
Automatic and adaptive
preprocessing for the development

of predictive models

MANUEL MARTÍN SALVADOR

A thesis submitted in partial fulfilment of the requirements of
Bournemouth University for the degree of

Doctor of Philosophy

April, 2017

Copyright statement

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and due acknowledgement
must always be made of the use of any material contained in, or derived from, this thesis.

i

Abstract

In recent years, there has been an increasing interest in extracting valuable information
from large amounts of data. This information can be useful for making predictions about
the future or inferring unknown values. There exists a multitude of predictive models
for the most common tasks of classification and regression. However, researchers often
assume that data is clean and far too little attention has been paid to data preprocess-
ing. Despite the fact that there are a number of methods for accomplishing individual
preprocessing tasks (e.g. outlier detection or feature selection), the effort of perform-
ing comprehensive data preparation and cleaning can take between 60% and 80% of the
whole data mining process time. One of the goals of this research is to speed up this
process and make it more efficient. To this end, an approach for automating the selection
and optimisation of multiple preprocessing methods and predictors has been proposed.

The combination of multiple data mining methods forming a workflow is known as
Multi-Component Predictive System (MCPS). There are multiple software platforms like
Weka and RapidMiner to create and run MCPSs including a large variety of preprocess-
ing methods and predictors. There is, however, no common mathematical representation
of MCPSs. An objective of this thesis is to establish a common representation framework
of MCPSs. This will allow validating workflows before beginning the implementation
phase with any particular platform. The validation of workflows becomes even more
relevant when considering the automatic generation of MCPSs.

In order to automate the composition and optimisation of MCPSs, a search space is
defined consisting of a number of preprocessing methods, predictive models and their
hyperparameters. Then, the space is explored using a Bayesian optimisation strategy
within a given time or computational budget. As a result, a parametrised sequence of
methods is returned which after training form a complete predictive system. The whole
process is data-driven and does not require human intervention once it has been started.

The generated predictive system can then be used to make predictions in an online
scenario. However, it is possible that the nature of the input data changes over time. As
a result, predictive models may need to be updated to capture the new characteristics of
the data in order to reduce the loss of predictive performance. Similarly, preprocessing
methods may have to be adapted as well. A novel hybrid strategy combining Bayesian op-
timisation and common adaptive techniques is proposed to automatically adapt MCPSs.
This approach performs a global adaptation of the MCPS. However, in some situations, it
could be costly to update the whole predictive system when maybe just a little adjustment
is needed. The consequences of adapting a single component can, however, be signifi-
cant. This thesis also analyses the impact of adapting individual components in an MCPS
and proposes an approach to propagate changes through the system.

This thesis was initiated due to a joint research project with a chemical production
company, which has provided several datasets with common raw data issues in the pro-
cess industry. The final part of this thesis evaluates the feasibility of applying such
automatic techniques for building and maintaining predictive models for real chemical
production processes.

iii

Contents

Copyright statement . i
Abstract . iii
Table of contents . v
List of figures . viii
List of tables . xii
Notation . xiv
Acknowledgements . xv
Author’s declaration . xvi

1 Introduction 1
1.1 Background and motivation . 2
1.2 Process industry: a case study . 3

1.2.1 Chemical processes . 3
1.3 Raw data from chemical processes . 5

1.3.1 Data availability . 5
1.3.2 Common issues . 5

1.4 Soft sensors . 11
1.4.1 Building soft sensors . 12
1.4.2 Maintaining soft sensors . 15

1.5 Thesis goals . 16
1.6 Original contributions and list of publications 16
1.7 Organisation of the thesis . 18

2 Principles of predictive modelling 21
2.1 Introduction . 21
2.2 Predictive systems . 22
2.3 Designing a predictive system . 26

2.3.1 Business understanding . 26
2.3.2 Data understanding . 27
2.3.3 Data preparation . 28
2.3.4 Modelling . 28
2.3.5 Project evaluation . 28
2.3.6 Deployment and maintenance 29

2.4 Data preparation . 29
2.4.1 Data filtering . 29

v

vi CONTENTS

2.4.2 Data cleaning . 30
2.4.3 Data enrichment . 33
2.4.4 Data transformation . 34

2.5 Modelling . 34
2.5.1 Test design . 35
2.5.2 Algorithm selection . 35
2.5.3 Hyperparameter optimisation . 37
2.5.4 Model assessment . 38

2.6 Summary . 39

3 Multicomponent predictive systems 41
3.1 Introduction . 41
3.2 Petri nets . 42

3.2.1 Types of Petri nets . 44
3.3 Modelling MCPS as Petri nets . 47
3.4 Composition of MCPS . 50
3.5 Hyperparameter optimisation of MCPS 53
3.6 CASH problem for MCPS . 54
3.7 Summary . 54

4 Automatic composition and optimisation of MCPSs 57
4.1 Introduction . 57
4.2 Automating the CASH problem . 58

4.2.1 Bayesian optimisation . 59
4.2.2 Sequential Model-Based Optimisation 61
4.2.3 Extension and generalisation of Auto-WEKA 62

4.3 Experiments . 63
4.3.1 Methodology . 64
4.3.2 Results . 66

4.4 Summary . 75

5 Automating and adapting MCPSs in the process industry 79
5.1 Introduction . 79
5.2 Automatic building of soft sensors . 81

5.2.1 Online prediction: a regression problem 82
5.2.2 Process monitoring: a classification problem 85

5.3 Adapting MCPS in continuous processes 86
5.3.1 Regression results . 89
5.3.2 Classification results . 90
5.3.3 Evolution of MCPS over batches 91

5.4 Conclusion . 93

6 Conclusion and future work 95
6.1 Thesis summary . 95
6.2 Main findings and conclusions . 96

CONTENTS vii

6.3 Future work . 98

A Datasets from chemical processes 101
A.1 Acrylic Acid Dataset . 102
A.2 Absorption Process Dataset (absorber) 102
A.3 Catalyst Activation Dataset (catalyst) . 102
A.4 Debutanizer Column Dataset (debutanizer) 102
A.5 Drier Process Dataset (drier) . 102
A.6 Oxeno Dataset (oxeno) . 103
A.7 Sulfur Recovery Unit Dataset (sulfur) 103
A.8 Thermal Oxidiser Dataset (thermalox) 103
A.9 Results of online prediction . 104
A.10 Results of adaptive online prediction . 112

B Filtering shutdown periods 117
B.1 Introduction . 117

B.1.1 Problem setting . 118
B.2 Multi-sensor change-point detection methods 120

B.2.1 Multi-sensor change-point detection method based on control
charts . 121

B.3 Experimental evaluation . 122
B.4 Evaluation measures . 123
B.5 Experimental setting . 123
B.6 Experimental results . 125

B.6.1 Detection delay . 125
B.6.2 Predictive performance . 128

B.7 Conclusions . 129

C Effects of change propagation in MCPS 131
C.1 Introduction . 131
C.2 Reactive adaptation of MCPSs . 132

C.2.1 Dimensionality reduction . 133
C.2.2 Z-Score normalisation . 133
C.2.3 Min-max normalisation . 133
C.2.4 GFMM classifier . 134
C.2.5 Change propagation . 134

C.3 Scenarios . 136
C.4 Experimental study . 136

C.4.1 Synthetic data stream . 137
C.4.2 Real data streams . 137
C.4.3 Results for synthetic data stream 138
C.4.4 Results for real data streams . 139

C.5 Conclusions . 143

References 145

viii CONTENTS

List of Figures

1.1 Diagram of a distillation column . 4
1.2 Contextual anomaly t2 in a temperature time series 7
1.3 The distance concentration problem . 9
1.4 Raw data and decompressed data . 10
1.5 The proposed order of data preprocessing steps. 13
1.6 3-fold cross validation . 15
1.7 Model fitting . 15
1.8 Structure of the thesis and chapter dependencies 19

2.1 Decision tree of mushroom dataset . 23
2.2 Example of linear regression . 24
2.3 Toy examples of classification and regression problems 24
2.4 Phases of the CRISP-DM process . 27
2.5 Data preparation phases of the CRISP-DM process 30
2.6 Kernel trick . 34
2.7 Modelling phases of the CRISP-DM process 35
2.8 e-LICO Intelligent Discovery Assistant 37
2.9 Curve fitting varying the polynomial degree 39
2.10 MSE varying the polynomial degree . 40

3.1 Petri net representing the patient flow in a surgery 43
3.2 Example of Petri net behaviour over time 44
3.3 Example of deadlock . 44
3.4 Example of livelock . 45
3.5 Simplest WorkFlow net . 45
3.6 Hierarchical WF-net with parallel paths 46
3.7 Types of transitions according to the number of inputs and outputs 48
3.8 Stages of an MCPS . 48
3.9 Example of MCPS for ‘wine’ dataset . 49
3.10 Initial state of the MCPS for ‘wine’ dataset during the training stage . . . 50
3.11 State M1 of the MCPS for ‘wine’ dataset during the training stage 51
3.12 State M2 of the MCPS for ‘wine’ dataset during the training stage 51
3.13 Example of WEKA workflow . 52
3.14 Diagram of MCPS composition framework 52

ix

x LIST OF FIGURES

4.1 Example of Bayesian optimisation on a 1D problem 60
4.2 MCPS training and testing process . 69
4.3 Convergence plots for ‘madelon’ . 71
4.4 Best MCPS for ‘kddcup09app’ . 72
4.6 Dendrograms for ‘waveform’ . 72
4.5 Best MCPS for ‘amazon’ . 73
4.7 Error variance vs. MCPS similarity . 74

5.1 Predictions of best MCPS for ‘absorber’ 84
5.2 Example of control chart . 85
5.3 Sequence diagram of Batch+SMAC strategy 88
5.4 Target value and prediction of best MCPS found for ‘absorber’. Values

to the left of the vertical dashed line correspond to the training set, while
the ones to the right belong to the test set. 90

5.5 MCPS similarity between batches for ‘catalyst’ dataset 92

A.1 Best MCPS for ‘absorber’ . 104
A.2 Best MCPS for ‘catalyst’ . 105
A.3 Best MCPS for ‘debutanizer’ . 106
A.4 Best MCPS for ‘drier’ . 107
A.5 Best MCPS for ‘oxeno’ . 108
A.6 Best MCPS for ‘sulfur’ . 109
A.7 Best MCPS for ‘thermalox’ . 110
A.8 Target value and prediction of best MCPS found for ‘absorber’ 112
A.9 Target value and prediction of best MCPS found for ‘catalyst’ 112
A.10 Target value and prediction of best MCPS found for ‘debutanizer’ 113
A.11 Target value and prediction of best MCPS found for ‘drier’ 113
A.12 Target value and prediction of best MCPS found for ‘oxeno’ 114
A.13 Target value and prediction of best MCPS found for ‘sulfur’ 114
A.14 Target value and prediction of best MCPS found for ‘thermalox’ 115

B.1 Example of shutdown periods . 118
B.2 Shutdown and startup points . 119
B.3 MCPS for acrylic acid dataset . 125
B.4 Subset of the observed data and st values for all the methods for r = 25 . 126
B.5 Median of the detection delays of the shutdowns 127
B.6 Median of the detection delays of the startups 127
B.7 Target value and prediction during a shutdown period 128

C.1 MCPS used as example . 131
C.2 Change propagation in an MCPS . 135
C.3 SYN dataset at different timestamps . 137
C.4 SYN data with GFMM hyperboxes . 138
C.5 Results for SYN dataset . 140
C.6 Results for ELEC dataset . 141

LIST OF FIGURES xi

C.7 Results for COVERTYPE dataset . 142
C.8 Results for GAS dataset . 143
C.9 Number of principal components of ELEC, COVERTYPE and GAS . . . 144

xii LIST OF FIGURES

List of Tables

4.1 Popular open-source tools supporting SMBO methods 62
4.2 Summary of search spaces . 64
4.3 Number of parameters of the available preprocessing methods 65
4.4 Number of parameters of the available predictors 66
4.5 Datasets characteristics . 67
4.6 10-fold CV error for each dataset . 68
4.7 Holdout error for each dataset . 68
4.8 10-fold CV error varying the number of hours and seeds 75
4.9 Best MCPS for each dataset in NEW and FULL spaces 76

5.1 RMSE for chemical datasets . 83
5.2 Best MCPS for chemical datasets (regression) 84
5.3 Classification error for chemical datasets 86
5.4 Best MCPS for chemical datasets (classification) 86
5.5 Datasets properties . 87
5.6 Evaluated strategies . 88
5.7 RMSE for chemical datasets (adaptive strategies) 89
5.8 Classification errors for chemical datasets (adaptive strategies) 91
5.9 Evolution of MCPS configuration for ‘catalyst’ 92

A.1 Chemical datasets . 101

B.1 Formulas used for st(xt) in Equations B.2 and B.3 124
B.2 Limit values τ for each method and window size r 124
B.3 Predictive performance of RPLS . 128

C.1 Summary table of scenarios . 136
C.2 Accumulated classification error for each dataset 139

xiii

Notation

Symbol Description Example

Pr
ed

ic
tiv

e
m

od
el

s

x Scalar value x = 10
x Vector x = {x1, ...}
X Matrix X = {x1, ...}
ŷ Estimated value ŷ = 0.5
f Function / predictive model ŷ = f(x)
p Probability function p(c) = 0.3
X Domain X = R2

D Dataset D = {(x1, y1), ...}
λ Hyperparameter λ = 5
λ Set of hyperparameters λ = {λ1, ...}
Λ Hyperparameter space Λ = R
Λ Combined hyperparameter spaces Λ = Λ1 × ...
A Learning algorithm f = Aλ(Dtrain)
L Loss function L(f,D)
ε 10-fold CV error on training data
E Holdout error on testing data

Pe
tr

in
et

s

PN Petri net PN = (P, T, F)
p Single place p ∈ P
P Places of the PN P = {p1, ...}
t Single transition t ∈ T
T Transitions of the PN T = {t1, ...}
fp,t Directed arc from p to t fp,t ∈ F
F Arcs of the PN F = {fp1,t1 , ...}
w(pi, ti) Weight function associated to fpi,ti w(p1, t1) = 1
W Weights of the arcs in the PN W = {w(p1, t1), ...}
Mk State of a PN at moment k Mk ∈M
Mk(pi) Number of tokens in the place pi in the state Mk Mk(pi) = 1
M Set of states of the PN M = {M0, ...}
i Input/source place of a WF-net i ∈ P
o Output/sink place of a WF-net o ∈ P
n Node of a PN n ∈ P ∪ T
C Path in a PN C = 〈n1, ..., nk〉
•p Inputs nodes of p •p = {t1, ...}
p• Outputs nodes of p p• = {t2, ...}
θ Multicomponent Predictive System θ = (P, Tλ, F)
Θ Search space of MCPSs Θ = {θ1, ...}
ψ Surrogate model
α Acquisition function
d(θa, θb) Distance between MCPSs θa and θb configurations

xiv

Acknowledgements

In the first place, I would like to thank my supervisors Prof. Bogdan Gabrys and Dr
Marcin Budka for their constant support and advice. They are not only excellent aca-
demics but honest men with a great sense of humour that have kept me motivated to
finish this thesis. Special thanks also to my former supervisor Dr Indre Žliobaitė for her
support during the beginning of my research.

The PhD research is a long journey and I could not have had better travel companions
than my colleagues and friends at Bournemouth University. Special thanks to Rashid,
Amir, Tauheed, Walter, Bernadette, Ali, Najmeh, Mohsen, Mahmood, Parisha, Diana,
Lina, Mandy, Nico, Katherine, Tucker, Nazmul, Pree, Ed, Thanos, Bassma, Abbas, Utku,
Bastian, Alex, Emmy, and many more! And of course, I cannot forget my favourite group
of Spaniards: Azahara, Alejandro and Oxala. My thanks also go to my friends in Granada
and around the globe, who have been always there to cheer me up in this period.

I would also like to thank Bournemouth University staff that have always been nice
and helpful to me. Special thanks to Dr Emili Balaguer, Dr Damien Fay, Dr Katarzyna
Musial-Gabrys, Naomi Bailey, Patti Davies, Malcolm Green, Natalie Andrade, and
Shaun Bendall.

A large part of this research has been reviewed by anonymous academics. Many
thanks to them for their valuable time and constructive feedback. Thanks also to the
peers for the exciting discussions in various conferences and events.

Last but not least, I would like to thank my family for their love and belief in me.
Special thanks to my parents for guiding me through the right direction in both personal
and academic sense. Finally, I have no words to express my gratitude to Cristina ♥, who
has been sharing with me both joy and pain during the last 5 years.

xv

Author’s declaration

The work contained in this thesis is the result of my own investigations and has not been
accepted nor concurrently submitted in candidature for any other award.

xvi

To my grand and godparents José and Concepción

xvii

Chapter 1

Introduction

In the last decades, computing and telecommunications have changed the world (Castells
(2009)). The field of artificial intelligence (AI) has promised since the ’60s that machines
would be able to solve any task a human can. Despite significant advances, AI systems
were still far from solving many labour-intensive tasks. This has changed however in
the last decades. The deployment of computational systems in various fields has led
to an exponential explosion in the amount of data generated by different sources. The
combination of this massive amount of data and affordable computational power has led
to the development of smarter systems in many areas. For instance, visual recognition
(Lee et al. (2009)), spoken language understanding (Deng et al. (2012)), and self-driving
vehicles (Bojarski et al. (2016)) are just some of the most recent and exciting applications.

Machine learning (ML) is the field that studies the construction of intelligent systems
able to learn from data (Hastie et al. (2009)). For extracting useful patterns from data,
a mathematical model can be built. The process of building these models for predicting
or forecasting is known as predictive modelling. Dozens of learning algorithms exist to
approach this task and they are usually grouped into two main categories according to the
nature of the problem at hand: a) classification, when the value to predict is discrete (e.g.
to decide if a loan is granted or not, Huang et al. (2004)), or b) regression, if the value to
predict is continuous (e.g. predicting the monthly sales of jeans, Sun et al. (2008)).

Data mining (DM) is the process of analysing data for extracting and interpreting
knowledge (Han et al. (2011)). There is a large number of fields in which data mining
plays a crucial role in the business revenue. Examples are banking (e.g. fraud detec-
tion, Wei et al. (2013)), health (e.g. gene selection, Guyon et al. (2002)), energy (e.g.
consumption pattern identification, Tso & Yau (2007)) or supermarket chains (e.g. sales
prediction, Kuo (2001)) to name just a few. Nevertheless, many works in this field as-
sume that data is clean and ready to be learnt from, but in real problems that is very often
not the case (Pearson (2005)). For that reason, data preprocessing is an essential step in
data mining, since raw data may come with imperfections such as missing values or out-
liers that can reduce the performance of the predictive system or even make it impossible
to build a predictive model (Pyle (1999)).

1

2 CHAPTER 1. INTRODUCTION

A survey1 of DM practitioners carried out in 2003 indicates that preprocessing tasks
can account for as much as 60-80% of the total time spent on developing a predictive
model. More recent surveys from 2012 (Munson (2012)) and 20162 confirm these num-
bers and practitioners say that preprocessing is the least enjoyable part of data science.
The reason for this large amount of time is due to all the manual work necessary to iden-
tify the defects in the raw data and look for the best solutions to approach them. Despite
13 years between the surveys, no significant advances have been made to address this
issue. Therefore, it is desirable to automate as many of the tasks of data preprocessing
as possible in order to reduce the human involvement and the level of necessary interac-
tions. The consequence of this would be the speeding up of the data mining process and
making the procedures more robust.

1.1 Background and motivation

The research described in this thesis was initiated in the scope of INFER3, a European
project which aimed to develop a software platform for predictive modelling applica-
ble in different industries. The organisations involved in the project were Bournemouth
University as the research partner, Evonik Industries as the industrial partner and REC
(Research and Engineering Centre) as the software developer partner. As Evonik In-
dustries is a major chemical manufacturer, one of the main interests of the project was
to develop adaptive predictive systems for online prediction, monitoring and control of
chemical production processes.

Building a successful predictive system depends mainly on two aspects: 1) the amount
and quality of the available data, and 2) the choice of the learning algorithm and hyper-
parameters (i.e. the settings that influence the learnt model). Although raw data from
process industry can be abundant, it is also often imperfect and requires intensive clean-
ing and preprocessing to prepare a dataset for modelling. Preprocessing and predic-
tive models can be combined forming a workflow. This workflow receives raw input
data and returns prediction values. Composing a successful workflow requires to select
the best machine learning algorithms and to additionally optimise its hyperparameters.
These tasks require an intensive trial and error, becoming a tedious process for an ex-
pert. Therefore, techniques allowing to reduce this effort by automatically building a
predictive system are extremely desirable.

Maintainability of the predictive systems over time is also a crucial aspect in the pro-
cess industry. Once a predictive system is deployed in a production environment, one can
observe a gradual deterioration of its performance over time (Kadlec & Gabrys (2011)).
There are several causes of this phenomenon including degradation of physical sensors,
varied quality of raw materials, changes in the chemical reaction and even environmental
changes like summer temperatures (Kadlec et al. (2011)). Adaptive models are often used

1http://www.kdnuggets.com/polls/2003/data_preparation.htm
2‘Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says’ by Gil

Press. Forbes 2016. http://bit.ly/forbes-data-preparation
3http://infer.eu

http://www.kdnuggets.com/polls/2003/data_preparation.htm
http://bit.ly/forbes-data-preparation
http://infer.eu

1.2. PROCESS INDUSTRY: A CASE STUDY 3

to cope with changes in the data distribution and therefore to continue delivering accurate
predictions (Kadlec et al. (2011)). Nevertheless, some of the preprocessing steps belong-
ing to the same workflow might need to be adapted as well (Žliobaitė & Gabrys (2014)).
Fully adapting these predictive workflows has not been yet considered in practice or even
in the scientific literature.

The challenging tasks of automating the construction of predictive systems and adapt-
ing them to changes in data with a special focus on data preprocessing are therefore the
main subjects of the research pursued in this thesis. The work from other colleagues from
the same research group has focused on meta-learning (Lemke et al. (2015)), adaptive
systems (Bakirov et al. (2017)) and multi-objective optimisation (Al-Jubouri & Gabrys
(2014)), effectively tackling other parts of the broader problem of development adaptive
online prediction models (Kadlec & Gabrys (2009)).

1.2 Process industry: a case study

After the industrial revolution, modern societies depend heavily on process manufac-
turing. Food, beverages, clothes and drugs are some of the products that are made in
factories all over the world and delivered to final customers on a daily basis. One of the
largest industries worldwide is chemical manufacturing, with 2015 turnover of e3,534
billion4. The EU chemical industry is the second major seller after China, employing 1.2
million workers and contributing e551 billion to the EU economy. Being competitive in
such global market without lowering wages is a challenge that involves increasing pro-
cess efficiency using improvement methodologies like Six Sigma (Tennant (2001)) and
investing in R&D to innovate.

One of the major innovations in process industry in the last decades was the introduc-
tion of soft sensors (Kadlec et al. (2009)), which are predictive models built on top of
data recorded from sensors in the processing plants. There is a range of tasks that soft
sensors can be used for. The main ones are online prediction, process monitoring and
fault detection.

1.2.1 Chemical processes

A chemical process consists of obtaining one or more products through a reaction process
involving one or more compounds. The four basic chemical reactions are:
• Synthesis, where two or more compounds are combined to obtain a new one (e.g.
C +O2 → CO2).
• Decomposition, where a compound is split into two or more products (e.g. elec-

trolysis of water 2H2O → 2H2 +O2).

4cefic (European Chemical Industry Council). ”The European Chemical Industry. Facts and figures
2016.” http://www.cefic.org/Facts-and-Figures/

http://www.cefic.org/Facts-and-Figures/

4 CHAPTER 1. INTRODUCTION

• Single replacement, where an element displaces a less active element of a com-
pound (e.g. 2AgNO3 + Zn→ 2Ag + Zn(NO3)2).
• Double replacement, where two elements displace other two elements of com-

pounds (e.g. salt production HCl +NaOH → NaCl +H2O).
Manufacturing a product often requires running several reactions. Mass production is

performed in chemical plants where vessels are usually connected by pipes that carry the
materials. The chemical reaction takes place in a vessel called reactor, where the mix is
heated during a period of time. The output of the reactor is then moved to the distillation
column where the final products are separated (see Figure 1.1).

Depending on the nature of the process, chemical plants can run continuous or batch
production. The first ones can initially operate indefinitely assuming that materials are
continuously provided. Nevertheless, they need to be stopped for maintenance and often
adjusted to cope with changes in product demand. On the other hand, batch processes
run for a limited amount of time. They are started on demand and stopped when the

Figure 1.1: Diagram of a distillation column. The mix from the reactor is fed into the
column and then separated into two products. (Creative Commons by Marco Guzman.)

1.3. RAW DATA FROM CHEMICAL PROCESSES 5

desired amount of product has been achieved. The datasets used for experimentation in
this thesis contain measures from sensors located in continuous processing plants (see
Appendix A for descriptions).

1.3 Raw data from chemical processes

Sensors located in different points of the production plants collect physical measures such
as temperatures, flows and pressures. These values are stored in large databases called
Process Information Management Systems (PIMS). Raw values in PIMS can be either
continuous or discrete, and are usually timestamped.

1.3.1 Data availability

The main goal of predictive models is to estimate a target value (i.e. a discrete label in
case of classification, or a continuous value for regression). For that, a model is built
based on a set of historical data which can often be gathered from PIMS. Despite usual
abundance of sensor measurements, ground truth values may not be always available with
the same frequency.

Once a soft sensor is deployed, it needs to predict values from real-time data. This
input data arrives in a sequential way, but the correct target values are usually delayed.
For example, some measurements could be available every two hours because they are
manually entered once a sample has been analysed in the laboratory. Once the true values
are known, it is possible to evaluate the model performance to assess if any update is
needed.

1.3.2 Common issues

Raw data from sensors usually contain anomalies that can affect model building and pre-
dictions. Common issues found due to faulty sensors are missing values, noise and out-
liers to name just a few. In addition, data from process industry is often high dimensional
and redundant/highly correlated due to the large number of sensors and their physical
arrangement along the production pipeline. For the same reason, the recorded measure-
ments present delays or even different sampling rates between them which would need to
be taken into account in the predictive model building process. Also, depending on the
sampling rate, one can end up with a high volume of data that can slow down the mining
process. To reduce the space requirements, data is often stored using lossy compres-
sion which once decompressed can carry artifacts that should be taken into consideration
when building and evaluating a predictive model. All these issues are discussed further
in this section.

6 CHAPTER 1. INTRODUCTION

Missing values

Data can contain variables whose values are missing. There are many reasons why the
data may be missing (Pani & Mohanta (2011); Han et al. (2011)). For example, in pro-
cess industry common causes include sensor failures, transmissions errors and human
mistakes. There are robust models that handle incomplete data, but others can have prob-
lems dealing with them and can negatively affect the quality of the learnt model.

Let D be a data matrix with n instances and p variables, and R a n× p binary matrix
that indicates the presence or absence of each value in D. That is, rij = 1 if value
dij ∈ D is missing and rij = 0 otherwise. Let’s denote Do as the observed values and
Dm as the missing values. According to Rubin (1976), missing data can be divided into
three categories:
• Missing completely at random, if the probability that a particular attribute is miss-

ing is not related to the missing value or to the values of other features. That is,
Pr(R|Do, Dm) = Pr(R). For example, this is the case when a physical sensor fails
(at random) to deliver a value;
• Missing at random, if the probability that a particular attribute is missing is not

related to its own value but is related to the values of other attributes. That is,
Pr(R|Do, Dm) = Pr(R|Do). For example, when a temperature sensor is damaged
by high pressure in a vessel;
• Missing not at random, if the probability that some attribute is missing is a de-

terministic function of this attribute value. In this case separate models need to
be built for both missing and the observed data. For instance, when values from a
sensor are always missing when the temperature is too high.

Noise

Noise is a random error or variance in a measured variable (Han et al. (2011)). Sensor
readings could be noisy due to the precision of sensing mechanisms and interferences.
According to Nettleton et al. (2010), noise can be characterised by:
• Distribution: How noise is distributed in the data (e.g. Gaussian distribution);
• Location: Noise can be located in the input attributes, in the output class, in the

training data, in the test data, or in a combination of all of the above;
• Magnitude: Noise values can be relative to each data value of each variable, or

relative to the minimum, maximum and standard deviation for each variable.
Predictive accuracy can decrease if noise in measurements is too large. Reviews of

how noise affects different machine learning algorithms can be found in the works of
Kalapanidas et al. (2003) and Nettleton et al. (2010). Data visualisation tools, such as
boxplots, are helpful for identifying noise in data.

1.3. RAW DATA FROM CHEMICAL PROCESSES 7

Data outliers

Sometimes, some values lie far away from the typical data distribution. These values are
called outliers and may happen in one or more attributes at the same time (i.e. multivariate
outliers). Similarly to missing values, typical causes of outliers in process industry are
hardware failures, process disturbances, instrument degradation, transmission problems
or human errors (Pani & Mohanta (2011); Kadlec et al. (2009)). According to Qin (1997),
outliers can be categorised into two basic types:
• Obvious outliers, whose values violate physical or technological limitations. For

example, a temperature value cannot be below absolute zero;
• Non-obvious outliers, which have unusual values and do not reflect the correct

variable state. For instance, an abrupt change in temperature measurement might be
difficult to detect as an outlier. Even if the value lies between the acceptable limits,
it is known that thermal change is a gradual process. See for example Figure 1.2,
where temperature values at t1 and t2 are the same, but only t2 is an anomaly. This
type of outliers are known as contextual anomalies.

Time

T
e
m

p
e
ra

tu
re

t
2

t
1

Figure 1.2: Contextual anomaly t2 in a temperature time series. Both temperatures at t1
and t2 are the same, but t2 is out of context.

A model built with data that contain outliers may be less accurate than other models
learnt with cleaned data. Though there are some types of models that are robust against
outliers, it is often necessary to clean the data for achieving good results. Chandola
et al. (2009) present an extensive survey of outlier detection techniques and applications.
Another discipline related to outlier detection is novelty detection which tries to identify
new or unknown data that a machine learning system is not aware of during training (see
Markou & Singh (2003a,b) for a review of this topic).

Shutdown periods

Adaptive soft sensors are often updated with new data for capturing well the underlying
behaviour of processes that evolve over time (Kadlec et al. (2011)). However, continuous
processing plants need to be stopped from time to time for maintenance purposes. If
the data from these shutdown periods is not removed, the predictive model can adapt
to an undesirable process state in which the predicted values are not being meaningful
from the process point of view. Accurately cleaning this data in an online manner is not

8 CHAPTER 1. INTRODUCTION

straightforward. Appendix B presents a method for dealing with this problem in a real
case study.

Redundancy and inconsistency

A dataset can present redundancy at two levels:
• Attribute redundancy: An attribute is considered redundant if it can be easily

derived from another attribute or set of attributes (Han et al. (2011)). This type of
redundancy can be caused by duplicity of sources (e.g. physical sensors measuring
the same quantity). The presence of irrelevant and redundant attributes can be
misleading for models using all the attributes for predictions such as Naı̈ve Bayes
(Gama (2000));
• Instance redundancy: Sometimes data can have several instances with the same

values (i.e. duplicity), or even worse, with different values for the same measure-
ment (i.e. inconsistency). For example, to avoid the loss of information due to
transmission errors, the system can send the data again and occasionally, the infor-
mation can be duplicated in the database. This duplicity introduces uncertainty into
the database which can lead to misleading reports (e.g. when data is aggregated),
bias decision-making and ineffective model learning (i.e. due that duplicated data
will have more importance than the rest), among others. Sometimes data incon-
sistency is a symptom of a poor database design, but it also can be caused by the
integration of different data sources (Pyle (1999)).

High dimensionality

The dimensionality of a dataset is equal to the number of attributes it contains. Large
chemical plants have hundreds of physical sensors that are used to monitor the production
process, each of them being a potential input to a soft sensor and hence an attribute.
Having high dimensionality presents three main problems (Pyle (1999)):
• Computational complexity: The more variables a dataset has, the more expensive

it is to process all of them;
• Increment of state space: As dimensionality increases, more data points are

needed to fill the space to any particular density. This phenomenon is known as
the ‘curse of dimensionality’ (Bellman (1957));
• Combinatorial explosion: With the number of possible combinations of values

increasing, the creation of a fully representative model becomes impossible.
Furthermore, if the dataset has a large number of attributes it is very possible to find

redundant attributes as explained previously. When two or more attributes are highly
correlated, it is said that there is multicolinearity. For example, the redundancy of sen-
sors in industrial processes results in strongly correlated measurements. This fact might
increase model complexity and even negatively affect its performance (Kadlec (2009);
Pani & Mohanta (2011)). For this reason, feature selection and data transformation tech-
niques are used for choosing a subset of non-colinear variables as described further in

1.3. RAW DATA FROM CHEMICAL PROCESSES 9

Section 2.4.1.
Other less known issue due to high dimensionality is distance concentration (Ag-

garwal et al. (2001)). When dimensionality increases, all the pairwise distances between
attributes may converge to the same value as shown in Figure 1.3-b (Hinneburg et al.
(2000)). The lack of contrast between the nearest and the furthest points affects each
area where high-dimensional data processing is required. Aggarwal et al. (2001) show
that the Lk norm worsens faster with increasing dimensionality for higher values of k
(see Figure 1.3), and recommend to use a fractional distance metric (e.g. k = 0.5) in
high dimensional problems instead of commonly used Euclidean (k = 2) or Manhattan
(k = 1) distances. Kabán (2011) presents some dimensionality reduction techniques that
are aware of this issue.

∞a) b)

c) d)

Figure 1.3: Mean pairwise distance between random vectors drawn from a normal dis-
tribution for various Lk measures (shaded region denotes the 95% confidence interval).
The Lk norm worsens faster with increasing dimensionality for higher values of k. Thus,
it is recommended to use a fractional distance metric (e.g. k = 0.5) in high dimensional
problems.

High volumes of data

Datasets with a large number of instances can slow down the mining process or even
make it impracticable due to memory limitations. In the last few years, the Big Data

10 CHAPTER 1. INTRODUCTION

term has gained popularity5. This term describes not only large datasets, but it also refers
to data complexity and integration from different sources. Douglas (2001) defines the big
data as a three-dimensional concept: increase of volume (i.e. amount of data), velocity
(i.e. speed of data in and out) and variety (i.e. range of data types and sources). More
recent definitions of Big Data6 include additional V’s: veracity (i.e. accuracy of data),
visualisation, variability (i.e. data is constantly changing) and value.

Compressed data

Product information management systems (PIMS), where historical data is stored, typi-
cally use lossy compression. This means that true data points are recorded periodically
while the ones in between are interpolated when decompressing the data. In addition,
some true values are also stored if they can no longer be approximated to a given toler-
ance by a line drawn between the last stored point and the current point (Schwan (2011)).

When such decompressed data is used for prediction, the target variable carries com-
pression artifacts that can be more or less serious depending on the tolerance used (see
Figure 1.4). Therefore, interpreting predictive performance on such data must be carried
out carefully considering that results on decompressed data can be quite different from
the ones in raw true data.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Raw data

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Decompressed data

Figure 1.4: Raw data (top) and decompressed data (bottom) belonging to the same time
series. When decompressed data is used for prediction, the target variable carries com-
pression artifacts that can be more or less serious depending on the tolerance used.

Sampling rates

The sampling rate defines how often data is collected from the original source (e.g. every
second). Ideally, this rate should be the same for each variable of the process, but in

5Scopus results for query “big data” (from only 31 documents in 2010 to 10341 in 2016): http:
//bit.ly/NnUoam

6McNulty E. Understanding Big Data: The seven V’s http://dataconomy.com/2014/05/
seven-vs-big-data/

http://bit.ly/NnUoam
http://bit.ly/NnUoam
http://dataconomy.com/2014/05/seven-vs-big-data/
http://dataconomy.com/2014/05/seven-vs-big-data/

1.4. SOFT SENSORS 11

reality each variable can have a different sampling rate (i.e. multi-rate systems). Even a
sampling rate of a single variable can vary over time. Such scenario occurs in a system
where some of the variables, usually critical for the process control, are evaluated in
laboratories at much lower sampling rate than the rest of the automatically measured
data. To work with useful data for process modelling, an expert usually defines how
often samples should be taken (Kadlec et al. (2009)).

Measurement delays

In industrial processes data often comes from multiple sources, which may be separated
physically (e.g. a long flow pipe) or virtually (e.g. data is stored in different ways), and
need to be synchronised. Synchronisation of virtual sources requires consolidating the
data into a single database or stream, and is relatively straightforward. Synchronising
data from different physical locations is usually more challenging, and can be estimated
based on the physical properties of the process (e.g. speed of flow), or approached as a
computational feature selection problem, where for each sensor different time lags are
tried as candidate features.

When an action is taken over the input of a process, it can take several minutes or
even hours for its effect to reach the end of the process. These delays are sometimes
difficult to measure and can vary with process load. Expert knowledge is recommended
to check the correctness of the delays. A good synchronisation of data will determine the
performance of the model learnt (Kadlec et al. (2009)).

Drifting data

Conventional machine learning algorithms often assume that all the samples in a dataset
come from the same source and follow the same distribution. However, data from on-
line processes can vary their distribution over time. The change of state of a process is
referred to as concept drift (i.e. change of the relationship between input variables and
target – Widmer & Kubat (1996)). The state of a chemical process can change due to
external conditions (e.g. degradation of sensors) or internal conditions (e.g. change of
the temperature due to reactions of a chemical process). These changes have a direct
effect on the data distribution although this could be gradual (i.e. slow) or sudden (i.e.
quick). In the last years, there has been an increasing interest in the literature to deal with
this problem (see Gama et al. (2014) for a survey).

1.4 Soft sensors

Processing plants have a large number of sensors that measure physical properties in
different parts of the process. Values such as temperatures, pressures or humidity are easy
to capture. However, acquiring other measurements is more expensive and often require
human interaction. For instance, measuring the product concentration may require taking
a sample and analysing it in the laboratory.

12 CHAPTER 1. INTRODUCTION

In order to improve production efficiency, a predictive model could deliver estimates
of such hard-to-measure values based on the process state given by the easy-to-measure
values from the sensors. This type of predictive models are called soft sensors because
they can be seen as software or virtual sensors instead of physical.

There are two main trends for building a soft sensor. The classical one in which a
first principle model (FPM) is built following the chemical and physical principles of
the process (e.g. exothermic equations). The main disadvantage of this method is the
requirement of a lot of expert knowledge. In addition, sometimes it is not even possible
to model the whole chemical process. Another drawback of FPMs is that they usually
focus only on the steady-state of the process and do not model the transient states. In
contrast, data-driven models can be built by using historical records only, thus requiring
little domain knowledge. This thesis considers only this later type of soft sensors as they
have more potential to reduce human interaction during their composition and adaptation.

Although the most common application of soft sensors is online prediction, others
include process monitoring, fault detection and sensor backup. In any of them, the main
requirements of soft sensors in process industry are:
• reliability – to provide truthful results;
• robustness – to work under any circumstances or inconvenience; and
• transparency – to be comprehensible by human experts.

1.4.1 Building soft sensors

The framework developed as part of this research, and presented in Budka et al. (2014),
describes the soft sensor development process in four steps:

1. setting up the performance goals and evaluation criteria;
2. exploratory data analysis;
3. data preparation and preprocessing:

(a) data acquisition (deciding which data to collect and from which sources);
(b) data preprocessing (de-noising, handling outliers and missing values);
(c) data reduction (extracting relevant representation);

4. training and validating the predictive model.
This thesis focuses mainly on the automation and adaptation of steps 3 and 4, which

are further described below.

Data preparation and preprocessing

In industrial processes real-time data processing is typically required. For autonomous
operation, preprocessing needs to be performed online, and design decisions need to be
verifiable. Therefore, the procedure and order of preprocessing actions need to be well
defined. The seven-step data preprocessing process proposed in Budka et al. (2014) is as
follows (see Figure 1.5):

1.4. SOFT SENSORS 13

Databases

data

Design
Decisions

reduced data

the same data

Filtering
Outlier

Detection

Outlier and
Missing Values

Handling

TransformationData Reduction

Model-Specific
Preprocessingreduced data

Learn or

update

a model

boolean matrix

reduced/modified
data

increased/modified
data

la
b

el
s

instances

1 2 3

456

7

Figure 1.5: The proposed order of data preprocessing steps.

1. Design decisions: The first step defines the data design decisions, such as how data
is queried from databases, how data sources are synchronised, at what sampling
rate data arrives, whether any filtering (de-noising) is used. This step produces
raw data in a matrix form, where each row corresponds to an observation of sensor
readings at one point in time. Typically, the design choices remain fixed.

2. Filtering: The second step filters out irrelevant data. For example, data during
plant shutdown times and non-steady operation states can be discarded as presented
for instance in Appendix B. Rules for detecting such periods can be defined by
experts during the design step, or statistical change detection techniques could be
used to identify them automatically.

3. Outlier detection: The third step detects outliers in three stages. Firstly, record-
ings are checked against physical constraints (i.e. obvious outliers). Secondly,
univariate statistical tests can detect outliers in individual sensors. Thirdly, mul-
tivariate statistical tests on all variables together (see e.g. Chandola et al. (2009))
can detect outliers at an observation level.

4. Outlier and missing values handling: In the fourth step the identified outliers
and missing values are handled. In industrial applications predictions are needed
continuously, therefore removing observations with missing values is typically not
an option. Standard missing value imputation techniques can be used, ranging from
simple methods like replacing by the last observed value or the mean value, to
various model based imputation methods (see e.g. J. A. Little & B. Rubin (2002)).
The result is a modified data matrix, usually of the same size as the original or,
in some other cases, with additional attributes to denote if values were imputed
(Budka et al. (2010)).

5. Transformation: The fifth step performs data transformations, which can modify
the existing features (e.g. discretisation), derive new features (e.g. an indicator
if the production is running), scale the data or rotate the data for de-correlation

14 CHAPTER 1. INTRODUCTION

purposes. The result of this step is a data matrix that can have more or the same
number of features than before and the same number of observations.

6. Data reduction: The sixth step reduces data by feature selection (or extraction)
and observation selection (subsampling). As a result the data matrix will decrease
in size.

7. Model specific preprocessing: The seventh step performs model specific prepro-
cessing, such as further removing of outliers or undesired observations. This com-
pletes data preprocessing and the next step is model training.

While the design decisions (step 1) must be made, other steps (2-7) are optional. It
is up to a data scientist to decide which particular techniques to use while taking into
account possible model limitations. Though the proposed order of steps is based on
previous experiences (Sharmin et al. (2006); Lin et al. (2007); Kadlec et al. (2009)),
other authors follow a slightly different order (e.g. Pani & Mohanta (2011) do feature
selection at an earlier stage). Nonetheless, it is recommended to keep the order within
the same experimental study since it enables reproducibility (Peng (2011)), allows easier
documentation, and easier automation when it comes to implementation.

Training and validating the predictive model

Once the data has been preprocessed, the next step is to build a predictive model. To
this end, machine learning algorithms are fed with a training set. The resulting model is
validated using a test set. This validation is done to assess the generalisation error of the
model. That is, its ability to predict the target value of unseen instances. The next chapter
is dedicated to predictive modelling where this aspect will be discussed at a greater detail.

A common practice to evaluate models is holdout testing, where a dataset is split
into two parts: training and testing. The model is built using the training set and then
evaluated over the testing set. However, in some cases the lack of sufficient amount of
historical data can lead to a bad estimation of the generalisation error. For that reason,
a good practice is to use k-fold cross-validation (see Figure 1.6), where a dataset is split
randomly into k folds of approximately the same size. Then k − 1 folds are used to
train a model and the remaining one to test it. This process is repeated k times and then
results are aggregated. This technique gives also an indication of model robustness by
looking at the standard deviation and range of the k results. This technique is useful to
avoid the overfitting problem, where model is very well fitted to the training data, but
generalises poorly to new, unseen data (see Figure 1.7). Usually, the dataset is shuffled,
so instances are randomly distributed across the folds. However, randomising process
industry datasets where instances are timestamped is not recommended since the trends
over time would be removed (Gama et al. (2012)).

1.4. SOFT SENSORS 15

Training folds Test foldIteration

#1

#2

#3

Performance
per fold

e1

e2

e3

e = ei/3

Average
performance

Figure 1.6: 3-fold cross validation. A dataset is split randomly into k folds of approxi-
mately the same size. Then k − 1 folds are used to train a model and the remaining one
to test it. This process is repeated k times and then results are aggregated.

OverfittingIdeal fittingUnderfitting

Figure 1.7: Illustration of three cases of model fitting in a regression problem: Underfit-
ting (left) when model does not capture well data relationship; Overfitting (right) when
model is very well fitted to the training data, but generalises poorly to new, unseen data;
and ideal fitting (middle) when there is a good balance between fitting and generalisation.

1.4.2 Maintaining soft sensors

Chemical production plants are rarely stable from the point of view of the process. In-
ternal factors such as chemical reactions affect for example the temperature in a vessel
and therefore data representing the process state will drift as explained previously in
Section 1.3.2. Potential problems resulting from these factors can be mitigated by plant
operators (e.g. cooling down the vessel). On the other hand, external factors such as
weather conditions or quality of the raw materials can also produce a drift in the pro-
cess state that could be more difficult to detect and to act upon (e.g. recalibration of the
sensors might be needed).

The drifts are likely to affect the deployed soft sensors since they heavily rely on
the input data and known concepts acquired from historical data during training. Thus,
adaptation of soft sensors is a key aspect for them to be successful. There is a number of
adaptive soft sensors using different techniques (see Kadlec et al. (2011) for a review),
but there is no one that fits all purposes. Main techniques include relearning a new
model, parametric adaptation of existing model, and adaptive ensembles, among others.
This thesis investigates not only adaptation mechanisms for predictive models, but also

16 CHAPTER 1. INTRODUCTION

for the whole predictive workflow including preprocessing and postprocessing methods.
Chapter 5 and Appendix C are dedicated to this problem.

1.5 Thesis goals

This thesis will focus on data preprocessing for predictive modelling. The aim is to study
the feasibility of automating the composition and optimisation of workflows to make
accurate predictions on unseen data. Though there have been approaches for automatic
algorithm selection and hyperparameter optimisation of predictive models (e.g. Bengio
(2000); Hutter et al. (2011); Bergstra & Bengio (2012); Thornton et al. (2013)), this thesis
is the first one in addressing such problem in complex predictive workflows.

In addition, due to the evolving nature of many data streams, another goal is to plan
a maintainability strategy of predictive systems in production environments. There are
works in the literature presenting adaptive models (e.g. Joe Qin (1998); Kadlec & Gabrys
(2009); Kadlec et al. (2011); Stahl et al. (2012)), however, there is a lack of research when
tackling the problem of adapting complete workflows (Žliobaitė et al. (2012); Krempl
et al. (2014)).

To achieve these goals three major objectives need to be addressed:
1. Propose, design and evaluate a framework for connecting multiple components

to compose valid predictive workflows including preprocessing methods, machine
learning models, and postprocessing operations;

2. Develop and evaluate a smart data-driven mechanism to automate the creation of
such workflows with minimum human intervention;

3. Develop and evaluate an approach of adapting predictive workflows in changing
environments.

The thesis is organised around the objectives, which are evaluated with several bench-
mark datasets. In order to validate the feasibility of the developed approaches in real
problems of process industry, a number of datasets were provided by the industrial part-
ner (Evonik Industries) from real chemical processes.

1.6 Original contributions and list of publications

The original contributions of this work are:
1. Framework for data preprocessing to develop soft sensors in process industry

(Chapter 1).
2. Novel formalism of predictive workflows as Multicomponent Predictive Systems

(MCPSs) using Petri nets (Chapter 3). This links with objective 1.
3. New extension of Auto-WEKA software to automate the composition and optimi-

sation of MCPSs (Chapter 4). This fulfils objective 2.
4. Experimental comparative study of search strategies for finding the best MCPSs in

1.6. ORIGINAL CONTRIBUTIONS AND LIST OF PUBLICATIONS 17

different search spaces (Chapter 4).
5. Novel hybrid strategy for adapting MCPSs to cope with concept drift (Chapter 5).

This satisfies objective 3.
6. Extension of MCPS definition to deal with change propagation when individual

components are adapted (Appendix C).
7. Novel method for online identification of shutdown periods of chemical plants (Ap-

pendix B).
The following peer-reviewed conference and journal publications are a result of this

work:
1. M. Martin Salvador, M. Budka, B. Gabrys. ‘Automatic composition and optimisa-

tion of multicomponent predictive systems’. Submitted to IEEE Transactions on
Automation Science and Engineering (under review).

2. M. Martin Salvador, M. Budka, B. Gabrys. ‘Modelling Multi-Component Pre-
dictive Systems as Petri Nets’. Accepted in 15th Annual Industrial Simulation
Conference (ISC 2017).

3. M. Martin Salvador, M. Budka, B. Gabrys. ‘Effects of change propagation result-
ing from adaptive preprocessing in multicomponent predictive systems’. In 20th
International Conference on Knowledge Based and Intelligent Information and En-
gineering Systems (KES 2016). Procedia Computer Science. Elsevier.

4. M. Martin Salvador, M. Budka, B. Gabrys. ‘Adapting MultiComponent Predictive
Systems of Chemical Production Processes with Bayesian Optimisation’. In Au-
toML 2016 at 33rd International Conference on Machine Learning (ICML 2016).
Journal of Machine Learning Research.

5. M. Martin Salvador, M. Budka, B. Gabrys. ‘Towards Automatic Composition of
Multicomponent Predictive Systems’. In 11th International Conference on Hy-
brid Artificial Intelligence Systems (HAIS 2016). Lecture Notes in Artificial Intel-
ligence. Springer.

6. M. Budka, M. Eastwood, B. Gabrys, P. Kadlec, M. Martin Salvador, S. Schwan, A.
Tsakonas, I. Žliobaitė. ‘From Sensor Readings to Predictions: On the Process of
Developing Practical Soft Sensors’. In Advances in Intelligent Data Analysis XIII
(IDA 2014). Lecture Notes in Computer Science. Springer.

7. M. Martin Salvador, B. Gabrys, I. Žliobaitė. ‘Online Detection of Shutdown
Periods in Chemical Plants: A Case Study’. In 18th International Conference
in Knowledge Based and Intelligent Information and Engineering Systems (KES
2014). Procedia Computer Science. Elsevier.

8. F. Stahl, M. Medhat Gaber, M. Martin Salvador. ‘eRules: A Modular Adaptive
Classification Rule Learning Algorithm for Data Streams’. In 32nd SGAI Interna-
tional Conference in Innovative Techniques and Applications of Artificial Intelli-
gence (AI 2012). Research and Development in Intelligent Systems XXIX. Springer.

18 CHAPTER 1. INTRODUCTION

1.7 Organisation of the thesis

The structure of the thesis is presented in Figure 1.8. This introduction has presented
the most common issues found in the development of predictive models in the process
industry. This particular field is a source of a set of case studies for this thesis, although
this research is also useful in many other application areas of machine learning.

Chapter 2 introduces the fundamentals of building predictive systems both from a the-
oretical and practical perspective. Popular machine learning approaches for classification
and regression problems, as well as preprocessing methods for cleaning and transforming
data, are reviewed.

Chapter 3 starts by describing Petri nets, that serve as the basis to formalise multicom-
ponent predictive systems (MCPSs) as a novel extension of Petri nets. The problem of
composing and optimising MCPSs is also considered for the first time in this chapter. An
instance of this problem is presented in Appendix B, which includes a study of the man-
ual process needed to build an MCPS for a regression problem requiring online filtering
of shutdown periods from a chemical production plant.

In order to speed up these labour-intensive processes, Chapter 4 includes a critical lit-
erature review of the state-of-the-art approaches in composing and optimising predictive
models. The extension of Auto-WEKA – a tool for finding the best predictive model for
a given dataset – to support MCPSs is also presented in this chapter. Experiments on
a number of publicly available datasets demonstrate that it is possible to automate the
composition of MCPSs using data-driven techniques without human intervention.

Chapter 5 shows the experiments of applying these techniques to process industry
datasets (described in Appendix A) as well as considering the maintenance of the gener-
ated MCPSs. To this end, several adaptation strategies have been evaluated demonstrating
the feasibility of this research for a real production environment. Nonetheless, if instead
of adapting a complete MCPS one would like to update only one component there are a
number of things that should be considered. A preliminary discussion on such interesting
topic is presented in Appendix C.

Finally, Chapter 6 concludes this thesis by discussing the most significant findings and
possible directions for further research.

1.7. ORGANISATION OF THE THESIS 19

Figure 1.8: Structure of the thesis and chapter dependencies

20 CHAPTER 1. INTRODUCTION

Chapter 2

Principles of predictive modelling

2.1 Introduction

From clairvoyants that claimed to guess a person’s love life to ancient Egyptians predict-
ing Nile river floodings, humans have craved the ability to predict the future. However,
while some constantly failed on their predictions based on a crystal ball, others were
able to give quite accurate dates which helped to increase crop production based on past
experiences and positions of the stars (Bell (1970)).

With the development of computer science and artificial intelligence, we are now able
to make quite reliable predictions in a large number of fields (Witten & Frank (2005)). In
machine learning, three main elements are involved in developing such predictive ability:
a) a set of historical data, b) a learning algorithm to create a predictive model, and c) the
assumption that future data is similar to data that has been already observed.

The procedure of building predictive systems is known as predictive modelling, and
is part of a larger overarching process called data mining. Fayyad & Piatetsky-Shapiro
(1996) introduced the knowledge discovery in databases (KDD) process which became
the seminal work on structuring the data mining process. There have been many efforts
in the data mining community to standardise this process (Marban et al. (2009)). The
de-facto standard is the Cross Industry Standard Process for Data Mining (CRISP-DM
– Shearer (2000)) which is an iterative process consisting of six steps (see Figure 2.4):
business understanding; data understanding; data preparation; modelling; evaluation; and
deployment. The outer circle of Figure 2.4 symbolises the cyclical nature of data min-
ing itself. This chapter introduces the theory behind predictive systems in Section 2.2,
followed by a description of CRISP-DM steps in Section 2.3, with an emphasis on data
preparation (Section 2.4) and modelling (Section 2.5) as they are the main topics ad-
dressed in this thesis.

21

22 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

2.2 Predictive systems

Let f : X → Y be an unknown process that maps data from a d-dimensional input space
X into a c-dimensional output space Y such as

y = f(x) + ε (2.1)

where y ∈ Y is the output or target value, x ∈ X is the input vector, and ε is the noise
term which is often assumed to follow a normal distribution.

It is often the case that x is available but y is not. For example, x could be the results
of a blood test (easy to acquire) and y could be the likelihood of having a particular
disease (difficult to know). Therefore it would be very desirable to be able to predict y
on the basis of x. To this end, a predictive model f̂ is built to approximate the unknown
process f based on past observations. The estimated output for an input x is then given
by

ŷ = f̂(x) (2.2)

The data-driven process of building a predictive model is known as learning. This
thesis considers the case of supervised learning, where a dataset made of instances (x, y)
is available. The predictive model

f̂ = Aλ(Dtrain) (2.3)

is built using a learning algorithm A with a set of hyperparameters λ = {λ1, ..., λm} and
a training dataset

Dtrain = (Xtrain,ytrain) = {(x1, y1), ..., (xn, yn)} (2.4)

There exist a wide variety of learning algorithms (see e.g. Witten & Frank (2005)
for a taxonomy) and most of them have user-tunable hyperparameters that modify their
learning behaviour (e.g. number of hidden layers, number of neurons or learning rate of
a neural network).

Depending on the type of the target variable one can find two types of predictive
problems:
• Classification (when y is discrete): A classification problem is concerned with la-

belling of an entity based on its characteristics. For instance, a mushroom can be
classified as poisonous or edible depending on its colour, shape and odour (Schlim-
mer (1987)). Given a dataset with instances made of mushroom properties and
edibility, one can build a model (i.e. a classifier) that divides the input space into
different regions for explaining the relationship between them. Therefore, the clas-
sifier would be able to predict the edibility of a new unknown mushroom solely on
the basis of its characteristics. See Figure 2.1 where a decision tree has been built
using the ID3 algorithm (Quinlan (1986)) on the mushroom dataset from UCI ML

2.2. PREDICTIVE SYSTEMS 23

repository 1.

Odour

almond

creosote

fo
ul

an
is
e

m
us

ty

none

pungent

spicy
fishy

buff
chocolate

blac
k

br
ow

n
or

an
ge

g
re

en w
hite

yellow
b
ro

ad

n
arro

w

Grill size Population

Stalk root

cl
us

te
re

d

solitary

sev
eral

miss
ing clubbulbous

Spore print colour

Figure 2.1: Decision tree of mushroom dataset (e = edible, p = poisonous) generated
using ID3 algorithm in RapidMiner. According to the tree, the first feature to inspect in
a mushroom should be the odour. For instance, all the mushrooms in this dataset with
foul smell are poisonous. If it has no odour, the next feature to look at is the spore print
colour. If it is green, the mushroom is more likely to be poisonous as well. Exploring the
decision tree in that way, one would be able to classify any mushroom accordingly.

• Regression (when y is continuous): The goal of a regression task is to fit a func-
tion between the input x and the continuous target y ∈ R. For example, a tree
age can be estimated based on growth rings by fitting a regression model (Fraver
et al. (2011)). The most basic method is a linear regression which assumes a linear
relationship between the input features and the target value. See for instance Fig-
ure 2.2 which shows a linear model y = 1.18x− 226.84 fitted by the least squares
method using a dataset2 of tree girth measurements and age estimations of ancient
oaks.

1https://archive.ics.uci.edu/ml/datasets/Mushroom
2http://wbrc.org.uk/atp/EstimatingAgeofOaks-WoodlandTrust.pdf

https://archive.ics.uci.edu/ml/datasets/Mushroom
http://wbrc.org.uk/atp/Estimating Age of Oaks - Woodland Trust.pdf

24 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

0 200 400 600 800 1000
Girth of tree (centimeters)

0

200

400

600

800

1000

A
ge

 (y
ea

rs
)

Fitted model
Data

Figure 2.2: Linear model y = 1.18x − 226.84 fitted on a 1-dimensional example using
least squares method on a dataset of tree girth measurements and age estimations of
ancient oaks.

At a high level of abstraction, both classification and regression problems share the
purpose of predicting a value, however they are conceptually very different problems.
The regression problem is about finding the optimal relationship between the input and
the output, while in a classification problem the aim is to separate the data into classes
(see Figure 2.3).

Figure 2.3: Toy examples of classification (left) and regression (right) problems

In order to assess the model performance, a loss function representing the cost of

2.2. PREDICTIVE SYSTEMS 25

wrong or inaccurate predictions is required. This function L(ŷ,y) calculates the loss
of the predictions ŷ given the correct target values y. In the classification problems, a
common loss function is the classification error given by

LCE(ŷ,y) = 1− 1

n

n∑
i=1

I{ŷi = yi} ∈ [0, 1] (2.5)

where I is the indicator function which returns 1 if the condition is true or 0 otherwise.
For regression problems it is common to calculate the mean absolute error (MAE) given
by

LMAE(ŷ,y) =
1

n

n∑
i=1

|ŷi − yi| (2.6)

or the mean squared error (MSE) given by

LMSE(ŷ,y) =
1

n

n∑
i=1

(ŷi − yi)2 (2.7)

which penalises large deviations of the predicted values. To facilitate the interpretation
of MSE, it is usual to take the root square such that

LRMSE(ŷ,y) =
√
LMSE(ŷ,y) (2.8)

since it has the same units as the target variable.
The goodness of fit, also known as training accuracy, measures how well the model has

captured the relation between the input and output of the training instances. Therefore,
from the predictiveness point of view, the best model would be the one that minimises
the loss function for a given dataset

fmin = arg min
f
L(f̂(X),y) (2.9)

However, a model having a very good training accuracy may face the problem of over-
fitting (see Figure 1.7). That is, the model’s parameters are very well adjusted to the
training data but generalise poorly to new data.

Since it is not possible to calculate the performance on future data, the generalisation
error has to be estimated from the available training data. There are several ways to
estimate this error, with the following being the most common:
• Hold-out estimation, where the training dataset is split into a training and a vali-

dation part. The model f̂ is built using the new training set and then tested on the
validation set, which gives an estimation of its generalisation error.

err = L(f̂(Xtest),ytest) (2.10)

• k-fold cross-validation, where the hold-out method is repeated k times using k−1

26 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

equally split folds for training and the remaining fold for testing (see Figure 1.6).
The generalisation error is then estimated by aggregating the predictions of the
resulting k models as

err =
1

k

k∑
i=1

L(f̂(X
(i)
test),y

(i)
test) (2.11)

• Bootstrapping, where the hold-out method is repeated k times, but the training
and validation sets are created in a different way. A new training set is populated
with instances randomly sampled with replacement from the original training set.
The validation set is formed of the remaining instances that have not been sampled.
One of the most popular estimators is .632 bootstrap (Efron & Gong (1983)) given
by

err =
1

k

k∑
i=1

0.632 · L(f̂(X
(i)
test),y

(i)
test) + 0.368 · L(f̂(X

(i)
train),y

(i)
train) (2.12)

Depending on the availability of the target value in the training set, the learning algo-
rithms can be classified as: a) supervised, when all the instances include the target value;
b) unsupervised, when no target value is available; and c) semi-supervised, when only
some instances have associated target values. Although only supervised learning algo-
rithms are considered in this thesis, this research could naturally be extended to the other
paradigms.

2.3 Designing a predictive system

This section describes the six steps of CRISP-DM process (Shearer (2000)) aiming to
build a data-driven predictive system which can be used in a production environment to
deliver online predictions. See Figure 2.4 where flow and dependencies between steps
are illustrated.

2.3.1 Business understanding

The first phase of the CRISP-DM process consists of 4 steps: 1) Identify the business
objectives (e.g. keep customers that are likely to churn); 2) Assess the situation, that
is, what are the resources, constrains and other factors that should be considered for
creating a working plan; 3) Determine the data mining goals (i.e. project objectives from
the technical point of view, like predicting customer’s churn rate with 80% accuracy);
and 4) Produce the project plan with tasks that will guide the rest of the process. The
plan should also include the tools and techniques to support each stage of the process.
The plan could be reviewed and updated in the future if needed.

2.3. DESIGNING A PREDICTIVE SYSTEM 27

Figure 2.4: Phases of the CRISP-DM process. The dependencies between the steps are
represented by solid directed lines. The dashed directed lines indicate loops that are
often required in order to refine the outcomes. The outer circle represents the iterative
nature of the process. Figure inspired by Figure 1 from Shearer (2000).

2.3.2 Data understanding

CRISP-DM process is usually applied to data available in some storage system (e.g. a
relational database) from which a set of instances is selected. In the case of structured
data, the selected records form a dataset in which usually each column represents an
attribute and each row an instance. On the other hand, if data is unstructured, a dataset
can be seen as a collection of items (e.g. images).

This phase often requires domain knowledge to understand what is the meaning of
the variables and what is the target value to be predicted. One could start by performing
a preliminary exploratory analysis including checking the type of attributes (e.g. con-
tinuous, categorical), basic statistics (e.g. range, mean, standard deviation) and attribute
units (e.g. minutes, meters). Plotting the data can help to find existing relationships be-
tween variables. Also data visualisation tools like boxplots and scatter plots can highlight
obvious data imperfections that could be addressed in the next phase.

28 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

2.3.3 Data preparation

As shown in Section 1.3, poor quality of raw data may lead to building poor models (Pear-
son (2005)). Often data is also collected from multiple sources, thus the implications of
merging such data should be taken into consideration (e.g. redundancy and inconsisten-
cies as seen in Section 1.3.2). During the data preparation phase, multiple methods for
cleaning and repairing the data are applied. This includes a range of preprocessing opera-
tions such as noise removal, missing values replacement and feature selection. In case of
a classification problem, this phase can also include other data transformations to make
data linearly separable. Since data preparation is one of the main focuses of this thesis,
preprocessing methods for dealing with common issues are described in Section 2.4. The
output of this stage is a dataset that will be used for building and evaluating the predictive
system.

2.3.4 Modelling

In the modelling phase, data mining experts select several machine learning models for
a comparative study. Model selection is usually a manual process based on the available
data and expert bias. The data prepared in the previous phase is used to train and evaluate
models tyically using one or a combination of main techniques to estimate the generali-
sation performance described in Section 2.2. The overwhelming number and variety of
models available in data mining toolboxes, as well as the multitude of their associated
hyperparameters, make this process labour and compute intensive. Automation of this
iterative process has been considered by different authors (e.g. Thornton et al. (2013);
Feurer et al. (2015); Sparks et al. (2015)).

The original CRISP-DM process considers data preparation and modelling as inde-
pendent phases. This can lead to a situation in which preprocessing is a one-off step for
all the evaluated models. However, different models can benefit from, or even require,
different data preprocessing. As a consequence, one can form a workflow connecting
multiple preprocessing methods and models. Chapter 3 propose a new formalism to this
type of predictive workflows and Chapter 4 presents how to jointly automate preprocess-
ing and modelling. Section 2.5 unfolds the modelling phase and describes the four main
steps: test design; algorithm selection; hyperparameter optimisation; and model assess-
ment. The output of this phase is a summary of the generated models ranked by their
predictive performance.

2.3.5 Project evaluation

In this phase, the results of the experimentation are evaluated. The generated models
are assessed to determine if they meet the business objectives and the data mining goals
defined in the previous phases. The most appropriate model fulfilling those objectives is
selected for deployment. Otherwise, if the results are not conclusive or do not achieve the
objectives, the process is reviewed and a plan is made to refine it (e.g. selecting additional

2.4. DATA PREPARATION 29

data, or applying other preprocessing methods).

2.3.6 Deployment and maintenance

The final phase of CRISP-DM consists of deployment of the predictive model in a pro-
duction environment. A deployment plan has to be elaborated, including also aspects
such as monitoring and maintenance of the system. The motivation to adapt a predic-
tive system is clear in evolving environments where input data is continuously changing
(Widmer & Kubat (1993)). Nevertheless, maintenance is also needed in, a priori, static
systems where data distribution is expected to be stable. The reason behind it is that
there are external factors than can affect model performance. For instance, consider a
system where data is recorded by physical sensors. The accuracy of these sensors can
degrade over time (e.g. due to wear and tear) and therefore the data distribution will
change despite of the underlying process remaining the same. Such changes between the
input features and the target variable are known as concept drift – as previously intro-
duced in Section 1.3.2 – and can cause a decrease in the model performance (Widmer &
Kubat (1996)). There exist various approaches to cope with concept drift, ranging from
manual model adjustments to using adaptive learning algorithms (see Gama et al. (2014)
for a survey). Common maintenance operations include hyperparameter tuning, model
retraining, additional preprocessing or even hardware upgrades to deal with scalability
issues. Chapter 5 describes the adaptation strategies that have been used in this thesis to
deal with such changes in predictive systems.

2.4 Data preparation

Data preparation can take as much as 60-80% of the total time spent on developing a
predictive model (Munson (2012)). A large fraction of this is due to the need of integrate
data from a number of disparate systems and the operations for converting raw data into
a suitable training dataset. These operations are usually applied in the following order:
data filtering → data cleaning → data enrichment → data transformation, as shown in
Figure 2.5. This section describes these four phases in the context of process industry
since it has been the main driver behind INFER project.

2.4.1 Data filtering

Data from process industry is often abundant. The complexity of plants and redundancy
of sensors contribute to a large number of input variables in the data, potentially in-
troducing a number of issues due to high dimensionality as discussed in Section 1.3.2.
Reducing the dimensionality not only helps to relieve these problems, but having fewer
attributes also improves the interpretability of the learnt model (Han et al. (2011)). Typi-
cal techniques for dimensionality reduction include wavelet transforms (e.g. Keogh et al.
(2001); Bruce & Koger (2002); Qu et al. (2003)), principal component analysis (e.g.

30 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

Figure 2.5: Data preparation phases of the CRISP-DM process

Pearson (1901); Kambhatla & Leen (1997)) or feature subset selection (e.g. Mladenić
(2006); Wei & Billings (2007)), among others. A review of dimensionality reduction
techniques can be found in van der Maaten et al. (2009).

Attribute redundancy and multicollinearity can be a problem as shown in Section 1.3.2
and can be mitigated by dimensionality reduction techniques. Some redundancies in at-
tributes can also be detected by correlation analysis. This analysis can measure how
strongly one attribute determines the values of another based on the available data, as-
suming a liner relationship between the two. A typical method for correlation analysis in
nominal data is the χ2 test (Bai & He (2004)), while correlation coefficient and covari-
ance are commonly applied in numerical data (Pearson (2005)).

A common source of data redundancy and inconsistency is the integration of different
data sources (e.g. Dawyndt et al. (2005)). To this end, approaches like Hernández &
Stolfo (1998) run an iterative approach for cleansing very large databases. On the other
hand, other authors propose to address the redundancy before the integration is actually
performed (e.g. Calı̀ et al. (2005) find semantic relations between the data sources).

In addition, datasets can contain instances that are not meaningful from the prediction
point of view. For example, some sensors still record data even if the plant is not run-
ning. These instances can bias the model and lead to worse predictions. Removing these
instances can be done by exploring the data manually or by applying change-detection
methods as the ones reviewed in Appendix B.

2.4.2 Data cleaning

The purpose of this step is to raise the data quality by polishing imperfections. To this
end, several cleaning tasks are applied to address the issues found during the data explo-
ration phase.

2.4. DATA PREPARATION 31

Feature alignment/synchronisation

As pointed out in Section 1.3.2, there might be some variables which values are shifted
in time for several reasons. A common method in chemical production plants to identify
such delays between variables is to provoke a sudden change in the process (Kadlec
et al. (2009)). Then, the elapsed time between the changes in the sensors is measured.
Nevertheless, this is a quite disruptive procedure that ideally would be avoided. Another
method is Dynamic Time Warping (DTW – Berndt & Clifford (1994)) which calculates
the similarity between two time series and allows to minimise the misalignment between
them.

Handling missing values

As shown in Section 1.3.2, some instances can contain missing values due to different
reasons. Classification algorithms such as support vector machines (SVM) and neural
networks (NN) are particularly affected by the presence of missing values since most
discriminative learning approaches have no natural ability to deal with missing input
features (Marlin (2008)). There are three main approaches that one could take when
working with missing data:
• Nothing, where no action is taken since some models are able to handle datasets

with missing values (e.g. Gabrys (2002));
• Deletion, where instances with missing values are deleted. It is the simplest ap-

proach, but it can lead to loss of information. Also this approach is not feasible in
certain systems when missing values occur during the online phase and a prediction
must be always delivered (Žliobaitė & Hollmén (2014));
• Imputation, where missing values are replaced by an estimation. Approaches

under this category include single imputation (i.e. a constant value such as the
attribute mean, e.g. Allison (2001)) and model imputation (i.e. a predictive model
is built using non-missing data for imputing the missing values, e.g. Dudoit &
Fridlyand (2002)).

Noise removal

Datasets can contain noisy values introduced as consequence of human error or due to
interferences in the measurement equipment as described in Section 1.3.2. Noise is often
associated to continuous values, but also can be present in other type of attributes. A
noisy dataset can decrease the quality of the learnt model (Nettleton et al. (2010)) and
therefore it is desirable to smooth noisy values.

One common noise removal technique is binning, where data is smoothed by consult-
ing the surrounding values (i.e. local smoothing). Each value is assigned to a bin (i.e.
consecutive number of values) and then replaced by an aggregated value of that bin (e.g.
mean).

Another technique to reduce noise in continuous data consists on fitting a regression

32 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

model (see e.g. Reis & Saraiva (2004)) between different variables and then replace
the noisy values in the affected attribute with a prediction given by the model. There is
however no guarantee that the new value from a regression model will not be an outlier
and therefore add even more noise.

Other approaches use discrete wavelet transform (DWT) for smoothing data by taking
advantage of both frequency and temporal location of the values. For example, Slišković
et al. (2011) apply a three step procedure for denoising sensor signals of a chemical plant.
Firstly, DWT is used for decomposing the signal. Then non-significant values are filtered
using a threshold. Finally, the signal is reconstructed by inverse of the DWT.

Principal component analysis (PCA) techniques have been also used for denoising.
For example, Romero (2011) apply PCA and Independent Component Analysis (ICA)
to reduce the noise in a multi-lead electrocardiogram. However, these methods are very
sensitive to outliers. For that reason, robust PCA methods have been developed (e.g.
Brubaker (2009)).

Other authors propose to characterise the noise and use such information to modify
the existing predictive model instead of removing the noise from data. For instance, Wu
& Zhu (2008) add prior knowledge about the noise of each variable by transforming the
conditional probabilities in the Naive Bayes classifier.

Handling outliers

The consequences that outliers can have in predictive modelling were presented in Sec-
tion 1.3.2. An extensive survey of outlier detection techniques and applications was
presented by Chandola et al. (2009). Their proposed taxonomy is summarised below:
• Classification, where a classifier is built using training data and then used to cat-

egorise instances as normal or anomalous (e.g. Chaloner & Brant (1988); Yang
(2005));
• Nearest neighbours methods which assume that normal data instances occur in

dense neighbourhoods, while anomalies lie far from their closest neighbours (e.g.
Östermark (2009); Kim et al. (2010)). These techniques require a distance or sim-
ilarity measure defined between two instances;
• Clustering techniques, which can be grouped in three categories corresponding to

the following assumptions: 1) normal data instances belong to a cluster in the data,
while anomalies do not belong to any cluster (e.g. Ester et al. (1996)); 2) normal
data instances lie close to their closest cluster centroid, while anomalies are far
away from their closest cluster centroid (e.g. Emamian et al. (2000)); 3) normal
data instances belong to large and dense clusters, while anomalies either belong to
small or sparse clusters (e.g. He et al. (2003));
• Statistical anomaly detection techniques which assume that normal data instances

occur in high probability regions of a stochastic model, while anomalies occur in
low probability regions (e.g. Shewhart (1931); Parzen (1962));
• Information theoretic measures, such as Kolmogorov Complexity (Arning et al.

2.4. DATA PREPARATION 33

(1996)) or entropy (He et al. (2005)), are used to detect outliers assuming that
anomalies lead to irregularities in the information content of a dataset;
• Spectral techniques assume that data can be embedded into a lower dimensional

subspace in which normal instances and anomalies appear significantly different
(e.g. Parra et al. (1996)).

Typically, the output of outlier detection techniques is a score or label within the in-
stances. The score gives a value of how anomalous an instance is, hence analysts can
use a threshold to select the outliers. On the other hand, if outliers are being detected
at attribute level, a matrix is generated instead indicating what particular attribute in the
instance is anomalous.

The way of dealing with outliers can vary depending on the characteristics of the
dataset, as well as the application. Sometimes deleting outlier instances is an option, but
in other cases replacement of outliers with other values such as mean, mode, maximum
or minimum is more effective. Methods for replacing missing values are often used for
handling outliers.

Although outliers are usually considered as something negative that should be re-
moved, other applications try to look for outliers or rare events in order to analyse them.
For example, if a system is detecting illegal access to a network, the abnormal situations
are less frequent but more important. For dealing with this type of applications, different
approaches have been proposed (e.g. Denning (1987); Bloch et al. (1995); Fawcett &
Provost (1997)).

2.4.3 Data enrichment

Predictive accuracy highly depends on the selected features for building the model. Al-
though the original set of features may contain sufficient information, this may not always
be leveraged by the learning algorithm. A common approach to maximise the use of la-
tent information is to generate new features (Cheng et al. (2011); Islamaj et al. (2006)).
For instance, given the length and width of a plot of land as input attributes, one could
create a new attribute with the area of the plot. While it does not add any new infor-
mation to the dataset, it makes the existing information easier to exploit to some models
(e.g. linear models are not able to pick up such multiplicative relationships). Similarly,
given a date, one could calculate the day of the week (Monday to Sunday), the month
and the year (Fawcett & Provost (1997)). Also, one could discretise a time attribute into
intervals of the day (i.e. morning, afternoon, evening). In the prediction of multivariate
time series it is common to generate new features including moving average of previous
values or differences between different periods (De Silva et al. (2013)).

Most of the classification algorithms work well under the assumption that there is
a similar number of instances for each class. However, some datasets are highly im-
balanced. That is, some classes are very small relative to others, and in many cases
it is these small classes that are actually of interest. For example, in applications like
credit card fraud detection there is a tiny fraction of fraudulent transactions which are
actually the ones that need to be investigated (Wei et al. (2013)). There are several ap-

34 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

proaches to deal with this problem, including (1) under-sampling of the majority classes
(Liu et al. (2006)), (2) over-sampling of the minority classes (Chawla et al. (2002)), or
(3) using cost-sensitive classifiers which weight the classification error depending on the
class (Thai-Nghe et al. (2010)).

2.4.4 Data transformation

Even after cleaning the data with different preprocessing methods it is still possible that
learning algorithms cannot find a good relationship between the features and the target
value. Thus, data can be transformed for better exposing such relationship. Typical trans-
formation methods include principal component analysis (PCA) that uses an orthogonal
transformation to maximise the variance between features; partial least squares (PLS)
that finds a set of latent variables that maximises the variance between the input features
and the target variable; and the ‘kernel trick’, that applies a kernel function to transform
the input features into a higher dimensional space where the data might be linearly sepa-
rable (see Figure 2.6). Therefore, instead of just adding new features as in Section 2.4.3,
all the features are replaced by the new ones.

Figure 2.6: Converting a non-linearly separable dataset (left) into linearly separable
one (right) by applying the transformation [x1, x2]→ [x1, x2, x1

2 + x2
2]

2.5 Modelling

The aim of the modelling phase is to find the best model for a given problem. To this end,
four steps are usually applied in the following order: test design→ algorithm selection
→ hyperparameter optimisation→model assessment, as seen in Figure 2.7. This section
describes these steps in more detail.

2.5. MODELLING 35

Figure 2.7: Modelling phases of the CRISP-DM process

2.5.1 Test design

The generalisation error is an indication of how the model performs on unseen data.
There are different measures of predictive performance depending on the task, being clas-
sification error, MAE, MSE and RMSE the most frequently used in predictive modelling,
which were already introduced in Section 2.2. In addition, the main error estimators are
holdout, cross-validation and bootstrapping which were also covered in Section 2.2. The
way of splitting the dataset into training and testing sets can vary depending on the data
characteristics. Traditionally, instances are randomly sampled. However, in case labels
are not evenly distributed, it is common to apply stratified sampling to generate represen-
tative sets (Kohavi (1995)). In time series, instances can be selected either in consecutive
way or in periodic intervals (Cao & Rhinehart (1995)).

2.5.2 Algorithm selection

There are dozens of learning algorithms and data processing methods in any data mining
toolbox (e.g. 420 operators in RapidMiner3). Despite the multitude of models exist,
according to the ‘no free lunch theorem’ (Wolpert & Macready (1997)), none of them
is universally superior across all possible problems. Nevertheless, there will be specific
datasets for which one algorithm performs better than others. The resultant algorithm
selection problem (Rice (1976)) hence consists of finding the algorithm

A ∈ A | fmin = A(Dtrain) (2.13)

whose model minimises the predictive error for a given dataset (see Equation 2.9).

3https://rapidminer.com

https://rapidminer.com

36 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

This process is often a matter of trial and error that can become very tedious if done
manually. Thus, there are different smart techniques that help to speed up this process.
Serban et al. (2013) presented a review grouping these techniques under the umbrella of
intelligent discovery assistants (IDAs). IDAs are systems that help to solve a machine
learning problem in an automatic or semi-automatic way.

Consultant-2 (Sleeman et al. (1995)) was the first IDA intended to assist with machine
learning problems. It is an interactive system made of about 250 heuristic rules curated
by machine learning experts. After a question-answering session with the user, it recom-
mends a learning algorithm by reasoning from the set of rules. This system was limited
to small number of algorithms and quickly became obsolete due to its lack of scalabil-
ity. Another important weakness was the expert bias on the rule generation instead of
following a data-driven approach.

The need of overcoming this issue led to the development of meta-learning systems
(Lemke et al. (2015)). These systems use a learning algorithm (the so called meta-learner)
to generate a model from a repository of previous experiments (e.g. decision tree (Fulk-
erson et al. (1995)) or k-NN (Giraud-Carrier (2005))). This repository typically contains
records made of meta-data such as data characteristics and model performance (e.g. er-
ror, speed, complexity). Thus, given a new dataset, the system produces a ranking of
learning algorithms according to user preferences. The current state-of-the-art machine
learning repository is OpenML4 with more than 1.7 million experiments and it has been
successfully used as a meta-dataset for algorithm selection (e.g. van Rijn et al. (2014)).

A similar approach are case-based reasoning systems. Instead of learning a model,
they store all the successful experiments (called cases) in a repository maintained by
human experts. Then a case-based reasoner looks for similar cases when a new one is
provided by the user. Examples are CITRUS (Wirth et al. (1997)) – which was con-
nected with the KDD suite called Clementine – and the Algorithm Selection Tool (AST
– Lindner & Studer (1999)).

All these previous approaches share the same weakness known as the cold start prob-
lem. That is, if a new problem is different from the ones seen before, the system will
not be able to provide any confident answer. An alternative approach are planning-based
data analysis systems which do not need previous experiments or rules but meta-data of
the algorithms (i.e. inputs, outputs, preconditions, and effects) instead. This meta-data
is generated manually by experts and stored in ontologies. These approaches generate
all possible plans for a given dataset by inspecting its characteristics and querying the
ontology.

An ontology is a collection of definitions, properties and relations of a domain (Neches
et al. (1991)). Over the last decades there have been a number of efforts to create a
standard ontology for data mining and KDD process but there is still neither a consensus
among researchers nor a definitive solution (Suyama & Yamaguchi (1998); Bernstein &
Provost (2001); Euler et al. (2003); Panov et al. (2008); Diamantini et al. (2009); Kietz
et al. (2009); Zakova et al. (2011)). One of the main advantages of ontologies is, at the
same time, their biggest limitation: they are vendor-independent. That is, due to their

4http://www.openml.org

http://www.openml.org

2.5. MODELLING 37

aim of being a global standard they tend to be as abstract as possible and therefore it
is very difficult to apply them in practice. The most recent work to apply planning-
based approaches with ontologies is the e-LICO Intelligent Discovery Assistant (eIDA –
Serban et al. (2012)) which uses two ontologies: The Data Mining Workflow Ontology
(DMWF – Kietz et al. (2009)) and The Data Mining Optimization Ontology (DMOP –
Keet et al. (2015)) to generate a list of plans (i.e. workflows including preprocessing
and modelling). The plans are then ranked according to user preferences and using a
heuristic that estimates the predictive performance based on previous experiences from
similar datasets. The top ranked plans are therefore based on an estimation and hence
are not guaranteed to be the best. The generated plans can then be run by the user in the
RapidMiner suite (see Figure 2.8).

DMWF DMOP

AI Planner
Probabilistic

Ranker

Semantic

Meta-Miner

Experiments

Repository

Top ranked

workflows

Planned

workflows
Meta-mined

model

DatasetDataset

e-LICO IDA

1

2 3

4

Figure 2.8: e-LICO Intelligent Discovery Assistant. Firstly, the user provides a dataset
and specifies the goal. Then, the AI planner generates a set of valid workflows based on
data characteristics and querying the DMWF ontology. The Probabilistic Ranker ranks
these workflows based on the meta-mined model which was built by the Semantic Meta-
Miner using the DMOP ontology and meta-data from previous experiments. Finally, top
ranked workflows are presented to the user. Figure inspired by Figure 7 from Keet et al.
(2015).

Planning-based approaches have three main limitations: (1) they are heuristic ap-
proaches that do not guarantee finding the best solution; (2) since ontologies aim to be
vendor-independent they are difficult to apply in practice for a range of different prob-
lems; and (3) ontologies still require a considerable effort by experts to be maintained
and kept up to date. These limitations have motivated approaching the problem as an
optimisation task instead of a planning one. The next chapter describes model-based
optimisation approaches, which are becoming a de-facto standard in algorithm selection
for machine learning due to the successful results and the fact that they are completely
data-driven.

2.5.3 Hyperparameter optimisation

Most of the machine learning algorithms have one or more hyperparameters that modify
how they operate. For example, for a multilayer perceptron one needs to define the type

38 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

of activation function, the number of hidden layers and the learning rate, among other
hyperparameters.

A machine learning algorithm A ∈ A has associated a set of hyperparameters λ =
{λ1, ..., λm} | λi ∈ Λi. The hyperparameter space of Aλ is defined as Λ = Λ1× ...×Λm.
The hyperparameter optimisation problem consists of finding the hyperparameters that
minimise the loss function of an algorithm for a given dataset

λ∗ = argmin
λ∈Λ

L(Aλ,Dtrain,Dtest) (2.14)

Hyperparameters are usually continuous or categorical, though they can also be more
complex (e.g. a submethod containing additional hyperparameters). In the latter case,
the hyperparameters of the submethod are treated as conditional. For instance, Gaussian
kernel width parameter in SVM is only present if SVM is using Gaussian kernels.

The value of hyperparameters can drastically affect the method output. Consider a
regression problem in which the ‘unknown’ function is y = x ∗ sin(x) with x ∈ [0, 10].
In order to approximate this function one could use a polynomial regression method,
where the hyperparameter is the degree of the polynomial. Figure 2.9 shows the ground
truth as well as several curves that have been approximated from a set of training points
drawn from the ‘unknown’ function. By looking at that figure one may assume that the
curve will be closer to the true function by increasing the degree of the polynomial. That
is however not the case as shown in Figure 2.10. In this toy example, Λ = {0, 1, ..., 20}
and λ∗ = 10 because it is the value that minimises the loss function (MSE on training
data).

There are various approaches to selecting optimal values of the hyperparameters. A
grid search, that is an exhaustive search over a discretised search space Λ, represents
a simple but often computationally very expensive brute force approach which can be
used for hyperparameter optimisation. Other approaches use mathematical optimisation
techniques such as dynamic programming (Deisenroth et al. (2009)) or metaheuristics
(Lessmann et al. (2005); Bartz-Beielstein et al. (2010)) to explore promising areas of the
search space. However, most of these methods do not perform well in problems with a
large number of hyperparameters. Instead, a random search has been shown to perform
better than grid search in high dimensional problems given a limited amount of time
(Bergstra & Bengio (2012)). Bayesian optimisation approaches are another group of
optimisation techniques which have recently been shown to be more efficient in finding
good solutions in large search spaces (Hutter et al. (2011); Thornton et al. (2013)). These
approaches will be described in more detail in Chapter 4.

2.5.4 Model assessment

Different models generated during the modelling phase are ranked according to their
predictive performance. Apart from predictive accuracy additional criteria can be taken
into account for comparison such as model complexity and/or computational cost. There
are some cases in which more than one criterion has to be optimised. Such problems

2.6. SUMMARY 39

Figure 2.9: Curve fitting varying the polynomial degree. The ground truth is the function
y = x · sin(x) with x ∈ [0, 10]. Four polynomials with degrees 1, 2, 3 and 6 have been
approximated from a set of training points drawn from the ‘unknown’ function.

are studied in the multi-objective optimisation field where a Pareto front analysis usually
identifies the trade-off between the different optimised objectives and can generate a set
of non-dominated models (e.g. Al-Jubouri & Gabrys (2014)).

Performance results of predictive models are typically reported with 95% confidence
intervals on the generalisation error. In that way, one can assess if a model is significantly
better than other. The final decision on what model is selected for deployment is therefore
based on these results.

Nonetheless it may happen that some models perform better than others in different
subsets of data. Instead of selecting a single one, it would be possible to combine the
predictions of multiple models to achieve a better performance than a single model could
obtain (Dietterich (2000)). This is the idea behind ensemble methods that can be built
using different training datasets (e.g. Ruta & Gabrys (2010); Budka & Gabrys (2010b))
and/or different learning algorithms (e.g. Littlestone & Warmuth (1994); Tsakonas &
Gabrys (2013)). A review of ensemble-based classifiers can be found in Rokach (2010).

2.6 Summary

This chapter has introduced the principles of predictive modelling and has described the
steps involved in the data mining process for building predictive systems. Data prepara-
tion and modelling are the two key steps to success on classification and regression tasks.

40 CHAPTER 2. PRINCIPLES OF PREDICTIVE MODELLING

λ = 1

λ = 2

λ = 3

λ = 6

(λ)

Overfitting

Figure 2.10: Mean squared error on the test set varying the polynomial degree in range
[0,20]. Tagged values belong to the curves represented in Figure 2.9.

Moreover, applying particular preprocessing methods depending on the model may be
beneficial or even required (Žliobaitė & Gabrys (2014)). Therefore, it does make sense
to combine data preprocessing and predictive models to form workflows representing
multiple data transformation steps. A novel formulation for these types of predictive
workflows is introduced in the next chapter. Finding the best workflow that fulfils the
project objectives for a particular dataset is a challenging task. This problem is further
addressed in Chapter 4, where a fully automatic approach is proposed.

Chapter 3

Multicomponent predictive systems

3.1 Introduction

Previous chapters introduced predictive models and data preprocessing methods as stan-
dalone components. In practice however, they are usually combined creating a workflow.
Data-driven workflows have been used to guide data processing in a variety of fields.
Some examples are astronomy (Berriman et al. (2007)), biology (Shade & Teal (2015)),
clinical research (Teichmann et al. (2010)), archive scanning (Messaoud et al. (2011)),
telecommunications (Maedche et al. (2000)), banking (Wei et al. (2013)) and process
industry (Budka et al. (2014)) to name a few. The common methodology in all these
fields consists of following a number of steps to prepare a dataset for data mining. In
the field of predictive modelling, the workflow resulting from connecting different meth-
ods is known as a Multi-Component Predictive System (MCPS) (Tsakonas & Gabrys
(2012)). At the moment, tools like WEKA1, RapidMiner2 or Knime3 allow to create and
run MCPSs including a large variety of operators.

Each of these tools has a different representation of workflows. One of the goals of
this thesis is to establish a common framework to connect multiple components forming
workflows. This will allow to analyse and validate workflows before beginning the im-
plementation phase with any particular tool. The validation of workflows becomes even
more relevant when considering the automatic generation of MCPSs.

In order to formalise the notion of MCPSs under a common abstract framework, vari-
ous approaches can be considered:
a) Function composition. Each component is a function f : X → Y that makes an

operation over an input tensor4 x and returns an output tensor y. Several components
can be connected by composing functions i.e. f(g(x)). However, this notation can
become a tangle when representing complex workflows involving multiple compo-
nents with parallel paths of different lengths. Moreover it is not expressive enough to

1http://weka.sourceforge.net
2https://rapidminer.com
3https://www.knime.org
4A tensor is a multidimensional array made of continuous or categorical values.

41

http://weka.sourceforge.net
https://rapidminer.com
https://www.knime.org

42 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

represent different states of a concurrent system.
b) Directed Acyclic Graphs (DAG). A DAG G = (F,A) is a graph made of a set of

components (or nodes) F and a set of directed arcs A connecting pairs of compo-
nents. This approach is very flexible and makes it easy to understand the structure
of the MCPS. However, DAGs on their own are not expressive enough to model sys-
tem execution (e.g. how data is transformed, what meta-data is generated, multiple
iterations, and preconditions) or temporal behaviour (e.g. duration and delays).

c) Petri nets (PN). Petri nets are a modelling tool that can be applicable to many types
of systems (Petri (1962)). A Petri net PN = (P, T, F) is a directed bipartite graph
consisting of a set of places P and transitions T connected by arcs F . Depending on
the system, places and transitions can be interpreted in different ways. In this thesis,
places are considered to be data buffers and transitions are data processing methods.
PNs have been shown to be very useful to model workflows (van der Aalst (1998a))
since they are very flexible, can accommodate complex process logic including con-
currency and have a strong mathematical foundation (Murata (1989)). Using work-
flow algebra (Pankratius & Stucky (2005)) one can modify and create PNs with rela-
tional operators like selection or union. Analysis methods like van der Aalst (2000)
inspect PN structure to find potential design errors. An important advantage is that
the graphical nature of PNs makes them intuitive and easy to understand for any do-
main expert. Moreover, PNs are vendor independent and, once composed, can be
easily translated to any data mining tool and vice versa. This approach has not been
considered before to model MCPSs and it is proposed in this thesis for the first time.
The remainder of this chapter is organised as follows. First, Petri nets and their main

properties are described in Section 3.2. Then, the formal definition of MCPS as a type
of Petri net is introduced in Section 3.3. After that, Section 3.4 explains the problem
of composing MCPS followed by the problem of optimising the hyperparameters of an
MCPS in Section 3.5. The combination of both algorithm selection and hyperparame-
ter optimisation of MCPSs into a single problem is formally described in Section 3.6.
Finally, the chapter is summarised in Section 3.7.

3.2 Petri nets
While Petri nets were introduced in Petri (1962), the most recent definition of a Petri net,
which has been adopted in this thesis, was given in Murata (1989) as the following tuple

PN = (P, T, F,W,M0) (3.1)
where P = {p1, ..., pm} is a finite set of places, T = {t1, ..., tn} is a finite set of tran-
sitions, F ∈ (P × T) ∪ (T × P) is a set of arcs, W : F → N+ is a weight function,
M0 : P → N is the initial marking (i.e. state of the net – number of tokens in each place).
Additionally, a Petri net contains one or more tokens that represent units of the system to
be processed. The lifetime of a PN is defined by a set of statesM = {M0, ...,Mq}. Each
state is the distribution of the tokens over P . Figure 3.1 shows an example of the visual
representation of a Petri net.

3.2. PETRI NETS 43

Reception

Check in

Waiting
Room

Consulting
Room

Call in

Examination
and diagnosis

Exit

Patient

Figure 3.1: Petri net representing the patient flow in a surgery. Transitions are repre-
sented by black vertical bars, places by circles, and arcs by directed arrows. The token is
a small black dot which symbolises a patient. In the UK, patients have to check-in in the
reception when they arrive to the surgery. Then, they seat in the waiting room until they
are called into the consultation room where the doctor proceeds to examine and diagnose
the patient. After that, the patient leaves the surgery.

Nodes are connected by arcs forming paths. Formally,
Definition 1 (Path) A pathC from a node n1 ∈ P∪T to a node nk ∈ P∪T is a sequence
of nodes 〈n1n2...nk〉 such that fi,i+1 ∈ F | 1 ≤ i ≤ k− 1. A path C is elementary iff, for
any two nodes ni and nj on C, i 6= j ⇒ ni 6= nj .

The behaviour of a Petri net is described by firing of transitions. A transition can be
fired (i.e. activated) when each of its input places are marked at least with the number
of tokens indicated by the value of the function w(p, t) associated with the arc p → t
(i.e. minimum number of tokens needed in p to fire the transition t). When the active
transitions t are fired, the state of the net changes from Mn to Mn+1 and tokens are
transferred from the input to the output places for each transition. Figure 3.2 illustrates
such behaviour with an example.

The nodes of a Petri net (i.e. places and transitions) can have multiple output and input
arcs. Depending on the behaviour of the node, there are four main constructions:
• AND-split, when a token is produced for each of the output arcs;
• XOR-split, when a token is produced for only one of the output arcs;
• AND-join, when a token is received for each of the input arcs;
• XOR-join, when a token is received for only one of the input arcs.

The input nodes of a node n ∈ P ∪ T are denoted as •n, while output ones are n•.
The flexibility when building Petri nets can lead to anomalous behaviours that can be

difficult to trace. Figure 3.3 shows a deadlock situation, where the AND-join transition
cannot be fired because the XOR-split implies that only one token will be available.
Another undesired situation is a livelock, shown in Figure 3.4, where the net is always
active but blocked by a deadlock. There are a number of analysis techniques that can be
used to detect this kind of problems (see e.g. van der Aalst (1997)) and verify certain
properties (Murata (1989)). These problematic situations can be completely avoided by
applying some restrictions on the construction of Petri nets (van der Aalst et al. (2011)).
Next section introduces some properties to ensure the absence of deadlocks and livelocks.
These properties are later considered in the formal definition of MCPSs (Definition 6).

44 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

Check in Call in
Examination
and diagnosis

T
im
e

Reception Waiting
Room

Consulting
Room

Exit

Figure 3.2: Example of Petri net behaviour over time. The token (i.e. patient) progresses
from one place to the next one when the in-between transition is fired (represented in
red).

XOR split AND join

Figure 3.3: The deadlock situation in this example happens when the AND-join transition
cannot be fired because the XOR-split implies that only one token will be available.

3.2.1 Types of Petri nets

Despite of the fact that the classical Petri nets can cover a large range of applications
(e.g. manufacturing (DiCesare et al. (1993)), business process management (van der
Aalst et al. (2000)), hardware design (Yakovlev et al. (2000)), molecular biology systems
(Hardy & Robillard (2004)), there are sometimes circumstances when new properties
have to be defined in order to cover additional types of systems.

For example, van der Aalst (1998a) presented a new type of Petri net to represent
business process logic called WorkFlow net (WF-net). WF-nets are sequential workflows
with a single starting point and ending point. The simplest WF-net is shown in Figure 3.5
where transitions represent tasks, places could be seen as conditions, and tokens are cases
(e.g. a patient, a document or a picture). Formally:

3.2. PETRI NETS 45

AND
split

AND
join

AND
join

deadlock

remains active

XOR
split

p1

p2

p3

p4

p5

p6

Figure 3.4: The livelock situation happens when the net is always active but blocked by
a deadlock.

Definition 2 (WF-net) A Petri net is a WF-net iff:
a) there is only one source place i ∈ P such that •i = ∅;
b) there is only one sink place o ∈ P such that o• = ∅;
c) every node n ∈ P ∪ T is on a path from i to o.
The third point of this definition entails that if a new transition t connecting o with i is
added, then the resulting Petri net is strongly connected.
Definition 3 (Strongly connected) A Petri net is strongly connected iff for every pair of
nodes (i.e. places and transitions) x and y, there is a path leading from x to y.

ti o

fi,t ft,otoken

place

transition

Figure 3.5: The simplest WorkFlow net with a single transition. Transitions represent
tasks, places could be seen as conditions, and tokens are cases (e.g. a patient, a document
or an image).

The soundness property for WF-nets introduced by van der Aalst (1997) implies that
if a net has k tokens in the input place during the initial marking, it will have k tokens in
the output place at the final marking (i.e. M0(i) = Mq(o)). A WF-net with soundness is
guaranteed to terminate (i.e. it does not have deadlocks or livelocks).

In order to avoid deadlocks in WF-nets, van der Aalst (2000) introduced the well-

46 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

handled property that ensures the lack of bad constructions (e.g. XOR-split followed by
AND-join block). Formally:
Definition 4 (Well-handledness) A Petri net is well-handled iff, for any pair of nodes ni
and nj such that one is a place and the other a transition, and for any pair of elementary
paths C1 and C2 leading from ni to nj , C1 ∩ C2 = {ni, nj} ⇒ C1 = C2.

Petri nets can become very large when defining complex processes (van der Aalst
(1998b)). To facilitate the representation, hierarchical Petri nets were introduced as an
extension of PNs where a transition can be represented by another PN (called subnet)
– see Figure 3.6. The action of replacing a transition by a subnet is called an iteration.
Iterations are denoted as regular when the subnet has entrance and exit nodes acting as
dummy nodes. This concept leads to a new type of Petri nets known as WRI-WF nets
(Well-handled with Regular Iterations WF-net) presented in Ping et al. (2004). Formally:

Definition 5 (WRI-WF net) A Petri net is a WRI-WF net iff:
a) the PN is a WF-net (see Definition 2);
b) the PN is well-handled (see Definition 4);
c) the PN is acyclic;
d) the iterations of the PN are regular.
WRI-WF nets are inherently sound (see Ping et al. (2004) for proof).

dummy dummy

Figure 3.6: Hierarchical WF-net with parallel paths. Transitions containing subnets are
in grey. At the most abstract level, this WF-net has only a single transition, but this is
made of a subnet with parallel paths. The subnet has entrance and exit nodes acting as
dummy nodes.

Another common extension of PNs are Coloured Petri nets (CPN), where each token
has a colour/type associated with it. Places and transitions can therefore handle each
token type differently. To see how CPNs are useful in relation to MCPS, please refer to
Appendix C where data and meta-data are represented by different type of tokens in the
same net.

PNs do not originally support modelling time. For that, Timed Petri net (TPN) is an

3.3. MODELLING MCPS AS PETRI NETS 47

extension of PNs where time can be associated with tokens, places and/or transitions.
This is useful for example to model task duration or delays. Although TPNs are not
considered in this thesis, they could be a matter of further study in future work.

3.3 Modelling MCPS as Petri nets

WRI-WF-nets are the base for defining MCPSs. However, to comply with the predictive
nature of MCPSs there are some additional restrictions that have to be added. Formally:
Definition 6 (MCPS) A Petri net is an MCPS iff all the following conditions apply:
a) the PN is WRI-WF-net (see Definition 5);
b) each place p ∈ P \ {i, o} has only a single input and a single output;
c) the PN is 1-bounded, that is, there is a maximum of one token in each p ∈ P for every

reachable state (i.e. M(p) ≤ 1);
d) the PN is 1-sound (i.e. M0(i) = Mq(o) = 1);
e) the PN is ordinary (i.e. w = 1 ∀w ∈ W);
f) all the transitions t ∈ T with multiple inputs or outputs are AND-join or AND-split,

respectively;
g) any token is a tensor (i.e. multidimensional array);
h) the token at i is a set of unlabelled instances and the token at o is a set of predictions

for such instances.
In an MCPS, an atomic transition t ∈ T is an algorithm with a set of hyperparameters

λ that affect how the token is processed. An MCPS can be as simple as the one shown in
Figure 3.5 with a single transition. For example, the token in i can be a set of unlabelled
instances, and t a classifier which consumes such token from the arc fi,t and generates
one token in o with the predicted labels through ft,o.

An MCPS can however be hierarchically extended since each transition t can be either
atomic or another WRI-WF-net (with additional starting and ending dummy transitions)
– see Figure 3.6 where atomic transitions are black and special transitions are grey. As a
consequence, an MCPS can model very complex systems with multiple data transforma-
tions and parallel paths (see e.g. Figure 4.4 for a multi-hierarchy example).

In predictive modelling, the semantics for transitions are: (1) preprocessing methods,
(2) predictors, (3) ensembles and (4) postprocessing methods. Transitions representing
(1), (2), and (4) can be either atomic or special. However, type (3) transitions are neces-
sarily special since ensembles are made of several predictors and a combination method
(e.g. voting).

Depending on the number of inputs and outputs, MCPSs can have any of the following
types of transitions (see Figure 3.7):
• 1 → 1 transitions (e.g. a classifier that consumes unlabelled instances and returns

predictions)
• 1 → n transitions (e.g. a random subsampling method that consumes a set of

48 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

instances and returns several subsets)
• n → 1 transitions (e.g. a voting classifier that consumes multiple predictions per

instance and returns a single prediction per instance)

1�1

n n

1�n n�1

Figure 3.7: Types of transitions according to the number of inputs and outputs

Building an MCPS is typically an iterative, labour and knowledge intensive process.
Despite a substantial body of research in the area of automated and assisted MCPS cre-
ation and optimisation (see Section 2.5.2), a reliable fully automated approach is still
far from being available. Figure 3.8 shows the five stages of an MCPS life cycle. Let’s
consider the classification problem of ‘wine’ dataset5 to illustrate these stages. This is a
well known dataset in the machine learning community consisting of 178 records with 13
numerical attributes resulting from chemical analysis of 3 types of wines produced in the
same region of Italy. The classification task of this dataset is not particularly challenging,
but it is suitable for illustration purposes.

Composition
Hyperparameter

Optimisation
Training Prediction Adaptation

Figure 3.8: Stages of an MCPS

The first stage is MCPS composition. Typically, a practitioner would design one or
more MCPSs by selecting different methods based on some criteria (e.g. interpretability)
and his/her own cognitive bias. For the sake of the argument, let’s say that the MCPS
composed for ‘wine’ is the one shown in Figure 3.9 which uses Fisher’s linear discrimi-
nant analysis (LDA – Fisher (1936)) to reduce the number the attributes and classify the
instances. The MCPS composition problem is later formalised in Section 3.4.

5https://archive.ics.uci.edu/ml/datasets/Wine

https://archive.ics.uci.edu/ml/datasets/Wine

3.3. MODELLING MCPS AS PETRI NETS 49

Dimensionality
reduction
with LDA

LDA
classifier

i p1 o
t1t0

Figure 3.9: Example of MCPS for ‘wine’ dataset. The first transition t0 will reduce
the dimensionality of the dataset from place i using a linear projection that maximises
class separability. Then, the processed instances in p1 are classified by LDA classifier in
transition t1.

Once an MCPS has been composed, hyperparameters of the selected methods need to
be optimised. This can be done for example using grid search or any other optimisation
method. The hyperparameter optimisation problem is further discussed in Section 3.5,
but let’s assume that the optimisation strategy has found that the best number of LDA
components is 2. This is not surprising since the the maximum number of components
in LDA is the number of classes-1, but this example has been chosen for illustrative
purposes.

Then, the MCPS components have to be trained with a set of labelled instances. Dur-
ing the training process, each transition t ∈ T is initialised using the tokens available
in p ∈ •t. One of the advantages of Petri nets is the ability to refer to any part of the
system at any particular state. The MCPS shown in Figure 3.9 has 3 states during the
training stageM = {M0,M1,M2}. In the initial state M0, one token representing raw
data is at place i (see Figure 3.10). Then the transition t0 is triggered consuming the
token from i and producing one new token at p1. Thus, the PN progresses to the state
M1 (see Figure 3.11). At this state, the token at p1 is the transformed data after LDA
has been applied. After that, t1 is triggered consuming the token at p1 and producing one
new token at o which is a vector of predictions. That is the last state of the training stage
(M2) which will finalise with the trained classifier shown in Figure 3.12.

50 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

i p1 o
t1t0

M0

Figure 3.10: Initial state of the MCPS for ‘wine’ dataset during the training stage. The
token at this state represents the complete dataset. The figure shows the histograms of
each attribute values per class.

After that, the MCPS is ready to make predictions for unlabelled data. Predictions are
delivered during the online phase by ŷ = θ(X), where θ is the trained MCPS, X is the
raw data made of unlabelled instances (i.e. token in i) and ŷ is the token in o containing
the predictions of y. The number of states of the prediction phase is unbounded. At any
new state, one new token made of new raw data might appear in i which will initiate the
predictive process.

Finally, the MCPS can be adapted to avoid a potential degradation of predictive per-
formance due to changes in data. The adaptation phase can involve a recomposition (e.g.
adding a new component or replacing an existing one), adjusting a few parameters or just
some additional training. Appendix C presents coloured MCPSs which help to model
local adaptation of components by propagating meta-data through the system compo-
nents. Furthermore, Chapter 5 explains several adaptation strategies including global
re-composition and global parametrisation of MCPSs.

3.4 Composition of MCPS

The next step, after data understanding, for building a predictive system in CRISP-DM
is to select the right methods for cleaning and transforming the raw data. For this pur-

3.4. COMPOSITION OF MCPS 51

i p1 o
t1t0

M1

Figure 3.11: State M1 of the MCPS for ‘wine’ dataset during the training stage. The
token at this state represents the reduced dataset after LDA has been applied. The plot
shows the transformed dataset, where each colour is a different class.

i p1 o
t1t0

M2

Figure 3.12: State M2 of the MCPS for ‘wine’ dataset during the training stage. The
token at this state represents the classified instances. This is the last state for this partic-
ular MCPS. Thus, both t0 and t1 are trained and the MCPS is ready to make predictions
for unlabelled data.

52 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

pose, data mining toolboxes contain a number of methods to choose from. Either using
a graphical interface or a text based approach, one can pick the desired methods and
connect them forming a workflow (see e.g. Figure 3.13).

Figure 3.13: Example of WEKA workflow. Components have been manually selected.
(Screenshot from WEKA Knowledge Flow).

The algorithm selection problem defined by Rice (1976) consists of finding the best
algorithm for solving a certain problem. In the context of predictive modelling, the ‘best
algorithm’ is the MCPS that minimises the predictive error for a given dataset.

Let Θ be the set of all possible MCPSs that can be composed using the available meth-
ods. For example, if there is only a single method available, the only MCPS that can be
composed has an input place, a transition, and an output place as in Figure 3.5. How-
ever, if there are no constraints on how the components can be connected, the size of Θ
is infinite (i.e. |Θ| = ∞). That could be done for example by infinitely concatenating
the same component or having an unbounded hyperparameter range (e.g. λ ∈ R). For
that reason, it is common to apply constraints to limit |Θ| like limiting the maximum
number of nodes or restricting the list of methods by using meta-learning (Feurer et al.
(2014)), prior knowledge (Swersky et al. (2013)) or surrogates (i.e. cheap-to-evaluate
models, Eggensperger et al. (2012)). MCPS composition framework is represented in
Figure 3.14. The set Θ defines the search space which is generated from a pool of meth-
ods taking into account a number of constraints. Each MCPS from the search space is
evaluated on the given dataset. Finally the best MCPS according to the evaluation criteria
is returned.

Pool of methods

PCA
PLS

J48
NB

SVM

Evaluation

Dataset

*∈
Generator

Meta-data

Figure 3.14: Diagram of MCPS composition framework. The search space Θ is made of
MCPSs generated from the pool of available methods which is filtered by the meta-data
of the given dataset. Then, MCPSs are evaluated and the best one according to the loss
function is returned.

3.5. HYPERPARAMETER OPTIMISATION OF MCPS 53

Formally, the composition problem consists of finding the MCPS

(P, T, F)∗ = θ∗ = arg min
θ(j)∈Θ

L(θ(j),Dtrain,Dtest) (3.2)

where L is the loss function which in this thesis is the predictive error for the testing set
Dtest achieved by the θ(j) after being trained with the training set Dtrain.

Nevertheless, most of the methods have hyperparameters that play an important role.
Next section introduces the problem of hyperparameter optimisation for MCPSs.

3.5 Hyperparameter optimisation of MCPS

The hyperparameter optimisation problem for a learning algorithm was described in Sec-
tion 2.5.3. In the context of MCPSs, each transition t ∈ T has a set of hyperparameters
λ, hence Equation 3.2 needs to be modified as follows

(P, Tλ∗ , F)∗ = θ∗λ∗ = arg min
θ(j)∈Θ,λ∈Λ(j)

L(θ
(j)
λ ,Dtrain,Dtest) (3.3)

where Λ(j) is the set of all possible combinations of hyperparameter values for θ(j). How-
ever, finding the best values for a set of hyperparameters could be a challenging task for
several reasons:
• if the number of hyperparameters to optimise is large;
• if the domain of the hyperparameters is large and therefore |Λ(j)| → ∞;
• if the loss function is not monotonic and has many local minima.

Main strategies for approaching hyperparameter optimisation problem include:
• Coordinate descent, where a greedy approach is used in which each hyperparam-

eter is optimised while the rest stay fixed (Friedman et al. (2007)).
• Grid search, where the search space is fully explored (Bergstra & Bengio (2012)).
• Random search, where the search space is partially explored in a random way

during a certain amount of time (Bergstra & Bengio (2012)).
• Model-based methods, where the unknown loss function is sought by exploring

the search space in a sequential manner (Hutter et al. (2011)).
The state-of-the-art of these methods is discussed further in the next chapter.
Hyperparameter optimisation is usually performed after the model has been selected

(see e.g. Bengio (2000); Guo et al. (2008); Bergstra & Bengio (2012)). However, the
problem is very similar to model selection since different parametrisations of the same
model (e.g. different kernels in a support vector machine (SVM), different structures of
a neural network) can in fact be treated as different models. Therefore it makes sense
to approach both model and hyperparameter selection problems jointly. The Combined
Algorithm Selection and Hyperparameter optimisation (CASH) problem presented in the
next section defines a search space in which both these tasks are merged.

54 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

3.6 CASH problem for MCPS

The Combined Algorithm Selection and Hyperparameter optimisation (CASH) problem
– originally defined by Thornton et al. (2013) – consists of finding the best combination
of learning algorithmA∗ and hyperparametersλ∗ that optimise an objective function (e.g.
Equation 3.4 minimises the k-fold cross-validation error) for a given datasetD. Formally,
CASH problem is given by

A∗λ∗ = arg min
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

L(A
(j)
λ ,D(i)

train,D
(i)
valid) (3.4)

whereA = {A(1), . . . , A(k)} is a set of algorithms with associated hyperparameter spaces
Λ(1), . . . ,Λ(k). The loss function L takes as arguments an algorithm configuration Aλ

(i.e. an instance of a learning algorithm and hyperparameters), a training set Dtrain and a
validation set Dvalid.

To accommodate the definition of MCPS into a CASH problem,A is generalised from
Equation 3.4 to be a set of MCPSs Θ rather than individual algorithms. As a consequence,
each A is now an MCPS θ(j) = (P, Tλ, F)(j) which has a hyperparameter space Λ(j),
made of the concatenation of the hyperparameter spaces of all its transitions T . The
CASH problem is now concerned with finding

(P, Tλ∗ , F)∗ = arg min
(P,T,F)(j)∈Θ,λ∈Λ(j)

1

k

k∑
i=1

L((P, Tλ, F)(j),D(i)
train,D

(i)
valid) (3.5)

Complexity of MCPSs can vary significantly depending on the number of compo-
nents and their hyperparameters. Increasing the number of components in an MCPS also
increases the number of hyperparameters that need to be set and therefore makes it a
much more difficult optimisation problem. The next chapter focuses on how to tackle the
CASH problem and reports on an extensive experimental analysis performed as part of
this study.

3.7 Summary

Data-driven predictive modelling requires a number of steps to prepare a dataset for build-
ing a model. The workflow connecting different data processing methods is known as
Multi-Component Predictive System (MCPS). There is however a gap in the literature
to formalise the representation of an MCPS. To this end, this thesis proposes a novel
approach based on Petri nets. The advantages of Petri nets over other representations lie
on their expressive power to model process execution and their analysis techniques for
verifying workflow logic (van der Aalst (2000)). The proposed approach also allows the
generalisation of different data preprocessing methods and learning algorithms under the
same concept of ‘transition’. Moreover, this new definition has made possible the gen-

3.7. SUMMARY 55

eralisation of the CASH problem to not only optimise a single algorithm but any-length
workflow, which is also a novel contribution.

A further extension of MCPS to support multiple type of tokens is presented in Ap-
pendix C, where the concept of coloured tokens is used to represent data and meta-data
within the same system. This serves as an example of how the flexibility of Petri nets
helps to represent a process flow in complex systems.

The case study presented in Appendix B shows the process of manually composing
an MCPS in a real scenario. In such case, the optimisation of a single preprocessing
component (i.e. shutdown detection) has been quite time-consuming, including not only
tuning of hyperparameters but also help of domain-knowledge experts to select the right
features. For that particular problem, MCPS composition was completed in the first place
and then hyperparameter optimisation was performed on the selected components. That
means that some methods were discarded either based on expert bias or testing only on
default hyperparameters. Therefore, some potentially good methods which performance
highly depends on hyperparameter values could have been discarded upfront and not
further considered. Therefore, it makes sense to join both problems into a single one
forming a CASH problem.

It would be then highly desirable to automate the process of composing and optimising
an MCPS for a given dataset. This would not only save time but also it could potentially
find better solutions than a human could, given the same amount of time. However,
finding the best MCPS in large search spaces is a challenging task that requires a high
computational cost which is aimed to be reduced by smart strategies. The following
chapter presents how to approach this problem with different strategies.

56 CHAPTER 3. MULTICOMPONENT PREDICTIVE SYSTEMS

Chapter 4

Automatic composition and
optimisation of MCPSs

4.1 Introduction

Performance of data-driven predictive models heavily relies on the quality and quantity
of data used to build them. However, in real applications, even if the data is abundant, it is
also often imperfect and considerable effort needs to be invested into a labour-intensive
task of cleaning and preprocessing such data in preparation for subsequent modelling.
Some authors claim that these tasks can account for as much as 60-80% of the total time
spent on developing a predictive model (see e.g. Pyle (1999); Linoff & Berry (2011)).
Therefore, approaches and practical techniques allowing to reduce this effort by at least
partially automating some of the data preparation steps, can potentially transform the
way in which predictive models are typically built.

In many scenarios one needs to sequentially apply multiple preprocessing methods
to the same data (e.g. outlier detection → missing value imputation → dimensionality
reduction), effectively forming a preprocessing chain. Composition of such a prepro-
cessing chain is a challenging problem as described in the previous chapter. This task,
apart from choosing the components to use and arranging them in a particular order, also
includes setting their hyperparameters.

After the data has been preprocessed in an appropriate way, the next step in a data min-
ing process is modelling. Similarly to preprocessing, this step can also be very labour-
intensive, requiring evaluation of multiple alternative models. Hence automatic model
selection has been attempted in different ways, for example using active testing (Leite
et al. (2012)), meta-learning (Lemke & Gabrys (2010)) or information theory (McQuar-
rie & Tsai (1998)). A common theme in the literature is comparison of different models
using data always preprocessed in the same way. However, some models may perform
better if they are built using data specifically preprocessed with a particular model type
in mind. In addition, hyperparameters play an important role in most of the models and
setting them manually is time-consuming mainly for two reasons: (1) there are typically
multiple hyperparameters which can take many values (with an extreme case being con-

57

58 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

tinuous hyperparameters), and (2) they are validated using cross-validation.
The motivation for automating composition of MCPSs is twofold. In the first instance

it will help to reduce the amount of time spent on the most labour-intensive activities
related to predictive modelling, and therefore allow to dedicate human expertise to other
tasks. The second motivation is to achieve better results than a human expert could,
given a limited amount of time. The number of possible methods and hyperparameter
combinations increases exponentially with the number of components in an MCPS and,
in majority of the cases, it is not computationally feasible to evaluate all of them.

This chapter tackles the problem of automating the CASH problem of MCPSs as an
optimisation task to minimise the predictive error for a given dataset. Firstly, Section 4.2
explains how to solve the CASH problem using Bayesian optimisation, which is the
base for the most promising approaches in recent years. These approaches are known
as Sequential Model-Based Optimisation (SMBO) methods and are presented in Sec-
tion 4.2.2. After that, Section 4.2.3 explains the software development carried out during
this research to build MCPS using SMBO methods. An extensive experimental analysis
with multiple datasets to compare different optimisation strategies, results and related
discussion are presented in Section 4.3. The chapter concludes in Section 4.4.

4.2 Automating the CASH problem

Automatic construction of Petri nets has been previously addressed in the literature. For
instance, Anastasiou (2013) infers a Petri net from traces of indoor location data of in-
dividuals using cluster analysis. Another approach is process mining (van der Aalst
(2012)), in which a WF-net is composed by extracting knowledge from the event logs
of a working process. However, there is a research gap on automating the composition
of Petri nets for predictive modelling. In particular, this thesis considers the problem of
composition and optimisation of MCPSs for classification and regression tasks.

This problem is formulated in this thesis as a CASH problem (see Equation 3.5).
For the sake of clarity, let θ = (P, Tλ, F) ∈ Θ be an MCPS configuration within the
search space Θ formed of all possible MCPS configurations; and cθ = L(θ,Dtrain,Dtest)
the cost of applying MCPS over the test set Dtest. In this thesis, the cost refers to the
predictive error. Nevertheless, it could represent a different value (e.g. evaluation time)
or a combination of values (e.g. both error and time).

One way of finding the best MCPS θ∗ for a given dataset D is to perform a grid
search. This consists of an exhaustive search over Θ. However, such technique could
be computationally very expensive in large search spaces or with big datasets. Instead,
a simpler mechanism like random search, where the space is randomly explored within
a given time budget, has been shown to be more effective in high-dimensional settings
(Bergstra & Bengio (2012)).

The main reason for MCPS composition being a challenging problem is the computa-
tional power and the amount of time needed to explore high dimensional search spaces.
To begin with, an undetermined number of nodes can make the workflow very simple

4.2. AUTOMATING THE CASH PROBLEM 59

or very complex. Secondly, the order in which the nodes should be connected is un-
known a priori. Also, even transitions belonging to the same category (e.g. missing value
imputation) can vary widely in terms of the number and type of hyperparameters (e.g.
continuous, categorical or conditional), with defining of a viable range for each of the hy-
perparameters being an additional problem in itself. This complexity makes techniques
like grid search not feasible. Even ‘intelligent’ strategies can struggle with exploration
because the high dimensional search space is likely to be plagued with a multitude of
local minima.

As previously mentioned in Section 3.4, the size of the search space (i.e. |Θ|) can be
reduced by applying a range of constraints (Feurer et al. (2014); Swersky et al. (2013);
Eggensperger et al. (2012)). However, this thesis investigates the impact of extending the
search space, not by including more predictive models, but considering preprocessing
methods instead. Nonetheless, some constrains are applied like limiting the amount and
order of components which will be explained in Section 4.3.

4.2.1 Bayesian optimisation

A promising approach to the CASH problem that has gained popularity in the last few
years is Bayesian optimisation (Brochu et al. (2010); Shahriari et al. (2016)). This ap-
proach – outlined in Algorithm 1 – aims to find

θ∗ = argmin
θ∈Θ

L(θ,Dtrain,Dtest) (4.1)

that globally minimises the loss function L. It assumes that the posterior distribution
p(L | R1:n) can be estimated by the likelihood function p(R1:n | L) and the prior distri-
bution p(L) using Bayes’ theorem

p(L | R1:n) ∝ p(R1:n | L)p(L) (4.2)

where R1:n = {(θ1, cθ1), ..., (θn, cθn)} is the set of run configurations and its associated
costs. Since evaluating the loss function is costly, an acquisition function αp(L) : Θ→ R
quantifying the utility of an evaluation is used instead as a cheaper alternative. This
function has an inherent trade-off between exploration (where there is more uncertainty)
and exploitation (where the cost is expected to be low). There are different types of
acquisition functions based on the likelihood of improvement (Kushner (1964)), the up-
per confidence bound criterion (Lai & Robbins (1985)), or information gain (Hennig &
Schuler (2012)).

The procedure of Algorithm 1 is also visualised with a toy example in Figure 4.1.
In this one-dimensional problem, the unknown loss function is represented by a dashed
line. The prior probability p(L) is captured by a Gaussian process (GP). At time t = 2,
two runs have already been completed and the acquisition function is recommending to
evaluate the next point that is likely to minimise the cost. When the new candidate point
is evaluated, the GP is updated and the procedure continues.

60 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

Algorithm 1 Bayesian optimisation
1: for n = 1, 2, ... do
2: θn+1 = argmax

θ∈Θ
α(θ) . select most promising configuration

3: cθn+1 = L(θn+1,Dtrain,Dtest) . compute cost
4: Rn+1 = {Rn, (θn+1, cθn+1)} . update list of run configurations
5: update p(L | R1:n+1)
6: end for

Figure 4.1: Example of Bayesian optimisation on a one-dimensional problem. At t = 2,
the GP has been initialised with two observations of the costly-to-evaluate loss function.
The cheap-to-evaluate acquisition function finds what is most promising value of x to
evaluate next based on the posterior mean and uncertainty. At t = 3, the GP has been
updated with a new observation. The procedure continues until time budget is exhausted.

4.2. AUTOMATING THE CASH PROBLEM 61

4.2.2 Sequential Model-Based Optimisation

Sequential Model-Based Optimisation (SMBO), introduced by Hutter et al. (2011), is
a Bayesian optimisation framework that incrementally builds a regression model ψ –
known as surrogate model – using instances from R. Then, such model is used to pre-
dict the performance of promising candidate configurations. The selection of promising
configurations is guided by an acquisition function αψ : Θ → R. A function that has
been shown to work well in SMBO framework (Hutter et al. (2009)) is the expected
improvement (EI – Mockus et al. (1978)) given by

αψ(θ | Rn) = Eψ[I(θ)] = Eψ[max{0, cmin − cθ}] (4.3)

where cmin is the cost of the best configuration found so far. The advantage of this func-
tion is that it can be evaluated without computing the loss function for each θ (i.e. running
the configuration) since cθ can be estimated using ψ. A common technique to select the
next promising configuration consists of evaluating EI for thousands of random samples
and then returning the best one (Hutter et al. (2011)). Algorithm 2 shows the SMBO
procedure that returns the best configuration found θmin (also known as ‘incumbent’).

Algorithm 2 Sequential Model-Based Optimisation
1: θmin = initial configuration (usually random sample from Θ)
2: R = {[θmin,L(θmin,D)]} . initialise set of run configurations and associated costs
3: repeat
4: ψ = FitModel(R)
5: θ = FindNextConfiguration(α, ψ, θmin,Θ) . See Figure 4.1
6: cθ = L(θ,D) . compute cost
7: R.add([θ, cθ]) . update list of run configurations
8: θmin = argmin

θ
cθ | [θ, cθ] ∈ R . update best configuration found

9: until budget exhausted
10: return θmin

Apart from continuous and categorical, it is often the case of having conditional at-
tributes. That is, some attributes may influence the optimisation problem only when
some other attributes take certain values. For example Gaussian kernel width parameter
in SVM is only present if SVM is using Gaussian kernels. Search spaces containing this
type of attributes are known as conditional spaces (Shahriari et al. (2016)).

The ability of SMBO methods to work in conditional spaces is given by the surro-
gate model they use. Models like Random Forests or the Tree Parzen Estimator (TPE
– Bergstra et al. (2011)) support conditional attributes. A successful SMBO approach
using random forests is SMAC (Sequential Model-based Algorithm Configuration by
Hutter et al. (2011)) where an ensemble of decision trees makes it possible to model con-
ditional variables. Another state-of-the-art approach uses TPE, where a graph-structured
model matches the conditional structure of the search space. Other SMBO approaches
use Gaussian processes as surrogate models (e.g. Snoek et al. (2012)). However, they

62 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

Name Surrogate model Language URL
SMAC Random forest Java http://www.cs.ubc.ca/labs/beta/Projects/SMAC
Hyperopt Tree Parzen estimator Python https://github.com/hyperopt/hyperopt
Spearmint Gaussian process Python https://github.com/HIPS/Spearmint
Bayesopt Gaussian process C++ https://bitbucket.org/rmcantin/bayesopt
PyBO Gaussian process Python https://github.com/mwhoffman/pybo
MOE Gaussian process Python / C++ https://github.com/Yelp/MOE
Scikit-Optimize Various Python https://scikit-optimize.github.io
Auto-WEKA* SMAC,TPE Java https://github.com/automl/autoweka
Auto-Sklearn* SMAC Python https://github.com/automl/auto-sklearn
* Toolkits for automating algorithm selection in WEKA and Scikit-learn, respectively.

Table 4.1: Popular open-source tools supporting SMBO methods

cannot work in conditional spaces because standard kernels are not defined over variable-
length spaces (Shahriari et al. (2016)) and therefore are not used in this thesis. A list of
popular open-source tools for running SMBO methods is detailed in Table 4.1.

4.2.3 Extension and generalisation of Auto-WEKA

In order to apply this research to process industry datasets, a substantial amount of time
has been spent on developing an extension of Auto-WEKA tool to support automatic
composition and optimisation of MCPSs. The search space of this tool now consists
of all the available WEKA filters, predictors and meta-predictors with the constraint of
limiting the number of components to follow the framework described in Section 1.4.

Auto-WEKA is a software developed by Thornton et al. (2013) which allows algo-
rithm selection and hyperparameter optimisation both in regression and classification
problems. The current Auto-WEKA version is 2.1 and it provides a blackbox interface
for the CASH problem as expressed in Equation 3.4, where the search space is defined
by WEKA predictors and meta-predictors.

As part of this thesis, Auto-WEKA 0.5 was extended due to its flexibility for the nec-
essary extensions to model MCPSs, not present in the current blackbox version. Both
versions provide a one-click solution for automating algorithm selection and hyperpa-
rameter optimisation. However, version 0.5 is much more flexible, offering multiple
customisation possibilities like pre-selection of WEKA predictors, choosing the optimi-
sation strategy or setting the optimisation criteria. Auto-WEKA also supports various
usage scenarios depending on user knowledge, needs and available computational bud-
get. One can for example, run several optimisations in parallel, ending up with multiple
solutions that can then be analysed individually or used to build an ensemble (Feurer
et al. (2015)).

The search space is automatically generated by Auto-WEKA by inspecting what
WEKA methods are compatible with the given dataset. The hyperparameters of these
methods are also included in the search space. However, the original Auto-WEKA im-
plementation had the limitation of not including second-level hyperparameters (e.g. the
WEKA implementation of support vector classifiers allows to select between different
kernel types which contain their own hyperparameters). As part of this new Auto-WEKA

http://www.cs.ubc.ca/labs/beta/Projects/SMAC
https://github.com/hyperopt/hyperopt
https://github.com/HIPS/Spearmint
https://bitbucket.org/rmcantin/bayesopt
https://github.com/mwhoffman/pybo
https://github.com/Yelp/MOE
https://scikit-optimize.github.io
https://github.com/automl/autoweka
https://github.com/automl/auto-sklearn

4.3. EXPERIMENTS 63

extension, this limitation has been sorted out (see Martin Salvador et al. (2016c)). Au-
tomatic creation of conditional hyperparameters is therefore now possible by recursively
‘expanding’ complex hyperparameters (i.e. hyperparameters containing further hyperpa-
rameters) during the generation of the search space.

For the purpose of this thesis, Auto-WEKA has been extended to support the compo-
sition of MCPS (Martin Salvador et al. (2016a)). Any WEKA filter can now be included
as part of the composition process. In addition, a new WEKA filter has been developed to
create flexible chains of common preprocessing steps including missing value handling,
outlier removal, data transformation, dimensionality reduction and sampling.

The following external WEKA packages1 have been included as part of the developed
extended Auto-WEKA tool to increase the number of preprocessing methods: EMIm-
putation, RBFNetwork, StudentFilters, baggedLocalOutlierFactor, localOutlierFactor,
partialLeastSquares and wavelet. Furthermore, a new filter has been created to combine
any outlier detection method and their removal in a single step. A new data sampling fil-
ter for WEKA has been implemented in which instances are periodically selected given a
fixed interval of time – this is common in process industry to reduce the size of datasets.

Moreover, this Auto-WEKA extension generates an MCPS in a PNML (Petri Net
Markup Language) format which can be analysed using any tool supporting this standard
language (e.g. WoPeD2). Therefore, there are three main outputs once a new, extended
Auto-WEKA run has finished: a) the trained MCPS ready to make predictions on unseen
data; b) WEKA configuration (i.e. parametrised components); c) the Petri net in a PNML
format.

This extended version of Auto-WEKA and all the scripts for the analysis of the results
such as the creation of plots and tables have been also released in the BU’s Data Science
Initiative repository3.

4.3 Experiments

A major limitation of the study presented in Thornton et al. (2013) was the use of only
one preprocessing step (i.e. feature selection) whose optimisation was decoupled from
model building. That is, both feature selection and predictor were individually optimised
and therefore selected features were not based on their predictive power in conjunction
with the learning algorithm used in the subsequent step, but on some other criteria (e.g.
correlation with the target variable). The extended CASH problem presented in this thesis
includes not only the feature selection but any additional preprocessing components. The
proposed approach extends the work of Thornton et al. (2013) to support joint optimisa-
tion of predictive models (classifiers and regressors), preprocessing and postprocessing
components (in short, MCPS).

This section describes the experiments carried out to compare the results of au-

1http://weka.sourceforge.net/packageMetaData/
2http://woped.dhbw-karlsruhe.de/woped/
3https://github.com/dsibournemouth/autoweka

http://weka.sourceforge.net/packageMetaData/
http://woped.dhbw-karlsruhe.de/woped/
https://github.com/dsibournemouth/autoweka

64 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

tomating the composition and optimisation of MCPSs in different search spaces. For
a fair comparison with the experiments in Thornton et al. (2013), the same datasets and
methodology have been followed.

4.3.1 Methodology

The three main characteristics which define a CASH problem are: a) the search space,
b) the objective function and c) the optimisation algorithm.

In this study three search spaces of very different sizes have been considered (see
Table 4.2):
• PREV: This is the search space used in Thornton et al. (2013) where predictors

and meta-predictors (which take outputs from one or more base predictive models
as their input) were considered (756 hyperparameters). Feature selection is also
performed as a preprocessing step before the optimisation process (30 hyperpa-
rameters). It is used as a baseline.
• NEW: This search space only includes predictors and meta-predictors. In contrast

with PREV space, no previous feature selection stage is performed. Please note
however that some WEKA classifiers perform internal preprocessing steps (e.g.
MultiLayerPerceptron (MLP) removes instances with missing values and scales
the attributes to range [-1,1]), as shown in Martin Salvador et al. (2016c). A cat-
egorical hyperparameter can be either simple or complex (i.e. when it contains
WEKA classes). In the latter case, the search space is increased by adding recur-
sively the hyperparameters of each method belonging to such complex parameter
(e.g. the ‘DecisionTable’ predictor contains a complex hyperparameter whose val-
ues are three different types of search methods with further hyperparameters – see
Table 4.4 for details). That extension increases the space to 1186 hyperparameters.
• FULL: This search space has been defined to support a flow with up to five pre-

processing steps, a predictive model and a meta-predictor (1564 hyperparameters).
The transitions are connected in the following order: missing value imputation;
outlier detection and removal; data transformation; dimensionality reduction; sam-
pling; predictor; meta-predictor. This flow is based on the framework described in
Section 1.4, though these preprocessing steps are also common in other fields. If
the meta-predictor transition is either ‘Stacking’ or ‘Vote’, its number of inputs can
vary from 1 to 5.

Missing Outlier Data Dimens.
Sampling Predictor

Meta Complex
Size*

Value Handling Transf. Reduction Predictor Hyperp.
PREV X X X 21,560
NEW X X X 2,369,598
FULL X X X X X X X X 812 billion

Table 4.2: Summary of search spaces. * Size considering only methods, categorical and
complex hyperaparameters.

4.3. EXPERIMENTS 65

The methods that can be included in each component are listed in Tables 4.3 and 4.4.
Note, that FULL search space is more than twice as large as the one presented in Thornton
et al. (2013) in terms of the raw number of hyperparameters.

Method
Num. Categorical

Simple Complex
Missing values (MV)
No handling 0 0 0
ReplaceMissingValues 0 0 0
CustomReplaceMissingValues 0 M 0
↪→ (M) Zero 0 0 0
↪→ (M) Mean 0 0 0
↪→ (M) Median 0 0 0
↪→ (M) Min 0 0 0
↪→ (M) Max 0 0 0
↪→ (M) LastKnown 0 0 0
EMImputation 3 1 0
Outliers (OU)
No handling 0 0 0
RemoveOutliers 0 0 O
↪→ (O) InterquartileRange (IQR) 2 0 0
↪→ (O) BaggedLOF 1 1 0
Transformation (TR)
No transformation 0 0 0
Center 0 0 0
Standardize 0 0 0
Normalize 2 0 0
Wavelet 0 0 0
IndependentComponents 3 1 0

Method
Num. Categorical

Simple Complex
Dimensionality reduction (DR)
No reduction 0 0 0
PrincipalComponents (PCA) 3 1 0
RandomSubset 2 0 0
AttributeSelection 0 0 S,E
↪→ (S) BestFirst 1 1 0
↪→ (S) GreedyStepwise 2 3 0
↪→ (S) Ranker 1 0 0
↪→ (E) CfsSubsetEval 0 2 0
↪→ (E) CorrelationAttributeEval 0 0 0
↪→ (E) GainRatioAttributeEval 0 0 0
↪→ (E) InfoGainAttributeEval 0 2 0
↪→ (E) OneRAttributeEval 2 1 0
↪→ (E) PrincipalComponents 2 3 0
↪→ (E) ReliefFAttributeEval 2 1 0
↪→ (E) Sym.UncertAttributeEval 0 1 0
↪→ (E) WrapperSubsetEval 0 0 0
PLSFilter 1 4 0
Sampling (SA)
No sampling 0 0 0
Resample 2 0 0
ReservoirSample 2 0 0
Periodic sampling 1 0 0

Table 4.3: Number of parameters of the available preprocessing methods

As the datasets used in the experiments are intended for classification, the goal is
to minimise the classification error averaged over 10 cross-validation folds within the
optimisation process.

Two SMBO strategies (SMAC and TPE) have been compared against two baselines
(WEKA-Def and random search). The following experimental scenarios have been de-
vised:
• WEKA-Def: All the predictors and meta-predictors listed in Table 4.4 are run

using WEKA’s default hyperparameter values. Filters are not included in this strat-
egy, although some predictors may perform specific preprocessing steps as part of
their default behaviour.
• Random search: The whole search space is randomly explored allowing 30 CPU

core-hours for the process.
• SMAC and TPE: An initial configuration is randomly selected and then the op-

timiser is run for 30 CPU core-hours to explore the search space in an intelligent
way, allowing for comparison with the random search.

In order to compare the results with the ones presented in Thornton et al. (2013) the
experimental settings have been replicated as closely as possible. Different optimisation
strategies have been evaluated over 21 well-known datasets representing classification
(see Table 4.5). Each dataset D = {Dtrain,Dtest} has been split into 70% training and
30% testing sets, unless partition was already provided. Please note that Dtrain is then

66 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

Method
Num. Categorical

Simple Complex
Predictors (P)
BayesNet 0 1 Q
↪→ (Q) local.K2 1 4 0
↪→ (Q) local.HillClimber 1 4 0
↪→ (Q) local.LAGDHillClimber 3 4 0
↪→ (Q) local.SimulatedAnnealing 3 2 0
↪→ (Q) local.TabuSearch 3 4 0
↪→ (Q) local.TAN 0 2 0
NaiveBayes 0 2 0
NaiveBayesMultinomial 0 0 0
Logistic 1 0 0
MLP 6 5 0
SMO 1 2 K
↪→ (K) NormalizedPolyKernel 1 1 0
↪→ (K) PolyKernel 1 1 0
↪→ (K) Puk 2 0 0
↪→ (K) RBFKernel 1 0 0
SimpleLogistic 0 3 0
IBk 1 4 A
↪→ (A) BallTree 0 1 2
↪→ (A) CoverTree 1 1 1
↪→ (A) KDTree 2 1 2
↪→ (A) LinearNNSearch 0 1 0
KStar 1 2 0
DecisionTable 0 3 S
↪→ (S) BestFirst 1 2 0
↪→ (S) GreedyStepwise 2 3 0
↪→ (S) Ranker 1 0 0
JRip 2 2 0
OneR 1 0 0
PART 2 2 0
ZeroR 0 0 0
DecisionStump 0 0 0
J48 2 5 0
LMT 1 6 0
REPTree 2 2 0
RandomForest 3 2 0
RandomTree 4 4 0

Method
Num. Categorical

Simple Complex
Meta-predictors (MP)
LWL 0 2 A
↪→ (A) BallTree 0 1 2
↪→ (A) CoverTree 1 1 1
↪→ (A) KDTree 2 1 2
↪→ (A) LinearNNSearch 0 1 0
AdaBoostM1 2 3 0
AttributeSelectedClassifier 0 0 S,E
↪→ (S) BestFirst 1 1 0
↪→ (S) GreedyStepwise 2 3 0
↪→ (S) Ranker 1 0 0
↪→ (E) CfsSubsetEval 0 2 0
↪→ (E) GainRatioAttributeEval 0 0 0
↪→ (E) InfoGainAttributeEval 0 2 0
↪→ (E) OneRAttributeEval 2 1 0
↪→ (E) WrapperSubsetEval 0 0 0
Bagging 2 1 0
ClassificationViaRegression 0 0 0
FilteredClassifier 0 0 0
LogitBoost 5 4 0
MultiClassClassifier 1 2 0
RandomCommittee 1 0 0
RandomSubSpace 2 0 0
Stacking 0 1 0
Vote 0 1 0

Table 4.4: Number of parameters of the available predictors

split into 10-folds for Equation 3.5 and thereforeDtest is not used during the optimisation
or training process at all.

For each strategy 25 runs are performed with different random seeds within a 30 CPU
core-hours optimisation time limit on Intel Xeon E5-2620 six-core 2.00GHz CPU. In the
case a configuration step exceeds 30 minutes or 3GB of RAM to evaluate, its evaluation
is aborted and not considered further. Once the optimisation process has finished, the
returned MCPS is trained using the whole training set Dtrain and produce predictions for
the testing set Dtest.

4.3.2 Results

The analysis of results is organised around the following aspects: a) impact of signifi-
cantly extending the search space in the optimisation process; b) identification of promis-

4.3. EXPERIMENTS 67

Dataset Continuous Discrete Classes Train Test %Missing
abalone 7 1 28 2924 1253 0
amazon 10000 0 50 1050 450 0
car 0 6 4 1210 518 0
cifar10 3072 0 10 50000 10000 0
cifar10small 3072 0 10 10000 10000 0
convex 784 0 2 8000 50000 0
dexter 20000 0 2 420 180 0
dorothea 100000 0 2 805 345 0
germancredit 7 13 2 700 300 0
gisette 5000 0 2 4900 2100 0
kddcup09app 192 38 2 35000 15000 69.47
krvskp 0 36 2 2238 958 0
madelon 500 0 2 1820 780 0
mnist 784 0 10 12000 50000 0
mnistrot 784 0 10 12000 50000 0
secom 590 0 2 1097 470 4.58
semeion 256 0 10 1116 477 0
shuttle 9 0 7 43500 14500 0
waveform 40 0 3 3500 1500 0
wineqw 11 0 11 3429 1469 0
yeast 8 0 10 1039 445 0

Table 4.5: Datasets, number of continuous attributes, number of categorical attributes,
number of classes, number of instances, and percentage of missing values.

ing methods for each dataset; and c) trade-off between exploration and exploitation in the
search strategies.

Impact of extending the search space

Classification performance for each dataset can be found in Tables 4.6 and 4.7, which
show the 10-fold cross-validation error overDtrain (denoted as ε = 1

10

∑10
i=1 L(y(i), ŷ(i)),

where L is the classification error and y(i), ŷ(i) the ground truth and the predictions for
the fold i, respectively) and the holdout error over Dtest (denoted as E = L(ytest, ŷtest))
achieved by each strategy, respectively (see Figure 4.2 for the overall process). Random
search, SMAC and TPE results have been calculated using the mean of 100,000 boot-
strap samples (i.e. randomly selecting 4 of the 25 runs and keeping the one with lowest
cross-validation error as done in Thornton et al. (2013)), while only the lowest errors
are reported for WEKA-Def. PREV columns contain the values reported in Thornton
et al. (2013), while NEW and FULL columns contain the results for the search spaces
described in Section 4.3.1. An upward arrow indicates an improvement when using ex-
tended search spaces (NEW and FULL) in comparison to previous results (PREV) re-
ported in Thornton et al. (2013). Boldface values indicate the lowest classification error
for each dataset.

68 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

dataset WEKA-DEF RANDOM SMAC TPE
PREV NEW FULL PREV NEW FULL PREV NEW FULL

abalone 73.33 72.03 72.53 72.93 71.71 72.21 72.20 72.14 72.01 ↑ 72.17
amazon 43.94 59.85 45.72 ↑ 62.22 47.34 39.57 ↑ 53.51 50.26 40.27 ↑ 56.26
car 2.71 0.53 0.47 ↑ 2.58 0.61 0.38 ↑ 0.46 ↑ 0.91 0.21 ↑ 0.29 ↑
cifar10 65.54 69.46 58.89 ↑ 66.18 ↑ 62.36 56.44 ↑ 64.76 67.73 55.59 ↑ 70.40
cifar10small 66.59 67.33 60.45 ↑ 70.32 58.84 57.90 ↑ 71.05 58.41 56.56 ↑ 68.65
convex 28.68 33.31 25.02 ↑ 34.82 25.93 21.88 ↑ 25.52 28.56 23.19 ↑ 29.93
dexter 10.20 10.06 7.54 ↑ 8.92 ↑ 5.66 6.42 7.51 9.83 6.19 ↑ 7.76 ↑
dorothea 6.03 8.11 6.25 ↑ 6.94 ↑ 5.62 5.95 6.58 6.81 5.92 ↑ 6.16 ↑
germancredit 22.45 20.15 21.31 21.80 17.87 19.65 20.49 21.56 19.88 ↑ 20.07 ↑
gisette 3.62 4.84 2.30 ↑ 3.66 ↑ 2.43 2.21 ↑ 2.76 3.55 2.35 ↑ 3.07 ↑
kddcup09app 1.88 1.75 1.80 1.70 ↑ 1.70 1.80 1.80 1.88 1.80 ↑ 1.80 ↑
krvskp 0.89 0.63 0.42 ↑ 0.56 ↑ 0.30 0.28 ↑ 0.35 0.43 0.31 ↑ 0.33 ↑
madelon 25.98 27.95 19.20 ↑ 27.60 ↑ 20.70 15.61 ↑ 17.24 ↑ 24.25 16.03 ↑ 19.14 ↑
mnist 5.12 5.05 3.78 ↑ 7.85 3.75 3.50 ↑ 5.51 10.02 3.60 ↑ 7.19 ↑
mnistr 66.15 68.62 58.10 ↑ 67.21 ↑ 57.86 55.73 ↑ 63.62 73.09 57.17 ↑ 65.89 ↑
secom 6.25 5.27 5.85 4.87 ↑ 5.24 6.01 6.10 6.21 5.85 ↑ 6.05 ↑
semeion 6.52 6.06 4.82 ↑ 7.85 4.78 4.48 ↑ 4.92 6.76 4.28 ↑ 5.96 ↑
shuttle 0.0328 0.0345 0.0121 ↑ 0.0349 0.0224 0.0112 ↑ 0.0112 ↑ 0.0251 0.0104 ↑ 0.0112 ↑
waveform 12.73 12.43 12.50 13.09 11.92 12.33 12.48 12.55 12.43 ↑ 12.42 ↑
wineqw 38.94 35.36 33.08 ↑ 35.95 34.65 32.64 ↑ 33.24 ↑ 35.98 32.67 ↑ 32.97 ↑
yeast 39.43 38.74 37.16 ↑ 39.63 35.51 36.50 37.23 35.01 36.17 36.43

Table 4.6: 10-fold Cross Validation error ε (% missclassification). An upward arrow
indicates an improvement with respect to PREV space. Boldfaced values indicate the
lowest classification error for each dataset.

dataset WEKA-DEF RANDOM SMAC TPE
PREV NEW FULL PREV NEW FULL PREV NEW FULL

abalone 73.18 74.88 72.92 ↑ 73.76 ↑ 73.51 73.41 ↑ 73.16 ↑ 72.94 73.04 73.26
amazon 28.44 41.11 39.22 ↑ 58.94 33.99 36.26 49.90 36.59 35.69 ↑ 62.52
car 0.7700 0.0100 0.1300 1.8400 0.4000 0.0526 ↑ 0.1958 ↑ 0.1800 0.0075 ↑ 0.0484 ↑
cifar10 64.27 69.72 58.23 ↑ 67.81 ↑ 61.15 55.54 ↑ 69.99 66.01 54.88 ↑ 70.06
cifar10small 65.91 66.12 59.84 ↑ 72.93 56.84 57.87 72.64 57.01 56.41 ↑ 72.58
convex 25.96 31.20 24.75 ↑ 36.87 23.17 21.31 ↑ 31.05 25.59 22.62 ↑ 34.88
dexter 8.89 9.18 8.29 ↑ 12.59 7.49 7.31 ↑ 10.14 8.89 6.90 ↑ 7.99 ↑
dorothea 6.96 5.22 5.27 5.37 6.21 5.12 ↑ 5.51 ↑ 6.15 5.25 ↑ 5.15 ↑
germancredit 27.33 29.03 25.40 ↑ 26.88 ↑ 28.24 25.42 ↑ 26.68 27.54 25.49 ↑ 26.61 ↑
gisette 2.81 4.62 2.28 ↑ 3.83 ↑ 2.24 2.34 2.85 3.94 2.37 ↑ 3.08 ↑
kddcup09app 1.7405 1.74 1.72 ↑ 2.05 1.7358 1.74 1.74 1.7381 1.74 1.74
krvskp 0.31 0.58 0.34 ↑ 0.39 ↑ 0.31 0.23 ↑ 0.39 0.54 0.36 ↑ 0.33 ↑
madelon 21.38 24.29 19.10 ↑ 24.48 21.56 16.80 ↑ 18.26 ↑ 21.12 16.91 ↑ 18.35 ↑
mnist 5.19 5.05 4.00 ↑ 13.92 3.64 4.10 22.70 12.28 3.96 ↑ 25.48
mnistr 63.14 66.4 57.16 ↑ 69.67 57.04 54.86 ↑ 67.03 70.20 56.31 ↑ 70.04 ↑
secom 8.09 8.03 7.88 ↑ 8.20 8.01 7.87 ↑ 7.87 ↑ 8.10 7.84 ↑ 7.87 ↑
semeion 8.18 6.10 4.78 ↑ 8.27 5.08 5.10 5.46 8.26 4.91 ↑ 6.31 ↑
shuttle 0.0138 0.0157 0.0071 ↑ 0.0219 0.0130 0.0070 ↑ 0.0075 0.0145 0.0069 ↑ 0.0077 ↑
waveform 14.40 14.27 14.26 ↑ 14.28 14.42 14.17 ↑ 13.99 ↑ 14.23 14.34 14.04 ↑
wineqw 37.51 34.41 32.99 36.72 33.95 32.90 ↑ 34.14 33.56 32.93 ↑ 34.09
yeast 40.45 43.15 37.68 ↑ 40.86 ↑ 40.67 37.60 ↑ 39.02 ↑ 40.10 37.89 ↑ 38.92 ↑

Table 4.7: Holdout error E (% missclassification). An upward arrow indicates an im-
provement with respect to PREV space. Boldfaced values indicate the lowest classifica-
tion error for each dataset.

The first thing to note is that, on average, SMBO approaches are considerably better
than the best WEKA-Def results. The only exception is the holdout error of ‘amazon’
dataset. However, the best solution in the FULL search space is still better than WEKA-
Def (20.89% vs 28.44%). That result is expected since default values for WEKA methods
have been set by human experts and are not optimised for any particular dataset.

4.3. EXPERIMENTS 69

D

Search strategy

*=(P,T *,F)*

Testing

ŷtest

Evaluation

ℰ

Dtrain Dtest

ytestXtest

Training

MCPS

10-fold CV

є

Figure 4.2: MCPS training and testing process. The dataset is split into Dtrain and Dtest
sets. The search space Θ is explored using the 10-fold CV performance on Dtrain as
guidance. Then, the resultant MCPS θ∗ = (P, Tλ∗ , F)∗ is trained onDtrain and evaluated
on Dtest to calculate the holdout error E .

As shown in Table 4.6, in the majority of cases (49 of 63), the MCPSs found in the
NEW search space achieve better results (i.e. εNEW < εPREV). In 28 out of 63 cases, the
FULL search space also gets better performance (i.e. εFULL < εPREV). However, finding
good MCPS is more challenging due to the large increase in search space size (Hoos et al.
(2014)). As an example, consider Figure 4.3 where the evolution of the best solution for
‘madelon’ dataset and SMAC strategy is represented over time for each of the 25 runs.
Comparing Figures 4.3-a) and b) one can see that the rate of convergence is much higher
in the smaller space (denoted as NEW). Nevertheless, the overall best-performing model
for ‘madelon’ was found in the FULL space as seen in Table 4.9.

70 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

The way in which the search space is extended can have a considerable impact on
the accuracy of the MCPS found. Additional hyperparameters allowing for extra tuning
flexibility (PREV to NEW) improved the performance in most of the cases. However,
adding more transitions to the MCPS (NEW to FULL) does not seem to help on average,
given the same CPU time limit. Nevertheless, the MCPSs found in the FULL search
space for 8 out of 21 datasets have better or comparable performance to the solutions
found in the NEW space as shown in Table 4.9.

Identifying promising configurations

The best MCPSs found for each dataset are reported in Table 4.9. Each row of this table
represents a sequence of data transformations and predictive models as explained in Sec-
tion 4.3.1. See for example Figures 4.4 and 4.5, where the best MCPSs of ‘kddcup09app’
and ‘amazon’ datasets in the FULL search space are shown. Transitions are effectively
WEKA methods that process the incoming tokens. The solutions found for different
datasets are quite diverse, and they often also vary a lot across the 25 random seed runs
performed for each dataset. In order to better understand the observed differences in the
found MCPSs, the average pairwise similarity of the 25 MCPSs found, and the variance
of their performances have been measured for each dataset (see Figure 4.7). To calculate
the similarity between configurations a weighted sum of Hamming distances given by

d(θa, θb) = 1−
∑n

i=1 (ωi · δi)∑n
i=1 ωi

(4.4)

is used, where θa and θb are MCPSs with n transitions, ωi ∈ Ω is the weight for the ith
transition and δi is the Hamming distance (a standard measure of string dissimilarity) of
components at position i.

Weights have been fixed manually to Ω = {2, 1.5} in the NEW search space and
Ω = {1, 1, 1, 1, 1, 2, 1.5} in the FULL search space. One could however set the weights
in a different way depending on what components are believed to be more relevant. In
this case, preprocessing transitions have the same weight while both predictors and meta-
predictors have higher weights because of their importance (Hoos et al. (2014)). An
analysis to future work could be to investigate the impact of the weights in the generated
dendrograms.

After computing the similarity matrix for the 25 MCPSs found in each dataset/strategy
pair, they are grouped using a complete-linkage hierarchical clustering algorithm. The
resultant dendrogram for the ‘waveform’ dataset and SMAC strategy in the NEW search
space (i.e. only predictor and meta-predictor as transitions) is shown in Figure 4.6a. As it
can be seen, there are three main clusters defined by the base classifier which have been
found to perform best: SimpleLogistic, Logistic and LMT (Logistic Model Tree). The
dendrogram for the FULL scenario is shown in Figure 4.6b. Most of the MCPSs also use
logistic classifiers (as in the smaller search space) but other good solutions include SMO
(support vector classifier) and JRip (rule-based classifier). It can also be noted that the
clusters themselves are no longer as pure as before in terms of the base classifier chosen.

4.3. EXPERIMENTS 71

a) Error convergence of 'madelon' in NEW

b) Error convergence of 'madelon' in FULL

Figure 4.3: 10-fold CV error of best solutions found over time for ‘madelon’ dataset
and SMAC strategy in a) NEW and b) FULL search spaces. Each colour represents a
different run. Solutions in b) are converging much slower than in a) due to the increased
complexity of exploring a much larger search space.

72 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

MultiClassClassifier

Filtered Classifier

MultiFilter
BayesNet
(HillClimber)

dummy dummy

dummy dummy

RemoveOutliers
(IQR)

Standardize

AttributeSelection
(GreedyStepwise + CfsSubsetEval)

ReservoirSample

1

50

...

...

BinarySplit Pairwise
Coupling

dummy dummy

Figure 4.4: The best MCPS in FULL search space for ‘kddcup09app’ dataset as shown
in Table 4.9. The type and name of the preprocessing methods and predictors used are
explained in Tables 4.3 and 4.4 respectively.

Logistic

LMT

SimpleLogistic

RandomSubspace

Bagging

Bagging

AdaBoostM1

RandomSubspace

12.44 ± 0.18

12.69 ± 0.36

12.46 ± 0.13
12.61 ± 0.18

12.82 ± 0.22

12.71 ± 0.16

12.59 ± 0.23

SimpleLogistic

Normalize SMO

LMT

Logistic RandomSubspace

Logistic

Bagging

JRip

PCA Resample Logistic

a) NEW b) FULL

Figure 4.6: Dendrogram for ‘waveform’ dataset and SMAC strategy in the (a) NEW and
(b) FULL search space. Average CV error and standard deviation are shown for the
main clusters. There are more clusters in (b) because of the addition of preprocessing
components.

4.3. EXPERIMENTS 73

RandomSubSpace

Filtered Classifier

MultiFilter
NaiveBayes

Multinomial

dummy dummy

dummy dummy

ReplaceMissingValues
(Min)

Normalize

RandomSubset

1

18

...

...

Split

Mean dummydummy

Figure 4.5: The best MCPS in FULL search space for ‘amazon’ dataset as shown in
Table 4.9. The type and name of the preprocessing methods and predictors used are
explained in Tables 4.3 and 4.4 respectively.

It is worth mentioning that most of the MCPSs found for the ‘waveform’ dataset in-
clude a missing value replacement method even though there are no missing values in
this dataset and therefore it does not have any effect on the data or the classification per-
formance. The presence of such an unnecessary component likely stems from the fact
that selecting a method for replacing missing values at random has a prior probability of
0.75 (i.e. 3 out of 4 possible actions as seen in Table 4.3) which means that it can be
selected when randomly initialising the configurations of MCPSs to start from and using
the search method which does not penalise unnecessary elements in the data process-
ing chains. However, it is not the case with other nodes like ‘Transformation’ in which
although the prior probability of selecting one of the available transformation methods
is 5/6, selecting an appropriate method has a potential impact on the performance and
therefore better transitions tend to be retained in the found solutions.

For illustrative purposes three interesting cases from Figure 4.7 have been selected for
a more detailed analysis. These cases are:

74 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

Figure 4.7: Error variance vs. MCPS similarity in FULL search space. Each colour
represents a different dataset.

• Low error variance and high MCPS similarity. Most of the best solutions found
follow a very similar sequence of methods. Therefore similar classification perfor-
mance is to be expected. For example, a repeated sequence in ‘car’ dataset with
TPE optimisation is MultiLayerPerceptron (13/25)→ AdaBoostM1 (22/25).
• Low error variance and low MCPS similarity. Despite having different solutions,

classification performance in a group of analysed datasets does not vary much. This
can mean that the classification problem is not difficult and a range of different
MCPSs can perform quite well on it. This is for instance the case of the solutions
found for the ‘secom’ and ‘kddcup09app’ datasets.
• High error variance and low MCPS similarity. In such cases, there are many differ-

ences between both the best MCPSs found and their classification performances.
For instance, it is the case of ‘amazon’ dataset for which a high error variance
was observed in all of the optimisation strategies (see Figure 4.7). Such difference
likely results from a combination of difficulty of the classification task (i.e. high in-
put dimensionality, large number of classes and a relatively small number of train-
ing samples) and/or insufficient exploration from the random starting configuration
in a very large space.

Exploration vs exploitation analysis

An inherent trade-off in a search through space with size exploding exponentially with
the number of parameters, is that of exploration vs. exploitation. To study the impact of
varying the relative importance of these two factors, two datasets (‘amazon’ and ‘made-

4.4. SUMMARY 75

lon’) have been selected because their performance convergence changes considerably
between different runs, and therefore the starting point in the SMAC search strategy
makes a large difference. Both the number of seeds and the maximum optimisation time
have been varied, keeping the same fixed CPU-core hour budget as in the previous exper-
iments (i.e. 25 seeds x 30 h/seed = 750 h). Increasing the number of seeds to 50 allows
to explore more regions of the search space. On the other hand, increasing the running
time to 50 CPU core-hours/seed makes it possible to exploit further the hyperparameter
settings of potential good configurations.

The results are presented in Table 4.8 which contains both the best and the mean of
10-fold cross validation error computed similarly as in Table 4.6. The results suggest that
increasing the optimisation time (i.e. more exploitation) allows finding better solutions
on average. However, in three of the cases the best solutions were found when there is a
balance between exploration and exploitation (i.e. 30h and 25 seeds). This is not the case
for ‘amazon’ dataset in the NEW search space, in which either increasing optimisation
time or the number of random starting points (i.e. seeds) have both resulted in improved
performance.

While this section describes a preliminary investigation into the potential trade-off in
exploration versus exploitation aspects of the investigated search strategies, it also high-
lights that there is a need for significantly improving the fundamental search algorithms
in the context of MCPS optimisation.

space dataset 15hx50seeds 30hx25seeds 50hx15seeds
Best Mean Best Mean Best Mean

NEW
amazon 24.19 32.09 30.57 36.45 24.19 27.85
madelon 15.16 16.05 15.11 15.74 15.16 15.47

FULL
amazon 40.76 65.38 26.76 53.51 32.29 47.04
madelon 14.45 21.65 13.02 17.24 15.22 16.62

Table 4.8: 10-fold CV error ε (% missclassification) varying the number of hours and
seeds. Bold faced values are the lowest errors for each dataset in each search space.
Similarly, underlining indicates the lowest mean error.

4.4 Summary

This chapter has reviewed main approaches for tackling the CASH problem for building
predictive systems. Ontologies are an effective tool to model search spaces. However,
their use by AI planners require an extensive repository of experiments to get good re-
sults. Combining these approaches with the recent OpenML4 repository could be an
interesting future study. An alternative approach that has been shown to work well in
high dimensional search spaces is Bayesian optimisation, and in particular SMBO.

4http://www.openml.org/

http://www.openml.org/

76 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

dataset space MV OU TR DR SA predictor meta-predictor E

abalone
NEW - - - - - MLP RandomCommittee 71.43
FULL Median - Center RandomSubset Resample Logistic Bagging 72.39

amazon
NEW - - - - - SimpleLogistic RandomSubSpace 26.67
FULL Min - Normalize RandomSubset - NaiveBayesMult. RandomSubSpace 20.89

car
NEW - - - - - SMO MultiClassClassifier 0.00
FULL - - Standardize - Resample SMO AdaBoostM1 0.00

cifar10
NEW - - - - - RandomForest MultiClassClassifier 52.28
FULL - - - - Resample RandomTree Bagging 59.63

cifar10small
NEW - - - - - RandomTree MultiClassClassifier 54.48
FULL - - - RandomSubset - RandomTree AdaBoostM1 59.97

convex
NEW - - - - - RandomForest AdaBoostM1 18.47
FULL - - Center - Resample RandomTree AdaBoostM1 22.97

dexter
NEW - - - - - DecisionStump AdaBoostM1 5.00
FULL - - - - Resample VotedPerceptron AdaBoostM1 5.00

dorothea
NEW - - - - - OneR RandomSubSpace 4.64
FULL - - Standardize - - REPTree LogitBoost 4.64

germancredit
NEW - - - - - LMT Bagging 23.33
FULL Zero - Standardize RandomSubset - LMT Bagging 24.33

gisette
NEW - - - - - NaiveBayes LWL 1.95
FULL - - - - - VotedPerceptron RandomSubSpace 1.52

kddcup09app
NEW - - - - - ZeroR LWL 1.67
FULL - IQR Standardize Attr. Selection ReservoirSample BayesNet MultiClassClassifier 1.74

krvskp
NEW - - - - - JRip AdaBoostM1 0.10
FULL - - Normalize - - JRip AdaBoostM1 0.21

madelon
NEW - - - - - REPTree RandomSubSpace 15.64
FULL - - - PCA - IBk LogitBoost 12.82

mnist
NEW - - - - - SMO MultiClassClassifier 2.66
FULL Zero - Center - - J48 AdaBoostM1 5.15

mnistr
NEW - - - - - RandomForest RandomCommittee 52.20
FULL Zero - Normalize - - BayesNet RandomSubSpace 56.33

secom
NEW - - - - - J48 AdaBoostM1 7.66
FULL - - Standardize - ReservoirSample ZeroR FilteredClassifier 7.87

semeion
NEW - - - - - NaiveBayes LWL 3.98
FULL EM - - PCA - SMO FilteredClassifier 4.61

shuttle
NEW - - - - - RandomForest AdaBoostM1 0.01
FULL - - Center - Resample REPTree AdaBoostM1 0.01

waveform
NEW - - - - - SMO RandomSubSpace 14.00
FULL - IQR Normalize - - SMO Attr.SelectedClassifier 13.40

wineqw
NEW - - - - - RandomForest AdaBoostM1 32.33
FULL Mean - Wavelet Attr.Selection - IBk RandomSubSpace 33.42

yeast
NEW - - - - - RandomForest Bagging 36.40
FULL - - Normalize - - RandomTree Bagging 38.20

Table 4.9: Best MCPS for each dataset in NEW and FULL spaces and its holdout error.
MV = missing value replacement, OU = outlier detection and removal, TR = transfor-
mation, DR = dimensionality reduction, SA = sampling.

State-of-the-art SMBO methods have been used in an extensive experimetal analysis
comparing different search spaces over a number of datasets. This study demonstrates
that it is indeed possible to automate the composition and optimisation of MCPSs. The
novel formulation of MCPSs using WRI-WF nets proposed in Section 3.3 has became
a theoretical foundation of the study, allowing to cast the problem within a rigorous
mathematical framework (van der Aalst (1998a)). At the same time, it opens the door
to formally verify that MCPSs are correctly composed which is still an outstanding and
non-trivial problem (Sadiq et al. (2004)).

Results have indicated that Sequential Model-Based Optimisation (SMBO) strategies
perform better than random search given the same time for optimisation in the majority
of analysed datasets. The analysis of the trade-off between exploration and exploitation
of the search space suggests however that increasing the optimisation time (i.e. more

4.4. SUMMARY 77

exploitation) allows to find better solutions on average. Investing time into fine-tuning
of hyperparameters of a solution seems worthwhile only if this can significantly and
quickly improve the quality of the solution as otherwise the optimisation strategy can
stall in a local minimum that keeps away the exploration from other promising regions
of the search space. The above highlights a clear need for significantly improving the
fundamental search algorithms in the context of MCPS optimisation.

In addition, it would also be valuable to investigate if using a different data partitioning
of the training set like Density-Preserving Sampling (DPS – Budka & Gabrys (2010a))
instead of CV would make any difference in the optimisation process. This could have
a considerable impact on SMAC strategy which discards potential poor solutions early
in the optimisation process based on the performance on only a few CV folds. In case
the folds used are not representative of the overall data distribution, which as shown in
Budka & Gabrys (2013) can happen quite often with CV, the effect on the solutions found
can be detrimental.

At the moment, available SMBO methods only support single objective optimisation.
However, it would be useful to find solutions that optimise more than one objective,
including for instance a combination of prediction error, model complexity and running
time as discussed in Al-Jubouri & Gabrys (2014).

Application of these techniques to process industry datasets to automatically build
soft sensors is one of the topics discussed in the next chapter, where also strategies for
adapting MCPSs in evolving environments are presented.

78 CHAPTER 4. AUTOMATIC COMPOSITION AND OPTIMISATION OF MCPS

Chapter 5

Automating and adapting MCPSs in the
process industry

5.1 Introduction

The research carried out in this thesis was initiated in the scope of INFER project, in
which one of the partners was a large chemical manufacturer. Working closely with
domain experts was beneficial to understand the current limitations of soft sensor devel-
opment in the process industry. The framework presented in Section 1.4 describes the
steps that practitioners usually follow to build a soft sensor. A common issue in different
works (Yan et al. (2004); Sharmin et al. (2006); Lin et al. (2007); Kadlec et al. (2009)) is
the amount of human effort needed to complete the tasks of data preprocessing, algorithm
selection, and hyperparameter optimisation. Chapters 3 and 4 have covered the proposed
approach to automate this labour intensive task. This chapter studies the feasibility of
applying such an approach for a number of real chemical plants and processes from the
process industry. In order to address these issues, an extensive experimental analysis
on automating the composition of MCPSs for classification (for process monitoring, in
which classification models are trained to identify different states of the process and
recognise possible process faults) and regression (for online prediction, in which regres-
sion models are used to predict hard-to-measure values in processes like fermentation,
polymerisation and refinery) tasks have been carried out and the results are presented in
Section 5.2.

Datasets from chemical production processes contain readings from physical sensors
that are located in different parts of the chemical plants. These sensors measure parame-
ters such as temperatures, flows and pressures that are constantly changing during chem-
ical reactions. Some reactions are relatively stable and therefore present a stationary data
distribution. Others, however, can vary significantly between production batches or even
within a single, long-running production process (e.g. Sharmin et al. (2006)). In addition,
the degradation of sensors over time, is likely to produce a change in the input values that
can severely affect predictive performance (e.g. Downs & Vogel (1993)). These changes
in data distribution are known as concept drifts. According to Kadlec et al. (2011), the

79

80 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

most common causes of concept drift in process industry are:
• changes of process input (raw) materials;
• process fouling (i.e. accumulation of unwanted material);
• abrasion of mechanic components;
• catalyst activity changes;
• production of different product quality grades;
• changes in external environment (e.g. weather, seasons).

There are different adaptation strategies for dealing with such changes (see e.g. Gama
et al. (2014) for a general survey and Kadlec et al. (2011) which focused on adaptation
mechanisms for soft sensors in process industry). For example, ‘active-detection’ tech-
niques monitor a certain measure over time and react when its running average changes
significantly or goes over a given threshold (e.g. Page (1954); Gama et al. (2004); Baena-
Garcı́a et al. (2006)). These techniques require optimisation of parameters like the thresh-
old value or averaging period, and can also lead to false positives. On the other hand,
‘passive’ adaptation techniques update the model periodically with new data (e.g. most
recent data or most representative samples), even if it is not strictly necessary (e.g. Wid-
mer & Kubat (1993); Gabrys & Bargiela (2000); Klinkenberg (2004)). From a practical
perspective, ‘passive’ adaptation may be a waste of resources and provide little benefits
towards the predictive performance in problems where data distribution does not change
too often. An intermediate approach presented in Žliobaitė et al. (2015) proposes to es-
timate the gain and cost of adaptation and therefore assess when it is worth to perform a
model adaptation.

Adaptive soft sensors do not often consider the adaptation of preprocessing methods
(Kadlec et al. (2011)). This situation can lead to the adaptation of predictors to an unde-
sirable state or even failures (see Appendix C). Moreover, the maintenance of adaptive
soft sensors can require expert knowledge to select new critical process variables (For-
tuna et al. (2005); Kämpjärvi et al. (2008)). Taking this need of adaptation into account,
Section 5.3 studies the feasibility of adapting MCPS simulating a continuous process
environment. This aims once again to reduce the need for human involvement and thus
make the maintenance process more efficient.

The goal of this chapter is to assess the feasibility of applying search strategies for
automatically building and maintaining soft sensors in process industry. The chapter is
organised as follows: Section 5.2 discuss the results of automating the composition and
optimisation of MCPSs to solve the problems of online prediction and process monitoring
in datasets from real chemical processes; Section 5.3 presents a novel hybrid adaptation
strategy combining SMBO with common adaptive techniques and the results of applying
such strategy on real datasets to fully automate the maintenance of soft sensors; finally,
conclusions are in Section 5.4.

5.2. AUTOMATIC BUILDING OF SOFT SENSORS 81

5.2 Automatic building of soft sensors

Raw data from chemical plants requires a considerable manual effort in preprocessing
and modelling as demonstrated in Section 1.3. Thus, one of the main motivations in this
thesis for automating the composition and optimisation of MCPSs has been the need for
speeding up the process of developing soft sensors.

Two of the main tasks requiring soft sensors in this industry are: a) online prediction,
in which regression models are used to predict hard-to-measure values in processes like
fermentation, polymerisation and refinery; and b) process monitoring, in which classifi-
cation models are trained to identify different states of the process and recognise possi-
ble process faults. To evaluate the feasibility of automatically building and optimising
MCPSs for addressing both tasks in a real-world setting, a number of experiments us-
ing datasets representing real chemical processes have been performed (please refer to
the Appendix A for further information and references). These datasets have been made
available by Evonik Industries as part of the collaboration within the INFER project, and
have been extensively used in previous studies (e.g. Kadlec & Gabrys (2009); Budka
et al. (2014); Bakirov et al. (2015)). The datasets are:
• ‘absorber’ which contains 38 continuous attributes from an absorption process. No

additional information has been provided apart from this being a regression task;
• ‘drier’ which consists of 19 continuous features from physical sensors (i.e. tem-

perature, pressure and humidity) and the target value is the residual humidity of the
process product (Kadlec & Gabrys (2009));
• ‘oxeno’ which contains 71 continuous attributes also from physical sensors and

a target variable which is the product concentration measured in the laboratory
(Budka et al. (2014)); and
• ‘thermalox’ which has 38 attributes from physical sensors and the two target val-

ues are concentrations of NOx and SOx in the exhaust gases (Kadlec & Gabrys
(2009)).

Due to confidentiality reasons the datasets listed above cannot be published. However, 3
additional publicly available datasets from the same domain have also been used in the
experiments. These are:
• ‘catalyst’ consisting of 14 attributes, where the task is to predict the activity of a

catalyst in a multi-tube reactor (Kadlec & Gabrys (2011));
• ‘debutanizer’ which has 7 attributes (temperature, pressure and flow measurements

of a debutanizer column) and where the target value is the concentration of butane
at the output of the column (Fortuna et al. (2005)); and
• the ‘sulfur’ recovery unit, which is a system for removing environmental pollutants

from acid gas streams before they are released into the atmosphere (Fortuna et al.
(2003)). The washed out gases are transformed into sulfur. The dataset has five
input features (flow measurements) and two target values: concentration of H2S
and SO2.

The experimentation framework is similar to the one in Section 4.3 and therefore some

82 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

aspects are repeated here for consistency. The search space for composing MCPSs has
been defined to support a flow with up to five preprocessing steps, a predictive model
and a meta-predictor. The nodes are connected in the following order: missing value
handling; outlier detection and handling1; data transformation; dimensionality reduction;
sampling; predictor; meta-predictor. Although some of the predictors include inner pre-
processing such as removal of missing values or data normalisation as shown in Martin
Salvador et al. (2016c), many datasets still need additional preprocessing steps to build
effective predictive models. Thus, the fixed order of the preprocessing nodes in the search
space has not been set arbitrarily. Instead, it follows the preprocessing guidelines that are
common in process industry when developing predictive models (see e.g. Budka et al.
(2014); Kadlec et al. (2009)).

The best SMBO strategy from previous experiments in Chapter 4 (SMAC) is com-
pared against random search as baseline:
• Random search: The whole search space is randomly explored allowing 30 CPU

core-hours for the process.
• SMAC: An initial configuration is randomly selected and then the optimiser is run

for 30 CPU core-hours to explore the search space.
Each dataset D = {Dtrain,Dtest} has been split into 70% training and 30% testing

sets, unless partition was already provided. Please note that Dtrain is then split into 10-
folds for Equation 3.5 and therefore Dtest is not used during the optimisation or training
process at all. The evaluation process is summarised in Figure 4.2.

For each strategy 25 runs are performed with different random seeds within a 30 CPU
core-hours optimisation time limit on Intel Xeon E5-2620 six-core 2.00GHz CPU. In the
case a configuration step exceeds 30 minutes or 3GB of RAM to evaluate, its evaluation
is aborted and not considered further. Once the optimisation process has finished, the
returned MCPS is trained using the whole training set Dtrain and produce predictions for
the testing set Dtest.

5.2.1 Online prediction: a regression problem

Many critical process values (e.g. the fermentation progress in a biochemical process,
or the progress of polymerisation in a batch reactor) are difficult, if not impossible to
measure in an automated way at a required sampling rate. Sometimes the first-principle
models, that are based on the physical and chemical process knowledge, are available.
Although such models are preferred by practitioners (De Assis & Maciel Filho (2000);
Prasad et al. (2002)), they are primarily meant for planning and design of the processing
plants, and therefore usually focus on the steady states of the process (Chéruy (1997)).
Thus, such models can seldom be used in practice in a wide range of operating condi-
tions. Moreover, often the process knowledge for modelling is not available at all. In
such cases data-driven models fill the gap and often play an important role for the oper-
ation of the processes as they can extract the process knowledge automatically from the

1Outliers are handled in a different way than missing values

5.2. AUTOMATIC BUILDING OF SOFT SENSORS 83

provided data. A review of data-driven soft sensors in the process industry is presented in
Kadlec et al. (2009). The most popular methods are multivariate statistical techniques like
Principal Component Analysis (PCA) in a combination with a regression model (PCR –
Jolliffe (2002)), and Partial Least Squares (PLS – Wold et al. (2001)). Other common
approaches like Multi-Layer Perceptron (MLP – Qin (1997)) and Radial Basis Function
(RBF – Wang et al. (2006)) are based on neural networks. Kadlec et al. (2009) show that
there are indeed dozens of methods to build soft sensors and each of them with various
hyperparameters. There is however no single method that is universally superior across
all the problems (Wolpert & Macready (1997)).

As seen in Section 1.3, raw data usually contain imperfections that can decrease model
performance. Therefore, the building of soft sensors will require including a number of
preprocessing steps as in the framework described in Section 1.4 and effectively forming
an MCPS. Building the best possible soft sensor for a particular dataset can therefore be
formulated as a CASH problem (see Section 3.6).

Not only it is important to choose a loss function that is possible to optimise but it is
even more important that the cost measures the performance aspects that are practically
relevant. The Root Mean Squared Error (RMSE) is very popular in research due to
convenient analytical properties (see Equation 2.8). It punishes large deviations from the
target, which is often very relevant for industrial applications. Therefore RMSE has been
the performance measure chosen to be optimised by SMAC.

Average RMSE of the 25 runs for each dataset are presented in Table 5.1. Though
SMAC has been the best strategy when optimising the 10-fold CV error of all datasets,
it does not generalise as well as random search which performed better on average for
the testing sets in 5 out of 7 datasets. This behaviour is due to overfitting on the training
process as has been observed before in Thornton et al. (2013).

10-fold CV error ε Holdout error E
RAND SMAC RAND SMAC

µ 2σ µ 2σ µ 2σ µ 2σ
absorber 0.4513 0.0168 0.4341 0.0161 0.9361 0.0798 0.9461 0.0762
catalyst 0.0404 0.0261 0.0270 0.0131 0.1105 0.0389 0.1013 0.0493
debutanizer 0.0588 0.0099 0.0496 0.0026 0.1822 0.0581 0.1868 0.0464
drier 1.5100 0.0467 1.5000 0.0389 1.4100 0.0194 1.4200 0.0176
oxeno 0.0050 0.0027 0.0025 0.0037 0.0261 0.0259 0.0251 0.0400
sulfur 0.0262 0.0099 0.0247 0.0016 0.0434 0.0756 0.0519 0.1094
thermalox 0.5833 0.0170 0.5804 0.0088 1.1300 0.6229 1.5600 7.6100

Table 5.1: Average RMSE (µ) and standard deviation for 95% confidence interval (2σ).
Boldfaced values indicate the lowest mean error for each dataset.

The best MCPS configurations for each dataset (i.e. lowest holdout error) are shown
in Table 5.2. Ensemble methods (Bagging and RandomSubSpace), which train multiple
predictors with different subsets of data, have been found to provide the best performance
for all analysed datasets. Predictions of these MCPSs are shown together with the real

84 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

target values in the right hand side of Figures A.1 to A.7 in Section A.9. The prediction
plot corresponding to ‘absorber’ dataset is shown in Figure 5.1. Initial predictions on
testing set are quite accurate, but from around t = 1300 the predicted values are shifted
with respect to true vales. This is due to changes in data during the process. Adaptive
strategies are later considered in Section 5.3. Applying an adaptive strategy can provide
better predictions as shown in Figure 5.4. Though the final predictions could benefit from
additional post-processing, results are very promising taking into account that they have
been generated without any human interaction. In fact, the solutions found outperform
the four most popular methods for building soft sensors (PCA, PLS, MLP and RBF) in
6 out of 7 datasets (see δ in Table 5.2). None of the most popular techniques have been
selected among the best MCPSs, indicating the potential disadvantage of human bias
towards well-known methods.

dataset MV OU TR DR SA predictor meta-predictor E δ
absorber - - Wavelet Rand.Subs. - KStar Rand.SubSp. 0.8989 ↑ 0.0844
catalyst Max - Normalize - - GP Bagging 0.0736 ↑ 0.1144
debutanizer EM - Wavelet - - IBk Rand.SubSp. 0.1745 -0.0035
drier EM - - Rand.Subs. Res.Samp. M5P Bagging 1.3744 ↑ 0.0573
oxeno Zero - Normalize - - M5P Rand.SubSp. 0.0226 ↑ 0.0042
sulfur Zero - Standardize - - M5P Bagging 0.0366 ↑ 0.0030
thermalox Mean - Wavelet - - GP Rand.SubSp. 0.6904 ↑ 0.6170

Table 5.2: Best MCPS for each dataset, holdout error E and difference with baseline δ
(↑ indicates an improvement). MV = missing value replacement, OU = outlier detection
and removal, TR = transformation, DR = dimensionality reduction, SA = sampling.

Figure 5.1: Target value vs. prediction of best MCPS found for ‘absorber’ dataset.
Values to the left of the vertical dashed line correspond to the training set, while the ones
to the right belong to the test set.

5.2. AUTOMATIC BUILDING OF SOFT SENSORS 85

5.2.2 Process monitoring: a classification problem

Process monitoring is a task in which one or more variables are monitored to inspect
chemical process status and recognise possible process faults. A common tool to help
human operators with this task are control charts (also known as Shewhart charts, She-
whart (1931)). These charts contain a measured signal and thresholds that serve as visual
aid for operators (see Figure 5.2). Sometimes it is interesting to monitor values such as
product concentrations that cannot be measured by physical sensors. Instead of predict-
ing a continuous value one could be interested in a level value such as ‘high’, ‘normal’
or ‘low’, or the direction of concentration change (‘up’ or ‘down’). Thus, a classifier can
be built using a labelled set of historical data.

0 20 40 60 80 100 120 140 160 180 200
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Time

UCL

CL

UCL

Figure 5.2: Example of control chart showing a signal with UCL (Upper Control Limit),
CL (Central Line), and LCL (Lower Control Limit).

In order to simulate a process monitoring task, the target value of the same regression
datasets previously used has been transformed into classes (each of them representing the
state of the output – high, normal, low). In datasets with 2 target values 9 classes are used
(combining the 3 states of both targets).

The experimentation framework is identical as the one employed for online prediction
in the previous section, varying only the evaluation measure to the classification error
instead. Results in Table 5.3 are the average percentage of classification error of 100,000
bootstrap samples (i.e. randomly selecting 4 out of the 25 runs and keeping the one with
the lowest cross-validation error as done in Thornton et al. (2013)). Similarly to the
results in previous section, SMAC has found, on average, better MCPSs than random
search for all the datasets given the 10-fold CV error in Dtrain. SMAC is also getting
better results in the majority of datasets for the holdout error in Dtest. The best MCPS
configurations found are shown in Table 5.4. Ensemble methods are present again in
3 out of 7 datasets, reinforcing the fact that combining outputs of multiple models can
achieve better performance than a single model could obtain (Dietterich (2000)).

The solutions found outperform the four most popular methods for building soft sen-
sors for process monitoring (PCA, MLP, RBF and SOM) in 4 out of 7 datasets (see δ
in Table 5.4). The holdout error rates reported in Table 5.3 are however quite high and
with a large deviation which might be due to overfitting, so one could think that the best

86 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

MCPSs found might not be suitable for being used in a real environment. Results show
also a large difference between the CV error and the holdout test error in some of these
datasets (e.g. ε = 2.60% to E = 61.29% in ‘catalyst’). This is due to the evolving nature
of some chemical processes over time. The test set (last 30% of samples) can be signif-
icantly different from the initial 70% of data used for training the MCPS. Next sections
show how to adapt these MCPSs when there are changes in data and therefore make them
suitable in a production environment.

10-fold CV error ε Holdout error E
RAND SMAC RAND SMAC
µ 2σ µ 2σ µ 2σ µ 2σ

absorber 21.19 2.77 19.73 0.9838 52.48 10.21 51.00 9.79
catalyst 3.35 2.83 2.60 0.439 63.46 25.57 61.29 20.91
debutanizer 17.28 9.19 10.57 1.67 56.18 11.7 55.18 8.22
drier 39.58 2.11 37.96 2.46 45.86 7.65 45.35 8.47
oxeno 5.95 1.54 4.86 0.7635 42.43 1.63 42.20 10.67
sulfur 50.73 10.76 40.30 3.87 75.67 10.55 79.17 0.34
thermalox 20.52 1.82 20.12 1.06 33.91 26.95 40.38 30.73

Table 5.3: Average classification error (%) and standard deviation for 95% confidence
interval. Boldfaced values indicate the lowest mean error for each dataset.

dataset MV OU TR DR SA predictor meta-predictor E δ
absorber - - Wavelet Rand.Subset - KStar Bagging 45.63 -9.38
catalyst - - Wavelet Rand.Subset - JRip Filt.Classifier 48.64 -16.2
debutanizer Median - Wavelet - - REPTree Filt.Classifier 50.14 ↑ 2.09
drier - IQR Normalize - - Logistic Bagging 40.98 ↑ 10.11
oxeno - - Standardize - - JRip Rand.SubSpace 38.24 -4.74
sulfur - - Wavelet Rand.Subset - JRip Filt.Classifier 70.96 ↑ 8.7
thermalox - - Wavelet - - MLP Filt.Classifier 26.71 ↑ 20.81

Table 5.4: Best MCPS for each dataset in NEW and FULL spaces, holdout error E and
difference with baseline δ (↑ indicates an improvement). MV = missing value replace-
ment, OU = outlier detection and removal, TR = transformation, DR = dimensionality
reduction, SA = sampling.

5.3 Adapting MCPS in continuous processes

To illustrate how MCPSs can be adapted in a realistic production environment, several
adaptation strategies have been implemented. Two main approaches utilising the auto-
mated MCPSs composition and optimisation approach proposed in this thesis have been
compared in this section: global re-composition and global parameterisation, varying
also the forgetting mechanism. Results from extensive experiments are presented and
discussed below.

5.3. ADAPTING MCPS IN CONTINUOUS PROCESSES 87

The same datasets from previous section have been used for experimentation. In pro-
cess industry it is common to have continuous processes but which data arrive in batches.
To simulate such processes, Dtest has been split into 10 batches of approximately equal
size. Sizes of initial training set and each batch for each dataset are listed in Table 5.5.

Instances
Attributes Classes Total Initial training Batch

absorber 38 3 1599 1119 48
catalyst 14 3 5867 4109 176
debutanizer 7 3 2394 1676 72
drier 19 3 1219 853 37
oxeno 71 3 17588 12311 528
sulfur 5 9 10081 7057 303
thermalox 38 9 2820 1974 58

Table 5.5: Datasets properties

Four different global adaptation strategies have been selected for a comparison within
the same evaluation framework. All these approaches assume that an initial MCPS has
been composed and optimised using SMAC integrated in the Auto-WEKA extension
presented in this thesis during 30 CPU core-hours for the initial training set. This MCPS
is then used to predict the target value of a batch of incoming instances from the test set.
After that, the true labels are provided and one of the following strategies is executed (for
summary of the strategies please refer to Table 5.6):
• Baseline, where the initial MCPS is not adapted at all and continues making pre-

dictions for the consecutive batches.
• Batch, where a new MCPS is trained using only the labelled data from the most

recent batch and the configuration (including hyperparameters) from the initial
MCPS. This strategy learns patterns from the most recent data and forgets the old
ones.
• Batch + SMAC, where a new MCPS is composed using the most recent batch as

training set and SMAC as optimisation strategy for 5 CPU core-hours2 (see Fig-
ure 5.3 where a sequence diagram of this strategy is presented). Although the old
patterns are being forgotten, the historical information of the underlying SMAC
model remains. That is, the random forest built by SMAC (learnt during the previ-
ous training runs and utilising their classification errors) is preserved, so the explo-
ration will not start from scratch.
• Cumulative, where a new MCPS is trained using all the available labelled in-

stances including the most recent batch, but the configuration of the initial MCPS
is preserved. Therefore, there is no forgetting of concepts.

2The reason behind choosing this value is two fold: i) it has been observed that the majority of the
runs converge after that time for these datasets; ii) from the practical point of view it simulates a plant
maintenance stop.

88 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

• Cumulative + SMAC uses the same training strategy as Cumulative, but similarly
to Batch+SMAC strategy a new MCPS is composed using SMAC after every batch
for 5 CPU core-hours. The historical information of the underlying SMAC model
remains.

Each experiment has been repeated 25 times with different random initialisations of
SMAC (i.e. seeds), but keeping the same data partitions.

Strategy Data for
Training Forgetting Parametric

Adaptation
MCPS

Optimisation
Baseline No
Batch Batch X X
B + SMAC Batch X X X
Cumulative Cumulative X
C + SMAC Cumulative X X

Table 5.6: Evaluated strategies

Input

Data
Auto-WEKA Prediction Evaluation

30h

5h

training

data

i-th batch

labels for i-th batch

MCPS

MCPS

loop

predictions

accuracy

Figure 5.3: Sequence diagram of Batch+SMAC strategy. Firstly, Auto-WEKA is run
during 30 CPU-hours to find the best MCPS for the training data. Then, such MCPS is
used to predict the first batch of unlabelled data. When the labels for that batch arrive, the
predictive accuracy is measured and the MCPS is adapted running Auto-WEKA during
5 CPU-hours with the labelled batch. For every new batch of data, the process within the
loop is repeated.

5.3. ADAPTING MCPS IN CONTINUOUS PROCESSES 89

Base. Batch B+SMAC Cumulative C+SMAC
E E δ E δ E δ E δ

absorber 0.9461 0.9754 -0.0292 1.4310 -0.4849 0.8962 ↑ 0.0499 0.8946 ↑ 0.0515
catalyst 0.1014 0.0308 ↑ 0.0706 0.0324 ↑ 0.0690 0.0615 ↑ 0.0399 0.0785 ↑ 0.0230
debutanizer 0.1868 0.1533 ↑ 0.0334 0.1669 ↑ 0.0199 0.1680 ↑ 0.0188 0.1832 ↑ 0.0036
drier 1.4238 1.4500 -0.0262 1.5812 -0.1574 1.4107 ↑ 0.0131 1.3419 ↑ 0.0819
oxeno 0.0196 0.0215 -0.0019 0.0231 -0.0035 0.0203 -0.0007 0.0180 ↑ 0.0016
sulfur 0.0519 0.0557 -0.0038 0.0583 -0.0064 0.0447 ↑ 0.0072 0.0481 ↑ 0.0038
thermalox 1.5637 4.1272 -2.5635 27.1927 -25.6290 1.0500 ↑ 0.5137 3.5019 -1.9382
avg. rank 3.29 3.14 4.14 2.14 2.29

Table 5.7: Average RMSE (E) and difference with baseline (δ, ↑ indicates an improve-
ment) for each dataset and adaptation strategy. Best result of each dataset is in bold.

5.3.1 Regression results

Average RMSE for the regression task are presented in Table 5.7. Predictions of the best
MCPS found for each dataset are shown together with real target values in Figures A.8
to A.14. Points before the vertical dashed line belong to the initial training set, while
the ones after that belong to the testing set which is split in 10 batches of approximately
equal size.

As one would expect, the strategies performing cumulative training are, on average,
the ones performing better than baseline in 6 out of 7 datasets (δ > 0) since they have
more data to learn from. See for example the predicted values for ‘absorber’ dataset in
Figure 5.4, which are much closer to the target values than the ones found in the static
experiments (see Figure 5.1 to contrast). Nonetheless, the Batch strategy performed the
best on average for ‘catalyst’ and ‘debutanizer’ datasets. These two datasets are the ones
which present more variability across batches as can be seen in Figures A.9 and A.10. A
comparison with results from baseline (see Figures A.2 and A.3, respectively) shows that
the Batch strategy is able to cope better in some batches.

On the other hand, in the case of ‘drier’ and ‘oxeno’ datasets the best MCPSs found
are from baseline strategy (i.e. no adaptation – see Figures A.11 and A.12, respectively),
despite Cumulative+SMAC strategy performed better in average (see Table 5.7). This
is an understandable result for ‘drier’ since data distribution is quite stable. However, it
is a surprising result for ‘oxeno’ dataset since one would expect an adaptive strategy to
perform better when data shifts.

The results for ‘thermalox’ dataset are very interesting. The Cumulative strategy
presents a remarkable result improving baseline (see Figure A.14 in contrast with A.7,
and average result shown in Table 5.7). However, the remaining strategies have got very
poor results. By taking a closer look to those particular results, one can see that there are
a couple of predictions in batches 5 and 10 which are large outliers and therefore penalise
the RMSE. Adding an additional post-processing step to mitigate such extreme outliers
could be something to consider when coming to implementation.

90 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

Cumulative

Figure 5.4: Target value and prediction of best MCPS found for ‘absorber’. Values to
the left of the vertical dashed line correspond to the training set, while the ones to the
right belong to the test set.

5.3.2 Classification results

In the case of the classification task, average classification error for each dataset and
strategy are shown in Table 5.8. The Batch adaptation strategy performed better than the
baseline in 6 out of 7 datasets (i.e. lower mean error). The only dataset in which the
predictive accuracy has worsened is ‘drier’. This dataset does not change much in terms
of any predictable trends and the performance improves with adding and using more data
for training the predictor. Therefore one of the main causes of such deterioration is the
small batch size used for training (only 37 samples per batch) in comparison to the size
of the training data for the baseline method. On average, the use of SMAC with Batch
strategy has resulted in better performances in 4 out of 7 datasets compared with only
Batch. That means that over-optimising an MCPS may not always be the best approach
when there is a risk of over-fitting due to a drastic forgetting mechanism employed. Cu-
mulative strategy has improved the predictions for all the datasets. These results were
expected since there is no forgetting of previous samples. In addition, applying SMAC
optimisation to Cumulative strategy has helped to refine MCPSs and has improved the
average results of standalone Cumulative strategy in 5 out of 7 datasets.

5.3. ADAPTING MCPS IN CONTINUOUS PROCESSES 91

Base. Batch B+SMAC Cumulative C+SMAC
E E δ E δ E δ E δ

absorber 54.32 40.13 ↑ 14.19 43.43 ↑ 10.88 33.37 ↑ 20.95 33.13 ↑ 21.18
catalyst 68.34 25.09 ↑ 43.24 25.06 ↑ 43.27 37.93 ↑ 30.41 38.08 ↑ 30.25
debutanizer 58.88 47.54 ↑ 11.34 48.73 ↑ 10.15 53.35 ↑ 5.53 52.77 ↑ 6.11
drier 49.89 55.54 -5.65 54.18 -4.29 48.12 ↑ 1.77 49.56 ↑ 0.33
oxeno 45.92 40.60 ↑ 5.33 38.08 ↑ 7.84 39.44 ↑ 6.48 38.70 ↑ 7.22
sulfur 80.67 79.91 ↑ 0.76 80.19 ↑ 0.48 79.70 ↑ 0.97 78.92 ↑ 1.75
thermalox 55.07 39.42 ↑ 15.65 35.83 ↑ 19.24 39.95 ↑ 15.12 33.25 ↑ 21.81
avg. rank 4.71 3.00 2.29 2.71 2.00

Table 5.8: Average % classification error (E) and difference with baseline (δ, ↑ indicates
an improvement) for each dataset and adaptation strategy. Best result of each dataset is
in bold.

5.3.3 Evolution of MCPS over batches

Analysing the evolution of MCPSs found after applying SMAC optimisation between
batches can help to identify how robust they are to changes in data. To calculate the simi-
larity between MCPSs a weighted sum of Hamming distances described in Section 4.3.2
has been used. As an example, Figure 5.5 shows two triangular matrices representing
the MCPS similarity between batches for ‘catalyst’ dataset in a) Batch+SMAC and b)
Cumulative+SMAC strategies for the classification task. One can observe how MCPSs
between batches 3 and 4 are very similar but then there are considerable changes be-
tween the others. The large differences between the MCPSs in a) are due to the extreme
forgetting mechanism that is not present in b), where the MCPSs are more stable due to
the accumulation of historical data as no forgetting is used. Table 5.9 shows the evolu-
tion of the MCPS configuration between batches for the same case as Figure 5.5-b. The
meta-predictor is the same for all batches (AdaBoost), varying only its hyperparameters.
The logistic model tree (LMT) classifier has been selected in 8 out of 10 batches, while a
multilayer perceptron (MLP) was chosen for batches 3 and 4. The transformation com-
ponent is the one with more variation. Finally, the method for replacing missing values
has slightly varied across the batches.

92 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

1 3 5 7 9

1

3

5

7

9

S
im
il
ar
it
y

Batch

B
at
ch

a) Batch+SMAC

1 3 5 7 9

1

3

5

7

9

S
im
il
ar
it
y

Batch

B
at
ch

b) Cumulative+SMAC

Figure 5.5: MCPS similarity between batches for ‘catalyst’ dataset (seed=17). Brown
and red colours indicate very high similarity – e.g. between batches 6 and 7 in (b). On
the other hand, blue and dark blue colours represent very low similarity – e.g. between
batches 4 and 5 in (a). Thus, as seen in (b), MCPS configuration between batches is more
stable when training data is accumulated instead of being suddenly forgotten.

missing values transformation predictor meta-predictor
1 EMImputation Standardize LMT AdaBoostM1

-E 346.813 -N 467 -Q 799.631 -R -C -P -M 1 -W 0.029 -A -P 100 -I 60 -Q -S 1

2 ReplaceMissing Normalize LMT AdaBoostM1
-M 2 -S 1.0 -T 0.0 -M 15 -W 0 -P 100 -I 35 -Q -S 1

3 ReplaceMissing Standardize MLP -L 0.3 -M 0.2 AdaBoostM1
-M 2 -N 500 -V 0 -S 0 -E 20 -H a -P 100 -I 85 -S 1

4 ReplaceMissing Center MLP -L 0.3 -M 0.2 AdaBoostM1
-M 2 -N 500 -V 0 -S 0 -E 20 -H a -P 100 -I 81 -S 1

5 ReplaceMissing Standardize LMT AdaBoostM1
-M 2 -M 15 -W 0 -P 100 -I 28 -S 1

6 ReplaceMissing Wavelet LMT AdaBoostM1
-M 2 -M 15 -W 0 -P 100 -I 29 -S 1

7 ReplaceMissing Wavelet LMT AdaBoostM1
-M 2 -M 15 -W 0 -P 100 -I 10 -S 1

8 ReplaceMissing Standardize LMT AdaBoostM1
-M 5 -P -M 13 -W 0 -P 100 -I 17 -S 1

9 ReplaceMissing Standardize LMT AdaBoostM1
-M 1 -R -C -M 19 -W 0 -A -P 95 -I 2 -S 1

10 - Wavelet LMT AdaBoostM1
-M 15 -W 0 -P 100 -I 10 -S 1

Table 5.9: Components found for ’catalyst’ dataset for each batch in C+SMAC strat-
egy (seed=17). No outlier handling, dimensionality reduction and sampling components
were selected by SMAC for this particular case.

5.4. CONCLUSION 93

5.4 Conclusion

This chapter has discussed the feasibility of applying search strategies for automatically
building soft sensors with the purposes of online prediction and process monitoring of
chemical production processes. The results of an intensive experimentation has shown
that it is indeed feasible, and even solutions found can achieve better performance than
most popular soft sensor techniques. This is a very significant step towards reducing the
cost and time needed for developing soft sensors.

The proposed automatic approach is fully data-driven, not requiring any human inter-
vention. The developed tool allows practitioners to create an MCPS by just providing a
dataset. The visual representation of Petri nets can help to understand how data is pro-
cessed. Nevertheless, there is a risk of ending up with complex models that might not be
transparent enough for domain experts. To overcome such situation, one could restrict
the search space to only those models that are known to be easier to interpret. A direc-
tion of further investigation would be to optimise towards multiple objectives (e.g. high
accuracy and low complexity) creating a Pareto of optimal solutions.

Moreover, there is a need of adapting soft sensors to cope with changes in a real envi-
ronment. There are multiple adaptive models that can be used to that purpose. However,
there are situations when the preprocessing methods need also to be adapted. To this
end, several hybrid adaptation strategies including global re-composition and global pa-
rameterisation, varying also the forgetting mechanism have been proposed and evaluated
in a number of datasets. Though the results indicate that adaptation brings benefit to
model performance, there is not a single strategy that performs the best in all the sce-
narios. Instead, it could be interesting to combine several adaptive mechanisms as the
approach presented by Bakirov et al. (2017) which has shown to improve the predictive
performance.

Another challenging problem is the partial adaptation of an MCPS (e.g. adapting or
replacing one or more components). A preliminary study of this subject is presented in
Appendix C, where the need for appropriate propagation of changes when performing
local adaptation of components is discussed.

The fact that adaptation of the full predictive system can be carried out in an automatic
and autonomous way is very beneficial from the practical point of view. The lack of
human intervention will reduce operational costs and potentially keep processes running
for longer periods while maintaining a good predictive performance.

94 CHAPTER 5. AUTOMATING AND ADAPTING MCPS

Chapter 6

Conclusion and future work

6.1 Thesis summary

The main problem addressed in this thesis has been the automatic configuration and op-
timisation of multicomponent predictive systems. In particular, how this can be applied
to speed up the initial building and maintenance of soft sensors in the process industry.

In order to provide a clear motivation for the conducted research the initial chapters
of this thesis have reviewed what are the main challenges when applying data mining
techniques to raw data from chemical production processes. The development of a pre-
dictive system is an iterative process that has been presented in Chapter 2. The output
of this process is a workflow connecting a number of preprocessing methods and predic-
tors. Chapter 3 has formalised this workflow using a novel definition based on the Petri
net theoretical framework.

Building a predictive system is known to be a tedious process, especially when the data
quality is low. Appendix B presents a case study where a predictive system is manually
composed including several preprocessing steps. One of these steps is the identification
of shutdown periods, that is, when a chemical plant is stopped for maintenance purposes.
A novel method for online identification of shutdown periods is proposed. A comparison
with state-of-the-art methods shows an improvement on the predictive accuracy. This
case study shows as well how tedious and time consuming is the process of composing
and optimising an MCPS.

Finding the best combination of data cleaning, data transformation and predictive
methods is often impractical due to the large number of methods and associated hy-
perparameters available in data mining toolboxes. Thus, Chapter 4 has proposed the use
of Bayesian optimisation techniques to explore and exploit the search space made of all
possible preprocessing methods, predictors and ensemble methods of WEKA. An inten-
sive experimental study has conducted and evaluated different optimisation techniques
varying the search space size for 21 datasets of benchmark classification problems. One
of the novel contributions of this thesis is the addition of preprocessing steps into the
search space. This allows a custom data preparation for each particular model instead

95

96 CHAPTER 6. CONCLUSION AND FUTURE WORK

of using the same preprocessing methods for all evaluated models as it is often found
in the literature. The results indicate that model-based optimisation techniques perform
better than a random search in the majority of the evaluated datasets even in this extended
search space. The developed tool has been made freely available so other researchers and
data practitioners can benefit from automatic MCPS development.

To assess the feasibility of this automatic approach in process industry, an experi-
mental study has been carried out with datasets from real chemical processes. The best
MCPSs found for 6 out of 7 datasets outperform the results of most popular soft sensor
methods in online prediction (regression). In addition, best MCPSs found for 4 out of
7 datasets work better than common soft sensor methods for process monitoring (classi-
fication). These results indicate that this technique can be used to build soft sensors in
an automatic fashion, but one should be aware of the possibility of getting stuck in local
minima.

Moreover, a hybrid adaptation strategy has been proposed for dealing with changes in
data due to the evolving nature of chemical processes and external causes. A set of ex-
periments have compared different adaptation strategies for regression and classification
tasks. It has been found that MCPS adaptation has led to reduce the predictive error for
all the datasets. Nonetheless, there is no single adaptation strategy that outperform the
rest. Instead one could run them in parallel and pick the one that performs best, similarly
to the work done in Bakirov et al. (2017).

While MCPSs can be adapted as a whole as shown in Chapter 5, Appendix C concen-
trates on investigating and discussing the effects that an adaptation a single component
can have on the overall predictive system behaviour, complexity and performance. The
concept of change propagation in MCPSs is also introduced together with a novel def-
inition of coloured MCPSs. This definition allows MCPS to include meta-data as an
additional token and therefore propagate a local adaptation in a component to the rest of
the system.

Automatic and autonomous adaptation of MCPSs is very beneficial in a production
environment. Reducing the amount of human intervention implies saving of costs and
potentially allows the process to run for longer periods while maintaining a good predic-
tive performance.

6.2 Main findings and conclusions

The aim of this thesis was to study the feasibility of automating the composition and
optimisation of workflows to make accurate predictions on unseen data. The proposed
approach using SMBO techniques has been shown to be effective in finding MCPSs to
address classification and regression tasks. To achieve that aim, the three main objectives
pursued in this thesis have been successfully fulfilled:

“Propose, design and evaluate a framework for connecting multiple components to
compose valid predictive workflows including preprocessing methods, machine learning
models, and postprocessing operations.”

6.2. MAIN FINDINGS AND CONCLUSIONS 97

Chapters 1 and 2 have presented the need of data preprocessing and modelling to build
effective prediction systems. In order to formalise this practical concept, a new type of
Petri net has been proposed in Chapter 3 to connect multiple components forming a pre-
dictive system. The benefit of this approach is the abstraction of individual methods and
considering them instead as data transformations known in Petri nets formalism as transi-
tions with inputs and outputs. The visual representation of MCPSs as Petri nets also helps
to understand how data flows across the system. This new formalism has been integrated
into the CASH problem – which now states the problem of composing and optimising
MCPSs instead of a single algorithm as it was originally defined. An example of compos-
ing and optimising an MCPS for a chemical production process needing a considerable
amount of data preprocessing has been presented in Appendix B. That particular example
focused on the online cleaning of data from shutdown periods of a chemical plant. The
amount of time and effort needed to build MCPSs is one of the main motivations leading
to automate this process.

“Develop and evaluate a smart data-driven mechanism to automate the creation of
such workflows with minimum human intervention.”

After conducting a thorough literature review, it has been found that recent works us-
ing the Bayesian optimisation framework have been particularly attractive for tackling the
main goals of the project related to the automatic predictive algorithm selection problem
(Hutter et al. (2011); Bergstra et al. (2011)). In particular, SMBO methods like SMAC
and TPE have become the start-of-the-art in this field and therefore they have been cho-
sen as the starting point for the presented research. Both methods were implemented
in the Auto-WEKA tool which has been substantially extended in this thesis to support
search spaces made of arbitrary number of sequential data transformation steps forming
workflows or, in other words, the MCPSs configurations. This has been a critical step
on the way towards automatic generation and optimisation of MCPSs for classification
and regression problems without any human interaction and fully driven by the available
data. An intensive experimentation – presented in Chapters 4 and 5 – on 28 datasets has
taken more than 162,750 CPU-core hours1.

“Develop and evaluate an approach of adapting predictive workflows in changing
environments.”

A hybrid adaptation approach consisting on combining global parameterisation and
global re-composition of MCPSs has been proposed in Chapter 5 and evaluated on a
number of challenging, real life datasets from the process industry. Results from further
extensive experimental analysis on these datasets have shown that the proposed approach
can be used not only for automating a very challenging process of combining data cleans-
ing and preprocessing together with a predictive model building, but also to streamline
and automate the labour intensive maintenance of predictive systems in production en-
vironments. An initial study on local adaptation of MCPSs has been carried out in Ap-
pendix C, demonstrating the challenges of this strategy. A novel extension of MCPSs
called coloured MCPSs which propagates a token of meta-data through the system has
been shown to be helpful to adapt correctly the system.

1Running the experiments has been possible thanks to the computer cluster at Bournemouth University

98 CHAPTER 6. CONCLUSION AND FUTURE WORK

The speed up of preprocessing and modelling steps is one of the main benefits re-
sulting from the work of this thesis. Thus, the concept of ‘Agile Data Science’ (Jurney
(2013)) is more feasible since it becomes faster to iterate over different ways of solving
a changing data mining problem.

6.3 Future work

Despite good results have been achieved, this topic is still a very active field of research
and there are many possibilities for new approaches and improvements. The following
list provides a brief discussion of further research topics that can be done as continuation
of this thesis:
• Different data partitioning: Using different data partitioning of the training set

like Density-Preserving Sampling (DPS, Budka & Gabrys (2010a)) instead of CV
could make a difference in the optimisation process of SMAC. SMAC discards
potential poor solutions early in the optimisation process based on performance on
only a few CV folds. In case the folds used are not representative of the overall
data distribution, which as shown in Budka & Gabrys (2013) can happen quite
often with CV, the effect on the solutions found can be detrimental.
• Multi-objective optimisation: Current SMBO methods only support single objec-

tive optimisation. However, it would be useful to find solutions that optimise more
than one objective, including for instance a combination of prediction error, model
complexity and running time as discussed in Al-Jubouri & Gabrys (2014).
• Transparency and interpretability: The optimisation process and the resultant

MCPSs can be difficult to understand for domain experts. An option to penalise
complex MCPS configurations could guide the optimisation strategy to find more
interpretable solutions.
• Better search strategies: As a result of the experiments presented and discussed

in this thesis, and as a recent work by Li et al. (2016) suggests, random search is
not performing much worse than smarter methods such as SMAC and TPE in large
search spaces. Further investigation is needed to find better search strategies that
can perform well in such situations.
• Dynamic search spaces: In order to reduce the search time, a practical solution

is to constrain the size of the search space. This however has the drawback of po-
tentially limiting the finding of optimal solutions. One interesting line of research
could be the dynamic modification of the search space by pruning and/or extension.
This is especially interesting in adaptive scenarios where new data quality issues
may significantly affect the existing MCPS’s performance and additional prepro-
cessing would be needed resulting in a dramatically different MCPS configuration.
• Effective partial adaptation: Global MCPS adaptation is a costly process

(Žliobaitė et al. (2015)) that could be simplified by adapting only some parts of the
system. Though theoretical work like the one in Appendix C points out the benefits
of partial adaptation, there is still further research and development needed in this

6.3. FUTURE WORK 99

topic.
• Meta-optimisation: Optimisation strategies require also setting hyperparameters

such as time limit, exploration/exploitation rate, and starting point that influence on
the quality of the solutions found. For instance, Andrychowicz et al. (2016) present
an approach to optimise gradient descent on neural networks by casting the opti-
misation problem as a learning problem. A similar approach could be interesting
to optimise a Bayesian optimisation problem.

100 CHAPTER 6. CONCLUSION AND FUTURE WORK

Appendix A

Datasets from chemical processes

This appendix provides more details of the datasets used for experiments in Chapter 5
and Appendix B. Most of them have been kindly provided by Evonik Industries and
consist of real measurements from Evonik’s chemical processes. Due to confidentiality
reasons, the datasets have been anonymised and no further details than those provided in
the following description can be given. The remaining datasets are publicly available and
also belong to real processes. Table A.1 lists the size of datasets and related publications
where they have been used.

Dataset Instances Attributes References
acrylic 1,097,281 82 Martin Salvador et al. (2014)
absorber 1,599 38 Martin Salvador et al. (2016a,b)
catalyst 5,867 14 Strackeljan (2006); Ruta & Gabrys (2010);

Kadlec & Gabrys (2011); Souza & Araujo
(2014); Martin Salvador et al. (2016a,b);
Bakirov et al. (2017)

debutanizer 2,394 7 Fortuna et al. (2005, 2007); Martin Salvador
et al. (2016a,b)

drier 1,219 19 Kadlec & Gabrys (2009); Martin Salvador et al.
(2016a,b); Bakirov et al. (2017)

oxeno 17,588 71 Budka et al. (2014); Martin Salvador et al.
(2016a,b)

sulfur 10,081 5 Fortuna et al. (2003, 2007); Martin Salvador
et al. (2016a,b)

thermalox 2,820 38 Kadlec & Gabrys (2009); Martin Salvador et al.
(2016a,b); Bakirov et al. (2017)

Table A.1: Chemical datasets

101

102 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

A.1 Acrylic Acid Dataset

This dataset was provided by Evonik Industries. The data was extracted from the database
of the acrylic acid production plant. This dataset was collected with the purpose of build-
ing a soft sensor to predict the concentration of acrylic acid in the final product. It con-
tains 1,097,281 instances with only 3,335 of them having the target value which has been
measured in the laboratory. The 82 attributes of this dataset are mostly physical mea-
surements like flows, temperatures or pressures, although other derived variables are also
included.

A.2 Absorption Process Dataset (absorber)

This dataset was provided by Evonik Industries. It is formed by 38 numerical attributes,
including the target value. It has 1,198 instances for training and 401 instances for val-
idation. No additional information has been provided apart from this being a regression
task.

A.3 Catalyst Activation Dataset (catalyst)

This dataset was made available for the NiSIS 2006 competition (Strackeljan (2006)).
The task is to predict the activity of a catalyst in a multi-tube reactor. The dataset has
5,867 timestamped instances with 14 sensor measurements including flows, concentra-
tions and temperatures, and one target variable. It covers one year of operation of the
process plant. This dataset is known to need strong adaptive mechanisms since the pro-
cess evolves quite drastically over time. The data also shows high co-linearity between
features and high amount of outliers which can be found in almost 80% of the features.

A.4 Debutanizer Column Dataset (debutanizer)

This dataset is publicly available and described in Fortuna et al. (2007). It contains
2,394 instances formed by four temperatures, one pressure and two flows of a debutanizer
column. This column is a part of the desulfuring and naphtha splitter plant. The target
value is the concentration of butane at the output of the column.

A.5 Drier Process Dataset (drier)

This dataset was provided by Evonik Industries. It has 19 input features, most of them
being physical properties from the chemical plant. The target value is the humidity of the
process product which is measured in the laboratory. The dataset has 1,219 timestamped
instances covering almost 7 months of process operation. It consists of raw unprocessed

A.6. OXENO DATASET (OXENO) 103

data recorded by the process information and measurement system. The main issue of
this dataset is the high noise level which affects all of the data features as well as outliers
which an also be found in most of the features. Missing values are present in 16% of the
features.

A.6 Oxeno Dataset (oxeno)

This dataset was provided by Evonik Industries. It contains 211,051 instances formed
by 71 attributes, however for practical purposes it has been subsampled by periodically
selecting one sample every hour, resulting in 17,588 instances. The attributes include
temperatures, pressures, flows and concentrations from different sensors of the plant.
The target variable is the product concentration which is measured in the laboratory.
Data samples were collected from a historical database which uses lossy compression.

A.7 Sulfur Recovery Unit Dataset (sulfur)

This dataset is also publicly available and described in Fortuna et al. (2007). The sulfur
recovery unit is a system for removing environmental pollutants from acid gas streams
before they are released into the atmosphere. The washed out gases are transformed into
sulfur. The dataset contains 10,081 instances and has five input features (i.e. gas and
air flow measurements) and two target values which are the concentration of H2S and
SO2. In the regression experiments, only SO2 is considered, while in the classification
experiments both target values are grouped into a single categorical variable.

A.8 Thermal Oxidiser Dataset (thermalox)

This dataset was provided by Evonik Industries. It has 2,820 timestamped instances of
raw data with 38 attributes belonging to sensor measurements. The input features are
physical values like concentrations, flows, pressures and temperatures measured during
the operation of the plant. Many of the variables present common issues of industrial
data like measurement noise and data outliers which severely affect approximately half
of the features. The task is to predict the concentrations of NOx and SOx in the exhaust
gases, which are measured in the laboratory. Only SOx is considered for the regression
experiments. Both target values are grouped into a single categorical variable in the
classification experiments.

104 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

A.9 Results of online prediction

RandomSubSpace

Filtered Classifier

MultiFilter KStar

dummy dummy

dummy dummyWavelet

RandomSubset

1

4

...

...

Split

Mean dummydummy

Figure A.1: Configuration of best MCPS for ‘absorber’ (bottom) and associated target
value vs. prediction (top)

A.9. RESULTS OF ONLINE PREDICTION 105

Bagging

Filtered Classifier

MultiFilter
Gaussian
Processes

dummy dummy

dummy dummy

Replace
Missing Values

Normalize

1

7

...

...

RandomSplit

Mean dummydummy

Figure A.2: Configuration of best MCPS for ‘catalyst’ (bottom) and associated target
value vs. prediction (top)

106 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

Filtered Classifier

MultiFilter
Gaussian
Processes

dummy dummy

dummy dummy

EM Imputation

Standardize

Figure A.3: Configuration of best MCPS for ‘debutanizer’ (bottom) and associated tar-
get value vs. prediction (top)

A.9. RESULTS OF ONLINE PREDICTION 107

Bagging

Filtered Classifier

MultiFilter M5P

dummy dummy

dummy dummy

RandomSubset

Reservoir
Sample

1

74

...

...

RandomSplit

Mean dummydummy

EM Imputation

Figure A.4: Configuration of best MCPS for ‘drier’ (bottom) and associated target value
vs. prediction (top)

108 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

RandomSubSpace

Filtered Classifier

MultiFilter M5P

dummy dummy

dummy dummy

Replace
Missing Values

Normalize

1

29

...

...

Split

Mean dummydummy

Figure A.5: Configuration of best MCPS for ‘oxeno’ (bottom) and associated target
value vs. prediction (top)

A.9. RESULTS OF ONLINE PREDICTION 109

Bagging

Filtered Classifier

MultiFilter M5P

dummy dummy

dummy dummy

Replace
Missing Values

Standardize

1

64

...

...

RandomSplit

Mean dummydummy

Figure A.6: Configuration of best MCPS for ‘sulfur’ (bottom) and associated target
value vs. prediction (top)

110 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

RandomSubSpace

Filtered Classifier

MultiFilter
Gaussian
Processes

dummy dummy

dummy dummyWavelet

Replace
Missing Values

1

3

...

...

Split

Mean dummydummy

Figure A.7: Configuration of best MCPS for ‘thermalox’ (bottom) and associated target
value vs. prediction (top)

A.9. RESULTS OF ONLINE PREDICTION 111

112 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

A.10 Results of adaptive online prediction

Cumulative

Figure A.8: Target value and prediction of best MCPS found for ‘absorber’

Batch

Figure A.9: Target value and prediction of best MCPS found for ‘catalyst’

A.10. RESULTS OF ADAPTIVE ONLINE PREDICTION 113

Batch

Figure A.10: Target value and prediction of best MCPS found for ‘debutanizer’

Baselinedrier

Figure A.11: Target value and prediction of best MCPS found for ‘drier’

114 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

Baseline

Figure A.12: Target value and prediction of best MCPS found for ‘oxeno’

Cumulative

Figure A.13: Target value and prediction of best MCPS found for ‘sulfur’

A.10. RESULTS OF ADAPTIVE ONLINE PREDICTION 115

Cumulativethermalox

Figure A.14: Target value and prediction of best MCPS found for ‘thermalox’

116 APPENDIX A. DATASETS FROM CHEMICAL PROCESSES

Appendix B

Filtering out shutdown periods in
chemical plants: a case study

B.1 Introduction

Chemical production processes are controlled both manually and automatically to
achieve a desired product quality. Physical sensors around the plants provide data streams
such as temperature, pressure, humidity or flow, that are essential to monitor plant oper-
ation in real time.

Soft sensors are usually built for predicting hard-to-measure values in real time
(Kadlec et al. (2009)). This building process involves data cleaning such as the removal
of data from shutdown periods. Adaptive soft sensors are often updated with new data
for capturing well the underlying behaviour of the process that evolves over time (Kadlec
et al. (2011)). If the data from shutdowns are not removed, the predictive model can adapt
to an undesirable process state. Also, during these inactive periods of production the pre-
dicted values are not meaningful from the process point of view. Therefore, an online
method is necessary to automatically detect shutdowns in order to stop model adaptation.

The decision to stop a plant is usually taken by an human operator. Despite the fact that
shutdowns can be scheduled for a year ahead, they may vary depending on the operating
conditions (e.g. if heat suddenly increases to a dangerous level the plant has to be stopped
for safety reasons).

The problem is also challenging because there is usually no single variable that can
accurately and unambiguously identify the operating state of the chemical process. The
solution starts from monitoring sensor values to detect changes in the process. However,
not all sensors react in the same way to a shutdown. Expert support is usually needed to
select the relevant sensors to monitor.

In addition, physical sensors can fail and as a result detection may be interrupted.
Therefore, a shutdown detection method that works by monitoring only one sensor is
unreliable in an industrial environment. It is essential to build robust methods that are
able to monitor and combine several sensors at the same time.

117

118 APPENDIX B. FILTERING SHUTDOWN PERIODS

The data of this case study has been provided by Evonik Industries and it has been
collected from a chemical plant over a period of 2 years of operation. Data from 81
physical sensors has been aligned by time-stamp in order to form instances. The location
of sensors in the plant causes delays between sensor signals during both shutdowns and
startups. These delays make the detection more challenging. Furthermore, the annotation
of the shutdown periods as ground truth for evaluation purposes has not been trivial.

B.1.1 Problem setting

Fl
ow

 1
Fl

ow
 2

Time

Fl
ow

 3

Shutdown Periods

Figure B.1: This plot shows how sensors values suddenly drop when a shutdown starts.
After a period of inactivity, the values suddenly increase again when shutdown ends.

A shutdown is a period of time [tα, tω] during which a process is inactive but its duration
is not defined a priori. Process operation is monitored using a group of sensors. The vi-
sualisation of the values of some sensors over time makes possible a clear distinction of
groups of out-of-control values that represent shutdown periods (see Figure B.1). How-
ever, other sensors are not showing any change during those periods. The selection of
relevant sensors for shutdown detection is not straightforward and usually domain experts
select them manually. For this particular dataset, 11 flow sensors have been manually se-
lected after analysing the data with domain experts.

This work focused in an online scenario where data from sensors are continuously
arriving to the system at fixed time intervals (e.g. every second). Let xt = (x1,t, ..., xN,t)
be the vector of N sensor values at time t. The distribution of a relevant sensor (i.e.

B.1. INTRODUCTION 119

sensitive to shutdowns) is given by a Gaussian mixture model

xn,t ∼

{
N (µn,0, σn,0

2), if t /∈ [tα, tω]

N (µn,1, σn,1
2), if t ∈ [tα, tω]

(B.1)

The formulation of a change-point in a data stream is usually given by the stopping
rule

T = inf{t : st(xt) ≥ τ} (B.2)

where st(xt) is the statistic computed over the input data and τ is the detection threshold.
Since sensors are physically located in different places of a plant, they will perceive

the change of the process state at different moments. As a consequence, when a shut-
down takes place there is a time interval [tα, tβ] in which some parts of the plant are still
working while others are stopped. The same situation happens during a startup. In this
case, the time interval is [tψ, tω]. Figure B.2 shows these time intervals in three flow
sensor signals during both events. Usually, tβ − tα � tω − tψ. That is, shutdowns are
characterised by sudden changes while startups present gradual changes in sensor values.

The statistic st will increase during the interval [tα, tβ] and it will decrease during
[tψ, tω]. As a consequence, different stopping rules have to be used according to the type
of change that one would like to detect. That is, Equation B.2 is suitable for detecting
shutdowns, while the following stopping rule is more suitable for detecting startups

T = inf{t : st(xt) < τ} (B.3)

The right use of either stopping rules is associated with the process state since they are
contradictory.

Time

Fl
ow

Shutdown

Time

Fl
ow

Startup

Flow A
Flow B
Flow C
Threshold A
Threshold B
Threshold C

tψ

tω

tα

tβ

Figure B.2: Plot on the left shows the points tα and tβ which are chosen in annotation
as the time interval of the beginning of the shutdown period. Plot on the right shows the
points tψ and tω which are annotated as the time interval of the end of the shutdown.

120 APPENDIX B. FILTERING SHUTDOWN PERIODS

In the case of a shutdown its beginning should be detected quickly, that is, in a time
point ta ≥ tα as close as possible to tα. On the other hand, in case of a startup one would
like to detect the very end of the shutdown period, that is, a time point tz ≥ tω as close
as possible to tω.

Deployment of a method for detecting these periods can result in three different out-
comes: a) correct detection; b) false detection; and c) no detection. A good method
should be able to maximize the number of correct detections and to minimize the number
of false detection/no detection cases. This requirement is directly related to the reduction
of the detection delay and the rate of false detections, which are the two most common
metrics in the change-point detection literature.

B.2 Multi-sensor change-point detection methods

The detection of abrupt changes in single-sensory data (i.e. one-dimensional) has been
well studied and solved. For example, the book by Basseville & Nikiforov (1993) is one
of the main references for this problem. Lai (1995) surveys the sequential change-point
detection methods in quality control and dynamical systems. A more recent state-of-
the-art in single-sensor sequential change-point detection is presented by Polunchenko &
Tartakovsky (2011) where methods of main formulations are reviewed.

The extension of this problem to multiple-sensory data has been also addressed by
several authors. A two-part review of methods using different topologies and approaches
can be found in Viswanathan & Varshney (1997); Blum et al. (1997). Classical methods
use all the data collected until the current time t. However, those approaches are not fea-
sible for practical purposes where data streams are continuously arriving to be processed.
For this case study, a number of window limited versions of the state-of-the-art methods
have been selected and implemented in order to carry out a comparative performance
study.

The first chosen method was proposed by Tartakovsky & Veeravalli (2008) where a
likelihood ratio test is carried out for each sensor and individual results are aggregated.
The statistic to define the stopping rules of this method is referred to TV in Table B.1.

Mei (2010) proposes a family of scalable schemes for global online monitoring of data
streams based on CUSUM statistics from each individual data stream. The same author
extends this work in Mei (2011) where the fact that the change point may be different
in each data stream is taking into account. The statistic monitored by Mei’s method is
referred to MEI in Table B.1.

Xie & Siegmund (2013) propose a mixture procedure based on the aggregation of the
local generalized likelihood ratio (GLR) statistic of each sensor. This method assumes
that the pre- and post-change distributions are Gaussian with pre-change mean being
zero. This mixture includes a fraction of affected sensors by the change that has to be
fixed a priori. The statistics of two different stopping rules proposed by the authors can
be found in Table B.1 (as XS1 and XS2).

Finally, a new method based on Shewhart’s control charts (Shewhart (1931)) has been

B.2. MULTI-SENSOR CHANGE-POINT DETECTION METHODS 121

developed. These charts are widely used in the industry to distinguish between two states
of a process (i.e. in-control and out-of-control). Section B.2.1 provides more detailed
explanation of this method. The statistic monitored by this method is referred to SGZ in
Table B.1.

In the recent years, multi-sensor change-point detection methods have been applied for
example to fault detection (Rajagopal et al. (2008)) and intrusion detection (Tartakovsky
et al. (2006)), but no works in shutdown periods detection are available so far to date.

A common assumption in the literature is that a change has to be detected as soon as
possible. This is also true in the case of detecting the beginning of a shutdown. On the
other hand, the pipeline structure of a big chemical plant means that the re-initialization
of the sensors after a startup is delayed according to their spatial location. Thus, the
detection of a startup should be deferred until all the parts of the chemical plant are
working in a steady state which makes the startup detection a much more challenging
problem.

B.2.1 Multi-sensor change-point detection method based on control
charts

In order to control a quality measure, an upper and lower thresholds are computed with
historical data. It is common to get these thresholds using the 3σ-rule, which state that
for a normal distribution the 99.7% of values lies in the interval (µ− 3σ, µ+ 3σ) where
µ is the mean and σ is the standard deviation of the sample.

To extend this method to this case study, the limits for each sensor are computed as
Ln = µ̃n − 3σ̂n and Un = µ̃n + 3σ̂n, where µ̃n is the median and σ̂n ≈ 1.4826MAD
is the estimation of the standard deviation using the median absolute deviation (MAD)
computed over the historical data.

The presence of outliers in the data might lead to false detections. Therefore, to in-
crease robustness of the method a window of out-of-control values have been introduced
for each sensor. Thus,

Cn,t = (B(xn,t−r), . . . ,B(xn,t)) (B.4)

is the window of r binary values for the sensor n where

B(xn,t) =

{
1, if xn,t /∈ [Ln, Un]

0, otherwise
(B.5)

A window for each sensor is monitored and weighted according to its reliability. Bi-
nary weights are used to discard those sensors which might be failing. A similar approach
to identify faulty sensors is presented in Seron et al. (2012). Let

γn,t =
∑

ci, ∀ci ∈ Cn,t (B.6)

be the number of out-of-control values in the window Cn,t. Each weight is then updated

122 APPENDIX B. FILTERING SHUTDOWN PERIODS

in each time t as

wn =

{
1, if γn,t ∈ [L,U]

0, otherwise
(B.7)

whereL and U are the thresholds ofC1..N,t computed using the Hampel identifier (Davies
& Gather (1993)).

Final decision for detecting a change is taken by aggregating the weighted counters of
all sensors. Therefore, using

st(xt) = max
1≤n≤N

(wnγn,t) (B.8)

as a statistic (SGZ in Table B.1) both quick detection during a shutdown and deferred
detection during a startup are ensured. This aggregation can therefore deal with the delays
between sensors due to their spatial location. Pseudo-code for this method is presented
in Algorithm 3.

Algorithm 3 Function processSample(xt)
1: for n = 1→ N do
2: B = isOutlier(xn,t) . Eq. B.5 equivalent
3: Cn.removeOldest() . Cn is a list of size r initialized as a global variable
4: Cn.append(B) . Eq. B.4 equivalent
5: end for
6: [L,U] = getReliabilityThresholds(C1,...,N)
7: st = 0
8: for n = 1→ N do
9: γn = sum(Cn) . Eq. B.6 equivalent

10: wn = inLimits(γn,L,U) . Eq. B.7 equivalent
11: st = max(st, wn · γn) . Eq. B.8 equivalent
12: end for
13: if processActive and st ≥ τ then . Eq. B.2 equivalent
14: shutdownDetected()
15: processActive = false . processActive is defined as a global variable
16: else if ¬processActive and st < τ then . Eq. B.3 equivalent
17: startupDetected()
18: processActive = true
19: else
20: continueProcessSample(xt)
21: end if

B.3 Experimental evaluation

The goal of this experimental evaluation is to compare the performance and reliability
of different multi-sensor change-point detection methods in this case study and to select

B.4. EVALUATION MEASURES 123

the most suitable for a production environment. For that purpose, evaluation measures
are defined and then an experimental protocol is established. Finally, the results of the
conducted experiments using the Acrylic Acid dataset (described in Appendix A.1) are
discussed.

B.4 Evaluation measures

In change-point detection literature there is a trade-off between detection delay and false
alarm rate. While the objective is to minimize both measures, a threshold for a quick
detection delay can increase the number of false alarms (i.e. incorrect detections). In this
case study the aim is to avoid false detection at all cost but at the same time without long
delays.

Although shutdowns and startups are both changes from the theoretical point of view,
they are being distinguished during the experiments because they are different in prac-
tice as explained in Section B.1.1. Therefore, the selected measures are the shutdown’s
detection delay as ∆α = ta − tα and the startup’s detection delay as ∆ω = tz − tω where
ta and tz are the times of the detection for each case.

Three common quantities to measure the predictive performance in regression prob-
lems are computed: a) mean absolute error (MAE); b) root mean squared error (RMSE);
and c) correlation between target and prediction (ρ).

B.5 Experimental setting

The dataset has been split in two equally-sized parts. The first half is used for training
and the calibration of parameters and the second half for evaluating the methods. Each
half contains 22 change-points (11 shutdowns and 11 startups) that have been manually
annotated.

Table B.1 contains the distinctive formulas for calculating the time changing statistical
values used in the stopping rule of each method. In this table, t is the current time, r is
the size of a temporal window,

`n(t, k, µn) =
t∑

i=k+1

(µnxn,i − µ2
n/2) (B.9)

is the log-likelihood of observations accumulated by time t, µn is the mean of the data
during a shutdown,

µ̂n,k,t =

t∑
i=k+1

xn,i

t− k
(B.10)

is the maximum likelihood estimator of the mean, and p0 is the posterior probability of
xt in the distribution D0 (i.e. data in steady state).

124 APPENDIX B. FILTERING SHUTDOWN PERIODS

Method st(xt)

TV max
t−r≤k≤t

N∑
n=1

`n(t, k, µn)

MEI
N∑
n=1

max
t−r≤k≤t

`n(t, k, µn)

XS1 max
t−r≤k≤t

N∑
n=1

log(1− p0 + p0 exp[`+
n (t, k, µn)])

XS2 max
t−r≤k≤t

N∑
n=1

log(1− p0 + p0 exp[(µ̂+
n,k,t)

2/2])

SGZ max
1≤n≤N

(wnγn,t)

Table B.1: Formulas used for st(xt) in Equations B.2 and B.3

r 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
TV 16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10
MEI 18 17 17 18 19 17 18 18 19 20 19 11 11 11 11 11 11
XS1 80 68 17 80 23 58 60 25 46 57 57 57 57 57 46 57 35
XS2 16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 10 10
SGZ 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table B.2: Limit values τ for each method and window size r

The limits of the stopping rules for all the methods have to be chosen to minimize
both the detection delay and the rate of false alarms. In the case of XS1, XS2, MEI and

TV this limit lies in 0 < τ .
N∑
n=1

r · µ2
n,1/2, and for SGZ in 0 < τ < r. Limits for each

method have been automatically set using the first half of the dataset as input. Thus, the
computed limit is the minimum st value that avoids the false alarms and detects all the
change-points. Table B.2 contains these limits for each window size.

To assess the impact of filtering out shutdown periods in the predictive performance, a
PLS regression model with 10 latent variables is trained using the first half of the dataset
once it has been preprocessed. Then, in the online phase, the model predicts the target
value for each incoming instance. After that, the model is adapted using recursive PLS
algorithm (Joe Qin (1998)) when the true target value is provided. The resultant MCPS
is shown in Figure B.3.

B.6. EXPERIMENTAL RESULTS 125

Missing Value

Imputation

Feature

Selection

(11 flow sensors)

Shutdown

Detection Data

Filtering

Feature

Selection

(std!=0)

Z-Score

Normalization

PLS

Regression

Data

Flag

Figure B.3: MCPS for acrylic acid dataset. The ‘Data Filtering’ transition receives two
tokens: 1) a flag indicating the state of the process (active or not); and 2) the data to be
processed. Once fired, it generates a new token with the filtered data that continues to
the rest of the MCPS.

B.6 Experimental results

B.6.1 Detection delay

A sample of the st values computed for each method is shown in Figure B.4. The statistics
for TV, MEI, XS1 and XS2 are very similar because they are all based on the likelihood.
The flat signal of SGZ indicates that the windows of out-of-control values is full (r = 25).

Figure B.5 compares the median values of the detection delays during the shutdown
phases. The window size almost does not affect to the these types of detections because
the st values quickly increase during the shutdown phase and overcome the threshold τ .
The MEI, TV and XS2 methods reported lower detection delays than XS1 and SGZ.

On the other hand, the window size has a significant effect on the median values of
the detection delays during the startup phases as shown in Figure B.6. A negative delay
means that the change-point has been detected before tω. In this case study, a small
positive detection delay is desired. In both XS1 and SGZ a value of r = 30 satisfies that
requirement. However, a value of r = 75 is needed for TV, MEI and XS2.

False alarms have only be reported for MEI with window sizes r =
{20, 25, 30, 45, 50, 55, 60} and for SGZ with window sizes r = {20, 65}. The rest of
the methods have not raised any false alarms within the experimental setup.

The methods behave similarly although selection of window size makes a difference.
The MEI method detects the changes quicker than the other methods but at the same time
it raises false alarms in some of the cases. Any of the following configurations would be
suitable to be implemented in a production environment: (TV, r = 70), (MEI, r = 75),
(XS1, r = 30), (XS2, r = 70) and (SGZ, r = 30). If memory requirements are costly, the
XS1 method would be the best choice because its performance is better than the others
with lower window size.

126 APPENDIX B. FILTERING SHUTDOWN PERIODS

2000 3000 4000 5000 6000 7000 8000 9000
−4
−2

0
2 DATA

2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000
XS1

s
t

2000 3000 4000 5000 6000 7000 8000 9000
0

20

40
XS2

s
t

2000 3000 4000 5000 6000 7000 8000 9000
0

20

40
MEIs

t

2000 3000 4000 5000 6000 7000 8000 9000
0

20

40
TV

s
t

2000 3000 4000 5000 6000 7000 8000 9000
0

10
20
30

SGZ

t

s
t

Figure B.4: Subset of the observed data and st values for all the methods for r = 25

B.6. EXPERIMENTAL RESULTS 127

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

Window size

D
el

ay

Shutdowns’ median delay

TV
MEI
XS1
XS2
SGZ

Figure B.5: Median of the detection delays of the shutdowns

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
−40

−20

0

20

40

60

80

Window size

D
el

ay

Startups’ median delay

TV
MEI
XS1
XS2
SGZ

Figure B.6: Median of the detection delays of the startups

128 APPENDIX B. FILTERING SHUTDOWN PERIODS

B.6.2 Predictive performance

Results of predictive performance are shown in Table B.3. ‘None’ is when no shutdown
detection is performed, ‘Oracle’ means that the detection has been done manually and the
rest are the different shutdown detection methods evaluated. The ‘Oracle’ method has the
lowest error and the highest correlation as expected. Also, not using any detection has the
poorest performance as expected. See Figure B.7 that shows how the regression model
keeps predicting (green line) when it should not because there is a shutdown (red line).
There is not much difference between the different multi-sensor change-point detection
methods evaluated, though SGZ has the lowest RMSE and the higher correlation among
them.

Method MAE RMSE ρ
None 0.717023 0.333022 0.946592
Oracle 0.708273 0.084207 0.999845
TV 0.708572 0.271488 0.963712
MEI 0.708586 0.271493 0.963711
XS1 0.708663 0.274622 0.962837
XS2 0.708572 0.271488 0.963712
SGZ 0.708743 0.269687 0.964231

Table B.3: Predictive performance of RPLS using different shutdown detection methods

1.35 1.4 1.45 1.5 1.55

x 10
5

−10

−5

0

5

10

t

Target

Prediction

Figure B.7: Target value and prediction during a shutdown period. The regression model
keeps predicting (green line) when it should not because there is a shutdown (red box)
and thus is returning predictions which are not meaningful.

B.7. CONCLUSIONS 129

B.7 Conclusions

The task of this real case study has been to identify the shutdown periods of a chemical
plant using raw data provided by the physical sensors. For that, the problem setting
has been initially formulated and then a number of state-of-the-art methods in multi-
sensor change-point detection have been selected for comparison. In addition, a new
robust method based on control charts (which are very popular in the industry) has been
developed.

A series of experiments have been conducted using a common framework in order to
evaluate the detection performance of all these methods for this case study. The impact
of these detection methods on the predictive performance of a soft sensor based on PLS
has been evaluated. The results show that the automatic detection helps to increase the
predictive performance. In particular, the new SGZ method is the one with lowest RMSE
and highest correlation.

130 APPENDIX B. FILTERING SHUTDOWN PERIODS

Appendix C

Effects of change propagation resulting
from adaptive preprocessing in
multicomponent predictive systems

C.1 Introduction

In online supervised learning, data-driven predictive models are built incrementally using
labelled instances. Preprocessing of those instances is often needed before the predictive
model learning phase (Han et al. (2011)). Common preprocessing methods include im-
putation of missing values, data normalisation, noise reduction and feature selection, to
name a few. A combination of various preprocessing steps with a predictive model and
possible postprocessing steps results in a so called multicomponent predictive system
(MCPS) which was presented in Chapter 3.

The simplest MCPS includes a predictive model as a single transition (e.g. Naı̈ve
Bayes classifier). A more complex MCPS contains several preprocessing methods (e.g.
moving average filter and PCA), an ensemble of predictive models (e.g. regression tree
and neural network) and an ensemble aggregation method (e.g. majority voting). In
this investigation, an intermediate example consisting of three preprocessing methods (z-
score normalisation, PCA, and min-max normalisation) and one classifier (GFMM neural
network) have been selected (see Fig. C.1) and it is explained further in Section C.2.
Please note that this example only serves as a convenient case of discussing the change
propagation issues and other preprocessing steps and predictive models could have also
been used.

Z-Score PCA Min-Max GFMM

Figure C.1: MCPS used as example

131

132 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

Preprocessing methods are usually trained offline and therefore their parameters re-
main fixed during the whole model lifetime. However, in non-stationary environments,
where data statistics can vary over time, parameters of preprocessing methods should be
updated to avoid performance loss. In addition, the predictive model may need to be
adapted to new data as well.

There are two main types of strategies to adapt predictive models: (a) incremental
update (Bouchachia et al. (2007)) or (b) replacement with a new model (Gama et al.
(2014)). The GFMM model used here as an example is updated using the former strategy,
although other learning/adaptation strategies are also possible (Gabrys (2004)).

Adaptation of individual preprocessing methods has been considered by different au-
thors. Adaptive feature selection (Anagnostopoulos et al. (2008)), recursive PCA (Li
et al. (2000)) and adaptive normalisation (Ogasawara et al. (2010)) are some examples
of adaptive preprocessing methods. Žliobaitė & Gabrys (2014) was the first attempt to
address decoupling of adaptive preprocessing from the remaining components in a learn-
ing process with evolving data streams. One of the authors’ conclusions was that such
decoupling can be highly beneficial though can cause various problems if the change
resulting from adapting a preprocessing step is not correctly propagated to subsequent
components of an MCPS.

While in Chapter 5 the proposed autonomous adaptation strategies were for the whole
MCPS, this appendix concentrates on investigating and discussing the effects that an
adaptation of a single preprocessing step can have on the overall predictive system be-
haviour, complexity and performance. The concept of change propagation in MCPSs is
also introduced here highlighting its importance when adapting individual components.
Furthermore it is shown how the lack of a change propagation mechanism can lead to
inconsistencies in the model representation.

The remainder of this appendix has been organised as follows. Section C.2 begins
by introducing the adaptation of MCPSs, and presents the components of the case study.
Section C.3 describes four adaptation scenarios used in the experiments, followed by an
experimental study with different datasets in Section C.4. Conclusions are presented in
Section C.5.

C.2 Reactive adaptation of MCPSs

In non-stationary data-streams, the relation between the input and the target can drift over
time and predictive models have to be updated to avoid performance loss. Currently, the
most common way to detect the need for adaptation is to monitor model performance
(Gama et al. (2004)). However, such an approach means that a number of instances have
to be wrongly predicted before the problem can be actually detected. In addition, true
labels (correct values which are predicted) are needed to estimate the loss and they may
not always be available. In an MCPS one could add detection mechanisms in the early
stages to monitor and adapt to the changes of the input data distribution (e.g. measuring
abrupt changes in the mean of an input attribute) therefore not completely relying on the

C.2. REACTIVE ADAPTATION OF MCPSS 133

ability to calculate prediction error. This approach is referred as reactive adaptation to
the input data distribution changes.

A possible control mechanism is to establish preconditions and postconditions in all
the system components. Therefore, if any of the conditions are not fulfilled, action must
be taken. For example, in the case of min-max normalisation method if an input value
is not within the [min,max] range, the preprocessing component should be adapted to
the new range. Other methods such as recursive PCA may include a post-condition that
detects if previous and current principal components differ significantly.

In order to illustrate the point discussed above, three preprocessing methods (z-score
normalisation, PCA for dimensionality reduction, and min-max normalisation) and one
incremental predictive model (GFMM neural network) have been selected. In the follow-
ing subsections all four components are briefly described.

C.2.1 Dimensionality reduction

Many datasets include variables which might not be relevant for the prediction task, un-
necessarily increasing model complexity. For that reason, reducing the number of vari-
ables is often desirable. A common technique is performing Principal Component Anal-
ysis (PCA) and then selecting the first k components that explain a given percentage of
dataset variance. Let X be the n× p input dataset where n is the number of samples and
p the number of variables. Then, the reduced dataset is given by X ′ = XWk, where Wk

is the p× k loading matrix.

C.2.2 Z-Score normalisation

Data normalisation is recommended before performing PCA, particularly if the variables
have different units. Z-score normalisation, which scales the data to a standard normal
distribution with zero mean and unit variance, is a common choice (see Eq. C.1).

f(x) =
x− µ
σ

(C.1)

C.2.3 Min-max normalisation

The min-max method normalises the values of each attribute of a dataset to a range
[low, high] using the following formula, assuming max > min:

f(x) = (high− low) · x−min
max−min

+ low (C.2)

If the max and min values of an attribute are known a priori and do not change over
time (e.g. they are given by the physical limitations of a measuring equipment), it can be
assumed that all the values are going to be in the range [low, high]. On the other hand, if
those limits are unknown, they have to be estimated from the available data.

134 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

Although the consequences of not dealing with extreme outliers (Pyle (1999)) are
taken into consideration, this study assumes that they are being handled in a preced-
ing preprocessing step for the sake of simplicity. For instance, Ogasawara et al. (2010)
smooth the data and remove outliers during the training phase before the normalisation.
Nevertheless, detection and handling of outliers are another preprocessing components
that can potentially be adapted.

C.2.4 GFMM classifier

The General Fuzzy Min-Max (GFMM) neural network is a method that can be used for
both classification and clustering problems. GFMM models the density of the input space
using fuzzy hyperboxes (i.e. multidimensional generalisation of a rectangle with an asso-
ciated membership function) to cover all training instances, with the j-th hyperbox being
characterised by its min (Vj) and max (Wj) points (for an example refer to Fig. C.4). The
reason of selecting GFMM as model in this study is two-fold: 1) it is easy to interpret
and visualise with two-dimensional data; and 2) it requires data within the [0, 1] range so
a min-max normalisation step is needed. For full description of the incremental learning
algorithm and further details of the GFMM family, please refer to the relevant literature
(Gabrys & Bargiela (2000); Gabrys (2004)).

C.2.5 Change propagation

Change propagation is a recurrent topic in complex systems where changing a component
may require to adapt further parts of the system (Giffin et al. (2009)). Understanding how
components are connected is crucial for performing a correct adaptation. Some works
have addressed change propagation in different type of structures such as dynamic trees
(Acar et al. (2005)) or directed acyclic graphs (Acar et al. (2002)). However no works
focusing on MCPSs have been found.

Any parametric change in one component of an MCPS can have a knock-on effect on
the data consumed by the remaining components. In this context, change propagation
can be defined as the mechanism of transferring relevant information across the system
to keep it consistent. For instance, if the input space is transformed, the model should
be mapped to this new space. That is, any change in the preprocessing parameters trans-
forming the input space should be reflected in the model. In the MCPS used as example,
the three preprocessing methods perform consecutive linear transformations, so invert-
ing such transformations should be done in the right order. In other cases however, such
propagation may not be necessary.

Figure C.2 illustrates how a change in the min-max component is propagated to the
GFMM model via a coloured token with meta-data, using the Petri net formalism. The
token triggers adaptation of GFMM using supplied information. Since the original formal
definition of MCPS described in Chapter 3 does not support this kind of token, it can
be expanded to define a coloured MCPS (or cMCPS) as an MCPS with two additional
conditions: a) the places P \ {i, o} can contain up to two tokens assuming that each of

C.2. REACTIVE ADAPTATION OF MCPSS 135

them is of a different colour/type (i.e. data and meta-data) and, as a consequence, b) the
Petri net is not safe (i.e. each place p ∈ P can contain more than one token at any given
time).

Z-Score PCA Min-Max GFMM

data

meta-data

T
im
e

i op1 p2 p3

Figure C.2: Change propagation in an MCPS. When [min,max] values of data at p2

are out of the range of [min,max] parameters of Min-Max transition, the latter needs
to be adapted. In that case, a meta-data token (in red) is generated containing the new
[min,max] values which will be used to adapt the GFMM model.

Although a sequence of linear transformations can be unified into a single linear trans-
formation, the cost of system adaptation (Žliobaitė et al. (2015)) can be reduced by in-
verting only the transformations of affected components. In this scenario, if max or min
limits of Eq. C.2 are updated, the hyperboxes have to be renormalised. To this end, the
hyperboxes are first denormalised from the previous [min′,max′] range using Eq. C.3,
and then normalised again with the new max and min values using Eq. C.2.

f ′(x) =
x− low

high− low
· (max′ −min′) +min′ (C.3)

Similarly, if the loading vectors of PCA are modified, hyperboxes have to be denor-
malised using Eq. C.3 before reversing the PCA transformation. The reverse PCA trans-
formation is given by X = X ′W T

k . Then, the hyperboxes are transformed using the new
loading vectors and normalised again to the [0, 1] range.

The same situation occurs when any parameters of z-score are changing (e.g. µ is
now µ′ and σ is σ′). All the transformations have to be reversed (x′ = σx + µ) and then
reapplied with the new parameters (f(x′) = x′−µ′

σ′
). Otherwise, model representation

would be inconsistent with the new input space.
While these reverse transformations may seem tedious and not always possible, the

following section introduces four scenarios in order to investigate the severity of possible
impact which may result from not propagating the changes correctly.

136 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

C.3 Scenarios

This section introduces four scenarios where data is preprocessed and then classified
as shown in Fig. C.1. All the scenarios share the same training phase, where a batch
of data is preprocessed and then used to build the initial classifier. The main difference
between the scenarios is the degree of adaptation of the predictive system, as summarised
in Table C.1:

#1 - No adaptation All the components remain fixed at all times. The parameters
extracted during the training phase are then used during online preprocessing of the data
stream but no adaptation is performed at any level.

#2 - No adaptive preprocessing The preprocessing methods are not adapted. However,
this and the following scenarios assume that true labels of the instances are provided just
after they are classified. Hence, the labelled instance is fed to the incremental learning
algorithm that updates the classification model.

#3 - Adaptive preprocessing without propagation A buffer with recent instances is
used for computing the PCA loadings. Then, the incoming instances are transformed into
the new space formed by the principal components. In addition, scaling parameters (max
and min) are constantly checked and updated if any value is out of those limits. These
local changes are however not propagated further through the model.

#4 - Adaptive preprocessing with propagation Local changes are propagated through
the system. The classification model is therefore mapped to the new input space: the
hyperboxes of GFMM network are transformed to the original space by reversing the
preprocessing steps, and then the updated preprocessing methods are applied to the hy-
perboxes.

Scenario Adaptive Preprocessing Change Propagation Adaptive Model
#1
#2 X
#3 X X
#4 X X X

Table C.1: Summary table of scenarios

C.4 Experimental study

This experimental study considers the scenarios presented in Section C.3 in order to
illustrate the implications of adapting some components of the preprocessing and the
classifier.

C.4. EXPERIMENTAL STUDY 137

To compare the system performance between the scenarios, the following values have
been measured over four different datasets: a) classification error; b) maximum hyperbox
membership degree (as a measure of classifier confidence); c) number of samples out of
[0, 1] range; and d) number of hyperboxes.

The first 200 samples of each dataset have been selected for training and the rest for
sequential testing/adaptation.

C.4.1 Synthetic data stream

A synthetic dataset (SYN) has been generated for illustration purposes, consisting of 2
classes that drift over time. The mean of attribute 1 is increasing over time for class 1,
while the mean of attribute 2 remains constant. The opposite situation happens for class
2. Fig. C.3 shows the state of the dataset at different timestamps.

The dataset contains 600 samples, 2 numerical attributes and 2 classes. Samples are
randomly generated from a normal distribution with different means for each attribute
but unit standard deviation. Only min-max normalisation is performed as part of prepro-
cessing for the synthetic dataset.

0 10 20

0

5

10

Attribute 2

A
tt

ri
b

u
te

 1

t = [0,200]

0 10 20

0

5

10

Attribute 2

t = [200,400]

0 10 20

0

5

10

Attribute 2

t = [400,600]

1

2

Figure C.3: SYN dataset at different timestamps

C.4.2 Real data streams

Three publicly available datasets have been selected. The first real dataset (ELEC, Har-
ries (1999)) was collected from the Australian New South Wales Electricity Market and
contains 45,312 instances, 7 attributes and 2 classes which are affected by demand and
supply of the market.

The second dataset (COVERTYPE, Blackard & Dean (1999)) contains the forest cover
type for 30x30 meter cells obtained from US Forest Service. The task is to predict forest
cover type from cartographic variables. It consists of 581,012 instances, 54 attributes and
7 classes.

The third dataset (GAS, Vergara et al. (2012)) contains 13,910 measurements from
chemical sensors used to distinguish between different gases. It consists of 128 attributes
and 6 classes.

138 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

For each dataset, the first 600 samples have been selected. First 200 samples have
been used as training set for building the model and the rest for online testing. The pre-
processing phase is composed of z-score normalisation, dimensionality reduction using
PCA and finally, min-max normalisation.

C.4.3 Results for synthetic data stream

The results obtained from SYN dataset are shown in Figs. C.4 and C.5. Fig. C.4 shows
the final snapshot of data points and hyperboxes for each scenario.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

a) Scenario 1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

b) Scenario 2

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

c) Scenario 3

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

d) Scenario 4

Class 1

Class 2

Figure C.4: Plots of the SYN testing data together with GFMM hyperboxes for each
scenario

Points from class 1 (blue) are drifting to the space covered by a hyperbox of class
2 (gold) as can be seen in Fig. C.4-a. This fact explains why the classification error
is highest in Scenario 1, where the model is not updated. In Scenarios 2, 3 and 4 the
model is evolving over time and hyperboxes are adjusted as shown in Figs. C.4-(b,c,d),
to capture new data points.

A direct consequence of scenarios without adaptive preprocessing (1 and 2) can be
seen in Figs. C.4-(a,b) where new points lie outside the [0, 1] range and therefore can-
not be classified by the predictive model since it only operates within the [0, 1] range.
Fig. C.5-c shows that the number of off-limit samples is increasing linearly over time
because the data keeps drifting and the input space is not rescaled.

The adaptive normalisation carried out in Scenarios 3 and 4 guarantees that all the
points are within the [0, 1] range (see Figs. C.4-c,d). Although the model of Scenario 3
has classified correctly most of the samples, it is actually inconsistent. That is, the rescal-

C.4. EXPERIMENTAL STUDY 139

ing factor is not propagated to the model and therefore its representation is incorrect.
Such inconsistency is however not reflected in the classification results (see Fig. C.5-a)
and hence might be impossible to detect. In contrast, the model representation in Sce-
nario 4 is correct because the hyperboxes have been rescaled to the new input space (see
Fig. C.4-d).

The classification errors in Fig. C.5-a show that adapting the predictive system leads to
considerably better results than in the static approach. Also the maximum membership
degree is decreasing over time in Scenarios 1 and 2 (see Fig. C.5-b) which indicates a
lower classification confidence. The lack of forgetting mechanism for GFMM method
results in increase of model complexity over time, manifesting itself in growing number
of hyperboxes (see Fig. C.5-d) and thus contributing to the model becoming more difficult
to understand and interpret.

C.4.4 Results for real data streams

In general, Scenario 4 has a lower classification error in the three datasets (see Figs. C.6,
C.7, and C.8). The classification error of Scenario 4 is considerably lower in the periods
where there are new samples out of the min-max limits than in scenarios without adaptive
preprocessing (see Figs. C.6, C.7, and C.8).

As observed in the synthetic dataset, there seems to be a negative correlation between
the classification error and the maximum membership degree. Figs. C.6 C.7, and C.8
show that propagating the changes from the preprocessing methods to the model for
adapting the hyperboxes increases the maximum membership degree and therefore the
classification confidence. On the other hand, the fact of learning new concepts that cannot
be classified by existing hyperboxes causes the creation of new hyperboxes that increases
model complexity in Scenario 4 as shown in Figs. C.6, C.7, and C.8.

It is worth mentioning that the execution of Scenario 3 has failed in all three real
datasets. That is, the lack of change propagation causes an inconsistency between the
input data and the model when the number of principal components varies over time
(see Fig. C.9), leading to a runtime execution error. In such case it is easy to detect that
something is going wrong. However, if the number of principal components is constant
but the loading vectors actually change, there is still an inconsistency between the input
data and the model in Scenario 3 that will be more difficult to detect because it will not
produce any software exception.

Dataset Scenario #1 Scenario #2 Scenario #3 Scenario #4
SYN 69.25 (40.25) 43.75 (40.25) 4.75 (0) 5.00 (0)
ELEC 49.50 (33.50) 43.50 (33.50) - 16.75 (0)
COVERTYPE 47.50 (15.50) 49.00 (15.50) - 18.50 (0)
GAS 61.75 (51.50) 56.50 (51.50) - 7.50 (0)

Table C.2: Accumulated classification error (%) for all datasets. Values in brackets
denote contribution of offlimits samples to the error.

140 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

0 50 100 150 200 250 300 350 400
0

0.5

1

C
la

ss
.
er

ro
r

a) Streaming error (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

0.5

1

M
em

b
.
d
eg

re
e

b) Max membership (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

50

100

150

S
am

p
le

s

c) Accumulated samples offlimits

0 50 100 150 200 250 300 350 400
0

5

10

Time

H
y
p
er

b
o
x
es

d) Model complexity

#1 #2 #3 #4

No adaptation

Adaptive pre−processing

Figure C.5: Results for SYN dataset

C.4. EXPERIMENTAL STUDY 141

0 50 100 150 200 250 300 350 400
0

0.5

1

C
la

ss
.
er

ro
r

a) Streaming error (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

0.5

1

M
em

b
.
d
eg

re
e

b) Max membership (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

20

40

60

S
am

p
le

s

c) Accumulated samples offlimits

0 50 100 150 200 250 300 350 400
0

100

200

300

Time

H
y
p
er

b
o
x
es

d) Model complexity

#1 #2 #4

No adaptation

Adaptive pre−processing

Figure C.6: Results for ELEC dataset

142 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

0 50 100 150 200 250 300 350 400
0

0.5

1

C
la

ss
.
er

ro
r

a) Streaming error (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

0.5

1

M
em

b
.
d
eg

re
e

b) Max membership (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

50

100

S
am

p
le

s

c) Accumulated samples offlimits

0 50 100 150 200 250 300 350 400
0

50

100

Time

H
y
p
er

b
o
x
es

d) Model complexity

#1 #2 #4

No adaptation Adaptive pre−processing

Figure C.7: Results for COVERTYPE dataset

C.5. CONCLUSIONS 143

0 50 100 150 200 250 300 350 400
0

0.5

1

C
la

ss
.
er

ro
r

a) Streaming error (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

0.5

1

M
em

b
.
d
eg

re
e

b) Max membership (mean over last 10 samples)

0 50 100 150 200 250 300 350 400
0

100

200

S
am

p
le

s

c) Accumulated samples offlimits

0 50 100 150 200 250 300 350 400
0

20

40

60

80

Time

H
y
p
er

b
o
x
es

d) Model complexity

#1

#2

#4

No adaptation

Adaptive pre−processing

Figure C.8: Results for GAS dataset

C.5 Conclusions

This study demonstrated that adapting individual components of an MCPS must be car-
ried out very carefully taking into account the impact of a change on the rest of the
system. In order to formalise the process of adapting components in the correct order,
the concept of change propagation has been introduced. An illustrative example in which
an MCPS consisting of three preprocessing methods and one classifier has been evaluated
in four scenarios with different datasets.

The need of performing adaptive preprocessing is clear in all the tested datasets. The

144 APPENDIX C. EFFECTS OF CHANGE PROPAGATION IN MCPS

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

Time

N
u
m

b
er

 o
f

p
ri

n
c.

 c
o
m

p
.

Number of principal components

ELEC GAS COVERTYPE

Figure C.9: Number of principal components of ELEC, COVERTYPE and GAS testing
data.

percentage of unclassified samples in scenarios without adaptive preprocessing varies
between 15.5% and 51.5% (see Table C.2). Consequently, the deterioration of system
performance is considerable. A simple adaptive min-max normalisation method was
shown to reduce the classification error when coupled with a classifier that requires such
adaptation.

Modifying the input space requires however updating of model parameters. Other-
wise, model representation can be inconsistent with the input data. Such inconsistency
can even produce a system failure. To illustrate such adaptation, the GFMM method has
been extended to react to such changes caused by the adaptive preprocessing methods.
Other models will require similar type of transformations (e.g. changing node values in
a decision tree).

While this study represents an early stage of research and has been primarily intended
to highlight a range of very important issues rather than provide comprehensive solu-
tions, it has raised a number of questions in need of further investigation. Does a change
in a component always need to be propagated? How to handle propagation in systems
with nonlinear transformations? How to order the preprocessing methods to reduce the
required propagation? How to reduce the cost of adaptation while maximising the bene-
fits?

The above questions and the issues raised in this study are particularly relevant and
timely in the context of how easy it is to compose an MCPS in popular data analysis tools
like KNIME, RapidMiner or SAS. All of these tools facilitate graphical composition of
data transformation flows by linking data transformation blocks. While such approach
provides a tremendous opportunity for non-expert users, as illustrated in this study, it
poses potential issues when MCPSs composed in such a way were to be deployed in
non-stationary environments requiring adaptation and even more so if the preprocessing
steps could be easily adapted but without awareness of a need for appropriate change
propagation mechanisms currently not implemented or even available.

References

Acar, U. A., Blelloch, G. E., & Harper, R. (2002). ‘Adaptive functional programming’.
In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL 2002), vol. 37, pp. 247–259.

Acar, U. A., Blelloch, G. E., & Vittes, J. L. (2005). ‘An experimental analysis of change
propagation in dynamic trees’. In Joint Proc. 7th Worksh. Algorithm Engineering and
Experiments (ALENEX 2005) and 2nd Worksh. Analytic Algorithmics and Combina-
torics (ANALCO 2005), pp. 41–54.

Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). ‘On the Surprising Behavior of
Distance Metrics in High Dimensional Space’. In Database Theory (ICDT 2001), pp.
420–434.

Al-Jubouri, B. & Gabrys, B. (2014). ‘Multicriteria Approaches for Predictive Model
Generation: A Comparative Experimental Study’. In IEEE Symposium on Computa-
tional Intelligence in Multi-Criteria Decision-Making, pp. 64–71.

Allison, P. D. (2001). Missing Data, vol. 136. University of Pennsylvania.

Anagnostopoulos, C., Tasoulis, D., Hand, D. J., & Adams, N. M. (2008). ‘Online opti-
mization for variable selection in data streams’. In Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI 2008), vol. 1, pp. 132–136.

Anastasiou, N. (2013). Automated Construction of Petri Net Performance Models from
High-Precision Location Tracking Data. Ph.D. thesis, Imperial College London.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., &
de Freitas, N. (2016). ‘Learning to learn by gradient descent by gradient descent’. In
Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 3981–3989.

Arning, A., Agrawal, R., & Raghavan, P. (1996). ‘A Linear Method for Deviation De-
tection in Large Databases’. In Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining (KDD96), pp. 164–169.

Baena-Garcı́a, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., & Morales-
Bueno, R. (2006). ‘Early drift detection method’. In Proceedings of the 4th Interna-
tional Workshop on Knowledge Discovery from Data Streams, pp. 77–86.

145

146 REFERENCES

Bai, Z. D. & He, X. (2004). ‘A chi-square test for dimensionality with non-Gaussian
data’. Journal of Multivariate Analysis 88(1):109–117.

Bakirov, R., Gabrys, B., & Fay, D. (2015). ‘On sequences of different adaptive mech-
anisms in non-stationary regression problems’. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN 2015), vol. July, pp. 1–8.

Bakirov, R., Gabrys, B., & Fay, D. (2017). ‘Multiple adaptive mechanisms for data-
driven soft sensors’. Computers & Chemical Engineering 96:42–54.

Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (2010). Experimental
Methods for the Analysis of Optimization Algorithms. Springer Berlin Heidelberg.

Basseville, M. & Nikiforov, I. (1993). Detection of abrupt changes: theory and applica-
tion. Prentice-Hall, Inc.

Bell, B. (1970). ‘The Oldest Records of the Nile Floods’. The Geographical Journal
136(4):569.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bengio, Y. (2000). ‘Gradient-based optimization of hyperparameters’. Neural computa-
tion 12(8):1889–1900.

Bergstra, J., Bardenet, R., Bengio, Y., & Kegl, B. (2011). ‘Algorithms for Hyper-
Parameter Optimization’. In Advances in Neural Information Processing Systems 24
(NIPS 2011), pp. 1–9.

Bergstra, J. & Bengio, Y. (2012). ‘Random Search for Hyper-Parameter Optimization’.
Journal of Machine Learning Research 13:281–305.

Berndt, D. & Clifford, J. (1994). ‘Using dynamic time warping to find patterns in time
series’. Workshop on Knowledge Discovery in Databases 398:359–370.

Bernstein, A. & Provost, F. (2001). ‘An intelligent assistant for the knowledge discovery
process’. Tech. rep., New York University. Leonard Stern School of Bussiness.

Berriman, G. B., Deelman, E., Good, J., Jacob, J. C., Katz, D. S., Laity, A. C., Prince,
T. A., Singh, G., & Su, M.-H. (2007). Workflows for e-Science: Scientific Workflows for
Grids, chap. Generating complex astronomy workflows, pp. 19–38. Springer London.

Blackard, J. A. & Dean, D. J. (1999). ‘Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from cartographic
variables’. Computers and Electronics in Agriculture 24(3):131–151.

Bloch, G., Ouladsine, M., & Thomas, P. (1995). ‘On-line fault diagnosis of dynamic
systems via robust parameter estimation’. Control Engineering Practice 3(12):1709–
1717.

Blum, R., Kassam, S., & Poor, H. (1997). ‘Distributed detection with multiple sensors I.
Advanced topics’. Proceedings of the IEEE 85(1):64–79.

REFERENCES 147

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016).
‘End to End Learning for Self-Driving Cars’. arXiv:1604 pp. 1–9.

Bouchachia, A., Gabrys, B., & Sahel, Z. (2007). ‘Overview of Some Incremental Learn-
ing Algorithms’. In 2007 IEEE International Fuzzy Systems Conference, pp. 1–6.

Brochu, E., Cora, V. M., & de Freitas, N. (2010). ‘A Tutorial on Bayesian Optimization of
Expensive Cost Functions with Application to Active User Modeling and Hierarchical
Reinforcement Learning’. Tech. rep., University of British Columbia, Department of
Computer Science.

Brubaker, S. (2009). ‘Robust PCA and clustering in noisy mixtures’. In Proceedings
of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp.
1078–1087. Society for Industrial and Applied Mathematics.

Bruce, L. & Koger, C. (2002). ‘Dimensionality reduction of hyperspectral data using
discrete wavelet transform feature extraction’. IEEE Transactions on Geoscience and
Remote Sensing 40(10):2331–2338.

Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Martin Salvador, M., Schwan, S.,
Tsakonas, A., & Žliobaitė, I. (2014). ‘From Sensor Readings to Predictions: On the
Process of Developing Practical Soft Sensors’. In Advances in Intelligent Data Analy-
sis XIII, vol. 8819, pp. 49–60. Springer International Publishing.

Budka, M. & Gabrys, B. (2010a). ‘Correntropy-based density-preserving data sampling
as an alternative to standard cross-validation’. Proceedings of the International Joint
Conference on Neural Networks (IJCNN 2010) pp. 1–8.

Budka, M. & Gabrys, B. (2010b). ‘Ridge regression ensemble for toxicity prediction’.
Procedia Computer Science 1(1):193–201.

Budka, M. & Gabrys, B. (2013). ‘Density-Preserving Sampling: Robust and Efficient
Alternative to Cross-Validation for Error Estimation’. IEEE Transactions on Neural
Networks and Learning Systems 24(1):22–34.

Budka, M., Gabrys, B., & Ravagnan, E. (2010). ‘Robust predictive modelling of water
pollution using biomarker data’. Water Research 44(10):3294–3308.

Calı̀, A., Lembo, D., & Rosati, R. (2005). ‘A comprehensive semantic framework for
data integration systems’. Journal of Applied Logic 3(2):308–328.

Cao, S. & Rhinehart, R. (1995). ‘An efficient method for on-line identification of steady
state’. Journal of Process Control 5(6):363–374.

Castells, M. (2009). The Information Age. Economy, Society and Culture. Volume I.
Wiley Blackwell, 2nd edn.

Chaloner, K. & Brant, R. (1988). ‘A Bayesian approach to outlier detection and residual
analysis’. Biometrika 75(4):651–659.

148 REFERENCES

Chandola, V., Banerjee, A., & Kumar, V. (2009). ‘Anomaly detection: A survey’. ACM
Computing Surveys 41(3):1–58.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). ‘SMOTE: Syn-
thetic minority over-sampling technique’. Journal of Artificial Intelligence Research
16:321–357.

Cheng, W., Kasneci, G., Graepel, T., Stern, D., & Herbrich, R. (2011). ‘Automated
feature generation from structured knowledge’. In Proceedings of the 20th ACM in-
ternational conference on information and knowledge management (CIKM 2011), p.
1395. ACM Press.

Chéruy, A. (1997). ‘Software sensors in bioprocess engineering’. Journal of Biotechnol-
ogy 52(3):193–199.

Davies, L. & Gather, U. (1993). ‘The Identification of Multiple Outliers’. Journal of the
American Statistical Association 88(423):782.

Dawyndt, P., Vancanneyt, M., Meyer, H. D., & Swings, J. (2005). ‘Knowledge Accu-
mulation and Resolution of Data Inconsistencies during the Integration of Microbial
Information Sources’. Knowledge Creation Diffusion Utilization 17(8):1111–1126.

De Assis, A. J. & Maciel Filho, R. (2000). ‘Soft sensors development for on-line biore-
actor state estimation’. Computers and Chemical Engineering 24(2-7):1099–1103.

De Silva, A. M., Noorian, F., Davis, R. I. A., & Leong, P. H. W. (2013). ‘A hybrid feature
selection and generation algorithm for electricity load prediction using Grammatical
evolution’. In 12th International Conference on Machine Learning and Applications
(ICMLA 2013), vol. 2, pp. 211–217.

Deisenroth, M. P., Rasmussen, C. E., & Peters, J. (2009). ‘Gaussian process dynamic
programming’. Neurocomputing 72(7-9):1508–1524.

Deng, L., Tur, G., He, X., & Hakkani-Tur, D. (2012). ‘Use of kernel deep convex net-
works and end-to-end learning for spoken language understanding’. 2012 IEEE Work-
shop on Spoken Language Technology (SLT 2012) pp. 210–215.

Denning, D. (1987). ‘An Intrusion-Detection Model’. IEEE Transactions on Software
Engineering SE-13(2):222–232.

Diamantini, C., Potena, D., & Storti, E. (2009). ‘KDDONTO: An ontology for discovery
and composition of kdd algorithms’. In Third Generation Data Mining: Towards
Service-Oriented Knowledge Discovery (SoKD 2009), pp. 13–24.

DiCesare, F., Harhalakis, G., Proth, J. M., Silva, M., & Vernadat, F. B. (1993). Practice
of Petri Nets in Manufacturing. Springer Netherlands.

Dietterich, T. G. (2000). ‘Ensemble Methods in Machine Learning’. Multiple Classifier
Systems 1857:1–15.

REFERENCES 149

Douglas, L. (2001). ‘3D Data Management: Controlling Data Volume, Velocity and
Variety’. Tech. rep., Gartner.

Downs, J. & Vogel, E. (1993). ‘A plant-wide industrial process control problem’. Com-
puters & Chemical Engineering 17(3):245–255.

Dudoit, S. & Fridlyand, J. (2002). ‘A prediction-based resampling method for estimating
the number of clusters in a dataset.’. Genome biology 3(7):36.1–36.21.

Efron, B. & Gong, G. (1983). ‘A leisurely look at the bootstrap, the jackknife, and
cross-validation’. American Statistician 37(1):36–48.

Eggensperger, K., Hutter, F., Hoos, H. H., & Leyton-brown, K. (2012). ‘Efficient Bench-
marking of Hyperparameter Optimizers via Surrogates Background : Hyperparameter
Optimization’. In Proceedings of the 29th AAAI Conference on Artificial Intelligence,
pp. 1114–1120.

Emamian, V., Kaveh, M., & Tewfik, A. (2000). ‘Robust clustering of acoustic emis-
sion signals using the Kohonen network’. In 2000 IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 6, pp. 3891–3894. IEEE.

Ester, M., Kriegel, H., S, J., & Xu, X. (1996). ‘A density-based algorithm for discovering
clusters in large spatial databases with noise’. In The 2nd International Conference on
Knowledge Discovery and Data Mining (KDD96), pp. 226–231.

Euler, T., Morik, K., & Scholz, M. (2003). ‘MiningMart: Sharing Successful KDD Pro-
cesses’. In Tagungsband der GI-Workshop-Woche Lehren - Lernen - Wissen - Adaptiv-
itat (LLWA 2003), pp. 121–122.

Fawcett, T. & Provost, F. (1997). ‘Adaptive fraud detection’. Data mining and knowledge
discovery 1(3):291–316.

Fayyad, U. & Piatetsky-Shapiro, G. (1996). ‘From data mining to knowledge discovery
in databases’. AI Magazine pp. 37–54.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015).
‘Efficient and Robust Automated Machine Learning’. Advances in Neural Information
Processing Systems 28 (NIPS 2015) pp. 2944–2952.

Feurer, M., Springenberg, J. T., & Hutter, F. (2014). ‘Using Meta-Learning to Initialize
Bayesian Optimization of Hyperparameters’. In Proceedings of the 2014 International
Conference on Meta-learning and Algorithm Selection (MLAS 2014), pp. 3–10.

Fisher, R. A. (1936). ‘The use of multiple measurements in taxonomic problems’. Annals
of Eugenics 7(2):179–188.

Fortuna, L., Graziani, S., Rizzo, A., & Xibilia, M. G. (2007). Soft Sensors for Moni-
toring and Control of Industrial Processes, vol. 78 of Advances in Industrial Control.
Springer.

150 REFERENCES

Fortuna, L., Graziani, S., & Xibilia, M. G. (2005). ‘Soft sensors for product quality
monitoring in debutanizer distillation columns’. Control Engineering Practice 13:499–
508.

Fortuna, L., Rizzo, A., Sinatra, M., & Xibilia, M. G. (2003). ‘Soft analyzers for a sulfur
recovery unit’. Control Engineering Practice 11:1491–1500.

Fraver, S., Bradford, J. B., & Palik, B. J. (2011). ‘Improving tree age estimates derived
from increment cores: A case study of red pine’. Forest Science 57(2):164–170.

Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). ‘Pathwise coordinate
optimization’. The Annals of Applied Statistics 1(2):302–332.

Fulkerson, B., Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1995). ‘Machine Learn-
ing, Neural and Statistical Classification’. Technometrics 37(4):459.

Gabrys, B. (2002). ‘Neuro-fuzzy approach to processing inputs with missing values
in pattern recognition problems’. International Journal of Approximate Reasoning
30(3):149–179.

Gabrys, B. (2004). ‘Learning hybrid neuro-fuzzy classifier models from data: to combine
or not to combine?’. Fuzzy Sets and Systems 147(1):39–56.

Gabrys, B. & Bargiela, A. (2000). ‘General fuzzy min-max neural network for clustering
and classification.’. IEEE Transactions on Neural Networks 11(3):769–83.

Gama, J. (2000). ‘Iterative Bayes’. Intelligent Data Analysis 4:475–488.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). ‘Learning with Drift Detec-
tion’. In Advances in Artificial Intelligence (SBIA 2004), pp. 286–295.

Gama, J., Sebastiao, R., & Rodrigues, P. P. (2012). ‘On evaluating stream learning algo-
rithms’. Machine Learning 90(3):317–346.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). ‘A survey
on concept drift adaptation’. ACM Computing Surveys 46(4):1–37.

Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., & Clarkson, P. J. (2009).
‘Change Propagation Analysis in Complex Technical Systems’. Journal of Mechanical
Design 131:1–14.

Giraud-Carrier, C. (2005). ‘The Data Mining Advisor: Meta-learning at the Service of
Practitioners’. In 4th International Conference on Machine Learning and Applications
(ICMLA 2005), pp. 113–119. IEEE.

Guo, X. C., Yang, J. H., Wu, C. G., Wang, C. Y., & Liang, Y. C. (2008). ‘A novel
LS-SVMs hyper-parameter selection based on particle swarm optimization’. In Neu-
rocomputing, vol. 71, pp. 3211–3215.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). ‘Gene Selection for Cancer
Classification using Support Vector Machines’. Machine Learning 46(4):389–422.

REFERENCES 151

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Elsevier,
3 edn.

Hardy, S. & Robillard, P. N. (2004). ‘Modeling and simulation of molecular biology
systems using petri nets: modeling goals of various approaches’. Journal of Bioinfor-
matics and Computational Biology 02(04):619–637.

Harries, M. (1999). ‘Splice-2 comparative evaluation: Electricity pricing’. Tech. rep.,
The University of South Wales.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning,
vol. 18. Springer-Verlag New York, 2 edn.

He, Z., Deng, S., & Xu, X. (2005). ‘An optimization model for outlier detection in
categorical data’. In Proceedings of the 2005 international conference on Advances in
Intelligent Computing - Volume Part I, pp. 400–409. Springer-Verlag.

He, Z., Xu, X., & Deng, S. (2003). ‘Discovering cluster-based local outliers’. Pattern
Recognition Letters 24(9-10):1641–1650.

Hennig, P. & Schuler, C. J. (2012). ‘Entropy Search for Information-Efficient Global
Optimization’. Machine Learning Research 13(1999):1809–1837.

Hernández, M. A. & Stolfo, S. J. (1998). ‘Real-world data is dirty: Data cleansing and
the merge/purge problem’. Data Mining and Knowledge Discovery 2(1):9–37.

Hinneburg, A., Aggarwal, C. C., & Keim, D. A. (2000). ‘What is the Nearest Neighbor
in High Dimensional Spaces?’. In Proceedings of the 26th VLDB Conference, pp.
506–515.

Hoos, H., Ca, U. B. C., Leyton-Brown, K., & Hutter, F. (2014). ‘An Efficient Approach
for Assessing Hyperparameter Importance’. The 31st International Conference on
Machine Learning (ICML 2014) 32(1):754–762.

Huang, Z. Z., Chen, H. H., Hsu, C.-J. C.-J., Chen, W.-H. W.-H., & Wu, S. S. (2004).
‘Credit rating analysis with support vector machines and neural networks: A market
comparative study’. Decision Support Systems 37(4):543–558.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). ‘Sequential Model-Based Opti-
mization for General Algorithm Configuration’. Learning and Intelligent Optimization
6683 LNCS:507–523.

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Murphy, K. P. (2009). ‘An Experimental In-
vestigation of Model-Based Parameter Optimisation: SPO and Beyond’. Proceedings
of the 11th Annual conference on Genetic and evolutionary computation pp. 271–278.

Islamaj, R., Getoor, L., & Wilbur, W. J. (2006). ‘A Feature Generation Algorithm for
Sequences with Application to Splice-Site Prediction’. In Knowledge Discovery in
Databases: PKDD 2006, pp. 553–560.

152 REFERENCES

J. A. Little, R. & B. Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd
Edition. Wiley.

Joe Qin, S. (1998). ‘Recursive PLS algorithms for adaptive data modeling’. Computers
& Chemical Engineering 22(4-5):503–514.

Jolliffe, I. T. (2002). Principal Component Analysis, Second Edition. Springer.

Jurney, R. (2013). Agile Data Science. O’Reilly Media.

Kabán, A. (2011). ‘On the distance concentration awareness of certain data reduction
techniques’. Pattern Recognition 44(2):265–277.

Kadlec, P. (2009). On robust and adaptive soft sensors. Ph.D. thesis, Bournemouth
University.

Kadlec, P. & Gabrys, B. (2009). ‘Architecture for development of adaptive on-line pre-
diction models’. Memetic Computing 1(4):241–269.

Kadlec, P. & Gabrys, B. (2011). ‘Local learning-based adaptive soft sensor for catalyst
activation prediction’. AIChE Journal 57(5):1288–1301.

Kadlec, P., Gabrys, B., & Strandt, S. (2009). ‘Data-driven Soft Sensors in the process
industry’. Computers & Chemical Engineering 33(4):795–814.

Kadlec, P., Grbić, R., & Gabrys, B. (2011). ‘Review of adaptation mechanisms for data-
driven soft sensors’. Computers & Chemical Engineering 35(1):1–24.

Kalapanidas, E., Avouris, N., Craciun, M., & Neagu, D. (2003). ‘Machine Learning
Algorithms: A study on noise sensitivity’. 1st Balcan Conference in Informatics pp.
356–365.

Kambhatla, N. & Leen, T. K. (1997). ‘Dimension Reduction by Local Principal Compo-
nent Analysis’. Neural Computation 9(7):1493–1516.

Kämpjärvi, P., Sourander, M., Komulainen, T., Vatanski, N., Nikus, M., & Jämsä-
Jounela, S.-L. (2008). ‘Fault detection and isolation of an on-line analyzer for an
ethylene cracking process’. Control Engineering Practice 16(1):1–13.

Keet, C. M., Ławrynowicz, A., D’Amato, C., Kalousis, A., Nguyen, P., Palma, R.,
Stevens, R., & Hilario, M. (2015). ‘The Data Mining OPtimization Ontology’. Web
Semantics: Science, Services and Agents on the World Wide Web 32:43–53.

Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S. (2001). ‘Dimensionality Re-
duction for Fast Similarity Search in Large Time Series Databases’. Knowledge and
Information Systems 3(3):263–286.

Kietz, J.-U., Serban, F., Bernstein, A., & Fischer, S. (2009). ‘Towards cooperative plan-
ning of data mining workflows’. In Third Generation Data Mining: Towards Service-
Oriented Knowledge Discovery (SoKD 2009).

REFERENCES 153

Kim, S., Cho, N. W., Lee, Y. J., Kang, S., Kim, T., Hwang, H., & Mun, D. (2010). ‘Appli-
cation of density-based outlier detection to database activity monitoring’. Information
Systems Frontiers .

Klinkenberg, R. (2004). ‘Learning drifting concepts: Example selection vs. example
weighting’. Intelligent Data Analysis 8:281–300.

Kohavi, R. (1995). ‘A Study of Cross-Validation and Bootstrap for Accuracy Estima-
tion and Model Selection’. International Joint Conference on Artificial Intelligence
14(12):1137–1143.

Krempl, G., Žliobaitė, I., Brzezinski, D., Hüllermeier, E., Last, M., Lemaire, V., Noack,
T., Shaker, A., Sievi, S., Spiliopoulou, M., & Stefanowski, J. (2014). ‘Open challenges
for data stream mining research’. SIGKDD Explorations 16(1):1–10.

Kuo, R. (2001). ‘A sales forecasting system based on fuzzy neural network with initial
weights generated by genetic algorithm’. European Journal of Operational Research
129(3):496–517.

Kushner, H. J. (1964). ‘A New Method of Locating the Maximum Point of an Arbitrary
Multipeak Curve in the Presence of Noise’. Journal of Basic Engineering 86(1):97.

Lai, T. (1995). ‘Sequential changepoint detection in quality control and dynamical sys-
tems’. Journal of the Royal Statistical Society. Series B (Methodological) 57(4):613–
658.

Lai, T. L. & Robbins, H. (1985). ‘Asymptotically efficient adaptive allocation rules’.
Advances in Applied Mathematics 6(1):4–22.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). ‘Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations’. Proceed-
ings of the 26th Annual International Conference on Machine Learning (ICML 2009)
2008:1–8.

Leite, R., Brazdil, P., & Vanschoren, J. (2012). ‘Selecting classification algorithms with
active testing’. In 8th International Conference (MLDM 2012), vol. 7376, pp. 117–
131.

Lemke, C., Budka, M., & Gabrys, B. (2015). ‘Metalearning: a survey of trends and
technologies’. Artificial Intelligence Review 44(1):117–130.

Lemke, C. & Gabrys, B. (2010). ‘Meta-learning for time series forecasting and forecast
combination’. Neurocomputing 73(10-12):2006–2016.

Lessmann, S., Stahlbock, R., & Crone, S. (2005). ‘Optimizing hyperparameters of sup-
port vector machines by genetic algorithms’. Proceedings of the 2005 International
Conference on Artificial Intelligence (ICAI 2005) 1:74–80.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2016). ‘Efficient
Hyperparameter Optimization and Infinitely Many Armed Bandits’. arXiv preprint .

154 REFERENCES

Li, W., Yue, H., Valle-Cervantes, S., & Qin, S. (2000). ‘Recursive PCA for adaptive
process monitoring’. Journal of Process Control 10(5):471–486.

Lin, B., Recke, B., Knudsen, J. K., & Jørgensen, S. B. (2007). ‘A systematic approach
for soft sensor development’. Computers & Chemical Engineering 31(5-6):419–425.

Lindner, G. & Studer, R. (1999). ‘AST: Support for Algorithm Selection with a CBR
Approach’. In Principles of Data Mining and Knowledge Discovery (PKDD’99), pp.
418–423. Springer Berlin Heidelberg.

Linoff, G. S. & Berry, M. J. A. (2011). Data mining techniques: for marketing, sales,
and customer relationship management. Wiley.

Littlestone, N. & Warmuth, M. (1994). ‘The Weighted Majority Algorithm’. Information
and Computation 108(2):212–261.

Liu, X. Y., Wu, J., & Zhou, Z. H. (2006). ‘Exploratory under-sampling for class-
imbalance learning’. In IEEE International Conference on Data Mining (ICDM 2006),
pp. 965–969.

Maedche, A., Hotho, A., & Wiese, M. (2000). ‘Enhancing Preprocessing in Data-
Intensive Domains using Online-Analytical Processing’. In 2nd International Con-
ference on Data Warehousing and Knowledge (DaWaK 2000), pp. 258–264. Springer
Berlin Heidelberg.

Marban, O., Mariscal, G., & Segovi, J. (2009). ‘A Data Mining & Knowledge Discovery
Process Model’. In Data Mining and Knowledge Discovery in Real Life Applications,
no. February, pp. 1–17. I-Tech Education and Publishing.

Markou, M. & Singh, S. (2003a). ‘Novelty detection: a reviewpart 1: statistical ap-
proaches’. Signal Processing 83(12):2481–2497.

Markou, M. & Singh, S. (2003b). ‘Novelty detection: a reviewpart 2: neural network
based approaches’. Signal Processing 83(12):2499–2521.

Marlin, B. M. (2008). Missing Data Problems in Machine Learning. Ph.D. thesis, Uni-
versity of Toronto.

Martin Salvador, M., Budka, M., & Gabrys, B. (2016a). ‘Automatic composition and
optimisation of multicomponent predictive systems’. ArXiv e-prints .

Martin Salvador, M., Budka, M., & Gabrys, B. (2016b). ‘Effects of change propaga-
tion resulting from adaptive preprocessing in multicomponent predictive systems’. In
20th International Conference on Knowledge Based and Intelligent Information and
Engineering Systems. KES-2016, vol. 96, pp. 713–722.

Martin Salvador, M., Budka, M., & Gabrys, B. (2016c). ‘Towards Automatic Compo-
sition of Multicomponent Predictive Systems’. In 11th International Conference on
Hybrid Artificial Intelligence Systems, pp. 27–39. Springer International Publishing.

REFERENCES 155

Martin Salvador, M., Gabrys, B., & Žliobaitė, I. (2014). ‘Online Detection of Shut-
down Periods in Chemical Plants: A Case Study’. In 18th International Conference in
Knowledge Based and Intelligent Information and Engineering Systems, vol. 35, pp.
580–588. Elsevier.

McQuarrie, A. D. R. & Tsai, C.-L. (1998). Regression and Time Series Model Selection.
World Scientific.

Mei, Y. (2010). ‘Efficient scalable schemes for monitoring a large number of data
streams’. Biometrika 97(2):419–433.

Mei, Y. (2011). ‘Final Report for the Project Robust Rapid Change-Point Detection in
Multi-Sensor Data Fusion and Behavior Research’. Tech. rep., Georgia Institute of
Technology.

Messaoud, I., El Abed, H., Märgner, V., & Amiri, H. (2011). ‘A design of a preprocessing
framework for large database of historical documents’. In Proceedings of the 2011
Workshop on Historical Document Imaging and Processing, pp. 177–183. ACM Press.

Mladenić, D. (2006). ‘Feature selection for dimensionality reduction’. In Lecture Notes
in Computer Science, pp. 84–102.

Mockus, J., Tiesis, V., & Zilinskas, A. (1978). ‘The application of Bayesian methods for
seeking the extremum’. Towards Global Optimization 2:117–129.

Munson, M. A. (2012). ‘A study on the importance of and time spent on different mod-
eling steps’. ACM SIGKDD Explorations Newsletter 13(2):65–71.

Murata, T. (1989). ‘Petri nets: properties, analysis and applications’. Proceedings of the
IEEE 77(4):541–580.

Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout, W. R.
(1991). ‘Enabling technology for knowledge sharing’. AI magazine 12(3):36.

Nettleton, D. F., Orriols-Puig, A., & Fornells, A. (2010). ‘A study of the effect of dif-
ferent types of noise on the precision of supervised learning techniques’. Artificial
Intelligence Review 33(4):275–306.

Ogasawara, E., Martinez, L. C., de Oliveira, D., Zimbrao, G., Pap, G. L., & Mattoso,
M. (2010). ‘Adaptive Normalization: A novel data normalization approach for non-
stationary time series’. In The 2010 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8. IEEE.

Östermark, R. (2009). ‘A fuzzy vector valued KNN-algorithm for automatic outlier de-
tection’. Applied Soft Computing 9(4):1263–1272.

Page, E. S. (1954). ‘Continuous Inspection Schemes’. Biometrika 41(1/2):100–115.

Pani, A. K. & Mohanta, H. K. (2011). ‘A Survey of Data Treatment Techniques for Soft
Sensor Design’. Chemical Product and Process Modeling 6(1):1–21.

156 REFERENCES

Pankratius, V. & Stucky, W. (2005). ‘A Formal Foundation for Workflow Composition,
Workflow View Definition, and Workflow Normalization based on Petri Nets’. In 2nd
Asia-Pacific Conference on Conceptual Modelling (APCCM 2005), pp. 79–88.

Panov, P., Deroski, S., & Soldatova, L. (2008). ‘OntoDM: An Ontology of Data Mining’.
In 2008 IEEE International Conference on Data Mining Workshops, pp. 752–760.

Parra, L., Deco, G., & Miesbach, S. (1996). ‘Statistical Independence and Novelty De-
tection with Information Preserving Nonlinear Maps’. Neural Computation 8(2):260–
269.

Parzen, E. (1962). ‘On Estimation of a Probability Density Function and Mode’. The
Annals of Mathematical Statistics 33(3):1065–1076.

Pearson, K. (1901). ‘Online and planes of closest fit to systems of points in space’.
Philosophical Magazine 2(6):559–572.

Pearson, R. K. (2005). Mining imperfect data. Society for Industrial and Applied Me-
chanics.

Peng, R. D. (2011). ‘Reproducible Research in Computational Science’. Science
334(6060):1226–1227.

Petri, C. A. (1962). Kommunikation mit Automaten. Ph.D. thesis, Universität Hamburg.

Ping, L., Hao, H., & Jian, L. (2004). ‘On 1-soundness and Soundness of Workflow Nets’.
In 3rd Workshop on Modelling of Objects, Components, and Agents (MOCA 2004), pp.
21–36.

Polunchenko, A. & Tartakovsky, A. (2011). ‘State-of-the-Art in Sequential Change-Point
Detection’. Methodology and Computing in Applied Probability 14(3):649–684.

Prasad, V., Schley, M., Russo, L. P., & Wayne Bequette, B. (2002). ‘Product property
and production rate control of styrene polymerization’. Journal of Process Control
12(3):353–372.

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.

Qin, S. (1997). ‘Chapter 8 - Neural Networks for Intelligent Sensors and ControlPractical
Issues and Some Solutions’. In Omidvar, O. & Elliott, D. (eds.), Neural Syst. Control,
pp. 213–234. Academic Press.

Qu, Y., Adam, B., Thornquist, M., Potter, J. D., Thompson, M. L., Yasui, Y., Davis, J.,
Schellhammer, P., Cazares, L., Clements, M., Wright, G., & Feng, Z. (2003). ‘Data
Reduction Using a Discrete Wavelet Transform in Discriminant Analysis of Very High
Dimensionality Data’. Biometrics 59(1):143–151.

Quinlan, J. (1986). ‘Induction of decision trees’. Machine learning pp. 81–106.

Rajagopal, R., Nguyen, X., Ergen, S., & Varaiya, P. (2008). ‘Distributed Online Si-

REFERENCES 157

multaneous Fault Detection for Multiple Sensors’. In International Conference on
Information Processing in Sensor Networks (IPSN 2008), pp. 133–144. IEEE.

Reis, M. S. & Saraiva, P. M. (2004). ‘A comparative study of linear regression methods
in noisy environments’. Journal of Chemometrics 18(12):526–536.

Rice, J. R. (1976). ‘The Algorithm Selection Problem’. Advances in Computers
15(C):65–118.

Rokach, L. (2010). ‘Ensemble-based classifiers’. Artificial Intelligence Review 33(1-
2):1–39.

Romero, I. (2011). ‘PCA and ICA applied to noise reduction in multi-lead ECG’. In
2011 Computing in Cardiology, pp. 613–616.

Rubin, D. B. (1976). ‘Inference and Missing Data’. Biometrika 63(3):581.

Ruta, D. & Gabrys, B. (2010). ‘Neural Network Ensembles for Time Series Prediction’.
2007 International Joint Conference on Neural Networks pp. 1204–1209.

Sadiq, S., Orlowska, M., Sadiq, W., & Foulger, C. (2004). ‘Data Flow and Validation in
Workflow Modelling’. In Proceedings of the 15th Australasian database conference
(ADC 2004), vol. 27, pp. 207–214.

Schlimmer, J. C. (1987). Concept Acquisition Through Representational Adjustment.
Ph.D. thesis, University of California, Irvine.

Schwan, S. (2011). ‘CCP Case Study’. Tech. rep., INFER.eu.

Serban, F., Bernstein, A., & Fischer, S. (2012). ‘Designing KDD-Workflows via HTN-
Planning for Intelligent Discovery Assistance’. In Proceedings of the International
Workshop on Planning to Learn 2012, pp. 10–17.

Serban, F., Vanschoren, J., Kietz, J.-U., & Bernstein, A. (2013). ‘A survey of intelligent
assistants for data analysis’. ACM Computing Surveys 45(3):1–35.

Seron, M., De Dona, J., & Olaru, S. (2012). ‘Fault Tolerant Control Allowing Sensor
Healthy-to-Faulty and Faulty-to-Healthy Transitions’. IEEE Transactions on Auto-
matic Control 57(7):1657–1669.

Shade, A. & Teal, T. K. (2015). ‘Computing Workflows for Biologists: A Roadmap’.
PLoS Biology 13(11):1–10.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016). ‘Taking the
Human Out of the Loop: A Review of Bayesian Optimization’. Proceedings of the
IEEE 104(1):148–175.

Sharmin, R., Sundararaj, U., Shah, S., Vande Griend, L., & Sun, Y. (2006). ‘Inferential
sensors for estimation of polymer quality parameters: Industrial application of a PLS-
based soft sensor for a LDPE plant’. Chemical Engineering Science 61(19):6372–
6384.

158 REFERENCES

Shearer, C. (2000). ‘The CRISP-DM model: the new blueprint for data mining’. Journal
of Data Warehousing 5(4):13–22.

Shewhart, W. (1931). Economic Control of Quality of Manufactures Product. Asq Press.

Sleeman, D., Rissakis, M., Craw, S., Graner, N., & Sharma, S. (1995). ‘Consultant-2:
pre- and post-processing of Machine Learning applications’. International Journal of
Human-Computer Studies 43(1):43–63.

Slišković, D., Grbić, R., & Hocenski, Ž. (2011). ‘Online Data Preprocessing in the
Adaptive Process Model Building based on Plant Data’. Tehnicki Vjesnik 18(1):41–50.

Snoek, J., Larochelle, H., & Adams, R. (2012). ‘Practical Bayesian Optimization of
Machine Learning Algorithms.’. Advances in Neural Information Processing Systems
25 (NIPS 2012) pp. 2960–2968.

Souza, F. & Araujo, R. (2014). ‘Online Mixture of Univariate Linear Regression Models
for Adaptive Soft Sensors’. IEEE Transactions on Industrial Informatics 10(2):937–
945.

Sparks, E. R., Talwalkar, A., Haas, D., Franklin, M. J., Jordan, M. I., & Kraska, T. (2015).
‘Automating model search for large scale machine learning’. In Proceedings of the 6th
ACM Symposium on Cloud Computing (SoCC 2015), pp. 368–380. ACM Press.

Stahl, F., Medhat Gaber, M., & Martin Salvador, M. (2012). ‘eRules: A Modular Adap-
tive Classification Rule Learning Algorithm for Data Streams’. In Research and De-
velopment in Intelligent Systems XXIX, pp. 65–78. Springer.

Strackeljan, J. (2006). ‘NiSIS Competition 2006 - Soft Sensor for the adaptive Catalyst
Monitoring of a MultiTube Reactor’. Tech. rep., Universität Magdeburg.

Sun, Z.-L., Choi, T.-M., Au, K.-F., & Yu, Y. (2008). ‘Sales forecasting using extreme
learning machine with applications in fashion retailing’. Decision Support Systems
46(1):411–419.

Suyama, A. & Yamaguchi, T. (1998). ‘Specifying and learning inductive learning sys-
tems using ontologies’. In AAAI Workshop on the Methodology of Applying Machine
Learning: Problem Definition, Task Decomposition, and Technique Selection, pp. 29–
36.

Swersky, K., Snoek, J., & Adams, R. P. (2013). ‘Multi-Task Bayesian Optimization’. In
Advances in Neural Information Processing Systems 26 (NIPS 2013), pp. 2004–2012.

Tartakovsky, A., Rozovskii, B., Blažek, R., & Kim, H. (2006). ‘Detection of intrusions
in information systems by sequential change-point methods’. Statistical Methodology
3(3):252–293.

Tartakovsky, A. & Veeravalli, V. (2008). ‘Asymptotically Optimal Quickest Change
Detection in Distributed Sensor Systems’. Sequential Analysis 27(4):441–475.

REFERENCES 159

Teichmann, E., Demir, E., & Chaussalet, T. (2010). ‘Data preparation for clinical data
mining to identify patients at risk of readmission’. In 2010 IEEE 23rd International
Symposium on Computer-Based Medical Systems (CBMS), pp. 184–189. IEEE.

Tennant, G. (2001). SIX SIGMA: SPC and TQM in Manufacturing and Services. Gower
Publishing.

Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. (2010). ‘Cost-sensitive learning
methods for imbalanced data’. In The 2010 International Joint Conference on Neural
Networks (IJCNN), vol. 3025, pp. 1–8. IEEE.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). ‘Auto-WEKA: com-
bined selection and hyperparameter optimization of classification algorithms’. In Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD 2013), pp. 847–855. ACM Press.

Tsakonas, A. & Gabrys, B. (2012). ‘GRADIENT: Grammar-driven genetic programming
framework for building multi-component, hierarchical predictive systems’. Expert Sys-
tems with Applications 39(18):13253–13266.

Tsakonas, A. & Gabrys, B. (2013). ‘A fuzzy evolutionary framework for combining
ensembles’. Applied Soft Computing Journal 13(4):1800–1812.

Tso, G. K. F. & Yau, K. K. W. (2007). ‘Predicting electricity energy consumption:
A comparison of regression analysis, decision tree and neural networks’. Energy
32(9):1761–1768.

van der Aalst, W. M. P. (1997). ‘Verification of workflow nets’. In Application and
Theory of Petri Nets, pp. 407–426.

van der Aalst, W. M. P. (1998a). ‘The Application of Petri Nets To Workflow Manage-
ment’. Journal of Circuits, Systems and Computers 08(01):21–66.

van der Aalst, W. M. P. (1998b). ‘Three Good Reasons for Using a Petri-Net-Based Work-
flow Management System’. In Information and Process Integration in Enterprises, pp.
161–182. Springer US.

van der Aalst, W. M. P. (2000). ‘Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques’. Business Process Management 1806:19–128.

van der Aalst, W. M. P. (2012). ‘Process Mining: Making Knowledge Discovery Process
Centric’. ACM SIGKDD Explorations Newsletter 13(2):45–49.

van der Aalst, W. M. P., Desel, J., & Oberweis, A. (eds.) (2000). Business Process Man-
agement, vol. 1806 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.

van der Aalst, W. M. P., Van Hee, K. M., Ter Hofstede, A. H. M., Sidorova, N., Verbeek,
H. M. W., Voorhoeve, M., & Wynn, M. T. (2011). ‘Soundness of workflow nets:
Classification, decidability, and analysis’. Formal Aspects of Computing 23(3):333–
363.

160 REFERENCES

van der Maaten, L., Postma, E., & van den Herik, H. (2009). ‘Dimensionality Reduction:
A Comparative Review’. Tech. rep., Tilburg University.

van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). ‘Algorithm Se-
lection on Data Streams’. In 17th International Conference (DS 2014), vol. 8777, pp.
325–336.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., & Huerta, R. (2012).
‘Chemical gas sensor drift compensation using classifier ensembles’. Sensors and
Actuators B: Chemical 166-167:320–329.

Viswanathan, R. & Varshney, P. (1997). ‘Distributed detection with multiple sensors I.
Fundamentals’. Proceedings of the IEEE 85(1):54–63.

Wang, L., Shao, C., Wang, H., & Wu, H. (2006). ‘Radial Basis Function Neural
Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recov-
ery from Refinery Gases’. Journal of Natural Gas Chemistry 15(3):230–234.

Wei, H. & Billings, S. (2007). ‘Feature Subset Selection and Ranking for Data Dimen-
sionality Reduction’. IEEE Transactions on Pattern Analysis and Machine Intelligence
29(1):162–166.

Wei, W., Li, J., Cao, L., Ou, Y., & Chen, J. (2013). ‘Effective detection of sophisticated
online banking fraud on extremely imbalanced data’. World Wide Web 16(4):449–475.

Widmer, G. & Kubat, M. (1993). ‘Effective learning in dynamic environments by explicit
context tracking’. In European Conference on Machine Learning (ECML 1993), vol.
667, pp. 227–243.

Widmer, G. & Kubat, M. (1996). ‘Learning in the Presence of Concept Drift and Hidden
Contexts’. Machine Learning 01:69–101.

Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlösser, J., Breitner, C., Engels, R.,
& Lindner, G. (1997). ‘Towards process-oriented tool support for knowledge discovery
in databases’. In 1st European Symposium (PKDD 1997), pp. 243–253.

Witten, I. & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc.

Wold, S., Sjöström, M., & Eriksson, L. (2001). ‘PLS-regression: A basic tool of chemo-
metrics’. Chemometrics and Intelligent Laboratory Systems 58(2):109–130.

Wolpert, D. H. & Macready, W. G. (1997). ‘No free lunch theorems for optimization’.
IEEE Transactions on Evolutionary Computation 1(1):67–82.

Wu, X. & Zhu, X. (2008). ‘Mining With Noise Knowledge: Error-Aware Data Mining’.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
38(4):917–932.

Xie, Y. & Siegmund, D. (2013). ‘Sequential multi-sensor change-point detection’. The
Annals of Statistics 41(2):670–692.

REFERENCES 161

Yakovlev, A., Gomes, L., & Lavagno, L. (eds.) (2000). Hardware Design and Petri Nets.
Springer US.

Yan, W., Shao, H., & Wang, X. (2004). ‘Soft sensing modeling based on support vec-
tor machine and Bayesian model selection’. Computers & Chemical Engineering
28(8):1489–1498.

Yang, T. (2005). ‘Neural Networks for Solving On-Line Outlier Detection Problems’. In
Advances in Neural Networks (ISNN 2005), pp. 451–456.

Zakova, M., Kremen, P., Zelezny, F., & Lavrac, N. (2011). ‘Automating Knowledge
Discovery Workflow Composition Through Ontology-Based Planning’. IEEE Trans-
actions on Automation Science and Engineering 8(2):253–264.

Žliobaitė, I., Bifet, A., Gaber, M., Gabrys, B., Gama, J., Minku, L., & Musial, K. (2012).
‘Next challenges for adaptive learning systems’. ACM SIGKDD Explorations Newslet-
ter 14(1):48–55.

Žliobaitė, I., Budka, M., & Stahl, F. (2015). ‘Towards cost-sensitive adaptation: When is
it worth updating your predictive model?’. Neurocomputing 150, Part A:240–249.

Žliobaitė, I. & Gabrys, B. (2014). ‘Adaptive Preprocessing for Streaming Data’. IEEE
Transactions on Knowledge and Data Engineering 26(2):309–321.

Žliobaitė, I. & Hollmén, J. (2014). ‘Optimizing regression models for data streams with
missing values’. Machine Learning 99(1):47–73.

	Copyright statement
	Abstract
	Table of contents
	List of figures
	List of tables
	Notation
	Acknowledgements
	Author's declaration
	Introduction
	Background and motivation
	Process industry: a case study
	Chemical processes

	Raw data from chemical processes
	Data availability
	Common issues

	Soft sensors
	Building soft sensors
	Maintaining soft sensors

	Thesis goals
	Original contributions and list of publications
	Organisation of the thesis

	Principles of predictive modelling
	Introduction
	Predictive systems
	Designing a predictive system
	Business understanding
	Data understanding
	Data preparation
	Modelling
	Project evaluation
	Deployment and maintenance

	Data preparation
	Data filtering
	Data cleaning
	Data enrichment
	Data transformation

	Modelling
	Test design
	Algorithm selection
	Hyperparameter optimisation
	Model assessment

	Summary

	Multicomponent predictive systems
	Introduction
	Petri nets
	Types of Petri nets

	Modelling MCPS as Petri nets
	Composition of MCPS
	Hyperparameter optimisation of MCPS
	CASH problem for MCPS
	Summary

	Automatic composition and optimisation of MCPSs
	Introduction
	Automating the CASH problem
	Bayesian optimisation
	Sequential Model-Based Optimisation
	Extension and generalisation of Auto-WEKA

	Experiments
	Methodology
	Results

	Summary

	Automating and adapting MCPSs in the process industry
	Introduction
	Automatic building of soft sensors
	Online prediction: a regression problem
	Process monitoring: a classification problem

	Adapting MCPS in continuous processes
	Regression results
	Classification results
	Evolution of MCPS over batches

	Conclusion

	Conclusion and future work
	Thesis summary
	Main findings and conclusions
	Future work

	Datasets from chemical processes
	Acrylic Acid Dataset
	Absorption Process Dataset (absorber)
	Catalyst Activation Dataset (catalyst)
	Debutanizer Column Dataset (debutanizer)
	Drier Process Dataset (drier)
	Oxeno Dataset (oxeno)
	Sulfur Recovery Unit Dataset (sulfur)
	Thermal Oxidiser Dataset (thermalox)
	Results of online prediction
	Results of adaptive online prediction

	Filtering shutdown periods
	Introduction
	Problem setting

	Multi-sensor change-point detection methods
	Multi-sensor change-point detection method based on control charts

	Experimental evaluation
	Evaluation measures
	Experimental setting
	Experimental results
	Detection delay
	Predictive performance

	Conclusions

	Effects of change propagation in MCPS
	Introduction
	Reactive adaptation of MCPSs
	Dimensionality reduction
	Z-Score normalisation
	Min-max normalisation
	GFMM classifier
	Change propagation

	Scenarios
	Experimental study
	Synthetic data stream
	Real data streams
	Results for synthetic data stream
	Results for real data streams

	Conclusions

	References

