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ABSTRACT 

X-ray Mammography examinations are highly affected by scattered radiation, as it degrades the quality of the image and 

complicates the diagnosis process. Anti-scatter grids are currently used in planar mammography examinations as the 

standard physical scattering reduction technique. This method has been found to be inefficient, as it increases the dose 

delivered to the patient, does not remove all the scattered radiation and increases the price of the equipment. Alternative 

scattering reduction methods, based on post-processing algorithms, are being investigated to substitute anti-scatter grids. 

Methods such as the convolution-based scatter estimation have lately become attractive as they are quicker and more 

flexible than pure Monte Carlo (MC) simulations. In this study we make use of this specific method, which is based on the 

premise that the scatter in the system is spatially diffuse, thus it can be approximated by a two-dimensional low-pass 

convolution filter of the primary image. This algorithm uses the narrow pencil beam method to obtain the scatter kernel 

used to convolve an image, acquired without anti-scatter grid. The results obtained show an image quality comparable, in 

the worst case, to the grid image, in terms of uniformity and contrast to noise ratio. Further improvement is expected when 

using clinically-representative phantoms.  

Keywords: X-ray, mammography, Monte-Carlo simulations, grid-less mammography, scatter radiation, convolution, 

pencil beam.  

 

1. INTRODUCTION 

One of the main challenges remaining in digital X-ray mammography is scattered radiation. Scattering reduces the 

quantitative usefulness of the mammogram, affecting the diagnosis of malignant lesions 1, 2, 3.  

Most of the planar mammography systems currently available in the market make use of anti-scatter grids as a technique 

to physically reduce the scattered radiation. Although this method helps to improve the image quality, it is not a complete 

solution. The grids do not block all the scattered radiation and attenuate a proportion of primary radiation, leading to an 

increase in the patient dose delivered, and add complexity and cost to the overall system 1, 4, 5. 

Image post-processing scatter reduction methods have emerged as a consequence of the limitations of the anti-scatter grids. 

Methods such as the convolution-based scatter estimation, have lately become attractive as they are faster and more flexible 

than direct Monte Carlo (MC) simulations 4, 6, 7. This specific method is based on the idea that the scatter in the system is 

spatially diffuse, thus it can be approximated by a two-dimensional low-pass convolution filter of the primary image 3. 

In this paper, we compare the quality of clinical images acquired without anti-scatter grids that have been post-processed 

with the convolution-based scatter estimation method, and images acquired with anti-scatter grid. 

 

2. METHODOLOGY 

We assume that the image acquired from a digital mammography detector, I(x,y), is the linear combination of the energy 

deposited by the primary and the scattered X-ray photons, P(x,y) and S(x,y) respectively:  



 

 
 

 

 𝐼(𝑥, 𝑦) = 𝑃(𝑥, 𝑦) + 𝑆(𝑥, 𝑦). (1) 

The two dimensional (2D) description of the scatter can be seen as a low-pass filtered primary image 8. However, the 

primary image is unknown and its determination is the principal objective of this study. To address this problem, we are 

following an approximation first introduced by Love and Kruger 8: 

 𝑆′(𝑥, 𝑦) ≈ 𝐼(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦),  (2) 

where, h(x,y) is a low-pass filter kernel that has to be determined.  

With this approximation it is possible to calculate a new primary image, P’(x,y):  

 𝑃′(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝐼(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) . (3) 

2.1 Mammography system and software used 

Phantom images with and without anti-scatter grid were taken at Barts Health NHS Trust with a Hologic Lorad Selenia 

mammography system. The phantom used was a CIRS 010A test object. Both, grid and grid-less images, were obtained at 

constant exposure, 28kV and 100mAs. 

The GEANT4 toolkit (version 10.01.p02) was the software chosen to study the scattered radiation in the simulated 

mammography geometry 9, 10. The analysis was done with the aid of MATLAB, R2013b with Image Processing toolbox, 

and ImageJ, 1.47V.  

2.2 Definition of the Scatter Point Spread Function (SPSF) 

SPSF kernels were obtained from the MC simulation using a narrow X-ray beam which was represented by a normally-

incident 2D spatial delta function, i.e. narrow pencil beam method 7. Energy from scattered radiation (S) was binned into 

35µm radius (r) concentric annuli (up to 175mm). These were then normalized to the sum of the primary image and the 

scatter radiation, P(0)+S(r), and the area of the annuli, A(r), as described in 11.  

 𝑆𝑃𝑆𝐹(𝑟) =
𝑆(𝑟)

(𝑃(0)+𝑆(𝑟))𝐴(𝑟)
[𝑚𝑚−2]  (4) 

The final kernels were calculated from the scatter point spread function, see equation 4. As the kernel was considered 

isotropic and the function was normalized by the area, the value of every pixel of the kernel could be defined by calculating 

its distance to the centre, interpolating the SPSF(r) function and multiplying by the area of the pixel, 70x70µm2 for the 

Hologic Lorad Selenia. The estimated primary image (P’) was obtained following equations (2) and (3). 

2.3 Geometry used in this study 

The experimental geometry, i.e. Pencil Beam (PB) geometry, was defined to simulate the geometry of the Hologic Lorad 

Selenia mammography system, where the CIRS 010A phantom images were acquired. For the pencil beam methodology, 

the D-shaped CIRS phantom was changed to a cylindrical-shaped, simulating the scatter distribution at the centre of the 

phantom.  

Table 1. Details of the materials and the thickness of the objects used in the validation and in the pencil beam geometry.  

Object 
Geometry Validation Pencil Beam Geometry 

Material Thickness Material Thickness 

Breast compression paddle PMMA 2mm PMMA 2.54mm 

Phantom tissue 20% glandular  46mm 30% glandular  40mm 

Phantom tissue Skin layer 2mm Adipose layer 5mm 

Breast support paddle PMMA 2mm Carbon fibre 2.54mm 

Air gap Air 13mm Air 17.46mm 

Body Water 300mm No body No body 
 

From top to bottom, the simulated geometry included: X-ray source, compression paddle, breast phantom, support paddle, 

air gap and the detector. The Source to Image Distance (SID) was 660mm. The detector structure, up to the amorphous 

selenium (aSe) surface, was included in the geometry 12, the data was obtained via private communication with Hologic 



 

 
 

 

Inc. Figure 1 shows both the realistic and pencil beam geometries and Table 1 gives more details about the composition 

and thicknesses.  

In this report, the SPSF kernels were simulated using a narrow pencil beam and a spectrum of 28kVp W/Rh (HVL=0.538 

mmAl). The photon cross-section “Electromagnetic physics option 4 package” was used both for the validation and the 

experiment. 20-60 runs, of 109 X-ray photons each, were simulated, ensuring uncertainties lower than 5% and calculated 

as suggested by Sempau et al. 13. 

Figure 1. Diagram of a realistic geometry, used for validation purposes, (A) and of the experiment geometry (B). Figure A 

shows an example using a cone beam aligned with the chest wall of the breast phantom. Figure B shows the pencil beam 

example and a detector added after the air gap. 

 

2.4 Prediction of the scatter-reduced image 

To account for the difference in scattering between the breast phantom and the background areas, two different kernels 

were simulated, KPhantom and KBackground. For the background kernel, the pencil beam geometry was simulated with the 

absence of the phantom. The analysis only needed of these two kernels because of the characteristics of the chosen 

phantom. More kernels would need to be used if, for example, the thickness of the phantom was variable.  

During the processing step, a segmentation algorithm based on thresholding was performed in order to separate both 

phantom and background areas, before the two convolutions were performed. The final scattering image was the sum of 

both convolutions, see Figure 2.  

 

 

 

 

 

 

 

The predicted primary image (P’) was calculated by subtracting the predicted scattering image, S’(x,y), from the grid-less 

image.  
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Figure 2: The schematic diagram shows how the scatter image is calculated with the pencil beam methodology. The initial 

(grid-less) image is multiplied by binary masks (from the segmentation algorithm) and convolved by the correspondent kernels. 

The final scatter image is the sum of each convolution. 



 

 
 

 

3. RESULTS 

The processed grid-less image was compared to the image acquired with the use of a grid using several imaging metrics. 

Both images were acquired under the same acquisition conditions and dose in order to facilitate the comparison.  

Before the scatter kernels were calculated, the geometry of the system and the kernel curves were validated with previous 

publications.  

3.1 Validation 

Geometry Validation 

The values given in the report of the American Association of Physicists in Medicine (AAPM) task group 195, case 3 – 

Mammography and breast tomosynthesis, were used as a benchmark for validating the PSF simulations 14, 15. The results 

obtained showed an average discrepancy lower than 1% when compared with the results from the AAPM report.  

The geometry followed in the validation is shown in Figure 1-A. Table 1 gives details about the materials, thicknesses and 

positions. A combination of two X-ray beams (cone and pencil beam) and two X-ray spectra (monoenergetic and 

polyenergetic) were used (see Table 2). The spectrum values were obtained from 14. For each of them, the primary radiation, 

and scattering radiation (single and multiple Compton and Rayleigh events) were measured in 7 different regions of interest 

(ROIs), as described by 14. Enough particles were simulated sufficient to produce Standard Error of the Mean (SEM) values 

equal to or lower than 1%.  

Table 2. The table shows the four X-ray source/spectrum combinations used for the geometry validation of the scatter PSF 

code. The last column shows both the average and maximum discrepancy of the recorded events found when comparing the 

results with the American Association of Physicists in Medicine report – TG 195- Case 3 data 14. 

Validation Source type Spectrum Average difference (%) 

 (Max.) 

V1 Cone Beam Mono energetic (16.8keV) 0.82 (4.0) 

V2 Cone Beam 30kVp Mo/Mo (HVL=0.3431 mmAl) 0.48 (3.6) 

V3 Pencil Beam Mono energetic (16.8keV) 0.37 (1.6) 

V4 Pencil Beam 30kVp Mo/Mo (HVL=0.3431 mmAl) 0.29 (1.9) 

 

Table 3. The table shows eight thickness and composition combinations used with a simplified geometry (phantom, air gap 

and ideal detector) for the SPSF validation of the scatter PSF code. The SPR values (area under the curve) for a circular area 

of 100 mm radius are compared with Diaz et al 7 and Sechopoulos et al 16. 

  Area under the curve (SPR - 100mm radius) Difference (%) 

Thickness (cm) Glandularity (%) Sechopoulos Diaz Marimon 

Mar.-

Secho. 

Mar.-

Diaz 

5 

 

0 5.33x10-1 5.23 x10-1 5.36 x10-1 -0.6 2.5 

50 5.57 x10-1 5.40 x10-1 5.54 x10-1 0.5 2.6 

100 5.92 x10-1 5.68 x10-1 5.75 x10-1 2.9 1.2 

Water 5.91 x10-1 5.89 x10-1 5.94 x10-1 -0.5 0.8 

2 
 

50 

 

 

2.44 x10-1 2.39 x10-1 2.43 x10-1 0.4 1.7 

4 4.55 x10-1 4.41 x10-1 4.55 x10-1 0.0 3.2 

6 6.63 x10-1 6.40 x10-1 6.63 x10-1 0.0 3.6 

8 8.72 x10-1 8.43 x10-1 8.72 x10-1 0.0 3.4 

 

SPSF Validation 

The SPSFs have been validated against the data published by Diaz et al. 7 and Sechopoulos et al 16.  



 

 
 

 

Table 3 shows the comparison with the previous published data, the results show excellent agreement with both Diaz and 

Sechopoulos. In this geometry the compression and support paddles were removed, leaving only a cylindrical phantom 

and an air gap between the phantom and an ideal detector. For all the cases, an energy spectrum of 26keV Mo/Mo and an 

air gap of 10 mm was used.  

CIRS 010A Phantom: Grid vs. post processed grid-less images 

The post-processed grid-less image, P’ equation (3), and the grid image were compared in terms of uniformity and Contrast 

to Noise Ratio (CNR).  

Uniformity 

A comparison of the unprocessed grid-less image (I), the processed grid-less image (P’) and the grid image is shown in 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A horizontal profile, as highlighted in Figure 4, has been plotted for the three images.  
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Figure 3. This figure shows the phantom images obtained without a grid (left), the processed grid-less image (centre) and the 

image captured with an anti-scatter grid (right).  

Figure 4. The figure shows the profile plots of the grid-less, processed grid-less and grid images for the area highlighted 

in the yellow rectangle (left). 



 

 
 

 

Contrast to noise ratio 

The CNR was calculated following equation (5). The area analysed corresponds to the area surrounding the step phantom, 

the equation was applied to the 5 different regions of interest (ROIs), see Figure 5-left.  

 𝐶𝑁𝑅 =
𝑥̅𝑅𝑂𝐼−𝑥̅𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 , (5) 

where,  

𝑥̅𝑅𝑂𝐼  and 𝑥̅𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  are the mean pixel value of the object and background ROI, respectively.  

𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  is the standard deviation of the background ROI.  

  

 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 

The analysis with this convolution-based technique shows an overall improvement of the processed grid-less image over 

the unprocessed grid-less image, and comparable results when compared with the grid image.  

In terms of uniformity, the unprocessed grid-less image presents a non-uniformity higher than 100 grey values. This non-

uniformity is reduced by more than 85% in the processed grid-less image. When compared to the grid image, it is possible 

to see that the image is flatter in the central region (5 vs. 10 grey values).  

Towards the edges of the image, the non-uniformity of the processed image increases. In future measurements, further 

corrections should be applied around these areas, as suggested by Diaz et al. 7. Towards the chest-wall area, the discrepancy 

is probably introduced by the effect that the plastic holder of the phantom (outside the collimated area) introduces in the 

scatter.  

The CNR measurements give comparable results to those obtained with the grid image. For the first ROI of the step 

phantom the CNR is slightly lower, while ROIs 2-5 show an improvement.  

An improvement in the overall result is expected for real mammographic images. The objects that can be found inside the 

phantom present an extreme case, covering different ranges of materials and introducing differences in the scattering. 

Taking the step phantom area, for example, the steps go from 0 to 100% glandular tissue. These differences are not taken 

into account in the convolution, as only one kernel that matches the phantom general material is used.  
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Figure 5. The right figure show a plot comparing the CNR of the processed grid-less image and the image acquired with an 

anti-scatter grid. The CNR was calculated using the step phantom area of the images. The figure on the left shows the ROI 

areas used in the calculation (numbered 1 to 5) and the background regions (B). For the background, the values of the seven 

boxes were averaged.  



 

 
 

 

5. CONCLUSIONS 

Measurements made with a commercial planar mammography system were used with convolution-based image scatter 

reduction techniques in an attempt to generate images with high contrast to noise ratio, without the use of an anti-scatter 

grid. 

Analysis of the images showed that the quality of the predicted primary image is comparable to the grid image in terms of 

uniformity and presents general improvements in the contrast to noise ratio. The results are expected to show further 

improvement when using more clinically-representative phantoms. 

Further studies will include more realistic phantoms and a more complex analysis of the breast edge areas to gauge the 

level of complexity required to build the scatter point spread functions in a real system. The results obtained so far indicate 

that future grid-less mammography systems will be able to reduce the dose delivered to the patient without a compromise 

in the image quality.   
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