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 224: Classifier performance for EState - PCA 

 

Figure 225: Classifier performance for Pharmacophore - PCA 

 

Figure 226: Classifier performance for PubChem - PCA 

 From reviewing Figure 224 - Figure 226 we see that almost all classifiers 

have produced good metrics (apart from sensitivity which is very low) except for 
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NaïveBayes which has higher false positive results than the others. In the next 

section, we will observe how adding numerical fingerprints affects our classification 

results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↑ ↑ ↓ ↓ ↑ 

RF ↓* ↑** ↓** ↑* ↑ 

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑* ↓* ↑* ↓* ↓  

Figure 227: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓ ↓ ↑ ↑ ↓ 

RF ↓* ↑** ↓** ↑* ↑**

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑ ↓* ↑* ↓ ↓  

Figure 228: Results from adding numerical fingerprints to binary fingerprints for Substructure 

The classifiers did not benefit much from the addition of the numerical 

descriptors when used in combination with the PCA and the dataset in its original 

imbalanced state. Only Random Forest shows partial significant improvement for 

specificity and false positive rates. In the next section, we classify the dataset that 

was balanced before splitting with PCA and show the classification metrics used. 

AID362 Classification Results per Fingerprint– PCA SMOTEd All  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 229: Classification results from classifying the AID362 dataset by NaïveBayes 

 

Figure 230: Classification results from classifying the AID362 dataset by SMO 

 After the dimensionality of the original dataset was reduced using PCA it 

was balanced using SMOTE and then split into training and test sets (60% and 40%). 

We see a rise in sensitivity (compared to PCA-only method, previous section) and a 

drop in the false negative rate. However the false positive rates have risen with 

EState, MACCS, Pharmacophore and Substructure in Figure 229. Results seem to be 

better using the fingerprints with SMO (Figure 230). In the next section, we will 

observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 
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J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓*

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↓ 

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↑ ↑** ↓** ↓ ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 231: Results from adding numerical fingerprints to binary fingerprints for J48 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↓ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 232: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↑* ↑ ↓ ↓* ↑*

Fingerprinter ↓ ↑ ↓ ↑ ↓ 

Graph-Only ↑** ↑ ↓ ↓** ↑**

MACCS ↑** ↑** ↓** ↓** ↑**

Pharmacophore ↑** ↓* ↑* ↓** ↑**

PubChem ↑* ↓ ↑ ↓* ↑ 

Substructure ↑** ↓ ↑ ↓** ↑**  

Figure 233: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓* ↑** ↓** ↑* ↑*

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↑* ↑** ↓** ↓* ↑**

PubChem ↑ ↑* ↓* ↓ ↑ 

Substructure ↑** ↑ ↓ ↓** ↑**  

Figure 234: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

Improvement in the metrics as a result of adding numerical descriptors has 

not been consistent throughout Figure 231 - Figure 234. We see specificity and false 

positive rates improve with J48, Random Forest and Majority Voting. With SMO 

there is more significant improvement for sensitivity, false negative and accuracy. In 
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the next section, we classify the dataset that was balanced before splitting with PCA 

and show the classification metrics used. 

AID362 Classification Results per Classifiers– PCA SMOTEd All  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 235: Classifier performance for PubChem – PCA SMOTEd All 

 

Figure 236: Classifier performance for Substructure – PCA SMOTEd All 

NaïveBayes has consistently produced the highest false positive rates in these 

tests, especially with SMO, in contrast to J48, Random Forest and Majority Voting 

which have the better results especially when used in combination with PubChem. In 

the next section, we will observe how adding numerical fingerprints affects our 

classification results. 
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Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↓** ↑** ↓** ↑** ↑ 

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑ ↑** ↓** ↓ ↑**

MV ↓** ↑** ↓** ↑** ↑**  

Figure 237: Results from adding numerical fingerprints to binary fingerprints for EState 

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑** ↓** ↓ ↑**

NB ↑** ↑ ↓ ↓** ↑**

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑ ↑** ↓** ↓ ↑**  

Figure 238: Results from adding numerical fingerprints to binary fingerprints for MACCS 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑** ↓** ↓ ↑**

NB ↑** ↑ ↓ ↓** ↑ 

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑** ↓* ↑* ↓** ↑**

MV ↑* ↑** ↓** ↓* ↑**  

Figure 239: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↑** ↓** ↑** ↓** ↓*

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑** ↓ ↑ ↓** ↑**

MV ↑** ↑ ↓ ↓** ↑**

 

Figure 240: Results from adding numerical fingerprints to binary fingerprints for Substructure 

 Adding numerical descriptors has shown great improvements in the 

performance of our classifiers (Figure 237 -Figure 240). Classifiers have all 

improved with MACCS fingerprint and the improvement with the other fingerprints 

is mixed with regards to the classification metrics. The most significant 

improvements are with sensitivity, false negative and accuracy. In the next section, 
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we classify the dataset where only training set has been balanced and show the 

classification metrics used. 

AID362 Classification Results per Fingerprint– PCA SMOTEd Training  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 241: Classification results from classifying the AID362 dataset by NaïveBayes 

 

Figure 242: Classification results from classifying the AID362 dataset by Random Forest  

 

Figure 243: Classification results from classifying the AID362 dataset by SMO 

 The dimensionality-reduced AID362 was split into training and test set 

(60%-40%) first and then only the training set was balanced using SMOTE. The 

results show a better variance when used with SMO and NaïveBayes. With the other 

classifiers the results show bias towards the majority class (extremely high 
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specificity rates) as seen in Figure 242. In the next section, we will observe how 

adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓* ↑* ↓ ↓*

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↑** ↓** ↑ ↑**

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓** ↑** ↓** ↑** ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 244: Results from adding numerical fingerprints to binary fingerprints for J48 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↑** ↓** ↑ ↑**

MACCS ↓* ↑ ↓ ↑* ↑ 

Pharmacophore ↓** ↑** ↓** ↑** ↑**

PubChem ↑ ↓ ↑ ↓ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 245: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↑* ↓* ↓ ↑*

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓* ↑** ↓** ↑* ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓ ↑* ↓* ↑ ↑*  

Figure 246: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

 The most improvement which is also significant can be seen with specificity, 

false positive and accuracy when used with J48, Random Forest and Majority Voting 

when observing Figure 244 - Figure 246. In the next section, we classify the dataset 

where only training set has been balanced with PCA and show the classification 

metrics used. 
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AID362 Classification Results per Classifiers– PCA SMOTEd Training  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 247: Classifier performance for MACCS – PCA SMOTEd Training 

 

Figure 248: Classifier performance for Pharmacophore – PCA SMOTEd Training 

 

Figure 249: Classifier performance for Substructure – PCA SMOTEd Training 
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NaïveBayes and SMO stand out as the two classifiers with a higher sensitivity 

but also higher false positive rates compared to the other classifiers in these set of 

tests. Pharmacophore seems to have produced the better results compared to the 

other fingerprints when used with the classifiers (Figure 248). In the next section, we 

will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones to see 

the effect this might have in the classification process and our metrics. These results 

and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓* ↑* ↓ ↓*

NB ↓* ↑** ↓** ↑* ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑ ↑** ↓** ↓ ↑**  

Figure 250: Results from adding numerical fingerprints to binary fingerprints for EState 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓** ↑** ↓** ↑** ↑**

NB ↑ ↓ ↑ ↓ ↓ 

RF ↓** ↑** ↓** ↑** ↑**

SMO ↓ ↓ ↑ ↑ ↓ 

MV ↓* ↑** ↓** ↑* ↑**  

Figure 251: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑** ↓** ↑ ↑**

NB ↓ ↓ ↑ ↑ ↓ 

RF ↓ ↑** ↓** ↑ ↑**

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↓ ↑* ↓* ↑ ↑*  

Figure 252: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Results from this section (Figure 250 - Figure 252) show that there has been a 

significant improvement on specificity, false positive and accuracy rates for J48, 

Random Forest and Majority Voting, also for NaïveBayes when used with EState. 
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Figure 253: Sensitivity versus False Positive AID362 methods 

 

  

 

 

 

 

 

Figure 254: Sensitivity versus False Positive AID362 classifiers  

Methods Used Euclidean Distance 

 

 

 

Binary Descriptor 

Original 0.8175 

Original SMOTEd All 0.1127 

Original SMOTEd Training 0.6564 

PCA 0.8669 

PCA SMOTEd All 0.1499 

PCA SMOTEd Training 0.6895 

 

 

 

Binary + Numerical 

Descriptors 

Original 0.7904 

Original SMOTEd All 0.0973 

Original SMOTEd Training 0.6706 

PCA 0.8658 

PCA SMOTEd All 0.1401 

PCA SMOTEd Training 0.705 

Table 21: Euclidean distance for the methods used  
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Classifiers Used Euclidean Distance 

 

Binary Descriptors 

J48 0.5511 

NaïveBayes 0.5745 

Random Forest 0.5043 

SMO 0.5214 

Majority Voting 0.5411 

 

Binary + Numerical Descriptors 

J48 0.5521 

NaïveBayes 0.5828 

Random Forest 0.4976 

SMO 0.5149 

Majority Voting 0.5368 

Table 22: Euclidean distance for the classifiers used 

By looking at Table 21 and Table 22 we can see that on average, the method 

that performed best and is closest to the point (0,1) as seen in Figure 253 is when the 

dataset was initially balanced and then split into training and test sets. This condition 

is valid both when the dataset is high-dimensional and also when the dimensionality 

is reduced using the PCA method and numerical descriptors are added to the dataset 

being classified. With regards to the classifier used Random Forest has proven 

overall to be the better one amongst all our classifiers (Figure 254), despite not 

having consistent good results in all the experiments. 
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Conclusion 

In this section we saw the results for classifying the AID362 dataset. This 

dataset was a highly imbalanced dataset which made the classifiers susceptible to 

bias in classifying the minority class. In order to assist with the classification we 

applied our methods to the dataset including balancing and dimensionality reduction. 

We saw that when the dataset was experimented on in its original high-

dimensional state, the fingerprint Pharmacophore stood out as the better performing 

one in almost all of the tests with good improvements when adding numerical 

descriptors. Random Forest and NaïveBayes show good results among the classifiers 

used followed by SMO and Majority voting. 

When PCA was applied to the dataset, it was soon clear that the fingerprint 

Pharmacophore produced better results compared to the other ones and benefited 

most from the addition of the numerical descriptors. PubChem and MACCS 

followed the performance level after Pharmacophore. The classifier Random Forest 

continued to be the better performing classifier. 
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5.4. The Heavily Imbalanced Dataset – AID456 

The second dataset we investigate in the section for heavily imbalanced 

datasets is the VCAM-1 Imaging Assay in Pooled HUVECs. For the ease of reading 

we shall call this dataset AID456 from here onwards. 

AID456 is related to screening compounds for VCAM-1(vascular cell 

adhesion molecule-1) cells induced by pro-inflammatory agents (Han et al. 2010). 

Dataset #Total 

Instances 

#Active Instances 

(class ‘1’) 

#Inactive Instances 

(class ‘0’) 

Active/Inactive 

Ratio 

AID456 9982 27 9955 0.0027 

Table 23: AID456 Dataset specification. Class of interest labelled as 1 

In this next section, we classify the original dataset and show the classification 

metrics used. 

AID456 Classification Results per Fingerprint– Original  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 255: Classification results from classifying the AID456 dataset by NaïveBayes 

 

Figure 256: Classification results from classifying the AID456 dataset by SMO 
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 By looking at Figure 255 and Figure 256 we see that the fingerprints 

MACCS, Pharmacophore and PubChem have produced better sensitivity than the 

other fingerprints used especially when accompanied by NaïveBayes. In the next 

section, we will observe how adding numerical fingerprints affects our classification 

results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓** ↑** ↓** ↓**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↓ ↓** ↑** ↑ ↓**

Pharmacophore ↑** ↓** ↑** ↓** ↓**

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↑** ↓** ↑** ↓** ↓**  

Figure 257: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↔ ↑* ↓* ↔ ↑*

Fingerprinter ↔ ↑ ↓ ↔ ↑ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↓ ↑** ↓** ↑ ↑**

Pharmacophore ↔ ↑** ↓** ↔ ↑**

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↓ ↑* ↓* ↑ ↑*  

Figure 258: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

Results here show that the fingerprints Pharmacophore and MACCS have the 

most improvement and when Random Forest is engaged, specificity and false 

positive rates improve most with the addition of numerical descriptors. In the next 

section, we classify the original dataset and show the classification metrics used. 

AID456 Classification Results per Classifiers– Original  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 259: Classifier performance for MACCS 

 

Figure 260: Classifier performance for PubChem 

 

Figure 261: Classifier performance for Substructure 

By looking at Figure 259 - Figure 261 we see how difficult it is to classify an 

extremely imbalanced high-dimensional dataset such as AID456. The sensitivity 

levels are at an extreme low and almost all of the data has been classified as the 

majority class (specificity very high). However NaïveBayes shows good sensitivity 

levels especially with PubChem and MACCS. SMO produces less good results for 
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sensitivity compared to NaïveBayes but shows better lower false positive rates using 

the same fingerprints. In the next section, we will observe how adding numerical 

fingerprints affects our classification results  

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↓ ↓** ↑** ↑ ↓**

RF ↓ ↑** ↓** ↑ ↑**

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↓ ↓ ↑ ↑ ↓  

Figure 262: Results from adding numerical fingerprints to binary fingerprints for MACCS 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↑ ↓ ↔ ↑ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↔ ↑ ↓ ↔ ↑ 

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↔ ↓ ↑ ↔ ↓  

Figure 263: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓** ↑** ↑ ↓**

NB ↑** ↓** ↑** ↓** ↓**

RF ↓ ↑* ↓* ↑ ↑*

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑ ↓ ↑ ↓ ↓  

Figure 264: Results from adding numerical fingerprints to binary fingerprints for Substructure 

By looking at the figures above we can see that despite the red arrows which 

indicate worsening of the rates as a result of adding numerical descriptors, SMO and 

NaïveBayes show signs of improvement, however little. In the next section, we 

classify the dataset that was balanced before splitting and show the classification 

metrics per fingerprint used. 
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AID456 Classification Results per Fingerprint– Original SMOTEd All  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 265: Classification results from classifying the AID456 dataset by NaïveBayes 

 

Figure 266: Classification results from classifying the AID456 dataset by SMO 

In these set of tests the AID456 dataset has been balanced using SMOTE and 

then split into test and training sets. Since the dataset is balanced we see great results 

with regards to both sensitivity and specificity and also for false positive and 

negative rates. SMO has the better results compared to NaïveBayes and MACCS and 

PubChem appear to be the better performing fingerprints. In the next section, we will 

observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 
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J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑ ↑ ↓ ↓ ↑  

Figure 267: Results from adding numerical fingerprints to binary fingerprints for J48 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↓**

Extended ↓** ↑** ↓** ↑** ↓ 

Fingerprinter ↓** ↑** ↓** ↑** ↓**

Graph-Only ↑** ↑** ↓** ↓** ↑**

MACCS ↑** ↑ ↓ ↓** ↑**

Pharmacophore ↑** ↑ ↓ ↓** ↑**

PubChem ↑** ↑ ↓ ↓** ↑*

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 268: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑*

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↑* ↓* ↓ ↑*

Pharmacophore ↑ ↑** ↓** ↓ ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↑** ↓** ↓ ↑**  

Figure 269: Results from adding numerical fingerprints to binary fingerprints for Random Forest 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↔ ↑ ↓ ↔ ↑ 

Fingerprinter ↔ ↓ ↑ ↔ ↓ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↓ ↑** ↓** ↑ ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↔ ↑* ↓* ↔ ↑*

Substructure ↑** ↑** ↓** ↓** ↑**  

Figure 270: Results from adding numerical fingerprints to binary fingerprints for SMO 
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Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↓ ↑ ↓ ↓ 

MACCS ↑ ↑** ↓ ↓ ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↑ ↓ ↑ ↓ ↑ 

Substructure ↑ ↑** ↓** ↓ ↑**  

Figure 271: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

By looking at Figure 267 - Figure 271 we clearly see that Pharmacophore is 

the better performing fingerprint and has improved significantly. SMO and Random 

Forest have performed great followed by Majority Voting and NaïveBayes. In the 

next section, we classify the dataset that was balanced before splitting and show the 

classification metrics used. 

AID456 Classification Results per Classifiers– Original SMOTEd All  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 272: Classifier performance for MACCS 
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Figure 273: Classifier performance for PubChem 

 Here we see that SMO has performed greatly and has results as good as J48 

and Random Forest and Majority Voting. In the next section, we will observe how 

adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑** ↓** ↑ ↑**

NB ↓** ↑** ↓** ↑** ↓**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 274: Results from adding numerical fingerprints to binary fingerprints for EState 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↑** ↑ ↓ ↓** ↑**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 275: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 
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Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑** ↑** ↓** ↓** ↑**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑ ↑** ↓** ↓ ↑**  

Figure 276: Results from adding numerical fingerprints to binary fingerprints for Substructure 

From observing Figure 274 - Figure 276 we see many great improvements 

among the classification metrics and the classifiers used. The most significant 

improvements can be seen on SMO, Majority Voting and Random Forest. In the next 

section, we classify the dataset where only training set has been balanced and show 

the classification metrics used. 

AID456 Classification Results per Fingerprint– Original SMOTEd Training  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 277: Classification results from classifying the AID456 dataset by NaïveBayes 

 

Figure 278: Classification results from classifying the AID456 dataset by SMO 

Our dataset has been split into training and test and then only the training set 

has been balanced. Results from Figure 277 and Figure 278 Show that NaïveBayes 

has slightly better results compared to SMO with regards to the sensitivity levels. 
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Pharmacophore, MACCS and Substructure are the better performing fingerprints. In 

the next section, we will observe how adding numerical fingerprints affects our 

classification results and whether the changes are statistically significant or not. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑*

Extended ↓ ↑** ↓** ↑ ↑**

Fingerprinter ↑ ↑** ↓** ↓ ↑**

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↔ ↑ ↓ ↔ ↑ 

Pharmacophore ↓* ↑** ↓** ↑* ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓ ↑ ↓ ↑ ↑  

Figure 279: Results from adding numerical fingerprints to binary fingerprints for J48 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑* ↓* ↓ ↑*

Extended ↔ ↓ ↑ ↔ ↓ 

Fingerprinter ↔ ↓ ↑ ↔ ↓ 

Graph-Only ↔ ↓ ↑ ↔ ↓ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓ ↑** ↓** ↑ ↑**

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↓* ↑* ↓* ↑* ↑*  

Figure 280: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↔ ↑** ↓** ↔ ↑**

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↑ ↑* ↓* ↓ ↑*

Pharmacophore ↓ ↑** ↓** ↑ ↑**

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 281: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

Specificity, false positive and accuracy levels have improved as a result off 

adding numerical descriptors in Figure 279 - Figure 281 (except for the CDK 

Fingerprints in Figure 280). J48 has performed well and from the fingerprints EState 

and Pharmacophore have the most improvements. In the next section, we classify the 
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original dataset where only training set has been balanced and show the classification 

metrics used. 

AID456 Classification Results per Classifiers– Original SMOTEd Training  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 282: Classifier performance for EState 

 

Figure 283: Classifier performance for Pharmacophore 
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Figure 284: Classifier performance for Substructure 

In these set of tests, SMO and NaïveBayes show better sensitivity results but 

also higher false positive results compared to the other classifiers. EState and 

Pharmacophore have better results for SMO and NaïveBayes too. In the next section, 

we will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓** ↑** ↓** ↑** ↑*

NB ↓ ↓ ↑ ↑ ↓ 

RF ↓** ↑** ↓** ↑** ↑**

SMO ↑ ↑* ↓* ↓ ↑*

MV ↓ ↑** ↓** ↑ ↑**  

Figure 285: Results from adding numerical fingerprints to binary fingerprints for EState 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓* ↑** ↓** ↑* ↑**

NB ↑ ↓ ↑ ↓ ↓ 

RF ↓** ↑** ↓** ↑** ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↓ ↑** ↓** ↑ ↑**  

Figure 286: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

In Figure 285 and Figure 286 there is a great level of improvement for 

specificity and false positive rates together with accuracy. This improvement is 

mostly seen in J48, Random Forest, SMO and Majority Voting. In the next section, 

we classify the original dataset with PCA and show the classification metrics used. 
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AID456 Classification Results per Fingerprint– PCA Original 

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. Here we have applied PCA to the dataset. 

 

Figure 287: Classification results from classifying the AID456 dataset by NaïveBayes 

 

Figure 288: Classification results from classifying the AID456 dataset by Random Forest 

 Reducing the dimensionality of AID456 using PCA and classifying it in the 

imbalanced state, has not produced many good results. As expected the bias of the 

classifiers is towards the majority class and almost all samples (majority or minority) 

have been classified as the majority class. EState, Pharmacophore and Substructure 

have produced some sensitivity with NaïveBayes. No fingerprint has performed 

consistently or particularly well. In the next section, we will observe how adding 

numerical fingerprints affects our classification results. 
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Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↔ ↔ ↔ ↔ ↔

Fingerprinter ↔ ↔ ↔ ↔ ↔ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↔ ↑ ↓ ↔ ↑ 

Pharmacophore ↑ ↑** ↓** ↓ ↑**

PubChem ↔ ↓ ↑ ↔ ↓ 

Substructure ↑ ↑* ↓* ↓ ↑*  

Results from adding numerical fingerprints to binary fingerprints for Random Forest 

 Adding numerical descriptors has not improved much in our classification 

metrics. EState and Pharmacophore are the only two fingerprints to improve 

significantly. In the next section, we classify the original dataset with PCA and show 

the classification metrics used. 

AID456 Classification Results per Classifiers– PCA Original 

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. Here the PCA technique was applied to the 

dataset. 

 

Figure 289: Classifier performance for EState 
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Figure 290: Classifier performance for Pharmacophore 

 

Figure 291: Classifier performance for Substructure 

 In Figure 289 - Figure 291 NaïveBayes seems to have classified some 

minority class instances correctly. It seems that the level of sensitivity and false 

positive for this classifier go hand in hand; as the sensitivity rises, so does the false 

positive rate. No classifier has performed particularly well. In the next section, we 

will observe how adding numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 
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EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↓ ↑ ↔ ↓ 

NB ↑ ↑* ↓* ↓ ↑*

RF ↓** ↑** ↓** ↑** ↑**

SMO ↔ ↔ ↔ ↔ ↔ 

MV ↑ ↑ ↓ ↓ ↑  

Figure 292: Results from adding numerical fingerprints to binary fingerprints for EState 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↓ ↑ ↔ ↓ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↑ ↑** ↓** ↓ ↑**

SMO ↔ ↑ ↓ ↔ ↑ 

MV ↑ ↔ ↔ ↓ ↑  

Figure 293: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↑ ↑* ↓* ↓ ↑*

SMO ↑ ↓* ↑* ↓ ↓*

MV ↑ ↓ ↑ ↓ ↓  

Figure 294: Results from adding numerical fingerprints to binary fingerprints for Substructure 

From looking at the figures above we see that Random Forest has benefited 

mostly from the addition of the numerical descriptors and no other classifier has 

major improvements. In the next section, we classify the dataset that was balanced 

before splitting with PCA and show the classification metrics used. 

AID456 Classification Results per Fingerprint– PCA SMOTEd All  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 

 

Figure 295: Classification results from classifying the AID456 dataset by NaïveBayes 



 

183 

 

 

Figure 296: Classification results from classifying the AID456 dataset by SMO 

 As a result of balancing the dimensionality-reduced dataset, we observe 

improvement in the sensitivity rates. As mentioned before this might be as a result of 

overfitting by using SMOTE, but research shows that in general resampling 

techniques using oversampling perform on average better (Orriols-Puig & Bernadó-

Mansilla 2009). EState, MACCS and PubChem have produced better results in the 

presence of SMO (Figure 296). In the next section, we will observe how adding 

numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↓* ↑* ↑ ↓ 

Fingerprinter ↑ ↑** ↓** ↓ ↑ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↑ ↑** ↓** ↓ ↑ 

PubChem ↑* ↓** ↑** ↓* ↑ 

Substructure ↓** ↑** ↓** ↑** ↑**  

Figure 297: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 
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SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↔ ↑ ↓ ↔ ↑ 

Fingerprinter ↔ ↓ ↑ ↔ ↓ 

Graph-Only ↔ ↑** ↓** ↔ ↑**

MACCS ↓ ↑ ↓ ↑ ↓ 

Pharmacophore ↑** ↓** ↑** ↓** ↑**

PubChem ↑** ↑** ↓** ↓** ↑**

Substructure ↓ ↑** ↓** ↑ ↑  

Figure 298: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↑** ↓** ↓** ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↓ ↑** ↓** ↑ ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↑* ↓** ↑** ↓* ↓ 

Substructure ↓** ↑** ↓** ↑** ↑**  

Figure 299: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

EState, MACCS and Pharmacophore are the three fingerprints that have 

benefited most from the addition of the numerical descriptors. SMO and Majority 

Voting have the most significant improvements. In the next section, we classify the 

dataset that was balanced before splitting and show the classification metrics used. 

AID456 Classification Results per Classifiers– PCA SMOTEd All  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. PCA was applied here to the dataset. 

 

Figure 300: Classifier performance for MACCS 
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Figure 301: Classifier performance for Pharmacophore 

 

Figure 302: Classifier performance for PubChem 

 J48, Random Forest and Majority Voting have performed well and produced 

good metrics in these tests. NaïveBayes has performed the worst by producing less 

sensitivity and more false positive rates. In the next section, we will observe how 

adding numerical fingerprints affects our classification results  

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↑** ↑** ↓** ↓** ↑**

RF ↓ ↑** ↓** ↑ ↑**

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 303: Results from adding numerical fingerprints to binary fingerprints for EState 
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Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑** ↓** ↓ ↑**

NB ↑ ↑** ↓** ↓ ↑ 

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑** ↓** ↑** ↓** ↑**

MV ↑** ↑** ↓** ↓** ↑**  

Figure 304: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑* ↓** ↑** ↓* ↑ 

RF ↑ ↓ ↑ ↓ ↓ 

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑* ↓** ↑** ↓* ↓  

Figure 305: Results from adding numerical fingerprints to binary fingerprints for PubChem 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓ ↑ ↑ ↓ 

NB ↓** ↑** ↓** ↑** ↑**

RF ↓ ↑** ↓** ↑ ↑ 

SMO ↓ ↑** ↓** ↑ ↑ 

MV ↓** ↑** ↓** ↑** ↑**  

Figure 306: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Apart from when Substructure is used as the fingerprinting technique, all other 

fingerprints show good and significant improvements in the presence of the 

classifiers used. Not all metrics have improved consistently but there is overall a 

good rate of improvement. In the next section, we classify the dataset where only 

training set has been balanced with PCA and show the classification metrics used. 

AID456 Classification Results per Fingerprint– PCA SMOTEd Training  

In this section we look in more detail at the classification results per classifier 

used and then per each fingerprint. We want to see with every classifier, which 

fingerprint performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 307: Classification results from classifying the AID456 dataset by NaïveBayes 

 

Figure 308: Classification results from classifying the AID456 dataset by SMO 

The sensitivity rates have fallen as a result of only balancing the training set, 

since there is a very low number of minority examples in the test set to be classified 

and the slightest misclassification can have a great cost. EState and Substructure 

have produced more balanced results with NaïveBayes. MACCS, Pharmacophore 

and Substructure have good results with SMO. In the next section, we will observe 

how adding numerical fingerprints affects our classification results.  

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↓** ↑** ↓** ↑** ↑**  

Figure 309: Results from adding numerical fingerprints to binary fingerprints for NaïveBayes 
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SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↔ ↑ ↓ ↔ ↑ 

Fingerprinter ↔ ↑ ↓ ↔ ↑ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑ ↑ ↓ ↓ ↑ 

PubChem ↓** ↑** ↓** ↑** ↑**

Substructure ↑ ↑ ↓ ↓ ↑  

Figure 310: Results from adding numerical fingerprints to binary fingerprints for SMO 

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↔ ↓ ↑ ↔ ↓ 

Fingerprinter ↔ ↑ ↓ ↔ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓ ↑** ↓** ↑ ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  

Figure 311: Results from adding numerical fingerprints to binary fingerprints for Majority Voting 

Results produced per fingerprints have improved by adding numerical 

descriptor in these tests however the results are not too significant. Substructure and 

Pharmacophore are the two fingerprints showing significant improvements. In the 

next section, we classify the dataset where only training set has been balanced With 

PCA and show the classification metrics used. 

AID456 Classification Results per Classifiers– PCA SMOTEd Training  

In this section we look in more detail at the classification results per 

fingerprint used and then per each classifier. We want to see with every fingerprint, 

which classifier performed better regarding the classification metrics. In the next few 

pages we shall be showing these results. 
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Figure 312: Classifier performance for EState 

 

Figure 313: Classifier performance for MACCS 

 

Figure 314: Classifier performance for Pharmacophore 
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Figure 315: Classifier performance for PubChem 

 

Figure 316: Classifier performance for Substructure 

SMO and NaïveBayes have produced the highest level of sensitivity in Figure 

312 - Figure 316. And they also have the highest false positive rates amongst the 

classifiers in these set of tests. J48, Random Forest and Majority Voting have better 

results with Pharmacophore. In the next section, we will observe how adding 

numerical fingerprints affects our classification results. 

Analysis of the Improvement with Numerical Fingerprints 

In this section we have included the numerical fingerprints to the binary ones 

to see the effect this might have in the classification process and our metrics. These 

results and whether the change is significant is shown in this section. 
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EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓ ↑** ↓** ↑ ↑**

RF ↓** ↑** ↓** ↑** ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↓ ↑** ↓** ↑ ↑**  

Figure 317: Results from adding numerical fingerprints to binary fingerprints for EState 

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑** ↓** ↑ ↑**

NB ↑ ↓ ↑ ↓ ↓ 

RF ↓* ↑** ↓** ↑* ↑**

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↓ ↑** ↓** ↑ ↑**  

Figure 318: Results from adding numerical fingerprints to binary fingerprints for Pharmacophore 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↓** ↑** ↓** ↑** ↑**

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↓ ↑** ↓** ↑ ↑**  

Figure 319: Results from adding numerical fingerprints to binary fingerprints for Substructure 

Results from this section show that there is great improvement in the 

specificity and false negative and accuracy rates. There are however no classifiers 

that have consistently improved and significantly too.  

Summary of the results and receiver operating characteristics analysis 

 

  

 

 

 

 

Figure 320: Sensitivity versus False Positive AID456 methods 
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Figure 321: Sensitivity versus False Positive AID456 classifiers 

Methods Used Euclidean Distance 

 

 

 

Binary Descriptors 

Original 0.968 

Original SMOTEd All 0.0778 

Original SMOTEd Training 0.9138 

PCA 0.9866 

PCA SMOTEd All 0.0953 

PCA SMOTEd Training 0.9132 

 

 

 

Binary + Numerical 

Descriptors 

 

 

Original 0.9563 

Original SMOTEd All 0.0842 

Original SMOTEd Training 0.9247 

PCA 0.9862 

PCA SMOTEd All 0.0664 

PCA SMOTEd Training 0.9253 

Table 24: Euclidean distance for the methods used  

Classifiers Used Euclidean Distance 

 

 

Binary Descriptors 

 

 

 

J48 0.6555 

NaïveBayes 0.6707 

Random Forest 0.6605 

SMO 0.6331 

Majority Voting 0.6516 

 

 

Binary + Numerical Descriptors 

 

 

J48 0.6604 

NaïveBayes 0.666 

Random Forest 0.6655 

SMO 0.6289 

Majority Voting 0.6537 

Table 25: Euclidean distance for the classifiers used 
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Conclusion 

 In this section we experimented with our most imbalanced dataset, AID456. 

The results were discussed from the point of view of the fingerprints and the 

classifiers used. We looked at how the fingerprints performed in the presence of each 

classifier and vice versa. We also looked at how adding numerical descriptors to 

binary fingerprints affect the results of classification metrics. These tests were done 

once with the dataset in its original state and once when PCA was applied. 

Throughout these tests we applied our unique methodology of combining the use of 

fingerprints and balancing using SMOTE. 

 In the presence of each classifier the fingerprints behave differently. There 

was no consistent behaving fingerprint, but overall we could point out that 

Pharmacophore and MACCS did stand out as better performing ones. When looked 

at the performance of classifiers in the presence of the fingerprints we observe that 

SMO was indeed the better performing classifier. This result can also be seen in 

Figure 321. This can also be confirmed by looking at Table 25. 

The application of PCA did worsen our results and there was almost no 

sensitivity produced by the fingerprints. If the classifiers did show sensitivity rate it 

was NaïveBayes and on occasion SMO, but this would go hand in hand with higher 

false positive rates. Adding numerical attributes did affect classification metrics in 

positive ways in many situations. Although compared to AID362 there were fewer of 

these instances. The statistical significance of the improvements was not concluded 

on average and this should be discussed on a specific fingerprint or classifier level 

and cannot be generalised. 

 On the methods used to classify this dataset Figure 320 shows that when the 

dataset is balanced initially and then split into training and test sets it performs best. 

This is true for the dataset in its original state and when the dimensionality has been 

reduced and numerical attributes have been added (as seen in Table 24).  
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The results of classifying this dataset indicate that the high level of imbalance 

compounded by high numbers of instances and attributes makes it extra difficult to 

obtain good levels of classification metrics, especially sensitivity and false positives. 

When the whole dataset was balanced using SMOTE, the results achieved were 

optimal, but one might wonder whether this is a result of the good effect of 

resampling using SMOTE, or is it because of the overfitting it causes. 
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6. General Discussion and Concluding Remarks 

Chemoinformatics is the use of computational techniques in the field of 

chemistry in order to assist with the process of drug discovery. Most 

Chemoinformatics-related problems are associated with datasets that are highly 

imbalanced and these rare classes that are of interest in data mining. In this thesis, 

we propose that a unified processing approach, applicable both to standard and to 

particularly challenging chemical datasets (High-Dimensional and/or strongly 

Imbalanced), enables us to perform an effective Virtual Screening.  

Virtual screening in drug discovery involves analysing datasets containing 

unknown molecules in order to find the ones that are likely to have the desired 

effects on a biological target. The molecules are thereby classified into active or non-

active compared to the target. Standard classifiers assume equality between classes 

and therefore will not be very effective (Ganganwar 2012; López et al. 2013; Zięba 

et al. 2015). When classifying imbalanced datasets, it is more important to correctly 

classify minority classes also known as classes of interest.  These rare classes often 

get misclassified because most classifiers optimise the overall classification 

accuracy. Thus, a number of classification approaches are focused on addressing this 

issue by modifying the algorithm (Estabrooks & Japkowicz 2004; Orriols-Puig & 

Bernadó-Mansilla 2009; García-Pedrajas et al. 2012; Lin & Chen 2012; Wang et al. 

2012; Batuwita & Palade 2013; Ducange et al. 2013; Zong et al. 2013; Dittman & 

Khoshgoftar 2014; Maldonado et al. 2014). These approaches, however, are typically 

specifically designed to suit the dataset for which they were developed, whilst 

having limited success in different scenarios.  

It is worthy to remind the reader that this is the main novelty of the work 

presented in the current study. It shows that the combination of over-sampling using 

SMOTE in specific and the utilisation of four main classifiers furnishes a generic, 

unified analysis for a wide range of cheminformatics data unlike other methods of 

dealing with imbalanced data in which the classifier is altered to meet the 

classification requirements for a specific type of data, therefore not providing a 

general, unified methodology for applying to a wide range of chemical datasets with 

varying imbalance ratios.      
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The lack of an effective approach to visual screening can have a significant 

negative impact in industrial settings. Misclassification of molecules in cases such as 

drug discovery and medical diagnosis is costly, both in time and finances. In the 

process of discovering a drug, it is mainly the inactive molecules classified as active 

towards the biological target i.e. false positives that cause a delay in the progress and 

high late-stage attrition. 

In order to overcome this drawback, the methodology followed in this project 

consists of analysing the effects of using various fingerprinting methods combined 

with the Synthetic Minority Oversampling Technique on the classification of highly 

imbalanced, high-dimensional datasets in a collection of the most successful 

classifiers in Chemoinformatics, convening a wide range of classification criteria. 

This research was set up to examine different methods of manipulating big 

imbalanced datasets that have not been cleared of noise, and to see how they can 

affect the entire range of classification evaluation metrics beyond the mere 

performance. Crucially, the combination of the two techniques, should be successful 

for big and highly imbalanced datasets that have not been cleared of noise in order to 

account for a realistic screening scenario manipulation. 

Chemoinformatics’ settings are a predominantly challenging problem for 

classifiers and the screening process can be complex to comprehend intuitively. 

Thus, in order to better understand this thesis, we have introduced the general 

concepts of the drug discovery process and how Chemoinformatics has influenced. 

This introductory information has been expanded in Chapter 2, accompanied by a 

literature review and discussion of the important contributions in the areas. Chapter 3 

provided the reader with information about the datasets; their origin, size and class 

distribution. Some detail about how the datasets were collected and transformed in 

the format to be used for this research has also been provided. Chapter 4 discussed 

the methods that were used in this research for gathering the results. These results 

were presented to the reader in Chapter 5. 

In total we experimented with 128 unique datasets (refer to Figure 17 in 

chapter 3 for a summary of the generation). Our main findings are summarised in the 

next figures. These figures illustrate, in short, the performance of the methods and 

the classifiers used for this study. Specifically, the sensitivity versus false positive 

figures have been re-produced here for the sake of reminding our readers of the state 
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of our classification results and in order to compare the datasets. We start with the 

Mutagenicity dataset and then Factor XA Dataset. These will be followed by our 

highly imbalanced datasets AID362 and AID456.  

For the Mutagenicity dataset, the fingerprints behaved differently in the 

presence of each classifier. There was no one particular fingerprint that performed 

better consistently throughout the experiments performed. In general though, 

PubChem and MACCS produced better results than the other fingerprints used. The 

classifiers which did stand out in the presence of each fingerprint were Majority 

Voting and Random Forest (Table 16), albeit not highly significantly with respect to 

other classifiers. Applying PCA did not affect the performance of the classifiers used 

as much as anticipated i.e. the Euclidean distance to the top left corner of a 

sensitivity-specificity plane was not reduced (Figure 322).  

 

 

 

 

 

Figure 322: Bursi dataset classifiers’ performance 

The best performance for the methods is achieved when using the original 

dataset in the classification process. The reason could be that when a dataset is less 

imbalanced or not at all then no pre-processing is needed (Yin & Gai 2015).  

 

 

 

 

 

 

 

Figure 323: Bursi dataset methods’ performance 
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The classifiers that performed best for the mutagenicity dataset were Random 

Forest and Majority Voting especially with the addition of numerical attributes 

(Please see Figure 322).  

Results of this benchmark, nearly fully balanced, dataset indicate that despite 

its complexity, a classical approach consisting of data management and pre-

processing followed by virtually any competitive classification approach directly 

operating in the original space of the data (i.e. the fingerprints) would suffice. Hence, 

the critical bottleneck for the standard approaches seems to be not in the 

dimensionality of the space i.e. the number of attributes produced by the fingerprints 

alone but also the size of the training set, the degree of overlapping between classes 

and rather specifically on how imbalanced they are (Prati et al. 2004). 

The Factor XA dataset is the moderately imbalanced dataset. The fingerprints 

behaved differently with the classifiers used; there was no one fingerprint that could 

be pointed out as the consistent better performing. In general MACCS, 

Pharmacophore and PubChem performed better than the other fingerprints for this 

dataset. As for the classifiers used, Random Forest definitely outperformed other 

classifiers as indicated by the Euclidean distance to the (0,1) vector of the sensitivity-

specificity plane (Figure 325) and stood out as the better performing classifier, 

regardless of the fingerprint or method used. 

 

 

 

 

 

 

Figure 324: Fontaine dataset methods’ performance 

Moreover, in this slightly imbalanced dataset the oversampling played a 

significant role. The better method for use with the Factor XA dataset was when the 

dataset was balanced using SMOTE and then split into training (60%) and test (40%) 

and then classified (Figure 324).  
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Figure 325: Fontaine dataset classifiers’ performance 

Random Forest was the one classifier that performed better than any other 

classifier, both when used with binary only descriptors and when numerical 

descriptors were added (Figure 325) A potential reason is the fact that Random 

Forest is resistant to over-training and the risk of overfitting. It is also resilient to 

outliers, deals with missing values, is insensitive to data skew and robust to a high 

number of variable inputs (Mascaro et al. 2014; Youssef et al. 2015).  

AID362 presents the dataset with a high imbalance ratio and moderately high 

number in instances compared to the two previous datasets. With regards to the 

fingerprints used, MACCS and PubChem appear to have produced the better results 

with most classifiers used, with Pharmacophore and on occasion Substructure. 

However this good performance was not consistent throughout the tests. 

Surprisingly, in sharp contrast with the previous datasets, NaïveBayes stands out as 

the classifier that consistently performed better than the others. Since Naïve Bayes 

would perform optimally when the class-probability distributions are normal, this 

probably can be explained on the basis of the effect of the oversampling; in the 

minority class, lots of samples have had IDs generated and mixed with the original 

ones. The resulting process possibly renders class-probability distributions which 

tend to be closer to Gaussian distributions than the original ones where, at least in 

the minority class, due to the central limit theorem (Bishop, 2006). Here, an 

extremely simple, conservative approach would be the optimal choice.  
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Figure 326: AID362 dataset methods’ performance 

With the AID362 dataset, when only binary descriptors were used, the 

method in which the dataset was balanced first and then split into training and test 

set performed best (See orange circle sign in Figure 326). When numerical 

descriptors were added, the same method mentioned above, stood out with the best 

performance i.e. the closest distance to the (0,1) corner (See orange square sign in 

Figure 326). 

 

 

 

 

 

 

Figure 327: AID362 classifiers’ performance 

As with the classifiers used, in the case of this dataset, Random Forest stands 

out with the best results among all other classifier, both with and without the use of 

numerical descriptors (Figure 327). 

Finally, we focused on AID456, which is by far the most imbalanced dataset 

with the most instances present in the dataset amongst the ones chosen for this study. 

In experiments performed for this dataset we have not seen as much improvement 

overall, however specificity and false positive and, on an occasion accuracy, have 

shown great improvement when numerical descriptors were added.  
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The fingerprints MAACS, Pharmacophore and PubChem appear to show the 

most diversity in their produced results. Most other fingerprints especially the CDK 

Fingerprinter, CDK Extended Fingerprinter and CDK Graph-only appear to have 

results that correspond to the classifier being biased towards the majority class. With 

regards to the classifiers used for this dataset, there is really no one classifier that 

consistently performed better or had the most improvement with the addition of 

numerical descriptors.  

 

 

 

 

 

 

Figure 328: AID456 methods’ performance 

With AID456, the method with which the dataset was balanced first and then 

split into training and test set stands out with by far better results of all other 

methods used (Figure 328). In this figure we see that Original SMOTEd All and 

PCA SMOTEd All have the better performance of all other methods. This 

performance enhances as numerical attributes are added. 

 

 

 

 

 

 

Figure 329: AID456 classifiers’ performance 

Interestingly, with regards to the classifiers used to classify AID456, overall 

SMO (linear -SVM) has outperformed all other classifiers both with and without 

the addition of numerical attributes. This result contrasts with the success of the 
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NaïveBayes classifier in the previous dataset (AID362), which can be perhaps 

explained on the basis of the different characteristics of these two heavily 

imbalanced dataset: AID362 has many more original data patterns available (45% 

more) and thus the oversampling may not have had a strong effect in the 

“normalisation” of the class probabilities as in the previous dataset. On the other 

hand, kernel approaches are, in general, particularly effective for classifying 

instances which are entangled in the space spanned by the variables of the system 

(Scholkopf & Smola, 2002). The SVM algorithm can be used in combination with 

kernel approaches that allow us to expand the original space until the problem 

because linearly separable (Bishop, 2006); and can be modified to deal with noise 

the training set class labels (the ν-SVM used in this thesis). However, in this thesis, 

we did not observe any significant advantages on using non-linear kernel functions, 

probably due to the intrinsic high-dimensionality of the problem. 

In our experiments. Random Forest has generally been the better classifier 

consistently with the existing literature in highly imbalanced dataset classification. In 

cases that ν-SVM has outperformed Random Forest it is likely due to the fact that the 

class boundaries were clear enough for it to separate classes with sufficient margin. 

Another potential reason for this slight disadvantage of SVM is that this is a very 

conservative classifier, which is based on “pessimistic bounds of generalisation” 

(Scholkopf and Smola, 2002) designed to minimise the risk of future 

misclassification; but at the cost of being less flexible to adapt to a specific dataset. 

More generally, the overall results achieved from classifying the AID362 and 

AID456 datasets using the different methods suggests that unlike the situation where 

the dataset is nearly balanced, when the imbalance ratio rises, the need for 

oversampling becomes obviously evident. However the question remains whether 

this improvement in results and good outcome and performance is due to the balance 

of the dataset being restored i.e. the distribution of the minority class samples is even 

across the feature space. As well as being productive, SMOTE can present several 

drawbacks with regards to its blind over-sampling (refer back to section 4.2 , and 

sub-section SMOTE for more clarification).  
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These drawbacks include the following (Sáez et al, 2015): 

 Creating too many examples around unnecessary positive examples which do 

not facilitate in the learning of the minority class. 

 Introducing noisy positive examples in areas belonging to the majority class 

 Creating borderline positive examples and disrupting the boundaries between 

the different classes in the dataset. 

Therefore, the question remains: did SMOTE restore the imbalance but only to 

add to the problem of sparseness in the feature space as mentioned above? The other 

question with regards to balancing the imbalanced datasets is the optimal balance 

ratio as discussed in Dittman & Khoshgoftar (2014). It was found that a 50:50 

balance ratio between the classes is not always the optimal and appropriate final 

class ratio for all scenarios of classifying datasets with high levels of class 

imbalance. 
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Concluding Remarks and Future Work 

At the beginning of this project a number of objectives were set in order to 

achieve the goal. In the course of completing the project, the various methods with 

which large datasets with imbalance between the classes are classified were 

investigated and researched. These methods fall into two big categories of 

manipulating the dataset (external manipulation) and manipulating the classifier 

(internal manipulation e.g. cost-sensitive classification). When performing the 

external manipulation one usually performs feature selection and / or sampling 

techniques. In this project we set on a journey to combine the use of fingerprinting 

methods with the SMOTE technique in order to analyse the virtual screening of large 

and highly imbalanced datasets in a unified manner. We successfully fulfilled this 

goal and performed the necessary experiments.  

We successfully generated eight fingerprints for the datasets used in this 

study and as a result 16 unique datasets were born from each of the original datasets. 

The SMOTE technique was successfully used in order to bring balance between the 

majority and minority classes in our datasets in two different manners. In the first 

manner the datasets were balanced and then split into training and test set. In the 

second manner the datasets were first split into training and test sets and then only 

the training set was balanced. This action itself doubled the number of our already 

unique datasets resulting in a total of 128 datasets that were used for our study. 

When results were gathered, the relevant classification metrics were 

compared and the classifiers, fingerprints and methods which produced better results 

were chosen in order to observe any patterns or possible combination. At the end we 

found that with datasets that have moderate to higher levels of imbalance, pre-

processing is needed in order to restore balance to the dataset. The balancing method 

SMOTE in conjunction with Random Forest and Majority Voting produced the best 

results out of the classifiers used in this study for our imbalanced datasets. However 

on occasion NaïveBayes and SMO have been seen to outperform the former two 

possibly due to the differential effects of oversampling with respect to the 

dimensionality and number of data patterns, as discussed before . With regards to the 

fingerprinting methods, the fingerprints MACCS, Pharmacophore and PubChem 

have shown promising results in the classification process. The performance of a 

classifier largely depends on the underlying distribution of the data in each class (Lin 
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& Chen 2012). A large standard deviation (variance) between the classes results in 

between-classes overlap. As a result the minority class instances are likely to be 

classified as majority class instances as there are more majority class instances in the 

overlapping area.  

When it comes to imbalanced datasets, the most obvious characteristic is the 

skewed data distribution between the different classes. Research shows that this is 

not the only cause of the difficulties for modelling a capable classifier. Other 

parameters involved are small sample size (very limited minority samples available) 

which could lead to overfitting (Chen & Wasikowski, 2008; TaşCı, Ş. and Güngör, 

2013), class overlapping and small disjoints which are the presence of within-class 

sub-concepts (Sun et al, 2009; Sáez et al, 2016). Recently, many solutions have been 

introduced to solve the binary imbalanced classification problem (see section 3.1 

tables 1 through 4), and therefore the use of multi-class classifiers is not mandatory. 

However, this possibility has been explored in other settings (Sáez et al, 2016). 

Multi-class problems are more involved than their binary counterparts 

because of the more complex relationship between their classes. In a binary setting 

the classes have a well-defined relationship between the classes: one class is the 

majority and the other is the minority. In a multi-class situation, a certain class can 

be a majority class in relation to a given subset of classes or a minority class. It could 

even be of similar distribution to some of them (see Figure 330). 

 

 

 

 

 

 

Figure 330: Possible class imbalance scenarios (Amended from Sáez et al. 2016, p.161) 

We can see in Figure 330 two possible class imbalance scenarios. On the left 

side, a binary imbalanced problem and on the right hand a multi-class imbalanced 

problem. In the case of the multi-class problem the relationship between the classes 

is evidently more complicated. 
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 There have been a few proposals for solutions to this problem in the 

literature. In Fernández-Navarro et al. (2011) the concept of static-SMOTE has been 

introduced. In this method, the resampling is applied in M steps, where M is the 

number of classes. With each iteration, the resampling technique selects the 

minimum-sized class and increases the number of instances of that class in the 

original dataset. An ensemble learning algorithm for multi-majority and multi-

minority was proposed in Wang and Yao (2012). Here the authors combine 

AdaBoost and negative correlation learning. As with binary class imbalanced 

datasets, cost-sensitive neural networks based on over-sampling, under-sampling and 

moving thresholds have been adapted to multi-class imbalanced classification (Zhou 

& Liu, 2006). The most popular solution is probably the one where the multi-class 

structure is broken down into binary ones (Hoens et al, 2012; Nag & Pal, 2016). 

However, one needs to be careful as multi-class imbalanced datasets introduce new 

difficulties. As mentioned above, unlike binary cases, in multi-class cases classes can 

be a minority and or majority depending on the way they are looked at. The 

following situations can form: 

 Many minority, one majority 

 One minority, many majority  

 Many minority, many majority 

In order to overcome these issues, there is a need to identify the nature of the 

different types of examples in a multi-class imbalanced dataset in order to 

understand the characteristics of the distribution of each minority class and how to 

proceed with it (Kubat & Matwin, 1998; Napierala & Stefanowski, 2016). In the 

research by Napierala and Stefanowski (2012; 2016), the minority class examples 

were divided into four different groups: 

 Safe examples: are in regions surrounded by members of same class and 

separated from the other class. 

 Borderline examples: are in the boundary regions of classes, where examples 

overlap. 

 Rare examples: these examples are also situated in boundaries of regions but 

surrounded more by the other class than their own. 

 Outliers: are isolated examples surrounded by examples of other classes. 
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In the research conducted by Sáez et al, (2016), a framework was proposed so that 

the groups mentioned above are extended to accommodate for multi-class cases. 

Figure 331 illustrates this extended concept. 

 

 

 

 

 

 

 

 

 

Figure 331: Various types of examples identified in a multi-class situation (Sáez et al. 2016, p.167) 

 In this framework, the over-sampling is computed based on the type of 

example from each class. The emphasis here is not so much on the over-sampling, 

but it is to show that multi-class tasks are complex structures that are made up of 

heterogeneous examples that vary in the levels of difficulty. 

In a nutshell, there has been research done into the classification of multi-

class imbalanced datasets; yet still the most prevalent method for unbalanced 

datasets such as the ones presented in this study is decomposing the problem into 

binary problems by taking into consideration the type of examples. Thus, there are 

different possibilities to tackle imbalanced datasets, and the effect on the dataset 

cannot be inferred intuitively in many cases. In order to understand better the effect 

of the oversampling in a specific dataset, it is interesting to evaluate how the over-

sampling affects both training set and the test sets when cross validation is 

performed (Sáez et al, 2016); as is shown in this thesis.  

This framework can be extended in a relatively straightforward fashion to 

different settings than the one studied in this work, where a multi-class problem 

definition is advantageous. Towards this goal, SMOTE can be adapted to bring 

balance to multiple classes (Fernández et al. 2010; Prachuabsupakij & 
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Soonthornphisaj 2012; Wang & Yao 2012; Tomar & Agrawal 2015). As mentioned 

previoulsy, one of the main methods in solving multi-class imbalanced classification 

is the use of binarisation strategy where the problem is decomposed into binary 

problems and a different binary model is learned for each new subset (Galar et al. 

2011). Multi-class versions of the robust classifiers used in this work are well-known 

in the literature (Aly 2005; Bishop 2006; Venkatesan & Er 2016). However, it must 

be mentioned that the computational cost of the exigent cross-validation would 

increase and may require the use of approximate computations for real-time 

applications.  

Likewise, to explore in more detail the effect of recent approaches to balance 

datasets such as Recursive Feature Elimination (Maldonado et al. 2014; discussed in 

this thesis) is another interesting future direction. However, it is worth to stress that, 

in the light of our results, we hypothesise that it is not likely that other classifiers or 

recent SMOTE variants render a statistically significant improvement in the 

sensitivity-specificity trade-off. This suggestion is based in that the optimal 

approaches, although different through datasets (Random Forests, Ensemble, ν-

SVM), perform statistically similarly (see for instance summary figures). Indeed, as 

reported in the literature (Sáez et al. 2014; Murphree et al. 2015), an ensemble of 

such classifiers is typically advantageous in providing robust and uniform 

performance simultaneously for a range of heterogeneous scenarios; such as the ones 

addressed in this thesis.  

Nevertheless, it is possible that very recent approaches which are 

revolutionising the areas of big data classification and encoding, such as deep 

learning auto encoders reformulated for binary or multi-class classification purposes 

(Vincent et al. 2010) used as individual learners in ensemble, would be flexible yet 

robust enough to improve the results shown in this thesis. These approaches exhibit 

unprecedented adaptation capability to heterogeneous datasets such as the ones 

studied in this thesis, and they would therefore constitute an interesting future 

extension of our study. 
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8. Appendix 

This section contains figures from 
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Analysis of the Datasets chapter (Chapter 5) which were either redundant or did not 

include much information. 

AID362 Figures: 

 

 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓** ↑** ↓** ↓**

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↑ ↓ ↑ ↓ ↑ 

Pharmacophore ↑** ↓** ↑** ↓** ↓*

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↑* ↓** ↑** ↓* ↓**  

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑** ↓** ↑** ↓** ↓**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓** ↑** ↓ ↓*

Pharmacophore ↑ ↓** ↑** ↓ ↓**

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑** ↓** ↑** ↓** ↓**  
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SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↓ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↓ ↑ ↓ ↓ 

MACCS ↑ ↓ ↑ ↓ ↑ 

Pharmacophore ↑* ↓ ↑ ↓* ↓ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓** ↑** ↓ ↓*  

 

 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↓** ↑** ↓** ↓**

NB ↑** ↓** ↑** ↓** ↓**

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑** ↓** ↑** ↓** ↓**  

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↑ 

NB ↑ ↓** ↑** ↓ ↓*

RF ↑ ↑** ↓** ↓ ↑**

SMO ↑ ↓ ↑ ↓ ↑ 

MV ↑ ↓ ↑ ↓ ↓  
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SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↔ ↓ ↑ ↔ ↓ 

Fingerprinter ↔ ↓ ↑ ↔ ↓ 

Graph-Only ↓* ↑ ↓ ↑* ↓ 

MACCS ↑** ↑ ↓ ↓** ↑**

Pharmacophore ↑** ↑** ↓** ↓** ↑**

PubChem ↑** ↑** ↓** ↓** ↑**

Substructure ↓ ↑** ↓** ↑ ↑**  
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EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑** ↑** ↓** ↓** ↑**

NB ↓** ↑** ↓** ↑** ↑**

RF ↑** ↑** ↓** ↓** ↑**

SMO ↓ ↑** ↓** ↑ ↑**

MV ↑** ↑** ↓** ↓** ↑**  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓* ↑* ↓* ↑* ↑ 

NB ↓** ↑** ↓** ↑** ↓ 

RF ↓ ↑* ↓* ↑ ↑ 

SMO ↑** ↑** ↓** ↓** ↑**

MV ↑ ↑* ↓* ↓ ↑*  
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑* ↓* ↑* ↓* ↓*

MACCS ↑ ↑* ↓* ↓ ↑*

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↓ ↑ ↓ ↑ ↑  

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑** ↓** ↓ ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↑ ↑** ↓** ↓ ↑**

Pharmacophore ↓* ↑** ↓** ↑* ↑**

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  
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PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↓ ↓ ↑ ↑ ↓ 

RF ↑ ↑* ↓* ↓ ↑*

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↓ ↑ ↓ ↑ ↑  

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓** ↑** ↓** ↑** ↑**

NB ↑ ↓ ↑ ↓ ↓ 

RF ↓** ↑** ↓** ↑** ↑**

SMO ↓ ↑* ↓* ↑ ↑*

MV ↓* ↑** ↓** ↑* ↑**  

ssss 
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J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↓ 

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↓ ↑ ↓ ↓ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↑ ↑ ↓ ↓ ↑  

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑ ↓ ↑ ↑ 

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↑ ↑ ↓ ↓ ↑ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↓ ↓ ↑ ↑ ↓  

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↔ ↓ ↑ ↔ ↓ 

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↑ ↓ ↑ ↓ ↓ 

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↑ ↓ ↑ ↓ ↓  
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EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↓ ↑* ↓* ↑ ↑ 

SMO ↔ ↓ ↑ ↔ ↓ 

MV ↓ ↓ ↑ ↑ ↓  

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓ ↓ ↑ ↑ ↓ 

RF ↓ ↑ ↓ ↑ ↑ 

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑ ↓ ↑ ↓ ↓  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↓ ↑ ↓ ↓ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↓ ↑ ↓ ↑ ↑ 

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↑ ↑ ↓ ↓ ↑  
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Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑ 

Extended ↑ ↓ ↑ ↓ ↑ 

Fingerprinter ↓** ↑ ↓ ↑** ↓ 

Graph-Only ↑** ↑ ↓ ↓** ↑**

MACCS ↑** ↑ ↓ ↓** ↑**

Pharmacophore ↑** ↑ ↓ ↓** ↑ 

PubChem ↓ ↓ ↑ ↑ ↓ 

Substructure ↑** ↓** ↑** ↓** ↓*  
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PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓ ↓ ↑ ↑ ↓ 

RF ↓ ↑ ↓ ↑ ↑ 

SMO ↑* ↓ ↑ ↓* ↑ 

MV ↑ ↑* ↓* ↓ ↑  

 

 

 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓* ↑** ↓** ↑* ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↓ ↓ ↑ ↑ ↓  



 

246 

 

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↓ 

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↓ ↑* ↓* ↑ ↑*

Pharmacophore ↓ ↓ ↑ ↑ ↓ 

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  

 

 

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↓* ↑ ↓ ↑* ↑ 

SMO ↓ ↑* ↓* ↑ ↑*

MV ↓ ↑ ↓ ↑ ↑  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↑ ↓ ↑ ↓ ↑ 

SMO ↑ ↑ ↓ ↓ ↑ 

MV ↓ ↑ ↓ ↑ ↑  
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AID456 Figures: 

 

 

 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↓** ↑** ↑ ↓**

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↓ ↑ ↑ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓ ↑ ↓ ↓ 

Pharmacophore ↔ ↓** ↑** ↔ ↓**

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↓ ↓** ↑** ↑ ↓**  

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↔ ↓* ↑* ↔ ↓*

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↑ ↓ ↑ ↓ ↓ 

Pharmacophore ↑ ↓* ↑* ↓ ↓*

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  
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Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↔ ↓** ↑** ↔ ↓**

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↔ ↓ ↑ ↔ ↓ 

Substructure ↑ ↓ ↑ ↓ ↓  

 

 

EState Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓** ↑** ↑ ↓**

NB ↑** ↓** ↑** ↓** ↓**

RF ↓** ↑** ↓** ↑** ↑**

SMO ↔ ↓* ↑* ↔ ↓*

MV ↔ ↓** ↑** ↔ ↓**  

Pharmacophore Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↓** ↑** ↔ ↓**

NB ↑** ↓** ↑** ↓** ↓**

RF ↔ ↑** ↓** ↔ ↑**

SMO ↑ ↓* ↑* ↓ ↓*

MV ↑ ↓ ↑ ↓ ↓  
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↑** ↑ ↓ ↓** ↑**

RF ↑ ↑* ↓* ↓ ↑*

SMO ↓ ↑** ↓** ↑ ↑**

MV ↑ ↑** ↓ ↓ ↑**  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓ ↑ ↑ ↓ 

NB ↑** ↑ ↓ ↓** ↑*

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↔ ↑* ↓* ↔ ↑*

MV ↑ ↓ ↑ ↓ ↑  

 

 



 

251 

 

 

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↓ ↑ ↑ ↓ 

Extended ↑ ↑ ↓ ↓ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↑ ↑** ↓** ↓ ↑**

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↑ ↓ ↑ ↓ ↓ 

PubChem ↓ ↑ ↓ ↑ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↔ ↓ ↑ ↔ ↓ 

Fingerprinter ↔ ↑ ↓ ↔ ↑ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑ 

Pharmacophore ↓** ↑** ↓** ↑** ↑**

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↓ ↑** ↓** ↑ ↑**  
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↑ ↓ ↔ ↑ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↑ ↑ ↓ ↓ ↑ 

SMO ↓ ↑ ↓ ↑ ↑ 

MV ↑ ↑* ↓* ↓ ↑*  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↔ ↑ ↓ ↔ ↑ 

SMO ↔ ↑ ↓ ↔ ↑ 

MV ↔ ↑ ↓ ↔ ↑ 

 

Substructure Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↑ ↓ ↑ ↑ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↓ ↑** ↓** ↑ ↑**

SMO ↓* ↑* ↓* ↑* ↑*

MV ↓ ↑** ↓** ↑ ↑**  

 

 



 

253 

 

 

J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↔ ↓ ↑ ↔ ↓ 

Extended ↑ ↓ ↑ ↓ ↓ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↔ ↓ ↑ ↔ ↓ 

MACCS ↔ ↑ ↓ ↔ ↑ 

Pharmacophore ↔ ↓ ↑ ↔ ↓ 

PubChem ↔ ↓ ↑ ↔ ↓ 

Substructure ↓ ↑ ↓ ↑ ↑  

Naïve Bayes Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑* ↓* ↓ ↑*

Extended ↔ ↓ ↑ ↔ ↓ 

Fingerprinter ↔ ↓ ↑ ↔ ↓ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓ ↑ ↓ ↑ ↑ 

PubChem ↔ ↓ ↑ ↔ ↓ 

Substructure ↓ ↑ ↓ ↑ ↑  

SMO Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↔ ↔ ↔ ↔ ↔ 

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↑ ↓ ↑ ↓ ↓ 

Graph-Only ↑ ↑ ↓ ↓ ↑ 

MACCS ↔ ↓ ↑ ↔ ↓ 

Pharmacophore ↔ ↑ ↓ ↔ ↑ 

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↑ ↓* ↑* ↓ ↓*  

Majority Voting Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↑ ↓ ↓ ↑ 

Extended ↔ ↓ ↑ ↔ ↓ 

Fingerprinter ↔ ↓ ↑ ↔ ↓ 

Graph-Only ↔ ↑ ↓ ↔ ↑ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↑ ↔ ↔ ↓ ↑ 

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  



 

254 

 

 

 

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↑ ↓ ↔ ↑ 

NB ↓ ↑ ↓ ↑ ↑ 

RF ↔ ↑ ↓ ↔ ↑ 

SMO ↔ ↓ ↑ ↔ ↓ 

MV ↓ ↓ ↑ ↑ ↓  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↓ ↑ ↔ ↓ 

NB ↔ ↓ ↑ ↔ ↓ 

RF ↔ ↓ ↑ ↔ ↓ 

SMO ↑ ↓ ↑ ↓ ↓ 

MV ↔ ↑ ↓ ↔ ↑  
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J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↑ ↓ ↑ ↓ ↓ 

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↓ ↓** ↑** ↑ ↓**

Graph-Only ↓ ↑ ↓ ↑ ↑ 

MACCS ↑ ↑ ↓ ↓ ↑*

Pharmacophore ↑ ↑** ↓** ↓ ↑**

PubChem ↑ ↑ ↓ ↓ ↑ 

Substructure ↓ ↓ ↑ ↑ ↓  

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑** ↓** ↑ ↑**

Extended ↓ ↓ ↑ ↑ ↓ 

Fingerprinter ↑ ↑ ↓ ↓ ↑ 

Graph-Only ↑ ↔ ↔ ↓ ↑ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↑ ↑** ↓** ↓ ↑**

PubChem ↑ ↓ ↑ ↓ ↓ 

Substructure ↓ ↑** ↓** ↑ ↑  
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MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↑ ↑ ↓ ↓ ↑*

NB ↑ ↑** ↓** ↓ ↑**

RF ↓ ↓ ↑ ↑ ↓ 

SMO ↓ ↑ ↓ ↑ ↓ 

MV ↓ ↑** ↓** ↑ ↑**  
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J48 Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓ ↑ ↓ ↑ ↑ 

Extended ↓ ↑ ↓ ↑ ↑ 

Fingerprinter ↓ ↑ ↓ ↑ ↑ 

Graph-Only ↓ ↓ ↑ ↑ ↓ 

MACCS ↓ ↓ ↑ ↑ ↓ 

Pharmacophore ↓ ↑** ↓** ↑ ↑**

PubChem ↔ ↑ ↓ ↔ ↑ 

Substructure ↑ ↓ ↑ ↓ ↓  

Random Forest Sensitivity Specificity FP Rate FN Rate Accuracy

EState ↓** ↑** ↓** ↑** ↑**

Extended ↔ ↑ ↓ ↔ ↑ 

Fingerprinter ↔ ↑ ↓ ↔ ↑ 

Graph-Only ↔ ↓ ↑ ↔ ↓ 

MACCS ↓ ↑ ↓ ↑ ↑ 

Pharmacophore ↓* ↑** ↓** ↑* ↑**

PubChem ↔ ↔ ↔ ↔ ↔ 

Substructure ↑ ↑ ↓ ↓ ↑  

MACCS Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↓ ↓ ↑ ↑ ↓ 

NB ↑ ↑ ↓ ↓ ↑ 

RF ↓ ↑ ↓ ↑ ↑ 

SMO ↓ ↑ ↓ ↑ ↑ 

MV ↓ ↑ ↓ ↑ ↑  

PubChem Sensitivity Specificity FP Rate FN Rate Accuracy

J48 ↔ ↑ ↓ ↔ ↑ 

NB ↑ ↓ ↑ ↓ ↓ 

RF ↔ ↔ ↔ ↔ ↔ 

SMO ↓** ↑** ↓** ↑** ↑**

MV ↓ ↑ ↓ ↑ ↑  

 

 

 

 

 


