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Abstract.
This paper proposes a novel algorithm for addressing multi-objective optimisation problems, by employing a progressive preference articu-

lation approach to decision making. This enables the interactive incorporation of problem knowledge and decision maker preferences during
the optimisation process. A novel progressive preference articulation mechanism, derived from a statistical technique, is herein proposed and
implemented within a multi-objective framework based on evolution strategy search and hypervolume indicator selection. The proposed algo-
rithm is named the Weighted Z-score Covariance Matrix Adaptation Pareto Archived Evolution Strategy with Hypervolume-sorted Adaptive
Grid Algorithm (WZ-HAGA).

WZ-HAGA is based on a framework that makes use of evolution strategy logic with covariance matrix adaptation to perturb the solutions,
and a hypervolume indicator driven algorithm to select successful solutions for the subsequent generation. In order to guide the search towards
interesting regions, a preference articulation procedure composed of four phases and based on the weighted z-score approach is employed. The
latter procedure cascades into the hypervolume driven algorithm to perform the selection of the solutions at each generation.

Numerical results against five modern algorithms representing the state-of-the-art in multi-objective optimisation demonstrate that the pro-
posed WZ-HAGA outperforms its competitors in terms of both the hypervolume indicator and pertinence to the regions of interest.
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1. Introduction

Multi-objective optimisation is the search for solutions
that display the best performance in the presence of
multiple conflicting objectives, see e.g. [75,61,35]

With the exception of a few trivial problems, these
types of problem often do not have a single optimal so-
lution. Instead, a (finite or infinite) set of solutions will
offer the same level of optimality whereby an increase
in the performance of one objective will result in the
decrease of another [16,45,38]. Two solutions of this
description are said to not dominate each other and
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the set of solutions which do not dominate each other
is referred to as a non-dominated front. Conversely,
when a solution outperforms another solution in re-
spect to all the considered objectives, the solution can
be described as dominating the other. The theoretical
set containing all the solutions which cannot be dom-
inated is referred to as the Pareto set, Pareto front, or
simply the Pareto.

The algorithms that address multi-objective opti-
misation problems attempt to find a set that approxi-
mates the Pareto front, namely the approximation set,
see [40,64,73]. According to the demands of the real-
world problems, this set can be used to select one or a
few candidate solutions to solve the problem. For ex-
ample, in engineering design, although the problem is
likely to be naturally multi-objective, often only one
solution must be ultimately chosen to perform the im-



plementation of the design suggested by the algorithm,
see e.g.[1,56,11].

For these reasons, multi-objective problems can
be considered to require a two stage approach: during
the first stage an approximation of the Pareto is iden-
tified, see [48,36], and during the second stage the de-
cision regarding which solution must be selected from
the approximation set, is made. The second stage is fo-
cussed on Decision Making and the criteria which ar-
ticulate the biases of the decision making process are
referred to as Decision Maker (DM) preferences.

When solving real-world multi-objective prob-
lems, the ideal optimisation algorithm is one which
converges to an approximation set consisting of non-
dominated solutions which are within the DM’s Re-
gion of Interest (ROI). The ideal algorithm would ig-
nore solutions which are not of interest to the DM,
even if they are non-dominated, and instead focus on
areas of the objective space which are of interest to
the DM. The integration of DM preferences into the
algorithm can be interpreted as a simplification of the
complexity of the problem since, effectively, it corre-
sponds to a reduction of the search space, similar to
what happens in various fields of engineering. This
logic is commonly applied in finite element methods,
see [60].

Other examples in computational mechanics and
engineering are reported in [12] for structural damage
detection, in [67] for selecting the most suitable type
of foundation, and in [6] for non-linear system param-
eter identification and a reduction of the mathematical
model. An application to seismic retrofit design with
algorithmic distribution over multiple cores and com-
puters has been proposed in [39].

The formalisation of the concept of interest is
connected to the concept of the pertinence of an ap-
proximation set illustrated in Fig. 1 and 2. An approx-
imation set offers good pertinence if most of its solu-
tions belong to the ROI, see Fig. 1, and is composed of
a small set of solutions. Subsequently, the DM is not
overwhelmed with a large set of global trade-off solu-
tions (illustrated in Fig. 2) when using expert knowl-
edge to select their desired solution [24].

Furthermore, when a ROI is specified through the
definition of preferences (i.e. the importance or goal
of each objective with respect to the others is defined),
this piece of information can be integrated within the

Figure 1. An approximation set containing five solutions with ideal
pertinence, i.e., all Pareto Efficient solutions are within the rectangle
defined by the DM’s preference vector.

optimisation algorithm to guide the search and pursue
only pertinent solutions. An algorithm modified in this
way is able to exploit the information about prefer-
ences during the search to discard trade-off solutions
which do not fall within the desired region, and to
pressure the search towards the region by influencing
the algorithm’s selection operator, see [37]. This ad-
ditional preference information ultimately reduces the
area of feasible solutions within the objective space,
thus reducing the computational effort needed to pro-
duce a diverse set of pertinent solutions.

1.1. Progressive Preference Articulation: A brief
review

The action of the DM can occur in three moments
of the optimisation, coinciding with the following ap-
proaches.

• A priori, in which preferences are defined be-
fore the search, see [68,70].

• A posteriori, in which the DM selects a solu-
tion after completion of a search, see [41,76,
13].

• Progressive, involving interaction with the
DM during execution of the search, see [26].

The main disadvantage of the a priori approach
is that the DM may not be certain of their preferences
prior to the optimisation process. As a result, some un-



Figure 2. An approximation set containing seven solutions where
four of them exhibit undesirable pertinence, i.e., there are four
Pareto Efficient solutions that are not within the hyper-rectangle de-
fined by the DM’s preference vector.

interesting areas of the search space could be unnec-
essarily explored and some areas of the search space
which potentially deserve attention could be missed,
[70].

Whilst the a posteriori approach avoids this dis-
advantage by only considering preference information
after the optimisation process, it does not offer any
advantages throughout the optimisation process and
causes an extremely high computational cost in com-
parison.

The progressive approach, which is the focus of
this article, potentially enables the DM to alter their
preferences during the optimisation process and incor-
porate knowledge that only becomes available during
the search [14], such as the exact nature of trade-offs
between objectives.

The technique of progressively incorporating
preferences into the multi-objective optimisation pro-
cess is referred to as progressive preference articu-
lation, see [14] and [49]. A comparative analysis of
the various approaches of preference articulation is re-
ported in [2] and in the talk [25].

One of the first schemes for progressive prefer-
ence articulation in population-based meta-heuristics
for multi-objective optimisation was introduced by
[27], and extended the Pareto-based ranking scheme
used in the Multiple Objective Genetic Algorithm
(MOGA) [26] to allow preferences to be expressed

throughout the execution of a population-based algo-
rithm. Subsequently, in [7] preferences are integrated
in the algorithm simplistically by means of linear max-
imum and minimum trade-off functions. In [8] two
methods based on a biased crowding technique are
presented and compared.

The R-Non-dominated Sorted Genetic Algorithm
II (R-NSGA-II) presented in [18], combines a pref-
erence based strategy with an evolutionary multi-
objective algorithm, in order to demonstrate how a
preferred set of solutions near a number of reference-
points can be found simultaneously. In [17] the ε

Multi Objective Evolutionary Algorithm (ε-MOEA)
has been introduced. The latter algorithm also inte-
grated the DM to control the achievable accuracy of
non-dominated solutions. A self-adaptive version of
the ε logic is proposed in [62]

To overcome the shortcomings of not having
preference information in the selection process of
the Indicator-Based Evolutionary Algorithm (IBEA)
[77], the Preference-Based Evolutionary Algorithm
(PBEA) was introduced in [65]. In [3] an approach
that integrates the DM’s preferences into an estimation
of the dominated portion of the objective space (hy-
pervolume) is presented. In [9] two ranking schemes
integrating the preference articulation have been pro-
posed. However, the calculation of the hypervolume
indicator presents the drawback that it depends expo-
nentially on the number of objectives and therefore
becomes infeasible for multi-objective problems with
many objectives, see [4].

To effectively incorporate the DM’s preferences
in well-known multi-objective evolutionary algorithms,
new variants of Pareto dominance relations have
been recently proposed. Popular examples are the r-
dominance [55] and g-dominance relations [46]. The
r-dominance biases the search procedure towards the
ROI by using the weighted Euclidean distance intro-
duced in [18] while using a dominance based criterion
to select the population for the following generation.
The g-dominance biases the search towards the ROI
by applying a penalisation criterion to those solutions
that are outside (and far away) from the ROI. In [74],
the use of a weight vector is made to detect solutions
around it (in the objective space).

More recently, the Non-dominated Sorted Genetic
Algorithm III (NSGA-III) [15], a many-objective op-



timisation algorithm, also aims to allow the incorpo-
ration of preference information. The incorporation of
preferences is implemented by simply providing dif-
ferent weightings or “reference-points” when initialis-
ing the algorithm. However, there is no way for a de-
cision maker to provide a preference vector or “goal”,
they must instead design a structure of weights which
are distributed to reflect the preferences. Although the
NSGA-III implementation appears to have several am-
biguities, see [33], the algorithm is an important con-
tribution to the field.

Another fundamental and modern algorithm which
makes use of structured weights, and enhances its con-
vergence performance by decomposing the domain,
is the θ -Dominance based Evolutionary Algorithm
(θ -DEA) [71]. The latter algorithm has demonstrated
very high performance on a number of diverse prob-
lems and is currently one of the state-of-the-art algo-
rithms in the field.

Preference articulation is applied to several engi-
neering many-objective problems in [43]. Reference-
points, similar to those employed in NSGA-III, are
also used in [54]. The functioning of the latter is based
on the use of an achievement scalarising function and
the classification of solutions into several fronts.

In [22] an interactive algorithm based on R-
NSGA-II is proposed, and in [23] R-NSGA-II is mod-
ified by integrating a stochastic local search in a
memetic fashion, see [47], [10], [32], and [72].

Since the objectives of the problem are estab-
lished a priori but their importance is adjusted on-line
by human experts, progressive preference articulation
can be interpreted as an interactive design method
and can be linked to a large and interesting portion
of the literature. In [44], a system that interactively
collects data and predicts the posture of workers for
medical purposes has been proposed. An interactive
fuzzy multi-objective algorithm for engineering prob-
lems has been proposed in [29]. Interactive design
with reference to steel structure design is achieved by
integrating fuzzy logic into the constraint handling in
[58,57]. In order to handle large steel structures the al-
gorithm proposed in [59] expands the previous the two
studies above in a parallel fashion.

This paper proposes a novel progressive prefer-
ence articulation mechanism for multi-objective op-
timisation problems. Furthermore, this mechanism is

incorporated into an optimisation framework recently
proposed in the literature, namely the Covariance
Matrix Adaptation Pareto Archived Evolution Strat-
egy with Hypervolume-sorted Adaptive Grid Algo-
rithm (CMA-PAES-HAGA), see [50]. The resulting
algorithm has been thoroughly tested and compared
against modern algorithms which implicitly and ex-
plicitly incorporate preference articulation.

The remainder of the article is arranged in the fol-
lowing order: Section 2 describes all the components
of the proposed algorithm. Section 3 describes the ex-
perimental setup, and presents the results of the mul-
tiple comparison between the proposed algorithm and
five other many-objective optimisation algorithms, all
of which represent the state-of-the-art in the field. Sec-
tion 4 concludes the study and offers research direc-
tions for future work.

2. Weighted Z-score Covariance Matrix
Adaptation Pareto Archived Evolution Strategy
with Hypervolume-sorted Adaptive Grid
Algorithm

This section describes the proposed algorithm, named
the Weighted Z-score Covariance Matrix Adaptation
Pareto Archived Evolution Strategy with Hypervolume-
sorted Adaptive Grid Algorithm. The proposed algo-
rithm will be referred to as WZ-HAGA hereafter for
brevity.

The proposed approach consists of two significant
parts, these are:

• the incorporation of DM preferences within the
search logic to drive the search towards the
ROI: the Weighted Z-score (WZ) preference ar-
ticulation,

• the external framework for multi-objective op-
timisation that hosts the progressive incorpora-
tion of the WZ preference articulation: CMA-
PAES-HAGA.

After a brief presentation of the required basic
definitions and notation in Section 2.1, this section
proceeds with the two main parts of the proposed ap-
proach as listed above, i.e. the WZ preference articula-
tion (Section 2.3) and the external multi-objective op-
timisation framework (Section 2.2). The resulting al-



gorithm is then outlined in Section 2.4. Finally, with
the purpose of highlighting the differences between
a priori and progressive incorporation of DM prefer-
ences, Section 2.5 contrasts both the implementations.

2.1. Background – Notation

This section briefly presents some essential notation
and background information that is required to clearly
define the proposed progressive preference articula-
tion approach.

Without loss of generality, let us define a general
multi-objective optimisation problem (MOP) with M
objective functions (F = { f1, f2, . . . , fM}) : D→RM),
that are to be optimised (minimised or maximised); in
its general form it can be defined as follows:

Optimise fm(x), m = 1,2, . . . ,M;
subject to g j(x)≥ 0, j = 1,2, . . . ,J;

hk(x) = 0, k = 1,2, . . . ,K;
xLB

i ≤ xi ≤ xUB
i , i = 1,2, . . . ,D,

(1)

where x is a solution vector of D decision variables:
x = 〈x1,x2, . . . ,xD〉>, in which each decision variable
is confined by a lower (xLB

i ) and an upper (xUB
i ) bound.

Such bounds constitute the decision space D of the
problem. Inequality (g j(x)) and equality (hk(x)) con-
straints can be also imposed to restrict the feasible de-
cision space of the given problem. The corresponding
set of all possible values that the solutions can take
within the feasible decision space constitutes the ob-
jective space (OM ⊆ RM).

Given a population-based search algorithm, let us
also define a population X of N potential solution vec-
tors X = 〈x1,x2, . . . ,xN〉, i.e., X is a matrix of N by
D entries. As such, xi j denotes the j-th element of
the solution vector xi. Let Y be an M by N matrix
that represents the objective values of the population
X , Y = F(X) = 〈y1,y2, . . . ,yN〉, where yi = 〈 f1(xi),
f2(xi), . . . , fM(xi)〉>. Clearly, yi j denotes the j-th ob-
jective value of the solution vector xi. Let also P =
〈ρ1,ρ2, . . . ,ρM〉 to be a preference vector in the objec-
tive space that can be defined by the DM.

In this paper we work within an evolution strategy
framework. In accordance with the notation used in
the field, the parent population size is indicated with µ

while the offspring population size is indicated with λ ,
see [50]. As shown in the following subsections, the µ

parent solutions generate λ offspring solutions at each
generation, and µ solutions must then be selected from
the N = µ +λ solutions in X.

2.2. External Optimisation Framework

The external framework embedding the WZ prefer-
ence articulation operator is the CMA-PAES-HAGA
framework proposed in [50]. This algorithmic frame-
work uses the search exploration of the Pareto Adap-
tive Evolution Strategy (PAES) using a random per-
turbation aided by a Gaussian distribution, see [41],
combined with Covariance Matrix Adaptation logic,
see [28]. The selection mechanism is based on the
hypervolume indicator by means of a fast algorithm,
see [50,51] and is referred to as the HAGA selection
scheme. The latter is a selection algorithm that maps
a grid within the objective space and uses the grid lo-
cation of the solutions to estimate the hypervolume in-
dicator, i.e. the portion of objective space dominated
by the approximation set. The estimation technique in
[51] is almost as reliable as the hypervolume indicator,
but is much faster in terms of calculation time.

Although all the implementation details about
this framework are reported in [50], a simplified
pseudo-code listing describing the working principles
of CMA-PAES-HAGA is displayed in Algorithm 1 for
the sake of clarity.

2.3. Incorporating Decision Maker Preferences into
the Search Logic: Weighted Z-score preference
articulation

Weighted Z-score (WZ) preference articulation is a re-
cently proposed method for incorporating DM prefer-
ences, based around the use of z-scores (or standard
scores) from Statistics [52,53]. The purpose of the fol-
lowing procedure is to assign a score to each candi-
date solution which describes the position of the point
(in the objective space) with respect to the ROI. These
scores are then used during the selection.

Let us consider a population X composed on N =
µ + λ individuals/vectors. A generic nth individual
is a vector xn associated with its M objectives yn =
〈 f1(xn), f2(xn), . . . , fM(xn)〉> = 〈y1n,y2n, . . . ,yMn〉.

Hence, we indicate with ymn the mth objective
function value of the nth individual of the population.



Algorithm 1 CMA-PAES-HAGA execution cycle
1: Initialise parent population X composed of µ par-

ent solutions and corresponding objective values
Y

2: while termination criteria not met do
3: for all the λ solutions of the offspring popula-

tion do
4: Generate an offspring solution by variation

operators, i.e. perturbation by means of Gaussian
distribution and covariance matrix, as in [41,28]

5: Check that the solution is within the
bounds of the decision space. If it is outside the
decision space, the solution is saturated to the
closest bound.

6: Calculate the objective values of the solu-
tion

7: end for
8: Perform the HAGA selection to compose the

new parent population (select µ solutions) by hy-
pervolume estimation as in [50,51]

9: Update the covariance matrix adaptive param-
eters as in [28]

10: end while

Furthermore, as mentioned above, P= 〈ρ1,ρ2, . . . ,ρM〉
is a preference vector in the objective space defined by
the DM. Let us indicate with ρm the generic goal value
set by the DM on the mth objective.

With these values, a matrix, namely the Z-matrix,
is calculated. Each matrix element zmn represents the
z-score for the nth candidate solution with respect to
the mth objective and is calculated according to the fol-
lowing equation:

zmn =
(ymn−ρm)√
∑

N
j=1(ym j−ρm)2

N

. (2)

Each zmn value will take a positive value when it
is outside the ROI, and a negative value when within
the ROI.

With the ymn objective function values of the Y
matrix and the values ρm of the preference vector P,
another matrix, indicated with S is calculated. Each
entry smn of S is calculated as:

smn =

{
1, if ymn ≤ ρm

0, otherwise.
(3)

The entries of the S matrix are then used to re-
solve whether or not each individual of the population
X belongs to the ROI.

Thus, the generic individual xn is associated to the
following φn value:

φn =
M

∏
m=1

smn. (4)

Furthermore, φn = 1 if the candidate solution xn
belongs to the ROI and φn = 0 otherwise.

Subsequently the scalar ψ is calculated:

ψ =
N

∑
n=1

φn. (5)

The scalar ψ refers to the number of solutions xn
in the population that have satisfied the preference vec-
tor P, i.e. the number of solutions inside the ROI.

Let us indicate with ψthresh the required number
of solutions that satisfy the preference vector. This pa-
rameter is then used in a two-phase mechanism which
aims at guiding the search towards the ROI. The two
phases, namely the W-phase and the Z-phase, consist
of the following steps.

When the number of solutions within the ROI has
satisfied the threshold (ψ ≥ ψthresh) the Z-phase takes
effect. This phase uses eq. (2) to calculate the Z matrix
and then eq. (6) to aggregate the scores into the scalar
vn:

vn =
∑

M
m=1 zmn

M
. (6)

Thus, each candidate solution xn is associated a score
vn.

However, if ψ < ψthresh then the W-phase of the
WZ preference articulation operator takes effect. In or-
der to explain the set of operations which occur during
the W-phase, let us consider the generic objective fm.
Let us indicate with ωm the following scalar:

ωm =
N

∑
n=1

smn. (7)



It can be observed that ωm refers to the number
of solutions in the population that have satisfied the
corresponding ρm. In the same way, an ωm value can
be calculated for each objective function and a vector
Ω = 〈ω1,ω2, . . . ,ωM〉 is then defined.

With the entries of ω calculated, another matrix,
indicated with E, is calculated.

At first, the normalised values (between 0 and 1)
z∗mn and ω∗m of zmn and ωm, respectively, are calculated:

z∗mn =
|zmn|−min(|zm|)

max(|zm|)−min(|zm|)
, (8)

where |zmn| is the absolute value of zmn and |zm| is the
mth column vector of the Z matrix where for each ele-
ment the absolute value has been calculated, and

ω
∗
m =

ωm

N
. (9)

The entries εmn of the matrix E are then calculated
as:

εmn =

{
z∗mn
(
1− 1

M

)
if ωm−min(Ω)

max(Ω)−min(Ω) = 0,

z∗mn otherwise.
(10)

The purpose of eq. (10) is to ensure that those objec-
tives that least satisfy the DM requirements must be
corrected by the weighting factor

(
1− 1

M

)
.

The final score wn of a single solution is the ag-
gregation of the corresponding εmn entries:

wn =
∑

M
m=1 εmn

M
. (11)

Thus, each candidate solution xn is associated a
score wn.

This method attempts, when many solutions are
outside the ROI, to move the search towards the pro-
duction of solutions that are close in proximity to the
ROI and within it, but does not attempt to minimise
the solutions beyond the edges of the ROI.

For the sake of clarity, the working principles of
the weighted Z-score preference articulation selection
are highlighted in Algorithm 2.

Algorithm 2 Weighted Z-score preference articulation
1: Input the X population (whose candidate solutions

are xn), the objectives Y, the preference vector P,
and the threshold φthresh.

2: for all the candidate solutions n = 1 : N do
3: for all the objectives m = 1 : M do
4: Calculate the Z matrix element zmn, eq. (2)
5: Calculate the S matrix element smn, eq.(3)
6: end for
7: end for
8: for all the candidate solution n = 1 : N do
9: Calculate φn, eq. (4)

10: end for
11: Calculate ψ , eq. (5)
12: if ψ ≥ ψthresh then . Z-phase
13: for all the objectives m = 1 : M do
14: Calculate vn, eq. (6), and assign it to xn
15: end for
16: else if ψ < ψthresh then . W-phase
17: for all the objectives m = 1 : M do
18: Calculate ωm of the vector Ω, eq. (7)
19: end for
20: for all the candidate solutions n = 1 : N do
21: for all the objectives m = 1 : M do
22: Normalise zmn and ωm
23: Calculate the element εmn, eq. (10)
24: end for
25: end for
26: for all the candidate solutions n = 1 : N do
27: Calculate wn, eq. (11), and assign it to xn
28: end for
29: end if

2.4. Selection mechanism of WZ-HAGA

Let us consider a population X composed of µ+λ =N
candidate solutions.

The selection of the WZ-HAGA, see Algorithm 1,
operates in one of the following four phases to select
the µ candidate solutions composing the parent popu-
lation for the following generation.

Phase 1 is active when there are no solutions in
the current approximation set which are within the
ROI, i.e. ψ = 0. This phase uses the W-phase of the
WZ algorithm described in Section 2.3 for the selec-
tion of those µ individuals that are closest to the DM’s
expressed ROI as parents for the next generation.



Phase 2 is active whilst the number of solutions
in the ROI is below the threshold ψthresh introduced in
Section 2.3, i.e. 0 < ψ < ψthresh. This phase contin-
ues to use the W-phase of WZ algorithm described in
Section 2.3 whilst explicitly retaining solutions in the
archive that are within the DM’s expressed ROI. Then
the solutions inside the ROI and those with highest wn
score are selected.

Phase 3 is active when the number of solutions in
the ROI equal or exceed ψthresh, i.e. ψthresh ≤ ψ < µ .
This phase uses the Z-phase of Section 2.3 whilst re-
taining solutions in the current approximation set that
are within the DM’s expressed ROI. This phase aims
to populate the current archive entirely with solutions
that are within the current ROI.

Phase 4 is active when among the µ +λ = N can-
didate solutions, at least µ of them are within the ROI,
i.e. ψ ≥ µ . All solutions that are not within the ROI
are automatically discarded. The remaining solutions
(which are in the ROI) are subjected to the hypervol-
ume based CMA-PAES-HAGA selection mechanism
(HAGA selection), refer to [50,51].

By using these four phases, the optimisation pro-
cess is able to quickly get as close as possible to the
DM’s expressed ROI, produce solutions within it, have
a parent population with solutions only within that
ROI, and then converge further into that ROI with
a diverse approximation set. Finally, it is possible to
regress from later phases to earlier ones depending
on the optimisation context, i.e. if the DM alters their
preferences during the optimisation process.

2.5. A Priori and Progressive Preference Articulation

Although this article proposes a progressive approach
to preference articulation, WZ-HAGA can be imple-
mented either with only a priori articulation of pref-
erences, or Progressive Preference Articulation herein
referred to as WZ-HAGA (PPA) in this section.

The pseudocode listing for the execution cycle of
WZ-HAGA (PPA) has been illustrated in Algorithm
3. The pseudocode highlights the mechanism for han-
dling solutions that are inside or outside the ROI by
means of the phases described in Section 2.4. In its a
priori version of the same algorithm, the input of the
DM is established prior to the beginning of the algo-
rithm execution and remains static throughout the en-

tire optimisation process. In the PPA version described
in Algorithm 3, the optimisation process can be con-
figured to prompt the DM for a new preference point
at configured intervals (e.g. every 100 generations).
At these intervals, HAGA is used to reduce the ap-
proximation set for the DM, such that they are able
to use new information about the objective space and
the emerging trade-offs, to make an informed decision
on a new set of preferences. The optimisation process
then continues without discarding the existing solu-
tions.

3. Numerical Results

This section presents the results of this study. The ex-
perimental setup is described, and then the results are
presented and discussed. Finally, a real-world appli-
cation of the proposed WZ-HAGA is demonstrated
within the field of engineering control systems design.

3.1. Experimental Setup

The performance of the proposed algorithm has been
evaluated and compared against five state-of-the-art
multi-objective optimisation algorithms. The algo-
rithms included in this study are:

1. WZ-HAGA: with reference to Subsection 2.4
the parameter ψthresh =M where M is the num-
ber of solutions needed within the ROI for the
Z-phase to take effect; with reference to the ex-
ternal framework in Subsection 2.2, the num-
ber of grid-divisions is δ = 3 as suggested in
[51];

2. NSGA-III: with reference to [15] crossover
probability 0.9, crossover distribution index
30, mutation distribution index 20;

3. θ -DEA: with reference to [71], θ = 5, div1 =
3, div2 = 0, crossover probability 1, crossover
distribution index 30, mutation probability 1,
mutation distribution index 20.

4. g-NSGA-II: with reference to [46,66] crossover
probability 1, crossover distribution index 30,
mutation probability 1/n (where n the dimen-
sionality of the given problem), mutation dis-
tribution index 20;



Algorithm 3 Progressive preference articulation and
selection within WZ-HAGA

1: Input the initial preference vector P.
2: Initialise parent population in the search space and

the corresponding vectors of objective values
3: while termination criteria not met do
4: (Optional) Input the updated preferences ex-

pressed by the DM and consequent modification
of vector P and thus the ROI. . Progressive
Preference Articulation

5: for all the offspring solutions λ do
6: Apply CMA-PAES variation operators to

the parent population in order to generate an off-
spring solution

7: Calculate and store the objective function
values

8: Check the objective values and whether or
not the solution is within the ROI

9: Merge parent and offspring population
into X

10: end for
11: Calculate the number ψ of solutions within the

ROI by eq. (5) and perform the selection of the
new parent population (µ candidate solutions): .
Selection mechanism

12: if ψ = 0 then
13: Phase 1: Use the wn score values to select

the best µ solutions (W-phase)
14: else if 0 < ψ < ψthresh then
15: Phase 2: Save the ψ solutions inside the

ROI and use the wn score values to select the best
remaining µ−ψ solutions (W-phase)

16: else if ψthresh ≤ ψ < µ then
17: Phase 3: Save the ψ solutions inside the

ROI and use the vn score values to select the best
remaining µ−ψ solutions (Z-phase)

18: else if ψ ≥ µ then
19: Phase 4: Discard the solutions outside the

ROI and apply HAGA selection scheme [50,51] to
select µ candidate solutions

20: end if
21: end while

5. r-NSGA-II: with reference to [55,66] crossover
probability 1, crossover distribution index 30,
mutation probability 1/n, mutation distribu-
tion index 20, non-r-dominance threshold δ =

0.1, all required weights for the preference
points have been set equal to 1;

6. WV-MOEAP: with reference to [66,74] crossover
factor CR = 1, mutation factor F = 0.5, muta-
tion probability 1/n, mutation distribution in-
dex 20; and the extent of preference region pa-
rameter b = 0.05.

All the algorithms have been run with a popula-
tion size of 100 individuals (in the WZ-HAGA case,
µ = λ = 100) for 30 independent experiments, each
with a budget of 100,000 fitness evaluations.

The competing algorithms belong to two groups:
while NSGA-III and θ -DEA are modern algorithm
which implicitly use decision making information and
represent the state-of-the-art in multi-objective optimi-
sation, g-NSGA-II, r-NSGA-II, and WV-MOEAP are
algorithms similar to WZ-HAGA, in that they are ex-
plicitly designed for progressive preference articula-
tion.

The experiments have been designed to allow the
fair comparison of the following performance charac-
teristics:

• The hypervolume indicator achieved by the
final population of each considered algorithm
on each considered test-case, see [78,76]. This
parameter measures the quality of the approx-
imation set. The hypervolume indicator de-
scribes the portion of objective space that is
dominated by the approximation set detected
by the algorithm (thus the higher the hypervol-
ume the better the performance).

• The number of solutions within the ROI
achieved by the final population (the non-
dominated final approximation set) of each
considered algorithm on each considered test-
case. This shows how the algorithm is able to
focus the search towards the ROI and recover
from the changes in the preference vector.

The proposed WZ-HAGA has been tested on ten
selected benchmark problems from the WFG [31] and
DTLZ [19] test-suites. The test problems have been
selected to prepare a benchmark exhibiting a variety
of features (such as e.g. separability, multimodality,
convex/concave/degenerated geometries, etc). The list
of studied problems includes: WFG1, WFG3, WFG5,
WFG9, DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5,



and DTLZ6. Detailed descriptions of the characteris-
tics of the benchmark problems can be found in [31,
19,30,34].

All WFG test problems have been configured with
the following parameter values: number of objectives
M = 7, number of variables/problem dimensions N =
30. The other test-bed parameters have been set to their
default values: k = 6, l = 24, see [31] for details.

All DTLZ test problems have been configured
with the following: number of objectives M = 7, and
number of variables/problem dimension N have been
set to the default values, i.e for DTLZ1, N = 11 while
for all the other DTLZ problems N = 16.

In order to test the performance of each consid-
ered algorithm in the presence of progressive prefer-
ence articulation, the initial preference vector has been
modified twice during the optimisation process. Thus,
there are three preference vectors for each test prob-
lem: the first (initial) preference vector is in effect
from the first generation, the second preference vector
is in effect after 33% of the generations are completed,
and the third preference vector is in effect after 66%
of the generations are completed.

The preference vectors, for each benchmark prob-
lem, are displayed in Table 1, where m refers to a spe-
cific objective for the multi-objective problem.

Table 1. Preference Vectors throughout the optimisation process

Stage Prob. Preferences Prob. Preferences

[ρ1ρ2ρ3ρ4ρ5ρ6ρ7] [ρ1ρ2ρ3ρ4ρ5ρ6ρ7]

0-33% WFG1 [1 6 3 3 3 3 3] WFG3 [3 1.2 1.2 1.5 1.5 1.5 1]

33-66% WFG1 [0.8 4 2.5 2.5 2.5 2.5 2.5] WFG3 [1 1 1.2 1.5 1.5 1.5 9]

66-100% WFG1 [0.7 2.5 1.5 1.5 1.5 1.5 1.5] WFG3 [0.5 4 4 4 4 4 0.5]

0-33% WFG5 [5 5 5 5 10 15 2] WFG9 [10 10 10 10 10 1 1]

33-66% WFG5 [3 3 3 5 10 15 2] WFG9 [10 10 10 1 1 10 10]

66-100% WFG5 [3 5 5 1 5 5 3] WFG9 [1 1 1 10 10 10 10]

0-33% DTLZ1 [0.2 0.2 0.2 0.2 0.2 0.2 0.2] DTLZ2 [0.2 0.2 0.4 0.4 0.4 0.4 0.4]

33-66% DTLZ1 [0.2 0.2 0.4 0.4 0.4 0.4 0.4] DTLZ2 [0.2 0.2 0.6 0.6 0.6 0.6 0.6]

66-100% DTLZ1 [0.2 0.2 0.4 0.4 0.5 0.5 0.5] DTLZ2 [0.2 0.2 0.6 0.8 0.8 0.8 0.8]

0-33% DTLZ3 [0.2 0.2 0.4 0.4 0.4 0.4 0.4] DTLZ4 [0.4 0.4 0.4 0.8 0.8 0.8 0.8]

33-66% DTLZ3 [0.2 0.2 0.6 0.6 0.6 0.6 0.6] DTLZ4 [0.4 0.4 0.2 0.2 0.8 0.8 0.8]

66-100% DTLZ3 [0.2 0.2 0.6 0.8 0.8 0.8 0.8] DTLZ4 [0.8 0.8 0.2 0.2 1 1 1]

0-33% DTLZ5 [0.2 0.2 0.2 0.2 0.4 0.4 0.4] DTLZ6 [0.2 0.2 0.2 0.2 0.4 0.4 0.4]

33-66% DTLZ5 [0.2 0.2 0.2 0.2 0.6 0.6 0.6] DTLZ6 [0.2 0.2 0.2 0.2 0.6 0.6 0.6]

66-100% DTLZ5 [0.4 0.4 0.4 0.4 0.8 0.8 0.8] DTLZ6 [0.2 0.2 0.2 0.8 0.8 0.8 0.8]

At each stage of the optimisation, the preference
vector P defined by the DM (each of them specified
in Table 1) is the reference point for the hypervolume
indicator.

3.2. Experimental Results

The numerical results for the ten seven-objective op-
timisation test-cases have been listed in Table 1, these
have been divided according to the two performance
characteristics mentioned above.

The performance of the algorithms in terms of the
hypervolume indicator values is displayed in Tables
2 and 3, for WFG and DTLZ problems respectively,
whilst the performance in terms of the number of so-
lutions within the ROI is reported in Tables 4 and 5 re-
spectively. In each table, mean (Mean), median (Me-
dian) and standard deviation (St.D.) values are dis-
played. The best results are emphasised in bold.

In order to verify the statistical significance of the
results, the Wilcoxon signed-rank test [69] has been
performed on the mean values where WZ-HAGA is
taken as the reference. The statistical significance is
indicated with a “+” when WZ-HAGA outperforms
its competitor and with a “–” when WZ-HAGA is
outperformed. A “=” indicates that there is no out-
performance.

As shown in Table 2, the proposed WZ-HAGA
achieves the best performance, regarding hypervolume
values on WFG problems, this holds true in the ma-
jority of the test-cases (it is outperformed only twice
out of twelve times). In all the other test-cases the pro-
posed WZ-HAGA significantly outperforms all of its
competitors. Specifically, θ -DEA exhibits higher hy-
pervolume performance in terms of mean and median
values compared to WZ-HAGA in only the first stage
of optimisation (0-33%) for the WFG1 test problem.
A similar behavior can be observed for the g-NSGA-II
in the last stage of evolution (66-100%) for the WFG3
test problem.

Results in Table 3 show that for the DTLZ prob-
lems the proposed WZ-HAGA is never outperformed
as it performs either equally or significantly better than
its competitors. It must be noted that in the DTLZ
benchmark problems some of the selected preference
vectors are purposely set beyond the theoretical points
of Pareto front, see [19] and DTLZ3 appears to be un-
feasible for all the algorithms in this study. This choice
has been made to realistically simulate the interac-
tion between the DM (which may be overwhelmingly
optimistic/demanding) and the optimisation algorithm
(which has to deal with the mathematical limitations
of the problem).



Table 2. WFG Test-case Hypervolume Results

Mean Median St.D. Mean Median St.D. Mean Median St.D.

Stage g-NSGA-II r-NSGA-II WV-MOEAP

WFG1 0-33% 1.372E+02 1.325E+02 – 4.648E+01 3.293E+01 3.047E+01 + 1.750E+01 8.284E-01 0.000E+00 + 2.250E+00
WFG1 33-66% 5.253E+01 5.147E+01 + 1.938E+01 8.771E-01 7.709E-01 + 7.383E-01 1.386E+01 1.275E+01 + 1.125E+01
WFG1 66-100% 2.646E+00 2.615E+00 + 1.023E+00 2.308E-04 1.034E-04 + 3.296E-04 1.238E+00 1.070E+00 + 9.227E-01

NSGA-III θ -DEA WZ-HAGA

WFG1 0-33% 8.260E+01 7.519E+01 = 4.288E+01 2.410E+02 2.457E+02 – 5.628E+01 6.664E+01 6.680E+01 1.207E+01
WFG1 33-66% 2.665E+01 2.811E+01 + 2.079E+01 8.234E+01 8.221E+01 + 1.687E+01 1.372E+02 1.650E+02 8.468E+01
WFG1 66-100% 1.112E+00 1.271E+00 + 5.449E-01 2.406E+00 2.420E+00 + 3.733E-01 5.623E+00 5.610E+00 1.112E+00

g-NSGA-II r-NSGA-II WV-MOEAP

WFG3 0-33% 2.205E-05 2.206E-05 + 8.570E-07 2.044E-06 5.379E-07 + 2.514E-06 0.000E+00 0.000E+00 + 0.000E+00
WFG3 33-66% 4.644E-07 0.000E+00 + 7.755E-07 1.632E-09 0.000E+00 + 6.866E-09 0.000E+00 0.000E+00 + 0.000E+00
WFG3 66-100% 2.019E-02 2.116E-02 – 4.365E-03 0.000E+00 0.000E+00 + 0.000E+00 0.000E+00 0.000E+00 + 0.000E+00

NSGA-III θ -DEA WZ-HAGA

WFG3 0-33% 1.580E-05 1.662E-05 + 3.544E-06 4.121E-07 1.086E-08 + 1.397E-06 2.528E-05 2.530E-05 7.141E-07
WFG3 33-66% 0.000E+00 0.000E+00 + 0.000E+00 0.000E+00 0.000E+00 + 0.000E+00 1.185E-06 1.000E-06 5.558E-07
WFG3 66-100% 1.266E-03 3.007E-04 + 1.712E-03 0.000E+00 0.000E+00 + 0.000E+00 3.745E-03 3.200E-03 2.041E-03

g-NSGA-II r-NSGA-II WV-MOEAP

WFG5 0-33% 1.088E+05 1.091E+05 + 7.658E+03 4.726E+04 4.934E+04 + 7.865E+03 1.073E+04 1.025E+04 + 2.837E+03
WFG5 33-66% 1.641E+04 1.646E+04 + 1.383E+03 5.310E+02 5.211E+02 + 1.035E+02 3.643E+02 3.621E+02 + 4.105E+01
WFG5 66-100% 1.525E+03 1.427E+03 + 2.613E+02 3.500E-01 3.029E-01 + 2.364E-01 0.000E+00 0.000E+00 + 0.000E+00

NSGA-III θ -DEA WZ-HAGA

WFG5 0-33% 5.056E+04 5.030E+04 + 8.335E+03 1.120E+05 1.117E+05 + 6.614E+03 1.320E+05 1.320E+05 3.458E+03
WFG5 33-66% 1.252E+04 1.284E+04 + 1.101E+03 1.359E+04 1.343E+04 + 2.125E+03 2.258E+04 2.270E+04 5.627E+02
WFG5 66-100% 1.746E+03 1.993E+03 + 7.141E+02 1.633E+03 1.628E+03 + 1.879E+02 2.464E+03 2.440E+03 1.050E+02

g-NSGA-II r-NSGA-II WV-MOEAP

WFG9 0-33% 5.274E+04 5.348E+04 + 9.360E+03 1.433E+04 1.186E+04 + 1.289E+04 0.000E+00 0.000E+00 + 0.000E+00
WFG9 33-66% 5.115E+04 5.165E+04 + 8.021E+03 4.974E+03 4.395E+03 + 4.012E+03 0.000E+00 0.000E+00 + 0.000E+00
WFG9 66-100% 1.761E+03 1.824E+03 + 5.175E+02 4.789E-02 3.188E-03 + 1.438E-01 0.000E+00 0.000E+00 + 0.000E+00

NSGA-III θ -DEA WZ-HAGA

WFG9 0-33% 4.617E+04 4.654E+04 + 5.503E+03 3.575E+04 3.598E+04 + 9.794E+03 7.293E+04 7.590E+04 1.685E+04
WFG9 33-66% 5.524E+04 5.572E+04 + 4.134E+03 3.789E+04 3.979E+04 + 1.064E+04 6.053E+04 6.110E+04 1.313E+04
WFG9 66-100% 2.154E+03 2.107E+03 + 2.659E+02 5.542E+02 4.978E+02 + 3.835E+02 2.426E+03 2.380E+03 3.662E+02

The numerical results listed in Table 4, in terms
of the number of solutions within the ROI, show that
WZ-HAGA outperforms all its competitors in the ma-
jority of the WFG problems considered. In the major-
ity of the cases, WZ-HAGA is able to maintain its pop-
ulation within the ROI. The proposed WZ-HAGA is
outperformed only by g-NSGA-II for the WFG1 prob-
lem (first two stages: 0-33%, and 33-66%). The results
in listed Table 5 show that WZ-HAGA is never outper-
formed on the DTLZ problems.

Fig. 3 and 4 show two examples of the trend of
average (over the 30 runs) hypervolume indicator val-
ues and numbers of solutions within the ROI, during
the optimisation process. Fig. 3 shows the evolution

for WFG9, while Fig. 4 shows the performance pa-
rameters for DTLZ4. In each figure, the upper three
subplots show the hypervolume variation in the three
stages of the optimisation, while the lower three sub-
plots show the variation of the number of solutions
falling within the ROI.

Fig. 3 shows that WZ-HAGA displays the best
hypervolume performance. The WZ-HAGA hypervol-
ume rapidly achieves the highest values, and proceeds
to maintain steady growth during the later genera-
tions. It is worth noting that when the preference vec-
tor changes the hypervolume value drops (for all the
algorithms) as this preference vector is used to cal-
culate the hypervolume. WZ-HAGA recovers quickly



Table 3. DTLZ Test-case Hypervolume Results

Mean Median St.D. Mean Median St.D. Mean Median St.D.

Stage g-NSGA-II r-NSGA-II WV-MOEAP

DTLZ1 0-33% 0.00E+00 0.00E+00 + 0.00E+00 1.19E-08 0.00E+00 + 5.97E-08 3.21E-07 4.51E-08 + 3.72E-07
DTLZ1 33-66% 0.00E+00 0.00E+00 + 0.00E+00 6.93E-06 0.00E+00 + 2.18E-05 6.81E-05 6.67E-05 + 1.61E-05
DTLZ1 66-100% 0.00E+00 0.00E+00 + 0.00E+00 1.48E-05 0.00E+00 + 4.32E-05 1.58E-04 1.46E-04 + 2.30E-05

NSGA-III θ -DEA WZ-HAGA

DTLZ1 0-33% 0.00E+00 0.00E+00 + 0.00E+00 3.47E-12 0.00E+00 + 1.08E-11 1.28E-05 1.28E-05 0.00E+00
DTLZ1 33-66% 0.00E+00 0.00E+00 + 0.00E+00 1.08E-13 3.93E-19 + 2.79E-13 4.10E-04 4.10E-04 0.00E+00
DTLZ1 66-100% 0.00E+00 0.00E+00 + 0.00E+00 1.12E-11 3.34E-17 + 5.18E-11 8.00E-04 8.00E-04 0.00E+00

g-NSGA-II r-NSGA-II WV-MOEAP

DTLZ2 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00
DTLZ2 33-66% 0.00E+00 0.00E+00 + 0.00E+00 1.16E-10 2.38E-11 + 1.97E-10 8.63E-08 0.00E+00 + 4.32E-07
DTLZ2 66-100% 0.00E+00 0.00E+00 + 0.00E+00 4.89E-14 5.79E-15 + 8.94E-14 0.00E+00 0.00E+00 + 0.00E+00

NSGA-III θ -DEA WZ-HAGA

DTLZ2 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ2 33-66% 7.55E-07 5.41E-07 + 1.01E-06 3.56E-08 2.53E-08 + 3.72E-08 1.79E-05 1.80E-05 7.60E-07
DTLZ2 66-100% 8.75E-04 9.00E-04 + 2.51E-04 3.23E-06 2.29E-06 + 2.53E-06 1.22E-03 1.21E-03 5.72E-05

g-NSGA-II r-NSGA-II WV-MOEAP

DTLZ3 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00
DTLZ3 33-66% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 1.10E-07 0.00E+00 = 5.51E-07
DTLZ3 66-100% 0.00E+00 0.00E+00 = 0.00E+00 1.49E-07 0.00E+00 = 7.47E-07 2.54E-06 0.00E+00 = 1.27E-05

NSGA-III θ -DEA WZ-HAGA

DTLZ3 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ3 33-66% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ3 66-100% 0.00E+00 0.00E+00 = 0.00E+00 9.15E-12 0.00E+00 = 4.57E-11 0.00E+00 0.00E+00 0.00E+00

g-NSGA-II r-NSGA-II WV-MOEAP

DTLZ4 0-33% 1.93E-03 1.92E-03 = 1.47E-04 0.00E+00 0.00E+00 + 0.00E+00 7.91E-06 0.00E+00 + 2.62E-05
DTLZ4 33-66% 1.49E-04 1.45E-04 = 1.82E-05 2.47E-07 7.82E-09 + 5.50E-07 0.00E+00 0.00E+00 + 0.00E+00
DTLZ4 66-100% 6.47E-03 6.41E-03 + 4.59E-04 1.35E-09 4.41E-10 + 2.44E-09 1.76E-03 1.65E-03 + 9.35E-04

NSGA-III θ -DEA WZ-HAGA

DTLZ4 0-33% 3.17E-04 2.41E-04 + 2.90E-04 4.05E-04 4.18E-04 + 9.82E-05 2.08E-03 2.20E-03 9.19E-04
DTLZ4 33-66% 3.94E-05 3.69E-05 + 2.75E-05 4.54E-07 0.00E+00 + 1.61E-06 1.99E-04 2.55E-04 8.70E-05
DTLZ4 66-100% 8.34E-03 8.60E-03 + 1.78E-03 1.01E-04 0.00E+00 + 2.82E-04 9.78E-03 1.04E-02 1.68E-03

g-NSGA-II r-NSGA-II WV-MOEAP

DTLZ5 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00
DTLZ5 33-66% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00
DTLZ5 66-100% 0.00E+00 0.00E+00 + 0.00E+00 2.44E-15 1.00E-15 + 4.14E-15 2.79E-05 2.79E-05 + 5.95E-09

NSGA-III θ -DEA WZ-HAGA

DTLZ5 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ5 33-66% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ5 66-100% 1.13E-05 6.59E-06 + 1.15E-05 8.41E-06 7.20E-06 + 5.29E-06 6.88E-05 6.99E-05 5.82E-06

g-NSGA-II r-NSGA-II WV-MOEAP

DTLZ6 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00
DTLZ6 33-66% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00
DTLZ6 66-100% 0.00E+00 0.00E+00 + 0.00E+00 2.70E-12 0.00E+00 + 6.53E-12 0.00E+00 0.00E+00 + 0.00E+00

NSGA-III θ -DEA WZ-HAGA

DTLZ6 0-33% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ6 33-66% 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00
DTLZ6 66-100% 0.00E+00 0.00E+00 + 0.00E+00 0.00E+00 0.00E+00 + 0.00E+00 1.62E-06 1.80E-06 8.17E-07



Table 4. WFG Test-case ROI Results

Mean Median St.D. Mean Median St.D. Mean Median St.D. Mean Median St.D. Mean Median St.D. Mean Median St.D.

Stage g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

WFG1 0-33% 100.0 100.0 – 0.0 31.2 29.0 + 6.5 2.0 0.0 + 4.4 14.8 15.0 + 9.1 95.8 98.0 = 7.1 94.0 96.0 5.6
WFG1 33-66% 100.0 100.0 – 0.0 5.6 6.0 + 3.5 10.2 13.0 + 5.1 7.6 5.0 + 8.0 82.6 85.0 + 10.0 91.9 100.0 11.3
WFG1 66-100% 100.0 100.0 = 0.0 6.3 4.0 + 6.4 13.0 13.0 + 0.0 11.0 12.0 + 8.8 47.3 47.0 + 6.1 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

WFG3 0-33% 100.0 100.0 = 0.0 2.0 2.0 + 1.041 0.0 0.0 + 0.0 46.2 49.0 + 13.8 1.9 2.0 + 1.4 100.0 100.0 0.0
WFG3 33-66% 28.0 0.0 + 45.8 0.4 0.0 + 0.645 0.0 0.0 + 0.0 0.0 0.0 + 0.0 0.0 0.0 + 0.0 100.0 100.0 0.0
WFG3 66-100% 96.0 100.0 = 20.0 0.0 0.0 + 0.000 0.0 0.0 + 0.0 0.8 1.0 + 1.1 0.0 0.0 + 0.0 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

WFG5 0-33% 100.0 100.0 = 0.0 39.4 40.0 + 6.0 89.4 91.0 + 4.3 57.4 55.0 + 14.1 58.1 59.0 + 8.8 100.0 100.0 0.0
WFG5 33-66% 100.0 100.0 = 0.0 41.1 42.0 + 11.5 90.5 91.0 + 2.6 66.0 69.0 + 13.6 36.6 37.0 + 8.5 100.0 100.0 0.0
WFG5 66-100% 99.9 100.0 = 0.2 16.1 15.0 + 10.1 0.0 0.0 + 0.0 16.2 16.0 + 8.2 28.8 28.0 + 7.4 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

WFG9 0-33% 100.0 100.0 = 0.0 3.7 3.0 + 2.2 0.0 0.0 + 0.0 46.7 47.0 + 9.8 14.2 14.0 + 5.5 100.0 100.0 0.0
WFG9 33-66% 100.0 100.0 = 0.0 4.6 4.0 + 2.8 0.0 0.0 + 0.0 53.4 53.0 + 6.4 17.2 17.0 + 5.5 100.0 100.0 0.0
WFG9 66-100% 100.0 100.0 = 0.0 2.0 1.0 + 2.5 0.0 0.0 + 0.0 57.4 58.0 + 5.4 6.7 6.0 + 4.2 100.0 100.0 0.0

Table 5. DTLZ Test-case ROI Results

Mean Median St.D. Mean Median St.D. Mean Median St.D. Mean Median St.D. Mean Median St.D. Mean Median St.D.

Stage g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

DTLZ1 0-33% 0.0 0.0 + 0.0 0.0 0.0 + 0.2 11.9 12.0 + 12.4 0.0 0.0 + 0.0 0.4 0.0 + 1.0 100.0 100.0 0.0
DTLZ1 33-66% 0.0 0.0 + 0.0 0.3 0.0 + 0.9 26.3 26.0 + 12.5 0.0 0.0 + 0.0 1.0 1.0 + 1.1 100.0 100.0 0.0
DTLZ1 66-100% 0.0 0.0 + 0.0 0.4 0.0 + 0.9 38.0 39.0 + 12.9 0.0 0.0 + 0.0 1.0 1.0 + 0.9 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

DTLZ2 0-33% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ2 33-66% 0.0 0.0 + 0.0 2.6 2.0 + 2.2 0.5 0.0 + 2.6 1.9 1.0 + 2.4 10.4 10.0 + 3.2 100.0 100.0 0.0
DTLZ2 66-100% 0.0 0.0 + 0.0 3.4 3.0 + 2.8 0.0 0.0 + 0.0 36.0 36.0 + 12.1 31.8 33.0 + 5.1 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

DTLZ3 0-33% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ3 33-66% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.5 0.0 = 2.6 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ3 66-100% 0.0 0.0 = 0.0 0.0 0.0 = 0.2 0.5 0.0 = 2.6 0.0 0.0 = 0.0 0.0 0.0 = 0.4 0.0 0.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

DTLZ4 0-33% 100.0 100.0 = 0.0 0.0 0.0 + 0.0 0.6 0.0 + 1.9 5.6 6.0 + 4.3 19.1 20.0 + 3.7 100.0 100.0 0.0
DTLZ4 33-66% 99.9 100.0 = 0.2 0.8 1.0 + 0.9 0.0 0.0 + 0.0 5.1 5.0 + 3.7 0.1 0.0 + 0.3 100.0 100.0 0.0
DTLZ4 66-100% 99.9 100.0 = 0.2 2.7 2.0 + 1.8 31.2 32.0 + 19.3 57.3 60.0 + 15.7 0.2 0.0 + 0.4 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

DTLZ5 0-33% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ5 33-66% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ5 66-100% 0.0 0.0 + 0.0 3.2 3.0 + 2.5 58.4 55.0 + 14.2 2.0 1.0 + 2.0 33.8 34.0 + 4.5 100.0 100.0 0.0

g-NSGA-II r-NSGA-II WV-MOEAP NSGA-III θ -DEA WZ-HAGA

DTLZ6 0-33% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ6 33-66% 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 = 0.0 0.0 0.0 0.0
DTLZ6 66-100% 0.0 0.0 + 0.0 0.9 0.0 + 1.6 0.0 0.0 + 0.0 0.0 0.0 + 0.0 0.0 0.0 + 0.0 96.0 100.0 20.0

from this drop and achieves higher values, thus dis-
playing resilient and robust behaviour. Some other al-
gorithms, such as WV-MOEAP, appear to be unable to
recover from the change in the preference vector af-
ter some initial improvements in the hypervolume val-
ues. NSGA-III and g-NSGA-II also display resilient
behaviour, although they are outperformed by WZ-
HAGA in this regard.

The results in terms of solutions in the ROI show
that WZ-HAGA and g-NSGA-II display a similar per-
formance. For the specific problem, both these algo-

rithms rapidly produce a population entirely within the
ROI within the first 50 generations. This is because
they both explicitly employ information regarding the
preference vector within their search. The NSGA-III
algorithm also displays good performance. According
to our interpretations, this fact is due to the NSGA-III
logic that encodes some DM information through its
reference vector, and then makes an implicit use of it
during the search.

Fig. 4 shows that, for this problem, g-NSGA-II
displays remarkably good performance, especially in



Figure 3. (a-c) Mean hypervolume quality of the considered algorithms at each generation of the test-cases: WFG9 (0–33%), WFG9 (33–66%),
and WFG9 (66–100%); (d-f) Mean number of solutions within the ROI for each of the considered algorithms at each generation of the test-cases
WFG9 (00–33%), WFG9 (33–66%), and WFG9 (66–100%).
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Figure 4. (a-c) Mean hypervolume quality of the considered algorithms at each generation of the test-cases: DTLZ4 (0–33%), DTLZ4 (33–66%),
and DTLZ4 (66–100%); (d-f) Mean number of solutions within the ROI for each of the considered algorithms at each generation of the test-cases
DTLZ4 (0–33%), DTLZ4 (33–66%), and DTLZ4 (66–100%).

the early generations (0-33%). It can be observed that
g-NSGA-II is faster than WZ-HAGA in reaching a
high hypervolume indicator value and at getting the

entire population within the ROI. However, when the
preference vector is changed, WZ-HAGA displays re-
silient behaviour in comparison to g-NSGA-II. This is
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Figure 5. The three main axes of an Aircraft body.

clearly visible for the hypervolume results. While g-
NSGA-II drops in hypervolume performance and does
not appear to recover, WZ-HAGA quickly reaches
higher hypervolume values.

3.3. Preference Articulation in the Design of a
Fighter Vehicle Control System

In order to demonstrate the practical usability of the
proposed WZ-HAGA, it has been applied to the de-
sign of the flying control system of a fighter vehicle
(aircraft). Fig. 5 presents an illustration of an aircraft
with the three main axes of motion labelled: the Roll
(longitudinal) axis r, the Pitch (lateral) axis p, and the
Yaw (vertical) axis y. Three angles (rate) can be asso-
ciated to the position of the aircraft to characterise it.
Furthermore, two more important parameters describe
the behavior of an airplane in flying conditions. The
first is the sideslip angle β that is the rotation angle of
the nose of the airplane due to the relative wind, see
[63]. The second one is the bank angle φ , that is a met-
ric related to the speed (and performance) of the air-
plane and is measured in (aperiodic) degrees, see [21]
for details.

From the perspective of this work, an aircraft is
characterised by the following (time-dependent) state
vector x and controller vector u:

x =


β

y
r
φ

 ,u =

[
δα

δr

]
,

where y and r are the yaw and roll rates, respectively,
δα is the aileron control motions and δr is the rudder
control motions.

The control vector is also expressed as: u=Cup+
Kx, where up is the pilot’s control input vector here
set as [12,0], C and K are the gain matrices:

C =

[
1 0
k5 1

]
,K =

[
k6 k1 k2 0
k7 k3 k4 0

]
.

The control problem under study consists of find-
ing those gain coefficients κ = [k1,k2,k3,k4,k5,k6,k7]
that simultaneously minimise the following seven ob-
jectives (in their qualitative definition):

f1 (κ): The spiral root
f2 (κ): The damping in roll root
f3 (κ): The dutch-roll damping ratio
f4 (κ): The dutch-roll frequency
f5 (κ): The bank angle at 1 seconds
f6 (κ): The bank angle at 2.8 seconds
f7 (κ): The control effort

The first four objectives in the list refer to unde-
sired oscillations of the airplane, the fifth and and sixth
objectives refer to the position of the airplane in cru-
cial moments of the flight according to Military Spec-
ification [5,20], the last objective refers to the fact that
small gains in absolute values are preferred to guar-
antee the stability of the controller. Details about the
controller can be found in [63].

In order to give a mathematically rigorous de-
scription of the multi-objective optimisation problem,
let us consider the kinetic energy matrix A and the
Coriolis matrix B. In the problem under investiga-
tion, these two matrices are composed of constant el-
ements (describing the mechanics of the airplane in
[63]) given by:

A =


−0.2842 −0.9879 0.1547 0.0204
10.8574 −0.5504 −0.2896 0.0000

−199.8942 −0.4840 −1.6025 0.0000
0.0000 0.1566 1.0000 0.0000

 ,

B =


0.0000 0.0524
0.4198 −12.7393

50.5756 21.6753
0.0000 0.0000

 .
Let us now consider the following matrix equa-

tion: D = A + BK. The objective functions f1 (κ),



f2 (κ), f3 (κ), and f4 (κ) and the eigenvalues of the
4×4 matrix D. It can be observed that the eigenvalue
expressions depend on the gain coefficients in the ma-
trix K while all the other parameters are constant.

The objective functions f5 (κ) and f6 (κ) are the
bank angles taken at two specific times, 1 and 2.8 sec-
onds. Since the bank φ is time-variant, it can be seen as
a function of time φ (t). Thanks to the linearisation de-
scribed in [42], the bank at a specified moment (1 and
2.8 seconds) can be expressed as function of the gain
coefficients. These functions of the linearised model
are the objective functions f5 (κ) and f6 (κ) we used
in this study. For further details see [63].

The objective functions f7 (κ) is the sum of
squares of the gain coefficients:

f7 (κ) =
7

∑
i=1

k2
i .

Further details regarding the aircraft dynamic
model and the problem variables are available in [20].
This optimisation problem will be referred to as Lat-
eral Controller Synthesis (LATCON) herein.

By using the same notation above, the preferences
of the LATCON problem are displayed in Table 6.

Table 6. LATCON preference vectors

Preferences

Stage [ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7]

00–33% [-0.01 -3.75 -0.45 -1 -90 -360 0.75]

33–66% [-0.01 -3.75 -0.45 -1 -90 -500 0.25]

66–100% [-0.01 -3.75 -0.45 -1-200 -1500 0.25]

Although a detailed explanation of the physical
problem does not fall within the scopes of this arti-
cle, what follows is a brief explanation of the prefer-
ence vectors in Table 6. Mathematically, the meaning
of the preference vector is that each objective function
fi must be below the corresponding value ρi, for i =
1,2, . . . ,7. The first four values of P, i.e. ρ1,ρ2,ρ3,ρ4
are all negative numbers which are not changed during
the optimisation.

From an engineering perspective, negative eigen-
values (in their real part) lead to a stable control system
but a higher performance is generally obtained when
the eigenvalues are close to the imaginary axis. We
are fixing a range that guarantees stability and a min-

imal performance of the control system (given by the
ρ1,ρ2,ρ3,ρ4 values). Since moving these values dur-
ing the optimisation could likely lead to moving the
search toward the instability region, these values are
kept constant. However, a dynamic increasing perfor-
mance requirement is performed by the preference ar-
ticulation on f7. Since the function is positive definite,
ρ7 is a positive number. While initially solutions with
poorer performance are taken into account, after 33%
of the optimisation budget, the search becomes bi-
ased towards more restrictive DM requirements. This
choice has been made to ensure that, at first, the algo-
rithm produces stable solutions and then refines them
within the stability region. The parameters ρ5 and ρ6
represent the bank angles in degrees in two specific
moments. The negative sign is conventional (the abso-
lute value is relevant and the sign is used in the min-
imisation). Here, we are simulating a scenario where
the DM initially attempts to impose more restrictive
requirements by the reducing the rotation range at 6
seconds after 33% of the budget and then, due to other
external considerations, decides to radically modify
their requirements after 66% of the budget, e.g. due to
the change in the control strategy. With the last varia-
tion we are interested in checking how the algorithms
can react to abrupt changes of the ROI.

The same algorithms presented above with the
same parameter setting above have been applied. The
numerical results in terms of the hypervolume and so-
lutions belonging within the ROI (mean values and
Wilcoxon signed-rank test [69]) are displayed in Table
7. A graphical representation of the LATCON results
is displayed in Fig. 6.

Table 7. LATCON Hypervolume and ROI Results

NSGA-III WZ-HAGA θ -DEA g-NSGA-II r-NSGA-II WV-MOEAP

Hypervolume results

0–33% 0.0+ 525524.9 92.3+ 6043.7 + 0.0 + 0.0 +

33–66% 44.7+ 26717.8 1125.9+ 63.9 + 0.0 + 0.0 +

66–100% 0.0+ 36.0 2.4+ 0.0 + 0.0 + 0.0 +

ROI results

0–33% 0.0+ 100.0 1.0+ 10.0 + 0.0 + 0.0 +

33–66% 1.0+ 100.0 1.0+ 8.0 + 0.0 + 0.0 +

66–100% 0.0+ 100.0 1.0+ 0.0 + 0.0 + 0.0 +

In order to better understand the meaning of the
solutions detected by WZ-HAGA, a solution has been
randomly selected from its final approximation set.
The objective function values of this solution have



been then compared against those obtained by one of
the four solutions detected by the method originally
proposed in [63]. These results are displayed in Ta-
ble 8. It can be observed that the WZ-HAGA solution
dominates the solution found in [63].

Table 8. Comparison with results from the original article

Tabak [63] solution objective value

-0.0099 -3.7522 -0.5009 -6.2293 -112.5228 -395.8067 0.4998

WZ-HAGA solution objective value

-0.1027 -5.0808 -0.7152 -7.1043 -202.1296 -1523.4950 0.2244

The results suggest that WZ-HAGA is able to
quickly (within a few generations) find solutions
within the ROI and continue to converge towards an
approximation set which dominates more of the ob-
jective space. Following the beginning of each change
in DM preferences, it can be observed that the entire
population has converged to being within the ROI af-
ter at most ten subsequent generations. The reaction of
the hypervolume indicator is slower but steadily grows
within each stage and reaches the highest value, see
Fig. 6.

The competitor algorithms, on this problem, dis-
play a significantly poorer performance than the pro-
posed WZ-HAGA. The main limitation of these algo-
rithms, including those that make use of progressive
preference articulation, is that they appear to be unable
to find enough solutions within the ROI.

4. Conclusion

This paper introduces a method for progressive pref-
erence articulation based on statistical theory used
in a priori preference articulation, and integrates it
within a previously proposed algorithmic framework
for multi-objective optimisation. The proposed algo-
rithmic component checks the number of solutions
within the ROI indicated by the DM, and biases the
search towards the ROI when not enough solutions are
pertinent. An adaptive mechanism modifies the bias on
the basis of the number of solutions within the region
of interest, thus reacting every time the decision mak-
ing circumstances change. A novel implementation of
a complete algorithm for interactive multi-objective
optimisation (WZ-HAGA) is then proposed.

The proposed WZ-HAGA has been thoroughly
tested against five modern algorithms on a number
of test problems and a real-world test-case. The nu-
merical results show that the proposed method signif-
icantly outperforms its competitors in eight problems
out of the ten considered. In these eight test-cases WZ-
HAGA outperforms its competitors in terms of both
the hypervolume indicator and the number of detected
solutions within the ROI. The proposed WZ-HAGA
also outperforms the other algorithms when compared
within the real-world control engineering application.

It was found that WZ-HAGA, which uses an ag-
gressive and targeted approach to selection pressure, is
better suited to finding a ROI which has been defined
by the DM’s preferences. In the presence of chang-
ing preferences throughout the optimisation process,
i.e. progressive preference articulation, WZ-HAGA
quickly finds the new preferred solutions and outper-
forms the considered algorithms in both the hypervol-
ume indicator quality of the approximation set and the
number of solutions found within the ROI.
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