
Multiple adaptive mechanisms for predictive
models on streaming data

RASHID BAKIROV

A thesis submitted in partial fulfilment of the requirements of
Bournemouth University for the degree of

Doctor of Philosophy

February, 2017



This copy of the thesis has been supplied on condition that anyone who consults it is under-

stood to recognise that its copyright rests with its author and due acknowledgement must always

be made of the use of any material contained in, or derived from, this thesis.

i



ii

Abstract

Making predictions on non-stationary streaming data remains a challenge in many application

areas. Changes in data may cause a decrease in predictive accuracy, which in a streaming setting

require a prompt response. In recent years many adaptive predictive models have been proposed

for dealing with these issues. Most of these methods use more than one adaptive mechanism,

deploying all of them at the same time at regular intervals or in some other fixed manner. How-

ever, this manner is often determined in an ad-hoc way, as the effects of adaptive mechanisms are

largely unexplored. This thesis therefore investigates different aspects of adaptation with multi-

ple adaptive mechanisms with the aim to increase knowledge in the area, and propose heuristic

approaches for more accurate adaptive predictive models. This is done by systematising and for-

malising the “adaptive mechanism” notion, proposing a categorisation of adaptive mechanisms

and a metric to measure their usefulness, comparing the results after deployment of different or-

ders of adaptive mechanisms during the run of the predictive method, and suggesting techniques

on how to select the most appropriate adaptive mechanisms.

The literature review suggests that during the prediction process, adaptive mechanisms are

selected to be deployed in a certain order which is usually fixed beforehand at the design time

of the algorithm. For this reason, it was investigated whether changing the selection method for

the adaptive mechanisms significantly affects predictive accuracy and whether there are certain

deployment orders which provide better results than others. Commonly used adaptive mechanism

selection methods are then examined and new methods are proposed.

A novel regression ensemble method which uses several common adaptive mechanisms has

been developed to be used as a vehicle for the experimentation. The predictive accuracy and be-

haviour of adaptive mechanisms while predicting on different real world datasets from the process

industry were analysed. Empirical results suggest that different selection of adaptive mechanisms

result in significantly different performance. It has been found that while some adaptive mecha-

nisms adapt the predictive model better than others, there is none which is the best at all times.

Finally, flexible orders of adaptive mechanisms generated using the proposed selection techniques

often result in significantly more accurate models than fixed orders commonly used in literature.
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supervisor Indre Žliobaitė for her input at the early stages of my PhD.

Many academics and peers have assisted the completion of the thesis in various ways during

this time, for which I am very grateful. In particular, Petr Kadlec has provided me with his Matlab

code. Marcin Budka, Manuel Martı́n Salvador and Neil Vaughaun have given helpful feedback

my thesis. Alejandro Tabas discussed some of the math with me. Akanda Ashraf, Bastian Fraune

and Mohsen Amiribesheli shared their opinions about various plots and provided my wrists with

exercise during daily table football games. Jan Walter Schroeder gave me general advices on

writing the thesis.

I was blessed to have made many truly great friends during my PhD time, who made me feel

at home in Bournemouth and have immensely contributed to my development as a person. For

this, I deeply thank every single one of them - you know who you are. My special thanks goes

to Diana for her constant support and encouragement. I would also like to thank Bomojam crew

for the magical hours of music that we made together and lunchers for making our meals at the

university something to look forward to. Also huge thanks to Kim, who has greatly contributed

to my preparation for the viva.

Many people, including my former colleagues at University of Siegen, ABB Research Ger-

many and PwC Germany have helped and encouraged me on this path. Among others, I thank

Klaus Hartmann, Chris Stich and Markus Anderle for their supervision and many recommenda-

tion letters, and Seyed Eghbal Ghobadi for getting me interested in Machine Learning.

Staff at Bournemouth University has been most helpful during my PhD. In particular, I thank

Naomi Bailey for the administrative assistance, Natalie Andrade and Malcolm Green for the help

with finance related matters, and Shaun Bendall for the assistance with computing cluster.

I am grateful to my final viva examiners Emili Balaguer-Ballester and Vasile Palade, as well

as transfer viva examiners Raian Ali and Hammadi Nait-Charif for their constructive and helpful

comments on my theses. I thank anonymous reviewers, whose comments on my publications have

improved my work and members of academia for the all their research that I was inspired by. I

would also like to thank the creators of free software that have helped me greatly during writing

of the thesis. These include LaTeX, TexStudio, briss, Excel2Latex, Putty and WinScp. My thanks

also goes to the members of stackexchange.com whose questions and answers has solved many

of Matlab and LaTeX riddles for me. I

Finally, I am ever thankful to my parents and my sister, who were always there for me during

this time and in fact for whole my life.

iii



Contents

Copyright statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives of the PhD project . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Analysis and categorization of methods with multiple adaptive methods . 3

1.2.2 Investigation of the necessity of adaptive mechanism selection . . . . . . 4

1.2.3 Research into strategies of adaptive mechanisms’ deployment . . . . . . 4

1.3 Original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 List of resulting publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Learning and adaptation on streaming data 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Learning on streaming data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Adaptation for predictive models on streaming data . . . . . . . . . . . . . . . . 10

2.3.1 Reasons for adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Adaptation for predictive modelling . . . . . . . . . . . . . . . . . . . . 12

2.4 Overview of adaptive mechanism types . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Adapting training data coverage . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Adaptation of predictive models’ structure . . . . . . . . . . . . . . . . . 15

2.4.3 Adaptation of predictive models’ parameters . . . . . . . . . . . . . . . 16

2.4.4 Evolutionary approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Base learners and their adaptation . . . . . . . . . . . . . . . . . . . . . 19

iv



CONTENTS v

2.5.2 Combinational adaptation methods . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Adaptation via adding or removing predictors . . . . . . . . . . . . . . . 23

2.5.4 Dynamic Weighted Majority . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Predictive models with multiple adaptive mechanisms . . . . . . . . . . . . . . . 26

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Process industry and datasets 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Introduction to process industry . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Soft sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Adaptive data-driven soft sensors . . . . . . . . . . . . . . . . . . . . . 33

3.4 Process industry datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Catalyst activation dataset . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Thermal oxidizer dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Industrial drier dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Estimating changes in the datasets . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Effects of the choice of adaptive mechanism 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Simple Adaptive Batch Local Ensemble algorithm . . . . . . . . . . . . . . . . . 49

4.3.1 Building of experts’ descriptors . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Combination of experts’ predictions . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Experts’ pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Adaptive mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Batch learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Batch learning with forgetting . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Descriptors update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.4 Creation of new experts . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Adaptive strategies 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Exhaustive r-step ahead adaptive mechanism deployment . . . . . . . . . . . . . 66

5.3 Analysis of adaptive mechanisms’ effects . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS vi

5.4 Adaptive mechanism selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Using cross-validation for adaptive mechanism selection . . . . . . . . . 76

5.4.2 Retrospective model correction . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Prediction of optimal adaptive mechanism . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Meta-features for adaptive mechanisms’ prediction . . . . . . . . . . . . 90

5.6 Adaptive mechanism classification results . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Cost-sensitive adaptive mechanism classification . . . . . . . . . . . . . 96

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusions 99
6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Findings and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Categorisation and formalisation of adaptive mechanisms . . . . . . . . . 100

6.2.2 Analysing the importance of adaptive mechanism selection . . . . . . . . 100

6.2.3 Investigation of adaptive mechanisms and adaptive strategies effects . . . 100

6.2.4 Research into new experts’ addition for streaming classification ensembles 101

6.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendices 103

A Addition of new experts to adaptive classification ensembles 104
A.1 Elements of online expert ensemble creation . . . . . . . . . . . . . . . . . . . . 104

A.1.1 Condition for adding of an expert . . . . . . . . . . . . . . . . . . . . . 104

A.2 Training data for new experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.3.1 Methods description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.4 Results on synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.5 Results on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.6 Summary of experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B Relative adaptation histograms with confidence levels 118

C Cost matrices for considered datasets 120

References 122



List of Figures

2.1 Learning new data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Concept drift types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 General adaptations scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Ensembles and their adaptation mechanisms. . . . . . . . . . . . . . . . . . . . 25

2.5 Different synchronisations styles of adaptive elements. . . . . . . . . . . . . . . 29

3.1 Hydrodesulphurization process diagram. . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Reactor and catalyst used for the oxidization process. . . . . . . . . . . . . . . . 36

3.3 Catalyst dataset features and target value. . . . . . . . . . . . . . . . . . . . . . 37

3.4 Oxidizer dataset features and target value. . . . . . . . . . . . . . . . . . . . . . 40

3.5 Drier dataset features and target value. . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Catalyst100 errors and symmetric Kullback-Leibler divergence values. . . . . . . 43

3.7 Oxidizer100 errors and symmetric Kullback-Leibler divergence values. . . . . . 43

3.8 Drier100 errors and symmetric Kullback-Leibler divergence values. . . . . . . . 44

3.9 Histograms of symmetric Kullback-Leibler values for all datasets. . . . . . . . . 45

4.1 Assumed workflow of the prediction and adaptation on streaming data. . . . . . . 47

4.2 Adaptation with multiple adaptive mechanisms. . . . . . . . . . . . . . . . . . . 48

4.3 Block diagram of SABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 SABLE descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 An example of a model adaptation sequence using SABLE adaptive mechanisms. 54

4.6 True/predicted values for Catalyst datasets. . . . . . . . . . . . . . . . . . . . . 57

4.7 True/predicted values for Oxidizer dataset. . . . . . . . . . . . . . . . . . . . . . 60

4.8 Error values for Drier dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Exhaustive 4-step ahead adaptive mechanism deployment on Catalyst100. . . . . 67

5.2 Relative adaptation histograms for Catalyst dataset. . . . . . . . . . . . . . . . . 71

5.3 Relative adaptation histograms for Oxidizer dataset. . . . . . . . . . . . . . . . . 72

5.4 Relative adaptation histograms for Drier dataset. . . . . . . . . . . . . . . . . . . 74

5.5 Scatter plot of adaptive vs non-adaptive errors for Catalyst100 dataset. . . . . . . 75

5.6 Scatter plot of adaptive vs non-adaptive errors for Oxidizer100 dataset. . . . . . . 75

vii



LIST OF FIGURES viii

5.7 Scatter plot of adaptive vs non-adaptive errors for Drier100 dataset. . . . . . . . 76

5.8 Adaptive mechanisms generated by Optimal strategy for the Catalyst dataset. . . 80

5.9 4 step ahead exhaustive adaptive mechanism deployment on all batches of Cata-

lyst50 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.10 Normalized XVSelect results’ comparison with different batch sizes. . . . . . . . 81

5.11 Predictions on Catalyst50 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.12 Adaptive mechanisms generated by Optimal strategy for the Oxidizer dataset. . . 84

5.13 4 step ahead exhaustive adaptive mechanism deployment on all batches of Oxi-

dizer50 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.14 Predictions on Oxidizer50 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.15 Adaptive mechanisms generated by Optimal strategy for the Drier dataset. . . . . 87

5.16 4 step ahead exhaustive adaptive mechanism deployment on all batches of Drier50

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.17 Drier50 dataset error values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.18 Pseudo-classifier MAE for Catalyst100 dataset. . . . . . . . . . . . . . . . . . . 89

5.19 Pseudo-classifier MAE for Oxidizer100 dataset. . . . . . . . . . . . . . . . . . . 90

5.20 Pseudo-classifier MAE for Drier100 dataset. . . . . . . . . . . . . . . . . . . . . 91

A.1 Using windows for expert adding condition and training data of a new expert. . . 106

A.2 Changes in experimental datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.3 Average accuracy values and ensemble sizes for selected methods. . . . . . . . . 112

A.4 Results grouped by the drift magnitude. . . . . . . . . . . . . . . . . . . . . . . 112

A.5 Results grouped by noise levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.6 Results grouped by β value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.7 Results grouped by window size. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.8 Power supply from main grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.9 Results on Elec2 with different values of β. . . . . . . . . . . . . . . . . . . . . 116

A.10 Results on PowerItaly with different values of β. . . . . . . . . . . . . . . . . . 116

B.1 Exhaustive 4-step ahead adaptive mechanism deployment on Catalyst100. . . . . 119



List of Tables

2.1 Summary of ensemble adaptation methods. . . . . . . . . . . . . . . . . . . . . 25

3.1 Number of batches per each batch size for the used datasets. . . . . . . . . . . . 36

4.1 SABLE parameters for different datasets. . . . . . . . . . . . . . . . . . . . . . 55

4.2 Results of deploying random adaptive mechanism sequences on Catalyst dataset. 58

4.3 Results of deploying random adaptive mechanism sequences on Oxidizer dataset. 61

4.4 Results of deploying random adaptive mechanism sequences on Drier dataset. . . 61

5.1 Data generated using exhaustive r-step ahead adaptive mechanism deployment. . 69

5.2 Adaptive strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Catalyst dataset results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Oxidizer dataset results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Drier dataset results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Meta-features for adaptive mechanism prediction. . . . . . . . . . . . . . . . . . 92

5.7 Adaptive mechanism classifier average accuracy values. . . . . . . . . . . . . . . 93

5.8 Results obtained using meta-classifier. . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Confusion matrix of adaptive mechanism predictions for Catalyst50. . . . . . . . 94

5.10 Confusion matrix of adaptive mechanism predictions for Catalyst100. . . . . . . 94

5.11 Confusion matrix of adaptive mechanism predictions for Catalyst200. . . . . . . 94

5.12 Confusion matrix of adaptive mechanism predictions for Oxidizer50. . . . . . . . 94

5.13 Confusion matrix of adaptive mechanism predictions for Oxidizer100. . . . . . . 95

5.14 Confusion matrix of adaptive mechanism predictions for Oxidizer200. . . . . . . 95

5.15 Confusion matrix of adaptive mechanism predictions for Drier50. . . . . . . . . 95

5.16 Confusion matrix of adaptive mechanism predictions for Drier100. . . . . . . . . 95

5.17 MAE values over all batches after simple and cost sensitive meta-classification. . 97

A.1 Experiments with window based conditions to add an expert. . . . . . . . . . . . 107

A.2 Experiments with the data basis for experts and their validation. . . . . . . . . . 107

A.3 Starting weights and weight update factors, β, used in experiments. . . . . . . . . 108

A.4 Synthetic datasets used in experiments. . . . . . . . . . . . . . . . . . . . . . . . 109

ix



LIST OF TABLES x

A.5 Top and bottom performing methods. . . . . . . . . . . . . . . . . . . . . . . . . 110

A.6 Results on 26 synthetic datasets, averaged. . . . . . . . . . . . . . . . . . . . . . 111

A.7 Prequeuntial accuracy on Elec2 dataset. . . . . . . . . . . . . . . . . . . . . . . 115

A.8 Prequeuntial accuracy on PowerItaly dataset. . . . . . . . . . . . . . . . . . . . 117

C.1 Adaptive mechanism classification cost matrix for Catalyst50. . . . . . . . . . . 120

C.2 Adaptive mechanism classification cost matrix for Catalyst100. . . . . . . . . . . 120

C.3 Adaptive mechanism classification cost matrix for Catalyst200. . . . . . . . . . . 120

C.4 Adaptive mechanism classification cost matrix for Oxidizer50. . . . . . . . . . . 121

C.5 Adaptive mechanism classification cost matrix for Oxidizer100. . . . . . . . . . 121

C.6 Adaptive mechanism classification cost matrix for Oxidizer200. . . . . . . . . . 121

C.7 Adaptive mechanism classification cost matrix for Drier50. . . . . . . . . . . . . 121

C.8 Adaptive mechanism classification cost matrix for Drier100. . . . . . . . . . . . 121



Notation

Symbol Description
y Target value

ψ(·) Function of the real process which generates the data
x Input instance
ξ Noise
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u Latent vector
Q Corresponding loading matrix
q Column vector ofQ
V Input data residuals
F Output data residuals
R Regression residuals
B Regression weights matrix
b Column vector ofB

(·)> Transpose of a matrix, e.g. P>

Recursive Partial Least Squares (RPLS)

Symbol Description
m Feature number

Di,m Descriptor of m-th feature of i-th expert
D Descriptors matrix

V tr Training data
v(xn) Weight for n-th instance

Φ(µmn ,Σ) Two-dimensional Gaussian kernel function
µ = (xmn , yn) Mean value of Gaussian kernel function

Σ Variance matrix of kernel function with σ at the diagonal positions
σ Kernel width
wi Weight of i-th expert’s prediction
p p-value of t-test between two experts’ prediction errors
P Matrix of pairwise p-values between prediction errors of all experts

D0 Old descriptors matrix before their recalculation
D1 New descriptors matrix after their recalculation
δ0 Weight of an old descriptor
δ1 Weight of a new descriptor

Simple Adaptive Batch Learning Ensemble (SABLE)



Notation xiii

Symbol Description
f− A priori prediction function (before the adaptation)
f+ A posteriori prediction function (after the adaptation)
g Adaptive Mechanism (AM)
G Set of AMs, G = {g1, · · · , gH}

Θg Set of parameters of g
ghk AM deployed on batch k
f+hk Predictive model adapted using ghk , f+hk = f−hk+1

r Number of steps for exhaustive deployment/retrospective correction
Ŷk Predictions of Y k by different models in the AM exhaustive deployment tree
S Cross-validation training subset
�S Cross-validation test subset
〈 〉 Error measure
〈 〉× Cross-validated error measure
hoptk Index of optimal AM for batch k
ĥk Index of AM for batch k predicted by meta-classifier
υ Meta-classifier function
χ Meta-features vector
C Meta-classifier classification cost matrix

Adaptation
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Chapter 1

Introduction

1.1 Background and motivation

An essential element of human understanding of the complex systems and phenomena is creation

of models. “Models are graphical, mathematical (symbolic), physical, or verbal representation or

simplified version of a concept, phenomenon, relationship, structure, system, or an aspect of the

real world.”1 The degree of how well the model reflects its object is called accuracy. Models are

usually constructed using observations of the object of modelling which may entail information

about its inputs, structure, and outputs. Modelling serves to explain the objects and provide

insights about their behaviour. Models have been very useful in areas such as physics, quantitative

finance, marketing, industrial processes, social sciences, weather forecasting and others. With

the rise of computing power and the ubiquitous recording of data, the usage of models, and

particularly computational models, has been rapidly increasing.

Often, models describe entities which are inherently subject to changes. For instance, in in-

dustrial process modelling, these changes may be caused by degradation of the equipment, in

climate modelling by the climate change phenomenon, in financial modelling by sudden crises,

in enterprise modelling by merger of the organisations. After the changes, the accuracy of the

model which was constructed before the change and was based on the outdated assumptions, will

often deteriorate. For these kind of changing environments, the need for model’s adaptation is

paramount. Depending on the type of the model there are different ways to adapt it.

This thesis specifically focuses on predictive modelling in machine learning. Machine learning

is the science of learning patterns from observed data, to make predictions on new, previously un-

seen data. These patterns are often formulated as models, which are built by applying algorithms

to the historical data. Models can be then used to calculate the desired predictions.

In some cases, these predictive models concern static datasets. However, quite often the pre-

dictive models are being applied to the new data which keeps getting generated by the underlying

processes. This type of data is called streaming data (Wang et al., 2003). In fact, with the current
1http://www.businessdictionary.com/definition/model.html

1
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advances in data storage, database and data transmission technologies, streaming data becomes

increasingly relevant. This fact may pose additional challenges, one of them being the changes in

the data generating process.

If the model remains unchanged for the whole duration of machine learning process, it is

called a static machine learning model. However in situations when such models are used to de-

scribe dynamic processes, their accuracy might degrade. Specifically, in machine learning, this

effect may be caused by changes in data distribution (Žliobaitė, 2011), changes in features’ rele-

vance (Fern & Givan, 2000), novel classes and features (Gabrys & Bargiela, 1999; Masud et al.,

2013). For instance, in manufacturing settings, where the process is being observed by various

sensors, gradual wearing of a sensor, its sudden failure, removal, replacement or addition of a

new type of sensors can cause all of the above mentioned changes. Other examples of real world

changes affecting relevant predictive models are special events, terrorist attacks or competitions

which influence plane tickets demand (Riedel & Gabrys, 2007; Lemke et al., 2009, 2013), net-

work intrusions which adapt to bypass the installed firewalls (Lee et al., 2000), seasonal changes

influencing many areas such as electricity or gas consumption (Kolter & Maloof, 2007), change

in lighting which can seriously affect image recognition in videos (Thrun et al., 2006). It has been

shown that a changed environment, which is no longer being reflected by the model, contributes

to the deterioration of model’s accuracy over time, (Schlimmer & Granger, 1986a; Gabrys &

Bargiela, 1999; Street & Kim, 2001; Gabrys, 2004; Klinkenberg, 2004; Kolter & Maloof, 2007;

Sahel et al., 2007; Martı́n Salvador et al., 2016c).

In many cases it is possible to alleviate accuracy deterioration. Several options are available

for this purpose. One of them is regular retraining, or in other words, creation of new models. This

could be time consuming and in some cases impossible, for example when the required historical

data is not available any more. Alternatively, one might employ various proposed online learning

and adaptation approaches. Their purpose is keeping the existing model and making it self-adapt

to the possible changes in environment.

Adaptive approaches range from high-level general adaptation concepts (Holland, 1992;

Grisogono, 2006) to more practical adaptive machine learning algorithms (Littlestone et al., 1991;

Carpenter et al., 1992; Jacobs, 1995; Kolter & Maloof, 2007; Bouchachia et al., 2007; Tsakonas

& Gabrys, 2013; Žliobaitė & Gabrys, 2014). They show better results while predicting on syn-

thetic and real-world dynamic data than traditional non-adaptive models. It has been proposed

that adaptive machine learning be applied to many different areas, such as chemical processing

(Kadlec et al., 2011; Grbić et al., 2013), network intrusion detection (Lee et al., 2000; Haag et al.,

2007), video image and concept recognition (Thrun et al., 2006; Yang et al., 2007) and others.

Adaptive models can originate in different research fields: statistical and probabilistic approaches,

machine learning, computational intelligence and different combinations thereof.

Typically adaptation operates by reducing the weight applied to the parts of the historical data

that are less similar to the current data, which may be implemented in a variety of ways. In

addition, recent adaptive methods use more than one Adaptation Mechanisms (AMs). Employing
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multiple AMs is more versatile than using a single one and has been found to lead to superior

prediction performance (Kadlec & Gabrys, 2011; Jin et al., 2015b). In practice, most research

has used AMs deployed in a fixed manner with the choice of deployment order set at model

design time. The common choice is to deploy all of the AMs at the same time, however this does

not always deliver the best results with some AMs potentially cancelling the effect of others or

changing the model more than required (Bakirov et al., 2017).

The possibility of having multiple adaptive mechanisms working together in one system pro-

vides additional ways of handling the adaptation. However this also makes the control over it

more complex. As will be seen from Chapter 4, the choice of adaptive mechanism needs to be

carefully considered to achieve optimal results. Otherwise there is a risk of degrading predic-

tive accuracy. To the best of author’s knowledge, no works explicitly research multiple adaptive

mechanisms related issues for streaming data prediction.

The main topic of this PhD project is therefore the investigation of predictive systems with

multiple adaptive mechanisms in a streaming non-stationary data setting, with the aim to ulti-

mately assist in improving adaptation capabilities of such systems, which would in turn result in

higher accuracy rates.

1.2 Aims and objectives of the PhD project

While realizing the complexity of the described issues and challenges, this thesis tackles certain

aspects of the usage of multiple adaptive mechanisms. The aims of the project are listed in the

following sections.

1.2.1 Analysis and categorization of methods with multiple adaptive methods

Despite the large volume of research dealing with adaptive predictive modeling, there seems to

be a lack of work focusing explicitly on adaptation; it seems to be considered to have a secondary

role in regards to the whole predictive algorithm. Therefore, one of the goals of the thesis is to

facilitate research into adaptive predictive modeling, while focusing on adaptation mechanisms.

The following objectives are specified for this purpose:

• Conducting a large survey of research dealing with this topic,

• Identifying the most commonly used adaptive mechanisms, and

• Categorizing them in a meaningful way, where categories include adaptation mechanisms

with similar characteristics.

Completing these objectives will create a framework for research into adaptive mechanisms, con-

ducted further in this thesis and elsewhere.
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1.2.2 Investigation of the necessity of adaptive mechanism selection

It is quite feasible that the selection of AMs to deploy is a big factor in the predictive performance

of the model. However, explicit research to support this proposition has not hitherto been con-

ducted. Therefore, one goal of the thesis is devising a study which tests this proposal. This study

includes the following objectives:

• Development of an algorithm for experimentation purposes which uses multiple AMs from

identified categories to deal with changes.

• Development of an experiment which will investigate the importance of AM selection.

• Performing the experiments on datasets with different adaptation needs and analysis of

results.

1.2.3 Research into strategies of adaptive mechanisms’ deployment

It has been found that AM selection plays a crucial role in the predictive performance. There-

fore a research into the ways and order of AM deployment will be conducted. The aim of this

research is suggesting strategies for AM deployment (adaptive strategies) and identifying how

these strategies affect the predictive performance. More concretely, it is aimed to achieve the

following objectives:

• Implementing popular adaptive strategies using the predictive algorithm from the previous

section.

• Suggesting adaptive strategies which can provide better results than the common ones.

• Analysing the results, identifying the circumstances where different adaptive strategies

work well and the reasons behind it.

1.3 Original contributions

‘ The main scientific contributions of this thesis are:

• Investigation of the importance of AM order selection (adaptive strategies). Using an

empirical experiment on the real process industry data provided by project partner Evonik

Industries AG, it was established that the selection of AM order is a significant factor for

the predictive accuracy of the algorithm.

• Identification and performance analysis of different fixed and flexible AM strategies,
suggestion of cross-validation based AM strategies and retrospective model correction
technique. The performance of common fixed adaptive strategies and suggested flexible

strategies on real datasets were compared and it has been found that flexible strategies

suggested in this thesis outperform other strategies most of the time.

• Development of Simple Adaptive Batch Learning Ensemble (SABLE) online learning
framework. An adaptive framework in plug-and-play fashion, where a number of AMs are

deployable in various manners has been developed for the experimentation purposes.
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• Categorisation and formalisation of adaptive mechanisms. A comprehensive survey

of adaptive predictive algorithms has been conducted. The results of the survey were a

base for the categorisation of commonly used adaptive mechanisms. A formal notation of

adaptation process has been also introduced.

• Research into the criteria and training data of added global experts in streaming clas-
sification problems. The effects of different sizes of training data for newly added experts,

different conditions for their addition have been empirically analysed.

1.4 List of resulting publications

The research leading to these contributions has resulted in the following publications:

• Bakirov, R; Gabrys, B. Investigation of Expert Addition Criteria for Dynamically Changing

Online Ensemble Classifiers with Multiple Adaptive Mechanisms In: Artificial Intelligence

Applications and Innovations, 646–656, 30 September–2 October 2013, Paphos, Cyprus.

• Bakirov, R.; Gabrys, B. and Fay, D. On Sequences of Different Adaptive Mechanisms in

Non-Stationary Regression Problems. In: 2015 International Joint Conference on Neural

Networks 12 July–17 July 2015, Killarney, Ireland

• Bakirov, R.; Gabrys, B. and Fay, D. Augmenting Adaptation with Retrospective Model Cor-

rection for Non-Stationary Regression Problems. In: 2016 International Joint Conference

on Neural Networks 24–29 July 2016 Vancouver, Canada.

• Bakirov, R.; Gabrys, B. and Fay, D., Multiple adaptive mechanisms for data-driven soft

sensors Computers and Chemical Engineering, vol. 96, pp. 42–54, 2017.

1.5 Organisation of the thesis

Following this introductory chapter, the thesis is organised as follows. Chapter 2 presents back-

ground information about predictive modeling on streaming data and gives details of existing

adaptive mechanisms. AMs’ hierarchical categorization is proposed, and several types of base

learners used in predictive methods with multiple adaptive mechanisms are introduced. The de-

tails of these predictive methods are given as well. Chapter 3 gives short information about the

process industry, where the considered data sets for experiments are originating from, further in-

troduces these datasets and analyses their characteristics in regards to exhibited changes. Chapter

4 looks into whether deployment of different AM sequences affects the accuracy of a predictive

model. Here the predictive model with multiple AMs, which is used as a vehicle for experi-

mentation, is introduced in detail. Chapter 5 analyses the effects of different AMs, identifies and

conducts experiments with many traditional adaptive strategies as well as with the proposed novel

ones. The results are compared and it is analysed which strategies provide better predictive accu-

racy and what are possible reasons for this. Chapter 6 gives an overview of the findings, provides

concluding remarks and possible future research directions. An investigation into expert addition
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criteria for streaming classification ensembles is conducted in Appendix A.



Chapter 2

Learning and adaptation on streaming
data

2.1 Introduction

With the rise of streaming data analytics, it is becoming increasingly more important to be able

to incorporate new data in predictive models as well as to be able to react to changes in the

data. A variety of adaptive learning methods on streaming data (e.g. (Schlimmer & Granger,

1986a; Kolter & Maloof, 2007; Kadlec & Gabrys, 2011; Elwell & Polikar, 2011; Lemke et al.,

2013; Žliobaitė & Gabrys, 2014; Gomes Soares & Araújo, 2015b)) have been developed for these

purposes. In recent times this type of methods often features multiple adaptive mechanisms,

(e.g. (Castillo & Gama, 2006; Kolter & Maloof, 2007; Kadlec & Gabrys, 2011; Minku & Yao,

2012; Žliobaitė et al., 2012; Gomes Soares & Araújo, 2015b; Bakirov et al., 2017)) increasing

the number of ways they can deal with these issues, and potentially providing better predictive

performance.

This chapter introduces the key concepts in adaptive learning, which is the area of Machine

Learning dealing with non-stationary data. The chapter starts by presenting general techniques of

learning and adaptation on streaming data in Section 2.2. It lists the types of learning/adaptation

in this setting, as well as the possible reasons why the adaptation might be needed (Section 2.3.1).

Then in Section 2.4 it proceeds to explore adaptation in machine learning in a greater detail. The

different types of adaptation mechanisms, starting with the ones which adapt the coverage of

available training data and continuing with the adaptation of models’ parameters and structure,

are identified and categorised. In Section 2.5 a more detailed analysis of ensemble methods is

given, since these are the methods which are the most relevant to the research produced in this

thesis. Finally, the methods which employ multiple adaptive mechanisms are discussed in Section

2.6.

7
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2.2 Learning on streaming data

In many applications, existing predictive models are being constantly applied to new data and

after a certain time some or all true target values become available. This is the case for instance

with credit scoring where the goodness of credit is revealed only after some time (Dal Pozzolo

et al., 2015), process industry where lab measurements can be much slower than the process

(Kadlec & Gabrys, 2011), stock market predictions (Hazan & Seshadhri, 2009) and other areas.

The natural question is, how is it possible to use this new information to improve the accuracy of

the models. To give a mathematical formulation, it is assumed that the data is generated by an

unknown dynamic process which can be formulated as:

y = ψ(x) + ξ, (2.1)

where ψ is an unknown function, ξ a noise term, x ∈ RM is an input data instance, and y is the

observed output. Then the predictive model as a function:

ŷ = f0(x,Θf |V0), (2.2)

is considered, where ŷ is the prediction, f0 is an approximation (i.e. the model) of ψ(x), and

Θf is the associated parameter set. It is assumed that the f0 was built using some training set

V0 = {X0,y0}. At some point, new data from the process, V1 = {X1,y1} is obtained.1

The goal of learning in this case is to use new data, V1, to improve the predictive model, f0. As

having a larger training dataset typically increases predictive accuracy, learning new data is useful

especially in the cases when the initial dataset might have been insufficient to achieve the desired

performance.

Methods to learn new data operate in several ways. Most straightforwardly, they combine both

historical and new data to generate a new dataset, which will be used to train a new model, thereby

updating the old model with new information (Figure 2.1(a)). Essentially a new predictive model

f1(x,Θf |V0 ∪ V1) (2.3)

is created. This approach is possible for all types of learning algorithms (e.g. decision trees

(Quinlan, 1993) (Breiman et al., 1984), model trees (Quinlan, 1992), SVM (Vapnik, 1995)) as

long as the required data is available. However this is often not possible or not the ideal solution;

historical data might not be available2 any more or building a model from scratch might be too

time or resource consuming. Methods called online learners, such as Recursive Least Squares

(Plackett, 1950) or naive Bayes (Hastie et al., 2009) which instead of explicitly combining the data

to form a new dataset, achieve the same effect without requiring access to old data are preferred for
1For brevity purposes, Equation 2.2 will be shortened as ŷ = f0(x) in this thesis.
2Even when all historical data is available, using it may also not be a good/possible choice when it is not relevant

to or compatible with new data. This requires adaptation, discussed in Section 2.3
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such cases. These algorithms store only the model characteristics (e.g. counts, linear coefficients,

etc.) and update them when new data arrives (Figure 2.1(b)). This can be formulated as

f1(x,Θf |f0,V1). (2.4)

Online variations for many popular off-line machine learning algorithms specified above have

been also developed (Cauwenberghs & Poggio, 2001; Hulten et al., 2001; Kivinen et al., 2004;

Potts & Sammut, 2005).

Figure 2.1: Learning new data: a) using historical data b) online learning.

Methods for learning on streaming data fall into two types; incremental and batch learning.

Incremental learning is learning from a single new data instance.3 While being able to learn one-

by-one is certainly a powerful asset, in many practical situations the data becomes available in

small batches over a period of time, as noted in (Polikar et al., 2001). For these cases, incre-

mental learning is often redundant and potentially inefficient. The second group of models, batch

learners, operate on whole batches of data simultaneously, and are better suited to this scenario.

Naturally batch learners may also operate in the scenarios when data instances are arriving one-

by-one by waiting until the required amount of new data is available, which however slows down

the reaction to the changes. Batch learning allows the creation of new experts based on a con-

siderable amount of data increasing the stability of predictions (Elwell & Polikar, 2011) and the

measurement of metrics on a batch to potentially use them as meta-features (Alippi et al., 2012).

Methods such as Naive Bayes and online versions of popular algorithms, for instance Recursive

Least Squares Estimator (Plackett, 1950), Recursive Partial Least Squares (Joe Qin, 1998) and

others are capable of both incremental and batch learning.

Streaming data learning algorithms can further be differentiated by their ability to use old data

for learning, number of passes performed on the data, the ability to learn previously unseen classes
3In various works this is defined differently, the most common definitions are used here.
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and the ability to retain prior learned knowledge. This chapter reviews works from different

research directions, where the only requirement is the learning of information from new data.

2.3 Adaptation for predictive models on streaming data

In a static machine learning setting the parameters of the model are trained using a historical data

set and then fixed with no modifications as the process continues regardless of the observations.

This approach assumes that there are no significant changes in the process throughout the duration

of the model’s usage, or that those changes would not significantly degrade the performance of

the model. However, this is not always the case. As noted in Chapter 1, machine learning is often

applied to dynamic non-stationary environments where changes of various types are common.

These changes often result in reduced predictive accuracy of the models or sometimes and more

dramatically could even render the current model technically inapplicable to the new environment

(this is discussed in more detail in next section).

Dealing with changes requires using the current data either for building a new model (and

discarding the existing one) or adapting the existing one. Adapting a model involves reducing

the effect of old and irrelevant data, and is often the preferred choice, especially when the current

data may not be large enough to build a meaningful model or when the old knowledge needs to be

preserved. It is possible to see that the concept of adaptation is closely related to the concept of

learning new data, because it is precisely the new data that prompts adaptation. Learning new data

can be to some extent considered to adapt a model, in a sense that with the increase in the amount

of new data, the effect of old data is gradually reduced. However, simply learning new data after

a change improves model’s accuracy much slower than its explicit adaptation (Kuncheva, 2004a;

Kolter & Maloof, 2007). It should also be noted that depending on the implementation, it is not

always possible to simply learn data after certain types of changes in the data, e.g. after the change

in input features.

2.3.1 Reasons for adaptation

The reason for the adaptation of predictive models is that, given the available data, a new model

which performs significantly better than the existing one can be trained. This happens if:

• The model is inapplicable to the new data. This situation often occurs after the changes

in the definition of data, for instance when number of features or their domains change.

For example when a platform where the videos are rated using “thumbs up/down” ranking

is switched to 5 stars ranking, the models trained to predict videos’ ranking using the old

system, would not be suitable for the new data, resulting in useless predictions. Depending

on the algorithm, these type of changes might render the outcome meaningless, or prevent

the model from making predictions whatsoever. It should be noted that certain changes of

this kind may be addressed using pre- or post-processing techniques, for example treating
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removed features as missing data, however these type of solutions may not be adequate for

the long term.

• Alterations to the model would better explain the observations. Other types of changes can

lead to situations where the model delivers meaningful predictions, however its accuracy

could be further improved. This is often manifested by the deterioration of the predictive

accuracy over time. This can be more formally depicted as follows:

E[f(xτ0)] < E[f(xτ1)] (2.5)

where E[f(x)] is the expected error of the predictive function, xτ0 ,xτ1 are the input data

instances at times τ0, τ1, τ1 > τ0. In other words, the increase of the expected error over

time means that the deterioration of the accuracy takes place. The types of changes in the

real world causing this can be varied; these could be wear of sensors for process indus-

try models, market perturbations in financial modelling, change of light settings in image

recognition etc. In general, this is often a result of a change in input-output conditional

probability of the data generation process, which is also known as concept drift.

The work in this thesis will be mainly focused on the second type of changes, however some

of the discussed techniques are applicable to the first type as well.

2.3.1.1 Concept drift

One of the most researched and well defined reasons for the adaptive models is the problem

of concept drift, as introduced in (Schlimmer & Granger, 1986b) or (Widmer & Kubat, 1996).

Using the probabilistic formulation from (Gao et al., 2007), joint input-output probability is given

by P(x, y) = P(y|x) · P(x). Concept drift occurs when either the independent probability

distribution P(x) or conditional probability distribution P(y|x) changes with time4. The former

is often called virtual and the latter real concept drift. Many authors, e.g. (Tsymbal et al., 2008)

or (Žliobaitė, 2009) note that for practical purposes, these two types can be considered the same

in that they both require changes in models. In (Elwell & Polikar, 2011) it is stated that, virtual

drift requires supplemental learning or refining of the model and real drift requires replacement

learning or forgetting. In the terms of change speed and behaviour the following categories of

drift are identified in the literature (Gama et al., 2014):

• Sudden drift. This is sudden change of concept at a certain time τ .

• Gradual drift. Occurs when one concept gradually replaces another over certain time period

τ2 − τ1.

• Incremental drift. This is a slow change involving the passage through intermediate con-

cepts between the concepts before the drift has started and the final concept after the drift

is finished.
4It can be implicitly inferred that the combination P(x),P(y|x) is called a concept.
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Figure 2.2: Concept drift types (Gama et al., 2014).

• Reoccurring concepts. Concepts are replaced by the new ones, only to reappear at the later

stage. This is typical for cyclical and seasonal processes.

Figure 2.2 visualizes types of drift. Although the notion of concept drift appears more often

in classification scenario, there are works which use this concept in regression setting as well

(Ikonomovska et al., 2010; Gomes Soares & Araújo, 2015a,b). For a recent survey on concept

drift, reader is referred to (Gama et al., 2014).

2.3.2 Adaptation for predictive modelling

As mentioned in the previous section, this thesis concentrates mainly on the accuracy of the pre-

dictive models. Therefore a following definition can be used: Definition: Adaptation is an update

of combination of the model’s training data coverage, structure, and parameters to optimize pre-

dictive accuracy in order to respond to the changes in the data.

These changes may include the ones listed above. Adaptation also learns new data, however

the difference between simply learning new data and adaptation based on new data is that the goal

of simple learning is refining the model, and the goal of adaptation is changing it. The methods

for both types of learning can be similar. However, due to the temporal nature of adaptation,

many adaptive learning methods assume that the data before the change is less relevant for the

new model than the data after change. As a result of this assumption, these methods tend to give

more weight to the newer data instances than to the older ones while constructing the models.

An important aspect of adaptive models is when the adaptation process is triggered. Some

models use change detection routines for example described in Basseville & Nikiforov (1993);

Gama et al. (2004); Baena-Garcı́a et al. (2006) to attempt to detect when the model needs adap-

tation. Stationarity tests such as tests pioneering Priestley-Subba-Rao test (Priestley & Subba

Rao, 1969) or more recent approaches described in (von Sachs & Neumann, 2000; Nason, 2013;

Balaguer-Ballester et al., 2014) may be also applied for this purpose. If the change is correctly

detected, these approaches avoid needless adaptation, therefore allowing for more robust models.

However, as change detection is no trivial task, other approaches prefer to adapt the models in

regular time intervals without additional triggers (Stanley, 2002; Elwell & Polikar, 2011; Scholz

& Klinkenberg, 2007; Jacobs et al., 2010). This ensures a guaranteed response to the changes,

however risks the overreaction to noise on one hand, and delayed adaptation on another hand,

subject to the parameter choice. In classification scenario, triggering adaptation after every mis-

classification is also practised (Kolter & Maloof, 2005, 2007).
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Figure 2.3: General adaptations scheme.

There are various adaptive predictive algorithms in the machine learning literature. They use

adaptive mechanisms which can be categorized into several types. The next sections present a

detailed overview of these adaptive mechanisms.

2.4 Overview of adaptive mechanism types

In this section a hierarchical structure of adaptive mechanisms types is presented. More con-

cretely, on the lowest tier of the hierarchy the object of adaptation is the underlying training set

of the model, and on the higher tiers its parameters and structure. This hierarchy is depicted on

Figure 2.3. Here, the hierarchy is meant in a sense that the application of an adaptive mechanism

of the higher level, requires the application of the adaptive mechanism of lower level. It should be

noted that, depending on the adaptation settings, the effects of adaptive mechanisms on each level

can be differently strong. Evolutionary adaptation approaches which construct a special niche are

also discussed in Section 2.4.4.

2.4.1 Adapting training data coverage

The basic adaptive mechanism is updating the coverage of models’ training data set to give more

weight to recent data. The most commonly used techniques for this purpose are moving window

and decay factors approaches as discussed in Sections 2.4.1.1 and 2.4.1.2. For some methods

which do not build an explicit general model for the prediction of new data instances, also known

as lazy learning methods, such as k-nearest neighbours (Hastie et al., 2009), just an updated

dataset will instantly change the output of the model. For the methods which do construct a gen-

eral prediction model, also called eager learning methods (e.g. linear regression, SVM, decision

trees), new data prompts the update of the model’s parameters or structure, which is discussed in
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the sections below.

Deciding which subset of data to use as training set is one of the paramount questions that

needs to be answered while developing an adaptive predictive algorithm. Generally it is assumed

that, in the case of no changes in the process, the more data is included in the training set, the

lower the variance of the parameter estimates will be, thus increasing the predictive accuracy.

It has been shown that the size of the training data sufficient to achieve the desired accuracy is

determined by the VC dimension5 of the algorithm (Blumer et al., 1989; Anthony & Biggs, 1997;

Vidyasagar, 1997). More practically, it is determined by the total number of free parameters and

permitted error (Haykin, 2009).

In non-stationary data setting, it becomes important to not only select a training set of suf-

ficient size but also one which is relevant to the current data. The parameters of the adaptive

approaches determine the scale of reducing the influence of the old data. Less influence leads

to faster adaptation, however, it also increases the leverage of noise or structural changes in the

recent past. Conversely, increasing the influence of older data reduces the rate of adaptation, but

at the same time creates more robust models. This is called the stability-plasticity dilemma (Car-

penter & Grossberg, 1987) in adaptive learning. Sometimes data which is considered irrelevant is

simply discarded. This is called “forgetting” (Kuh & Petsche, 1990) or “catastrophic forgetting”

(Polikar et al., 2001) and can be detrimental if the discarded data becomes relevant in the future.

Popular approaches to choose the training data for the model are moving window and decay fac-

tors. It should be noted that not all of the approaches require to explicitly store the old data as

online learning methods which are often used for adaptive models implicitly update their training

sets when the new data becomes available.

2.4.1.1 Moving window approaches

The moving window approaches limit the training data for predictive model at time τ to the most

recently seen l instances as V = {(xτ−l, yτ−l), · · · , (xτ , yτ )} where l is the size of the window.

The advantages of this approach are its simplicity and effectiveness in many cases (Widmer &

Kubat, 1996). The window size is the only parameter, and is critical in controlling how fast the

adaptation is performed. The speed of adaptation is inversely proportional to the size of the win-

dow. However insufficient training data might result in more inaccurate models, and overreacting

to noise. While l is usually fixed, works such as (Widmer & Kubat, 1996; Klinkenberg, 2004)

propose heuristics for an adaptive window size which proves to be more beneficial, particularly

when dealing with random changes. (Widmer & Kubat, 1996) propose to increase the window

when the input data is stable and decrease it when concept drift occurs. (Klinkenberg, 2004) sug-

gests testing several sizes of windows on the latest data batch and choosing the one that performs

the best. In many scenarios, for example if a single model is created from the sliding window, it

is beneficial to set window size so that its contents exhibit stationary behaviour. Stationarity tests
5(Vapnik & Chervonenkis, 1971)
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mentioned in Section 2.3.2, (Priestley & Subba Rao, 1969; von Sachs & Neumann, 2000; Nason,

2013) may be used for this purpose. The moving window approaches are usually based on the

time of data instances’ arrival, however the similarity of training data to the current data can also

be considered for this purpose.

2.4.1.2 Decay

One could view a window approach as weighting vector of ones applied to the most relevant data,

and zeros to the rest of data. In a more general case, a continuous decreasing weight could be

applied. The simplest approach is to use a single decay factor λ < 1. The repeated use of this

decay factor leads to the exponential reduction of data’s weight. Decay can be based not only on

time of instances’ arrival (Joe Qin, 1998; Klinkenberg & Joachims, 2000), but also on similarity

to the current data (Tsymbal et al., 2008), combination thereof (Žliobaitė, 2011), density of the

input data region (Salganicoff, 1993b) or consistency with new concepts (Salganicoff, 1993a).

Non-exponential decay approaches also exist, for example autoregressive model (Mills, 1991).

2.4.2 Adaptation of predictive models’ structure

Structure of predictive model is the set of its components and the way these components are con-

nected to each other. Some model types actually define a family of models with different possible

structures. For example, a 2-layer feed-forward neural network may have different number of

nodes. Adding or removing a node does not change the nature of the model in this case. Struc-

ture of the predictive model could be for example, hierarchical (for example decision trees) or

graph-like (Bayesian or neural networks). Here, the structure is not necessarily limited to the

topological context – number of rules in rule based systems or number of experts in an ensem-

ble could be considered part of the model’s structure. Updates in the models’ structure are also

used for the adaptation purposes, often changing the model more radically than update of the

parameters would be able to accomplish. Relevant examples are listed below:

• Decision trees. There is a considerable amount of research dedicated to decision trees with

updatable structure. For instance, Very Fast Decision Trees (VFDT) for classification by

(Domingos & Hulten, 2000) incrementally grows the tree with the arrival of new observa-

tions and its extension Concept-adapting Very Fast Decision Tree (CVFDT) (Hulten et al.,

2001) uses a sliding window approach to deal with concept drift. The regression-capable

online decision tree introduced in (Basak, 2006) is also capable of altering the tree structure,

albeit with a fixed tree depth.

• Model trees. Structural updates are also applied for model trees. For instance, (Potts &

Sammut, 2005) propose an incremental algorithm with the strategy of splitting the node

if it is statistically unlikely that the examples in it are generated by a linear model. A

method proposed in (Ikonomovska et al., 2010) can replace a subtree with a leaf or grow

an alternative subtree if a change is detected.
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• Neural networks. Although most of the existing neural network architectures use a fixed

structure once trained, some developments indirectly include the ability of changing net-

works’ structure after retraining by using variable node dropout probabilities (Ba & Frey,

2013). Another neural-network based approach used for online learning, and capable of

adapting its structure, is the ARTMAP family of methods (Carpenter et al., 1991; Vakil-

Baghmisheh & Pavešić, 2003). It adds nodes to accommodate for new classes which are

encountered during the prediction process.

• Bayesian networks. The Bayesian network as proposed in (Pearl, 1988) is an approach

which aims to capture causal relationships between features and model them as a direct

acyclic graph using Bayes’s theorem. Updating Bayesian networks’ structure is described

in research such as (Friedman & Goldszmidt, 1997; Lam, 1998; Alcobé, 2004). (Castillo

& Gama, 2006) propose a multi level adaptation scheme for a Bayesian network, which

involves both changing its parameters and structure.

• Ensemble methods. Adding or removing experts (e.g. in (Stanley, 2002; Kolter & Maloof,

2007; Hazan & Seshadhri, 2009; Gomes Soares & Araújo, 2015b)) is an important adapta-

tion mechanism for adaptive ensemble methods, and can be considered a structural change.

This is discussed in greater detail in the Section 2.5.3.

.

2.4.3 Adaptation of predictive models’ parameters

Most of the predictive models’ predictions are dependant on a number of parameters (see Equa-

tion 2.2), which may be adjusted to adapt the model. Training the model in this case comes

down to estimating these parameters and adapting it involves updating the parameters as new

data instances are available. Many popular algorithms have online versions to be able to update

their parameters faster than retraining them from scratch and to not require the historical data.

Following examples can be considered:

• Linear regression. For linear regression the set of parameters are the linear coefficients,

which can be estimated using different methods, such as Ordinary Least Squares Estima-

tion. There are many types of linear models where the coefficients are allowed to change

with time. An example of these is adaptive version of Least Squares Estimation described

in (Jang et al., 1997). It recursively updates the parameters, optionally employing the de-

caying of the weights of old observations.

• Naive Bayes classifier. The parameters of Naive Bayes classifier (described in more details

in Section 2.5.1.1) are the prior probabilities of classes and conditional probabilities of

features given classes. These are calculated during the training of the model and could be

incrementally updated during the prediction process by saving sums and counts of features,

and number of observations.

• Neural Networks. The weights of neural network can be considered its parameters. They
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can be updated with each learned instance using for example back-propagation algorithm

(Werbos, 1974). As back-propagation does not provide explicit control over the adapta-

tion, neural networks which use it or similar training methods can be prone to catastrophic

forgetting (Kasabov, 2001). Several approaches address this problem. For instance, experi-

ence replay (Lin, 1992) stores a set of old instances in memory and uses them along with the

new ones to train the network. This approach has been successfully used recently in Deep

Q-Network (DQN) algorithm (Mnih et al., 2015). Another solution of forgetting problem,

which has become very popular in recent years is Long Short-term Memory (LSTM) ar-

chitecture introduced in (Hochreiter & Schmidhuber, 1997) and recently analysed in (Greff

et al., 2016). LSTM deals with this issue using special blocks which assist the network to

control the forgetting.

• Ensemble methods. Expert weights are an important parameter of the ensemble methods.

They are often recalculated using the new data or updated in various ways (Littlestone &

Warmuth, 1994; Kolter & Maloof, 2007; Elwell & Polikar, 2011; Kadlec & Gabrys, 2011;

Bakirov et al., 2017). This is discussed in more detail in the Section 2.5.2.

2.4.4 Evolutionary approaches

A family of methods collectively called evolutionary approaches practice adaptation which is

loosely based on the theory of evolution. These approaches involve having a population of so-

lutions, adding new members using certain operations like mutation and crossover, and selecting

the “fittest” members from the population based on some fitness criteria. One group of evolution-

ary methods which are able to operate on streaming data are Learning Classifier Systems (LCS),

introduced in (Holland, 1976). LCS work with a pool of rules where new rules are created if no

existing rules are relevant for new examples, and also by constant application of genetic operators

and selection of the best rules using a fitness function. The approach combines both exploration

by selecting a random passing rule to determine the action (or label) and exploitation by select-

ing an action which has maximum combined fitness among all the passing rules. One example

of LCS for classification is sUpervised Classifier System (UCS) (Bernadó-Mansilla & Garrell-

Guiu, 2003). Further example are evolutionary mechanisms and algorithms applied in the context

of multi-component multi-level predictive systems (Gabrys & Ruta, 2006; Tsakonas & Gabrys,

2012, 2013; Lemke et al., 2013).

Another interesting area of population based techniques are Artificial Immune Systems (AIS)

(Castro & Zuben, 1999) which simulate the human immune system. Simplistically described, AIS

create and maintain a pool of antibodies for recognising the threats to the organism via genetic

operations and try to increase diversity of this pool for better recognition abilities. Antibodies

gradually age and are replaced with new ones. Ageing speed is inversely proportional to their

recognition rates, which means that antibodies that are less effective are replaced faster and the

ones that are more effective are replaced slower. Some characteristics of AIS, such as adaptation,



2 LEARNING AND ADAPTATION ON STREAMING DATA 18

forgetting and ability to deal with new threats make it potentially very useful for non-stationary

streaming data. For example (Abi-Haidar & Rocha, 2008) apply AIS methods to spam detection

and (Haag et al., 2007) use them for network intrusion detection. A survey of AIS research can

be found in (Dasgupta et al., 2011).

2.5 Ensemble methods

A popular approach in machine learning is combining multiple models (which in this scenario

are often called “predictors”, “learners” or “experts”6) for predictions (Ruta & Gabrys, 2000).

Ensemble methods were originally developed in 1960-s for static data (Bates & Granger, 1969),

but have gained widespread use for streaming and non-stationary data as well. In the static setting

the ensembles are widely used for “boosting”, which aims to increase the prediction accuracy

for parts of the input space where accuracy is low (Freund & Schapire, 1995), or “bagging”,

which aims to increase the generalising ability of a predictive model (Breiman, 1996). (Dietterich,

2000) presents three reasons why ensembles of experts often perform better than single learners

in stationary settings:

• Statistical: many models can perform quite similar on training data but differently on the

test data. To eliminate the risk of choosing a poor model, a safer choice would be using

them all in the ensemble and average their predictions.

• Computational: many experts reduce the risk of getting stuck in local optima during the

learning process.

• Representational: in many situations the concept might be represented better by the

weighted sum of multiple learners rather than a single learner.

The drawback of combining multiple learners is that the resulting model will have higher com-

plexity than using a single learner (Kuncheva, 2004b). Moreover, it has been also shown that it can

be very beneficial to organise predictions in multiple layers (Ruta & Gabrys, 2002, 2005) (simi-

larly to the recently popularised deep neural network structures) leading to even further increase

in the of the complexity of the resulting system together with a great potential performance gain.

This has been illustrated in many sucessful experimental studies carried out in author’s group

(Ruta & Gabrys, 2005, 2007; Riedel & Gabrys, 2007; Lemke et al., 2009; Budka et al., 2010;

Ruta et al., 2011; Tsakonas & Gabrys, 2012, 2013; Lemke et al., 2013; Martı́n Salvador et al.,

2016b).

In a streaming data setting, experts are used to improve the generalisation properties of the

model and to serve as a representation for historical data. In addition, in a non-stationary setting,

some models attempt to align experts with concepts as they arise (Kadlec & Gabrys, 2011; Shao

& Tian, 2015; Jin et al., 2015a).7 Many studies (e.g. (Kolter & Maloof, 2007; Elwell & Polikar,

2011; Kadlec & Gabrys, 2011)) have found that adapting ensemble combination weights, for
6These terms are used interchangeably throughout this thesis.
7Clear partition between concepts is often not attainable.
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instance based on experts’ prediction accuracy, is an effective method of dealing with changes

in the data. Often the combination weights of ensemble members are updated at a rate inversely

proportional to their prediction errors. More concretely, w1 = ν(ε1, w0), where w1 is the weight

after the update, and ν(·) is the update function, its inputs being error ε1 and optionally previous

weight w0. For instance, the update function can be realised as ν(ε1, w0) = w0e
−ε (Herbster

& Warmuth, 1998). When the input w0 is absent, the weight update function takes the form of

w1 = ν(ε1) and essentially becomes weights recalculation, used for instance in (Elwell & Polikar,

2011). Experts may be separately updated (Kolter & Maloof, 2007) or adapted using moving

windows or forgetting factors (Kadlec & Gabrys, 2011; Bakirov et al., 2015). Creation of new

experts from newly arrived observations is another useful strategy to learn new information which

has been found to provide good results (Klinkenberg, 2004; Wang et al., 2006; Kolter & Maloof,

2007; Elwell & Polikar, 2011). An alternative to combination is gating, where a prediction of a

single expert, which is considered the most relevant to the current state of the system, is selected

as a final prediction of the ensemble.

Adaptive ensemble methods for learning on streaming data often feature all of the levels of AM

hierarchy introduced in Section 2.4. Adapting individual expert may be realised via the training

data coverage adaptation and the parameter adaptation levels. Adapting the combination weights

may be considered a form of parameter adaptation and adding/removing experts an adaptation

of model’s structure. In Sections 2.5.1, 2.5.2 and 2.5.3 a short overview of the most prominent

adaptation methods and techniques belonging to each of these levels is presented.

2.5.1 Base learners and their adaptation

There are many choices for the type of models that can be used in an ensemble as the base

learners, in fact any predictive model, including other ensembles, can be used for this purpose.

For instance, machine learning methods such as linear regression (Kadlec & Gabrys, 2011; Gomes

Soares & Araújo, 2015b), naive Bayes (Bakirov & Gabrys, 2013), SVM (Scholz & Klinkenberg,

2007), decision trees (Street & Kim, 2001; Stanley, 2002; Bifet et al., 2009), neural networks

(Polikar et al., 2001; Lan et al., 2009; Gomes Soares & Araújo, 2015a), k-nearest neighbours

(Masud et al., 2013) have been used as base learners. Base learners may be updated by explicitly

or implicitly increasing their training data and may be adapted using adaptation mechanisms such

as moving windows or decay factors (Sections 2.4.1.1 and 2.4.1.2). Examples of algorithms

which employ learnable/updatable base learners are (Stanley, 2003; Kolter & Maloof, 2007; Bifet

& Gavaldà, 2007; Kadlec & Gabrys, 2011; Grbić et al., 2013; Gomes Soares & Araújo, 2015a,b;

Shao & Tian, 2015; Jin et al., 2015b; Bakirov et al., 2017). However, it is not always the case that

experts are adapted, as the adaptation can be performed purely at the combination level and/or via

adding/removing experts. This is characteristic only to batch learning algorithms (e.g. (Scholz &

Klinkenberg, 2007; Elwell & Polikar, 2011)).

Sections 2.5.1.1 and 2.5.1.2 reviews Naive Bayes classifier and Recursive Partial Least Squares
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(RPLS) which were used as base learners for experiments in this thesis.

2.5.1.1 Bayesian learning and Naive Bayes classifier

Bayesian learning is an inherently probabilistic approach for building predictive models in which

unknown quantities are given a distribution based on observations. The distributions are updated

and predictions are formed from the posterior. The core of Bayesian learning is Bayes’ theorem

P(A|B) = P(B|A)P (A)
P(B) which relates the of conditional probability of P(A|B) (event A given

B) to the P (B|A) (likelihood of B given A; typically the observation given the model) and

independent a priori probabilities of two events P (A) and P (B). In the classification setting this

equation can be written as:

P(c|x) =
P(x|c)P(c)

P(x)
, (2.6)

where c is a class label. The popular Bayesian learning method, Naive Bayes classifier, assumes

the conditional independence of features from each other. Then, the classification problem comes

down to estimating the probability of each class and determining the class with the highest prob-

ability value, as:

P(c|x) =
1

Z
P(c)ΠM

m=1P(xi|c) (2.7)

Here Z is a product of probabilities of all inputs P(x1),P(x2), ...,P(xM ) which is constant for

all class labels. Returning to the described hierarchy, independent probabilities of classes/features

and conditional probabilities P(xm|c), m ∈ 1 · · ·M may be considered as the parameters of

Naive Bayes classifier. It is possible to incrementally update these values when new instances

are observed. Despite the strong assumption of feature independence, the Naive Bayes classi-

fier is widely used in practice, because of its usually satisfactory prediction accuracy, ease of

implementation and inherent capability of online learning.

2.5.1.2 Recursive Partial Least Squares

Recursive Partial Least Squares is an extension of Partial Least Squares (Wold, 1966), both being

popular in chemical process modelling. PLS projects the scaled and mean centered multidimen-

sional input data X ∈ RN×M and output data Y ∈ RN×K , where N is the number of data

instances, M is the number of input variables and K is the number of output variables, to sepa-

rate latent variables,

X = TD> + V (2.8)

Y = UQ> + F . (2.9)

Here T ∈ RN×L (L ≤ M is the number of latent variables) and U ∈ RN×L are the score

matrices, D ∈ RM×L and Q ∈ RK×L are the corresponding loading matrices, and V and F are

the input and output data residuals. Then the score matrices T and U consist of so called latent
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vectors:

T = [t1, ..., tL], where tl ∈ RN×1 for 1 < l < L (2.10)

U = [u1, ...,uL], where ul ∈ RN×1 for 1 < l < L. (2.11)

where the column vectors d ∈ RM×1 and q ∈ RM×1 of the loading matrices D andQ represent

the contributions of the input and output variables to the mutually orthonormal latent vectors t and

u, respectively. Equations 2.8 and 2.9 constitute the PLS outer model. Afterwards a regression

model, which is also called the PLS inner model, between the latent scores is constructed:

U = TB +R, (2.12)

where B ∈ RL×L is a diagonal matrix of regression weights which minimizes the regression

residualsR. Then the estimates Ỹ of Y are:

Ỹ = TBQ>, (2.13)

There are different methods to calculate the required vectors t, d, u, q and b. One of the most

popular ones, Nonlinear Iterative Partial Least Squares (NIPALS) (Geladi & Kowalski, 1986), up-

dates latent vectors in an iterative way. After each iteration, the explained covariance is removed

from the data:

Xi+1 = Xi − tid>i (2.14)

Y i+1 = Y i − uiq>i . (2.15)

The subsequent (i+ 1)-th vectors are calculated by the resulting new input and output dataXi+1

and Y i+1. Recursive PLS, which uses NIPALS, updates the matrices D, T , Q, U and B when

the new data becomes available, on either sample-by-sample (incremental) or batch basis. The

batch adaptation used in this thesis works by applying PLS on the new batch and constructs new

input and output matrices as follows:

Xnew =

[
λD>0

D>1

]
(2.16)

Ynew =

[
λB0Q

>
0

B1Q
>
1

]
, (2.17)

where the matrices D0, B0 and Q0 describe the old model and D1, B1 and Q1 the new one

created from the most recent batch. 0 ≤ λ ≤ 1 is the forgetting factor which determines how

much influence the historic data will have, with λ = 0 meaning zero influence and λ = 1 meaning

that the historical data has the same influence as the new batch. After constructing the new input
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and output data matrices, PLS is applied on them to get the updated matrices. The condition for

this update is that the number of latent variables must be equal to the rank of X . This condition

can be practically met by finding a number of latent variables for which the error on the training

data is less than a threshold value defined close to 0.

2.5.2 Combinational adaptation methods

A prominent adaptation method for ensemble models is changing the combination weights of

experts. Techniques belonging to this category are described in this section.

Consider a set of I experts S = {si, ..., sI} which produce predictions ŷ = {ŷ1, ..., ŷI} where

ŷi = si(x) with input x. These may be labels or numeric values depending on the problem.

In case of classification, there exists a set of all possible labels C = {c1, ..., cJ}. Then for all

i = 1 · · · I and j = 1 · · · J the matrix A with following elements can be calculated:

ai,j =

{
1 if si(x) = cj

0 otherwise
(2.18)

Assuming weights vectorw = {w1, ..., wI} for respective predictors in S, the sum of the weights

of predictors which voted for label cj is zj =
I∑
i=1

wiai,j . The final prediction is:8

ŷ = argmax
cj

(zj). (2.19)

For the most common case of averaging the experts’ predictions for regression, the final prediction

is simply

ŷ =

I∑
i=1

wiŷi

I∑
i=1

wi

(2.20)

Un-weighted combination is a special case of above equations where the weights are assumed to

be equal; w1 = w2 = · · · = wI .

There are two types of experts’ combination; fusion (also called competition) and selection

(also called gating or cooperation) (Kuncheva, 2004b). The former involves combining the experts

using global9 weights which often depend on their predictive performance (in this thesis this will

be called global weighting), the latter selects a single expert often based on input data. Often these

approaches are mixed, typically considering input data and sometimes outputs for the calculation

of weights. The mixed approach will be called local weighting in this thesis.

Global weighting is used for adaptive ensembles more commonly than local weighting

(Kuncheva, 2004b). Examples of methods that employ global weighting include (Littlestone &
8This definition is adapted from (Kuncheva, 2004b).
9Here, the term “global” means that the weights are not influenced by input or output data.
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Warmuth, 1994; Stanley, 2002; Kolter & Maloof, 2005, 2007) for classification and (Kaneko &

Funatsu, 2014, 2015; Gomes Soares & Araújo, 2015b,a) for regression. For incremental learning

setting, the weight change is usually implemented via multiplication by 0 < β < 1, wτ+1 = βwτ ,

where wτ is the weight of an expert at time τ and wτ+1 is the updated weight at time τ + 1

(Littlestone & Warmuth, 1994; Kolter & Maloof, 2007). For classification tasks, this is usually

performed only when the prediction of the expert is wrong. For regression task, β is usually a

function of expert’s error (Vovk, 1990; Kolter & Maloof, 2005). These type of algorithms often

normalize the weights after reweighing (e.g. (Kolter & Maloof, 2007)). In batch learning sce-

nario, recalculation of weights based on experts’ performance is often used (Wang et al., 2003;

Elwell & Polikar, 2011; Bakirov et al., 2015). Other aspects such as lift, which is a measure of

correlation between a specific prediction and a specified true label (Scholz & Klinkenberg, 2007)

or expert creation time, i.e. expert’s age (Elwell & Polikar, 2011) could be taken into account

during the weighting process as well.

Adaptive local weighing is less common in the literature, despite the intuition that together

with well trained experts, it is probably the better choice (Kuncheva, 2004b). The difficulty of

theoretical analysis may contribute to this fact. One of the first approaches to use adaptive local

weighting was (Jacobs et al., 1991). They use a feed-forward gating network which outputs the

selection probabilities for each local expert, based on the input data. Local ensemble learning has

been applied to regression in (Kadlec & Gabrys, 2010, 2011; Tsakonas & Gabrys, 2012, 2013;

Grbić et al., 2013; Shao & Tian, 2015; Jin et al., 2015b; Al-Jubouri & Gabrys, 2016).

Expert selection, used in (Jacobs et al., 1991) can be considered a special case of weighting

when all of the weights except for one are 0. A dedicated method for dealing with concept changes

in incremental settings using this kind of approach via model trees with dynamic structure is

proposed in (Ikonomovska et al., 2010). The use of meta-features to identify to select an expert

from the pool is described in (Alippi et al., 2012).

2.5.3 Adaptation via adding or removing predictors

The next hierarchy level of adaptation in ensembles is changing the ensemble structure, which is

realised by adding predictors to the ensemble or removing them. Similar to the single learners’

adaptation, adding/removing experts can refine the existing model, add new information to the

model and forget old data. New experts are usually trained on the latest data and so are likely

to be better suited to predict on it than the existing ones. Adding new experts to the mix brings

additional flexibility and adaptive power to ensemble methods, and is especially important when

other adaptive mechanisms such as adapting the experts or combination do not provide satisfac-

tory results. It can be done either using a defined trigger mechanism or on a regular basis without

additional trigger.

In triggered expert creation, methods often attempt to create a new expert each time a specific

condition is satisfied. Most of the times this indicates that there is a potential change occurring
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in the data. The change indicators are often based on error of the model. For instance in clas-

sification tasks, in the simplest case an expert may be added after each misclassification (Kolter

& Maloof, 2005, 2007). Combined with the reduction of votes of under performing experts, this

method works often well. However, as observed in (Kolter & Maloof, 2007) adding a new expert

after every misclassification can lead to the unnecessarily high amount of predictors, particularly

in noisy domains. To alleviate this problem authors propose adding an expert only if every Ωth

data instance is misclassified. Another strategy is adding an expert on the basis of ensemble’s per-

formance on a window of last observed data, as proposed in (Bouchachia & Balaguer-Ballester,

2014). To explore other expert creation strategies for this scenario, several alternatives were im-

plemented and discussed (Bakirov & Gabrys, 2013) (refer also to Appendix A). For the regression

case (Kolter & Maloof, 2005) propose adding a new expert if |ŷt − yt| > ζ, where ŷ is predicted

value, y real value and ζ predefined threshold. (Gomes Soares & Araújo, 2015b) add an expert

every time the ratio of prediction error of the ensemble on the current data instance to the true

value is higher than a certain threshold. Other methods use more complicated change detection

mechanisms to trigger creation of new experts. These could be also based on error measures such

as in (Gama et al., 2004; Baena-Garcı́a et al., 2006) or based on input data as in (Bifet et al.,

2009; Raza et al., 2015). (Alippi et al., 2012) use two change detection mechanisms to trigger

the adaptation, and adds an expert if no experts in the ensemble have been trained on the new

concept.

Perhaps the easiest method to add new predictors is to create them at fixed intervals irrespec-

tive of the model’s performance and without using any other trigger. This method is widely used

in batch learning scenario, where data arrives in batches and each time a new predictor is trained

from the latest batch (Scholz & Klinkenberg, 2007; Elwell & Polikar, 2011; Gomes Soares &

Araújo, 2015a). Adding an expert at fixed intervals is practised in incremental learning as well.

For instance (Stanley, 2002) and (Hazan & Seshadhri, 2009) add a new predictor every instance

and (Jacobs et al., 2010) propose adding new predictor every Ω data instances. (Kaneko & Fu-

natsu, 2014) add a new expert when the model trained on new data is not a duplicate of an existing

predictor in the ensemble. (Kaneko et al., 2014) use the most relevant instances to the current data

for so called lazy or just-in-time learning, in other words for predicting on the fly using the similar

data instances.

Removal of experts is often performed when their performance is unsatisfactory (Kolter &

Maloof, 2007; Gomes Soares & Araújo, 2015b), when change is detected (Bifet et al., 2009),

when a new expert performs better and replaces the existing one (Street & Kim, 2001), or based

on their age (Hazan & Seshadhri, 2009). Usually, because of weights update, poor performing

experts end up having low combination weights, so in this case their removal has less impact on

the model than the addition of new ones.

Figure 2.4 shows the general scheme of ensemble methods and their adaptation mechanisms

described in the sections above. Table 2.1 summarizes these mechanisms.
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Figure 2.4: Ensembles and their adaptation mechanisms.

Object of adapation Type of adaptation Useful for

Base learners update
Training data
Parameters
Structure

Learning new data
Adaptation with forgetting

Combinational adaptation Parameters
Switching between experts
Reweighing experts

Add/remove experts Structure
Learning new data
Adaptation with forgetting
Adaptation without forgetting

Table 2.1: Summary of ensemble adaptation methods.

2.5.4 Dynamic Weighted Majority

An example of an ensemble which features all three adaptation types is the Dynamic Weighted

Majority (DWM) algorithm (Kolter & Maloof, 2007). DWM adapts to drift by creating a new

expert each time an instance is misclassified by the existing ensemble. New expert gets the weight

of one. All experts are updated and whenever an expert misclassifies a data instance, its weight

is scaled by 0 < β < 1. After each classification, to reduce the dominance of newly added

experts, the weights of existing experts are normalized, so that the expert with the largest weight

is assigned a weight of 1. To reduce the number of experts, those experts whose weight is less

than a defined threshold, η, are deleted. In (Kolter & Maloof, 2005) the same authors present
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AddExp.D, a variation of this method where the weight assigned to the new experts is the current

weight of the ensemble multiplied by a constant γ. Here the authors bound the error of this type of

ensemble on the error of the latest created expert, provided that β+ 2γ < 1. The same paper also

introduces AddExp.C algorithm for regression based on the same principle. These algorithms

show good performance when tested on several synthetic and real datasets. However, a known

issue is their tendency to create large number of experts, particularly in noisy conditions. Also the

choices regarding the adaptation mechanisms, such as choosing new weights for the experts, the

value of β, are largely arbitrary, especially for DWM. DWM pseudocode is shown in Algorithm

1.

Some of the issues regarding the expert adding criteria and their training data have been ad-

dressed in Appendix A and in (Bakirov & Gabrys, 2013). Several modifications of the original

DWM algorithm, focusing on creating new experts using larger training data sets, testing their

performances before deciding whether to add them to the ensemble, as well as employing dy-

namic expert addition accuracy threshold values were proposed. Empirical tests were conducted

on 26 synthetic two-dimensional datasets with various types of changes, as well as two real world

datasets from the electricity consumption domain. Different settings of expert training and their

weight adjustment were tested, along with comparing them to several popular change detectors

and an alternative adaptive algorithm.

Accuracy-wise, there was no single method which performs best in all of the conditions. On

average, MATure EXperts (MATEX) approach (allowing the experts to train on additional incom-

ing data after their creation, without considering their outputs for a certain time) performs the

best among synthetic datasets and well for real data as well. Performance of the original DWM

is found to be inferior to that of its modifications in many cases for synthetic data, however it has

shown good results on real data. There are also no single best algorithm settings, although certain

setting choices often show considerably inferior accuracy rates.

2.6 Predictive models with multiple adaptive mechanisms

As seen from previous sections, learning on streaming data presents additional challenges to

learning from static data. Even more challenging is building models which require adaptation

over time. Perhaps the issue which requires the most attention is the stability-plasticity dilemma.

Adaptive algorithms must find a balance between adapting to changes in data but at the same time

being robust to noise. Ideally, algorithms must adapt to the true changes in the data, and ignore

noise. Generally, this can be done at the cost of slowing the adaptation down, and adapting the

model once the change has been confirmed. This is different from static learning, where it is

desired to learn the concept as fast as possible.

Normally learning on non-stationary streaming data consists of two components: refinement

and adaptation. The refinement component does not assume changes in data distribution and

seeks to improve the learned concept by learning the new examples. In the literature, mainly the
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Algorithm 1 The DWM algorithm.
Dynamic Weighted Majority ({X,y},K, β, η,Ω)
{X,y} = {(x1, y1), · · · , (xN , yN )}: N instances of training data
η: threshold for deleting experts
Ω: period between expert removal, creation, and weight update
S = {s1, · · · , sI}: set of I experts
W = {w1, · · · , wI}: experts’ weights
C = {c1, · · · , cJ} set of possible classes: ŷ, ĉ ∈ C: global and local predictions
ω: sums of weighted predictions for each class

1: I = 1
2: sI = Create New Expert()
3: wI = 1
4: for n = 1, · · · , N do
5: ω = 0
6: for i = 1, · · · , I do
7: ĉ = sj(xn)
8: if ĉ 6= yn and n mod Ω = 0 then
9: wi = βwi

10: end if
11: ωĉ = ωĉ + wi
12: end for
13: ŷn = argmax

ĉ
(ωĉ)

14: if n mod Ω = 0 then
15: W = Normalize Weights(W )
16: S,W = Remove Experts(S,W, η)
17: if ŷn 6= yn then
18: I = I + 1
19: sI = Create New Expert()
20: wI = 1
21: end if
22: end if
23: for i = 1, · · · , I do
24: si = Train(si, (xn, yn))
25: end for
26: end for

training set or parameter update is used during this phase. The adaptation component seeks to

change the learned concept using new data. This can be achieved by all adaptation types; training

set update, parameter update, changes in model structure. Refinement (e.g. via experts’ online

learning) may be performed simultaneously with adaptation (e.g. via weights adjustment).

As seen from the listed algorithms, the adaptation itself is a highly non-trivial and complex

issue. In particular, using multiple adaptive mechanisms requires careful model design to fully

use AMs’ potential and avoid possible negative effects, for example slowing adaptation when

the adaptive elements are working against each other or make the model too sensitive, when the
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elements are adapting the model in the same direction without synchronisation. Decisions must

be made on when each AM should be deployed. In present thesis this is called adaptive strategy.

Most of the explored methods employ fixed strategies, which means that the AMs’ deployment

choice is fixed at the design time of the method and remains the same throughout the prediction

process. The most popular types of adaptive strategies are listed below:

• Symmetric: Adaptation of different elements is triggered10 at the same time (Figure 2.5(a)).

Example: changing weights of existing experts and adding a new expert at the same time

in (Kolter & Maloof, 2005, 2007).

• Asymmetric: Adaptation of different elements is triggered at the different times using dif-

ferent triggers (Figure 2.5(b)). Examples: Member of ensemble in ASHT are weighted

inversely proportional to their error rate and are removed when their complexity exceeds

the threshold in (Bifet et al., 2009), perpetual and triggered adaptation in (Kadlec & Gabrys,

2009a).

• Bottom-up delegation: Adaptation is started at the bottom level of hierarchy of adaptive

elements. It is gradually passed to higher levels, until a certain stopping condition is met

(Figure 2.5(c)). Example: When new data arrives, (Castillo & Gama, 2006) first adapt

parameters of Naive Bayes classifier, if this is not improving the performance, they update

Bayesian network’s structure.

Here, triggers may be change detection mechanisms for example described in Basseville & Niki-

forov (1993); Gama et al. (2004); Baena-Garcı́a et al. (2006). Stationarity tests such as

The methods with multiple AMs reviewed in this chapter usually deploys these AMs in a fixed

order, most of the times all at the same time. Some works offer basic flexibility for some AMs.

For instance, (Kadlec & Gabrys, 2010) creates new experts when existing ones are not trained

on the relevant data, (Gomes Soares & Araújo, 2015a,b) create new experts when the predictive

error on an instance is above a set threshold. Once the change is detected, (Alippi et al., 2012) can

either switch the active expert if there is one in the pool which corresponds to the new concept, or

otherwise create a new expert.

What is common about the above discussed selection of methods and algorithms is that they all

use multiple AMs but in a fixed order and manner. Flexible adaptive strategies are able to deploy

any AM or combination of AMs which can provide finer control of the adaptation. However this

requires carefully designed adaptation strategies, which take into account the specifics of adaptive

mechanisms and of data while choosing AM to deploy.

Only few works consider the possibility of adaptation without any fixed order. One of these,

(Kadlec & Gabrys, 2009a) presents a plug and play architecture for preprocessing, adaptation and

prediction which foresees the possibility of using different adaptation methods modularly, but

does not address the method of AM selection. In (Kaneko et al., 2014) the predictive accuracy

is assessed to switch between two predictive models. Simple Adaptive Batch Learning Ensem-

ble (SABLE) algorithm (Bakirov et al., 2015) (see Chapter 4) developed in this thesis presents
10Refer to Section 2.3.2 for the description of common triggers.
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Figure 2.5: Different synchronisations styles of adaptive elements.

a framework for using multiple adaptive mechanisms with different possible fixed and flexible

adaptive strategies.

Following issues can be caused by fixed adaptation order:

• the dominance of newly added experts which have more weight (Kolter & Maloof, 2005,

2007),

• creating and maintaining a large amount of experts, which leads to increase in computa-

tional costs (Kolter & Maloof, 2005, 2007)

• abrupt removal of the models which were trained on a large amount of data (Wang et al.,

2003; Minku & Yao, 2012).

• addition of poorly trained experts (Kolter & Maloof, 2007).

• creation of new experts from every batch of new data, which might lead to the dominance

of similar experts (Wang et al., 2003; Elwell & Polikar, 2011)

• creation of only a single expert from new batches, which ignores possible changes within

the batch (Wang et al., 2003; Elwell & Polikar, 2011; Scholz & Klinkenberg, 2007)

• possibly slowing the adaptation down when using champion-challenger schemas, where

alternate models are being trained simultaneously with the main predicting one and replace

it when change is detected (Nath, 2007; Hulten et al., 2001; Ikonomovska et al., 2010)

• abrupt forgetting (Domingos & Hulten, 2000; Ikonomovska et al., 2010)
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• using ineffective sliding window strategies (Widmer, 1993; Klinkenberg & Joachims, 2000;

Tsymbal et al., 2008).

Additionally, in Chapter 5 of this thesis, it is shown that fixed adaptation order can lead to lower

predictive accuracy than flexible ones.

2.7 Summary

Since this thesis focuses on learning and adaptation for predictive models on non-stationary

streaming data, this chapter has given a background in relevant areas. It was discussed that the

non-adaptive learning of new data is essentially augmenting existing models with new encoun-

tered data. Different methods of learning new data were introduced. It was further continued with

the topic of adaptation, which also learns the new data, but additionally reduces the importance

of the irrelevant data. The main reason for adaptation is improving accuracy of the model after a

change in data. Main generic techniques for models’ adaptation are also listed in this chapter.

The chapter continues by providing a more detailed look into different types of adaptive mech-

anisms. For this purpose, a categorisation of AMs in machine learning is introduced, which

includes adaptation of training data, parameters, structure and populations. Modern adaptive

algorithms often employ more than one AM. Many ensemble methods belong to this type of al-

gorithms, and are described in more detail in this chapter. They can be adapted by updating their

experts, changing the combination weights or adding/removing new experts. Multiple available

AMs make the adaptation potentially more flexible. However, by deploying the AMs in fixed

manner, which is the common strategy, this advantage seems to be unused. Flexible adaptive

strategies may potentially be able to perform better than the fixed ones, when the appropriate

adaptation strategies, which can identify the optimal AMs to deploy, are employed. This is anal-

ysed in subsequent chapters.

Having summarised the existing research in relevant areas, it is proceeded with the next chapter

which introduces the process industry as the case study for experiments.



Chapter 3

Process industry and datasets

3.1 Introduction

This thesis uses data from process industry as a case study for its experimental part. Currently

process industry is becoming a data-centric field, which extensively uses predictive modeling

in form of data-driven soft sensors (Kadlec et al., 2009). These can be alternatives to ordinary

sensors, in the situation where physical measurements are hard to obtain or for backup purposes.

The inputs of data-driven soft sensors are known values about the process and their outputs are

the necessary measurements. Since the industrial processes are usually highly complex, involving

different inputs at various stages, multitudes of physical sensors, mechanical parts susceptible to

wear and tear, and being affected by external environmental conditions, the data generated during

process’ run may suffer from missing variables, co-linearity, outliers and drifts (Kadlec, 2009;

Martı́n Salvador et al., 2016a). Some of these artefacts are usually dealt with during the pre-

processing stages of the modeling process. Others, especially changes and drifts require adaptivity

from soft-sensors.

Three real world datasets from the process industry (catalyst activation, thermal oxidizer and

industrial drier) were used for the experiments in this thesis. Section 3.2 of this chapter presents

a short introduction to process industry, informs the reader about soft-sensors and their different

types, and focuses on adaptive data-driven soft sensors. In Section 3.4 the datasets used for

experimentation and the background processes are presented. The need for adaptation of each

dataset is then analysed by building a non-adaptive model using the first batch of the data and

applying it to the rest of the data. Analysing the changes in resulting prediction error, conclusions

about the changeability of each dataset are presented.

3.2 Introduction to process industry

“Process manufacturing is the production of goods that are typically produced in bulk quantities,

as opposed to discrete and countable units. Process manufacturing industries include chemicals,

31
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food and beverage, gasoline, paint and pharmaceutical.” 1 Specifically, chemical process plants

produce a desired chemical substance from input materials given to the process. The process of

conversion of the inputs to the output substance often involves multiple steps. Figure 3.1 shows

a diagram of hydrodesulphurization process as an example. The actual chemical reactions take

Figure 3.1: Hydrodesulphurization process diagram (Moore et al., 2011).

place in the reactor of the process plant. To control and monitor these reactions, the reactors are

equipped with a multitude of sensors. To split the desired substance from by-products, the output

of the reaction is usually passed into distillation column. Often, to achieve the desired quality

of the output, the distillation has to be done repeatedly multiple times. During this process, the

amounts of the target substance and by-products are strictly monitored using sensor readings to

ensure the required quality of output. Commonly the sensors in the process plant measure values

of temperature, pressure, viscosity, and material flow at different stages of the process.

Two different types of processing plants, namely continuous and batch processing plants can

be distinguished. Continuous plants run in an uninterrupted manner, during their whole operation

process. The steady-state of the process is still subject to changes caused by changes in required

output amounts, changed catalyst activity, physical deterioration of the equipment and other fac-

tors. Batch process plants run in a discontinuous fashion, for a certain limited duration. This

duration is often dependant on the amount of the required product. Batch processes are often

used in microelectronics, pharmaceutical (Cinar et al., 2003), as well as foods or biochemistry

industries and for production of special chemicals (Kadlec, 2009).
1http://searchmanufacturingerp.techtarget.com/definition/process-manufacturing
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3.3 Soft sensors

The careful monitoring of the process state is of paramount importance for the successful run

of the plants. This heavily depends on getting accurate measurements from each stage of the

process. However taking certain measurements is often excessively costly or too time consuming

to keep up with the process. Solution for these cases are often the deployment of soft sensors.

Soft sensors are models which are used to estimate the necessary values on the basis of physical

measurements taken from the running process. These are either (a) model-driven models based

on the equations describing physical and chemical characteristics of the process or (b) data-driven

models based on using predictive algorithms with real time process data as inputs. Hybrid soft

sensors which combine (a) and (b) are also used.

Model-driven models are developed mainly in order to assist with design of the processing

plants by incorporating full phenomenological knowledge about the process. The estimates of

these models are based on first principles of physics and chemistry, making the reasoning behind

them strong and clear. However these type of models have several drawbacks. One of them is

requiring extensive knowledge for their development, which may not be available for the process.

Furthermore, they often describe the simplified behaviour of the process, without consideration

of many external effects on the process. Moreover, these models usually concern only the steady

states of the process, excluding changes in the process and transient states. Examples of soft

sensors based on model-driven models are (De Wolf et al., 1996; Doyle, 1998; Prasad et al.,

2002).

Data-driven models are based on the historical and real-time data which has been collected in

the duration of the process run. In addition to the process control and monitoring purposes, the

sensor outputs are also saved in large databases called Process Information Management Systems

(PIMS). The rise of volume of this data in recent years has popularized the development and use of

data-driven soft-sensors (Fortuna et al., 2007). Data-driven soft sensors are essentially predictive

models based on machine learning algorithms. They do not require knowledge about the process

and are closer to the real process settings. A review of data-driven soft sensors can be found in

(Kadlec et al., 2009).

3.3.1 Adaptive data-driven soft sensors

Due to the size and complexity of modern chemical plants, there are many factors which can

affect the data which is generated during the process. This causes various changes in data, which

encourages the use of data-driven sensors based on adaptive predicted models discussed in the

previous chapter. Changes in data may indicate real change in the process. This may be caused

by internal factors such as the deterioration of plant’s mechanical parts or external factors such

as environmental effects, change in the purity of input materials, deactivation of catalyst, etc.

These kind of changes may distort the normal run of the process, so they should be detected and

addressed promptly. Another type of changes in data, where the process remains unchanged, are
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caused by the variation in physical sensor readings, which may be caused by their wearing off

or malfunctioning. In both cases, the changes in data may negatively affect the accuracy of soft

sensors’ measurements (Kadlec, 2009). Hence these sensors need to be adapted to reflect the

accurate values of the monitored substance.

Adaptive soft-sensors have been an active research area in recent years, starting with the ones

based on very well known and commonly used recursive Principal Component Analysis (PCA)

and Partial Least Squares (PLS) approaches presented in (Dayal & MacGregor, 1997) and (Li

et al., 2000) and more recently proposed adaptive soft sensors, e.g. (Kadlec & Gabrys, 2011;

Grbić et al., 2013; Kaneko & Funatsu, 2014, 2015; Jin et al., 2014; Shao et al., 2014; Ni et al.,

2014; Jin et al., 2015a,b; Shao & Tian, 2015; Shao et al., 2015b,a).

Soft sensors using local ensembles are described in (Kadlec & Gabrys, 2011, 2009b, 2010;

Shao & Tian, 2015; Shao et al., 2015a; Jin et al., 2015b). These methods first identify the disjoint

segments of the historical input space where the process produced outputs described by a common

model, sometimes also called receptive fields. Then they build a model for each receptive field

using PLS or Support Vector Regression (Drucker et al., 1996). The models therefore describe

different regions of the process. The final prediction is a weighted average of all of the experts.

Here, for each new data instance, the weights of experts depend on the location of the observed

instance and in some cases the prediction. The AM used in (Kadlec & Gabrys, 2009b) is based on

change of models’ local weights depending on their error. This model was extended in (Kadlec

& Gabrys, 2011) to include adaptation of the base models using the RPLS forgetting. (Kadlec &

Gabrys, 2010) further extend the model to include creation of additional experts. (Shao & Tian,

2015; Shao et al., 2015a) use adaptation of base models and adaptive weighting with (Jin et al.,

2015b) additionally introducing adaptive offset correction. Another soft sensor based on local

ensemble with a moving window and weights change AMs is described in (Grbić et al., 2013).

Global ensembles are also used in soft sensor algorithms (Kaneko et al., 2014; Kaneko & Funatsu,

2014, 2015). For example, (Kaneko et al., 2014) use time difference ensemble weighting based on

the distance between the current input and historical inputs. This method can use either moving

window or just-in-time approaches for adaptation.

It can be seen that adaptive soft sensors use various adaptation mechanisms. A review of these

mechanisms for soft sensors is given in (Kadlec et al., 2011). The mechanisms target different

characteristics of the model; the error, the current location in the input space (or output space),

and the temporal distance. Most of the described works above have a common characteristic

that whatever the AMs, they are applied at every time step in the same manner. In contrast, the

approaches proposed in (Kadlec & Gabrys, 2009a, 2010; Kaneko et al., 2014; Jin et al., 2015a)

change the order of the adaptation. In particular, (Kadlec & Gabrys, 2010) creates new experts

when existing ones are not built on the relevant data. In (Kaneko et al., 2014) the predictive

accuracy is assessed to switch between two predictive models. Again, the predictive accuracy is

used to choose between just-in-time model creation and offset update in (Jin et al., 2015a). To

analyse the issues related to adaptive mechanisms’ deployment, such as the order of AMs and
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their selection, the experiments on real datasets from the process industry are conducted. The

sections below describe the used datasets in detail.

3.4 Process industry datasets

The subsequently introduced datasets are the courtesy of Evonik Industries AG and were used

during the INFER EU project2 (Stahl et al., 2013; Martı́n Salvador et al., 2014; Žliobaitė &

Gabrys, 2014; Lemke et al., 2015)and in previous co-operations between Evonik Industries and

Bournemouth University (Kadlec & Gabrys, 2009a; Kadlec, 2009; Kadlec & Gabrys, 2009b,

2010, 2011; Budka et al., 2014). Since the experiments were performed in batch learning scenario,

these datasets were split into multiple data batches of equal size, such as V = V1 ∪ · · · ∪ VK ,

where V = {X,y} is the whole dataset, and V1 = {X1,y1}, · · · ,VK = {XK ,yK} are the

distinct batches of data and K is the number of batches.

3.4.1 Catalyst activation dataset

This simulated data set was used for the NiSIS 2006 competition (Strackeljan, 2006). The descrip-

tion of the process below is taken from the same source. “The reactor to be modelled consists of

some 1000 tubes filled with catalyst, used to oxidize a gaseous feed (ethane is taken as example).

It is cooled with a coolant supposed to be at constant temperature. The description of the reaction

speed is taken from literature and depends strongly non-linearly from temperature. Its exothermal

reaction is counteracted by the cooling and leads to a temperature maximum somewhere along

the length of the tube. As the catalyst decays, this becomes less pronounced and moves further

downstream. The catalyst activity usually decays within some time to zero, a year is taken as

example here. The process to be modelled takes input from other, larger processes, so that the

feed will vary over the days. The operating personal reacts to this by choosing appropriate oper-

ating conditions. The catalyst decay is however much slower than these effects. All measurable

influences are considered as input variables for a mathematical multi-input-single-output-model

describing relevant process variables (model outputs) representative for chemical industry. The

process is equipped with measurements to log all the variations of the feed and the operating

conditions. In addition, there are measurements showing some concentrations, flows and a lot of

temperatures along the length of a characteristic tube to identify the processes state. All inputs

and the output vary dynamically, and there might occur large time-delays.” The reactor and the

catalyst are shown in Figure 3.2.

Catalyst dataset includes 14 sensor measurements like flows, concentrations and temperatures

from a real process. The target variable is the simulation of catalyst’s activity inside the reactor.

The description of the reaction speed is taken from the literature, showing a strong non-linear

dependency on temperature. Further complicated processes like cooling and catalyst decay con-
2http://www.infer.eu
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Figure 3.2: Reactor and catalyst used for the oxidization process (Strackeljan, 2006).

tribute to changes in the data. The data set covers one year of operation of the plant. Many of the

features exhibit high co-linearity and contain high number of outliers.

This dataset includes 5,867 data samples. Two features with mostly missing and 0 values were

removed during the preprocessing. In the following chapters this dataset was split into the batches

of 50, 100 or 200 instances3 (denoted Catalyst50, Catalyst100 and Catalyst200 for convenience).

Number of batches per each batch size for this and other used datasets can be found in Table 3.1.

Features and target value plots of the Catalyst dataset are shown in the Figure 3.3.

Dataset Number of batches
Catalyst50 116

Catalyst100 58
Catalyst200 29
Oxidizer50 56

Oxidizer100 28
Oxidizer200 14

Drier50 24
Drier100 12
Drier200 6

Table 3.1: Number of batches per each batch size for the used datasets.

3Here and in subsequent datasets, the choices of batch size are not originating from the process definition, but rather
motivated by a need to have sufficient data to bea able to train a predictive model from each batch, as well as having
an adequate number of batches to be able to observe the dynamics of the process.
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Figure 3.3: Catalyst dataset features and target value.

3.4.2 Thermal oxidizer dataset

This dataset deals with the prediction of the concentration of exhaust gas during an industrial

process where the task is to predict the concentrations of NOx in the exhaust gases. The data
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set consists of 364 input features which are physical sensor measurements. These are values like

concentrations, flows, pressures and temperatures measured during the operation of the plant.

The dataset consists of 2,820 samples with outliers and missing values present in the data. The

batch sizes of 50, 100 or 200 instances (Oxidizer50, Oxidizer100, Oxidizer200) were investigated.

Number of batches per each batch size for this and other used datasets can be found in Table 3.1.

Features and target value plots of the Oxidizer dataset are shown in Figure 3.4.
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4Several additional features corresponding to time stamps as well as severely affected by missing values were
removed by the compilers of the dataset.



3 PROCESS INDUSTRY AND DATASETS 39

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
3

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
4

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
5

-5

0

5

10

15

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
6

-10

-5

0

5

10

15

20

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
7

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
8

-15

-10

-5

0

5

10

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 1
9

-15

-10

-5

0

5

10

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
0

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
1

-30

-20

-10

0

10

20

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
2

-10

-5

0

5

10

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
3

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
4

-25

-20

-15

-10

-5

0

5

10

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
5

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
6

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
7

-10

-8

-6

-4

-2

0

2



3 PROCESS INDUSTRY AND DATASETS 40

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
8

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 2
9

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
0

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
1

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
2

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
3

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
4

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
5

-30

-25

-20

-15

-10

-5

0

5

Data instances
0 500 1000 1500 2000 2500 3000

F
ea

tu
re

 3
6

-15

-10

-5

0

5

10

Data instances
0 500 1000 1500 2000 2500 3000

T
ar

ge
t

-10

-5

0

5

10

15

Figure 3.4: Oxidizer dataset features and target value.

3.4.3 Industrial drier dataset

The target value of this dataset describes the laboratory measurements of the residual humidity of

the process product. The dataset has 19 input features, most of them being temperature, pressure

and humidity values measured in the processing plant. The original dataset consists of 1,219

data samples covering almost seven months of the operation of the process. It consists of raw

unprocessed data as recorded by the process information and measurement system. Many of the

input variables show problems common in industrial data like measurement noise, missing values

or data outliers. The only pre-processing step conducted for this data was the removal of 3 input

features which mostly consisted of missing data. As with the previous datasets, batch sizes of 50,
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100 and 200 instances (Drier50, Drier100 and Drier200) were used for the experiments. Number

of batches per each batch size for this and other used datasets can be found in Table 3.1. Features

and target value plots of the Drier dataset are shown in the Figure 3.5.
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Figure 3.5: Drier dataset features and target value.

3.5 Estimating changes in the datasets

This work is focusing on the adaptation of predictive models. As such, it is helpful to establish

what is the behaviour of the changes in the datasets described above. As the goal of the thesis is

to facilitate the adaptation which improves the predictive performance, the changes in prediction

error were chosen to be the indicator of the changes in the data. For this purpose, a predictive

model was constructed from the first batch of data, V1, and was used to predict on the rest of

the dataset, V = V2 ∪ · · · ∪ VK without any adaptation. This resulted in the error values

ε = {εN∗+1, · · · , εN} where N is the number of instances in the whole dataset, N∗ is the number

of instances per batch and εn = ŷn − yn for n = N∗ + 1, · · · , N . Here and in the remainder of

this chapter, to estimate the changeability of datasets, the batch size of 100 as a has been used for

each of them. This size was chosen as a compromise between the sizes 50, 100 and 200 used in

subsequent experiments. This choice provides adequate training data for the creation of a model,

as well as ample number of batches to observe datasets’ behaviour.

(Dasu et al., 2006) suggested quantifying change in data using Kullback-Leibler (KL) diver-

gence (Kullback & Leibler, 1951), which is an information theoretical measure of a distance be-

tween two distributions. KL divergence has a number of attractive properties, among them being

a generalization of many standard tests of difference, such as t-test or chi-square test (Dasu et al.,

2006). As suggested in (Alippi et al., 2016), this thesis uses symmetric KL (sKL) divergence to

measure the change magnitude. Given two data distributions φ0 and φ1 sKL is calculated as:

sKL(φ0, φ1) =
1

2
(KL(φ0, φ1) +KL(φ1, φ0)) =

1

2

(∫
Rd

log(
φ0(x)

φ1(x)
)φ0(x)dx+

∫
Rd

log(
φ1(x)

φ0(x)
)φ1(x)dx

)
.

(3.1)

Since the experiments will be performed in the batch mode, an intuitive choice is split-

ting this error vector into the batches of the same size, ε = ε2 ∪ · · · ∪ εK and

comparing them to each other. The sKL divergences between subsequent error batches,

sKL(ε2, ε3), sKL(ε3, ε4), · · · , sKL(εl−1, εl) are calculated.

For the considered datasets, the errors and respective sKL divergence values are shown in Fig-
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Figure 3.6: Catalyst100 errors and symmetric Kullback-Leibler divergence values.
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Figure 3.7: Oxidizer100 errors and symmetric Kullback-Leibler divergence values.
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Figure 3.8: Drier100 errors and symmetric Kullback-Leibler divergence values.

ures 3.6, 3.7 and 3.8. The histograms of normalised sKL divergence values for all three datasets

are presented in Figure 3.9. The results show that the Catalyst dataset is the most changeable out

of the three, with rapid changes in the early batches and constantly changing throughout, with

only a few similar subsequent batches. The other two datasets are much less changing. The Ox-

idizer dataset is relatively stable in the first half and becomes more changing in the second half.

The Drier dataset is characterised with one sudden change and stable behaviour after it. This

confirms the background expert knowledge about the processes (Kadlec, 2009).

3.6 Summary

The process industry was used as a case study for research in this thesis, with the datasets used

for the subsequent experiments originating from this area. Therefore, this field and its specifics

have been briefly presented in this chapter. Then the three datasets with their characteristics are

described. Since the focus of this thesis is put on the adaptation of predictive models, the changes

in the datasets were quantified and visualised using symmetric Kullback-Leibler divergence. The

results confirm the background knowledge about the datasets’ behavour - Catalyst dataset being

the most changing, and Oxidizer and Drier datasets less so. The choice of the datasets have also

been dictated by the desire to have a spectrum of processes with different dynamic behaviours in

order to both test and illustrate the behaviour of the investigated and proposed adaptive approaches
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and algorithms.
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Chapter 4

Effects of the choice of adaptive
mechanism

4.1 Introduction

The previous chapters have discussed the adaptive predictive methods and the fact that they often

offer multiple adaptive mechanisms to deal with the changes in the data. As noted in the Chapter

2, there are various methods of deploying these multiple AMs; all of the AMs or a subset of them

may be deployed at different times during the prediction process. However the effects of choice

of deployed AMs on the predictive accuracy of the algorithm have not been explicitly explored

before. Moreover, the question whether the AM choice significantly affects the accuracy of the

algorithm has not been answered. This chapter sheds light into this issue by an empirical analysis

of the behaviour of an algorithm with multiple AMs, while predicting in streaming fashion on the

datasets introduced in the previous chapter.

The chapter starts with formalising adaptive mechanisms, batch learning and adaptation setting

used in the thesis in Section 4.2. Subsequently, the algorithm Simple Adaptive Batch Learning

Ensemble (SABLE) and its AMs which are the main vehicle for the experimentation in this re-

search are introduced in Section 4.3. SABLE is an adaptive regression algorithm which includes

such AMs as update, reweighing, adding and removal of the experts.

SABLE deploys a selected set of AMs after the true values for batches of data are received

(workflow of this process is presented in Figure 4.1). Thus the sequences of AMs used throughout

the process are obtained. It is investigated whether the choice of AMs matter, by comparing a

greedy optimal1 AM sequence, i.e. the AM sequence which is known to minimize the error for

each subsequent batch of data, with randomly generated AM sequences for each data set. The

results of experiments suggest that the optimal AM sequences indeed result in significantly better

performance than the random AM sequences.
1For conciseness purposes, unless stated otherwise, this sequence will be also referred to as the “optimal sequence”

and the strategy which deploys this sequence as the “optimal strategy”.

46
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Figure 4.1: Assumed workflow of the prediction and adaptation on streaming data.

4.2 Formulation

Recalling Equations 2.1 and 2.2, in the experiments in this and the following chapter, it is assumed

that the data is generated by an unknown time varying process which can be formulated as:

yτ = ψ(xτ , τ) + ξτ , (4.1)

where ψ is the unknown function, ξτ a noise term, x ∈ RM is an input data instance, and yτ is the

observed output at time τ .2 Here x represents all measurable/observable variables (for example

sensor readings) which are used as inputs to the predictive model as expressed in Equation 4.2.

Then the predictive model at a time τ can be considered as a function:

ŷτ = fτ (xτ ,Θf ), (4.2)

where ŷτ is the prediction, fτ is an approximation (i.e. the model) of ψ(x, τ), and Θf is the

associated parameter set. The estimate, fτ , evolves via adaptation as each batch of data arrives as

is now explained.

4.2.1 Adaptation

In the batch streaming scenario considered in this chapter, data arrives in batches with

τ ∈ {τk · · · τk+1 − 1}, where τk is the start time of the k-th batch. If Nk is the size of the k-th

2It should be noted that Equation 4.1 has not intended to and does not explicitly take into account the dynam-
ics of the data generating process as is commonly done in the state-space model representation used in the control
engineering.
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Figure 4.2: Adaptation with multiple AMs. Optional inputs are shown with dashed lines.

batch, τk+1 = τk+Nk. It then becomes more convenient to index the model by the batch number

k, denoting the inputs asXk = {xτk , · · · ,xτk+1−1}, the outputs as yk = {yτk , · · · , yτk+1−1}.
The a priori predictive function at batch k is denoted as f−k , and the a posteriori predictive

function, i.e. the adapted function given the observed output, as f+k . An adaptive mechanism,

g(· ), may thus formally be defined as an operator which generates an updated prediction function

based on a priori predictive function f−k , the batch Vk = {Xk,yk} and other optional inputs.

This can be written as:

gk(f
−
k ,Xk,yk,Θg, ŷk) : f−k → f+k . (4.3)

or alternatively as f+k = f−k ◦ gk for conciseness. Note that ŷk is optional argument and Θg is the

set of parameters of g. The function is propagated into the next batch as f−k+1 = f+k . Predictions

on Vk are always made using the a priori function f−k .

A situation is examined when a choice of multiple, different AMs, {∅, g1, ..., gH} = G, is

available. After the true values yk for the batch k are received, any AM ghk ∈ G can be deployed

on it (hk denotes the AM deployed on batch k). As the history of all adaptations up to the

current batch, k, have in essence created f−k , that sequence gh1 , ..., ghk is called an adaptation

sequence. Note that the option of applying no adaptation denoted by ∅ is also included. In

this formulation, only one element of G is applied for each batch of data. Deploying multiple

adaptation mechanisms on the same batch is accounted for with their own symbol in G (for

example, it is possible to have gab ∈ G where f ◦ gab = f ◦ ga ◦ gb for a predictive model f and

ga, gb ∈ G). Figure 4.2 illustrates the formulation of adaptation. The workflow, earlier presented

in Figure 4.1 can be formulated in Algorithm 2.

Algorithm 2 Assumed workflow of the prediction and adaptation on streaming data.
f−1 : initial a priori prediction function

1: for k = 1, 2, ... do
2: Obtain input values of batch k,Xk

3: Predict target values, ŷk = f−k (Xk,Θf )
4: Obtain true target values of batch k, yk
5: Adapt prediction function, gk(Xk,yk,Θg, f

−
k , ŷk) : f−k → f+k .

6: end for
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Figure 4.3: Block diagram of SABLE. Here, T = [t1, ..., tL] is the PLS score matrix of i-th expert
consisting of corresponding latent vectors (see 2.5.1.2 for more detail).

4.3 Simple Adaptive Batch Local Ensemble algorithm

To perform experiments, a modelling framework which has the ability to implement several dif-

ferent types of adaptation mechanisms was required. Thus, an adaptive ensemble method was

chosen, because, as described in Section 2.5, these methods naturally provide several adaptive

mechanisms and because their popularity for learning on non-stationary data. As a part of the re-

search for this thesis, a method called the Simple Adaptive Batch Local Ensemble (Bakirov et al.,

2015) was developed extending Incremental Local Learning Soft Sensing Algorithm (ILLSA)

(Kadlec & Gabrys, 2011). ILLSA uses an ensemble of models, called base learners, with each

base learner implemented using a linear model formed by RPLS. To get the final prediction, the

predictions of base learners are combined using input/output space dependent weights (i.e. local

learning). SABLE differs from ILLSA in that it is designed for batches of data whereas ILLSA

works and adapts on the basis of individual data points. SABLE additionally allows the creation

and pruning of base learners for adaptation purposes. Moreover, SABLE supports deploying dif-

ferent adaptive strategies. SABLE builds the experts’ descriptors (Section 4.3.1) and combines

the experts (Section 4.3.2) in the same way as ILLSA. PLS was chosen as a base learner because

it is widely used for predictions in chemical processes where high dimensional datasets tend to

have low-dimensional embeddings. Figure 4.3 shows the diagram of SABLE model .

4.3.1 Building of experts’ descriptors

The relative (to each other) performance of experts varies in different parts of the input/output

space. In order to quantify this a descriptor is used. Descriptors of experts are distributions

of their weights with the aim to describe the area of expertise of the particular local expert.
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They describe the mappings from m-th input feature3, xm, and output, y, to a weight, denoted

Di,m(xm, y), for all features {x1, · · · , xM} and all experts {s1, · · · , sI}. The descriptor is con-

structed using a two-dimensional Parzen window method (Parzen, 1962) as:

Di,m =
1

||V tr
i ||

||Vtr
i ||∑

n=1

v(xn)Φ(µmn ,Σ) (4.4)

where V tr
i is the training data used for i-th expert, ||V tr

i || is the number of instances it includes,

v(xn) is the weight of sample point’s contribution which is defined in Equation 4.5, xn is the

n-th sample of V tr
i , Φ(µmn ,Σ) is two-dimensional Gaussian kernel function with mean value

µ = (xmn , yn) and variance matrix Σ ∈ R2×2 with the kernel width, σ, at the diagonal positions.

σ, is unknown and must be estimated as a hyperparameter of the overall algorithm4.

The weights v(xn) for the construction of the descriptors (see Eq. 4.4) are proportional to the

prediction error of the respective local expert:

v(xn) = exp(−(ŷn − yn)2) (4.5)

Finally, considering that there are M input variables and I models, the descriptors may be repre-

sented by a matrix, D ∈ RM×I called the descriptor matrix. An example of a descriptor is shown

on the Figure 4.4.

4.3.2 Combination of experts’ predictions

During the run-time phase, SABLE must make a prediction of the target variable given a batch

of new data samples. This is done using a set of trained local experts S = {s1, · · · , sI} and

descriptors D. Each expert makes a prediction ŷi for a data instance x. If each expert si produces

a prediction ŷi (i.e. ŷi = si(x), i ∈ 1 · · · I), the final prediction ŷ is the weighted sum of the

local experts’ predictions:

ŷ =
I∑
i=1

wi(x, ŷi)ŷi (4.6)

where wi(x, ŷi) is the weight of the i-th local expert’s prediction. The weights are calculated

using the descriptors, which estimate the performance of the experts in the different regions of

the input space. This can be expressed as the posterior probability of the j-th expert given the test

sample x and the local expert prediction ŷj :

wj(x, ŷj) = P(j|x, ŷj) =
P(x, ŷj |j)P(j)

ΣI
i=1P(x, ŷi|i)P(i)

, (4.7)

3For the base methods which transform the input space, such as PLS, the transformed input arguments are used
instead of original ones.

4In this research the inputs are first divided by their standard deviation allowing to assume an isotropic kernel for
simplicity and also to reduce the number of parameters to be estimated.
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Figure 4.4: SABLE descriptor.

where P(j) is the a priori probability of the j-th expert5, ΣI
i=1P(x, ŷi)P(i) is a normalisation

factor and P(x, ŷj |j) is the likelihood of x given the expert, which can be calculated by reading

the descriptors at the positions defined by the sample x and prediction ŷj :

P(x, ŷj |j) =
M∏
m=1

p(xm, ŷj |j) =
M∏
m=1

mathcalDj,m(xm, ŷj). (4.8)

Equation 4.8 shows that the descriptors Dm are sampled at the positions which are given on

one hand bym-th feature of the sample point x, xm and on the other hand by the predicted output

ŷj of the local expert corresponding to the j-th receptive field. Sampling the descriptors at the

positions of the predicted outputs may result in different outcome than sampling at the positions

of correct target values, because the predictions are not necessarily similar to the correct values.

However, the correct target values are not available at the time of the prediction. The rationale

for this approach is that the local expert is likely to be more accurate if it generates a prediction

which conforms with an area occupied by a large number of true values during the training phase.
5Equal for all local experts in current implementation, different values could be used for experts’ prioritization.
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4.3.3 Experts’ pruning

To reduce the number of redundant experts, after the processing of batch k, some of those that

deliver similar predictions on Vk can be removed with their descriptors merged. This process is

implemented as follows. The prediction vectors of each expert si ∈ S on batch Vk, {ŷ1, · · · , ŷI}
are obtained. The similarities between prediction vectors are pairwise tested using Student’s t-test

(Student, 1908)6. Then p-values of t-test results between each expert pair’s prediction values are

P =

p1,1 p1,2 · · · p1,I

p2,1 p2,2 · · · p2,I
...

...
. . .

...

pI,1 pI,2 · · · pI,I

.

The pruning is conducted if pi,j > α where pi,j = max(P ) (maximum value of P ) and α is the

significance threshold chosen as 0.05. During the pruning, the older of the two experts, si and sj ,

is removed, while their descriptors are added together to create a merged descriptor. This process

is repeated until pi,j <= α for pi,j = max(P ).

4.4 Adaptive mechanisms

The SABLE algorithm allows the use of different adaptive mechanisms. AMs are deployed as

soon as the true values for the batch are available and before predicting on the next batch. The

trivial case of no AM deployment is also an option denoted as AM0. The AMs that are used in

this work are described in the following sections.

4.4.1 Batch learning

The simplest AM augments existing data with data from the new batch and retrains the expert.

Given set of experts si ∈ S and measurements of the actual values, y, batch Vk is partitioned

into subsets in the following fashion:

(xj , yj) ∈ Vz | z = argmin
i∈1···I

〈si(xj), yj〉 (4.9)

for every instance (xj , yj) ∈ Vk. This creates subsets V i, i ∈ 1 · · · I such that ∪Ii=1V i = Vk.

Then each expert is updated using the respective dataset V i. This process updates experts only

with the instances where they achieve the most accurate predictions, thus encouraging the special-

isation of experts, promoting diversity of the ensemble and ensuring that a single data instance is

not included in the training data of multiple experts. The updated is performed using RPLS batch
6T-test assumes the normal distribution of prediction vectors, which may not always be the case. In these cases,

non-parametric tests which relax this assumption, for example Mann-Whitney U test (Mann & Whitney, 1947) may be
considered.
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retraining described in Section 2.5.1.2, which does not require storing of the old training data. L,

number of latent variables for RPLS is a hyperparameter of SABLE.

Batch learning is a parameter adaptation mechanism (Section 2.4.3) which operates on a single

expert level (Section 2.5.1). This AM will be denoted as AM1 in the description of the experi-

ments below.

4.4.2 Batch learning with forgetting

This AM is similar to one described in Section 4.4.1 but uses decay which reduces the weight

of the experts historical training data, making the most recent data more important. It is realised

via RPLS update with forgetting factor λ (see Section 2.5.1.2). λ is a hyperparameter of SABLE.

Similarly to the previous AM, batch learning with forgetting is a parametric adaptation mecha-

nism which operates on a single expert level. This AM will be denoted as AM2.

4.4.3 Descriptors update

This AM recalculates the local descriptors using the new batch as described in the Section 4.3.1

creating a new descriptor set D1. These are merged with a previous descriptors set, D0 in the

following fashion:

Di,m = δ0D0
i,m + δ1D1

i,m (4.10)

for all experts i ∈ 1 · · · I and features m ∈ 1 · · ·M , where δ0 and δ1 are respective update

weights associated with old and new descriptors and δ0 + δ1 = 1. This means that when δ0 = 0,

descriptors update is essentially their recalculation using the most recent batch. The descriptor

update weights are hyperparameters of SABLE.

Descriptors update is a parameter adaptation mechanism which operates on ensemble combi-

nation level (Section 2.5.2). This AM will be denoted as AM3.

4.4.4 Creation of new experts

New expert snew is created from Vk. Then it is checked if any of the experts from Sk−1 ∪ snew,

where Sk−1 is the experts pool after processing of batch k − 1, can be pruned as described in

Section 4.3.3. Finally the descriptors of all resulting experts are updated (Section 4.4.3). Creation

of new experts is a structural adaptation mechanism (Section 2.4.2) which operates on experts’

adding/removal level (Section 2.5.3). This AM will be denoted as AM4.

An example of the general principle of SABLE’s operation including few selected adaptation

mechanisms is illustrated in the Figure 4.5. It shows how the model changes after deploying

AM4, AM2 and AM3 in a sequence.
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Figure 4.5: An example of a model adaptation sequence (AM4, AM2, AM3) using SABLE adap-
tive mechanisms. Here, the weight of the expert corresponds to the thickness of the arrow leading
from respective circle.

4.5 Experiments

4.5.1 Experimental setup

At every batch Vk, an AM ghk must be chosen to deploy on the current batch of data. The

goal of this chapter is to analyze whether the choice of AMs significantly affects the predictive

performance of the model. To this end, SABLE was run on each of the datasets with the randomly

selected AM deployed on each batch of data, 1000 times. In other words, 1000 random AM

sequences were deployed on each dataset. The results were then compared with true values and

the benchmark performance.

To obtain a benchmark performance, a greedy optimal adaptation strategy7

f−k+1 = f−k ◦ ghk , hk = argmin
hk∈1···H

〈(f−k ◦ ghk)(Xk+1),yk+1〉 (4.11)

7In this research, the methods of AM selection are called adaptive strategies. More strategies will be given in the
Chapter 5.
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was used, where 〈 〉 denotes the chosen error measure8, f−k is the a priori predictive function

at k-th batch and ghk is an adaptive mechanism. Since Xk+1,yk+1 are not yet obtained, this

strategy is not applicable in the real life situations. This strategy is referred to as Optimal. Note

that because of the greedy approach, this may not be the overall optimal strategy which minimizes

the error over the whole dataset.

SABLE hyperparameters for experiments on each dataset are listed in the Table 4.1. They

were identified using a grid search among the set of hyperparameter candidates.

Dataset δ0, δ1 λ σ L

Catalyst50 0, 1 0.5 1 12
Catalyst100 0, 1 0.25 1 12
Catalyst200 0, 1 0.5 1 12
Oxidizer50 0.25, 0.75 0.5 1 3
Oxidizer100 0, 1 0.25 0.01 3
Oxidizer200 0, 1 0.25 0.01 3
Drier50 0, 1 0.25 0.01 16
Drier100 0, 1 0.5 0.1 16
Drier200 0, 1 0.25 0.01 16

Table 4.1: SABLE parameters for different datasets. Here, δ0, δ1 are update weights of descrip-
tors, λ is RPLS forgetting factor, σ is kernel width for descriptor construction and L is the number
of RPLS latent variables.

4.5.2 Results

The results of 1000 random runs for each of the datasets are shown in Figures 4.6 - 4.8. Here, the

true/predicted values are visualised for the Catalyst and Oxidizer datasets. For Drier dataset, since

the differences between the predictions in each run are minimal in comparison to the differences in

the output, which makes the different runs impossible to distinguish, error was visualised instead.

If the AM sequence choice indeed is an important factor for the predictive accuracy, the results

obtained from the optimal choice of AM sequence, must be better than those from the most of the

random AM sequences.

Figure 4.69 shows the predictions of models resulting from deploying 1000 random adaptation

sequences while predicting on Catalyst dataset. When comparing the predictions of the random

runs (gray dots) to the predictions of the optimal sequence (blue line), it is easy to see that the

prediction accuracy while deploying a random AM sequence can be much lower than when us-

ing the optimal sequence. In fact, several different behaviours of the predictive models can be

identified. For instance, if the Catalyst100 (Figure 4.6(b)) is considered, it is possible to see that,

at some batches, such as #2-#10, #28, #56-#58, optimal AM choice results in drastically more
8Throughout this thesis, Mean Absolute Error (MAE) is used for this purpose.
9Figures 4.6 - 4.8 show plots of the results starting from the second batch, as the first batch is used for training of

the initial expert and no predictions on it are made.
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accurate predictions than most of the random runs. In the other areas, such as batches #16-#18,

optimal AM sequence seem to result in similar predictions as some of the random runs, however

the variance of predictions after different runs is fairly high. It is also possible to notice that

the optimal AM sequence results in much faster adaptation than most of the random sequences,

which is visible when observing the green line (averaged predictions after the random sequences)

in the area between batches #35 and #44. In rare cases such as batch #18, there might be a random

sequence which predicts more accurately than the optimal sequence. Catalyst50 and Catalyst200

(Figure 4.6(a) and (c)) show similar behaviour. It is interesting to note that some batches, such

as batches around #61 and around #108 for Catalyst50, batch #10 for Ctalyst100 and batch #6

for Catalyst200 exhibit a noticeable bivariate distribution. Comparing to the results on higher

batch sizes, results of random runs on Catalyst50 are less robust, exhibiting high variance in more

batches. The possible cause of this behaviour is that there is less training data available for new

experts, which may lead to relatively untrained experts with a high weight, which in turn have

higher error on the subsequent batches. It is also possible to notice that the adaptive methods

perform worse on Catalyst200 – this is based on the fact that the adaptation in this case is simply

less frequent.

(a) Catalyst50
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(b) Catalyst100

(c) Catalyst200

Figure 4.6: True/predicted values for Catalyst datasets. Predictions of random runs are visu-
alised with gray points.

Comparison of the minimum and maximum MAE values with RMSE values of corresponding

sequences after the random runs on the Catalyst dataset, MAE/RMSE of averaged predictions,

MAE/RMSE of a static model with no adaptation (Sequence0), MAE/RMSE of simple relearning

from scratch on every batch (Retrain) and MAE/RMSE after the optimal sequence (Optimal) are
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Catalyst50 Catalyst100 Catalyst200
MAE RMSE MAE RMSE MAE RMSE

Mean Random1000 0.0385 0.0591 0.0480 0.0701 0.0769 0.1107
Min. Random1000 0.0236 0.0424 0.0337 0.0528 0.0480 0.0792
Max. Random1000 0.1062 0.2045 0.1872 0.2828 0.3122 0.4237

Sequence0 0.3098 0.3422 0.2787 0.3130 0.3612 0.3972
Retrain 0.0241 0.0814 0.0278 0.0583 0.0516 0.1076

Optimal 0.0149 0.0306 0.0233 0.0467 0.0403 0.0691

Table 4.2: Results of deploying random AM sequences (Random1000) on Catalyst dataset av-
eraged over all batches. MAE values of predictions significantly (according to (Mizrach, 1996),
Section 3.2 with α ≤ 0.05) different from Optimal predictions are marked bold.

shown in Table 4.2. Significance values of differences between the compared predictions from

the predictions of optimal AM sequence, were calculated10. If they were different with signifi-

cance level of α ≤ 0.05, MAE value in appropriate cell is marked with bold (this also applies to

Tables 4.3 and 4.4). The Optimal AM sequence provides the smallest error with its predictions

significantly different from the rest for every batch size. The differences between minimum and

maximum error values from random AM sequences are of several orders of magnitude. Mean

error values after the random sequences are higher than those of simple retraining. Finally, even

the maximum error values after random sequences are considerably lower than those from the

static model.

Figure 4.7 shows the predictions of models resulting from deploying 1000 random adaptation

sequences while predicting on Oxidizer dataset. As this dataset is less susceptible to changes, the

random AM sequences result in a distribution which is mostly centered on true values, e.g. the

batches #6-#12 in Figure 4.7(b). In this figure, there are still several batches, where the Optimal

AM sequence results in the predictions are much closer to the true values than most of the random

sequences, e.g. batches #17, #26. On some batches, for example #14-#15, #22, #28 it is possible

to see that the choice of the Optimal AM sequence results in a faster adaptation to the possible

changes in comparison to the random sequences. Similar conclusions can be drawn from Figures

4.7(a) and 4.7(c). Bivariate distribution of errors is not noticeable in for this dataset, except

slightly in batch #19 for Oxidizer100.

10To calculate the significance of differences between the predictions of different strategies here and in Chapter 5,
the significance test of difference of two estimators’ errors relying on the sample covariance ((Mizrach, 1996), Section
3.2) was used.
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(a) Oxidizer50

(b) Oxidizer100
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(c) Oxidizer200

Figure 4.7: True/predicted values for Oxidizer dataset. Predictions of random runs are visualised
with gray points.

Comparison of the minimum and maximum MAE values with RMSE values of corresponding

sequences after the random runs on the Oxidizer dataset, MAE/RMSE of averaged predictions,

MAE/RMSE of a static model with no adaptation (Sequence0), MAE/RMSE of simple relearning

from scratch on every batch (Retrain) and MAE/RMSE after the optimal sequence (Optimal) are

shown in Table 4.3. In addition, the errors of the static model and of simple relearning from the

scratch on every batch are shown. Similar to the results on the previous dataset, the Optimal

AM sequence provides the smallest error for every batch size with most of the differences being

significant. The differences between minimum and maximum error values from random AM

sequences are still very noticeable, but less drastic. Mean error values after the random sequences

are lower than those of simple retraining for Oxidizer100 and Oxidizer200. This is an indicator

that discarding old models for these datasets is detrimental and that using multiple AMs is indeed

more beneficial. Consequently for every batch size, the minimum error values after random AM

sequences are smaller than after simple retraining. For this dataset, the maximum error values

after random sequences are considerably larger than those from the static model - this is likely

connected with the fact that there are less changes in the Oxidizer dataset, so the choice of wrong

AMs may result in an “over-adaptation” effect.

Figure 4.8 shows the prediction errors of the models resulting from deploying 1000 random

adaptation sequences for the Drier dataset. It is easy to see that while most of the errors of random

AM sequences are centered around 0, some unfortunate AM choices result in large error bias. For

example, for Drier100 from batch #4 onwards, this bias is observed, also resulting in a bivariate
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Oxidizer50 Oxidizer100 Oxidizer200
MAE RMSE MAE RMSE MAE RMSE

Mean Random1000 0.515 0.864 0.561 0.906 0.609 0.911
Min. Random1000 0.491 0.854 0.549 1.023 0.555 0.855
Max. Random1000 1.287 2.026 0.925 1.459 0.871 1.216

Sequence0 0.760 1.181 0.779 1.218 0.783 1.130
Retrain 0.499 0.854 0.565 0.944 0.678 1.063

Optimal 0.416 0.766 0.481 0.822 0.530 0.804

Table 4.3: Results of deploying random AM sequences (Random1000) on Oxidizer dataset av-
eraged over all batches. MAE values of predictions significantly (according to (Mizrach, 1996),
Section 3.2 with α ≤ 0.05) different from Optimal predictions are marked bold.

distribution. It is observed that deployment of further AMs on subsequent batches is required, to

reduce the errors to stabilize them around 0. The similar behaviour is observed for Drier200.

Drier50 Drier100 Drier200
MAE RMSE MAE RMSE MAE RMSE

Mean Random1000 5.71E-05 1.07E-04 3.50E-05 5.14E-05 1.11E-04 1.73E-04
Min. Random1000 9.46E-06 1.64E-05 3.42E-06 1.18E-05 4.67E-05 1.43E-04
Max. Random1000 2.64E-03 2.98E-03 1.07E-03 4.96E-04 3.87E-04 4.07E-04

Sequence0 7.68E-04 8.67E-04 5.41E-04 5.97E-04 3.87E-04 4.07E-04
Retrain 5.86E-05 3.14E-04 2.59E-05 1.54E-04 5.38E-05 1.44E-04

Optimal 3.40E-06 3.47E-05 3.15E-06 1.15E-05 4.67E-05 1.43E-04

Table 4.4: Results of deploying random AM sequences (Random1000) on Drier dataset averaged
over all batches. MAE values of predictions significantly (according to (Mizrach, 1996), Section
3.2 with α ≤ 0.05) different from Optimal predictions are marked bold.

Comparison of the minimum and maximum MAE values with RMSE values of correspond-

ing sequences after the random runs on the Drier dataset, MAE/RMSE of averaged predictions,

MAE/RMSE of a static model with no adaptation (Sequence0), MAE/RMSE of simple relearning

from scratch on every batch (Retrain) and MAE/RMSE after the optimal sequence (Optimal) are

shown in Table 4.4. The Optimal AM sequence provides the smallest error with its predictions

with most of the differences being significant. As in Oxidizer dataset, for every batch size, the

minimum error values after random AM sequences are smaller than after simple retraining. Since

the number of deployed AMs in one sequence for Drier200 is only 5, the optimal AM sequence

is also deployed among them, so the minimum MAE/RMSE after random AM runs are equal to

MAE/RMSE after Optimal sequence. Moreover, values for the maximum MAE after the random

runs is the same as the one after using a model with no adaptation. It is indeed obtained after

running a sequence of AMs which contains only AM0, which means no adaptation.
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(a) Drier50

(b) Drier100
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(c) Drier200

Figure 4.8: Error values for Drier dataset. Predictions of random runs are visualised with gray
points.

4.5.3 Discussion

This chapter was focused on investigation of whether the choice of AM sequence influences the

predictive accuracy of the model. For this purpose, after the presentation of the necessary formu-

lation in the Section 4.2, an adaptive batch ensemble method, SABLE was introduced in Section

4.3. SABLE can adapt the predictive model both parametrically and structurally by retraining

the experts with or without forgetting, updating weights of the experts’ contributions, adding new

experts and pruning of similar ones, which are at all the levels of ensemble adaptation listed in

the Section 2.5. Section 4.4 lists the proposed adaptive mechanisms which are used in the exper-

iments.

To analyze the influence of AM choice, 1000 runs of SABLE with random adaptation se-

quences were conducted. The results of the experiments are presented in the Section 4.5.2.

Analysing the results, several conclusions can be drawn:

• AM choice clearly has a great influence on all of the considered datasets and batch size

choices.

• Depending on the dataset, static model or the simple retraining can show worse or better

results than random AM sequence. Rapidly changing Catalyst dataset benefits from any

random AM sequence which was deployed during the experiment comparing with the static

model. However, the simple retraining performed better than averaged predictions after

random AM sequences.
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• For Oxidizer and Drier datasets, it is seen that not every random AM sequence is as good

as the static model. This shows the importance of AM selection as the unfortunate choices

might worsen the predictive accuracy instead of improving it. On the other hand, for these

datasets averaged predictions after random AM sequences perform better than simple re-

training except on Oxidizer50 dataset. This shows the benefits of model’s adaptation over

retraining and the usefulness of multiple adaptive mechanisms’ availability.

• In all of the cases, optimal sequence results in better performance than simple retraining

with almost always significant difference in error values. Most of the times, the minimum

error of the random runs was better than simple retraining as well. This fact reiterates the

benefits of using multiple adaptive mechanisms and confirms the necessity of intelligent

AM selection strategies.

It can be thus concluded that the choice of AM sequence plays a decisive role for the methods

with multiple adaptive mechanisms. This raises an important question of the method of AM

sequence selection. This question is addressed in Chapter 5 of this work, where methods of AM

sequence selection or generation are presented.



Chapter 5

Adaptive strategies

5.1 Introduction

In the previous chapter of the thesis, it was shown that the selection of an AM sequence can play

an important role in the predictive accuracy of a model on non-stationary streaming data. This

raises the questions about which AMs should be selected for deployment and more generally

about what strategy should/can be used to choose the AM sequence in order to minimize some

cost function (here the prediction error). In this chapter, an adaptive strategy is a strategy which

identifies the AMs for adaptation on incoming data, and together with the data itself fully specifies

the subsequent AM sequence.

To answer these questions, methods to analyse AMs’ effects that help understanding the weak-

nesses and strengths of every AM are suggested in Section 5.3. SABLE AMs are explored in this

fashion and it is observed that AM4 performs better than other available AMs in most of the

situations.

Subsequently in Section 5.4 it is proceeded to analyse the performance of common strategies

which generate fixed AM sequences (i.e. fixed adaptive strategies) and introduce novel strategies

which generate flexible AM sequences (i.e. flexible adaptive strategies) based on cross-validatory

selection and retrospective reversal of model into the optimal state. Using SABLE as a vehicle,

it is shown empirically that in the majority of cases, a flexible adaptive strategy is superior to a

fixed one.

In the previous chapter and Section 5.4 it has been shown that the greedy optimal adaptive

strategy shows the best results for all datasets. In Section 5.5 it is attempted to predict the adap-

tation order generated by the optimal strategy using a meta-classifier. It is empirically shown

that a certain level of classification accuracy must be attained for this meta-classifier to deliver an

AM sequence which would achieve higher accuracy levels than those in Section 5.4. However, it

was not possible to achieve these required levels of accuracy in practice and therefore this aspect

remains an open subject of further research.

A large part of analysis in this chapter required a substantial amount of data regarding AMs’

65
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performance, which was generated using the exhaustive r-step ahead AM deployment technique

described in Section 5.2.

5.2 Exhaustive r-step ahead adaptive mechanism deployment

Data on AMs’ performance in different situations is required to make generalisations about

AMs’ behaviour. To generate a substantial amount of this data, a limited r-step ahead exhaus-

tive deployment of all AMs has been implemented. Assume that there are H available AMs,

G = {g1, · · · gH}. At every batch all of these AMs are deployed separately on current predic-

tive model f . The resulting models, {f ◦ g1, · · · , f ◦ gH} are used to predict the values of the

next batch, errors are recorded and then these models are adapted using all AMs in G for each

of them, etc. for r batches ahead. After this, the model which gives the best performance on the

original batch was chosen as the starting point for the next four steps. This process is described

in Algorithm 3.

The r-step ahead AM deployment strategy has been applied to SABLE while predicting on

the datasets introduced in Chapter 3. For practical reasons discussed below, r = 4 was selected.

SABLE has 5 AMs (AM0, AM1, AM2, AM3, AM4), therefore H = 5. Thus, as seen in Figure

5.1, for every batch a tree of height 4, where all non-leave nodes have 5 children, is generated.

The paths from the root of the tree to its leaves represent an exhaustive list of the last 4 AMs (e.g.

AM0, AM0, AM0, AM0; AM0, AM0, AM0, AM1;...) deployed to arrive at the updated models

providing current prediction. On the leaves of each tree, 54 = 625 forecasts and associated statis-

tics such as MAE are obtained. The data resulting from this limited exhaustive AM deployment

was then used for experiments in the following sections.

Note that a limited exhaustive search is used as the number of prediction models grows ex-

ponentially (specifically as a power of the number of batches), thus rendering a full exhaustive

search nearly impossible, particularly for large datasets with small batch sizes. If a dataset has K

batches, for H AMs a full exhaustive deployment tree will have H(K−2) leaves and will require

H1 + H2 + · · · + HK−2 = 1−HK−1

1−H − 1 predictions and adaptations (the first batch is used for

initial training of the model, from the rest K − 1 batches a tree with the height of K − 2 can be

constructed). For instance, the full tree exhaustive search for the Catalyst50 dataset (117 batches)

and H = 5 has 2.407 × 1080 leaves and requires 3.009 × 1080 predictions and adaptations. In

comparison, for a dataset of K batches, the combined number of leaves for all the trees resulting

from applying limited r-step ahead exhaustive AM deployment is (K−1−r)×Hr (the first batch

is used for initial training of the model, the last r batches are not used to generate trees as there

are no subsequent batches to evaluate) and the number of required adaptations and predictions

is (K − 1 − r) × (1−H
r+1

1−H − 1). For the Catalyst50 with H = 5 these are 70, 000 and 87, 360

respectively, making it possible to execute this strategy and operate with the resulting data. In

addition, poor adaptation sequences would typically be pruned when detected, so the information

generated during those may not be interesting for practical purposes. Thus, limiting the deploy-



5 ADAPTIVE STRATEGIES 67

Batch numbers
9 10 11 12 13

M
A

E

0

0.1

0.2

0.3

0.4

0.5
AM0
AM1
AM2
AM3
AM4

(a)

Batch numbers
10 11 12 13 14

M
A

E

0

0.1

0.2

0.3

0.4

0.5

0.6
AM0
AM1
AM2
AM3
AM4

(b)

Batch numbers
11 12 13 14 15

M
A

E

0

0.1

0.2

0.3

0.4

0.5
AM0
AM1
AM2
AM3
AM4

(c)

Figure 5.1: Exhaustive 4-step ahead AM deployment on Catalyst100 (a) batch #9, (b) batch #10,
(c) batch #11.
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Algorithm 3 Pseudocode of exhaustive r-step ahead AM deployment.
function Limited Exhaustive Deployment(r, {{X1,y1}, · · · , {XK−r,yK−r}}, G)
Runs the exhaustive r-step ahead AM deployment on the selected dataset, storing the results.
Inputs:
r: number of steps to exhaustively deploy all AMs
{{X1,y1}, · · · , {XK−r,yK−r}}: input and target data in batches
G = {g1, · · · gH}: set of available AMs

1: Build initial training model, f1 = f−2 from {X1,y1}
2: for k = 2, · · · ,K − r do
3: [ŷk, {Ŷ k+1, · · · , Ŷ k+r},f+

k ] =
= AM Deployment Tree(f−k , {{Xk,yk}, · · · , {Xk+r,yk+r}}, G),
where ŷk = f−k (Xk), {Ŷ k+1, · · · , Ŷ k+r} are predictions of the models along
the AM deployment tree on subsequent batches and f+

k is a set of adapted models
4: Store [ŷk, {Ŷ k+1, · · · , Ŷ k+r},f+

k ]

5: f−k+1 = f−k ◦ gh, h = argmin
h∈1···H

〈ŷhk+1,yk+1〉

6: end for

[ŷa, {Ŷ a+1, · · · , Ŷ b},f+
a ] =

function AM Deployment Tree(f−a , {{Xa,ya}, · · · , {Xb,yb}}, G)
Generates a single AM deployment tree of the height b− a.
Inputs:
f−a : current predictive model
{{Xa,ya}, · · · , {Xb,yb}}: input and target values in batches
G = {g1, · · · , gH}: set of available AMs
Outputs:
ŷa: predictions of f−a onXa

Ŷ a+1, · · · , Ŷ b: sets of adapted models’ predictions on batchesXa+1, · · · ,Xb

f+
a : set of predictive models resulting from deploying {g1, · · · gH} on f−a

1: Predict ŷa = f−a (Xa), store ŷa
2: if a < b then
3: for h = 1, · · · , H do
4: Adapt prediction function, f−a+1 = f+a = gh(Xa+1,ya+1,Θg, f

−
a , ŷa) ◦ f−a

5: [ŷha+1, {Ŷ
h
a+2, · · · , Ŷ

h
b },f+h

a+1] =
= AM Deployment Tree(f−a+1, {{Xa+1,ya+1}, · · · , {Xb,yb}}, G)

6: end for
7: Ŷ a+1 ← set of all ŷa+1 from different tree branches
8: end if

ment to 4-steps ahead was chosen as a practical compromise. The generated data from applying

4-steps AM deployment is shown in Table 5.1.
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Dataset Number of generated
leaves

Number of predicted
instances per AM

Total number of pre-
dicted instances

Catalyst50 70,000 700,000 3,500,000
Catalyst100 33,125 662,500 3,312,500
Catalyst200 15,000 600,000 3,000,000
Oxidizer50 31,875 318,750 1,593,750

Oxidizer100 14,375 287,500 1,437,500
Oxidizer200 5,625 225,000 1,125,000

Drier50 11875 118,750 593,750
Drier100 4375 87,500 437,500
Drier200 625 25,000 125,000

Table 5.1: Data generated using exhaustive r-step ahead AM deployment.

5.3 Analysis of adaptive mechanisms’ effects

It is evident that the effects of different AMs (in case of SABLE; retraining without forgetting

(AM1), retraining with forgetting (AM2), weights recalculation (AM3), and addition of experts

(AM4)) can be quite different. For SABLE, the difference between retraining with forgetting

as compared to the retraining without forgetting depends directly on the forgetting factor. It is

more difficult to quantify the differences between retraining, weights recalculation and creation

of new experts, as this is highly dependant on the data and parametrization. Therefore, to gain

insight about the relative behaviour of the AMs, the speed/strength of adaptation in addition to

the observed profit (or loss) are investigated.

Important factors to consider while analysing the AMs are how strongly the AM can adapt the

model, and how accurate the model is after adaptation. Both of these can be measured using the

predictions of the adapted models. In this thesis a novel metric for this purpose,

RA =
f0(x)− fi(x)

f0(x)− y
, (5.1)

where for the data instance (x, y), y is the observed value, f0(x) is the prediction of original

model and fi(x) is the prediction after the deployment of the AM gi(·), is proposed. The numer-

ator shows the difference in the predictions of adapted and unadapted model, that is the strength of

adaptation. The denominator shows the difference in the prediction of unadapted model and the

true value, in other words, the need for adaptation. This metric will be referred to as the Relative

Adaptation (RA). RA has the following interesting properties:

• RA = 0 means that the adaptation has no effect,

• RA = 1 means that the adaptation is perfect for the particular data instance, i.e. fi(x) = y,

• RA = 2 means that the error has switched its sign, i.e. fi(x)− y = −(f0(x)− y),

• 0 < RA < 1 means that the adaptation has decreased the error, while the sign of error

remains the same. This behavior can be also called under-adaptation, as the adaptation
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does correct the model in the right direction but not strongly enough,

• 1 < RA < 2 means that the adaptation has decreased the error and has changed the error

sign. This behavior can be also called over-adaptation, because the adaptation is correcting

the model in the right direction but too strongly.

• RA < 0 means that the error has increased and its sign remains the same, and

• RA > 2 means that the error has increased and its sign is changed. This can be also

considered over-adaptation, as the adaptation is correcting the model in the right direction.

Figure 5.2 presents the normalised relative adaptation histograms for the Catalyst dataset.

These and following histograms in this section are obtained using the data generated as shown in

Section 5.2. Considering Figure 5.2(a), it can be noted that all of the AMs have a peak at [0; 0.1)

interval. AM1, AM2 and AM3 show first significant drop and then gradual decrease when mov-

ing away from the peak. AM4 has additional peaks at [0.9; 1) and [1; 1.1) intervals. It can be

concluded that AM1, AM2 and AM3 mostly result in minimal adaptation in correct direction1.

AM4 histogram shows a rise towards RA=1, signifying a considerable improvement in predictive

accuracy that it provides. This may be explained by the fact that there are stable periods after the

changes in Catalyst dataset, which are relatively easy to predict for the newly created experts.

All three batch sizes exhibit similar behaviour. As the batch size becomes larger, the peaks at

[0; 0.1) slightly decrease. This is a natural consequence of having more data for the adaptation -

since, as established in Section 3.5, Catalyst dataset changes relatively fast, the larger the batches,

the more different they are, which in turn promotes stronger adaptation. Another difference is that

AM4 peak at [0.9; 1) rises. This can be explained by more accurate experts which are trained on

more data. Although the histograms on this figure, as well as Figures 5.3 and 5.4 were calculated

on a sample data, the sample is considered representative for this purpose, for the reasons given

in Section 5.2. Bootstrapping based confidence levels of selected histograms, shown in Appendix

B, confirm this consideration.

Figure 5.3 presents the relative adaptation histograms for the Oxidizer dataset. As in the

previous dataset, all AMs show a peak in [0; 0.1). Differently from the Catalyst there is no defined

peak of AM4 around 1. This may be related to the relative difficulty of prediction on this dataset.

AM4 still results in the most accurate models. For batch sizes 50 and 200, AM1 and AM2 also

show comparable performance. AM3 has much higher peak on [0; 0.1) interval and relatively

lower values in other intervals. It can be seen that there are comparatively many instances with

RA < 0, where the adaptation is conducted in the wrong direction. This may be related to

the periodic nature of the dataset - as seen for example in the Figure 3.4. Additionally, batches

with extreme values are not good representatives of the subsequent batches, which may make the

adaptation based on them detrimental.

Figure 5.4 presents the relative adaptation histograms for the Drier dataset. Batch size of 50
1It should be noted that every AM in SABLE can actually result in no change of model’s prediction, this is f0(x) =

fi(x); this is related to the local weighting of the input data x - it is possible that an expert which has not been updated
is given the weight of 1 for certain data instances. In addition, AM3, which recalculates the descriptors has no effect if
the ensemble contains only a single expert.
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Figure 5.2: Relative adaptation for Catalyst dataset. RA=0 and RA=2 thresholds are marked
with solid red lines and RA=1 with dashed green one. Instances on y axis are normalized to scale
[0,1].
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Figure 5.3: Relative adaptation for Oxidizer dataset. RA=0 and RA=2 thresholds are marked
with solid red lines and RA=1 with dashed green one. Instances on y axis are normalized to scale
[0,1].
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shows peaks in [0; 0.1), where AM3 has all of its RA values in this interval. AM1 and AM2

have more instances in this interval than AM4. In turn, AM4 has more instances around RA = 1

than other AMs. This behaviour is reversed for batch sizes 100 and 200, where AM1 and AM2

have more instances around RA = 1 than AM4. Batch size 200 doesn’t have any peaks in the

[0; 0.1) interval except for AM3. Another interesting observation here is that there are relatively

few instances with 0 < RA < 2. This is a sign that adaptation may be detrimental to the many

batches in the Drier dataset. It must be noted that this dataset, especially with the batch size 200

has much less data for building the histogram compared to other cases.

Another aspect of AM performance which was analysed was the relation of the error of adapted

model to the error of un-adapted model (i.e. fi(x) − y versus f0(x) − y). It is investigated

whether the error of un-adapted model can be an indicator of an AMs’ performance. The analysis

is conducted using results from Section 5.2. Figure 5.5 depicts the scatter plots of the adaptive and

non-adaptive error for the same data instance for the Catalyst100 dataset. It is seen that for this

dataset, AM1 (retraining without forgetting), AM2 (retraining with forgetting) and AM3 (weights

update) results are visibly correlated with the non-adaptive error, while AM4 (addition of new

experts and weights update) is less so. In other words, the higher is the original error, the higher

will be the error after deployment of AM1, AM2 and AM3. This effect is not visible for AM4.

For the Oxidizer100 dataset (Figure 5.6), error after AM4 is again the least correlated with the

non-adaptive error, however the differences between the AMs are less distinct. For the Drier100

dataset (Figure 5.7), error after AM4 is the most correlated with the non-adaptive error, and AM1

and AM2 are less so. For other batch sizes the conclusions are similar with few exceptions.

As a general conclusion, it appears that all of the AMs have mostly positive impact on the

model for Catalyst and Oxidizer datasets, as there are comparatively few instances with RA < 0

or RA > 2. Drier dataset may not require adaptation as much, because in many cases, adaptation

increases the prediction error. AM4, which is creating experts and subsequently changing the

weights, is often the best performing AM. This is especially noticeable with Catalyst dataset.

AM1 and AM2 often show similar behaviour, which can be expected, since both of them use

the same method to retrain the experts, AM1 without and AM2 with forgetting. The forgetting

seem to make AM2 adapt models slightly more accurately. In many cases, the adaptation effect is

relatively small, as seen by peaks at [0;0.1). The reason may be the fact that the batches on which

the errors are calculated can be quite different from the batches used for adaptation.

With some exceptions it was observed that the error values after AM4 are the least correlated

with the non-adaptive error among all AMs. This means that most of the times AM4 is a very

powerful adaptive mechanism, which can essentially adapt model without being limited by its

previous state. This is also intuitively conceivable, as this AM creates a new expert with high

weight from scratch and in many cases strongly decreases in the weights of older experts. AM1

and AM2 are limited in this sense, as in their case, even with forgetting, the adapted model will be

more influenced by the original model. AM3 can exhibit various behaviours, evidently depending

on the existing mix of experts in the ensemble.
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Figure 5.4: Relative adaptation for Drier dataset. RA=0 and RA=2 thresholds are marked with
solid red lines and RA=1 with dashed green one. Instances on y axis are normalized to scale
[0,1].
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Figure 5.5: Scatter plot of a random sample of adaptive vs non-adaptive errors for Catalyst100
dataset. (a) Comparison of all AMs, (b) AM2 separately, (c) AM3 separately, (d) AM4 separately.
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Figure 5.6: Scatter plot of a random sample of adaptive vs non-adaptive errors for Oxidizer100
dataset. (a) Comparison of all AMs, (b) AM2 separately, (c) AM3 separately, (d) AM4 separately.
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Figure 5.7: Scatter plot of a random sample of adaptive vs non-adaptive errors for Drier100
dataset. (a) Comparison of all AMs, (b) AM2 separately, (c) AM3 separately, (d) AM4 separately.

5.4 Adaptive mechanism selection

To run the predictive method on a batch of streaming data, an adaptive strategy for AM selection

must be specified. After the analysis of AMs in the previous section, this section proceeds to

introduce certain adaptive strategies. The aim of these adaptive strategies is the generation of

an AM sequence which would try to minimize the error during the operation of the predictive

method.

The simplest adaptive strategies are constant deployment of a certain AM set. These will

be also called fixed adaptive strategies. This includes deployment of single AMs, effectively

removing the multiple adaptive mechanism component from the system. A popular method which

falls in this category is deployment of all the available AMs at every time step. As discussed

earlier in Section 2.6, this is employed for many adaptive prediction methods.

5.4.1 Using cross-validation for adaptive mechanism selection

As opposed to fixed AM strategies, flexible adaptive strategies may deploy different AM combi-

nations on different batches of data. With some assumptions about the data and how it changes, it

may be possible to theoretically find the optimal AM to predict on the next batch of the data and

even an optimal AM sequence of the whole dataset or its subset. In absence of such assumptions,

the AMs can be selected based on previously seen data. One way of doing this is using the data

from the last seen batch.

More formally, as introduced in (Bakirov et al., 2015), it is also possible to use batch Vk
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for the choice of AM ghk . Given the observation, the a posteriori prediction error on Vk is

〈(f−k ◦ ghk)(Xk),yk〉, where f−k is the a priori predictive function at k-th batch. However,

this is effectively an in-sample error as ghk is a function of {Xk,yk}.2 To obtain a gener-

alised estimate of the prediction error 10-fold cross validation is applied. The cross-validatory

adaptation strategy (denoted as XVSelect) uses a subset (fold), S, of {Xk,yk} to adapt; i.e.

f+k = f−k ◦ ghk({Xk,yk}∈S) (f+k is the a posteriori predictive function at k-th batch) and the

remainder, �S , is used to evaluate, i.e. find 〈f+k (Xk)∈�S
,yk∈�S

〉. This is repeated 10 times result-

ing in 10 different error values and the AM, ghk ∈ G, with the lowest average error measure is

chosen. In summary:

f−k+1 = f−k ◦ ghk , hk = argmin
hk∈1···H

〈(f−k ◦ ghk)(Xk),yk〉× (5.2)

where 〈 〉× denotes the cross validated error.

5.4.2 Retrospective model correction

Recall that after batch Vk−1 has been obtained, any AM can be chosen to be deployed on Vk−1

to adapt f−k−1 and obtain f−k . After yk has been obtained, it is possible to identify the optimal

AM which could have been deployed on Vk−1 as ghoptk−1
where

hoptk−1 = argmin
hk−1∈1···H

〈(f−k−1 ◦ ghk−1
)(Xk),yk〉. (5.3)

By definition, deploying ghoptk−1
results in the most accurate predictions on batch Vk, ŷk among

all AMs ghk−1
∈ G. Additionally, it has been observed that this often has a positive effect on

the accuracy of model on the next batch, irrespective of subsequently deployed AM, ghk . This

observation is in line with the conclusion Section 5.3, that AMs are influenced by the previous

state of the model and deploying ghoptk−1
results in the optimal model f−optk .

Inspired by this observation, the strategy described in this section reverts the model to the

optimal state f−optk once yk has been obtained. This is called the retrospective model correction

(Bakirov et al., 2016). Specifically, it is identified which adaptation at batch Vk−1 would have

produced an optimal estimate for batch Vk and then it is deployed on f−k−1, before deploying the

next AM:

f−k+1 = f−k−1 ◦ ghk−1
◦ ghk , hk−1 = argmin

hk−1∈1···H
〈(f−k−1 ◦ ghk−1

)(Xk),yk〉 (5.4)

Here, f−k−1 is the a priori predictive function and ghk−1
is the AM for k−1-th batch, ghk is the AM

for k-th batch and f−k+1 is the a priori predictive function at k+ 1-th batch. Using cross-validated

2As a solid example consider the case where f+
k is f−

k retrained using {Xk,yk}. In this case yk are part of the
training set and so evaluating the goodness of fit on yk is prone to overfitting.
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Strategy Description
Sequence0 Deploy AM0 on every batch. This means that only the first batch of data is used

to create an expert.
Sequence1 Deploy AM1 on every batch.
Sequence2 Deploy AM2 on every batch.
Sequence3 Deploy AM3 on every batch.
Sequence4 Deploy AM4 on every batch.

Retrain A new model is trained from the current batch and the old one is discarded.
Joint Deploy AM2 and AM4 (in this order) on every batch. This strategy includes all

of the available adaptation methods (batch learning, addition of new experts and
change of weights )

XVSelect Select AM based on the current data batch using the cross-validatory approach
described in the Section 5.4.1.

Optimal Select AM based on the next data batch as described in the Section 4.5.1. Used
for benchmarking.

Table 5.2: Adaptive strategies.

error measure in Equation 5.4 is not necessary, because ghk−1
is independent of yk. Also note the

presence of ghk ; retrospective correction does not in itself produce a fk+1 and so cannot be used

for prediction unless it is combined with another strategy (ghk ).

Similarities may be found between retrospective correction and weight update backtrack

mechanism, a key feature of Resilient Propagation neural network learning algorithm (Riedmiller

& Braun, 1993). In fact, this mechanism can be considered as a special case of retrospective

correction. However, to the best of author’s knowledge, the general notion and analysis of retro-

spective model correction strategy have not been given in the adaptation context before.

Retrospective model correction strategy can be extended to consider the sequence of r AMs

while choosing the optimal state for the current batch, which will be called r-step retrospective

correction:

f−k+1 = f−k−r ◦ ghk−r
◦ · · · ◦ ghk−1

◦ ghk ,

{hk−r · · ·hk−1} = argmin
hk−r···hk−1∈1···H

〈(f−k−r ◦ ghk−r
◦ · · · ◦ ghk−1

)(Xk),yk〉
(5.5)

5.4.3 Results

To assess the usefulness of different adaptive strategies, the strategies shown in Table 5.2, with

and without retrospective correction, were evaluated on the Catalyst, Oxidizer and Drier datasets.

In Table 5.3 the results on the Catalyst dataset with batch sizes of 50, 100 and 200, (Catalyst50,

Catalyst100 and Catalyst200) are shown. The best result in terms of MAE among the methods

with flexible AM deployment order are denoted with a †, and among the methods with fixed order

with ‡. It is checked whether the error values of these two strategies are significantly different

with a significance level α ≤ 0.05, and if so the most accurate strategy is marked with a bold
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font. RC at the end of the strategy name denotes that the retrospective model correction was used.

Using the benchmark (Optimal) strategy AM, which minimizes MAE for the incoming batch of

data, always led to the lowest MAE for the whole dataset.

Catalyst50 Catalyst100 Catalyst200
Strategy MAE RMSE MAE RMSE MAE RMSE

Fi
xe

d
O

rd
er

Sequence0 0.3098 0.3422 0.2787 0.3130 0.3612 0.3972
Sequence1 0.1376 0.2481 0.1466 0.2596 0.1606 0.2879
Sequence2 0.0227‡ 0.0537 0.0309 0.0674 0.0585 0.1394
Sequence4 0.0368 0.1017 0.0310 0.0625 0.0521 0.0952

Joint 0.0301 0.0680 0.0349 0.0775 0.0495‡ 0.0847
Retrain 0.0241 0.0814 0.0278‡ 0.0583 0.0516 0.1076

Fl
ex

ib
le

O
rd

er

Sequence0 RC 0.0306 0.0609 0.0449 0.0793 0.0725 0.1090
Sequence1 RC 0.0256 0.0521 0.0385 0.0698 0.0730 0.1246
Sequence2 RC 0.0263 0.0530 0.0354 0.0668 0.0727 0.1226
Sequence3 RC 0.0261 0.0467 0.0452 0.0804 0.0673 0.0938
Sequence4 RC 0.0211 0.0430 0.0307 0.0615 0.0534 0.0966

Joint RC 0.0196 0.0409 0.0325 0.0708 0.0519 0.0952
XVSelect 0.0205 0.0481 0.0301 0.0598 0.0492† 0.0963

XVSelect RC 0.0171† 0.0347 0.0295† 0.0613 0.0495 0.0959
Optimal 0.0149 0.0306 0.0233 0.0467 0.0403 0.0691

Table 5.3: Catalyst dataset results averaged over all batches. The least MAE per batch size
among the methods with flexible AM deployment order are denoted with a †, and among the
methods with fixed order with ‡. If the error values of these two strategies are significantly dif-
ferent (according to (Mizrach, 1996), Section 3.2 with α ≤ 0.05) the most accurate strategy is
marked with a bold font.

For Catalyst50 and Catalyst100, the best flexible strategy is XVSelect RC and the best fixed

strategies are respectively Sequence2 and Retrain. For Catalyst200 XVSelect and Joint perform

better in the respective groups. For Catalyst50 and Catalyst200, the errors of the most accurate

flexible AM order are significantly different from the errors of the most accurate fixed AM order

generated by investigated adaptive strategies. The distribution of the AMs in the Optimal strategy

and to what extent XVSelect RC AMs match with them is shown in the Figure 5.8. It is noticeable

that AM4 is the most common AM in the Optimal strategy, meaning that it often delivers the most

accurate results. This is also the reason why it is often selected by XVSelect RC. On Catalyst100

dataset, XVSelect RC and Optimal have the least common AMs on average (Figure 5.8). This can

be the reason why Retrain is more accurate in this case.

The importance of the proper selection of AMs is illustrated in Figure 5.9 which presents

MAE values after exhaustively deploying all possible combinations of AMs for four steps ahead

at every batch on the Catalyst50 dataset as described in Section 5.2. From this figure it is possible

to see that the choice of the wrong AM can result in a drastic increase in the prediction error.

Additional experiments were performed with 0 to 3 steps retrospective correction as described

in Equation 5.5 for XVSelect for batch sizes 50 to 200. Figure 5.10(a) shows the results of these
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Figure 5.8: Adaptive mechanisms generated by Optimal strategy for the Catalyst dataset.

experiments. It can be seen that while one step correction generally improves the performance,

using more than one step retrospective correction usually does not bring improvement to the
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Figure 5.9: 4 step ahead exhaustive AM deployment on all batches of Catalyst50 dataset as
described in Section 5.2. Red line shows MAE values of Optimal strategy.
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predictive accuracy, and in fact often decreases it. This could be related to the fact that using

more retrospective correction steps may cause the overfitting of the model to the current batch.

For higher batch sizes even one step retrospective correction is detrimental. This also can be

related to the overfitting issues, which are exacerbated with the batch size increase, as the batches

become less similar.

Figure 5.113 compares the true target values and predicted values of Optimal, XVSelect RC and

Sequence2 on Catalyst50 dataset. The AMs deployed by Optimal and XVSelect are also shown,

marked red when they differ. It can be seen that in the beginning of the dataset, where the target

value changes quite fast, flexible strategies perform noticeably better. In the more stable parts of

the data, such as batches #50-#65 or #85-#94, the differences are much less drastic. Optimal and

XVSelect RC can suffer from fluctuations (e.g. batches #107-#108) which may be an artefact of

the SABLE algorithm, depending on its settings.
3Figures 5.11, 5.14 and 5.17 show plots of the results starting from the second batch, as the first batch is used for

training of the initial expert and no predictions on it are made.
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Figure 5.10: Normalized XVSelect results’ comparison with different batch sizes. White is the
minimal and black is the maximal error. (a) Catalyst dataset (b) Oxidizer dataset (c) Drier
dataset.
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Figure 5.11: Predictions on Catalyst50 dataset.
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Oxidizer50 Oxidizer100 Oxidizer200
Strategy MAE RMSE MAE RMSE MAE RMSE

Fi
xe

d
O

rd
er

Sequence0 0.760 1.181 0.779 1.218 0.783 1.130
Sequence1 0.640 0.998 0.662 1.043 0.613 0.891
Sequence2 0.490‡ 0.838 0.564 0.966 0.685 1.009
Sequence4 0.504 0.851 0.543‡ 0.929 0.620 0.961

Joint 0.494 0.852 0.590 0.975 0.612‡ 0.988
Retrain 0.499 0.854 0.565 0.944 0.678 1.063

Fl
ex

ib
le

O
rd

er

Sequence0 RC 0.538 0.981 0.636 0.984 0.687 0.993
Sequence1 RC 0.522 0.962 0.650 0.997 0.679 0.972
Sequence2 RC 0.515 0.925 0.648 1.016 0.677 0.981
Sequence3 RC 0.551 0.993 0.589 0.927 0.674 0.918
Sequence4 RC 0.487 0.842 0.533 0.906 0.613 0.924

Joint RC 0.478 0.831 0.570 0.974 0.611† 0.969
XVSelect 0.499 0.868 0.555 0.908 0.631 0.995

XVSelect RC 0.468† 0.823 0.529† 0.871 0.676 0.988
Optimal 0.416 0.766 0.481 0.822 0.530 0.804

Table 5.4: Oxidizer dataset results averaged over all batches. The least MAE per batch size
among the methods with flexible AM deployment order are denoted with a †, and among the
methods with fixed order with ‡. If the error values of these two strategies are significantly dif-
ferent (according to (Mizrach, 1996), Section 3.2 with α ≤ 0.05) the most accurate strategy is
marked with a bold font.

In Table 5.4 the results on Oxidizer dataset with batch sizes of 50, 100 and 200 (Oxidizer50,

Oxidizer100, Oxidizer200) are presented. The best results in this dataset are achieved with flex-

ible adaptive strategies – XVSelect RC (for Oxidizer50 and Oxidize100) and Joint RC (for Ox-

idize200). They all result in significantly different error values from the ones obtained after

deploying the most accurate fixed strategies; Sequence2, Sequence4 and Joint for Oxidizer50,

Oxidizer100, Oxidize200 respectively. Except for Oxidizer200, as shown in the Figure 5.12,

AM4 is most often the best AM. It is however less dominant than in the Catalyst dataset. For this

dataset, the distribution of AMs in Optimal sequence is more uniform than for the Catalyst data.

Oxidizer200 has the lowest number of matching AMs in XVSelect RC and Optimal sequences.

This is reflected in comparatively low predictive accuracy of the XVSelect RC for that case.

As seen in Figure 5.13 the order of AMs makes a large difference for predicting on the Oxidizer

dataset as well. From the Figure 5.10(b) similar observations as for previous dataset could be

made; one step restrospective correction generally improves the accuracy, but using more than

one step retrospective correction in most cases does not improve it further, and often causes

its deterioration. Figure 5.14 compares the true target values and predicted values of Optimal,

XVSelect RC and Joint on Oxidizer50 dataset. The AMs deployed by Optimal and XVSelect are

also shown and marked red when they differ. It can be observed that the Oxidizer dataset has

a cyclic characteristic, with extreme values roughly every 5 batches. Often after these extreme

values, Joint prediction values show higher errors (e.g. batches #4, #13, #30, #44 etc.). This can
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be related to the strong adaptation of this strategy, which likely overfits the model to the extreme

values. XVSelect in contrast behaves more stable with less obvious jumps to extreme values.
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Figure 5.12: Adaptive mechanisms generated by Optimal strategy for the Oxidizer dataset.
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Figure 5.13: 4 step ahead exhaustive AM deployment on all batches of Oxidizer50 dataset as
described in Section 5.2. Red line shows MAE values of Optimal strategy.
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Figure 5.14: Predictions on Oxidizer50 dataset.



5 ADAPTIVE STRATEGIES 86

Drier50 Drier100 Drier200
Strategy MAE RMSE MAE RMSE MAE RMSE

Fi
xe

d
O

rd
er

Sequence0 7.68E-04 8.67E-04 5.41E-04 5.97E-04 3.87E-04 4.07E-04
Sequence1 8.98E-06‡ 2.57E-05 8.09E-06‡ 2.04E-05 5.06E-05 1.43E-04
Sequence2 3.04E-05 2.04E-04 1.75E-05 1.15E-04 5.28E-05 1.44E-04
Sequence4 9.86E-05 3.41E-04 1.43E-05 8.30E-05 8.77E-05 1.92E-04

Joint 4.06E-05 2.40E-04 1.34E-05 8.28E-05 5.01E-05‡ 1.43E-04
Retrain 5.86E-05 3.14E-04 2.59E-05 1.54E-04 5.38E-05 1.44E-04

Fl
ex

ib
le

O
rd

er

Sequence0 RC 9.78E-06 7.02E-05 1.43E-05 5.39E-05 1.34E-04 2.42E-04
Sequence1 RC 1.02E-05 4.56E-05 8.96E-06† 2.09E-05 5.41E-05 1.43E-04
Sequence2 RC 3.02E-05 1.41E-04 1.79E-05 1.15E-04 5.09E-05 1.43E-04
Sequence3 RC 9.78E-06 7.02E-05 1.44E-05 5.39E-05 1.34E-04 2.42E-04
Sequence4 RC 4.06E-05 2.40E-04 1.34E-05 8.28E-05 6.41E-05 1.64E-04

Joint RC 4.16E-05 2.40E-04 1.37E-05 8.30E-05 5.01E-05 1.43E-04
XVSelect 9.27E-06 4.02E-05 1.20E-05 3.08E-05 4.67E-05† 1.43E-04

XVSelect RC 6.95E-06† 3.99E-05 1.12E-05 3.06E-05 4.67E-05† 1.43E-04
Optimal 3.40E-06 3.47E-05 3.15E-06 1.15E-05 4.67E-05 1.43E-04

Table 5.5: Drier dataset results averaged over all batches. The least MAE per batch size among
the methods with flexible AM deployment order are denoted with a †, and among the methods with
fixed order with ‡. If the error values of these two strategies are significantly different (according
to (Mizrach, 1996), Section 3.2 with α ≤ 0.05) the most accurate strategy is marked with a bold
font.

In Table 5.5 the results of experiments on Drier dataset, with batch sizes of 50, 100 and 200

(Drier50, Drier100 and Drier200) are presented. From the results, it is clear that the Drier dataset

is the least changing dataset. Simple RPLS online update Sequence1 performs not significantly

different for Drier50 and better for Drier100 than strategies with stronger adaptation or the best

flexible AM orders (respectively XVSelect RC and Sequence1 RC). For the largest batch size of

Drier200, the errors of the best performing flexible strategies XVSelect and XVSelect RC (which in

this case deploy exactly the same AMs as Optimal) do not not significantly differ from the errors

obtained after deploying Joint. It is worth noting that for this dataset there are only 5 batches of

the test data for the batch size of 200 available. As seen from the Figure 5.15, AM0 is prevalent

AM for this dataset. This can be related to the lack of changes in the data.

Figure 5.16 also confirms that the order of AMs makes less difference on the predictive accu-

racy for this dataset, except around the batches #6-#7. Figure 5.10(c) shows that as opposed to

the previous datasets, predictive accuracy on Drier data usually improves when increasing retro-

spective correction steps. This can be also related to the stability of the dataset, where stronger

optimization of the model towards the current batch does not cause overfitting issues.

This space has been intentionally left blank.
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Figure 5.15: Adaptive mechanisms generated by Optimal strategy for the Drier dataset.
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Figure 5.16: 4 step ahead exhaustive AM deployment on all batches of Drier50 dataset as de-
scribed in Section 5.2. Red line shows MAE values of Optimal strategy.
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Figure 5.17: Drier50 dataset error values (separately on every sample).

Figure 5.17 compares error values of Optimal, XVSelect RC and Sequence1 on Drier50

dataset4. The figure shows that the single wrong choice of AM at batch #5 causes a noticeable dif-

ference between predictions of Optimal and XVSelect RC predictions at batch #6. Otherwise the

performances of these two strategies are similar. The advantages of using flexible multiple adap-

tive mechanisms are clear as well; flexible sequences visibly benefit from deployment of AM4 on

batch #6 which reduces and stabilizes the error much more quickly than AM1 (simple learning

of new data using RPLS online update) employed by Sequence1. In later batches, there is no

apparent need for training, and flexible strategies deploy AM0 keeping the error stable, whereas

using AM1 is causing noticeable fluctuations.

5.5 Prediction of optimal adaptive mechanism

In tables in section 5.4.3 it was shown that the one step ahead optimal AM sequence achieves

better predictive performance than any of the other adaptive strategies. It was also shown that

the XVSelect, in other words, cross-validation on the previous batch, is not very successful in

predicting which AM will be optimal to deploy to get the least error on the next batch.

This section attempts to use a classification method to predict the next optimal AM, using

certain meta-data about the prediction process. More formally, the classification can be expressed

as:

ĥk = υ(χk), (5.6)

4The predictions for this dataset are not shown, as their errors are much smaller than the axis scale, making them
impossible to distinguish from the target values.



5 ADAPTIVE STRATEGIES 89

where ĥk is an estimate of the best AM to choose, and is dependent on the current and previous

batches, Vk,Vk−1, ..., through a vector of meta-data features χk (discussed below) and υ is a

classification function. Following the deployment of gĥk on fk, note that the performance is

evaluated on batch Vk+1. After Vk+1 is available, the optimal AM,

ghoptk
= argmin

hk∈1···H
〈(f−k ◦ ghk)(Xk+1),yk+1〉 (5.7)

among all available AMs deployed on k-th batch, hk ∈ 1 · · ·H , will be known. Then, if hoptk = ĥk

the prediction of meta-classifier was correct, and otherwise false.

In Section 5.4 promising results while using certain adaptive strategies were observed. Here,

how accurate a classifier would need to be to improve upon those algorithms is investigated. A

pseudo-classifier, which is a method that selects the correct class with a defined probability of

ρ is used for this purpose. Note that obviously the correct classes must be known to construct

such a classifier. Experiments using 100 random runs with pseudo-classifiers with accuracy lev-

els varying from ρ = 0.3 to 0.9 on the Catalyst100, Oxidizer100, and Drier100 datasets were

conducted.
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Figure 5.18: Pseudo-classifier MAE for Catalyst100 dataset for different values of ρ, with and
without retrospective correction.

Figure 5.18 shows box plots of MAE values on the whole dataset for the different values

of ρ for the Catalyst100 dataset, with and without retrospective correction. It is seen that for

this data set, without retrospective correction, one would require a classifier with ρ > 0.9 to

achieve a MAE that is lower than the best adaptive strategy (see Section 5.4.3), here the Retrain

strategy.5 Using retrospective correction generally improves prediction models and so lowers

the classification accuracy one would require to achieve better performance than for the Retrain

5This is an oversimplification, as the effects of misclassification of different AMs can be different. This is discussed
in more detail in the Section 5.6.1
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strategy to ρ = 0.8. An interesting observation is that in Figure 5.18(a), some MAE values for

ρ = 0.9 are in fact lower than for ρ = 1, which is the Optimal adaptive strategy. This is an

example of the fact stated above, that the Optimal sequence is only optimal for minimizing the

error one step ahead, and may not be optimal for a multi-step ahead sequence or to minimize the

error on the whole dataset.
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Figure 5.19: Pseudo-classifier MAE for Oxidizer100 dataset for different values of ρ, with and
without retrospective correction.

Figure 5.19 shows box plots of MAE values on the whole dataset for the different values of

ρ for Oxidizer100 dataset, with and without retrospective correction. It is seen that for this data

set, without retrospective correction, only when ρ > 0.9, MAE values are mostly higher than the

best result for this dataset from the Section 5.4.3, Sequence4 RC. Using retrospective correction

lowers the accuracy needed to achieve similar on average, or better performance than Sequence4

RC to ρ = 0.7. As in the previous figure, an observation can be made that in Figure 5.19(a),

some MAE values when using accuracy levels of ρ = 0.8 and ρ = 0.9 are lower than when using

accuracy level ρ = 1, for the same reason as described above.

Figure 5.20 shows box plots of MAE values on the whole dataset for the different values

of ρ for Drier100 dataset, with and without retrospective correction. For this dataset, without

retrospective correction, only when ρ > 0.8, MAE values are mostly higher than the best result

for this dataset from the Section 5.4.3, Sequence1. With retrospective correction the accuracy

needed to achieve similar on average, or better performance than Sequence1 is ρ = 0.6.

5.5.1 Meta-features for adaptive mechanisms’ prediction

It has been shown, for example in Lemke & Gabrys (2010) or Lemke et al. (2015) that

meta-learning is a powerful tool which can increase predictive accuracy of the algorithm using

meta-knowledge about its behaviour. In this light it is attempted to construct a meta-classifier

which can match the performance requirements identified in the previous Section. For this
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Figure 5.20: Pseudo-classifier MAE for Drier100 dataset for different values of ρ, with and
without retrospective correction.

purpose the set of meta-features shown in Table 5.6 is used. These features can be grouped into

three categories:

A Features 1-6, optimal/deployed AMs for previous batches: These features provide infor-

mation whether the optimal AMs were in fact deployed on the previous batches. This could

influence the need for a strong adaptation on the subsequent batch, as seen previously for

example in Figure 4.8.

B Features 7-17, statistics about the error values in previous batches: These can indicate

whether there have been changes in the error and consequently changes in the data recently.

C Features 18-24, symmetric Kullback-Leibler divergences between input features and out-
puts: these values are also indicative of the changes in the process. KLDATA0 should be

especially noted, as it is the only feature with information about the next data batch, how-

ever only the input dataXk+1.

To construct the meta-features table, the results from the exhaustive AM deployment as described

in Section 5.2 were used.

5.6 Adaptive mechanism classification results

The accuracy of classification was tested using a leave-batch-out technique. That is, if the dataset

consists of K batches, V = V1 ∪ V2 ∪ · · ·VK , every batch in succession is used as the test data

for the evaluation of the classification error, while the rest of the dataset is used as the training

data for the classifier. This was done to avoid having the instances from the same batch both in

training and test data; because they share certain features this could have led to the reporting of

overly optimistic accuracy rates. The accuracy rates are then averaged to obtain the final classifier
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Number Abbreviation Feature
1 OAM3 Optimal AM for Vk−2
2 OAM2 Optimal AM for Vk−1
3 OAM1 Optimal AM for Vk

4 AM3 AM deployed on Vk−2
5 AM2 AM deployed on Vk−1
6 AM1 AM deployed on Vk

7 MAE4 MAE on Vk−3
8 MAE3 MAE on Vk−2
9 MAE2 MAE on Vk−1

10 MAE1 MAE on Vk

11 STD4 STD of errors on Vk−3
12 STD3 STD of errors on Vk−2
13 STD2 STD of errors on Vk−1
14 STD1 STD of errors on Vk

15 MAEDIFF3 Difference between MAE on Vk−3 and MAE on Vk−2
16 MAEDIFF2 Difference between MAE on Vk−2 and MAE on Vk−1
17 MAEDIFF1 Difference between MAE on Vk−1 and MAE on Vk

18 KLDATA3 Symmetric KL divergence betweenXk−3 andXk−2
19 KLDATA2 Symmetric KL divergence betweenXk−2 andXk−1
20 KLDATA1 Symmetric KL divergence betweenXk−1 andXk

21 KLDATA0 Symmetric KL divergence betweenXk andXk+1

22 KLVAL3 Symmetric KL divergence between yk−3 and yk−2
23 KLVAL2 Symmetric KL divergence between yk−2 and yk−1
24 KLVAL1 Symmetric KL divergence between yk−1 and yk

Table 5.6: Meta-features for adaptive mechanism prediction.

accuracy value. Three classification methods; Random Forests (RF) (Breiman, 2001) using the

Matlab TreeBagger implementation, with 50 trees and the minimum number of elements in a

node set to 1, the K nearest neighbours algorithm (Altman, 1992) with three neighbours using

Weka (Hall et al., 2009) implementation, and the Naive Bayes classifier (Matlab implementation)

were tested as meta-classifier algorithms. The results are presented in Table 5.7.6 It can be seen

that Random Forests provides the highest AM classification accuracy. However, for Catalyst

and Oxidizer datasets, the accuracy of RF is never higher than the naive majority classifier. The

accuracy on Drier100 dataset, while higher than naive majority is still considerably lower than

the value of ρ, identified in Figure 5.20. Therefore it is not expected that using a meta-classifier

will improve the prediction accuracy on the data. This is confirmed in Table 5.8 which compares

the MAEs on the datasets using the AM prediction meta-classifier with and without retrospective

correction to the best performing adaptive strategy.7 Meta-classifier shows higher accuracy than
6Drier200 is not included because of scarcity of training data for this batch size.
7These are different from the ones shown in Tables 5.3, 5.4 and 5.5, because using an AM meta classifier requires

starting the prediction process from the batch #6 to be able to calculate all the required features. Before batch #6,
optimal AMs are used and the errors on these batches are not included in the MAE shown in Table 5.8.
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previously identified best adaptive strategy only for Catalyst100. The confusion matrices which

for the RF classifier are shown in Tables 5.9-5.16. It is clear that AM4 is most often the optimal

AM for the Catalyst and Drier datasets. From the confusion matrices it is seen that the predictions

for these datasets are even more skewed towards AM4. The distribution of target classes is more

uniform for the Drier dataset. This may be the reason why the prediction of AMs works better for

this case.

Dataset Batches Accuracy
RF

Accuracy
KNN 3

Accuracy
NB

Majority
Class

Catalyst50 112 0.57 0.26 0.12 0.59
Catalyst100 53 0.56 0.30 0.23 0.58
Catalyst200 24 0.70 0.66 0.41 0.72
Oxidizer50 51 0.50 0.32 0.27 0.52
Oxidizer100 23 0.44 0.37 0.34 0.52
Oxidizer200 9 0.21 0.20 0.19 0.37
Drier50 19 0.47 0.31 0.19 0.34
Drier100 7 0.32 0.31 0.17 0.28

Table 5.7: AM classifier average accuracy values, obtained using leave-batch-out technique.
Highest values are marked bold.

Dataset MAE Opti-
mal

MAE Meta MAE Meta
RC

MAE Best Best AS

Catalyst50 0.015 0.031 0.024 0.017 XVSelect
RC

Catalyst100 0.021 0.026 0.026 0.026 Retrain
Catalyst200 0.026 0.028 0.029 0.027 XVSelect
Oxidizer50 0.404 0.485 0.477 0.444 XVSelect
Oxidizer100 0.472 0.564 0.564 0.515 Sequence4

RC
Oxidizer200 0.538 0.716 0.756 0.593 Sequence4
Drier50 1.41E-06 1.47E-05 1.17E-05 5.49E-06 XVSelect

RC
Drier100 1.28E-06 8.19E-06 3.06E-06 1.61E-06 Sequence0

RC

Table 5.8: Results averaged over all batches obtained using AM meta-classifier with and without
retrospective correction (MAE Meta and MAE Meta RC) and MAE value of the best AS (MAE
Best). Results from Optimal strategy are in italics, lowest values from other strategies are in bold.
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True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 51 159 113 6 529 858
AM1 77 198 172 9 965 1421
AM2 69 172 199 12 1464 1916
AM3 32 113 74 49 1311 1579
AM4 84 223 284 118 7517 8226

Total Predicted 313 865 842 194 11786

Table 5.9: Confusion matrix of Random Forest AM predictions for Catalyst50 obtained using
leave-batch-out technique.

True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 5 35 27 1 332 400
AM1 16 136 115 1 552 820
AM2 5 103 202 18 839 1167
AM3 1 29 29 0 335 394
AM4 34 162 223 37 3388 3844

Total Predicted 61 465 596 57 5446

Table 5.10: Confusion matrix of Random Forest AM predictions for Catalyst100 obtained using
leave-batch-out technique.

True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 0 2 2 0 197 201
AM1 0 0 3 0 221 224
AM2 0 1 1 0 318 320
AM3 0 0 0 0 93 93
AM4 28 12 35 0 2087 2162

Total Predicted 28 15 41 0 2916

Table 5.11: Confusion matrix of Random Forest AM predictions for Catalyst200 obtained using
leave-batch-out technique.

True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 63 10 19 6 595 693
AM1 18 22 18 4 770 832
AM2 41 12 45 2 1026 1126
AM3 28 13 23 3 369 436
AM4 102 33 114 5 3034 3288

Total Predicted 252 90 219 20 5794

Table 5.12: Confusion matrix of Random Forest AM predictions for Oxidizer50 obtained using
leave-batch-out technique.
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True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 7 3 2 59 311 382
AM1 15 0 3 29 341 388
AM2 35 1 2 41 220 299
AM3 5 5 10 25 268 313
AM4 139 23 25 72 1234 1493

Total Predicted 201 32 42 226 2374

Table 5.13: Confusion matrix of Random Forest AM predictions for Oxidizer100 obtained using
leave-batch-out technique.

True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 0 13 27 0 120 160
AM1 2 11 49 0 143 205
AM2 2 63 45 0 160 270
AM3 0 4 14 3 54 75
AM4 3 61 174 1 176 415

Total Predicted 7 152 309 4 653

Table 5.14: Confusion matrix of Random Forest AM predictions for Oxidizer200 obtained using
leave-batch-out technique.

True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 541 80 25 5 146 797
AM1 122 45 31 0 211 409
AM2 32 57 68 0 180 337
AM3 30 0 0 0 12 42
AM4 135 63 120 0 472 790

Total Predicted 860 245 244 5 1021

Table 5.15: Confusion matrix of Random Forest AM predictions for Drier50 obtained using leave-
batch-out technique.

True\Predicted AM0 AM1 AM2 AM3 AM4 Total True
AM0 113 50 5 11 33 212
AM1 43 85 5 1 109 243
AM2 14 49 9 6 45 123
AM3 28 35 4 0 9 76
AM4 27 109 9 4 72 221

Total Predicted 225 328 32 22 268

Table 5.16: Confusion matrix of Random Forest AM predictions for Drier100 obtained using
leave-batch-out technique.



5 ADAPTIVE STRATEGIES 96

5.6.1 Cost-sensitive adaptive mechanism classification

It is possible to attempt to improve the bias of above confusion matrices by specifying a misclas-

sification cost matrix during the classification of AMs. The cost matrix should reflect the cost of

AM misclassification when the optimal AM is misclassified or hoptk 6= ĥk.

It is proposed to set the cost of an AM classification of a single instance to the difference of

the absolute values of the model’s error after the deployment of selected AM and model’s error

after deployment of optimal AM. Thus, for an instance (xτ , yτ ) ∈ Vk:

Cτi,opt = |(fi(xτ )− yτ )| − |(fopt(xτ )− yτ )| (5.8)

where fi(x) is the prediction after the deployment of AM gi(·) and fopt(x) is the prediction after

the deployment of ghoptk
(·). To get the overall classification costs matrix, C, every combination of

the cost for all hi and hj are averaged over the whole dataset as:

Ci,j =

∑N
τ=1 Cτi,j |j = hoptτ , i 6= j

N
(5.9)

where Ci,j (i, j−th element of C) is the cost of deploying gi(·) when the optimal AM is gj(·), and

hoptτ = hoptk for all (xτ , yτ ) ∈ Vk. The cost matrices for each dataset are shown in the Appendix

C.

It should be noted that for every batch k the cost matrix given in this way serves to minimize

the MAE on this batch. In fact, identifying cost and confusion matrices, allows to estimate the

MAE when using non-cost sensitive AM prediction with retrospective correction without running

the predictive algorithm on the dataset. Confusion matrices allow to calculate the probabilities

of predicted optimal AM given the true optimal AM, Ppredi,j = P(ĥk = i|hoptk = j). Then, the

estimated MAE after using AM prediction mechanism, is

MAEpred = MAEopt +

H∑
i,j=1

Ppredi,j Ci,j , (5.10)

where MAEopt is the MAE of optimal adaptive strategy, and Ci,j is the entry of the cost matrix at

at i-th row and j-th column. The experimentation has shown that these MAE estimates obtained

using Equation 5.10 are generally close to real MAE values.

Table 5.17 gives the comparison of prediction MAE when using and not using the cost matrix8.

It is seen that for some datasets using cost-sensitive AM classification improves the prediction

results.
8Since the cost matrices were estimated from the same datasets on which then the predictive models were used,

slight over-fitting is possible
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Dataset Meta-classifier Cost sensitive meta-classifier

N
o

R
C

Catalyst50 0.031 0.031
Catalyst100 0.026 0.030
Catalyst200 0.028 0.029
Oxidizer50 0.485 0.490

Oxidizer100 0.564 0.566
Oxidizer200 0.716 0.719

Drier50 1.47E-05 1.18E-05
Drier100 8.19E-06 7.53E-06

R
C

Catalyst50 0.024 0.024
Catalyst100 0.026 0.027
Catalyst200 0.029 0.027
Oxidizer50 0.477 0.481

Oxidizer100 0.564 0.570
Oxidizer200 0.756 0.751

Drier50 1.17E-05 1.17E-05
Drier100 3.06E-06 3.59E-06

Table 5.17: MAE values after simple and cost sensitive meta-classification. Smaller MAE values
are marked bold.

5.7 Discussion

Firstly this chapter explored the used AMs in greater detail. A limited 4-step exhaustive deploy-

ment of AMs was conducted on all datasets to generate data for AMs’ analysis. For the generated

data, values of novel relative adaptation measure were calculated and the errors of adapted mod-

els to those of un-adapted models were compared. It is observed that in majority of cases, SABLE

AM4 (creating new experts and adapting experts’ weights) performs better than the rest of AMs,

except for the Drier dataset. AM3 (only adapting the weights) and AM0 (no adaptation) are often

the worst AMs. How well the AMs perform is however very dependant on the dataset.

Subsequently, this chapter investigated the problem of AM selection during the prediction of

streaming data in batch mode. Different adaptive strategies were introduced for this purpose.

These could be grouped into fixed adaptive strategies and flexible ones. Fixed adaptive strategies

deploy the same set of AMs on every batch, whereas flexible adaptive strategies may deploy

different sets of AMs on different batches. Flexible adaptive strategies such as greedy optimal

AM deployment, using cross-validation for AM selection, retrospective model correction and

prediction of optimal AM were introduced. Optimal adaptive strategy, that deployed the AM

which minimizes the error on each subsequent batch was the best strategy in all of the cases,

however it is unattainable in practice, as the optimal AMs are not known. Retrospective model

correction can be used together with other adaptation strategies and often improves predictive

error, especially for slower adaptive mechanisms (Bakirov et al., 2016). Using cross-validation

on the previous batch to select the AM for the subsequent batch, often coupled with retrospective
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correction, has proved to be the most successful adaptive strategy. It performed universally well

and was often the best strategy for all the datasets. As it was seen that the optimal adaptive strategy

provides the best results, a meta-classifier which predicts these optimal AMs was constructed

using several popular classification algorithms. However, almost none of these could achieve the

accuracy rates needed to surpass the best performing adaptive strategies.



Chapter 6

Conclusions

6.1 Thesis summary

In recent times many advances have been made in adaptive predictive modeling for streaming

data. Powerful adaptive mechanisms are being developed and integrated into predictive algo-

rithms. Employing several adaptive mechanisms, often operating on different levels, for a single

predictive algorithm has become a current trend. This has allowed the development of powerful

and flexible adaptive predictive methods.

Despite these advances and popularization of the usage of multiple AMs, there is a noticeable

gap in research about the reasons of AMs choices and their synergy while used together. In other

words the design of adaptation element of predictive methods is often intuitive or ad-hoc. This

fact creates a concern that, even while the predictive methods often show good results on test data,

their adaptation strategies may be not optimal and that better results may be achieved with other,

more appropriate strategies.

The aim of the thesis is to offer a multifaceted research with the objective of identifying ways

to improve the predictive accuracy of the methods with multiple AMs. This thesis offers back-

ground information on learning and adaptation on streaming data and categorization of adaptive

mechanisms, formalises the adaptive mechanisms, investigates the necessity of a careful selection

of adaptive strategy and proposes novel adaptive strategies and techniques. In addition to offering

the results which can be already used for designing adaptive methods, in general it could serve as

a catalyst for further research in this area.

6.2 Findings and contributions

It may be useful to separate the findings of the thesis according to the goals set in the Chapter 1.

99
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6.2.1 Categorisation and formalisation of adaptive mechanisms

Relevant works dating from 90-s until recent years were surveyed with the results presented in

Chapter 2. The focus was to analyse adaptive mechanism part separately from the prediction

algorithm, and create a categorisation, where categories share common characteristics. The hier-

archical categorization described in Chapter 2 provides a clear overview of adaptive mechanisms

and serves as a basis for the experimentation in subsequent chapters. Chapter 4 presents a formal-

isation of the “adaptive mechanism” notion as a function which produces an adapted predictive

model as an output, which allows a clear description of adaptive predictive models. These contri-

butions are general and can be used in further research outside of this project.

6.2.2 Analysing the importance of adaptive mechanism selection

Adaptive strategies or similar concepts are scarcely mentioned in the relevant literature. As noted

before, the strategies used in many works are based on intuitive reasoning, which may lead to

the generation of poorly performing AM sequences. One of the contributions of this thesis is

an empirical investigation on whether the choice of AM sequence significantly matters for the

predictive accuracy of the algorithm (Chapter 4). As a separate contribution, this includes the

development of the adaptive batch learning algorithm SABLE which allows the generation of

flexible AM sequences, devising the experiments, conducting them on three real datasets from

the process industry and analysing the results.

In the experiments, random adaptive sequences are compared to the greedy optimal sequence

for all of the considered datasets. The experiments show that the optimal adaptation sequence

provides significantly better results. Hence, it is possible to conclude that the AM selection and

thus the choice of adaptation strategy is indeed an important factor for the predictive accuracy of

the algorithm.

6.2.3 Investigation of adaptive mechanisms and adaptive strategies effects

Methods to analyse AMs’ effects and the analysis of the AMs used in the thesis in detail are

presented in Section 5.3. For this purpose, a relative adaptation ratio is introduced. Relative

adaptation’s properties provide a clear insight into the behaviour of an adaptive mechanism. Using

the data generated by a 4-step limited exhaustive AM deployment as described in Section 5.2, it

is observed that the AMs perform differently well for different datasets, although some common

trends are noticeable, e.g. the generally good performance of certain AMs.

Chapter 5 further gives examples of commonly used adaptive strategies. It is noted that most of

the popular adaptive strategies are fixed, in a sense that the same combination of AMs is deployed

every time the adaptation of the model is performed. Experiments using common (fixed) adaptive

strategies are conducted. Further contributions of the thesis are several novel flexible adaptive

strategies – cross-validatory AM selection (XVSelect), retrospective model correction and meta-

classifier for AM selection, which are described in that chapter. The former two strategies, often
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in combination, provide better results than the traditional adaptive strategies most of the times.

The latter strategy didn’t produce better results than other strategies, which could be caused by

the way the meta-classifier was constructed. The empirical comparison of fixed and flexible

strategies, together with the conclusion that flexible adaptive strategies generally perform better

than the fixed ones is another contribution of the thesis. It was attempted to find the mapping

between changes in data and the most appropriate AMs. While there was no straightforward

answers to this question, the intuitive reasons why particular adaptive strategies and mechanisms

perform better than others were outlined.

6.2.4 Research into new experts’ addition for streaming classification ensembles

Training of new experts is an important part of many ensemble methods for streaming data. In

the Appendix A, this issue is investigated on the example of DWM algorithm. Specifically, the

conditions to add a new expert, as well as training data for the new experts were analysed. Empiri-

cal tests were conducted on 26 synthetic two-dimensional datasets with various types of changes,

as well as two real world datasets from the electricity consumption domain. The results have

demonstrated that some of the suggested modifications, particularly increasing the training data

of the newly created experts at the cost of delaying their addition to the ensemble, show better

or comparable accuracy as the original DWM and considerably decrease the number of created

experts.

6.3 Future research

This thesis has highlighted issues regarding the usage of multiple adaptive mechanisms for pre-

dictive methods on streaming data and addressed some aspects of this area. It is hoped that this

work can facilitate further research in this area, with the goal of finding adaptive strategies which

minimize the predictive error on streaming data. As seen from the previous chapters, this is an

important task, which can seriously affect the performance of the algorithm. Current project is so

far one of the few in the area which means that the possibilities for future research are abundant.

An obvious direction of work is the improvement of the meta-classifier to select AMs. Se-

lecting an optimal AM for the data not yet seen is not an easy task, however its accuracy may

possibly be improved. Using different sets of input features, different classification algorithms

and methods which deal with imbalanced training data may be useful for this purpose. On the

other hand in this thesis, the meta-classifier attempted to find a greedy optimal adaptive sequence,

which may not be necessarily the adaptive sequence which minimizes the predictive error over

the range of incoming batches. A multi-step meta-classifier could be considered to optimize the

performance for this purpose.

Another area of research may be the improvement of categorization of adaptive mechanisms

which may enable rule-based approaches for their selection. This would create whitebox models
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which are easy to interpret, potentially illuminating hidden details of the process. Such rule-based

models will make it easier for technicians and engineers to adapt the predictive models used in

industry.

The model trees resulting after the deployment of different AMs on the same model is an

interesting research direction as well. The leaves of these trees may be combined to produce a

single output. Multiple leaves may be retained for propagation.

The proposed method has used the same algorithm as a base learner. It could be considered

to use a different algorithms for different experts. This approachcan capture multiple types of

input-output relationship as well as further increase the diversity of the ensemble.

One focus of the thesis was proposing heuristics for the AM sequences generation and empir-

ical evaluation of results. This research could be further extended with a theoretical analysis of

adaptive strategies. Error bounds of adaptive strategies, the speed of adaptation and the conditions

that the data stream need to meet for satisfactory adaptation are examples of topics that could be

investigated.
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Appendix A

Addition of new experts to adaptive
classification ensembles

A.1 Elements of online expert ensemble creation

A.1.1 Condition for adding of an expert

Expert addition often brings the strongest possible change to the predictive model. To assess the

effects of criteria to add experts and of the training sets of newly added experts, DWM (Section

2.5.4) algorithm is observed and modified. To help with this assessment, in the following, terms

reaction time - the minimum number of observations, after which algorithm will react to observed

change by creating an expert and convergence time - number of observations, after which algo-

rithm will converge (total weight of the experts which are trained on the new concept is larger

than the total weight of the experts which were trained on previous concepts) to new concept, are

introduced.

Condition for adding an expert largely determines the reaction time of an algorithm, and thus

plays a significant role in its convergence time as well. Reviewed model reacts to misclassifi-

cations by creating a new expert. Initially, it is suggested to add an expert every time when the

prediction of current ensemble is false. This provides fast reaction time but may, in noisy con-

ditions, result in adding many unnecessary and inaccurate experts. To deal with this problem, in

(Kolter & Maloof, 2007) authors suggest that, in noisy domains or for large experiments, only

every Ω-th example could be taken into consideration, which reduces the number of created ex-

perts in proportion to Ω. The drawback of having Ω > 1 is a possibility of slower reaction to the

change. This is best manifested during a sudden drift, where, in the worst case, the reaction time

is Ω.

To reduce the effects of noise in a more deterministic way, the averaging window condition

for expert creation as an alternative to having Ω > 1 is proposed (In (Bach & Maloof, 2008) a

similar condition is used to substitute learners). Here, the strategy is based on the decision of
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creating an expert from xn (n-th datapoint) not only as a result of xn’s classification, but on the

basis of accuracy in the window of the last l elements, with xn being the last element of l. An

expert trained from xn is added if the average accuracy of the ensemble in the window is less than

fixed threshold value z. If it is assumed that the change causes algorithm to always misclassify

incoming data, then the reaction time to the change in this case can be calculated to be at most

l(1− ζ) rounded up.

The choice of the threshold may be difficult for unknown data. Also, for the datasets where av-

erage accuracy may vary with the time, for example due to changing noise levels, using the above

static threshold might result in creation of many unnecessary experts or not creation of experts

when needed. For this work, a similar algorithm with dynamic threshold value, called“maximum

accuracy threshold window” (MTW) is introduced. The dynamic threshold here is similar to the

one used in DDM change detector (Gama et al., 2004). While classifying incoming data the max-

imum value of µacc + σacc is recorded, where µacc is mean accuracy and σacc =

√
µacc(1−µacc)

l

is the standard deviation of the Bernoulli process. New expert is created a when the condition

µcur − σcur < µmax −mσmax is met. Here µcur and σcur are mean accuracy and standard de-

viation of current window and µmax and σmax are mean accuracy and standard deviation of the

window where the maximum value of µacc + σacc was recorded. Parameter m is usually set to 3.

After creation of new expert, the maximum values are reset. Using window based conditioning is

illustrated in the Figure A.1b.

A.2 Training data for new experts

Assuming uniform class label distribution, training an expert from a single data instance means

that this expert will assign the label it has been trained on to all other samples which makes its

initial accuracy 1/J in the case of J-label classification problem. Low accuracy of experts trained

on insufficient amount of data, also discussed in (Žliobaitė & Kuncheva, 2010), combined with

the high weight of the new expert, may result in noticeable negative effect on the accuracy. To

counter this it is possible to use a delay in reaction time to train the new expert on more examples

before using it for predictions. The simplest option is to train an expert on l datapoints after its

creation and only then add it to the ensemble, as in (Stanley, 2003). In this research this will

be denoted “mature” experts (MATEX) approach. To prevent multiple reactions to one change,

during the time that expert is being “matured”, no new experts are introduced. When the expert is

added to the ensemble, it is better trained and thus more accurate than the expert which is created

from a single data instance. The reaction time for a change in this case is l. Another advantage of

this approach is reducing the effect of noise on the created expert.

One possibility to reduce the number of unnecessary experts created in this way is assessing

their performance. A sufficient condition for expert to benefit the ensemble independent of this

expert’s weight is predicting better than ensemble. So before adding it to the ensemble its per-

formance can be compared with the that of the ensemble in the window of size l. Comparison
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Figure A.1: Using windows for expert adding condition and training data of a new expert.

strategy is similarly used in (Bach & Maloof, 2008). The comparison can be done in various

ways; comparing the prequential (Dawid & Vovk, 1999) accuracies of the expert and ensemble,

or constructing certain test and training sets from the datapoints in the window and using cross-

validation. Prequential accuracy1 is calculated by making predictions on data instances before

training on them. If the validation is successful, then the new expert which has been trained on

the whole window is added to the ensemble. Here the reaction time is l. To prevent multiple

reactions to one change, during the time that expert is being “validated”, no new experts are intro-

duced. Here, the effect of noise is further reduced - when the data suddenly becomes noisy, newly

created experts will probably not predict better than existing ensemble and thus will be discarded.

Validation approach can be combined with MATEX allowing the expert to train on lmature data-

points (maturing window), before starting the comparison on lval datapoints (validation window).

This might help prevent the premature removal of experts but will accordingly increase reaction

time to lmature+ lval. It must be noted that this approach requires additional computational effort

for the validation. Using window for the data basis of new expert is illustrated in the Figure A.1c.

A.3 Experimental results

A.3.1 Methods description

Experiments were performed with different variations of the methods described in the Section

A.1. The implemented window based condition schemes from the section A.1.1 are presented

in Table A.1. Several variations of the different data basis methods described in the section A.2

were tested. They are presented in the table A.2. It was also experimented with the periodical

expert additions with periods Ω of 5, 7, 10 11, 25 and 50 (codenames DWM P5, DWM P7,

DWM P10, DWM P11, DWM 25, DWM 50). In the implementation of original algorithms used

in this theses, WIN and MTW a new expert was created from the single data instance. Static

(Kolter & Maloof, 2007) and dynamic (Kolter & Maloof, 2005) weighting systems with various

starting weights and weight update factors, β, for adding new weights and reducing the existing

ones were tested. These are summarised in the Table A.3.

1Hereon also referred to as simply “accuracy”.
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Threshold type z/m l Codename
Fixed 0.5 5 WIN 5 0.5
Fixed 0.5 10 WIN 10 0.5
Fixed 0.5 25 WIN 25 0.5
Fixed 0.5 50 WIN 50 0.5
Variable 3 5 MTW 5
Variable 3 10 MTW 10
Variable 3 25 MTW 25
Variable 3 50 MTW 50

Table A.1: Experiments with window based conditions to add an expert. Here, z is fixed accuracy
threshold to add an expert, m factor for variable threshold calculation and l is length of the
window.

lmature lval Validation type Codename
5 0 N/A MATEX 5

10 0 N/A MATEX 10
25 0 N/A MATEX 25
50 0 N/A MATEX 50

0 5 Prequential PVAL 5
0 10 Prequential PVAL 10
0 25 Prequential PVAL 25
0 50 Prequential PVAL 50
5 5 Prequential MATEX PVAL 5 5
0 10 10xCross-validation 1 train 9 test XVAL 10 10
0 10 5xCross-validation 2 train 8 test XVAL 10 5
0 10 3xCross-validation 3 train 7 test XVAL 10 3
0 10 2xCross-validation 5 train 5 test XVAL 10 2
0 10 Leave-one-out cross-validation 9

train 1 test
XVAL 10 1

0 25 Leave-one-out cross-validation 24
train 1 test

XVAL 10 1

0 50 Leave-one-out cross-validation 49
train 1 test

XVAL 10 1

Table A.2: Experiments with the data basis for experts and their validation. Here lmature is size
of the maturing window and lval is size of validation window.

A.4 Results on synthetic data

26 two-dimensional data sets with various properties to examine the behaviour of the algorithms

in different situations were generated, including rotating hyperplane (Hulten et al., 2001) data and

Gaussians with different type of changes - switching between two data sources (Narasimhamurthy

& Kuncheva, 2007), one Gaussian passing through the other one and returning, Gaussians moving

together in one direction and returning (Sahel et al., 2007) which are visualised in Figure A.2.

Experiments were performed with various magnitudes of changes and levels of artificial noise
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Weighting system New expert weight (static) / γ
(dynamic)

β

Static 1 0.3
Static 1 0.5
Static 1 0.7

Dynamic 0.3 0.3
Dynamic 0.2 0.5
Dynamic 0.1 0.7

Table A.3: Starting weights and weight update factors, β, used in experiments.
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Figure A.2: Changes in experimental datasets. From left to right: data in the start, in the middle,
in the end (before possible return to starting position).

and decision boundaries overlap (see Table A.4).

The accuracy of the tested algorithms, as well as in the number of experts they create during

the classification process was assessed. After the testing on all 26 of described datasets with de-

scribed methods, it was concluded that among them, the best ones in terms of average prequential

accuracy are MATEX methods. Particularly, MATEX 25 with static weighting of 0.7 showed the

best average test and prequential accuracy among all of the methods on 26 datasets, and the best

average accuracy on 7 datasets. In fact, top 4 best performers in average accuracy were variations

of MATEX with different window lengths and weighting systems. The leader in average accuracy

among the family of methods which use validation was XVAL 25 1 (leave-one-out crossvalida-

tion on a window of 25 data instances) with static weighting of 0.7 which had average accuracy

0.02% less than the leader. From the methods which involve changing of the condition of adding

an expert, MTW 5 with dynamic weighting of 0.7 has shown the best performance, 0.04% less
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Num. Data type Instances Classes Drift Noise/overlap

1 Hyperplane 600 2 2x50% rotation None
2 Hyperplane 600 2 2x50% rotation 10% uniform noise
3 Hyperplane 600 2 9x11.11% rotation None
4 Hyperplane 600 2 9x11.11% rotation 10% uniform noise
5 Hyperplane 640 2 15x6.67% rotation None
6 Hyperplane 640 2 15x6.67% rotation 10% uniform noise
7 Hyperplane 1500 4 2x50% rotation None
8 Hyperplane 1500 4 2x50% rotation 10% uniform noise
9 Gaussian 1155 2 4x50% switching 0-50% overlap
10 Gaussian 1155 2 10x20% switching 0-50% overlap
11 Gaussian 1155 2 20x10% switching 0-50% overlap
12 Gaussian 2805 2 4x49.87% passing 0.21-49.97% overlap
13 Gaussian 2805 2 6x27.34% passing 0.21-49.97% overlap
14 Gaussian 2805 2 32x9.87% passing 0.21-49.97% overlap
15 Gaussian 945 2 4x52.05% move 0.04% overlap
16 Gaussian 945 2 4x52.05% move 10.39% overlap
17 Gaussian 945 2 8x27.63% move 0.04% overlap
18 Gaussian 945 2 8x27.63% move 10.39% overlap
19 Gaussian 945 2 20x11.25% move 0.04% overlap
20 Gaussian 945 2 20x11.25% move 10.39% overlap
21 Gaussian 1890 4 4x52.05% move 0.013% overlap
22 Gaussian 1890 4 4x52.05% move 10.24% overlap
23 Gaussian 1890 4 8x27.63% move 0.013% overlap
24 Gaussian 1890 4 8x27.63% move 10.24% overlap
25 Gaussian 1890 4 20x11.25% move 0.013% overlap
26 Gaussian 1890 4 20x11.25% move 10.24% overlap

Table A.4: Synthetic datasets used in experiments. Column “Drift” specifies number of drifts,
the percentage of change in the decision boundary and its type.

than the best method. The best performing periodical adding algorithm was DWM P7 with dy-

namic weighting of 0.5. Finally the 0.7 weighting showed the best results for original algorithm

with period Ω = 0. Table A.5 presents methods with top 20, bottom 5 (128-132), and original

DWM with β = 0.5 (127-th place) average accuracy on 20 datasets. It is possible to see that the

difference between values is relatively small, in tenths of percent, but the difference between the

largest and the smallest accuracy value is 16.2%.

In the Table A.6 the results of different described variations of the original method with the

results of original method were compared. Window length of 10 and β = 0.5 was used for all

of the methods. XVAL is leave-one-out cross-validation. Threshold in the WIN is 0.5. Again,

MATEX methods with dynamic weighting emerge as narrow leader in terms of average prequen-

tial accuracy. The accuracy rates are quite similar, but a noticeable decrease in the number of

total created experts and the average ensemble size is observed. Validation methods PVAL and
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Rank Method Weighting β Average
accuracy

Standard
deviation

Average
number
of experts
created

Average
ensemble
size

1 MATEX 25 Static 0.7 0.901 0.062 29.308 7.009
2 MATEX 25 Static 0.5 0.900 0.063 29.346 5.015
3 MATEX 25 Dynamic 0.5 0.899 0.063 29.154 3.980
4 MATEX 50 Static 0.5 0.899 0.063 17.962 4.104
5 XVAL 25 Static 0.7 0.899 0.064 13.115 3.616
6 MATEX 50 Static 0.7 0.898 0.063 18.038 4.966
7 MATEX 10 Static 0.7 0.898 0.066 55.538 10.273
8 MATEX 50 Static 0.3 0.898 0.063 18.115 3.016
9 MATEX 50 Dynamic 0.3 0.898 0.063 17.962 2.658
10 XVAL 25 Static 0.5 0.898 0.064 13.269 2.592
11 MATEX 10 Dynamic 0.7 0.898 0.063 54.769 7.192
12 MATEX 10 Dynamic 0.5 0.897 0.064 54.500 4.753
13 MATEX 25 Static 0.3 0.897 0.064 31.038 3.380
14 MATEX 5 Dynamic 0.7 0.897 0.064 80.923 8.883
15 XVAL 10 1 Static 0.7 0.897 0.064 20.154 4.815
16 MATEX 25 Dynamic 0.3 0.897 0.064 29.538 2.756
17 MTW 5 Dynamic 0.7 0.897 0.064 58.846 6.964
18 MTW 10 Static 0.7 0.897 0.065 39.808 7.685
19 MTW 5 Static 0.7 0.897 0.064 57.962 10.524
20 MATEX 25 Dynamic 0.7 0.897 0.063 29.423 5.468
127 DWM P1 Static 0.5 0.884 0.075 156.115 14.973
186 DWM 50 Dynamic 0.7 0.828 0.114 4.654 2.639
187 WIN 25 Dynamic 0.5 0.828 0.184 151.308 3.052
188 WIN 25 Dynamic 0.3 0.822 0.165 176.923 2.430
189 DWM P1 Dynamic 0.3 0.761 0.189 339.577 5.064
190 WIN 5 0.5 Dynamic 0.3 0.739 0.221 483.423 5.267

Table A.5: Methods with top 20, bottom 5 (128-132), and original DWM with β = 0.5 (93-th
place) average accuracy on 20 datasets.

XVAL further reduce the number of total created experts and average ensemble size, while having

slightly lower accuracy rates than the leaders and requiring additional computation for validation

purposes. To benchmark our results against non-ensemble methods tests with a simple online

Naive Bayes classifier without any forgetting, state of the art change detectors DDM (Gama et al.,

2004) and EDDM (Baena-Garcı́a et al., 2006) and Paired Learners method with window size 10

and threshold 0.1 (Bach & Maloof, 2008) were conducted. As expected, online Naive Bayes

performs noticeably worse than adaptive methods. Change detectors and paired learners show

slightly lower but comparable accuracy to MATEX methods.

The top performers on some datasets can be different than the average leaders. For instance,

validation methods perform better on the dataset with passing Gaussian with 4 drifts. Here, XVAL
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Method Average
accuracy

Std. devia-
tion of avg.
accuracy

Average
total
created
experts

Average
ensemble
size

MATEX dynamic weighting 0.897 0.064 54.50 4.75
MATEX static weighting 0.895 0.066 55.15 6.69
MTW dynamic weighting 0.894 0.067 40.38 3.31
MTW static weighting 0.889 0.071 40.54 4.63
DWM periodical dynamic weighting 0.894 0.064 15.58 5.42
DWM periodical static weighting 0.891 0.066 15.81 6.76
XVAL dynamic weighting 0.890 0.068 22.35 2.31
XVAL static weighting 0.893 0.068 21.12 3.31
PVAL dynamic weighting 0.888 0.066 5.23 1.53
PVAL static weighting 0.889 0.066 4.65 1.48
WIN dynamic weighting 0.880 0.073 51.04 3.39
WIN static weighting 0.881 0.072 24.85 4.71
Original dynamic weighting 0.867 0.091 181.15 7.94
Original static weighting 0.884 0.075 156.12 14.97
PAIRED LEARNER 0.891 0.069 4.5 2
DDM 0.88 0.077 2.27 1
EDDM 0.89 0.067 1.92 1
NAIVE BAYES 0.807 0.137 1 1

Table A.6: Results on 26 synthetic datasets, averaged. Window length l = 10 and β = 0.5 was
used for all of the methods. XVAL is leave-one-out cross-validation. Threshold z in the WIN is
0.5.

with dynamic static weighting shows the best accuracy among the methods compared above -

87.2% which is 0.8 % higher than the accuracy of the leader. Intuitively, this can be explained with

a large proportion of class intersection area, where the expert creation is not beneficial, and two

intersection-free areas where high accuracy experts can be created. In general, expert checking is

beneficial for the datasets with variable noise or decision boundary intersection. Figure A.3 gives

an insight on the performance for selected methods with static weighting from the Table A.6 on

individual datasets.

Methods vs drift magnitude. To analyse performance of different methods and weighting

strategies in different scenarios the datasets are divided to different groups based on the magni-

tude of concept drift (d%) (slow if d% < 15, medium if 15 ≤ d% < 35, fast if 35 ≤ d%),

percentage of noise or classes’ boundaries overlap (none/10%/varying) and number of classes

(2/4). Several methods’ performances are compared in terms of average accuracies, averaged by

the magnitude of drift. DWM P1, DWM P10, WIN 10 0.5, MTW 10, MATEX 11, PVAL 10,

MATEX PVAL 5 5, XVAL 10 1 with static weighting and β = 0.5 (Figure A.4) are compared.

Interestingly, MTW 10 which shows the best performance at high magnitude changes, but is one

of the worst ones otherwise. Periodical DWM P10 performance increases as the magnitude of
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Figure A.3: Average accuracy values and ensemble sizes for selected methods.

Figure A.4: Results grouped by the drift magnitude.

the drift decreases which explained by the intuition that as the magnitude of change decreases,

the importance of the quick reaction decreases as well. XVAL 10 1 shows good results, and

WIN 10 0.5 the worst results overall.

Methods vs noise level. Here the same methods as in above paragraph versus noise level

(Figure A.5) are compared. It is ovserved that DWM P10 shows the best performance at fixed

low level noise, but worse performance otherwise. This could be explained by high percentages

of overlap in “mixed” category, during which creation of experts can not be effective. This is

also confirmed by the good performance of validatory strategies such as XVAL 10 1 in “mixed”
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Figure A.5: Results grouped by noise levels.

Figure A.6: Results grouped by β value.

category. Original DWM has the middle ranking in performance when there is no noise, but drops

to lower rankings when noise exists. WIN 10 0.5 is again the worst performer.

Effects of different weighting styles and values of β. Effects of different weighting styles

and β values are visualised in the Figure A.6. It can be seen that accuracy rises with the values of

β, and sometimes drops noticeably when β = 0.3. Dynamic weighting shows less difference in

accuracy values between different values of β. This could be related to the respective choice of γ

(table A.3). Intuitively, average ensemble size should increase together with β. This appears to be

not always the case in the case of static weighting. This can be related to the fact that low β could

make the experts be deleted before they can be trained on enough samples to show reasonable

performance, which decreases the performance of the algorithm and in turn increases the number

of created experts.

Effects of different window/period sizes. Increasing window/period size increases the reac-

tion time of algorithms. Accuracy of selected algorithms was compared using window sizes of 10,
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Figure A.7: Results grouped by window size.

25 and 50 (static weighting, β = 0.5). Effects of different choices of window size are visualised

in the Figure A.7. It can be seen that for periodical DWM and window with fixed threshold, ac-

curacy clearly decreases with the increase of window or period sizes. Accuracy of MTW is very

slowly increasing with the window size increase. MATEX, PVAL and XVAL show increase in

accuracy from the window size increase from 10 to 25 and a gradual drop, when the window size

is increased to 50.

A.5 Results on real data

Electricity price rise/fall forecast. Elec2 dataset (Harries, 1999) is a widely used benchmark for

online classification with concept drift. The task is to predict whether the price of the electricity

in the Australian state of New South Wales will rise or fall. The dataset includes five numerical

attributes; the day of the week, the 30-minute period of the day, the demand for electricity in New

South Wales, the demand in Victoria, and the amount of electricity to be transferred between the

two. It consists of 45,312 instances collected at 30-minute intervals from May 1996 to December

1998, however the first part of which contain unknown values. For the experiments in this theses,

the last 27,887 rows which do not have any unknown values (May 1997 - December 1998) were

used. It is assumed that the data contains some drifts, due to seasonality and other factors. Results

with methods with static weighting and β = 0.5 can be seen in the Table A.7. It is interesting to

note that for this dataset β = 0.5 provides the best prequential accuracy results, and also smaller

window sizes seem to perform better. The dependence of performance of selected methods with

the static weighting on β can be seen in the Figure A.9. Here, selecting β = 0.5 shows better

results when compared with β = 0.3 and β = 0.7. the Accuracy of static and dynamic weighting

systems are comparable.

Predicting hours of day using electricity demand. Here a dataset (PowerItaly) is analysed,

containing 3741 instances which describes hourly power supply of an Italian electricity company

from two sources: power supply from main grid and power transformed from other grids (Zhu,

2010; Keogh et al., 2011). This data contains records from 1995 to 1998. In the conducted
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Method Prequential accuracy Average ensemble size

DWM P1 0.899 11.5
MTW 5 0.898 6.64
MTW 10 0.897 5.47
MATEX 5 0.892 7.89
MATEX 10 0.888 6.45
WIN 5 0.5 0.883 8.24
PVAL 5 0.880 3.16
XVAL 10 1 0.876 3.21
PVAL 10 0.875 2.92
DWM P5 0.871 10.66
MATEX PVAL 5 5 0.865 2.13
WIN 10 0.5 0.862 6.89
DWM P10 0.855 11.25
MTW 25 0.826 3.67
MTW 50 0.808 2.52
MATEX 25 0.800 4.27
PVAL 25 0.790 3.06
XVAL 25 1 0.790 3.32
MATEX 50 0.779 3.43
WIN 25 0.773 8.97
PVAL 50 0.771 2.54
XVAL 50 1 0.771 2.59
DWM P25 0.757 14.08
WIN 50 0.747 7.43
DWM P50 0.738 13.90
DDM 0.785 1
EDDM 0.84 1
PAIRED 10 01 0.886 2
NAIVE BAYES 0.669 1

Table A.7: Prequeuntial accuracy on Elec2 dataset. Static weighting, β = 0.5

experiment, only hours 03:00, 10:00, 17:00 and 21:00 and try to predict the correct hour based

on supply values. From the Figure A.8 (here only one feature is shown, other’s behaviour is

similar) it can be clearly seen that drift can be caused by the seasons, weather, and the differences

between working days and weekend. There is also apparent class boundary intersection of various

proportions. To increase the challenge a number of data instances from the dataset is randomly

deleted. Results with methods with static weighting and β = 0.5 can be seen in the Table A.8. It

is interesting to see the good performance of DWM 7. This might be related to the weekly cycle

in the data. The dependence of the static weighting on β (except the methods with the window

sizes of 25 and 50) can be seen in the Figure A.10. As with the synthetic data, higher β values

provide better results in many cases.
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Figure A.8: Power supply from main grid. Left: all data. Right: the first 30 days.

Figure A.9: Results on Elec2 with different val-
ues of β.

Figure A.10: Results on PowerItaly with differ-
ent values of β.

A.6 Summary of experimental results

From the experimental results the following conclusions can be drawn.

• Accuracy-wise there is no single method which performs best in all of the conditions. MA-

TEX often shows best performance, while XVAL combines good performance with low

ensemble sizes. Performance of the original DWM is found to be inferior to that of its

modifications in many cases. There are also no single best algorithm settings (choice of β

and weighting strategy), although the choice of β = 0.3 often shows considerably inferior

accuracy rates.

• Predictive accuracy rates of different methods are often very close to each other with dif-

ferences from 0.1% to 2%. Thus the significance of difference in accuracy are debatable.

However McNemar’s significance test (Kuncheva, 2004b) suggests that many of the classi-

fication results are in fact significantly different.

• One of the goals of the above modifications of the original algorithm was reducing the en-

semble sizes, while having comparable or better accuracy rates. This was clearly achieved.

Methods which employ the validation of the newly created experts, such as PVAL or

XVAL have particularly low ensemble sizes, even lower than periodical DWM. MATEX
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Method Prequential accuracy Average ensemble size

DWM P7 0.675 17.61
MATEX 25 0.671 5.47

DWM P5 0.664 18.03
MATEX 10 0.663 9.09

XVAL 25 0.663 3.15
MATEX 50 0.661 3.62
XVAL 10 1 0.659 3.39

MTW 10 0.657 6.11
DWM P10 0.657 15.71
WIN 5 0.5 0.657 26.03

DWM P1 0.656 33.39
MTW 5 0.656 9.31

PVAL 25 0.653 1.27
MATEX PVAL 5 5 0.652 2.90

MTW 25 0.651 3.23
MATEX 5 0.651 12.88
PVAL 50 0.647 1.47
MTW 50 0.646 2.39

WIN 10 0.5 0.645 16.78
XVAL 50 0.645 2.32
PVAL 10 0.642 1.45
WIN 25 0.637 18.12

DWM P25 0.632 13.70
PVAL 5 0.632 1.57
WIN 50 0.623 23.66

DWM P50 0.622 8.89
PAIRED 10 01 0.659 2

EDDM 0.616 1
NAIVE BAYES 0.594 1

DDM 0.590 1

Table A.8: Prequeuntial accuracy on PowerItaly dataset. Static weighting, β = 0.5

and XVAL have often better accuracy rates than DWM.

• As expected, accuracy values of the simple online learner are noticeably lower than those of

original method and modifications. Also pure change detection mechanisms such as DDM

and EDDM show lower accuracy rates. Paired learners algorithm shows comparable, but

still somewhat lower accuracy than the leaders among tested methods.
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Relative adaptation histograms with
confidence levels
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Figure B.1: Histograms of exhaustive 4-step ahead adaptive mechanism deployment and means
of histograms of 10,000 bootstrap samples with 0.95 confidence interval for AM1 and AM4 on (a)
Catalyst100, (b) Oxidizer100, (c) Drier100.



Appendix C

Cost matrices for considered datasets

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.000 0.015 0.018 0.015 0.020 0.014
AM1 0.016 0.000 0.007 0.019 0.013 0.011
AM2 0.018 0.003 0.000 0.021 0.013 0.011
AM3 0.046 0.045 0.047 0.000 0.013 0.030
AM4 0.043 0.036 0.036 0.026 0.000 0.028

Average 0.024 0.020 0.022 0.016 0.012

Table C.1: Adaptive mechanism classification cost matrix for Catalyst50.

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.000 0.017 0.018 0.031 0.038 0.021
AM1 0.020 0.000 0.006 0.021 0.010 0.012
AM2 0.022 0.006 0.000 0.023 0.008 0.012
AM3 0.049 0.046 0.050 0.000 0.006 0.030
AM4 0.065 0.047 0.044 0.050 0.000 0.041

Average 0.031 0.023 0.024 0.025 0.013

Table C.2: Adaptive mechanism classification cost matrix for Catalyst100.

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.000 0.004 0.006 0.011 0.012 0.007
AM1 0.015 0.000 0.002 0.032 0.015 0.013
AM2 0.023 0.005 0.000 0.026 0.012 0.013
AM3 0.028 0.029 0.031 0.000 0.010 0.020
AM4 0.088 0.064 0.061 0.064 0.000 0.055

Average 0.031 0.021 0.020 0.027 0.010

Table C.3: Adaptive mechanism classification cost matrix for Catalyst200.
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True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.00 0.11 0.14 0.04 0.08 0.07
AM1 0.16 0.00 0.08 0.17 0.13 0.11
AM2 0.22 0.09 0.00 0.21 0.11 0.12
AM3 0.08 0.13 0.14 0.00 0.10 0.09
AM4 0.35 0.30 0.26 0.32 0.00 0.25

Average 0.16 0.13 0.12 0.15 0.08

Table C.4: Adaptive mechanism classification cost matrix for Oxidizer50.

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.00 0.13 0.18 0.05 0.16 0.10
AM1 0.16 0.00 0.10 0.17 0.13 0.11
AM2 0.16 0.08 0.00 0.16 0.08 0.10
AM3 0.21 0.28 0.31 0.00 0.15 0.19
AM4 0.35 0.32 0.32 0.19 0.00 0.24

Average 0.18 0.16 0.18 0.11 0.10

Table C.5: Adaptive mechanism classification cost matrix for Oxidizer100.

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.00 0.16 0.20 0.07 0.32 0.15
AM1 0.20 0.00 0.04 0.21 0.13 0.12
AM2 0.19 0.06 0.00 0.19 0.10 0.11
AM3 0.11 0.17 0.19 0.00 0.16 0.12
AM4 0.31 0.31 0.30 0.23 0.00 0.23

Average 0.16 0.14 0.14 0.14 0.14

Table C.6: Adaptive mechanism classification cost matrix for Oxidizer200.

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.00E+00 7.67E-06 2.33E-05 2.57E-06 6.09E-05 1.89E-05
AM1 1.29E-04 0.00E+00 2.83E-05 1.34E-04 6.74E-05 7.17E-05
AM2 1.31E-04 3.46E-05 0.00E+00 1.38E-04 8.13E-05 7.69E-05
AM3 5.60E-05 6.17E-05 6.60E-05 0.00E+00 1.26E-05 3.92E-05
AM4 1.62E-04 8.56E-05 9.12E-05 1.60E-04 0.00E+00 9.97E-05

Average 9.55E-05 3.79E-05 4.17E-05 8.69E-05 4.44E-05

Table C.7: Adaptive mechanism classification cost matrix for Drier50.

True class \Cost AM0 AM1 AM2 AM3 AM4 Average
AM0 0.00E+00 6.89E-06 1.19E-05 1.72E-07 1.34E-05 6.48E-06
AM1 5.57E-05 0.00E+00 9.61E-06 5.21E-05 4.37E-05 3.22E-05
AM2 6.11E-05 5.78E-06 0.00E+00 6.00E-05 4.42E-05 3.42E-05
AM3 5.85E-06 7.67E-06 9.97E-06 0.00E+00 9.71E-06 6.64E-06
AM4 7.33E-06 1.00E-05 1.15E-05 4.87E-06 0.00E+00 6.75E-06

Average 2.60E-05 6.07E-06 8.61E-06 2.34E-05 2.22E-05

Table C.8: Adaptive mechanism classification cost matrix for Drier100.
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