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ABSTRACT
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by Donya Rahmani

The analysis of time series using Singular Spectrum Analysis has become an important

area of statistics with application in a variety of fields such as economics, geophysics,

engineering, medicine and many others. In fact, in this method there is no need to make

any statistical assumptions such as the stationarity of the series or normality of the

residuals. Therefore, SSA is recognised as an extremely practical tool which can be used

to solve problems without considering any parametric model. At its core SSA depends

on an eigenvector decomposition of the covariance matrix of a time series which may

be utilised for forecasting via a linear recurrent formula. However, many time series

exhibit structural breaks which interfere with a linear continuation of the time series

although the underlying data generating process may not have changed. In addition,

in a multivariate setting there is the added complication of combining time series. In

this case the linear recurrence relationships of each time series may either reinforce each

other or alternatively may lead to degraded forecasts.

In this thesis a state dependent model is proposed under the assumption that if a system

moves from one homogeneous state to another rapidly that this transition may be tracked

using a Bayesian model in which the state transitions are state dependent. In addition,

it is proven that for basic SSA the linear recurrent coefficients are biased and that this

bias decays linearly with the samples. Empirically, the state dependent model shows far

superior performance over two multivariate data sets.

In the second part of the thesis component matching is examined. The core issue is how

to identify which time series to group together without testing every possible combi-

nation. Geographical information resulted in superior forecasts on USA unemployment

time series via a spatial SSA model. Subsequent research into data driven methods to

group the time series concludes that a novel variant of the self organising map leads to a

significant improvement over methods based on standard techniques like tensor analysis

and joint diagonalisation.
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Chapter 1

Introduction

SSA was first introduced by (Broomhead & King, 1986). Since then the analysis of time

series using Singular Spectrum Analysis has become an important area of statistics with

application in a variety of fields such as economics, geophysics, engineering, medicine and

many others. In fact, in this method there is no need to make any statistical assumptions

such as the stationarity of the series or normality of the residuals. Therefore, SSA is

recognised as an extremely practical tool which can be used to solve problems without

considering any parametric model. SSA can also be used for smoothing, finding trends

of diverse resolution and simultaneous extraction of harmonics and trend components,

forecasting and so on (Golyandina et al., 2001).

The SSA method is based on decomposing a time series into three types of compo-

nents: trend, harmonics and noise. The method then reconstructs the original series

and forecasts based on the reconstructed series. One advantage of SSA is the ability

to reconstruct multiple series which have shared dynamics and which may have com-

plex seasonal components and/or trends. This characteristic is suitable to retrieve the

underlying sources in the analysis of, for example, electroencephalogram (EEG) signals

(Kouchaki et al., 2015; Teixeira et al., 2005), or to capture major periodicity change of

the El Niño/Southern Oscillation (ENSO) in weather forecasting to mention but a few

applications.

As a brief introduction to the method consider the time series, Y , shown in Figure 1.1(a)

below. A delayed version of this time series is shown in Figure 1.1(b) and this resembles

a caterpillar (an alternate name for SSA). If we consider the delayed versions of Y as

a multivariate system and calculate their singular value decomposition, this then allows

us to approximate the original series via an eigenvector reconstruction. The first three

eigenvector reconstruction terms, called modes, are shown in Figure 1.2(a). Note how

these decompose this series into its trend (the strongest eigenvector) and two cyclical

components. In this particular example, we use 24 delayed copies of the signal and these

may be related to the current value via a set of coefficients (details given in Chapter 2),

1
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Figure 1.1: A time series and its delayed caterpillar plot.

φY which are shown in Figure 1.2(b). Note that φY are data dependent and will change

as new data arrives (this model differs significantly from a standard AR model) also note

that we have made no assumptions about stationarity or the distribution of the residual.

As φY relates the past values of the series to the present it may be used recursively to
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Figure 1.2: SSA modes and coefficients.

produce a forecast. One such forecast is shown in Figure 1.3. This whole process is

known as the basic SSA forecasting algorithm, full details of which are provided in

Chapter 2.

For multivariate time series, an important challenge in using SSA is to recognise which

different time series should be modelled together. The key issue is whether the modes (or

components) in those different time series reinforce each other or whether they effectively

add noise to the estimated (common) modes. The issue here is whether components are

matched. In SSA this can be determined specifically by clustering of covariance matrices,

a topic which we explore. This issue goes to the heart of separability (See Section 2.1.3.1),

in which modes which are distinct but similar between time series may be inseparable.
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Figure 1.3: A forecast of the demonstration time series using SSA.

Another issue concerns forecasting time series with special structure, such as turning

point, abrupt periodicity shifts and structural breaks (Golyandina et al., 2001). In such

a case the modes, their associated eigenvectors and the SSA forecasts no longer match

the future evolution of the system. SSA basically assumes that a time series evolves

according to an underlying state space system. The major effect of a shock is that a

system will be transferred from one region of the state space to another region over

a short period of time; in essence it entails not a fixed state space system but one

which sequentially adapts to the transition in the region of the state space. A state

space model that jumps from one region of the state space to another is called a state-

dependent model (SDM). The SDM technique essentially uses a Bayesian approach to

update the parameter estimation of state dependents models and in this work we examine

the applicability of such a model to SSA.

Common to both issues raised above, multivariate grouping and special structures, is

differences in the modes either in time or across series. However, this focus on modes

has not been fully explored and is the core of this thesis.

Two different kinds of data sets will be used to evaluate the efficiency of the model:

Industrial production Indicators for France, Germany and the UK; which allows com-

parison of the results over the structural break which occurs due to the recession in 2008.

The other time series used in this study is the unemployment rates of the USA states,

obtained by the Federal Reserve Bank of St. Louis. These series also exhibit structural

breaks, but in addition, they are distributed geographically favourably (in the sense that

they resemble a grid allowing a full spatial comparison). It is of interest to determine
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the significance of various geographical characteristics in matching modes as compared

with approaches based on the data itself.

1.1 Motivation for research

As mentioned earlier SSA can be used for smoothing, trend extraction etc. Here the

focus is on forecasting alone. By extrapolating the information from past and present,

forecasts can help policy-makers in dealing with uncertain future conditions.

Structural breaks are a common occurrence in many time series and occur when a

sudden change hit the system. The structural break can be accommodated by allowing

the parameters to change rapidly at the time of the event as well as allowing a change

in their state. Such models essentially provides much better forecasts, because they

better approximate the underlying structure of the given series under study. Hence, an

interesting direction for our research is to explicitly explore Bayesian forecasting applied

to MSSA/SSA in the presence of a structural break.

The issue of matched components has been discussed in SSA research before but has not

been fully explored. In a multivariate time series situation such as that used in Chapter 5

with 48 time series there are for example 48(247 − 1) = 6.7 × 1015 combinations which

would have to be tested to determine the best grouping for each series with respect to

its partners. Thus a more computationally efficient approach is required for estimating

which modes may or may not match.

1.2 Contributions

The main contributions of this thesis are:

1. The extension of Bootstrapping to the coefficients in SSA (Bootstrapping LRF) is

explored and found empirically to give a minor improvement in terms of forecast-

ing.

2. Theorem 4.1 is proposed which shows that SSA is biased in the presence of a struc-

tural break and that this bias decays linearly. Specifically, the deviation between

the first eigenvalue of CX and C̆X is λ1− λ̆1 ≈ T L(Q2− 2Qȳ). Furthermore, this

deviation decreases as O(k/N).

3. It is shown empirically that using an State Dependent Model (SDM) produces

superior forecasts than SSA in the presence of a structural break alleviating the

issues raised with SSA in 4.1. SDM assumes that the parameters can change not
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only over time but also over the states of the system and uses Extended Kalman

filtering to estimate these parameters. The proposed method is called Bayesian

SSA.

4. A spatial SSA model produces superior forecasts than a multivariate model based

on all time series even in the presence of time series with modes that differ by a

small cosine distance.

5. Projection pursuit using Joint Diagonalisation provides no improvement over the

SVD when applied to Horizontal SSA.

6. We introduce a novel covariance clustering algorithm based on the self organising

feature map which seeks to separate time series based on their SSA covariance

structures. The method is called Self-Organising Eigenspace Map (SOEM). It is

shown empirically that the consequent clustering produces superior forecasts and

the mapping is topologically ordered.

1.3 Thesis structure

The thesis is organised as follows. We begin with a comprehensive literature review

(Chapter 2) which is intended to service the subsequent chapters in the sense that all

prior work is deposited there and is referenced when required. One exception is the

inner workings of SSA which we give in Chapter 4 as these are required explicitly for a

theorem.

Chapter 3 performs a preliminary analysis of SSA applying it to some well known data

sets and in addition we examine bootstrapping when applied to the coefficients (previ-

ously having only been applied to the forecasts themselves). One aspect in particular,

the performance of SSA with respect to a time series which has a structural break is

found to be flawed and this leads into the next Chapter.

Chapter 4 develops a State Dependent Model (SDM) for application with the evolution

of the states within SSA. Specifically, it is proven that standard SSA is flawed in the

presence of a structural break. An SDM is then tested on synthetic data and real data in

two scenarios, the univariate case and the multivariate case. During examination of the

multivariate case it becomes clear that grouping time series together in a multivariate

model is an important issue which leads into the next Chapter.

Chapter 5 examines latent and reduced space multivariate SSA time series modelling.

The core question of this Chapter is how to determine which time series may or may

not reinforce each other without performing an exhaustive search (which would require
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construction and comparison of N(2N−1 − 1) models). In this Chapter, we introduce a

Spatial SSA model based on geographical information about the time series. In addi-

tion, we examine a means of clustering the data from the information contained in the

time series themselves. In particular, we introduce a novel method similar to the self

organising map which is based on matrix inputs rather than vectors.

Finally, in Chapter 6, conclusions are drawn from the previous chapters bringing together

all the findings to demonstrate how SSA may be utilised especially in the presence of a

structural break. This leads into an exploration of future directions for research.

1.4 List of publications and conference papers

The following publications leading from the work in this thesis have been submitted,

published in full or are in preparation:

1. Fay, D. and Rahmani, D., (2017), ”Clustering time series based on their singular

spectrum covariances using a self organising eigenspace map”, (in preparation).

2. Rahmani, D., Fay, D., Heravi, S. and Yoo, P., (2016), ”Forecasting multivariate

time series in the presence of structural breaks via Bayesian singular spectrum

analysis using state dependent parameters”, European Journal of Operational Re-

search (submitted).

3. Rahmani, D. and Fay, D., Hui, P. (2016), ”A tensor based singular spectrum anal-

ysis algorithm for multivariate time series with application to city wide vehicular

traffic”, (in preparation).

4. Heravi, S., Rahmani, D., Hassani, H. Fay, D. (2016), ”Forecasting time series

with structural breaks with Singular Spectrum Analysis, using a general form of

recurrent formula”, Special issue on singular spectrum Analysis of international

journal of forecasting, (submitted).

5. Rahmani, D. and Callaway, A., (2016), ”A comparison of models when forecast-

ing limited data sets: A case using Olympic Archery”, journal of sport science,

(submitted).

6. Rahmani, D., ”General Singular Spectrum Analysis Forecasting using State De-

pendent Models”, (2016), the World Meeting of International Society for Bayesian

Analysis in Italy.
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7. Rahmani, D., ”Multivariate Spatial Forecasting for the Contiguous United States

”, (2015), presented at 8th world congress in European Meeting of Statisticians in

Amsterdam.

8. Rahmani, D., ”Predicting Recessionary Times With Singular Spectrum Analysis

Technique”, (2015), presented at 42th AIB-UKI conference (Academy of Interna-

tional Business) in Manchester.

9. Rahmani, D., ”A forecasting algorithm for Singular Spectrum Analysis based on

bootstrap Linear Recurrent Formula coefficients”, (2014), International journal of

Energy and Statistics, 02, 287.

10. Rahmani, D., ”A New Singular Spectrum Analysis Confidence Interval”, (2014),

presented at 34th International Symposium on Forecasting in Rotterdam.





Chapter 2

Background

2.1 Singular Spectrum Analysis

Singular Spectrum Analysis is a linear analysis and prediction method for a time series,

in which its data-adaptive characteristics make it a suitable method for the spectral

analysis of short and noisy time series, without any apriori knowledge of the process

generating the data (Vautard et al., 1992). SSA is based on the principles of classical

time series analysis, multivariate statistics, multivariate geometry, dynamic systems and

signal processing. It was first introduced into chaos theory by (Broomhead & King, 1986)

and (Fraedrich, 1986b) to explain the intrinsic dynamics of a time series. Afterwards

it received significant scholarly attention in the literature from (Vautard et al., 1992;

Allen & Smith, 1996) and (Golyandina et al., 2001). More investigations into both

the theoretical and practical foundations of SSA can be found in (Zhang & Hui, 2012),

(Zhao et al., 2011), (Kapl & Mueller, 2010), (Oropeza & Sachchi, 2011),(Yiou et al.,

2000) and (Groth & Ghil, 2011), (Danilov & Zhigljavsky, 1997), (Golyandina et al.,

2001), (Patterson et al., 2011) and the references therein. An introductory explanation

of SSA may be found in (Elsner & Tsonis, 1996).

Over the last two decades, SSA has been recognised as a standard tool in a variety

of fields such as climate and geophysics (Hou et al., 2014; Oropeza & Sachchi, 2011;

Le Bail et al., 2014; Chen et al., 2013; Vautard & Ghil, 1989; Kondrashov & Ghil, 2006;

Fraedrich, 1986a; Chang et al., 2015; Hou et al., 2014), engineering (Chao & Loh, 2014;

Liu et al., 2014), medicine (Aydn et al., 2011; Thuraisingham, 2013; Ghaderi et al.,

2011; Sanei et al., 2011) and many others; see (Muruganatham et al., 2013; Daly et al.,

2013; Golyandina et al., 2001; Elsner & Tsonis, 1996; Qadrdan et al., 2013; Lisi et al.,

1995). SSA has also been extended and modified in different aspects such as Toeplitz

SSA (Golyandina et al., 2001), Monte Carlo SSA (Allen & Smith, 1996), sequential

SSA (Golyandina et al., 2001), SSA based on minimum variance (Hassani, 2010), SSA

based on perturbation (Hassani et al., 2011b) and multivariate SSA (Broomhead & King,

9
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1986). In addition, (Zhigljavsky, 2010) studied SSA-based methods and their connection

with sub-space models in signal processing.

In addition to forecasting, SSA is often used for smoothing time series; finding trends of

diverse resolutions; finding structure in short time series; extraction of seasonal compo-

nents and periodicity with varying amplitudes; simultaneous extraction of cycles with

small and large periods; and simultaneous extraction of complex trends and periodicity

(Golyandina et al., 2001). Furthermore, a study by Thomakos (Thomakos, 2008) pro-

poses an asymptotically optimal linear filter for smoothing and trend extraction for unit

root processes using SSA. Thomakos found that the SSA-based filter can provide similar

performance to the Hodrick-Prescott filter (Hodrick & Prescott, 1997) and is thus an

alternative method for extracting the cyclical component.

SSA also provides insight into the unknown or partially known dynamics of an underly-

ing system (as detailed in Section 2.1.1 and subsequent sections) by using an embedded

representation of the time series to decompose them into a set of data-adaptive orthonor-

mal components. These components can be projected essentially into a lower dimension

and then reconstructed to form a smoother time series, which can be used for explaining

structure and used subsequently for forecasting. Neither normality nor stationarity are

required for the time series which makes SSA a model-free technique with a broad range

of applicability, (Golyandina et al., 2001).

A direct extension of SSA, multivariate or multichannel SSA (MSSA), has an abil-

ity to reconstruct shared dynamic and oscillatory behaviour of stochastic systems in

terms of finding common oscillatory modes. MSSA, as a robust way of analysing the

spatio-temporal behaviour of short and noisy time series, can greatly help with phase

synchronisation analysis (Groth & Ghil, 2011). MSSA helps a time series analyst to

extract common spectral components from the multivariate data set, along with the

co-movements of different channels (Groth & Ghil, 2011). It is assumed that common

properties exist which can explain the simultaneous variation in a system of multiple

time series (Viljoen & Nel, 2010).

Essentially, MSSA can be applied for different purposes such as centralising feature ex-

traction, extraction of shared behaviour, identification of coherent spatio-temporal struc-

tures (given a regular sampled archive of maps), explaining co-movement and capturing

spatio-temporal dependence (Groth & Ghil, 2011; Golyandina & Zhigljavsky, 2013). For

example, (de Menezes et al., 2014) combines SSA with periodic autoregressive models

(PAR), to forecast the monthly average wind speed of two regions of Northeast Brazil

(Hydrological time series). The outcome shows PAR(P)-MSSA is far superior than the

two others (PAR(P) and PAR(P)-SSA), since MSSA takes into account the spatial de-

pendence between the two stations.

Moreover, MSSA as a unified and robust method can be used for network anomaly

detection. It is shown by (Babaie et al., 2014) that MSSA is able to detect a much
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wider range of anomalies, regardless of their type, when compared to the Kalman filter

and a Wavelet transform. MSSA could also capture temporal changes in traffic patterns

as well as changes in the number of flows (Babaie et al., 2014).

MSSA is also useful for simultaneous analysis and forecasting of several time series.

(Patterson et al., 2011) shows that MSSAs flexibility can be beneficial for forecasting

real-time data subject to a revision process, when compared to those which involve re-

strictive assumptions such as linearity, normality and stationarity. In addition, applying

bivariate SSA to UK industrial production indicators was found to improve the ability

of the model over standard parametric models like VAR and ARMA. They demonstrate

that MSSA has advantages over both state-space models and standard cointegration

models in two aspects: first, its ability to automatically detect non-linear cross correla-

tions, and second, its direct extension to high-dimensional systems both in theory and

practice.

Additionally, MSSA can be used to reconstruct the entire attractor of a nonlinear dy-

namical system from limited data. For example, (Groth et al., 2011) shows MSSAs

ability to separate distinct spectral components in a multivariate data set of limited

length, in the presence of relatively high noise levels. The performance of MSSA and

SSA in comparison with other classical models like autoregressive models (ARIMA and

GARCH) and random walk models are examined through a wide range of financial and

economic time series. For example, forecasting the US inflation rate using the consumer

price index and gross domestic product (GDP) in (Hassani et al., 2013b), examining the

volatility of floating currencies, and the UK and EU daily exchange rates in (Zhang &

Hui, 2012), predicting market steel prices with real GDP for the USA, Germany and

China in (Kapl & Mueller, 2010), forecasting Romanian exchange rates to the Euro in

(Georgescu & Delureanu, 2015), modeling and forecasting the overall fluctuation of the

USA unemployment rate in (Skare & Buterin, 2015), and in particular, forecasting the

industrial production index by (Heravi et al., 2004; Patterson et al., 2011; Hassani et al.,

2012; Osborn et al., 1999; Franses & Dick, 2000).

The basic implementation of MSSA (or SSA) for a time series analysis has two steps:

Decomposition and Reconstruction. Each has two sub-steps: Embedding and Singular

Value Decomposition and Grouping and Diagonal Averaging. The following section will

present a description of the algorithm and related works (by considering each stage) in

more general terms while more technical details will be explained in Chapter 4.

2.1.1 Decomposition

Decomposition is often a standard procedure in time series analysis. It provides insight

into the mechanisms producing the time series patterns and behaviours. In fact, the key
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idea behind the decomposition methods is that they capture the components which are

physically meaningful (Bonizzi et al., 2014).

2.1.1.1 Embedding

The modeling of a deterministic dynamical system relies on the concept of embedding,

as a collection of possible system states. An individual realisation of a dynamical sys-

tem is the outcome of interacting variables, and thus ought to hold information about

the dynamics of all the key variables interacting in the system. According to (Ruelle,

1980) instead of a continuous variable and its derivatives, a discrete time series with its

successive shifts by a lag parameter ought to be enough to approximate the dynamics

of a system. Consequently, lagged copies of the time series are considered as to explain

the periodic content of the series under study. There exists a relationship between the

lagged copies if Takens’ embedding theorem is applicable. In principle, because of the

embedding theorem (Takens, 1981), the time delayed version of a time series is generi-

cally sufficient to reconstruct the dynamics of the underlying systems if enough delayed

coordinates are used (Cao et al., 1998).

SSA, as an embedding time series method, uses these lagged or delayed copies to analyse

the time series. The procedure is also referred to as the method of delays, in which a

single time series record, y1, . . . , yN , is embedded into a multivariate set of delayed

records, Xi = [yi . . . yi+L]T , i = 1, . . . ,K, where K = N − L + 1. The trajectory

matrix of the series is then given by X = [X1, . . . ,XK ] ∈ RK×L. The trajectory matrix

includes the complete record of repeating patterns that have appeared within a window

size L. The window length is also known as the embedding dimension.1 In principle, the

trajectory matrix can be examined for repeating patterns that are representing trends

and oscillations in the original time series. Specifically, these patterns are examined

via the covariance matrix of the trajectory matrix, i.e. XXT matrix. The elements of

C = XXT matrix are proportional to the linear correlation between all pairs of series

used to construct X.

There are several different ways to construct C from a time series (Elsner & Tsonis,

1996). Among the most frequently used are via construction of Hankel or Toeplitz

matrices. The Hankel based approach uses the data directly such that given a set

of observations, y1, . . . , yn, and a fixed window length L, the elements of the Han-

kel matrix, using the product of the trajectory matrix and its transpose, are cij =
1

N−L+1

∑N−L+1
t=1 yi+t−1yj+t−1 where i, j ≤ L. This matrix is originally used by (Broom-

head & King, 1986) which consists of a basic SSA. Alternatively, (Vautard & Ghil, 1989)

used a Toeplitz structure to compute the lagged-covariance matrix elements. There are

different ways to estimate lagged-covariance matrices elements such as the Yule-Walker

1 The embedding dimension ensures that all synchronisation between the lagged channels are taken
into account (Pukenas, 2014).
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or Burgs algorithm, principal component analysis (PCA), etc. see (Vautard et al., 1992).

A robust estimate of the lagged-covariance matrix considered in many studies is given

by: cij = 1
N−|i−j|+1

∑N−|i−j|+1
t=1 y|i−j|+tyt. In (Vautard et al., 1992) they show that there

is a bias-variance trade off when there are very low frequency observations in the system,

or when the number of observations is small. They also presented a particular method

to estimate the Toeplitz matrix which has little bias compared to others. 2

Note that the Toeplitz matrix as defined above resembles an auto-covariance matrix

where all elements along each of the diagonals are equal. Therefore, drawing inferences

from the spectral decomposition of a covariance matrix with the Toeplitz structure

implies implicitly an assumption of stationarity for the time series. It is shown by

(Elsner & Tsonis, 1996) that the eigenvectors of the Toeplitz matrix captures less of

the variance in a times series as compared with a Hankel matrix. They show that the

eigenvectors of the Hankel matrix span the entire variance spectrum more precisely than

a Toeplitz matrix. It is therefore obvious that the Toeplitz lagged covariance matrix

cannot successfully explain the variance of a trend which is sometimes an important

source of error in prediction algorithms. On the other hand, unlike the Toeplitz form, the

Hankel matrix is more robust, regardless of the underlying physical process from which

the time record was sampled (Elsner & Tsonis, 1996). More details on the application

of both Toeplitz and Hankel matrices can be found in (Golyandina et al., 2001).

The above procedure can be extended for a multivariate time series. Specifically, for

M different time series, there exist M different Li ×Ki trajectory matrices, X(i) (i =

1, . . . ,M), and these can form a stacked Hankel matrix in either a horizontal or vertical

format (Hassani & Mahmoudvand, 2013). The former version enables us to have various

Ki and different series length Ni, however, there is an equal window length Li for all of

the series. The result of this step is as follows:

XH =
[

X(1) X(2) · · · X(M)
]
,

where, XH indicates that the output of the first step is a stacked Hankel matrix formed

in a horizontal form. It is directly apparent from the structure of the matrix XHXT
H in a

horizontal format, that there is not any cross-product between Hankel matrices X(i) and

X(j) and rather that the sum of X(i)X(i)T (i = 1, . . . ,M) provides the stacked Hankel

matrix.

To form the stacked Hankel matrix in a vertical form, it needs to have K1 = . . . = KM =

K. Accordingly, this version enables us to have various window lengths Li and different

series lengths Ni, however Ki is restricted to being equal for all of the series. The result

of this step is the following stacked Hankel matrix:

2These two forms of matrices can be transferred to each other by using a backward identity permu-
tation P where PT is a Hankel matrix for any Toeplitz matrix T and PH is a Toepltiz matrix for any
Hankel matrix H.



14 Chapter 2 Background

XV =


X(1)

...

X(M)

 .

The structure of the matrix XV XT
V is identical to the variance-covariance matrix in

classical multivariate statistical analysis. For the ith series, the matrix X(i)X(i)T appears

along the (block) diagonal and the products of two Hankel matrices X(i)X(j)T (i 6= j),

which are related to the series i and j, appears in the off-diagonals. 3

2.1.1.2 Projection pursuit

The basic idea behind a multivariate analysis is that some of the information about

the data is redundant, and the key characteristic of the data can then be explained in

terms of their tendency to concentrate into clusters, or about a curve or non-flat sur-

face (Friedman & Stuetzle, 1982). The term projection pursuit was first introduced by

(Friedman & Tukey, 1974) as a technique to map multivariate data onto a lower dimen-

sional manifold. Projection pursuit reveals patterns of variation in the given data set

by proposing a low-dimensional orthogonal projection of it to find interesting directions.

While projecting from the lower dimensions the appearance of the projected data set

does not change abruptly as the projection direction varies, and the space of projection

directions is of a low dimensionality (Friedman, 1987). On the other hand, for projection

from higher dimensions, it can still be true that the appearance of the projected data set

changes smoothly, however, it becomes impractical to explore potential comprehensive

projections due to the high dimensionality of the space of projection directions (Tukey

& Tukey, 1981). (Friedman & Stuetzle, 1982) discussed the interactive process for such

an exploration, although (Friedman, 1987) showed that those processes are unable to

improve the applicability of the approach as far as it is needed. Thus, an automatic

procedure for selecting potentially interesting projections was essentially needed. Pro-

jection pursuit can provide such selections by locally optimising the projection directions

according to some measure of what (Friedman, 1987) calls interestingness.

A projection pursuit algorithm associates with each and every direction in the multi-

dimensional space, a continuous index which measures its interestingness as a projection

axis, and then varies the projection direction so as to maximize this index over the pro-

jection space. Basically, the projection index measures how much structure is contained

within orthogonal linear projections of the data (Jones & Sibson, 1987). The choice

of index is the most crucial part in projection pursuit. In (Friedman & Tukey, 1974)

the index is formed as a product of a robust measurement of scale (like variance) with

3Note that if X with dimension LM × K denotes the vertical trajectory matrix, then XT is the
horizontal trajectory matrix with dimension K ×ML (suppose all series have similar length and similar
window length).
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a weighted measure of a number of close pairs (Huber, 1985). This locally optimal

projection, it is proposed, can give interesting insights into the data.

Suppose Y is an M × N matrix of data. The projected data, Z, is then formed by

Z = ATY where A is a linear map. The projection index, I, is usually expressed as:

I(Z) = I(ATY ) = I(A). In the distributional format of a projection pursuit, it is

assumed that the projected data, Z, have a density function, f , that essentially depends

on A. Therefore, the most practical procedure to compute a projection index is by

considering the density function of Z, and the projection index can be then written as

I(f). Another format which is called the sample case can be carried over by replacing

the actual density function with an empirical estimate (Friedman & Tukey, 1974).

To optimise the projection index, the hill-climbing optimisation method is used by

(Friedman & Tukey, 1974) to find interesting projections, which are I(A) = S(A)D(A),

whereas S(A) measures the general spread of the data, and D(A) measures the local

density of the data after projection onto a projection vector. There are numerous specific

ideas for revealing interesting projections, such as the use of entropy as the basis for an

index function (Jones & Sibson, 1987), centring and sphereing (Tukey & Tukey, 1981),

projection indices based on order- entropy (Rényi, 1961), moment indices and the Fried-

man index (Friedman, 1987), Halls index (Hall, 1989), the Morton index (Morton, 1989)

etc. (Jones & Sibson, 1987) concentrates specifically on the practical implementation

and application of the projection pursuit, whereas (Huber, 1985) explores the projection

pursuit framework in more detail and relates to the projection pursuit derivatives as

mentioned above.

Essentially, projection pursuits methods are based on an interpretation of the eigenvec-

tors of the covariance matrix as directions that maximize or minimize variances. By

replacing the variance by other indices, a variety of methods are developed. As will be

seen, the Singular Value Decomposition (SVD), principal component Analysis (PCA),

Independent Component Analysis (ICA), Joint Diagonalisation (JD), and the Tucker

Decomposition are several popular particular implementations of a projection pursuit

algorithm.

Singular Value Decomposition The lagged-covariance matrix of MSSA, C, is real

and symmetric, and then there is a diagonalizing matrix with orthonormal columns, U ,

in which C = UTΣU .4 As a spectral decomposition of C, it consists of a summation of

the dimensional projections of eigenvectors, UiU
T
i . The diagonal matrix Σ consists of

ordered eigenvalues, and their square roots are called the singular values, λ, of X.

C = UTΣU ⇒ XXTUT = UTΣ⇒ UXXTUT = Σ⇒ (UX)(UX)T = Σ (2.1)

4I.e. the left and right singular vectors are equal
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UX is the trajectory matrix projected onto the orthogonal basis U . The components

of X ordered along with the basis U are uncorrelated, since U constitutes orthogonal

vectors called singular vectors of X.

Based on (Elsner & Tsonis, 1996), the name singular spectrum relates to the spectral

(eigenvalues) decomposition of the matrix into a set (spectrum) of eigenvalues. These

eigenvalues are the numbers that result in a matrix X − λI, which is singular. The tra-

ditional eigenvalue decomposition approach, which involves multivariate data to analyse

the singular spectrum, might be mistaken for SSA. Hence, more precisely, singular spec-

trum analysis (SSA) is the analysis of the time series using the singular spectrum.

The link between SSA and other classical spectral analysis techniques is investigated

by (Vautard & Ghil, 1989). Their study shows that when a sharp peak occurs in the

power spectrum, a data adaptive choice of filters gives a fundamentally more adaptable

tool than from a standard spectral analysis. It means the data-adaptive characteristics

of an SSA basis (its eigen-components) gives SSA a significant advantage over classical

spectral analysis methods (where the basis function is prescribed as sines and cosines).

Principal component analysis SSA is closely related to the classical and commonly

used principal component analysis (PCA) (Elsner & Tsonis, 1996). The former provides

truly dynamical information, while the latter gives mostly a geometrical description

(Vautard & Ghil, 1989). The key idea in both cases is to identify the main patterns of

covariance matrix variability, in decreasing order of the associated variance. (Plaut &

Vautard, 1994) showed that apart from the difference in defining the trajectory matrix,

there is no difference between the expansion used in classical PCA and the expansion

used in SSA.

Basically, PCA uses a covariance matrix of normalised data (centred and scaled to have

unit variance) to extract the principal eigenvectors (Jolliffe, 2002; Abdi & Williams,

2010). Those eigenvectors are stacked as P , a rotation matrix in descending order.

Its multiplication by C provides the data for PCA. New variables generated by PCA

included useful information from the original data, while redundancy has been removed.

PCA basically supposes that the direction with the largest variance corresponds with the

principal dynamics of a system and the remainder corresponds to redundant information.

It can also be chosen by setting a threshold for the variance, or by choosing the number

of significant square root of eigenvalues (Jolliffe, 2002).

There is a simple relationship between PCA and the SVD. PCA is equivalent to per-

forming the SVD on the centred data, furthermore, the right eigenvector, matrix V ,

of the SVD is equivalent to the rotation matrix returned by PCA (Ghil et al., 2002).

Note that, the diagonal elements of Σ from the SVD are proportional to the standard

deviations returned by PCA. The elements of Σ are formed by taking the sum of the
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squares of the principal components, but not dividing them by the sample size. Studies

like (Vautard et al., 1992) used PCA instead of SVD in SSA.

It is worth noting that, the inclusion of temporal correlations makes MSSA superior to

PCA in the extraction of dynamical behaviour (Groth & Ghil, 2011). A modified version

of MSSA is introduced by (Groth & Ghil, 2011) by applying variance-maximization

rotation to MSSA eigenvectors to optimally detect clusters of a synchronised oscillator.

Moreover, heteroscedasticity between symmetric covariance matrices is also taken into

account by (Viljoen & Nel, 2010) through the common principal component (CPC)

approach. CPC decomposes the series into the sum of a common small number of

components, which are related to a common trend and to oscillatory components and

noise (common base vectors). It focuses on the uncorrelatedness of PCs rather than

on the aspect of maximising the amount of variability accounted for in the predefined

number of principal components.

Independent component analysis When several components of the original time

series are mixed in such a way, that their contributions are very similar, then the op-

timality of the SVD does not help to separate these components properly. This is due

to the lack of strong separability between components. (This will be explained in sec-

tion 2.1.3.) In this situation, special rotations ought to be found in such a way that they

satisfy some additional optimality criterion (Golyandina & Zhigljavsky, 2013). ICA-SSA

allows SSA to deal with deterministic components, while ICA is a form of projection

pursuit that seeks a non-Gaussian distribution in the projected data (Golyandina et al.,

2001).

Unlike PCA, which minimises the variance directions in the covariance matrix of the

series, ICA minimises higher order statistics like kurtosis-based measures. The covari-

ance matrix, C, is assumed to be a linear combination of non-Gaussian and statistically

independent components, in which C = SA where columns of S contain the independent

components, and A is a linear mixing matrix (Hyvärinen & Oja, 2000). ICA then looks

for an un-mixing matrix W to minimise mutual information, which is equivalent to max-

imising the non-Gaussianity under the condition that W is an orthonormal matrix. To

measure non-gaussianity FastICA relies on neg-entropy J(y) = [E{G(y)} − E{G(ν)}]2;

ν ∼ N(0, 1), which is more robust than kurtosis-based measures and is fast to compute

(Hyvärinen & Oja, 2000). (Hyvärinen & Oja, 2000) suggest the following choices for

G as a non-quadratic function: G(u) = 1
α log cosh(αu), and G(u) = exp(u2/2) where

1 ≤ α ≤ 2.

It is worth pointing out that for a time series with a shared common mode (coin-

tegrated series), which explains the variation between different time series, ICA as a

pre-processing step before SSA can lead to a better decomposition than the SVD. To

prove that, (Chan, 2013) demonstrates that projections that are maximally distant from
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the Gaussian distribution can be useful in identifying a cointegration test based on ICA.

However, the fundamental limitation in ICA is that the independent components must

be non-Gaussian for ICA to be possible. Note that ICA is a less stable procedure than

MSSA therefore it is suggest that it is not a good idea to replace the SVD completely

with ICA (See (Golyandina et al., 2001) on the use of ICA with MSSA).

On the other hand, applying SVD to a large covariance matrix can make MSSA com-

putationally expensive. This issue is addressed by (Pukenas, 2014) via reordering the

Toeplitz block covariance matrix into a block Toeplitz matrix. Then this matrix is em-

bedded into a block circulant matrix, and is efficiently block-diagonalizied by means of

the Fast Fourier Transform. This combination results in a version of MSSA which is less

computationally complex for the detection of smooth changes in large spatially extended

systems. However, when multiple stochastic processes mixed with periodic components

occurs simultaneously, sparse dynamical characteristic of non-stationary time series like

structural breaks and shifts cannot be tracked directly.

Joint Diagonalisation Specifically, Joint Diagonalization (JD) defines an average

eigenstructure shared among multiple covariance matrices. JD extends the eigenvalue-

eigenvector decomposition (diagonalization of a single matrix) and its generalised ver-

sion (diagonalization of a matrix pair) to a matrix set including three or more matrices.

Therefore, the resulting decomposition is considered as an extension of the SVD to a

stack of matrices. Joint Diagonalization was introduced by (Bunse-Gerstner et al., 1993)

for simultaneous diagonalization of multiple matrices by mainly contributing to the sta-

bility and convergence concern. The simultaneous diagonalization algorithm is based on

an extension of the Jacobi matrix: a joint diagonally transformation which is iteratively

optimised under plane rotations (Cardoso & Souloumiac, 1996). The joint diagonaliza-

tion technique can be used as a generic algorithmic tool for various applications, such

as blind source separation (Molgedey & Schuster, 1994; Belouchrani et al., 1997; Pham

& Cardoso, 2001; Yeredor, 2002; Ziehe et al., 2004), common spatial pattern analy-

sis (Koles, 1991; Blankertz et al., 2008), common principal component analysis (Flury,

1984; Fengler et al., 2003), signal processing (van der Veen et al., 1992; Van der Veen

et al., 1998) and, more recently, kernel-based nonlinear blind source separation (Harmel-

ing et al., 2003). It is shown that for more than two commuting matrices it may not

be possible to achieve joint diagonalization with one single transformation. However,

exact joint diagonalization of more than two matrices is applicable if the matrices have

a certain common mode, as it is the case for the multivariate time series application.

If there is not such a common structure, then one can only use an approximate joint

diagonalization. The goal of a joint diagonalization algorithm is to find a matrix U that

simultaneously set off diagonal terms of C1, . . . , CM to be zero by a unitary transform.

This is the form of the joint diagonalization process that has been used most frequently
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in the literature, for example in (Bunse-Gerstner et al., 1993; Cardoso & Souloumiac,

1993, 1996; Hori, 1999; Joho & Rahbar, 2002; Joho & Mathis, 2002; Fay & Yoneki, 2011).

The JADE algorithm is an implementation of JD for blind source separation which starts

by estimating a whitening matrix, Ŵ and set Z = ŴC. Next a maximal set of cumulant

matrices (statistics of an order higher than two), Q̂Zi can be estimated to optimise an

orthogonal contrast. Intuitively this means we seek a rotation matrix Û such that the

cumulant matrices are as diagonal as possible, that is, solve:

J2(U) = argmin
U

∑
i

off(UT Q̂Zi U) (2.2)

They finally estimate an unmixing matrix, A, as Â = J2(U)Ŵ−1 and estimate the

components of the source signal as Ŝ = Â−1C = J2(U)TZ as the source signal. The link

with a joint-diagonalization criterion is the key for the derivation of the practical JADE

algorithm (Moreau, 2001).

JD essentially seeks the rotation matrix, U = Â−1, by minimising the diagonality cri-

terion, J2(U) where the off() is the Frobenius norm of the off-diagonal elements. The

well-known Jacobi algorithm is used to find the joint diagonalizer. Moreover, the plane

rotations are applied not only to the data but also to the cumulant matrices themselves,

which means the JADE algorithm updates not only the data but the matrix-valued

statistics as well. A key problem in these sort of algorithms is that the selection of the

cumulant matrices should be involved in the estimation 5. As shown by (Cardoso, 1999),

the joint diagonalization criterion, Σioff(UT Q̂Zi U) is identical to the contrast function

by using a maximal set of cumulant matrices. It can practically avoid the shortcomings

of the previous joint diagonalization algorithms. However, (Cardoso, 1999) shows there

is no other way for a priori selecting cumulant matrices in such a way that it still guar-

antees equivariant estimates, because the algorithm, although operating on statistics of

the sphered data, also optimizes implicitly a function of UTZ only.

On the other hand, the algebraic nature of cumulant matrices is tensor based (McCul-

lagh, 1987). It was first proposed by (Comon, 1997) as a Jacobi approach for ICA. (See

(Comon, 1997) for a data-based algorithm and an earlier reference therein for the Jacobi

update of higher order cumulant tensors.) Such a data-based Jacobi algorithm works

through a sequence of Jacobi sweeps on the multi-way matrices until a given orthogonal

contrast function is optimised.

Tucker Decomposition A Multidimensional time series can also be represented by

a tensor. Simply speaking a tensor is just a multidimensional array of series which

5Basically the JADE algorithm is derived using fourth-order cumulants, therefore, its underlying
contrast function is given with fourth-order cumulants as opposed to ICA, which remains available
whatever the order of cumulants (Moreau, 2001)
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preserves their true multiway structure (Kolda & Bader, 2008). Tensors are basically

suitable for large scale data in pattern recognition, text mining, signal processing, com-

puter vision, traffic analysis etc.

(Sun et al., 2008) describes a tensor of order M as a data cube with M dimensions.

The most popular tensor decomposition algorithms can be considered as Tucker decom-

position and PARAllel FACtor Analysis (or CANonical DEComposition) (PARAFAC/-

CANDECOMP). The former is a higher-order form of principal component analysis,

while the latter is a higher-order extension of a singular value decomposition, which

decomposes a tensor as a sum of rank-one tensors, (Kolda & Bader, 2008; Sun et al.,

2008). Specifically, these higher order decomposition techniques capture multi-linear

and multi-aspect structures in large-scale higher-order data-sets, which are key tools for

feature extraction and supervised learning problems (Phan & Cichocki, 2010).

For the Tucker and PARAFAC/CANDECOMP decompositions there exist many dif-

ferent algorithms such as PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2,

as well as nonnegative variants of all of the above (Kolda & Bader, 2008). Most of

them are essentially based on Alternating Least Squares (ALS) and Hierarchical ALS.

Although, discussion about concrete implementations of those algorithms is out of the

scope of this research. In what follows, this study will recall definitions of Tucker and

PARAFAC/CANDECOMP. For more details see (Sun et al., 2008).

Definition 2.1 (Tucker Decomposition). . Given anM th-order tensor X ∈ Rn1×n2×...×nM

and core tensor sizes {r1, ..., rM}, where ni(1 ≤ i ≤ M) is the dimensionality of the

ith mode, find a core tensor Y ∈ Rr1×r2×...×rM and a sequence of projection matri-

ces {U (d)}Md=1 ∈ Rnd×rd , such that ||X − Y ×1 U
(1) × . . . ×M U (M)|| is small, that is,

X ≈ Y ×1 U
(1) . . .×M U (M).

Note that the key idea behind the Tucker decomposition (Tucker, 1966) is that a big

tensor can be approximated using a small tensor through a change of basis. The ap-

proximation can be exact if rd = nd and U (d) is full rank for 1 ≤ d ≤ M (Sun et al.,

2008). In fact, the basis varies for each mode through the projection matrix, {U (d)}Md=1.

It would clearly have been sufficient to assume that the core tensor is superdiagonal

which is the case for PARAFAC/CANDECOMP. This is a special case of the Tucker

decomposition. In addition, PARAFAC/CANDECOMP as a generalisation of SVD for

higher order arrays, is a weighted sum of rank one tensors.

Definition 2.2 (PARAFAC/CANDECOMP). Given aM -order tensor X ∈ Rn1×n2×...×nM ,

we wish to find r rank-one tensors in the form of λiu
(1)
i ◦. . .◦u

(M)
i where {u(d)}Md=1 ∈ Rnd

for 1 ≤ i ≤ r such that ||X −
r∑
i=1

λiu
(1)
i ◦ . . . ◦ u

(M)
i || is small, that is, X ≈

r∑
i=1

λiu
(1)
i ◦

. . . ◦ u
(M)
i .
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Subjecting the factor matrices to the condition of orthogonality is yet another special

case, such as Higher Order Singular Value Decomposition algorithm or the Higher Or-

der Orthogonal Iterations algorithm, introduced by (Lathauwer, 2011). In the higher

order SVD algorithm all modes are assumed to be independent and thus matrix SVD

can be performed on each matricization of the tensor. On the other hand, the higher

order orthogonal iterations algorithm performs an iterative process to seek out better

projection matrices. In particular, the higher order SVD with one iteration is a special

case of the higher order orthogonal iterations algorithm.

Recently, (Kouchaki & Sanei, 2013; Kouchaki et al., 2015) employed a PARAFAC/-

CANDECOMP instead of the SVD in SSA and termed this Tensor SSA. (A 3D-tensor

is decomposed by PARAFAC/CANDECOMP.) It is shown that tensor SSA enables SSA

to perform better for single channel data decomposition in nonstationary and underde-

termined source separation, while more classical techniques like ICA cannot even be

used directly (Kouchaki & Sanei, 2013). In (Kouchaki et al., 2015) tensor SSA (TSSA)

is used for sleep EEG analysis and the results are compared with the clinical results,

which confirms the ability of the method to achieve a better understanding of sleep EEG

data. In (Kouchaki et al., 2015) empirical mode decomposition is used to select the sub-

group of the desired signal as an adaptive supervised approach. The method is applied

to both simulated and real data. Some samples of the narrow-band and non-stationary

signal with low SNR were generated to test the performance of TSSA, which achieved

the lowest RMSE in comparison to SSA and ICA. The real application is devoted to

sleep EEG, which shows that the proposed method can capture the transitions between

stages of sleep by more accurately evaluating brain activity variations.

Apart from the above-mentioned methods, there are other studies on expanding the

decomposition part of SSA for application to various time series. For example, (Vautard

et al., 1992) combine SSA with more advanced spectral-analysis methods - such as the

maximum entropy method (MEM) and the multi-taper method (MTM) - to refine the

interpretation of oscillatory behaviour (Vautard et al., 1992). Later on, (Yiou et al.,

2000) extended Toeplitz SSA to a nonstationary time series by using multi-scale ideas

from wavelet analysis. He suggests a moving window proportional to series length,

and uses a wavelet transform to detect the regular part of the lag-covariance matrix.

The method is called Multi-scale SSA (or MS-MSSA), which considers eigenvectors

as data-adaptive wavelets to address the non-stationarity of the series. Alternatively,

(Moskvina & Zhigljavsky, 2003) replaced the SVD with a spectral projector of the lag-

trajectory matrix, which is the orthogonal projector onto the eigenspace for cutting off

eigenvalues at a certain size. Their numerical examples show a high degree of polynomial

approximation of the spectral projector that influences the quality of the reconstruction.
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2.1.2 Reconstruction

The next step after decomposing the series is reconstruction. Clearly, those specific

components of the series identified by the projection pursuits methods can now be used

for the reconstruction of the time series. Reconstruction stage consists of two sub-steps:

Grouping and Diagonal averaging.

2.1.2.1 Grouping

The grouping procedure partitions the set of indices 1, . . . , L into r disjoint subsets

I1, . . . , Ir. The process of choosing the sets I1, . . . , Ir is called eigentriple grouping. The

aim of this grouping step is the separation of the additive components of the time series.

Despite the fact that several formal criteria for separability can be introduced (as will

be discussed in Section 2.1.3), the whole procedure of splitting the terms into groups

(i.e., the grouping step) is difficult to formalise completely (Golyandina & Zhigljavsky,

2013). The principals and approaches of identifying the specific components for their

inclusion into different groups are discussed mainly in (Pukenas, 2014; Golyandina &

Zhigljavsky, 2013).

2.1.2.2 Diagonal Averaging

The final step in MSSA is to reconstruct the components of the original series. There

is a formal procedure of transforming an arbitrary matrix into a Hankel matrix, and

therefore, into a series which is called diagonal averaging or hankelization. It defines a

matrix Y with the values of the time series yi as averages for the corresponding anti-

diagonals of the matrices XIi . Basically each XIi can be seen as the Hankel matrix for

the corresponding embedded component series. (More details about Hankelisations will

be given in Chapter 4.)

Hankelization is an optimal procedure in the sense that the matrix HY is closest to Y

(with respect to the Frobenius matrix norm) among all Hankel matrices of the corre-

sponding size (Golyandina & Zhigljavsky, 2013). In its turn, the Hankel matrix HY

defines the series uniquely by relating the values in the anti-diagonals to the values in

the series.

As stated before, there are two parameters in MSSA: the first parameter is the em-

bedding dimension or window length L, and the second parameter is the number of

components for reconstruction r. Choosing improper parameters yields an incomplete

reconstruction and produces misleading results in forecasting. It is therefore pertinent

to briefly comment on the differences between the historical approach and the relatively

new, automated approach used to select those parameters.
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2.1.3 Parameter Selection

Given that MSSA parameters are the crucial determinants underlying the performance

of the MSSA, no theoretical solution has been yet proposed to solve this problem. Of

course, there are worthwhile efforts and various techniques for selecting the appropriate

value of L (see, for example, (Golyandina et al., 2001), (Golyandina, 2010), (Hassani

et al., 2011a) (Sauer et al., 1991) and (Mahmoudvand et al., 2013)).

2.1.3.1 Embedding dimension

As mentioned before the trajectory matrix in the decomposition stage of MSSA is gener-

ated by windowing the time series and storing all windows in the matrix. The length of

windowing, or the embedding dimension, must be properly selected, as the reconstructed

components are strongly dependent on it. Even though guidelines have been provided on

the choice of the window length, (Vautard et al., 1992; Golyandina et al., 2001; Golyan-

dina & Usevich, 2004) confirm that there is no universal rule for the selection of the

window length.

Certainly, the choice of parameter L is very much dependent on the given data, and

also, for the analysis which it aims to perform. An improper choice of L would imply

an inferior decomposition. Some discussions are given by (Elsner & Tsonis, 1996), and

this author remarked that selecting L as being equal to a quarter of the length of a

given series is a common practice. However, previously in (Golyandina et al., 2001) it

was noted that L should not exceed half of a given time series. Large values of L allow

longer period oscillations to be resolved, however, choosing L too large leaves too few

observations from which to estimate the covariance matrix of the L variables.

It must also be noted that variations in L may influence both weak and strong sepa-

rability features of SSA, i.e., both the orthogonality of the appropriate subseries of the

original series and the closeness of the singular values (Golyandina & Zhigljavsky, 2013).

For example, the weighted correlation between the signal and noise component has been

proposed in (Golyandina et al., 2001) to determine the suitable value of L in terms of

separability. 6

In (Hassani, 2007) an analysis of the periodogram is determined to find out any strong

signals (i.e. seasonal fluctuations) in the data set. Thereafter, one selects L propor-

tionate to the seasonal fluctuations after which an analysis of the scree plot or paired

eigenvectors enables this study to differentiate between signal and noise. Other ap-

proaches for the selection of SSA parameters are presented in (Hassani et al., 2011a,b;

Khan & Poskitt, 2013) where the authors consider the selection of L based on the con-

cept of separability between signal and noise. In addition, when forecasting during a

6A detailed discussion on this topic can be found in (Golyandina et al., 2001) section 1.6 and (Golyan-
dina, 2010))
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recession, or immediately following the impact of a major structural break, in (Has-

sani et al., 2013a) it was shown that a small trajectory matrix approach, whereby L is

considered to be equal to 2, can provide better forecasts.

There are some versions of Basic SSA where the window length L is chosen automatically

(see, for example, (Mahmoudvand et al., 2013)). A theoretic analysis of the signal-noise

separation problem in SSA has also been considered in (Khan & Poskitt, 2013). Although

considerable attempts and various techniques have been considered for selecting the

proper value of L, there is not enough algebraic and theoretical material for choosing L.

There are several criteria for determining window length that can be categorised into

two groups as follows:

1. Criteria that consider different features of SSA without taking into account the

type of data (general-based criteria), and

2. Criteria that consider the aim of the analysis and depend on the type of data

(problem-based criteria).

According to these criteria, some recommendations are given for choosing window length

(Vautard et al., 1992; Golyandina et al., 2001; Golyandina & Usevich, 2004). It is

clear that large values of L gives more components and may increase the chances of

separability. On the other hand, K can be considered as the number of L-variate samples

from an original time series, and thus large values of K can be considered as the better

choice from a statistical point of view. These two aims can be obtained when L×K is

maximized, which is the number of observations in the trajectory matrix. Now, it is easy

to see that L = Lmax gives maximum value of the number of entities of the trajectory

matrix.

Recently, the Singular Spectrum Decomposition (SSD) is introduced by (Bonizzi et al.,

2014) which automatically select the window length (the embedding dimension) and the

principal components of the trajectory matrix. In the SSD method, the choice of the

embedding dimension, and the selection of the principal components for the reconstruc-

tion of a specific component series have been made fully data-driven. Moreover, a new

format of the trajectory matrix is proposed, which enhances the oscillatory content in

the data and guarantees the decrease of energy of the residual (Bonizzi et al., 2014).

Separability (w-correlation) The main concept in studying SSA properties is sep-

arability. As mentioned earlier, very helpful information for detection of separability

and group identification is contained in the so-called w-correlation matrix. Well sepa-

rated components have small correlation, whereas, poorly separated components gen-

erally have large correlation (Golyandina & Shlemov, 2013). Therefore, looking at the

matrix of w-correlations between elementary reconstructed series one can find groups
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of correlated series components and use this information for the consequent grouping

(Golyandina, 2010).

The following criteria (called w-correlation) is a standard measure of similarity between

two series Y
(1)
N and Y

(2)
N (Golyandina et al., 2001):

ρ
(w)
12 =

< Y
(1)
N , Y

(2)
N >w

‖ Y (1)
N ‖w‖ Y

(2)
N ‖w

, (2.3)
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and

wi =


i+ 1, 0 ≤ i ≤ L∗ − 1,

L∗, L∗ ≤ i < K∗,

N − i, K∗ ≤ i ≤ N-1.

where K∗ = max(L,K) and L∗ = min(L,K).

If the absolute value of the w -correlations is small, then the corresponding series are

almost w -orthogonal, however if it is large, then the two series are far from being w -

orthogonal and are therefore, weakly separable. (Hassani et al., 2011b) showed the

minimum value of w-correlation can be achieved at L = Lmax, for a wide class of

time series. In SSA terminology, Y 1 and Y 2 show the components that are provided

after the grouping steps. As mentioned, if two reconstructed components have zero

w -correlation, it means that these two components are separable. Large values of w -

correlations between the reconstructed components indicate that the components should

possibly be gathered into one group and correspond to the same component in the SSA

decomposition.

As discussed before, the window length L is the only parameter in the decomposition

stage. Theoretical and empirical results confirm that L should be large enough, however,

it should not be greater than N/2. Thus, based on this window length and on the SVD of

the trajectory matrix, there should be a maximum number of N/2 eigentriples, ordered

by their contributions (shares) into the decomposition stage. The leading eigentriple

describes the general tendency of the series. Since in most cases the eigentriples with

small shares are related to the noise component of the series, a means of identifying

them is required as now discussed.

2.1.3.2 Selection of components for reconstruction

A proper SSA decomposition can capture three main components: trends, oscillatory

components (such as seasonality), and noise. Yet another challenge in MSSA is the
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identification of the leading SVD components of the trajectory matrix. The key condition

for separability is then that the deterministic part of the series can be approximated by a

time series of finite rank r (Golyandina, 2010). This means that all except the r leading

eigenvalues are close to zero.

At this stage one would select the appropriate number of eigenvalues r for reconstruction

and consider the remainder as noise. Whilst this task would be simple in the case of

a small time series, it becomes increasingly complicated and difficult when one has to

analyse a huge number of paired eigenvectors for a larger time series. Moreover, in the

absence of seasonal fluctuations the selection of L and r would be even more difficult, and

in such cases the starting point is to select L such that it is less than half of the series

length. According to (Golyandina & Zhigljavsky, 2013) the proper grouping needed,

to obtain a suitable series decomposition, can be impossible if the signal components

are mixed. For example, if the eigenvector contains periodic components with a slowly

varying trend, this means that the trend and periodic components are not separable,

at least for the chosen window length L. If it appears that for the chosen L there is

no separability (weak or strong), the attempt to obtain separability is performed with

other choices of L (Golyandina & Shlemov, 2013). For example, a possible lack of strong

separability between a trend of a complex form and a seasonality can be overcome by

means of the use of small window lengths. In general, there are some ad hoc rules-of-

thumb to intuitively detect plausible groups of eigentriples:

• via a scree plot of the eigenvalues,

• w -correlations among possible groups,

Recently, (Mahmoudvand et al., 2013) suggested adapting SSA with optimal choices of

parameters L and r based on the predictive forecast errors. In their study the time

series are split up into two parts: training, and testing (for evaluation). They start

with L = 2 (2 ≤ L ≤ N
2 ), and in the process consider all possible values of L and r

(1 ≤ r ≤ L−1) and singular values (for the selected L). Next the prediction Root Mean

Square Error is determined as a loss function to minimize the forecast error. Ultimately

the combination of L and r with the lowest loss function are captured, which represents

the optimal SSA choices to decompose the series comprising of the validation set, and

can be used for forecasting test values (Hassani et al., 2015). The main disadvantage

of using this method is that the SSA parameters will be mostly dependent on the size

of the training set, which is a trade-off between the amount of information one hopes

to retain and the accuracy of the forecast. Also, if we were interested in capturing and

analysing, say, only the seasonal components or the trend of the series, we would not be

able to get the best possible decomposition and reconstruction for such purposes using

this automated approach. If our objective is such, then it is more reliable to return to

other approaches, which will enable one to analyse each paired eigenvector, and select

those representing the seasonal components which are of interest to us.
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Once an appropriate set of eigencomponents has been selected then MSSA can be used

for forecasting the time series, therefore, satisfying a linear recurrence formula.

2.1.4 Linear Recurrent Formula (LRF)

If a time series evolves according to a state space model in an embedded dimension then

its evolution in time can also be described by a linear recurrent formula (Golyandina

et al., 2001) with coefficients {φ}L−1
j=1 such that:

yt =
L−1∑
j=1

φjyt−j , (2.4)

It means that SSA can essentially handle functions that are governed by an LRF and

includes the broad class of functions that was proposed by (Buchstaber, 1994). In SSA

the recurrent coefficients Φ = (φL−1, φL−2, . . . , φ1), j = 1, . . . , L− 1, are obtained as

follows (See Section 4.2.1 for a derivation). First distinguish the first L− 1 components

of the eigenvector Ui, such that Ui = [Ui
∇L, πi] where Ui

∇L = (ui,1, . . . , ui,L−1) and πi

is the last component of Ui; and define ν2 =
∑r

i=1 π
2
i < 1. The recurrent coefficients are

then estimated as:

Φ̂ = (1− ν2)−1
r∑
i=1

πiUi
∇L. (2.5)

In fact, the series governed by LRFs reveals natural recurrent continuation since each

term of the series is equal to a linear combination of several preceding terms (Golyandina

et al., 2001). A characteristic polynomial can also be assigned to the LRF which has

L− 1 roots. The theory of linear recurrent formulae and their associated characteristic

polynomials goes back to (Gelfond, 1967). A more formal description on the concept of

recurrent continuation in purely geometrical terms can be found in (Golyandina et al.,

2001).

There exists different versions of forecasting methods for SSA, such as the minimal

recurrent formula which removes the extraneous roots of the characteristic polynomial

of the LRF (reduction method), and the nearest subspace approach when there is an

approximate separability in which the selected linear space cannot be the trajectory

space of the time series anymore (Golyandina et al., 2001). Specifically, in the presence of

abrupt changes, the great number of the perturbed extraneous roots leads to a less precise

forecast. On the other side, the conditions for approximate separability are typically

asymptotic and need a comparatively large window length. Therefore, (Golyandina

et al., 2001) suggests taking the smallest window length to provide sufficient separability.

They pointed out that during a structural break a time series transitions from one

homogenous state to another in a short period of time. Furthermore, while the time
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series before and after the break may locally follow a LRF (or two separate LRF’s)

the combined time series may not. To detect such changes, they defined a heterogeneity

function and an eigentriple rearrangement by measuring the discrepancy between two (or

more) different states of a time series. They have also examined the root function of the

characteristic polynomial of the LRF, which gives a dynamic description of the sequence

of the homogeneous part of the series, which is affected by the eigentriple rearrangement

and structural changes. As a result, the series stops continuing the original LRF, which

means the LRF does not coincide with a recurrent continuation of the series before

being perturbed. Thus, these changes in time series behaviour ought to be recognised

by defining new initial conditions for the LRF. This is the core principle involved in this

study which will be discussed later.

2.1.5 Extensions to basic SSA

MSSA is a direct extension of basic SSA to simultaneously analyse multiple time series.

There are many different ways to modify and extend the basic SSA some of which are

discussed below.

2.1.5.1 Vector SSA

The basic MSSA (or SSA) forecasting algorithm can be modified in several ways. For

example, using Toeplitz SSA or SSA with centring (centre the trajectory matrix before

calculating the SVD) for the time series with linear-like tendencies, and also for the

stationary series. Perhaps one of the most important modifications of basic MSSA is

the so-called MSSA vector forecasting algorithm (Golyandina et al., 2001).

Unlike the basic MSSA forecasting algorithm, which performs a straightforward recur-

rent continuation of the time series under study, the vector MSSA forecasting performs

the continuation of the vectors in an r−dimensional space and only then returns to

the time-series representation (Golyandina et al., 2001). The fundamental assumptions

(embedding, SVD, grouping and diagonal averaging) of the vector forecasting algorithm

is the same as the basic SSA forecasting algorithm. However, the key idea of vector

forecasting is that the trajectory matrix of a time series can be continued by a sequence

of vectors. In doing so, the following matrix can be formulated:

Π = UOUOT + (1− v2)ΦΦT (2.6)

where UO = [UO
1 , . . . , U

O
r ]. Π is the matrix of the linear operator that performs the

orthogonal projection RL−1 7→ LO
r where LO

r = span{UO
1 , . . . , U

O
r }. Next, the following

linear operator can be defined as: P(v) : Lr 7→ RL, where
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P(v)Y =

(
ΠYM

ΦTYM

)
, Y ∈ Lr (2.7)

YM is a vector of last L − 1 components of Y . Consequently, vector forecasting can be

broken into two steps:

1. Define the vector Z
(m)
i (m = 1, 2, . . . ,M) as follows:

Z
(m)
i =

{
X̃

(m)
i for i = 1, . . . ,K,

P(v)Z
(m)
i−1 for i = K + 1, . . . ,K + h+ L− 1,

(2.8)

where X̃
(m)
i is the ith reconstructed column of the trajectory matrix of the mth

series after grouping and eliminating noise components, and

2. Construct the matrix Z(m) = [Z
(m)
1 , . . . , Z

(m)
K+h+L−1] and then applying hankeliza-

tion which results in a reconstructed time series ŷ
(m)
1 , . . . , ŷ

(m)
N+h+L−1, such that

ŷ
(m)
N+1, . . . , ŷ

(m)
N+h indicates hth terms of vector forecasting.

Although the fundamental assumptions for both algorithms are the same, there are

practical differences in their forecasts. Both have two basic stages: diagonal averaging

and continuation. In the basic SSA forecast algorithm, first diagonal averaging is used

to determine the reconstructed series, and then continuation is applied using the LRF.

While vector forecasting method uses these two stages in the reverse order. First, vector

continuation in Lr is performed and then diagonal averaging yields the forecast values.

If there exists a recurrent continuation of the time series, then the results of forecasting

for both vector and basic SSA coincide. On the other hand, in the case of approximate

continuation the two forecasting algorithms usually differ and it is hard to compare their

differences theoretically. According to a suggestion made by (Golyandina et al., 2001),

the vector forecasting algorithm appears to be more stable and conservative than the

basic algorithm especially for long tem forecasting. This was later confirmed in (Pepely-

shev, 2010) who agreed with (Golyandina et al., 2001) based on a single application.

Recurrent forecasting is simpler to interpret due to the description of LRFs in terms of

the characteristic polynomials. Given the lack of a statistically reliable nature in the

experiments underlying the aforementioned conclusions, it is not easy to conclude with

absolute confidence as to which of the two approaches are best, or whether the best

approach for a certain situation can be selected based on the structure of a given time

series.

2.1.5.2 Bootstrap SSA

Forecasting methods can be assessed either by Monte Carlo simulations or via a boot-

strap. However, Monte Carlo simulations can only be applied in situations when the



30 Chapter 2 Background

true model is known. In SSA, the true model for the signal is not known before filtering

and reconstruction, and thus the bootstrap procedure is applied to obtain the statistical

properties of the forecasts and construct interval estimates.

Assume that we have a time series which consists of two components YN = {yt}Nt=1 =

SN + EN where SN is the signal and EN is the noise. Under a suitable choice of the

window length L and the corresponding eigentriples, there is a representation ŶN =

ŜN + ÊN , where ŜN (the reconstructed series) approximates SN and ÊN is a vector

of residuals. Via bootstrapping (with replacement), we generate B independent copies,

EN,i; i = 1, . . . , B, of ÊN from the noise. We can then obtain B series ŶN = ŜN +

ÊN and produce h step ahead forecasts ŜN+h in the same manner as in the Monte

Carlo simulation. Average bootstrap forecasts can then be computed from the sample

ŜN+h,i; (1 ≤ i ≤ N) of these forecasts ŜN+h and be compared with the forecasting

results obtained by the basic SSA.

The most widely used model for ÊN is the model of Gaussian white noise. The corre-

sponding hypothesis can be checked with the help of the standard tests for randomness

and normality (Golyandina et al., 2001). The bootstrap simulation uses the information

obtained by the reconstructed series, which is different from the original signal. There-

fore, the simulated confidence intervals are constructed for the entire series YN , while

assuming that the series has the same structure in the future. It is shown by (Golyan-

dina & Zhigljavsky, 2013) that these intervals obtained by the bootstrap simulation

are rather stable as time moves on while the empirical ones are not. Thus, bootstrap

prediction intervals can only be suitable for relatively short-term forecasting.

2.1.5.3 Monte Carlo SSA

Intuitively, basic SSA assumes the noise, EN in the signal, plus the noise model as a

structureless component of the resulting SSA decomposition. (Allen & Smith, 1996)

shows that in some circumstances these noises can be considered as an AR(1) model,

stochastic and coloured noise. This method is called Monte Carlo SSA, which can

essentially improve the quality of the separation of signal from noise. To check the

performance of separability some Monte Carlo simulations tests are applied (Allen &

Smith, 1996; Golyandina & Zhigljavsky, 2013).

Monte Carlo SSA is also useful to test a null hypothesis that the oscillations are generated

by an AR(1) process in paleoclimate time series (Yiou et al., 2000; Roth & Reijmer, 2005;

Feliks et al., 2010). It has also been applied to study sea level cycles based on satellite

data to check correct noise structure specification in the model prediction (Jevrejeva

et al., 2006).
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2.1.5.4 Spatial SSA

It is mentioned before that MSSA associates dynamical behaviour of multiple time se-

ries to a spatial temporal characteristic of their covariance matrix. Before exploring

more about spatial SSA a brief introduction is provided on using spatial models for

econometrics time series.

The origin of spatial econometrics is usually associated with the idea of spatial auto-

correlation by (Cliff & Ord, 1972). Since then, the model has attracted a lot of atten-

tion. Positive spatial autocorrelation appears between regions, in close proximity to one

another, with similar values which are clustered together in space. On the contrary,

negative spatial autocorrelation occurs when dissimilar values for a variable are clus-

tered together in space. According to (Trendle, 2002) the space is introduced into the

estimated procedure of the spatial weights matrix, W , and measures the proximity of

regional states. In principle, the major contribution made by the spatial weight matrix

is its connection between a specified variable and the related variable in another spatial

location (Anselin, 2013).

Based on the previous studies a country or a region’s growth can effectively depend on

the growth of other countries or regions which is called spatial dependency. Literature

on spatial time series forecasting and labour markets has focused almost exclusively on

parametric time series models, in both its linear and nonlinear models. A comprehensive

study on different modelling approaches for forecasting can be found in (Floros, 2005).

This study compares the performance of twenty-three models, including different types of

ARMA, ARIMA, GARCH, TVAR, STAR etc. Their findings on the UK labour market

show that there is a close relationship between labour market conditions and forecasting

records. Later on, (Schanne et al., 2010) showed that a spatial GVAR model can be

a better alternative, or a complementary approach to those commonly used models for

regional forecasting, in which regional interdependencies are not taken into account. For

example, (Schanne et al., 2010) model regional unemployment in German labour-market

districts, and argue in favour of allowing for the possibility that economic development

in some labour markets might affect neighbouring or close regional markets. In these

studies, the preliminary assumption is that the given time series is stationary, which can

be indeed restrictive and not viable in reality. Despite widespread recognition of their

importance, we found a notable lack of research regarding the usage of nonparametric

models on spatial time series forecasting and labour markets.

(Awichi & Müller, 2013) use SSA with a spatial weighted average, to forecast a set of

rainfall recordings from several locations in Upper Austria. Their results show that

MSSA is slightly better than the univariate one but only for in-sample forecasting. It is

also argued that the results are considerably sensitive to the selection of window length

and the number of eigenvalues (Awichi & Müller, 2013). Therefore, more studies are
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necessary to further develop MSSA, whilst allowing for the presence of spatial interde-

pendency among the variables of interest without restricting its forecasting performance.

Indeed, in most practical situations it is natural to suppose them to be functions of the

underlying states, and therefore, be liable to change as location changes. This recursive

specification is the inherent core in a Bayesian time series, which creates model extrapo-

lation by developing the state via the state evolution equation into the future. The last

section of this chapter gives a brief introduction on Bayesian forecasting models and its

related works.

2.2 Bayesian Forecasting

Bayesian methods differ from classical methods in that every unknown in a system

may be assigned a distribution as opposed to having some unknown but fixed value.

These distributions are then updated as observations become available moving us from

a prior state to an a posteriori state. The original Kalman filtering algorithm is one early

example of a Bayesian approach to time series forecasting and since then several variants

have emerged such as the extended Kalman filter (Gelb, 1974; Meinhold & Singpurwalla,

1983), the unscented Kalman filter (Julier & Uhlmann, 1997) and most recently particle

filtering (Del Moral, 1996).

Using a Bayesian framework in analysing time series and forecasting was first introduced

by (Stevens & Harrison, 1971; Harrison & Stevens, 1976) as an effective model to distin-

guish transient changes from sudden real events. An extensive number of concise studies

and precise investigations shows that Bayesian forecasting has considerable advantages

over its classical counterparts such as ARIMA, ARFIMA, exponential smoothing and

also nonlinear models like ARCH (see for example (Pole, Andy and West, Mike and Har-

rison, 1994; Steel, 2001; Granger, Clive William John and Timmermann, 2006; West,

2013)). There are many reasons why a Bayesian approach to modelling has attracted

such popularity such as (Stevens & Harrison, 1973):

• Comprehensive model coverage. Almost all classical linear forecasting approaches

like Box-Jenkins and exponential smoothing models can be formed in the Bayesian

format.

• Assuming model’s coefficients as stochastic variables (for example, to cater for

drifts) to attain their interaction with the independent variable.

• To forecasting with little or no direct data (when a prior exists).

• Being of great value for a mixed model specifically at times of significant changes

which allow ultra-stable control.



Chapter 2 Background 33

• Establishing a natural means for system communication by offering dialogue be-

tween the formal statistical model and the human controller.

• Dealing with nonlinear models and unequally spaced series.

• Expandable to multivariate forecasting and those subjects to constraints on totals

or subtotals.

Alternatively, pointing out the advantage of fitting a recurrence structure to an esti-

mation process does not lead this research to ignore the importance of traditional data

analysis methods such as cross-correlation, spectral analysis and decomposition analysis.

These methods are still reliable and valuable for certain occasions (Tong, 1990).

Note that the Bayesian approach to time series forecasting is a natural bridge between

the theoretical work done in time series and practical forecasting experience. During the

last couple of decades, methodological and practical applications of Bayesian time series

analysis have been greatly extended to non-Gaussian, non-linear and more complicated

conditionally linear models (Steel, 2001).

In essence, there are different ways to classify time series analysis techniques: “para-

metric and non-parametric” or “linear and non-linear” or “univariate and multivari-

ate” including various combinations. For example, bilinear models, threshold autore-

gressive models, exponential autoregressive models, non-linear moving average models

and doubly stochastic models are non-linear parametric models (Tong, 1990; Teräsvirta

et al., 2008), while Fourier transformation models and projection pursuit models are

non-parametric non-linear models (Fan & Yao, 2003; Gao, 2007) (and also a mixture

of parametric and non-parametric forms which are called semi-parametric (Granger &

Teräsvirta, 1993; Tong, 1990)). Such studies have also focused on using non-parametric

methods for non-linear and non-stationary time series, and more examples can be found

in (Phillips, 1998; Karlsen, Hans Arnfinn and Tjostheim, 2001) on non-parametric AR

models, (Bandi, Federico M and Phillips, 2003) on non-parametric estimation of non-

stationary scalar diffusion process, (Gao & Tong, 2004) on cross-validation-based model

selection procedure for the simultaneous choice of time series components, (Wang, Qiy-

ing and Phillips, 2009) on kernel estimation of structural non-parametric augmented

regression for non-stationary time series, and (Karlsen et al., 2007) on structural non-

parametric co-integrating procedure to address endogeneity.

2.2.1 Linear vs Nonlinear

One of the most well-known classes of forecasting models are linear models. They can

obtain accurate but not error free prediction, which mainly require a specification that

should match the underlying data generation process (Geweke & Whiteman, 2006). For

example, it is assumed that data points taken over time may have an internal structure
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(such as autocorrelation, trend, seasonal or cyclical fluctuation) that should be accounted

for (Davis et al., 2006). They also embody some restrictive parametric conditions such

as normality, stationarity and linearity before processing the data (Brockwell & Davis,

2002). Therefore, these methods perform weakly on identifying complex attributes which

occur due to the aim of characterising all time series perceptions, the requirement of

stationary, residual normality and independency (Dickey et al., 1991; Harrison, 1967).

The forecast horizon is also a factor in determining the correct model specification; with

some models being particularly suited to predictions in a longer term horizon (Chatfield,

2013).

Furthermore, Autoregressive (AR) based models are basically retrogressive looking. As

such, they are generally poor at predicting turning points, unless the turning point rep-

resents a return to long-run horizons (Franses, 1998). Moreover, linear models can only

interpret regular behaviour like exponentially decaying (or growing) or a periodically

oscillating structure, thus those intrinsic dynamic and irregular behaviour of the series

have to be attributed to some sort of non-linear paradigms (Kantz & Schreiber, 2004).

There is, indeed, an interesting type of duality between the concepts of non-stationarity

and non-linearity. A common method for managing both concepts is to separate the

parameter space into a large number of small segments, and consider the process as

locally stationary (or linear) inside each segment. A formal description of this method

prompts the development of a non-stationary process and non-linear models in respect

to evolutionary time dependent spectra in (Priestley, 1965) and later on used by (Huang

et al., 1998; Zhong, 2006).

Providing such models with more flexibility may result in over-fitting in a sample. There-

fore, it is recommended by (Teräsvirta et al., 1993) to first test linearity against non-

linearity and then only if linearity is rejected then build a non-linear model. There

are a wide range of tests to detect linearity, such as a non-parametric non-linear test

proposed by Hjellvik and Tjstheim (1995), in which it may assist the practitioner in

deciding whether to apply a non-linear model rather than a linear one. The test calcu-

lates the discrepancy between the best linear and the best non-linear predictor (more

can be found in (Hardle et al., 1996; TeIjdsvirta, 1990; Lee, T.-H., H. White & Granger,

1993)). (Gao & Tong, 2004) claims that semi-parametric methods can provide a model

with better predictive power than non-parametric methods but this is highly data set

dependent. Later on, (Gao et al., 2009) proposed a (non-parametric kernel) test for

non-linearity and non-stationarity which can be applied to a class of non-linear autore-

gressive mean models. The test process is mainly associated with its parametric version

test to include non-stationary, also known as the Dickey-Fuller test. Among all these

tests only a few of them can handle various situations simultaneously (Teräsvirta et al.,

2008), squashing function based models (except for data generated by bilinear models)

and Lagrange multiplier (LM)-type test (Zivot & Wang, 2006).
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2.2.2 Nonparametric vs parametric

Basically, building a nonparametric model can decrease the subjectivity of selecting a

particular type of a parametric model before exploring the given dataset (Hardle et al.,

1996). Even though complexity of nonparametric models brings more difficulties into

the model (such as choosing smoothing parameters), and sometime causes poor per-

formance in high dimensional cases. Hence, the nonparametric approach often makes a

general assumption by giving priority to choose an appropriate lower dimensional model,

and then picks up the most informative features of interest through the datasets. Un-

like the parametric version of it, which select a particular structure from a parametric

class by estimating a fixed finite number of parameters, a non-parametric model esti-

mates covariance or the spectrum of the series without assuming that the series has any

particular structure, and will update the approximation precision when new informa-

tion becomes available (Hardle et al., 1996). In line with prediction and forecasting,

these non-parametric methods mainly focus on conditional means (if a point forecast

is desired), conditional variances (if interval forecast of future volatility is desired) or

complete conditional densities in some periods (if higher order moments of a series are

potentially important), given the past of the process (Hardle et al., 1996). The following

models are suggested to approximate a conditional mean: index models (Bierens, 1988),

non-linear additive AR models (Hastie, Trevor J and Tibshirani, 1990), adaptive spline

threshold AR model (Lewis, Peter AW and Stevens, 1991) and functional coefficient AR

model (Hardle et al., 1996), and conditional variance: density estimation with correlated

observations using non-parametric kernel methods (Tjøstheim & Auestad, 1994), local

polynomial regression (Hardle, Wolfgang and Tsybakov, Alexandre and Yang, 1998) and

a Hermite expansion approach (Gallant, A. Ronald & Tauchen., 1989).

One important key point, which allows nonparametric models to be functional and

practical, is that they should be able to establish a direct relation between new economic

theories and both linear and non-linear econometrics models (Pesaran & Potter, 1992).

Therefore, it completely implies the necessity of developing potential models based on

non-linear structural models in both theoretical and empirical research. It should be

emphasised, however, that the lack of structural models is one of the most crucial facts

about many nonlinear time series models. According to (Pesaran & Potter, 1992), there

are two separate but closely attached reasons for that: First, the absence of a closed form

formula and the qualitative nature of many of the results in non-linear dynamic or chaos

theory, which means that there is no clear initial point. Second, however, one might

believe that linear models aggregate to produce linear models, and it is not possible to

believe that nonlinear models aggregate to nonlinear models in the same class (Pesaran

& Potter, 1992). Hence, most theoretical and practical studies on non-linear time series

modelling focused mainly on developing non-linear structural models. One of the most

commonly used approaches is using Bayesian inference for time series modelling.
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It seems to be widely accepted that the relationship between economic time series is

mostly non-linear (Priestley, 1980; Franses, 1998; Zivot & Wang, 2006). In other words,

most economic time series contain atypical observations, clustering of outliers and non-

linearities, (Franses, 1998). The key examples of these sort of series are industrial

production indices and unemployment rates (Gupta & Kabundi, 2011). These series

display asymmetric patterns or erratic behaviours accompanied with high frequency

when the economy is overheating compared to when it is underperforming (Priestley,

1980). Therefore, those non-linear and asymmetric behaviours must be included in

modelling the series and forecasting (Haggan et al., 1984).

2.2.3 State Space Models

For analysing nonlinear systems, both deterministic and stochastic dynamical systems,

the general framework of state space models is very useful. State space models enable

the modeling of a variety of unobservable but interpretable dynamic components by

applying Kalman filtering to estimate them in such a way that they can handle shifts,

structural breaks and time-varying parameters of some static models. A state space

model can also handle irregular or unequally spaced data in two different ways. First

by defining the model, which varies over different time intervals, and second by forming

a regular interval while treating empty intervals as missing values (Harrison & West,

1987). In general, there are sufficient benefits of using state space models which is listed

below:

• Handling missing values naturally

• Incorporating explanatory variables into the model without difficulty

• Allowing regression coefficients to vary stochastically over time

• Assuming no additional theory for forecasting subsequent to all that is required

to extend the Kalman filter forward into the future. To find more about them see

(Harrison & West, 1987; Durbin & Koopman, 2012).

There is also a comparatively long history of using state space models in econometrics,

for example a well-known reference goes back to (Harrison, 1967; Harvey, 1984), and a

more precise exploration is provided by (West & Harrison, 1997). Later on (Koop, 2003)

provide a comprehensive review of the application of Bayesian analysis to state space

models.

These state space relations can be often modelled by a set of differential equations.

The mathematical equations depicting the system can be deterministic or stochastic,

depending on the way the differential equation is constructed, and the dynamical system
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might be linear or non-linear. The main idea of state space models is that a time series

yt is generated by an observation or measurement equation:

yt = Htθt + εt (2.9)

while the transition between the state vectors, θt (determining levels, trends or season-

ality), can be dynamically modelled by the following system known as the transition

equation:

θt = Ft−1θt−1 +Wt (2.10)

Ht is an inherent characteristic of the system conducting its motion and Ft−1 is a state

transition matrix and is typically characterised in a block diagonal form and opens to

modification over time (West, 2013). Depending on the application area, errors εt and

Wt can be considered in different forms (They are usually considered as mutually inde-

pendent variables with Gaussian distribution). Technically there is no need to assume

a Gaussian distribution for errors, however, defining a prior distribution is a necessity

to take the initial values of the state vectors (Steel, 2001). A simple case of a state

space model is the conventional linear model mostly used by classical statisticians and

can be obtained by replacing θt with θ and considering Wt as an independent variable

of time. Alternative special cases can be set by choosing different types of Ft and Ht

in both measurement equation and transition equation (Harrison & West, 1987). The

most commonly used models are considered below:

• A Random walk driven by noise

• Local trend/polynomial dynamic linear models

• Dynamic regression

• Seasonal dynamic linear models

• Autoregressive and time varying dynamic linear models

Another way of categorising a linear state space model or a structural time series is mod-

elling each single component differently. Different time series components, like trend,

seasonal, cyclical and irregular variability can be formed individually before being for-

mulated in the space state model. On the other hand, regarding which component is

added to the model, there can be a broad variation of state space modelling such as:

• Trend component: Sum up the model with a slope term which is generated by

random walk and called a local linear trend model.

• Seasonal component:

– Time domain effect
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– Quasi-Random walk, (Harrison & Stevens, 1976)

– Trigonometric effect

– Time-Varying stochastic seasonal effect, (Young, Peter Colin and Ng, Cho

Nam and Lane, Kevin and Parker, 1991)

– Trigonometric effect with Quasi-Random walk model (frequency domain model)

– Trigonometric effect with stochastic model

• Cyclic component

• Explanatory variables and intervention effects

Data from various information sources can be incorporated into the model for prediction

and estimation. (Harvey, 1984) defined a unified framework for univariate time series

regarding trend, seasonality and irregular components and reviewed an extensive variety

of extrapolative forecasting techniques to establish a relationship between them. In his

study he came to the conclusion that Kalman filtering can be the integrated treatment

of a variety of forecasting methods (Harvey, 1984). Basically, a Kalman filter is recom-

mended because of its ability to establish a recursive relationship between the model

parameters for either updating or revising (which is considered as a filtering process)

(Turner, 2011).

2.2.3.1 Kalman Filtering

The early stage of state space models was established by control engineering rather than

by statisticians, as found in the publication by (Kalman, 1960). In his study, Kalman

not only proposed that a wide range of current models can be formed by a state space

model, but he also proves that the computation necessity for the practical application of

state space models could be set up in sequential form mainly because of their Markovian

characteristic. The principle aim of this method is updating the observation equation

at each time interval by the parameters, which evolve over time and which are not

directly observable. Provided that a model can be formed as a state space model, a

wide range of significant and interpretable statistical analysis can be made immediately

available. Henceforth, it is not just the optimal estimation of future states that can

be accomplished using the Kalman filter, additionally, the foundation of a parameter

estimation can be also be done by the Kalman filter on the grounds that it is able to

specify the likelihood function in the matter of one step ahead forecast errors (Harvey,

1984).

The Kalman Filter is an optimal estimator for linear system models and consists of two

steps: prediction and updating. In the first step, it permits evaluation and estimation to

be finished inside a well-organised system and, besides, it permits forecast mean square

errors to be measured.
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Theorem 2.3. The Kalman Filter. The Bayesian filtering equations for the linear

filtering model 2.9 and 2.10 can be evaluated in closed form and the resulting distributions

are Gaussian:

p(θk|y1:k−1) = N(θk|m−k , P
−
k ), (2.11)

p(θk|y1:k) = N(θk|mk, Pk),

p(yk|y1:k−1) = N(yk|Hkm
−
k , Sk).

The parameters of the distribution above can be computed with the following Kalman

filter prediction and update steps.

1. The prediction step is

m−k = Fk−1mk−1, (2.12)

P−k = Fk−1Pk−1F
T
k−1 +Qk−1.

where εt ∼ N(0, Qk−1), Wt ∼ N(0, Rk) and θ0 ∼ N(m0, P0).

2. The update step k is

vk = yk −Hkm
−
k , (2.13)

Sk = HkP
−
k H

T
k +Rk,

Kk = P−k H
T
k S
−1
k ,

mk = m−k +Kkvk,

Pk = P−k −KkSkK
T
k .

The recursion is started from the prior mean m0 and covariance P0.

This technique relies substantially on an inherent inference in which more weight ought

to be given to the latest observation while repeating the procedure systematically. The

theoretical implementation of this method is well studied by (Grewal, 2011; Grewal et al.,

2007; Sarkka, 2013).

A nonlinear version of the Kalman filter, which describes how non-linear dynamics may

be approximated by a local linearisation, is called an Extended Kalman Filter (EKF).

One of the most common versions of EKF are the Taylor based EKF. It uses a Taylor

series approximation about the transition function (no longer a matrix).

Theorem 2.4. The Extended Kalman Filter. The prediction and update steps of the

first order additive noise extended Kalman filter are:
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1. Prediction:

m−k = F (mk−1), (2.14)

P−k = Fθ(mk−1)Pk−1F
T
θ (mk−1) +Qk−1.

2. Update:

vk = yk − h(m−k ), (2.15)

Sk = Hθ(m
−
k )P−k H

T
θ (m−k ) +Rk,

Kk = P−k H
T
θ (m−k )S−1

k ,

mk = m−k +Kkvk,

Pk = P−k −KkSkK
T
k .

where Fθ is the Jacobian matrix of F .

The main requirement of the EKF algorithm is that both the observation equation and

the transition equation ought to be differentiable. Therefore, in the so-called second

order EKF second order terms of Taylor series expansions is taken for tracking a nonlin-

earity. There are other types of EKF such as the statistically linearised filtering (Gelb,

1974) (replace the first order Taylor series expansion with a statistical linearisation),

the Unscented Kalman filter (Julier et al., 1995; Wan & Van Der Merwe, 2000) (di-

rectly approximates the mean and covariance of the target distribution instead of trying

to approximate nonlinear functions), Gaussian filtering (Maybeck, 1982) (use Gaussian

assumed density approximation and approximate its mean and covariance via moment

matching), the Gauss-Hermit Kalman filter (Ito & Xiong, 2000) (replace Gaussian inte-

grals in the Gaussian filter algorithm with Gauss-Hermit algorithm) and others (Ito &

Xiong, 2000; Sarkka, 2013).

2.2.3.2 State Dependent Models

As mentioned earlier, nonlinear models can be categorised in different ways. The most

commonly used nonlinear models are Bilinear models (Mohler, 1973), Threshold autore-

gressive models (Tong & Lim, 1980) and Exponential autoregressive models (Haggan &

Ozaki, 1981). For example in bilinear models the parameters are a linear function of

εt−iyt−i, in Threshold AR models parameters are a step-function of yt−d, and for expo-

nential AR models they are an exponential function of y2
t−1. Each of these classes is a

particular type of non-linearity, and therefore, this makes it hard to decide which one

is the most appropriate model for a given set of data. According to (Priestley, 1980) a

nonlinear model should be able to capture a better fit to the data with more flexibility,

as well as uncovering interesting patterns such as limit cycles, amplitude-dependent fre-

quency and jump phenomena, which can never be determined easily by linear models.
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Therefore, he proposed the State Dependent Model as a general class of non-linear mod-

els, because of its greater flexibility to cover non-linear time series models, as well as

standard linear models as special cases. It uses a sequential type of recursive algorithm

to distinguish state dependent models, and determines their applications in forecasting

and detecting non-linearity.

Practically, using state dependent models is advantageous in two aspects. First they can

be used straightforwardly in line with prediction and forecasting, and secondly, they can

provide an overview of the inherent nonlinear characteristics in a given series to check

the credibility of the fitted model (like bilinear, threshold autoregressive and exponential

autoregressive), as they can be fitted to the data with no particular prior information

about the type of non-linearity. A locally linear ARMA model, for example, may be

expressed as:

yt = µ(θt−1) +
k∑

u=1

Φu(θt−1)yt−u +
l∑

u=1

Ψu(θt−1)yt−u + εt, (2.16)

where {Φu} are the AR coefficients, {Ψu} are the MA coefficients, µ is a local mean,

and note that all of the parameters are dependent on the state vector of the model at

time t− 1.

Selecting different forms for µ,Φ and Ψ leads to the fact that the SDM includes, as special

cases, linear models (ARMA), bilinear models, exponential autoregressive models and

threshold autoregressive models. For example, by taking µ,Φ and Ψ as constants and

independent of the state vector the (2.16) reduces to an ARMA model (For further detail

see (Priestley, 1980).

More rigorously, the state observation and transition equations (2.9) and (2.10) are

basically determined by the potentially time varying quadruplets {Ft, Gt, εt,Wt} and

time varying state vector θt, which makes them versatile to evolving circumstances. In

state dependent models the transition matrix Ft is assumed to be tied down firmly to

the state of the process at time t − 1. In other words, the coefficients can be evolving

based on both time and the state of the process, and be automatically adjustable to

shifts and structural breaks. Hence, µ,Φ and Ψ are considered as analytic functions

of θt which change over time. A non-linear/non-stationary part of the model might be

related to the dependence of Φu and Ψu on both θt and t (Priestley, 1981). To conclude

what have mentioned before, the SDM model can be re-written as follows:

yt =Htθt + εt (2.17)

θt =Ft−1(θt−1)θt−1 +Wt

In SDM, the practical strategies for non-linear models are found, in essence, on splitting

up the state space into a large number of small segments, and considering the process
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as locally linear inside each segment. To paraphrase Priestley, by saying that the state

dependent model is formed by bending the linear model, it means one is taking a local

linear model at time t and bending it, we can obtain the best fit to the next observation,

yt+1 . On the other hand, local can also imply small departures from the current state

of the process, and in this case the coefficients would be time-dependent rather than

state-dependent, and in parallel can describe non-stationarity rather than non-linearity

(Priestley, 1981). Considering {φ(i)
u } as a slowly changing function of y

(i)
t this results in

updating equations for the coefficients:

φ
(i)
u,t = φ

(i)
u,t−1 + ∆y

(i)
t−uγ

(t)
u , u = 1, . . . , L− 1, (2.18)

where ∆y
(i)
t−u = y

(i)
t−u−y

(i)
t−(u−d) and γu is a gradient. The gradient parameters γ

(t)
1 , . . . , γ

(t)
L−1

are unknowns, and must be estimated at time t. The basic strategy is to allow these pa-

rameters wander in the form of random walks. The random walk model for the gradient

parameters may be expressed in matrix form as:

Bt+1 = Bt + Vt+1, (2.19)

where Bt = (γ
(t)
1 , . . . , γ

(t)
L−1) and Vt is a sequence of independent matrix-valued random

variables such that Vt ∼ N(0,ΣV ). The estimation procedure then determines, for each

t, those values of Bt, which seeks to minimise the discrepancy between the observed

value of yt+1 and its predictor ŷt+1, computed from the model fitted at time t. The

algorithm is thus sequential in nature and resembles the procedures used in the EKF

algorithm.

In fact, the relative magnitude of ||Σν ||, the variance-covariance matrix of Vt to σ2
ε should

determine the sensitivity of the algorithm to changes in Bt. The choice of Σν depends on

the assumed smoothness of the model parameter as a function of yt. If ||Σν || is small in

comparison with σ2
ε then B̂t should not change rapidly but be effectively constant over

time. On the other hand, if ||Σν || is large in comparison with σ2
ε then B̂t will change

rapidly in order to ensure a good fit for each new observation. Priestley (Priestley,

1981) began the algorithm with an ARMA model to estimate the initial values like

µ,Φu,Ψu and σ2
ε and consequently the values of Σν will depend on how quickly the

practitioner thinks the Bt are changing, i.e. Σν depends on our assumed smoothness

of the Bt. Selecting Σν in which its diagonal elements are related to σ̂2
ε , endow the

updated stage with more flexibility in terms of changing of the model parameters. The

diagonal elements of Σν are set equal to σ̂2
ε multiplied by some constant α called the

smoothing factor, and the off-diagonal elements are set equal to zero. However, if the

elements of Σν are set too large, the estimated parameters become unstable , but if

the elements of Σν are made too small, it is difficult to detect the non-linearity present

in the data, since the procedure is then virtually equivalent to a recursive fitting of a

linear model. The best procedure in practice appears to be to reduce the magnitude of
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the smoothing factor until the parameters show stable behaviour. If the parameters still

appear to be far from smooth, the smoothing factor may be reduced further. In addition,

the parameters may be smoothed by a multidimensional form of the non-parametric

function fitting technique (see for example (Priestley & Chao, 1972)). Having carried

out this procedure, it is hoped that the resulting parameter surfaces give a clearer idea

of the type(s) of non-linearity present in the model.

(Priestley, 1981) shows that an SDM is able to detect the linear part of a bilinear model

more precisely than its bilinear part, as one would expect, because of the inherent

difficulty of bilinear estimation. They also showed empirically that the SDM algorithm

is not sufficiently accurate for linear threshold data generating processes, due to the

model being unable to recognise an abrupt change in the coefficients. However, it can

identify smooth changes of the coefficients of a non-linear data generating process. As

a consequence, the algorithm requires more development and justification especially for

linear threshold models to address the issue and make it flexible in detection of changes

regardless of the fact of how sharp they are.

A smooth change of the gradient over time is yet another basic assumption that underlies

the SDM algorithm. In the SDM algorithm the gradient parameters are assumed to

follow a random walk, and a smoothing factor is defined to allow more flexibility in

the variance of the innovations. The study by (Haggan et al., 1984) compares the

actual behaviour of the gradient parameters and their estimates for linear threshold

AR models, which display more variability, and hence the algorithm can be improved

by considering the fact that the behaviour of the gradient parameters can be modelled

by some stationary time series models rather than by a random walk. This form of

behaviour can also be seen in other models like the bilinear, exponential AR and non-

linear threshold models, and the smooth-transition autoregressive (STAR) models of

(Chan & Tong, 1986) and (Granger et al., 1993).

The SDM has been recognised as a viable algorithm for modelling non-linear time se-

ries. But of course further improvement and study is needed in terms of modelling

gradient parameters to enhance the accuracy and efficiency of the algorithm, especially

for threshold models.

2.2.4 Bayesian SSA

A combination of SSA and Bayesian modelling is proposed by (Holmström & Launonen,

2013). They argue that there exists various source of uncertainty inside the time series,

and thus it is hard to decide if the extracted signal includes true features of an underlying

phenomena or just artifacts of noise (Holmström & Launonen, 2013). Thereupon, they
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suggest that a Bayesian verification7 is expected to affirm the validity of the oscillatory

periods found by SSA.

At that point, to discover an interesting feature of an extracted signal underlying the time

series, such as trends and periodicities, they project the posterior from samples taken

from the distribution of the eigenspace generated through SSA. Bayesian inferences are

then made upon the credible features in these projections. The slopes of the projected

sample can then be used to examine whether the extracted underlying component is

credibly presented in the time series. This approach is called Posterior SSA (PSSA)

which basically borrows the idea of the BSiZer methodology, scale space technique that

uses smoothing to reveal interesting features, as introduced by (Erasto & Holmstrom,

2005).

To best of our knowledge, PSSA is the only work that has conducted Bayesian modelling

on SSA. Therefore, more studies and research are needed to further develop MSSA (or

SSA) in other aspects as well, such as forecasting. In the next chapter, this research

will report on our exploratory analysis about the core of SSA forecasting, the LRF

coefficients, and thereafter it will show how the accuracy of a forecast can be improved

by modifying the coefficients via state dependent models.

7In the sense that the extracted modes are statistically significant.



Chapter 3

Preliminary analysis

3.1 Introduction

As discussed in Section 2.1 the primary aim of SSA is to decompose the original time

series into the sum of a small number of independent and interpretable components

such as a trend, oscillatory component(s) and noise. Therefore, SSA enables us, upon

reconstruction of the series under study, to produce forecasts for either the individual

components of the series and/or the reconstructed series itself. This is useful if ones

want to make predictions about, for example, the deterministic/trending component of

the series without taking into account the variability due to other sources (Hassani &

Zhigljavsky, 2009).

The core of SSA forecasting lies with the recurrent coefficients of LRF (Formula 2.4

in Section 2.1.4). In this Chapter we perform a preliminary analysis of the LRF co-

efficients.1 We begin our discussion by looking briefly at some standard techniques

to statistically approximate the distribution of these coefficients for further analysis.

Thus, bootstrapping is employed, an important nonparametric tool, for assessing and

improving the properties of coefficients and their forecasts. As a resampling method, a

bootstrap approximates the shape of the sampling distribution by simulating replicate

experiments on the basis of the data and calculates a bootstrap estimate of the statistic.

As explained in Section 2.1.5.2, a bootstrap SSA forecast is proposed by (Golyandina &

Zhigljavsky, 2013). However, there are some issues regarding the bootstrap SSA forecast.

This approach is very sensitive to noise, in addition, the level of uncertainty can increase

rapidly with the forecast horizon. Our preliminary analysis suggests that a bootstrap

can be used not only for replicating forecasts but also for resampling the LRF coeffi-

cients. In this way, we will have some empirical information about the coefficients which

allows us to statistically approximate their underlying characteristics. Furthermore, it

1The results described in this chapter have been published in International Journal of Energy and
Statistics (Rahmani, 2014).

45
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will be shown that using a bootstrap of the LRF coefficients may improve forecasting

accuracy. Rather than producing a point estimate forecast, it can likewise be utilised

to approximate Forecast Intervals (FI) for assessing future uncertainty, comparing vari-

ous forecast results more thoroughly and exploring different scenarios based on different

assumptions more carefully.

The efficiency of the bootstrapped LRF coefficients is tested by using both synthetic data

and some real data sets for different levels of noise and window lengths. In particular,

the results would seem to suggest that the average bootstrap LRF coefficient results

in a more reliable forecast for various window lengths and at different noise levels. In

addition, the empirical results affirm that updating coefficients brings about narrower

and smoother boundaries in comparison with the bootstrap SSA forecast.

3.2 Bootstrap LRF

Theoretical approaches to extract information about the LRF coefficients would require

necessary assumptions such as identification of their correct model or knowing the gener-

ating process of the time series. In contrast, a bootstrap approach does not require any

assumption about the validity of the model, the form of their generating process or the

form of the distribution of the forecast errors. The only requirement for bootstrapping

is that data is independently sampled from a single source distribution. As stated in

Section 2.1.5.2, bootstrap SSA (Golyandina et al., 2001) uses a bootstrap in the residuals

EN , due to the fact that from the white noise extracted by SSA it is possible to ensure

independence, the required condition for application of the method.

In order to forecast at a horizon, h, using bootstrap SSA, B (replicate) forecasted

values are generated for each time horizon which can be used to calculate lower and

upper percentiles of each observation to establish a boundary for the forecast. We

also concluded that it might be useful to use other related information provided by

bootstrap SSA. It was then observed that per iteration of bootstrapping SSA provides

information regarding the underlying coefficients of the LRF which can be useful for

further analysis. Thereupon, the bootstrap LRF coefficients were utilised to assess the

properties of coefficients and improve their forecasts.

Of particular importance, bootstrap sampling provides some information about the co-

efficients Φi in each replication, B, which are used here to build a smoother forecast

interval and as a result a point forecast. For this to happen, we simply consider the

mean of the coefficients, Φ̄ = 1
B

∑B
i=1 Φi as an unbiased estimator to further analyse

their distribution, forecasts and forecast intervals (which are called FIΦ̄). The following

section presents empirical results to gain a better understanding of the key role of the

LRF coefficients in both synthetic and real time series.
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3.3 Empirical Results

As discussed earlier, we aim to examine the performance of the bootstrap LRF coeffi-

cients in two aspects. Firstly, we want to see how much the accuracy of the forecasts can

be improved by further investigation of the coefficients of the LRF (tested by prediction

root mean square error (RMSE)). It is therefore of interest to measure the uncertainty

level of the forecast intervals provided by these coefficients. Secondly, we explain how

this uncertainty affects the behaviour of these coefficients.

One of the most important factors to evaluate the level of uncertainty of forecast limits

is the criteria to measure what percentage of data is included in the predicted interval.

The significance level of a forecast interval is usually denoted as α = 5% to evaluate

the coverage percentage of boundaries. A high percentage of coverage indicates that the

provided boundary covers most of the signal (Christoffersen, 1998). It is necessary to

take into account that wide boundaries also imply a high level of uncertainty. Therefore,

the asymmetry ratio of a forecast interval is also calculated as another criteria to evaluate

the reliability of forecast intervals (Christoffersen, 1998). The asymmetry ratio (ASR)

of an FI is defined as:

ASR =
Y − LFI
UFI − LFI

(3.1)

where UFI is the upper bound of FI, LFI is the lower bound of the FI, and Y is the

original time series (O’Connor et al., 2001). If the asymmetry ratio is approximately

0.5, it shows a symmetric interval for a forecast. If the value is greater than 0.5, the

acquired lower bound tends to be further away from the upper bound (O’Connor et al.,

2001).

The following section evaluates the performance of the bootstrap LRF coefficients for a

synthetic time series with respect to bootstrap SSA. In addition, the effect of the signal

to noise ratio and window length are examined.

3.3.1 Synthetic time series

We begin our experiment by using a simple time series with a deterministic trend.

Define a time series, YN as YN = exp(νt) +EN ; (t = 1, . . . , N), where EN is drawn from

a normal distribution. When L = 2 and r = 1, based on the LRF, a one-step ahead

forecast can be expressed as in Equation (2.4) as ŶN+1 = φ1YN where φ is obtained from

the eigenvector of the extracted signal (Section 2.1.4). We expect that a different level

of noise may result in a different φ1 in each step and consequently different forecasts.

Thus, the analysis considers different ranges of signal to noise ratio, from 4 to 15. In

total 200 sample paths are generated each with 1000 steps. The first 100 samples are

considered as in-sample and the rest as out-of-sample.
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Figure 3.1: Realisation of the synthetic data.

Figure 3.1 shows a realisation of the synthetic datasets and compares the FI generated

by bootstrap SSA and the bootstrapped LRF coefficients for a SNR= 12. As seen

in Figure 3.1(b), the FI provided by bootstrap SSA is wider in comparison with its

counterpart, the bootstrapped LRF coefficient. In this case, we can therefore conclude

that the bootstrapped SSA FI covers most of the series with high a level of uncertainty

and achieves a less accurate forecast (based on the RMSE in Table 3.1) whereas the

bootstrap LRF coefficient illustrates tighter bounds with a lower level of uncertainty

and higher accuracy (Table 3.1).

As stated before, the following measures are used to evaluate the performance of the

competing versions of bootstrap SSA. The (prediction) RMSE and the Ratio of RMSE

(RRMSE). The ratio of RMSE is defined as:

RRMSE =

(
N∑
i=1

(ŷt+h,i − yt+h,i)2

) 1
2

/

(
N∑
i=1

(ˆ̂yt+h,i − yt+h,i)2

) 1
2

(3.2)

where ŷt+h,i is the h-step ahead forecast obtained using bootstrap LRF coefficients ,
ˆ̂yt+h,i is the h-step ahead forecast from bootstrap SSA, and N is the size of the out-of-

sample data set.

Table 3.1 presents the results for the average bootstrap FI for the synthetic time series.

The first column of Table 3.1 shows a range of values for SNR and the second column is

for different window lengths. The results confirm that SSAΦ̄ outperforms bootstrap SSA

in both aspects. In fact, the quality of the forecast with the Bootstrap LRF coefficients

is far superior for a noisy time series. That being the case, updating the LRF coefficients

improves the forecast accuracy and results in more a reliable FI than for bootstrap SSA.
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Table 3.1: Post-sample forecast accuracy measures for synthetic exponential time
series.

RMSE RRMSE Coverage percentage ASR

SNR L SSA SSAΦ̄

SSAΦ̄

SSA SSA SSAΦ̄ SSA SSAΦ̄

15 6 0.28 0.25 0.90 0.68 0.66 0.05 0.19
12 0.17 0.14 0.83 0.69 0.70 0.08 0.34
24 0.08 0.06 0.75 0.75 0.73 0.11 0.47
36 0.08 0.05 0.63 0.76 0.74 0.12 0.47
48 0.06 0.04 0.64 0.82 0.78 0.17 0.51

12 6 0.36 0.32 0.89 0.78 0.65 0.85 0.74
12 0.44 0.40 0.91 0.70 0.58 0.86 0.71
24 0.24 0.18 0.77 0.71 0.61 0.76 0.66
36 0.26 0.23 0.87 0.56 0.61 0.87 0.70
48 0.30 0.26 0.87 0.45 0.61 0.88 0.73

10 6 0.43 0.39 0.89 0.70 0.64 0.93 0.84
12 0.37 0.33 0.89 0.40 0.54 0.93 0.86
24 0.40 0.35 0.88 0.10 0.32 0.97 0.91
36 0.45 0.37 0.82 0.11 0.37 0.96 0.88
48 0.54 0.33 0.60 0.14 0.48 0.96 0.87

7 6 0.26 0.19 0.73 0.82 0.71 0.80 0.54
12 0.39 0.33 0.84 0.68 0.60 0.07 0.15
24 0.28 0.25 0.91 0.37 0.60 0.05 0.23
36 0.26 0.23 0.90 0.29 0.63 0.05 0.24
48 0.25 0.21 0.85 0.36 0.67 0.05 0.28

5 6 0.31 0.24 0.75 0.87 0.79 0.07 0.26
12 0.42 0.36 0.86 0.86 0.78 0.15 0.40
24 0.89 0.79 0.88 0.85 0.67 0.50 0.61
36 0.23 0.12 0.50 0.86 0.70 0.35 0.50
48 0.35 0.10 0.30 0.86 0.75 0.26 0.49

4 6 0.28 0.19 0.68 0.83 0.76 0.15 0.45
12 0.32 0.26 0.80 0.75 0.73 0.07 0.28
24 0.35 0.26 0.74 0.78 0.70 0.18 0.45
36 0.30 0.19 0.62 0.78 0.70 0.19 0.45
48 0.33 0.23 0.69 0.76 0.73 0.14 0.42

Next, the impact of window lengths and noise levels on coverage percentage is examined.

As can be observed from Table 3.1, by increasing noise levels the coverage percentage be-

comes larger, which confirms the sensitivity of bootstrap SSA to the noise level, whereas

these values fall smoothly with window length. However, SSAΦ̄ results in larger cover-

age values, these values being similar for various level of noise. Thus in this case it is

empirically observed that SSAΦ̄ is less sensitive to noise in comparison with bootstrap

SSA.

Lastly, Table 3.1 compares the ASR of the SSA bootstrap forecast interval with the

bootstrapped LRF coefficients. It shows the bootstrapped LRF coefficients result in a

greater asymmetry around the time series. In nearly all cases the bootstrapped SSA co-

efficients result in ASR values closer to 0.5 demonstrating that this approach is superior

in terms of the ASR.

The next section examines the performance of these two models with respect to three

real data sets.
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3.3.2 Real data sets

In this Section, three sets of data (Figure 3.2) with varying characteristics are used to

examine the performance of bootstrapped SSA. The first time series is one of the most

commonly used time series known as the death series (Golyandina et al., 2001). The

death series represents the monthly accidental deaths in the USA between 1973 and

1978 (Figure 3.2(a)). The data has been used by many researchers and can be found in

many time series sources (Chatfield, 2013; Brockwell & Davis, 2002; Davis et al., 2006;

Hassani, 2007). As shown in (Hassani & Thomakos, 2010), the best window length and

number of eigenvalues for the death series are L = 24 and r = 13 respectively.
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Figure 3.2: Three time series used for comparison.
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The second time series is the Air Passengers series (Box et al., 2015; Brockwell & Davis,

2002). This series shows monthly totals of international airline passengers between 1949

and 1960 (Figure 3.2(b)). Based on the study by (Mahmoudvand et al., 2013) the

optimal parameter values are L = 22 and r = 12. The third time series is a seasonally

adjusted series which measure the production output in the manufacturing of Vehicles

in France (Figure 3.2(c)) (Note: Industrial Production series will be explained in detail

in Section 4.3.2).

The Death time series exhibits a strong seasonal pattern, with the maximum (peaks)

for each year occurring in July and the minimum (troughs) for each year occurring in

February (Brockwell & Davis, 2002). The presence of a trend in Figure 3.2(a) is much

less apparent than in the Air Passengers series. The Air Passengers series shows both

a strong annual pattern and a nearly linear trend. In addition, the variability of the

series increases with time, it is suggested by (Brockwell & Davis, 2002) that in this

case a logarithmic transformation of the data be used to equalise the variance. The

vehicle production series shows a sudden drop after a long period of growth. This

structural break transfers the underlying system from one state to another which brings

some uncertainty about the performance of the model pre-break and after break. These

three time series show different combinations of time series components such as a trend,

oscillatory components and noise and are thus ideal for comparing the bootstrapped

models.

It is typical that forecast errors from differing models are cross-correlated breaking the

assumptions inherent in many paired t-tests. Therefore, the Granger-Newbold (GN)

test (Mizrach, 1996) which tests not the errors but the differences between forecast

errors for significance is employed2. The forecasting accuracy is also assessed for four

different horizons, 1−step ahead, 3 and 6−steps ahead and one year ahead (12−step).

Table 3.2 summarises the post-sample forecast accuracy measured by the two competing

models over the three data sets.

In Table 3.2 the bootstrapped LRF coefficient model performs better (wrt RMSE) in all

cases with 8 out of 12 figures being statistically significant (α = 0.01). It is interesting

to note that the results are not significant for the French vehicle production data which

may be due to the structural break as will next be examined. Finally, we note that

although the results are significant they might not be considered important in these

cases.

As mentioned before, there is an unexpected shift in the vehicle time series which can lead

to uncertainty and unreliability with SSA based forecasting. Therefore, more investiga-

tion is needed to evaluate the performance of the core of the SSA forecasts, specifically

the coefficients of the LRF, in the presence of a structural break. Figure 3.3 illustrates

2More details can be found in Appendix A.
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Table 3.2: Post-sample forecast accuracy measures for the real time series.

RMSE RRMSE

Series h SSA Boot SSA SSAΦ̄
BootSSA
SSA

SSAΦ̄
SSA

Death 1 521.00 520.10 502.20 1.00 0.97
3 604.31 599.37 568.10 0.99 0.95 *
6 629.20 604.44 570.50 0.96 * 0.94 *
12 775.59 736.50 560.20 0.95 * 0.76 *

Air Passengers 1 22.36 22.36 20.96 1.00 0.94 *
3 24.28 24.29 23.33 1.00 0.96 *
6 28.98 28.93 27.94 1.00 0.97 *
12 40.25 40.20 38.25 1.00 0.95 *

Vehicle 1 6.50 6.50 6.20 1.00 0.95 *
3 10.34 10.35 10.29 1.00 0.99
6 15.50 15.53 15.43 1.00 0.99
12 21.69 21.74 21.15 1.00 0.97

Note:* indicates results are statistically significant at α=0.01 based on modified GN test.
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Figure 3.3: Cloud map of φ1 for the Vehicle time series.

a cloud map of the LRF coefficients.3 It is evident that, before the structural break (at

time 226), the average is changing smoothly and the distribution of coefficients is more

concentrated around the mean (white area). After the break, the distribution becomes

wider and less concentrated around the mean (the colours are less intense and the band

is wider). Subsequently, this greater uncertainty in φ will result in greater uncertainty

in the forecasts. What interests us most is that this uncertainty appears to persist as

times move on. It is therefore important to investigate the underlying causes of this

discrepancy (Chapter 4).

3This figure shows 100 histograms with the same intervals in each, and the frequency of each bin is
coloured appropriately to aid visualisation of how these change over time.
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3.4 Conclusion

The idea of SSA forecasting utilising the bootstrapped LRF coefficients appears empir-

ically to give some promising results which warrants further research. Bootstrap SSA

as a benchmark model, was considered to compare the performance of the proposed

method. The sensitivity of the technique, with respect to different noise levels and

window lengths, was evaluated by using both synthetic and real time series.

However, from the viewpoint of this research, the main finding of this chapter is that,

when a shock happens to a system, the coefficients of the LRF may become less con-

centrated and volatile. This phenomenon is established by observing that these changes

tend to be persistent over time and therefore feed more uncertainty into the forecasts.

The key question is whether this is due to the true underlying distribution of the states

in the system being more volatile or whether the model has failed to account for a struc-

tural break correctly. Finally, in the next chapter, we look specifically at SSA in the

presence of a structural break.





Chapter 4

Bayesian Singular Spectrum

Analysis with a State Dependent

model

4.1 Introduction

As noted by (Golyandina et al., 2001; Rahmani et al., 2016), in certain circumstances,

such as in the presence of a structural break, turning points or complex cyclical patterns,

an LRF’s parameters may not match a linear continuation of the time series pre-break.

Further in Chapter 3 we saw that the distribution of the coefficients of the SSA algorithm

become less concentrated around their mean and that this effect is persistent. However,

with SSA a time series is assumed to be one realisation from the same LRF; i.e. the

fact that the series is historically different prior to a structural break is not taken into

account. However, even though the LRF prior to the break is different from that post

break there still remains commonalities between the two; i.e. we assume that in some

fashion the time series follows the same rules (for example, the economy after a crash still

evolves according to economics). SSA assumes that a time series evolves according to

an underlying state space system. A structural break is equivalent to a persistent shock

to that system (for example a crash in economic activity persists over time) that moves

those states from one region of the state space to another region over a short period of

time; thereafter the system then continues to evolve (by assumption) according to the

(unknown) state transition function as before. Although the system post-break evolves

according to the same dynamics, basic SSA is unable to estimate these parameters

correctly (as we shall prove in Theorem 4.1) and in essence we require not a fixed state

space system as in SSA but one which adapts to the jump in the region of the state

space. Such a model is known as a state-dependent model.

55
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For this to happen, the movement of LRF parameters are tracked by using a state-

dependent model (Priestley, 1980) in such a way that the parameters can change not

only over time but also over the states of the system. To put it differently, a non-linear

stochastic dynamic system is explained by a non-linear function connecting the current

states of a variable to its previous states (and possibly the previous states of other series)

and random shocks. The whole process is called Bayesian MSSA since the parameters

are no longer fixed for all time series and will be updated recursively via EKF.

It will be shown that this new framework of parameters provides MSSA with more

flexibility to cover non-stationarity, non-linearity and structural breaks in time series, in

which the transition matrix essentially relies on the inferred evolution of the states over

time.

The proposed model is tested on synthetic data (Univariate and Multivariate) and the

monthly Industrial Production Indices (IPI) of France, Germany and the UK. To provide

a better understanding of its performance regarding both univariate SSA and classical

autoregressive models, the results are compared with ARIMA, ARFIMA, ETS, GARCH,

VAR, VECM, SSA and MSSA.

4.2 The Multivariate Bayesian SSA algorithm

4.2.1 SSA model

SSA is a non-parametric technique based on the covariance structure of a time series. The

covariance structure is captured using an embedded representation of a time series which

decomposes it into a set of data-adaptive orthonormal components. These components

can then be projected into a lower dimension via SVD which produces a smoother time

series which can be used for forecasting. Below we make specific the various elements

from Section 2.1 with respect to the Bayesian MSSA algorithm.

Let Y = {Y (m)
N = (y

(m)
1 , . . . , y

(m)
N ) : m = 1, . . . ,M} be a multivariate time series

with M series (channels) of length N . In the first step, windows of length L of Y
(m)
N ,

X
(m)
i = [y

(m)
i . . . y

(m)
i+L]T , i = 1, . . . , N − L + 1 are used to embed the series as X(m) =

[X
(m)
1 , . . . ,X

(m)
N−L+1] ∈ RN−L+1×L where X(m) is called the block trajectory matrix of

Y
(m)
N with accompanying trajectory space LL = span{X1, . . . ,XN−L+1}. In univariate

SSA the SVD of X(m) is used to determine the eigenstructure of this block of delayed

versions of the time series, i.e. its covariance structure. In MSSA the common covari-

ance structure of multiple time series is uncovered through their stacked Hankel matrix,
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XM = [X(1)X(2) . . .X(M)], as:

XM =



y
(1)
1 y

(1)
2 · · · y

(1)
N−L+1 · · · y

(M)
1 y

(M)
2 · · · y

(M)
N−L+1

y
(1)
2 y

(1)
3 · · · y

(1)
N−L+2 · · · y

(M)
2 y

(M)
3 · · · y

(M)
N−L+2

...
...

...
...

...
...

...
...

...

y
(1)
L−1 y

(1)
L · · · y

(1)
N−1 · · · y

(M)
L−1 y

(M)
L · · · y

(M)
N−1

y
(1)
L y

(1)
L+1 · · · y

(1)
N · · · y

(M)
L y

(M)
L+1 · · · y

(M)
N



The next step involves seeking an embedding of XM which according to Taken’s theorem

exists if the time series may be described by a finite set of embedded state vectors; further

the SVD may be used to approximate such an embedding (Golyandina et al., 2001).

Given CX = XMXT
M ∈ RL×L, the covariance matrix of the rows of XM , then denote

UMj = (uj1, . . . , uLj)
T as the left singular vectors of XM with λj as the corresponding

eigenvalues. An embedding is produced by selecting r < L eigen components, where

X̂M = [X̂(1)X̂(2) . . . X̂(M)] =
∑r

j=1 UMjU
T
Mj

XM describes the reconstructed matrix.

The SVD is optimal in the sense that among all the matrices of rank r, the matrix

X̂M provides the best approximation to the trajectory matrix XM in the norm sense,

such that ||XM − X̂M ||M is a minimum, where M is the collection of matrices, see

(Golyandina et al., 2001; Patterson et al., 2011). To form the reconstructed times

series, a Hankelization process (diagonal averaging) can be applied on each of the blocks,

X̃(m) = HX̂(m); (m = 1, . . . ,M), which transforms them into a new time series of the

same length by the following formula:

ỹ
(m)
k =



1
k

k∑
l=1

x̂
(m)
l,k−l+1, 1 ≤ k < L∗,

1
L∗

L∗∑
l=1

x̂
(m)
l,k−l+1, L∗ ≤ k ≤ K∗,

1
N−k+1

N−K∗+1∑
l=k−K∗+1

x̂
(m)
l,k−l+1, K∗ < k ≤ N.

(4.1)

where K∗ = max(L,K) and L∗ = min(L,K).

To produce a forecast, an underlying assumption is that ỹ
(m)
k satisfies an LRF. Assume

Lr = span{UM1 , . . . , UMr} then by grouping of the elementary matrices corresponding

to the set of I = {J1, . . . , Jr} ∈ {1, . . . , L}, the series can be governed by the LRF as:

ŷ
(m)
k = φ1ŷ

(m)
k−1 + . . .+ φL−1ŷ

(m)
k−L+1 (4.2)

⇔ X(m) =

(
0 I

0 φ1 · · · φL−1

)
X(m−1)

which is also defined as an L−continuation of the series where the coefficients vector are

applied to the linear space Lr. Let U5Mj
denote the vector of the first L−1 coordinates of

the eigenvectors UMj , and πMj denotes the last coordinate of the eigenvectors UMj , then
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if eL /∈ Lr it can be simply proved that π2
M1

+π2
M2

+. . .+π2
Mr

< 1, see (Golyandina et al.,

2001). It is also shown that there exists a unique vector (y
(m)
k−1, . . . , y

(m)
k−L+1, y

(m)
τ ) ∈ Lr

which corresponds to any vector (y
(m)
k−1, . . . , y

(m)
k−L+1) ∈ L5r with numbers h such that

(y
(m)
k−1, . . . , y

(m)
k−L+1, y

(m)
τ )T = (y

(m)
k−1, . . . , y

(m)
k−L+1, 0)T + y(m)

τ eL =
r∑
j=1

hjUMj .

Multiplying both sides by eL and UMj respectively, results in

y(m)
τ =

r∑
j=1

hjπj , and

r∑
j=1

hj =

r∑
j=1

(y
(m)
k−1, . . . , y

(m)
k−L+1)TU5Mj

+ y(m)
τ

r∑
j=1

πj .

By substitution:

y(m)
τ =

r∑
j=1

hjπj =
r∑
j=1

(y
(m)
k−1, . . . , y

(m)
k−L+1)TπjU

5
Mj

+ y(m)
τ

r∑
j=1

π2
j

= (1−
r∑
j=1

π2
j )
−1
[ r∑
j=1

(y
(m)
k−1, . . . , y

(m)
k−L+1)TU5Mj

πj

]

Therefore, the linear parameters (or coefficients), Φ = (φL−1, . . . , φ1)T , of equation (4.2)

can be expressed as:

Φ =
1

1−
r∑
j=1

π2
j

r∑
j=1

πMjU
5
Mj

(4.3)

and forecasts at time τ(τ ≥ k) can be straightforwardly obtained by substitution of the

reconstructed time series when known or alternatively the forecasts, i.e.:

[ŷ(1)
τ , . . . , ŷ(M)

τ ]T =


[ỹ

(1)
τ , . . . , ỹ

(M)
τ ]T , τ = 1, . . . , k − 1,

ΦT


(ŷ

(1)
τ−L+1, . . . , ŷ

(1)
τ−1)

...

(ŷ
(M)
τ−L+1, . . . , ŷ

(M)
τ−1)

 , τ = k, . . . , N.
(4.4)

4.2.2 Linear Recurrent Formula in the presence of a structural break

In the presence of a structural break, estimates for Φ can substantially change as the

series changes, and as the following theorem shows the LRF post a shift in the mean

does not correspond to linear continuation of the time series pre-shift.

Theorem 4.1. LRF Theorem Let Y̆ ∈ RN×M be a multivariate time series which follows

an LRF. Assume that the observed time series is a back-shifted version of Y̆ ∈ RN×M

such that Ym = Y̆m − δm ∀t < τm, where each time series experiences a structural shift

in the mean, δm, at time τm. Let CX and C̆X denote the covariance matrices of the
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trajectories of Y and Y̆ respectively. Then the deviation between the first eigenvalue

of CX and C̆X is λ1 − λ̆1 ≈ T L(Q2 − 2Qȳ). Furthermore, this deviation decreases as

O(k/N).

Proof. First note that for t > max(τm) all structural shifts have occurred and the ob-

served time series (by assumption) is a linear continuation of Y̆ , not Y . Thus C̆X

contains the correct covariance structure for the time series going forward.

The covariance matrix of the trajectory matrix can be explicitly written in terms of the

original time series without any structural shifts, y
(m)
k , as:

C̆X =



M∑
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y
(m)
i

2 M∑
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y
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i y
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i+1 · · ·
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y
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i y

(m)
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

Before proceeding we require the following lemma.

Lemma 4.2 (Lemma). If the time series, y
(m)
i , contains a constant term, c(m), then

C̆X has an eigenvector u1 ≈ [1, 1, . . . , 1]T 1/
√
L with corresponding eigenvalue λ1 ≈

L(N − L+ 1)
∑

m c
(m)2

.

Proof. Each entry in C̆X consists of a sum of (N − L + 1) products of the time series

with itself. In the presence of a constant, E[y
(m)
i y

(m)
i−τ ] ≈ c(m)2

for some delay τ . Thus,

C̆X ≈ (N − L + 1)
∑

m c
(m)2

JL×L, where JL×L is a matrix of ones. JL×L has only one

eigenvector [1, 1, . . . , 1]T 1/
√
L and this completes the proof.

Returning to the observed time series, note that CX similarly consists of two types of

terms, sums of squares along the diagonal and sums of cross-terms along the off-diagonal

elements. There are, in addition, shifts in the mean and these terms may therefore be

expressed as:
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ci,j =


M∑
m=1

N−L+l∑
k=l

(y
(m)
k − δm1Am)2, i = j,

M∑
m=1

N−L+l∑
k=l

(y
(m)
k − δm1Am)(y

(m)
k+|i−j| − δm1Am), i 6= j.

(4.5)

where l = min(i, j) and 1Am is a step function with 1Am = 1 for Am = {t < τm} and
zero otherwise. Expanding these terms results in:

ci,j =


M∑

m=1

τmδ
2
m − 2

M∑
m=1

τmδm
N−L+l∑

k=l

y
(m)
k +

M∑
m=1

N−L+l∑
k=l

y
(m)2

k , i = j,

M∑
m=1

τmδ
2
m −

M∑
m=1

τmδm(
N−L+l∑

k=l

y
(m)
k +

N−L+l∑
k=l

y
(m)

k+|i−j|) +
M∑

m=1

N−L+l∑
k=l

y
(m)
k y

(m)

k+|i−j|, i 6= j.

(4.6)

Now assume the time series is not changing rapidly or that there is a constant term

which dominates (and thus is separable) then the expected sum of the time series in

overlapping windows is approximately constant as:

M∑
m=1

τmδm(

N−L+l∑
k=l

y
(m)
k +

N−L+l∑
k=l

y
(m)
k+|i−j|) ' 2

M∑
m=1

τmδm

N−L+l∑
k=l

y
(m)
k (4.7)

and so it can be seen that C̆X is related to CX as:

ci,j ≈ c̆i,j +

M∑
m=1

τmδ
2
m − 2

M∑
m=1

τmδm

N−L+l∑
k=l

y
(m)
k (4.8)

then the covariance matrix can be rewritten as:

CX ' C̆X +

(
T Q2 − 2T Q

N−L+l∑
k=l

yk

)
JL×L ≈ C̆X + T L(Q2 − 2Qȳ)

1√
L

1L1TL
1√
L

(4.9)

where T is a row vector with the numbers of samples prior to the structural breaks,

Q is a column vector of amplitudes of the structural breaks, 1L is vector of ones with

L elements, and JL×L is a square matrix of ones. Thus the net effect of a structural

break is that the first eigenvalue of the covariance matrix has a bias of approximately

T L(Q2 − 2Qȳ). From Lemma 4.2.2 this bias can be seen to tend to zero with N as:

λ1 − λ̆1
λ̆1

≈ T L(Q2 − 2Qȳ)

(N − L+ 1)
∑

m c
(m)2 = O(k/N) (4.10)

where k is some constant.
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Theorem 4.1 states that the first eigenvalue of CX will contain a bias which slowly decays

as new samples arrive (See Figure 4.2(b) for an empirical example of how this effects

the LRF parameter estimates). For this reason a dynamic LRF is proposed based on a

state dependent model.

4.2.3 State dependent format of Linear Recurrent Formula parameters

In this Section, the LRF parameters are viewed as state parameters which we allow to

recursively evolve based on the observations. Define Y
(m)
k−1 = {y(m)

k−L+1, . . . , y
(m)
k−1}

T as the

state vector of the mth time series. In a state dependent model (Priestley, 1980) the

propagation coefficients are a function of the state vector as:

y
(m)
k = φ1(Y

(m)
k−1 )y

(m)
k−1 + φ2(Y

(m)
k−1 )y

(m)
k−2 + . . .+ φL−1(Y

(m)
k−1 )y

(m)
k−L+1 (4.11)

Note that in contrast with MSSA, parameters estimated by MBSSA (above) have differ-

ent values for each series. In addition, {φu(Y
(m)
k−1 )} = {φ(m)

u }, are assumed to be analytic

functions of y
(m)
k which change smoothly over time and so can be expressed via a Taylors

series expansion as:

φ
(m)
u,k = φ

(m)
u,k−1 + ∆y

(m)
k−uγ

(m)
k,u , u = 1, . . . , L− 1, (4.12)

where ∆y
(m)
k−u = y

(m)
k−u − y

(m)
k−(u−d), γk,u is a gradient, and d is the seasonal length of

the time series. The gradient parameters γ
(m)
k,1 , . . . , γ

(m)
k,L−1 are unknown however, and, as

they are hyperparameters it can be assumed that they change slowly following a random

walk as:

Γ
(m)
k+1 = Γ

(m)
k + V

(m)
k+1 , (4.13)

while Γ
(m)
k = (γ

(m)
k,1 , . . . , γ

(m)
k,L−1) and V

(m)
k+1 is a sequence of independent matrix-valued

random variables such that V
(m)
k+1 ∼ N(0,ΣVk+1

). With some modifications, the general

recursive model can be rewritten in a state-space form in which the state-vector is no

longer Y
(m)
k , but is replaced by the state-dependent coefficients augmented with the

gradients:

θ
(m)
k = [φ

(m)
k−1,1, . . . , φ

(m)
k−1,L−1, γ

(m)
k,1 , . . . , γ

(m)
k,L−1]T , (4.14)

where θ
(m)
k is the vector of all unknown parameters of the model (and of course a function

of Y
(m)
k−1 ). To be more specific, the SDM scheme can be reformulated in a new state space

format by replacing the states with equation (4.14) as:

yk = H∗kθ
(m)
k + εk, (4.15)

θ
(m)
k = F∗k−1θ

(m)
k−1 +Wk.
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where H∗k is an inherent characteristic of the system capturing its motion and can be

considered as H∗k = (yk−1, . . . , yk−L+1, 0, . . . , 0). F∗k = F∗k(Y
(m)
k ) is a state transition

matrix and is naturally characterised into a corresponding block diagonal form and

open to modification over time. Wk is evolution noise or innovation and uncorrelated

to θk. Technically, there is no need to assume a Gaussian distribution governs εt, how-

ever, defining a prior distribution is necessary to produce initial values for the state

vector (Steel, 2001).

Equation (4.15) presents the standard form to which the Extended Kalman Filter (EKF)

can be applied directly as:

θ̂
(m)
k = F∗k−1θ

(m)
k−1 + K∗k(y

(m)
k −H∗kF∗k−1θ

(m)
k−1), (4.16)

where the 2(L− 1)× 2(L− 1) matrix F∗k−1 is given by:

F∗k−1 =


IL−1

∆yk−1 0

∆yk−2

. . .

0 ∆yk−(L−1)

0 IL−1


and K∗k is the Kalman gain matrix where K∗k = Φk(H

∗
k)Tσ2

e , and Φk is the variance-

covariance matrix of the one-step prediction error of θk, i.e. Φk = E
[
(θk−F∗k−1θ̂k−1)(θk−

F∗k−1θ̂k−1)T
]
. Moreover, σ2

e is the variance of the one-step ahead prediction error of yk,

i.e., σ2
e is the variance of ek = yk −H∗kF∗k−1θ̂k−1. Denote Ck as the variance-covariance

matrix of (θk− θ̂k), then successive values of θ̂k may be estimated by using the standard

recursive algorithm of the Kalman filter:

Φk = F∗k−1Ck−1(F∗k−1)T + ΣW , ΣW =

(
0 0

0 ΣV

)
,

K∗k = Φk(H
∗
k)T
[
H∗kΦk(H

∗
k)T + σ2

ε

]−1
, (4.17)

Ck = Φk −K∗k

[
H∗kΦk(H

∗
k)T + σ2

ε

]
(K∗k)

T ,

To implement the foregoing algorithm, initial values need to be provided. Many differ-

ent ways of doing this have been suggested, for instance (Priestley, 1980) recommends

taking an initial stretch of the data and fitting a standard AR model. In this study,

bootstrapped SSA (Golyandina et al., 2001) is used to generate initial estimates of θk0−1,

σ2
ε and Ck0−1. MSSA is initially used to extract the signal, the residual and thus es-

timate the distribution of the noise. Bootstrapped samples are then drawn from this

distribution, added to the signal and this gives bootstrapped estimates for θk, σ
2
ε and

Ck.
1

1Note that it is assumed the initial gradients to be zero, and in addition to be independent of φk.
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As soon as the Kalman filtering recursion starts, the effect of the chosen starting value is

seemingly negligible with the initial estimated coefficients as: θ̂k0−1 = (φ̂k0,1, . . . , φ̂k0,L−1, 0, . . . , 0)

and the residual variance of the model σ̂2
ε and Ck0−1 =

(
Ω̂φ1,...,φL−1

0

0 0

)
, where Ω̂ is the

estimated variance-covariance matrix of (φ̂k0,1, . . . , φ̂k0,L−1) gained from bootstrapping.

The selected range for the smoothing factor in this study is between 10−3 to 10−6.

4.3 Empirical results; Univariate

To motivate the contribution of the Bayesian LRF to forecasting time series with shifts

and structural breaks, a number of experiments are performed using both synthetic and

real data. Both univariate SSA and BSSA are tested on synthetic data and the results

are discussed in the next section. The second part presents the forecasting results for

real data (Industrial Production Indicators) at horizons of up to a year.

4.3.1 Synthetic data

The synthetic signals are formed as a mixture of two signals YN (t) = SN (t) + βEN (t),

where SN indicates the signal to be extracted, EN is white noise and β is the noise

level. We tested the following synthetic model which is a general, non-linear model and

consists of an exponential component to model growth, a sinusoidal component to model

seasonality and mean component through which structural change will be introduced.

Specifically, the signal SN (t) has the following form:

SN (t) = θe−νt + η sin(ωt) + µ (4.18)

where θ ∈ R is a constant, ν ∈ R is growth rate, η ∈ R is amplitude, ω ∈ (0, 2π) is

the angular frequency, and µ is vertical shift or the mean level of the signal. Note that

different values of (β, θ, ν, η, ω, µ) generate time series with different characteristics and

behaviour.

We conducted two sets of simulation experiments to evaluate the performance of the

models. In the first set of simulations (Figure 4.1(a)), structural breaks in the mean are

introduced at times 250 and 300. While in the second set of simulations (Figure 4.1(b)),

the true process contains structural breaks which change the variance of the series with

time in order to add instability to the data. Figure 4.1 shows two realisations of the

synthetic data sets in which the turning point changes mean and variance level of the

data at time point Q = 250. We then compare the performance of SSA and BSSA

following both structural breaks, i.e. from time 250 to 500, over 200 realisations of each

process.
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(a) Shift in mean level: N = 500, θ = 0.5, η = 2 ν =
0.04, ω = π/12, β = 5 and µ equals to 0, 10 and 30 for
each stages.
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(b) Shift in variance: N = 500, θ = 0.5, η = 2 ν =
0.01, ω = π/12, µ = 10 and β equals to 4, 8 and 15.

Figure 4.1: Realisation of synthetic data.

As can be seen from Figure 4.1, these jumps move the time series from one state to

another state such that the LRF governing the forecast series can be affected and displays

different behaviour afterwards. Figure 4.2 shows the leading coefficients of the LRF

estimated by SSA and BSSA. As expected, the basic SSA coefficients exhibit a sudden

rise from 1 to 1.02 and thereafter follow an exponential decay before returning back to

its initial values. In contrast, the BSSA estimates vary considerably along the changes

of the series (The same results are also obtained from the real datasets). It is also worth

pointing out that the presence of a constant term (vertical shift), µ, in equation (4.18)

corresponds to an eigenvector of [1, 1, . . . , 1]T 1/
√
L in Ui (see example 3.1 in (Usevich,

2010)). However, the corresponding eigenvalue performs weaker by a factor of Q/N

which is due to the absence of µ prior to the structural break. That means if N → ∞
then Q/N → 0, and this explains the decay in the empirical coefficient observed in

Figure 4.2(b).

To compare the performance of SSA and BSSA precisely, signals (Equation (4.18)) with

differing noise levels are generated. A range of β is considered between 4−40 which

measures the level of nonstationary Gaussian noise to the signal. In this way, the effect

of nonlinearity and nonstationarity when SSA and BSSA are used can be compared. This

is useful since many real signals in nature are nonstationary. Figure 4.3 demonstrates

the performance of the two models, SSA and BSSA, versus the changes in noise level.

Compared to SSA, BSSA performs quite well for both sets of synthetic data. Therefore,

it can be concluded that the LRF coefficients need to be adjusted properly in the presence

of a structural break.
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Figure 4.2: Coefficients of the LRF for univariate synthetic data when L = 2.
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Figure 4.3: Effect of noise level on SSA and BSSA for the synthetic data.
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4.3.2 Real data

4.3.2.1 Data, descriptive statistics and structural Breaks

The data used in this section are taken from I.N.S.E.E (Institute National de la Statis-

tiuqe et des Etudes Economiques) for France, from Statistisches Bundesamt, Wiesbaden

for Germany and from the Office for National Statistics (ONS) for the UK and represent

eight major components of real industrial production in France, Germany and the UK.

These are seasonally adjusted series which measure real output for all facilities located

in the manufacturing of Electric and Gas (E&G) utilities, Chemicals, Fabricated Metals

(F.M.), Vehicle, Food Products (F.P.), Basic Metals (B.M.), Electrical Machinery (E.M.)

and Machinery. These indicators show movements in production output and highlight

structural developments as well as short-term changes in the economy. Although we

consider only those eight of the two digit industries in this study, these eight industries

account for more than 50% of the total industrial production in each country. The same

eight industries have been considered by (Heravi et al., 2004), (Hassani et al., 2009) and

(Osborn et al., 1999).

In all cases our sample period ends in February 2014. However, the data for France

start from January 1990, for Germany from January 1991 and for the UK start from

January 1998. Figures A.1, A.2 and A.3 show the series used in this study. Periods

of overall expansion and contraction are evident in the graphs. As can be seen, most

series for France and Germany present a long period of growth in 1990’s and up to

the current recession of 2008-2009. For the UK, however, most series show a period of

stagnation in early 2000’s and recession in 2008. For almost all the series, the steep drop

in production can be seen around 2008-2009, which is attributed to the banking crisis

and current recession.

Table 4.1: Descriptive statistics of Industrial Production Indicators for France.

Weight N Mean

In-sample

Mean

Out-Of-Sample

Mean

Overall

SD SW Break Points

(Out-Of-Sample)

E&G 10.20 290 0.29 0.04 0.22 4.46 0.00* May-09 (134)

Chemical 8.50 290 0.09 0.42 0.13 2.46 0.00* May-10 ( 43)

F.M. 3.80 290 0.08 -0.34 -0.03 2.36 0.00* Nov-08 ( 107)

Vehicle 5.80 290 0.29 -0.27 0.13 5.06 0.00* Apr-08 ( 108)

F.P. 7.50 290 0.06 0.02 0.04 1.65 0.11 Jan-08 ( 44)

B.M. 3.00 290 0.06 -0.35 -0.05 2.07 0.00* Nov-08 ( 161)

E.M. 4.70 290 0.10 -0.28 0.01 2.06 0.00* Nov-08 ( 105)

Machinery 6.70 290 0.11 -0.41 -0.02 1.93 0.00* Nov-08 ( 105)

Note:* indicates results are statistically significant at α=0.01 via Shapiro-Wilk test.



Chapter 4 Bayesian Singular Spectrum Analysis with a State Dependent model 67

Table 4.2: Descriptive statistics of Industrial Production Indicators for Germany.

Weight N Mean

In-sample

Mean

Out-Of-Sample

Mean

Overall

SD SW Break Points

(Out-Of-Sample)

E&G 9.00 278 0.06 0.01 0.04 2.83 0.02 Nov-02 ( 134)

Chemical 8.90 278 0.15 0.09 0.16 2.18 0.00* Jul-10 ( 112)

F.M. 4.30 278 0.11 0.50 0.18 2.01 0.00* Oct-08 ( 101)

Vehicle 9.80 278 0.24 0.64 0.33 4.93 0.00* Sep-08 ( 124)

F.P. 8.60 278 0.16 -0.04 0.13 1.94 0.53 Jun-10 ( 106 )

B.M. 3.90 278 0.03 0.30 0.07 3.20 0.00* Oct-08 ( 104)

E.M. 7.10 278 0.20 0.43 0.24 2.07 0.00* Dec-08 ( 101)

Machinery 9.60 278 0.02 0.52 0.11 2.97 0.00* Dec-08 ( 99)

Note:* indicates results are statistically significant at α=0.01 via Shapiro-Wilk test.

Table 4.3: Descriptive statistics of Industrial Production Indicators for the UK.

Weight N Mean

In-sample

Mean

Out-Of-Sample

Mean

Overall

SD SW Break Points

(Out-Of-Sample)

E&G 7.60 194 0.18 -0.17 0.09 3.25 0.00* Oct-08 ( 64)

Chemical 8.60 194 -0.01 -0.17 -0.05 1.91 0.01 Oct-08 ( 64)

F.M. 4.50 194 -0.10 -0.06 -0.06 2.12 0.00* Oct-08 ( 64)

Vehicle 7.20 194 0.10 0.37 0.22 5.72 0.00* Aug-08 ( 66)

F.P. 13.60 194 -0.02 0.05 0.01 1.36 0.60 Jan-08 ( 73)

B.M. 5.60 194 -0.22 0.06 -0.08 3.86 0.00* Oct-09 ( 64)

E.M. 10.40 194 -0.21 -0.16 -0.09 3.22 0.00* Dec-09 ( 62)

Machinery 6.50 194 0.07 0.00 0.06 2.73 0.00* Apr-09 ( 70)

Note:* indicates results are statistically significant at α=0.01 via Shapiro-Wilk test.

Tables 4.1, 4.2 and 4.3 also show the Bai and Perron test statistics (Bai & Perron, 2003)

for detecting structural breaks in these time series. Almost all the series show one or

multiple breaks over the time period. However, only the date of the last break point

is reported for each series in the tables. Results for all the three countries, based on

the Bai and Perron test, indicate that all sectors are affected by the current recession

of 2008-2009, except for E&G consumption for Germany. The results also indicate the

break points for food and chemicals in June and July 2010 for Germany and May 2010

for food in France.

Tables 4.1, 4.2 and 4.3 also show the descriptive statistics for the monthly percentage

changes in the original series, i.e. 100(yt−yt−1

yt−1
). In addition to reporting the growth/de-

cline for the whole period, we also report the monthly percentage changes before and

after the break points for each series. Overall all sectors have experienced growth over

the whole period, with the exception of B.M., fabricated metals and machinery for France

and the UK. Moreover, for the UK, chemicals also show a decline over this period. Some

sectors have experienced substantial growth in production over 1990’s and early 2000’s
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for Germany and France. In particular, electricity/gas and vehicle production in France

show average increase of around 0.30 percentage per month or 3.6% per year. The

results for Germany show that all sectors have recovered after the recession, with the

exception of F.P., and in particular vehicles prediction shows an average increase of 0.64

percentage or about 8% growth per year. Declining industries after the break points are

mostly in France and the UK, with machinery showing the highest average decline of

0.41% per month.
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Table 4.4: Univariate post-sample forecast accuracy measures for France.

Series Steps RMSE

h SSA Boot SSA BSSA ARIMA ARFIMA ETS GARCH

E&G h=1 3.76 3.76 2.72 * 3.88 3.60 3.73 3.63

h=3 4.45 4.46 2.85 * 4.25 4.19 4.08 * 4.19 *

h=6 4.96 4.98 3.51 * 4.69 4.72 4.40 * 4.60 *

h=12 5.61 5.64 4.69 * 5.42 5.07 4.72 * 5.15 *

Chemical h=1 1.99 1.99 1.50 * 2.08 2.10 4.42 2.02

h=3 3.01 3.01 2.41 * 3.08 3.18 3.07 3.07

h=6 3.94 3.94 3.30 * 3.94 4.18 4.00 3.86

h=12 3.45 3.45 3.19 * 3.40 4.04 3.49 3.27

F.M. h=1 2.99 2.99 1.52 * 2.99 2.94 3.20 2.08

h=3 5.50 5.50 1.89 * 5.21 5.10 5.35 2.62 *

h=6 8.73 8.73 4.14 * 8.57 8.27 8.59 3.56 *

h=12 13.74 13.74 12.80 13.20 12.55 * 13.72 13.02 *

Vehicle h=1 6.50 6.50 3.89 * 6.79 6.81 3.21 4.37

h=3 10.34 10.35 4.80 * 10.91 10.04 5.35 5.54

h=6 15.50 15.53 7.64 * 16.36 14.76 8.60 6.86 *

h=12 21.69 21.74 14.97 22.84 19.59 * 13.72 * 18.42 *

F.P. h=1 1.27 1.27 1.02 * 1.07 * 1.28 5.07 1.77

h=3 1.35 1.35 1.02 * 1.19 * 1.46 1.44 2.45

h=6 1.84 1.84 1.41 * 1.52 * 1.87 1.85 3.39

h=12 2.54 2.53 2.36 * 1.90 * 2.34 2.42 5.06

B.M. h=1 2.73 2.73 1.48 * 2.62 2.50 * 3.05 4.65 *

h=3 4.98 4.98 1.84 * 4.82 4.48 * 5.18 7.84

h=6 7.78 7.78 3.75 * 8.14 7.35 8.43 9.31

h=12 11.71 11.71 10.82 13.32 11.18 * 13.31 11.23

E.M. h=1 2.98 2.98 1.50 * 2.95 2.78 2.82 4.74

h=3 5.14 5.14 1.99 * 4.96 * 4.77 4.45 * 6.53

h=6 8.33 8.35 4.83 * 8.10 * 8.15 7.40 * 9.15

h=12 13.75 13.76 12.71 13.19 * 13.41 13.18 13.75

Machinery h=1 3.89 3.90 1.44 * 3.30 3.32 * 3.33 3.35

h=3 7.02 7.03 1.83 * 5.77 * 5.76 * 5.75 * 6.20

h=6 11.58 11.59 5.42 * 9.94 * 10.01 * 9.93 * 9.87

h=12 19.47 19.49 17.71 * 17.93 * 18.09 * 18.25 21.39

Summary h=1 0 8 1 2 0 1

h=3 0 8 3 2 3 2

h=6 0 8 3 1 3 3

h=12 0 4 3 4 2 3

Note:* indicates results are statistically significant at α=0.01 based on modified GN test.
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Table 4.5: Univariate post-sample forecast accuracy measures for Germany.

Series Steps RMSE

h SSA Boot SSA BSSA ARIMA ARFIMA ETS GARCH

E&G h=1 3.47 3.47 1.79 * 3.22 3.22 * 3.42 3.27

h=3 4.64 4.64 3.64 * 4.27 * 4.28 * 4.32 * 4.35

h=6 5.38 5.38 4.52 * 4.71 * 4.73 * 4.85 * 4.87 *

h=12 5.72 5.70 5.24 * 4.66 * 4.85 * 4.96 * 5.09 *

Chemical h=1 2.31 2.31 1.25 * 2.30 2.24 2.29 2.27

h=3 3.61 3.61 2.69 * 3.47 3.64 3.60 3.57

h=6 5.34 5.35 4.20 * 4.80 * 5.42 5.27 5.54

h=12 7.50 7.52 6.70 * 6.20 * 7.65 7.24 8.22

F.M. h=1 2.49 2.49 1.02 * 2.97 2.30 2.65 2.52

h=3 5.04 5.05 3.59 * 4.52 * 5.19 5.13 5.14

h=6 8.24 8.26 6.89 * 7.53 * 8.90 8.22 8.60

h=12 13.14 13.16 11.41 * 11.87 * 13.62 12.68 14.27

Vehicle h=1 4.93 4.93 2.72 * 4.93 5.10 5.02 5.06

h=3 7.20 7.21 4.59 * 7.17 7.31 7.20 7.19

h=6 10.00 10.01 8.82 10.00 10.40 9.93 9.99

h=12 14.21 14.23 13.26 * 13.36 * 14.89 13.85 * 14.58

F.P. h=1 1.68 1.68 0.97 * 1.49 * 1.83 1.54 * 1.56 *

h=3 1.83 1.84 1.55 * 1.65 * 2.10 1.68 * 1.76

h=6 1.95 1.96 1.41 * 1.86 2.50 1.87 2.09

h=12 2.46 2.48 2.08 * 2.29 3.68 2.23 * 2.90

B.M. h=1 3.78 3.78 1.69 * 3.75 3.38 * 3.84 3.44 *

h=3 7.06 7.07 5.41 * 6.69 * 6.27 * 7.03 6.46

h=6 11.16 11.17 10.30 10.62 * 10.08 * 10.94 * 10.68

h=12 15.59 15.60 14.88 14.42 * 13.11 * 15.01 * 14.34 *

E.M. h=1 2.58 2.59 1.16 * 2.21 * 2.43 2.31 2.41

h=3 4.95 4.96 3.16 * 4.00 * 5.29 4.15 * 4.47

h=6 8.32 8.34 5.96 * 7.30 * 10.06 7.29 * 8.10

h=12 13.75 13.78 11.34 * 11.77 * 15.78 12.81 16.26

Machinery h=1 3.71 3.72 1.98 * 3.93 3.69 3.61 3.66

h=3 5.81 5.82 3.78 * 5.83 5.76 5.20 * 5.22 *

h=6 9.60 9.62 6.41 * 10.22 10.00 8.54 * 8.65 *

h=12 16.11 16.14 14.09 * 19.62 17.22 15.27 * 15.95

Summary h=1 0 8 2 2 1 2

h=3 0 8 5 2 4 1

h=6 0 6 5 2 4 2

h=12 0 6 6 2 5 2

Note:* indicates results are statistically significant at α=0.01 based on modified GN test.
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Table 4.6: Univariate post-sample forecast accuracy measures for the UK.

Series Steps RMSE

h SSA Boot SSA BSSA ARIMA ARFIMA ETS GARCH

E&G h=1 3.19 3.20 1.69 * 3.23 3.07 3.26 3.20

h=3 4.48 4.48 2.78 * 4.26 3.98 * 3.94 * 4.25

h=6 4.62 4.62 3.73 * 5.06 4.09 * 4.20 * 4.66

h=12 6.03 6.03 5.28 * 6.97 4.97 * 4.91 * 5.77

Chemical h=1 2.52 2.53 2.11 * 2.55 3.10 2.55 2.50

h=3 3.86 3.87 3.02 * 3.39 * 7.67 3.79 3.72

h=6 4.80 4.82 3.22 * 4.45 * 11.48 4.78 4.90

h=12 5.79 5.81 4.82 * 5.91 10.88 5.77 6.37

F.M. h=1 2.56 2.57 2.30 * 2.66 2.54 2.67 2.55

h=3 3.97 3.98 3.31 * 4.01 4.02 4.02 4.06

h=6 5.11 5.12 3.94 * 5.03 5.22 5.04 5.78

h=12 6.53 6.53 5.09 * 5.87 * 6.30 5.87 * 7.84

Vehicle h=1 6.16 6.17 2.41 * 7.32 7.00 8.28 7.84

h=3 10.55 10.57 7.36 * 10.49 11.80 12.22 12.08

h=6 13.94 13.97 11.15 * 13.78 14.57 14.57 14.21

h=12 14.60 14.65 11.45 * 13.76 * 12.18 * 14.14 10.30 *

F.P. h=1 1.73 1.73 1.43 * 1.65 1.69 1.70 1.67

h=3 2.34 2.34 1.50 * 2.28 2.38 2.33 2.33

h=6 3.13 3.13 2.05 * 3.02 2.96 3.10 3.05

h=12 4.87 4.87 4.08 * 4.54 * 4.16 * 4.69 * 4.56 *

B.M. h=1 5.70 5.70 4.14 * 5.28 * 5.46 5.45 * 5.58

h=3 7.96 7.98 7.02 * 7.48 * 7.67 7.70 * 7.92

h=6 10.11 10.13 6.98 * 9.14 * 9.60 9.45 * 9.60

h=12 11.42 11.41 8.92 * 8.84 * 9.65 * 9.72 * 9.69 *

E.M. h=1 4.66 4.66 3.74 * 5.00 4.60 4.55 4.74

h=3 6.39 6.40 4.59 * 6.52 6.17 6.19 6.53

h=6 8.74 8.76 5.73 * 8.58 8.39 8.43 9.15

h=12 11.11 11.15 9.12 * 10.24 * 9.57 10.29 * 11.47

Machinery h=1 4.14 4.14 3.29 * 4.10 3.87 4.18 3.35

h=3 6.16 6.17 3.38 * 6.25 5.66 * 6.43 6.20

h=6 9.90 9.91 6.14 * 9.67 8.91 * 9.97 9.87 *

h=12 15.15 15.16 12.16 * 14.35 * 12.91 * 14.60 * 15.23 *

Summary h=1 0 8 1 0 0 0

h=3 0 8 2 2 2 0

h=6 0 8 2 2 2 1

h=12 0 8 7 5 6 4

Note:* indicates results are statistically significant at α=0.01 based on modified GN test.
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The sample standard deviations indicate greater volatility for the vehicle series than

those of other sectors and with very low volatility for F.P.. The results for normality

test based on Shapiro-Wilk test also provide strong evidence of non-normality for all the

series, except for the F.P.. The results are all statistically significant at 1% level except

electricity/gas for Germany and F.P. for all the three countries.

4.3.2.2 Forecasting results

All comparisons are made in terms of the prediction RMSE with respect to univariate

SSA for monthly IPI series as the benchmark. Tables 4.4, 4.5 and 4.6 display information

on the RMSE for France, Germany and the UK. For assessing the statistical significance

of forecasting methods we used Granger-Newbold (GN) test (Mizrach, 1996).

In this section we evaluate forecast performance of the Singular Spectrum Analysis with

its Bayesian format (BSSA), bootstrap SSA and basic SSA. All models are estimated

based on the data summarised in Tables 4.1, 4.2 and 4.3, as our interest is to assess

the forecast accuracy in the presence of a structural break in the forecast period. Post-

sample forecasts are then computed for the months after the break point to the end

of the data, February 2014. Thus the number of observations retained for post-sample

forecast accuracy test are different depending on the date of the break point in the

series. However, as may be seen from the descriptive tables in Section 5, the number of

observations retained for post-sample forecast accuracy evaluation are around 60 months,

the minimum number of observations held are 43 and 44 months for chemicals and F.P.

for Germany.

Forecast accuracy is measured based on the magnitude of forecast errors, such as the

prediction Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). However,

since these measures give quantitatively similar results and to conserve space, we only

report the RMSE, as this is the most frequently quoted measure in forecasting (Zhang

et al., 1998). Tables 4.4, 4.5 and 4.6 show the out-of-sample RMSE and the ratio of

RMSE (RRMSE) results for France, Germany and the UK. Average RRMSE is also

given for each horizon at the bottom of each table.

BSSA vs Boot SSA and SSA In order to obtain the average bootstrap forecasts

(see 2.1.5.2) the procedure is replicated over 1000 times. The results show no evidence

of any statistical difference between SSA and Bootstrap SSA, and in fact, they are very

similar for all the horizons and all the three countries. Comparing BSSA with SSA, the

results are statistically significant at %1 level for almost all the horizons and all the three

countries. However, the quality of the forecast with BSSA is much better for h =1, 3

and 6 and less significant for h =12. The BSSA technique outperforms SSA and reduces

the RMSE by 40% for France and Germany and 28% for the UK. The improvements for

h =12 are 10% for France and Germany and 18% for the UK.
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BSSA vs ARIMA, ARFIMA, ETS and GARCH To better assess the forecast

accuracy of BSSA, performance is compared with the most commonly used forecasting

methods, such as ARIMA, ARFIMA and ETS. To determine the models, estimating the

parameters and finally making a forecast an automatic version of these models is designed

by (Hyndman & Khandakar, 2008) which uses a step-wise algorithm for forecasting and

can be run to both seasonal and non-seasonal data.2 The performance of the proposed

model is also compared with that of a GARCH model. GARCH models can capture

time variation in the full density parameters, with the AR conditional density model, by

relaxing the assumption that the conditional distribution of the standardised innovations

is independent of the conditioning information 3.

As can be seen from Tables 4.4, 4.5 and 4.6, there is a clear indication that BSSA is most

likely to provide more accurate forecasts than ARIMA, AFRIMA, ETS and GARCH.

To be more specific, 100% of BSSA forecasts are statistically significant at horizons

h =1 and 3, 92% of for h =6 and 75% of them for the longer horizon (h =12) which

is comparatively higher than those provided by ARIMA, ARFIMA, GARCH and ETS.

It seems more likely latter models provide more significant forecasts for longer horizons

than short or medium horizons. One reason could be that autoregressive models can be

more adaptable after sudden changes to predict longer horizons.

Empirical cumulative distribution function Figure 4.4 presents the cumulative

distribution function (c.d.f) of the RMSE values of the absolute values of the out-of-

sample errors obtained by SSA, Bootstrap SSA and BSSA for all 24 time series. If the

c.d.f. produced by one method is strictly above the c.d.f. obtained by another method,

we may then say that the forecast errors are stochastically smaller for the first method.

Figures 4.4(a), 4.4(b), 4.4(c) and 4.4(d) demonstrate that the forecast errors obtained

by the BSSA are much smaller than the errors of the other two methods for h =1, 3, 6

and 12, confirming the superiority of BSSA.

4.3.3 Summary and conclusion on univariate case

This section compared performance of Bayesian SSA with basic SSA and bootstrap SSA

for forecasting synthetic models and industrial production indicators in France, Germany

and the UK. It is found empirical evidence that the modified SSA technique with the

Bayesian recurrent formula performs substantially better than SSA and Bootstrap SSA

methods in the presence of a structural break, according to prediction root mean square

2The models can vary by their complexity and sensitivity to the data structure. An optimal version
of ARIMA, ARFIMA and ETS models are provided through a forecasting package in R, available from
CRAN at https://cran.r-project.org/web/packages/forecast/index.html. For a detailed description of the
algorithm on which it is based, see (Hyndman & Khandakar, 2008).

3 The rugarch package for fitting a univariate GARCH model is available from the CRAN at
andhttps://cran.r-project.org/web/packages/rugarch/index.html.
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Table 4.7: Summary statistics for univariate out-of-sample forecasting accuracy mea-
sures for Industrial Production Indicators for all three countries.

Steps RMSE RRMSE Sig. at

SSA Boot SSA BSSA BootSSA
SSA

BSSA
SSA 0.01

h=1 3.406 3.408 2.125 1.001 0.642 22
h=3 5.318 5.326 3.386 1.002 0.656 14
h=6 7.623 7.637 5.277 1.002 0.706 12
h=12 10.664 10.679 9.364 1.001 0.876 9

Overall 6.753 6.762 5.038 1.001 0.720 57

error. Table 4.7 presents the summary statistics of the RMSE, RRMSE and the number

of significant forecasts predicted across all series and countries. The results indicate the

superiority of using the Bayesian LRF for out-of-sample forecasting, with overall reduc-

tion of 28% according to RMSE criterion. The results also show that the improvement is

36% for a one step-ahead forecast, h =1, decreasing to 13% as h increases to 12 months

ahead.

Comparing BSSA forecasts with SSA, BSSA outperforms SSA significantly in 22, 14,

12, and 9 times out of 24 cases) at h =1, 3, 6 and 12 horizons respectively at 1%

level. The last column in Table 4.7 shows the number of statistically significant cases

and indicates that for all the horizons and across all three countries, BSSA outperforms

SSA significantly at 1% level in 60% of cases (57 out of 96 cases). The graph of the

cumulative density function also confirms the findings, showing that the errors obtained

by the BSSA are stochastically smaller than the errors obtained by the other models

for h =1, 3 and 6. Next we shall investigate the performance of BSSA in a multivariate

setting.

4.4 Empirical results; Multivariate

In order to evaluate the experimental results for the multivariate models, a number of

experiments are conducted again using both synthetic and real data. Both MSSA (Has-

sani & Mahmoudvand, 2013) and MBSSA are applied to synthetic time series with shifts

and structural breaks and the results are discussed in the next section. The second part

looks at real data and presents the resulting predictions.

4.4.1 Synthetic data

To simulate multivariate time series, the popular Vector AutoRegressive (VAR) model

is used which has been found in several studies to model dynamic behaviour in financial
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and economic time series (Lütkepohl, 2005). Let Y = (y
(1)
k , . . . , y

(M)
k ) denote a vector of

time series, and the basic p-lag, VAR(p) model, has the form:

Yk = δ + Π1Yk−1 + Π2Yk−2 + . . .+ ΠpYk−p + εk (4.19)

where Πi ∈ RM×M is a matrix of coefficients, εk ∈ RM×1 is white noise vector process

with covariance matrix Σ, and δ is an intercept.

The simulation seeks to give insight about the estimated coefficients of the LRF in the

presence of a shift in the mean, and thus multivariate time series are generated using

(4.19) in which a shift in the mean is artificially introduced at time 150. Figures 4.5(a),

4.5(d) and 4.6(a) show one realisation of each model with corresponding parameter

estimates. Next, the performance of MSSA and MBSSA following the structural break

is examined, i.e. from time 150 to 250, over 500 realisations of the process.

The first experiment deals with two mean-inflated series. Figures 4.5(b) and 4.5(c)

illustrate the leading coefficients of LRF estimated using MSSA and MBSSA. Following

the structural break, the parameters estimated by MSSA rise rapidly from 1.005 to 1.03

and decay slowly to their pre-structural break values. In contrast, coefficients estimated

by MBSSA also grow significantly from 1.00 to 1.20 but thereafter decay exponentially

as we move away from the shift. The response time for MBSSA (10% to 90% of its

final value) is 20 steps while for MSSA this is far greater and is 70 steps. In the

second experiment only one of the time series is affected by a mean shift, and it is

observed that only the coefficients corresponding to that time series are affected under

MBSSA (Figure 4.5(e)).The third simulation consists of 6 series with different levels of

mean, non-affected, moderately-inflated and highly-inflated. Based on Figure 4.6(b),

coefficients estimated by MSSA decay exponentially over time whereas MBSSA could

accurately find a robust estimator of LRF parameters by tracking their movement over

the state of its related series. Technically, the presence of a constant term, δ, in equation

(4.19) can be related to an eigenvector of [1, 1, . . . , 1]T 1/
√
L in Ui (see Theorem 4.1).

Consequently, the empirical coefficients of LRF demonstrate an exponential decay in

which they die out slowly as we move away from the shift and it can be proportional to

their linear continuation of the time series pre-break.

4.4.2 Real data

Empirical evidence suggests that the shared dynamical pattern in the Industrial Pro-

duction Idicator (IPI) time series has strengthened over the years and should be taken

into account during modelling and forecasting, see (Groth & Ghil, 2011; Heravi et al.,

2004; Osborn et al., 1999). These changes can bring more instability into the model

in terms of parameter estimation and even model selection as noted by (Groth & Ghil,

2011).
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Table 4.8: Variance Inflation Factor to test multi-collinearity.

Series France Germany UK

E&G 6.71* 2.13 2.10
Chemical 5.21* 40.57* 6.04*

F.M. 71.94** 53.24** 17.45**
Vehicle 10.28** 18.41** 2.15

F.P. 2.77 28.59** 1.69
B.M. 80.17** 5.81* 9.13*
E.M. 27.28** 47.64** 4.78

Machinery 13.45** 22.06** 1.80

** and *: show high and moderate level of multi-collinearity.

Table 4.9: P-values of Augmented Dickey-Fuller test.

Series France Germany UK

E&G 0.41** 0.34** 0.56**
Chemical 0.27** 0.04* 0.38**

F.M. 0.56** 0.01 0.49**
Vehicle 0.89** 0.12** 0.35**

F.P. 0.38** 0.76** 0.34**
B.M. 0.56** 0.01 0.11**
E.M. 0.41** 0.03* 0.25**

Machinery 0.39** 0.01 0.04*

** and *: Indicate results are statistically significant at α = 0.01 and α = 0.05.

4.4.2.1 Variance Inflation Factor

To test the shared dynamics hypothesis on IPI time series, the variance inflation factor

(VIF4) as a measure of collinearity of multiple time series is used. Based on Table 4.8,

almost half of the series are shown to be strongly correlated and a quarter of them are

moderately correlated. This can be mainly attributed to France and German’s economy

which has a larger industrial component than the UK’s. A large value for the VIF

tells us that the variance of the estimated coefficient of corresponding series is inflated

significantly because it is strongly correlated with at least one of the series.

On the other hand, the Augmented Dickey-Fuller test statistic in table 4.9 indicate that

the majority of these time series are non-stationary, which is common for economic time

series.

4 VIF regresses an explanatory variable toward the rest of variables and subsequently measures the
square of the multiple correlation coefficients by V IF = 1

1−R2 . A rule of thumb is that if VIF goes
above 10, then multi-collinearity is high while for 5<VIF<10 multi-collinearity is moderate.
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Table 4.10: Engle-Granger cointegration test.

Series Series France Germany UK

E&G Chemical 0.01 ** 0.01 ** 0.04 **
E&G F.M. 0.01 ** 0.01 ** 0.09
E&G Vehicle 0.01 ** 0.01 ** 0.09
E&G F.P. 0.01 ** 0.01 ** 0.10
E&G B.M. 0.01 ** 0.01 ** 0.06
E&G E.M. 0.01 ** 0.01 ** 0.08
E&G Machinery 0.01 ** 0.01 ** 0.09

Chemical F.M. 0.03* 0.05 0.09
Chemical Vehicle 0.09 0.01 ** 0.59
Chemical F.P. 0.01 ** 0.01 ** 0.50
Chemical B.M. 0.02 * 0.03 * 0.38
Chemical E.M. 0.02* 0.06 0.33
Chemical Machinery 0.03 * 0.03 * 0.53

F.M. Vehicle 0.33 0.01 ** 0.39
F.M. F.P. 0.80 0.21 0.63
F.M. B.M. 0.01 ** 0.02* 0.29
F.M. E.M. 0.02 0.21 0.32
F.M. Machinery 0.20 0.01 ** 0.54

Vehicle F.P. 0.60 0.14 0.19
Vehicle B.M. 0.34 0.02* 0.22
Vehicle E.M. 0.20 0.27 0.40
Vehicle Machinery 0.45 0.10 0.36

F.P. B.M. 0.01 ** 0.05 0.07
F.P. E.M. 0.01 ** 0.10 0.07
F.P. Machinery 0.01 ** 0.17 0.01**
B.M. E.M. 0.02 * 0.14 0.04*
B.M. Machinery 0.23 0.05 0.24
E.M. Machinery 0.18 0.02* 0.21

** and *: Indicate results are statistically significant at α = 0.01.
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(c) Six-step-ahead
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Figure 4.4: Empirical cumulative distribution functions of absolute values of forecast
errors for SSA, Bootstrap SSA and BSSA.
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(e) MSSA

120 140 160 180 200 220 240

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0
1

.0
5

1
.1

0

Time

 φ

(f) MBSSA

Figure 4.5: Coefficients of the LRF for bivariate synthetic data (L = p = 2), δ =

(−0.7, 1.3), δs = (1.76, 2.43), Π1 =

(
0.7 0.2

0.2 0.7

)
and Σ =

(
2 0.5

0.5 2

)
.
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(b) MSSA
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(c) MBSSA (non-affected series)
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(d) MBSSA (moderately mean-inflated series)
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(e) MBSSA (highly mean-inflated series)

Figure 4.6: Coefficients of the LRF for (L = p = 2, δ = (−0.7, 1.3), δs1
= (1.76, 2.43),

δs2
= (2.64, 3.73), Π1 =

(
0.7 0.2
0.2 0.7

)
and Σ =

(
2 0.5

0.5 2

)
.
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Table 4.11: Multivariate post-sample forecast accuracy measures for France.

Series Series Steps RMSE

h SSA MSSA-2 MBSSA-2 VAR VECM MSSA-8 MBSSA-8 ICA

MSSA-8

ICA

MBSSA-8

E&G E.M. h=1 3.76 3.75 2.70 * 3.85 3.70 3.74 2.88 * 2.32 * 2.23 *

Chemical h=3 4.45 4.38 * 3.32 * 4.30 4.25 4.37 * 3.34 * 2.61 * 2.40 *

B.M. h=6 4.96 4.80 * 4.03 * 4.62 * 4.62 4.78 * 4.71 3.39 * 3.09 *

B.M. h=12 5.61 5.23 * 4.93 * 5.91 * 4.99 5.21 * 5.00 * 4.49 * 4.19 *

Chemical Machinery h=1 1.99 1.98 1.44 * 1.94 1.86 2.00 1.53 * 1.77 1.23 *

Machinery h=3 3.01 2.98 2.08 * 3.01 2.78 3.05 2.24 * 1.99 1.83 *

E&G h=6 3.94 3.87 * 3.32 * 3.57 * 3.59 4.03 3.48 2.42 * 1.67 *

E&G h=12 3.45 3.36 3.58 3.20 * 2.99 * 3.53 3.61 2.85 * 2.11 *

F.M. Chemical h=1 2.99 2.99 1.47 * 2.92 2.80 3.00 1.55 * 2.72 1.49 *

Vehicle h=3 5.50 5.49 * 2.08 * 5.62 * 5.20 5.53 2.16 * 5.2 2.26 *

Vehicle h=6 8.73 8.72 3.55 * 9.53 * 8.45 8.81 3.80 * 8.51 3.92 *

Chemical h=12 13.74 13.69 * 12.77 15.61 * 13.33 13.95 13.70 13.53 11.82 *

Vehicle F.P. h=1 6.50 6.48 * 4.01 * 7.27 6.44 6.47 4.01 * 5.44 * 3.34 *

F.M. h=3 10.34 10.26 * 5.42 * 11.99 10.15 10.24 * 5.82 * 9.47 * 4.10 *

F.M. h=6 15.50 15.29 * 10.02 * 19.08 15.14 15.25 * 12.43 14.93 * 8.74 *

F.M. h=12 25.69 25.12 * 23.45 28.03 * 26.60 21.03 * 20.34 22.36 * 18.85 *

F.P. Vehicle h=1 1.27 1.27 1.17 1.43 1.27 1.27 1.18 0.95 * 0.56 *

Vehicle h=3 1.35 1.33 * 1.23 1.66 1.42 1.33 1.26 1.07 * 0.79 *

Vehicle h=6 1.84 1.79 1.21 * 1.85 1.78 1.79 1.27 * 1.19 * 0.98 *

B.M. h=12 2.54 2.31 * 1.96 * 2.37 * 2.36 2.36 * 2.00 * 1.37 * 1.11 *

B.M. Chemical h=1 2.73 2.73 1.84 * 2.50 2.59 2.74 1.66 * 2.54 * 1.44 *

Vehicle h=3 4.98 4.98 3.58 * 4.95 * 4.74 5.02 2.11 * 4.56 1.95 *

F.P. h=6 7.78 7.77 5.63 * 8.31 * 7.59 7.88 3.77 * 7.30 * 3.36 *

Chemical h=12 11.71 11.67 * 12.14 13.15 * 11.42 11.98 11.89 11.43 11.04 *

E.M. E&G h=1 2.98 2.96 1.59 2.61 2.95 2.97 1.52 2.27 1.52 *

Vehicle h=3 5.14 5.09 3.25 4.35 4.86 5.11 2.42 4.30 1.97 *

Chemical h=6 8.33 8.26 5.07 7.82 7.96 8.27 3.60 6.95 * 3.54 *

E&G h=12 13.75 13.57 11.26 14.39 13.10 13.62 9.98 10.87 * 9.98 *

Machinery Chemical h=1 3.89 3.88 1.86 3.46 3.55 3.88 1.41 2.84 1.41 *

F.M. h=3 7.02 6.97 3.77 6.43 6.32 6.97 2.94 5.46 2.03 *

B.M. h=6 11.58 11.47 5.56 11.32 * 10.80 11.46 5.09 8.88 * 4.19 *

F.P. h=12 19.47 19.18 14.74 20.39 * 18.35 19.15 12.54 13.96 * 12.54 *

Summary h=1 1 5 0 0 0 5 3 8

h=3 4 5 2 0 2 5 2 8

h=6 3 6 5 0 2 3 6 8

h=12 4 2 7 1 3 1 5 8

Note:* indicates results are statistically significant at α=0.01 based on GN test.



82 Chapter 4 Bayesian Singular Spectrum Analysis with a State Dependent model

Table 4.12: Multivariate post-sample forecast accuracy measures for Ger-

many.
Series Series Steps RMSE

h SSA MSSA-2 MBSSA-2 VAR VECM MSSA-8 MBSSA-8 ICA

MSSA-8

ICA

MBSSA-8

E&G Chemical h=1 3.47 3.47 2.18 3.18 3.37 3.47 2.18 * 0.55 * 0.37 *

Machinery h=3 4.64 4.64 3.52 * 4.20 * 4.75 4.66 3.55 * 1.08 * 0.71 *

Machinery h=6 5.38 5.38 5.44 5.01 5.09 5.47 5.59 1.79 * 1.23 *

Machinery h=12 5.72 5.74 5.75 5.89 5.10 * 5.59 * 5.78 2.91 * 2.33 *

Chemical E&G h=1 2.31 2.31 1.47 2.19 2.21 2.31 1.47 * 1.33 0.89 *

E&G h=3 3.61 3.59 2.08 * 3.41 3.45 3.63 2.08 * 2.36 1.41 *

E&G h=6 5.34 5.28 3.94 * 5.07 * 5.18 5.37 3.94 * 3.80 * 2.67 *

F.P. h=12 7.50 7.31 * 6.50 * 7.32 7.20 * 7.58 * 7.39 6.21 * 5.34 *

F.M. E&G h=1 2.49 2.48 * 1.02 1.96 * 2.16 2.49 1.02 * 2.35 1.45 *

E&G h=3 5.04 5.02 * 2.27 * 4.35 * 4.69 5.03 2.27 * 4.58 * 2.91 *

E&G h=6 8.24 8.16 5.89 * 7.25 * 7.97 8.19 5.88 * 7.41 * 5.62 *

E&G h=12 13.14 12.83 * 11.97 * 11.47 * 12.77 12.95 * 11.99 * 11.60 * 10.57 *

Vehicle E&G h=1 4.93 4.92 2.85 5.15 4.81 4.92 2.85 * 2.89 * 1.79 *

F.P. h=3 7.20 7.17 * 3.86 * 7.68 7.37 7.19 4.86 * 5.45 * 3.30 *

F.P. h=6 10.00 9.92 * 8.37 10.97 10.59 9.98 9.74 8.77 * 6.97 *

E&G h=12 14.21 13.92 * 13.13 * 14.90 14.64 14.05 13.13 * 13.75 11.66 *

F.P. B.M. h=1 1.68 1.67 1.47 1.88 1.76 1.67 1.47 * 1.06 * 0.92 *

E&G h=3 1.83 1.80 1.40 * 2.26 1.88 1.82 1.40 * 1.22 * 0.86 *

E&G h=6 1.95 1.86 * 1.63 * 2.79 2.08 1.93 1.63 * 1.62 * 1.11 *

E&G h=12 2.46 2.19 * 1.63 * 4.05 2.53 2.46 1.87 * 2.47 1.91 *

B.M. E&G h=1 3.78 3.77 * 1.77 * 3.08 3.23 * 3.78 1.77 * 3.40 * 1.92 *

F.P. h=3 7.06 7.04 * 4.01 * 6.22 6.53 7.07 4.01 * 6.48 * 3.94 *

E.M. h=6 11.16 11.08 * 9.41 10.54 11.21 11.18 9.41 10.34 * 9.09 *

Machinery h=12 15.59 15.38 * 14.72 * 15.24 15.97 15.71 26.80 15.32 14.46 *

E.M. E&G h=1 2.58 2.56 1.10 2.16 2.21 * 2.57 1.10 * 2.65 1.50 *

E&G h=3 4.95 4.89 * 2.16 * 4.07 * 4.35 * 4.90 2.16 * 4.88 2.58 *

E&G h=6 8.32 8.13 4.96 * 7.35 7.80 8.14 4.96 * 7.87 5.68 *

F.M. h=12 13.75 13.08 * 10.99 * 12.75 12.97 13.15 * 13.32 12.59 * 10.96 *

Machinery E&G h=1 3.71 3.69 * 2.09 3.31 3.30 * 3.69 * 2.09 * 2.98 * 1.98 *

F.M. h=3 5.81 5.74 * 3.64 * 4.33 * 4.91 * 5.73 * 4.32 * 5.91 4.11 *

F.P. h=6 9.60 9.48 * 6.24 * 7.28 * 8.65 * 9.43 * 6.52 * 9.53 7.62 *

E&G h=12 16.11 15.73 * 13.41 * 13.38 * 14.90 * 15.73 13.69 14.63 * 13.88 *

Summary h=1 3 1 1 3 1 8 5 8

h=3 5 8 4 1 1 8 5 8

h=6 4 5 3 1 1 5 6 8

h=12 7 7 2 3 3 3 5 8

Note:* indicates results are statistically significant at α=0.01 based on GN test.
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Table 4.13: Multivariate post-sample forecast accuracy measures for the

UK.
Series Series Steps RMSE

h SSA MSSA-2 MBSSA-2 VAR VECM MSSA-8 MBSSA-8 ICA

MSSA-8

ICA

MBSSA-8

E&G B.M. h=1 3.19 3.17 1.94 * 3.46 3.38 3.17 2.26 * 0.35 * 0.23 *

Chemical h=3 4.48 4.40 2.87 * 4.76 4.39 4.39 2.85 * 0.58 * 0.29 *

F.M. h=6 4.62 4.42 4.11 5.18 4.18 4.41 4.29 0.93 * 0.41 *

F.P. h=12 6.03 5.61 * 5.26 * 5.39 5.11 * 5.59 5.24 * 1.57 * 0.68 *

Chemical Vehicle h=1 2.52 2.50 1.71 * 2.49 2.56 2.50 * 1.80 * 1.81 0.74 *

Vehicle h=3 3.86 3.80 2.12 * 3.54 3.79 3.81 * 2.22 * 2.94 2.07 *

E.M. h=6 4.80 4.70 2.92 * 4.60 4.73 4.69 * 2.92 * 3.56 * 2.43 *

F.M. h=12 5.79 5.57 * 4.88 * 5.88 5.47 5.58 * 5.29 * 4.03 * 3.46 *

F.M. Vehicle h=1 2.56 2.55 * 1.78 * 2.75 2.63 2.56 2.20 2.54 0.99 *

Vehicle h=3 3.97 3.92 * 2.07 * 4.25 3.79 3.95 3.04 * 4.45 2.54 *

Vehicle h=6 5.11 5.00 2.76 * 5.21 4.88 5.04 * 3.80 * 5.18 3.71 *

B.M. h=12 6.53 6.09 * 4.22 * 5.80 6.45 6.37 * 4.97 * 6.21 5.64 *

Vehicle B.M. h=1 6.16 6.16 2.26 * 7.64 6.27 6.17 3.69 * 5.96 2.36 *

E&G h=3 10.55 10.53 5.69 * 13.63 10.40 10.57 5.66 * 10.47 5.77 *

E&G h=6 13.94 13.83 10.98 16.34 14.10 13.96 10.95 * 14.13 10.44 *

E&G h=12 14.60 13.99 * 15.02 15.47 14.34 14.60 14.97 * 15.87 11.12 *

F.P. Machinery h=1 1.73 1.73 1.18 * 1.82 1.72 1.74 1.30 * 0.65 * 0.49 *

Machinery h=3 2.34 2.31 1.43 * 2.81 2.28 2.36 1.54 * 1.05 * 0.63 *

E.M. h=6 3.13 3.06 2.00 * 3.80 3.08 3.20 2.02 * 1.71 * 1.10 *

Machinery h=12 4.87 4.66 * 3.61 * 5.03 4.65 * 5.10 3.96 * 2.71 * 1.84 *

B.M. E&G h=1 5.70 5.69 3.29 * 5.28 5.58 5.70 3.29 * 4.02 * 1.29 *

E.M. h=3 7.96 7.91 5.71 * 7.53 7.47 7.92 6.14 6.75 * 3.16 *

E&G h=6 10.11 9.91 * 6.45 * 9.84 9.81 9.86 * 8.19 * 7.88 * 5.46 *

Machinery h=12 11.42 10.58 * 10.96 * 10.45 10.78 10.41 * 14.57 * 8.46 * 7.42 *

E.M. E&G h=1 4.66 4.65 3.22 * 4.77 4.83 4.65 3.21 * 3.12 * 1.49 *

B.M. h=3 6.39 6.36 4.03 * 7.12 6.35 6.35 4.36 * 3.88 * 2.53 *

Machinery h=6 8.74 8.64 * 5.14 * 9.50 8.84 8.61 * 7.35 4.95 * 3.40 *

Machinery h=12 11.11 10.72 * 8.52 * 9.40 11.67 10.68 * 15.88 * 5.57 * 5.68 *

Machinery F.P. h=1 4.14 4.12 2.16 * 3.92 4.07 4.13 3.47 * 1.81 * 1.19 *

Vehicle h=3 6.16 6.11 3.01 * 6.22 6.08 6.11 4.67 * 3.06 * 1.70 *

F.P. h=6 9.90 9.77 5.04 * 9.60 9.63 * 9.76 * 7.59 * 4.82 * 3.38 *

E.M. h=12 15.15 14.86 * 11.87 * 14.37 14.51 * 14.85 * 13.27 * 6.07 * 4.57 *

Summary h=1 1 8 0 0 1 7 6 8

h=3 1 8 0 0 1 7 6 8

h=6 2 6 0 1 5 6 6 8

h=12 8 6 0 3 5 8 6 8

Note:* indicates results are statistically significant at α=0.01 based on GN test.

4.4.2.2 Engle-Granger cointegration test

To measure how much these non-stationary time series are tied together the Engle-

Granger cointegration test is applied (Table 4.10). It enables us to detect stable long-run

relationships among non-stationary series with a tendency to revert toward a stochastic

process.

The result shows that E&G is significantly cointegrated with the rest of the indices

for both France and Germany at α = 0.01. Even though the same conclusion can be

drawn for Chemical in France (except Vehicle), in Germany, it is mainly cointegrated to

Vehicle, F.P., B.M. and Machinery. F.P. is yet another indicator which depicts a long
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run relationship with B.M. and E.M. and Machinery sector in French Economy (see

Table 4.11). Similar considerations apply to F.M. and its cointegration with Vehicle and

Machinery sectors in both countries. However, it should be pointed out that in the UK

economy, “E&G and Chemical”, “F.P. and Machinery” and “B.M. and E.M” are the

only cointegrated pairs detected by Engle-Granger test (Table 4.13).

4.4.2.3 Forecasting results

This section compares the performance of out-of-sample forecasts using MBSSA with

the most commonly used models such as MSSA-2 (for any pairs), VAR, VECM 5 and

MSSA-8 (for all eight series together). On account of the presence of conintegration in

the time series, we use Independent Component Analysis (ICA) as a pre-processing step

before SSA due to the lack of strong separability (See Golyandina et al. (2001) on the

use of ICA with SSA).

MSSA-2 vs MBSSA-2 Our analysis starts by applying MSSA and MBSSA on a joint

combination of two time series6. Note that the optimal partner time series unexpectedly

depends on the forecast horizon (for example E&G with E.M. for h = 1, but E&G with

B.M. for h = 6, however the RMSE differences are slight). Tables 4.11, 4.12 and 4.13

show that multivariate models are superior to the univariate SSA models. For instance,

in the majority of cases, MSSA performs better than SSA for horizons of up to a year

(α = 0.01). However, MBSSA-2 is generally superior to both. The statistical significance

of the RMSEs (relative to the univariate RMSE), is also reported which shows that two

thirds of French and nearly a quarter of forecast improvements (all horizons) for both

Germany and the UK, are statistically significant at α = 0.01.

VAR vs VECM In this section SSA is compared with classical time series models;

in this case using the VAR and VECM models. Following the analysis of (Gupta &

Kabundi, 2011) VAR models were selected. They were all found to have a regressor lag

1. All models were tested for the presence of a constant term, a trend, and both together

but only the presence of a trend was found to be significant. Moreover, a VECM (as

a restricted version of a VAR model) is also selected, for comparison, to account for

cointegration in the time series. The RMSEs obtained by these models are somewhat

larger than those estimated by the SSA based models. Specifically, the VECM models

outperform the VAR models for France and the UK (but the differences are not found

5 Different cointegration models are applied and VECM was found to be the most accurate model
for forecasting IPI time series.

6There are 28 different combinations for each country, the companion which yields the lowest in-
sample RMSE is chosen.
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to be significant7). On the other hand, for Germany, the VAR models outperform the

VECM models.

MSSA-8 vs MBSSA-8 Here the case where a multivariate time series forecast is

required of all eight time series is examined and so the models MBSSA-8 and MSSA-8 are

compared. Referring to Tables 4.11-4.13, MBSSA-8 considerably outperforms MSSA-8,

typically in the order of 1% to 2%. for horizons of up to 6 months. However, for horizons

of a year (h = 12) the results are mixed with no model clearly outperforming the other

in all situations.

Comparing MBSSA-2 with MBSSA-8 one can see that in most cases MBSSA-8 is supe-

rior which would seem to suggest that considering the 8 time series together would be

advantageous.

ICA-MSSA-8 vs ICA-MBSSA-8 Next it is examined whether reducing the coin-

tegration between the series prior to modelling, using ICA, leads to significant improve-

ment. Indeed, significant gains in forecasting the industrial prediction are achieved.

Overall, ( Tables 4.11-4.13) ICA-MBSSA-8 shows 0.30, 0.40 and 1.6 reduction in com-

parison with MBSSA-8 for one-step-ahead forecasts, and 1, 2.9 and 4.7 reductions for

h = 12. For medium runs, h = 3 and 6 the results shows an average reduction of 1 and

1.4 in RMSE for three countries. Last but not least, the GN test confirms the results

obtained by the combined model are statistically significant at α = 0.01% level.

Empirical cumulative distribution function Figure 4.7 shows the empirical c.d.f.

for the absolute errors. The c.d.f. of the absolute values of the out-of-sample errors (for

all twenty-four series) are computed from the MSSA-2 and MBSSA-2, VAR, VECM,

MSSA-8, MBSSA-8, ICA-MSSA-8 and ICA-MBSSA-8 forecasts. Most noticeably of

all, it can be seen that for h = 1, 3, 6 and 12, the ICA-MBSSA-8 forecasting errors

are stochastically smaller than those of the VAR and VECM models. In addition, the

forecast errors estimated by Bayesian MSSA models are shown to be much smaller than

their MSSA counterparts.

4.4.3 Summary and conclusion

In this chapter, we developed a Bayesian model for the linear recurrent formula of the

embedding stage in singular spectrum analysis. We proved theoretically that when a

structural break happens to a time series the LRF, as an underlying assumption of SSA,

does not coincide with a recurrent continuation of the series pre-break. Accordingly, in

7Granger Newbold test



86 Chapter 4 Bayesian Singular Spectrum Analysis with a State Dependent model

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

P
e
rc

e
n
t

ICA−MBSSA−8

ICA−MSSA−8

MBSSA−8

MSSA−8

MBSSA−2

MSSA−2

VAR

ECM

(a) One-step-ahead

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

P
e
rc

e
n
t

ICA−MBSSA−8

ICA−MSSA−8

MBSSA−8

MSSA−8

MBSSA−2

MSSA−2

VAR

ECM

(b) Three-step-ahead

0 2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

P
e
rc

e
n
t

ICA−MBSSA−8

ICA−MSSA−8

MBSSA−8

MSSA−8

MBSSA−2

MSSA−2

VAR

ECM

(c) Six-step-ahead

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

P
e
rc

e
n
t

ICA−MBSSA−8

ICA−MSSA−8

MBSSA−8

MSSA−8

MBSSA−2

MSSA−2

VAR

ECM

(d) Twelve-step-ahead

Figure 4.7: Empirical cumulative distribution functions of absolute values of forecast
errors for ICA-GSSA-8, ICA-MSSA-8, MBSSA-8, MSSA-8, MBSSA-2, MSSA-2, VAR

and VECM.

our model, called MBSSA, we propagate coefficients as a function of the state vector to

involve their dependent movement in the LRF. The propagation coefficients can then

mathematically explain their time evolution as well as their state position. We believe

our model to be superior to the SSA technique in terms of dealing with an exponential

decay in the LRF post shock.

The performance of the proposed model is assessed using both synthetic and real data

(industrial production series) including a structural break. Of the four methods com-

pared (MBSSA, MSSA,VAR and VECM) MBSSA was the most accurate method for

forecasting horizons of up to a year. We were also interested to see how the model

would perform in the presence of cointegration between all series (eight series for each

country), given the promising results of the bivariate model. Our results showed that

the model performed poorly compared to its bivariate counterpart. An obstacle to the
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performance of this model is a lack of strong separability in SSA. Therefore, we applied

ICA-MBSSA and found a large increase in performance.





Chapter 5

Latent and Reduced Space

Multivariate Singular Spectrum

Analysis

5.1 Introduction

In Chapter 4, a dynamic LRF was proposed based on a state dependent model. It was

concluded that the state parameters allow the LRF parameters to recursively evolve

based on the observations, and this can improve the forecasting accuracy significantly.

The core element of the SSA algorithm are the eigenvectors of the trajectory covariance

matrices as these determine the coefficients of the LRF. Selecting the correct number

of eigenvectors will also provide a suitable series decomposition. However, when multi-

ple time series are accompanied with common modes, the optimality of the SVD does

not help to separate these common components due to a lack of strong separability

(Golyandina et al., 2001) (Section 2.1.1.2). Therefore, special rotations can be found to

satisfy some additional optimality criterion at the decomposition step (Golyandina &

Zhigljavsky, 2013). The analysis in Chapter 4 indicates that reducing the cointegration

between the series prior to modelling, using ICA, leads to significant improvement in

forecast accuracy. However, ICA is a much less stable procedure than SSA therefore it

is recommended by (Golyandina et al., 2001) that it should not replace the SVD en-

tirely. On the other hand, in Chapter 4 we observed that bivariate forecasts (MBSSA-2

and MSSA-2) significantly outperform multivariate forecasts (MBSSA-8 and MSSA-8).

The common argument above is that a combination of time series (either bivariate or

by transform via ICA) may improve forecast accuracy and alternately may degrade it

significantly. Therefore, a natural question arises which combination of time series sup-

port each other and which dont? In this Chapter we investigate this question using the

USA unemployment rate series. This series is ideal for this task as the (USA) states

89
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are approximately uniformly geographically distributed with neighbouring states often

having common characteristics but also with anomalies (for example California, Florida

and New York being prime economic states with agricultural states in between).

Unemployment is among a number of critical variables whose evolution has been con-

tinuously subject to close analysis by economic authorities and academics alike. Indeed,

there is a large body of literature that deals with the estimation of (econometrics and

time series) models aimed at understanding the determinants of this variable, and evalu-

ating their ability to produce accurate forecasts; a few recent examples include, inter alia,

(Milas & Rothman, 2008), (Lahiani & Scaillet, 2009), (Fendel et al., 2011), (Trendle,

2002), (Schanne et al., 2010) and (Ball et al., 2015).

Location as a determinant of economic growth plays an important role in finding spatial

interdependencies between states, (Elias & Rey, 2007). On the other hand, spatial de-

pendency as a determinant of movement and transactions determines an association be-

tween the commuting flow variables and spatial configuration variables (Anselin, 2013).

Therefore, the essential purpose behind studying spatial econometrics time series, such

as unemployment rates, is not only answering which series support each other but also

their geographical homogeneity (or lack of). For example, New York and California tend

to have same level of economic activity while they have by far the largest distance.

5.2 Spatial weights

In this Section, it is hypothesised that a spatially weighted series can improve the fore-

casting accuracy of each single time series of unemployment rate. To test the hypothesis,

a bivariate time series, (Y
(1)
N , Y

(2)
N ) is considered as a combination of the original series

(i.e. the unemployment rate of the dependent state) and a spatially weighted series, re-

spectively. The spatially weighted series includes regional information using geographical

characteristics, such as distance and boundaries. This allows the model to incorporate

the spatial dependency and regional heterogeneity into the forecasting procedures.

To construct the additional explanatory variable as a spatially weighted series, we first

measure an individual weight for each region (as a spatial weights matrix) and then

obtain a weighted average by assigning the individual weight to its related time series.

There are different ways to determine the spatial weights matrix. In this study we

examine the inverse distance and combined distance-boundary weights.

Inverse Distance Weights

It is apparent that the shorter the distance between two regions the more intense their

connection. Specifically, the Inverse distance weight is considered one means of incor-

porating spatial information (Awichi & Müller, 2013) as:
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wi,k =
1/di,k∑n

i=1(1/di,k)
, (5.1)

where di,k is the distance from region i to the the target location k. Therefore, the

spatially weighted series is equivalent to Y
(2)
N =

∑N
i=1wi,kY

(1)
N,i .

Combined Distance-Boundary Weights

Another geographical characteristic between regions is their boundary length (Cliff &

Ord, 1969). The boundaries shared between neighbours can have a significant impact on

recognition of spatial influence. The original study on spatial autocorrelation by (Cliff

& Ord, 1969) proposed the best weighting scheme as the combination of power-distance

and shared-boundary:

wi,k =
li,kd

α
i,k∑

k 6=i li,kd
α
i,k

, (5.2)

where li,k denotes the length of the shared boundary between state i and k. Any positive

integer can be chosen for α, typically α = 1 or α = 2, the larger α, the greater the weight

on the distance (Cliff & Ord, 1969). After incorporating spatial information, we apply

MSSA and MBSSA on the original time series and this additional explanatory variable,

(Y
(1)
N , Y

(2)
N ), for each (USA) state. To assess the impact of spatial weights on forecasting

unemployment rate series we tested our model, MBSSA with two spatial versions of

MSSA, as well as univariate SSA.

5.2.1 Data, descriptive statistics and graphs

In this section, we give a brief summary of unemployment data. The data used in this

study is the seasonally adjusted monthly unemployment rates for 48 states of the USA

between January 1976 to December 2013 (N = 456). The source of the data is the

Federal Reserve Economic Database (FRED) provided by the Federal Reserve Bank of

St. Louis.

Figure B.1 (see Appendix B) gives us a clear overview of the time series structure.

For example, periods of business cycles, including both expansion and contraction are

identifiable. As can be seen, most of the states show a short period of growth in late

1982 and beginning of 1983. Moreover, between the third quarter of 1991 and the

second quarter of 1992, the rate of unemployment has marginally increased, for instance

in Florida, Connecticut and Massachusetts.

Despite some minor fluctuations, for almost all the states, the last significant growth was

between 2009 and 2010. It should also be noted that there are strong local variations.
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Figure 5.1: Unemployment rates for the United States reported by the USA Bureau
of Labour Statistics.3

For instance, in the Northeast, Alabama, Tennessee and Kentucky share a common

structure over the entire time span. The rate of unemployment also follows a similar

pattern in “West Virginia, Ohio and Pennsylvania” and “Idaho and Utah” in the West

of the United States.

A choropleth map, Figure 5.1, is an alternative way to examine the impact of various

geographical locations on the series in Unites States. It shows the average of seasonally

adjusted unemployment rates for December 2013 based on the Bureau of Labour statis-

tics report 1. According to the map, the Northeast USA has the highest unemployment

rate, with 7 states out of 9 states having an unemployment rate above 6%. 13 states out

of 17 states in the South also have an unemployment rate above 6%. The rate of un-

employment is equally distributed among the states in the West. Alternately, Midwest

states shows 6 out of 11 states with the lowest unemployment rate on average.

In fact, the above report can be confirmed by Table B.1 in Appendix B. It provides

summary statistics for the regional unemployment rates of the USA. These show that

the average unemployment rates range from 3.8% in South Dakota to 8.3% in West

Virginia over the thirty seven year period. Moreover, the sample standard deviation

(SD) indicates 0.8 volatility in South Dakota and 3.1 in West Virginia, as the lowest and

highest volatility among all the states, respectively. A box-plot of the data, Figure 5.2,

is a more convenient way of graphically depicting minimum and maximum, mean, inter-

quartile and also variability outside the upper and lower quartiles of the series. Most of

the series display a significant number of outliers at high maxima or low minima, like

Alabama, Louisiana, Mississippi, North Carolina, Ohio and South Carolina. Despite

1http://data.bls.gov/map/MapToolServlet
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Figure 5.2: Box-plot of United States Unemployment Rate.

differences in the average and standard deviation, almost all the states have a positive

skew except New Mexico. Approximately thirty-one states also have a distribution with

a negative kurtosis. The results for the normality test based on the Shapiro-Wilk (SW)

test also provide strong evidence of non-normality for all the series. The results are all

statistically significant at a 1% level. Last but not least, the Augmented Dicky-Fuller

(ADF) test show supporting evidence for the presence of a unit root and implies the

series are non-stationary at a 1% significant level. These statistics affirm a high degree

of persistence in the US unemployment structure. Based on the above results there

appears to be some spatial interaction between the states. To illustrate these ideas, the

Moran Index is next calculated.

Spatial autocorrelation The Moran Index was introduced by (Moran, 1950) to

determine the spatial autocorrelation between the unemployment rates of labour market

districts. The Moran’s I determines whether the regional distribution of unemployment

rate is random or not. There are two types of indices: the global index and the local

index. The former summarises an average spatial dependency, considering the whole

state, while the latter emphasises the association of a location considering it’s neighbours.

The general Moran index, I, takes the form:

I =
n∑

i

∑
j wi,j

∑
i

∑
j wi,j(Yi − Ȳ )(Yj − Ȳ )∑

i(Yi − Ȳ )2
, (5.3)

where wi,j is a component of a matrix of spatial weights and n is the number of spa-

tial units. The global Moran’s I can also specify the global clustering via testing the

significance level of the I statistic by a permutation test (Moran, 1950). When a set

of deviations from the average value of adjacent states have the same sign then the I



94 Chapter 5 Latent and Reduced Space Multivariate Singular Spectrum Analysis

statistics are positive. Consequently, we can conclude that there is a positive spatial

autocorrelation between those states.

The local Moran’s Index allows for decomposition of the global indicators into the con-

tribution of each individual observation (Anselin, 1995). It means they provide a local

instability in overall spatial association of regions. A local Moran statistic, Ii, can be

calculated as:

Ii =
n(Yi − Ȳ )

∑
j wi,j(Yj − Ȳ )∑

j(Yi − Ȳ )2
. (5.4)

The local Moran statistic measures the local deviations from the global pattern of spatial

association (Scrucca, 2005). It is also shown in (Moran, 1950) that the average of Ii is

equivalent to the global I, up to a factor of proportionality.

The Moran scatterplot of the US unemployment rate, for both inverse-distance weights

(ID) and Border-Distance weights (BD), is given in Figure 5.3. The four quadrants

are associated with four types of spatial association. As can be seen the majority of

significant positive associations are in the upper-right quadrant especially for Border-

Distance weights. It means districts with high unemployment rates are connected to

those with high values. On the other hand, states with a lower rate of unemployment

are classified into the lower-left quadrant. The obtained value of I can be used to test the

null hypothesis of no spatial autocorrelation between districts. Both spatial weights, ID

and BD, show a significant spatial autocorrelation amongst the whole area by rejecting

the null hypothesis. The greater value of the I-statistics for BD (I = 0.617) also confirms

that there is a stronger spatial association when weights are related to both border and

distance.
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Figure 5.3: Moran Scatterplot for United States Unemployment Rate.

The results of the local Moran test are presented in Table B.2 (see Appendix B). Among

48 states, 20 states show statistically significant spatial interdependency in the case of an
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Inverse-Distance weight. Moreover, over 25 states show a strong spatial association at

5% significance level in the case of a Border-Distance weight. These findings essentially

provide support for the key argument of our study, which is that using spatial weights for

forecasting unemployment rates based on the multivariate model may be advantageous.

5.2.1.1 Empirical Results

In this section, we compare the performance of out-of-sample forecasting using SSA,

BSSA, MSSA and MBSSA for bivariate series with Border-Distance weights as well as

Inverse-Distance weights. All comparisons are made in terms of prediction RMSE with

respect to MSSA, and univariate SSA as the benchmarks. In addition, comparisons are

made at four different horizons: monthly, quarterly, half-yearly, and yearly. The last

third part of each series is reserved as an out-of-sample data.

Tables B.3, B.4, B.5, B.6, B.7, and B.8 in Appendix B display detailed information on

the RMSE and RRMSE for the unemployment rate of the 48 states of the USA. Table 5.1

presents the summary statistics of the RMSE, RRMSE and number of significant fore-

casts obtained by each method across all horizons. There is no clear indication whether

BD provides better forecasts than ID. Although, it seems BD is slightly better than

ID. Meanwhile, the summary shows that BSSA is significantly superior to SSA for both

spatial models, ID and BD. Comparing results of MSSA with univariate SSA, however,

indicates a slight improvement in forecast accuracy. According to table 5.1, MBSSA

provides the most accurate forecasts, showing a considerable reduction in RRMSE. In

both cases, BD and ID, MBSSA results in an average gain of 32%, 44%, 45% and 38%

over MSSA for h =1,3,6,12 which would seem to suggest empirically that a Bayesian

multivariate model is superior in this case. Comparing results of MBSSA with univariate

BSSA, indicates an average reduction of 32%, 13%, 12% and 16% for each horizon. We

also report the statistical significance of the RMSE (relative to each comparison), and

these show that 94% of MBSSA forecasts for both BD and ID, are statistically significant

at α = 0.01. In the medium and long term, 96% of MBSSA forecasts show a statistically

significant result. The improved forecast accuracy of MBSSA over BSSA suggests that

unemployment time series can support each other. The natural question then arises

whether all the supporting information is contained in the geographical distribution of

states or other supporting factors exist as will now be explored.
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Table 5.1: Summary statistics for out-of-sample forecasting accuracy measures for
unemployment rate series.

Measures Methods 1 3 6 12

RMSE SSA 0.12 0.33 0.62 1.12
BSSA 0.11 0.24 0.40 0.86

ID-MSSA 0.12 0.32 0.63 1.07
BD-MSSA 0.12 0.32 0.60 1.02
ID-MBSSA 0.07 0.18 0.34 0.64
BD-MBSSA 0.07 0.17 0.33 0.64

RRMSE ID-MSSA/SSA 0.98 0.99 1.03 0.96
ID-MBSSA/BSSA 0.68 0.87 0.88 0.84

ID-MBSSA/ID-MSSA 0.69 0.55 0.53 0.60
BD-MBSSA/BD-MSSA 0.67 0.58 0.58 0.64

Sig at 0.01 ID-MSSA/SSA 0.00 2.00 2.00 7.00
ID-MBSSA/BSSA 48.00 41.00 40.00 44.00

ID-MBSSA/ID-MSSA 45.00 46.00 48.00 48.00
BD-MBSSA/BD-MSSA 47.00 48.00 48.00 46.00

5.3 Projection pursuit using Joint Diagonalisation

As mentioned in chapter 2, there are two forms of the block trajectory matrix in MSSA

along with two forecasting procedures, Horizontal and Vertical. A horizontal stack of

Hankel matrices enables us to have various Ki and different series length Ni, however

similar Li for all series, while a vertical stack of Hankel matrices, enables us to have

various window lengths Li and different series lengths Ni, however similar Ki for all

series.

(Hassani & Mahmoudvand, 2013) compares the structures and limitations of horizon-

tal and vertical MSSA forecasting algorithms from different perspectives such as the

series length, the value of window length (Li), the number of non-zero singular values

obtained from the block trajectory matrix, and the coefficients of the LRF. (Hassani &

Mahmoudvand, 2013) also discuss matched and unmatched components between mul-

tivariate time series. They show these components sometimes support each other and

sometimes don’t. Therefore, they attempt to examine the block diagonal matrix of

multivariate time series which does not restrict the dimension of covariance matrices,

Ci. However, this form of covariance matrix is equivalent to M univariate cases which

results in the same eigen-decompositions as univariate SSA.

At this point it is instructive to define exactly what we mean by matched and unmatched

components (as these terms are not explicitly defined in (Hassani & Mahmoudvand,

2013)). As we will be comparing the models based on their forecast accuracies given

various combinations of series, in one sense we mean the Granger Causality between

series (see (Hamilton, 1994) Chapter 11 for an in depth discussion with respect to multi-

variate analysis.); i.e. that inclusion of one or more time series in a model may improve
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Figure 5.4: Distribution of cosine distances between the strongest eigenvector of every
state

a forecast of the dependent time series. With specific reference to SSA based models,

the LRF coefficients are determined once the eigenvectors of the covariance matrix have

been determined. If two time series have two (true) eigenvectors which are similar then

it is possible that both samples combined would result in a better estimate of the true

eigenvector of the dependent time series. In such a case we say these time series have a

matched component. The difficulty lies in the definition of similar and we cannot define,

for example some threshold angle between vectors, below which the time series reinforce

each other. On the contrary, we have found that the unemployment time series all share

very similar eigenvectors but that small angles between these vectors can lead to signif-

icant forecast differences as will be shown. Figure 5.4 shows the distribution of angles

between all the eignevectors of the 48 time series for the eigenvector u ≈ [11...1]T .4,5

As can be seen the angle between them is small with a maximum cosine distance of

5.2× 10−4.

Suppose we have a set of covariance matrices for which we wish to find a set of orthogonal

matrices U such that the coefficients of projection onto this new basis are as diagonally

dominant as possible. The problem can be solved efficiently by using a simultaneous

decomposition method which looks for the communality among the matrices. One way

of doing that is to consider a common set of eigenvectors, between all covariance matrices

of multivariate time series i.e. via Joint Diagonalisation (See Section 2.1.1.2).

4The cosine distance is used dcos = 1− uaub√
(uauT

a )(ubu
T
b

)
.

5Normalised to one. Note this is the eigenvector which holds the trend component and is the strongest
in each series.
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In this section, as an alternative to the SVD, the second step of SSA, is replaced by

JD. The key differences between SVD in MSSA and JD, is that the eigenvector in

the former is a summation of covariance matrices U∑
i
XiXt

i
while the latter targets a

common vector as an average eigenvector of covariance matrices Ū{XiXt
i }. In fact JD

can directly search for the common eigenspace. It is worth noting that, JD MSSA

is essentially a variant of Horizontal MSSA. In general the eigenvectors of a sum of

matrices can differ significantly from their average eigenvectors (via JD), although when

the covariance matrices of multivariate time series are quite similar then the eigenvectors

of both approaches are similar.6

From Section 2.1.1.2 the JD of a set of matrices seeks to minimise:

δi = off2(Qi) =
∑
k 6=j

Qk,ji
2

(5.5)

where off2 is defined as the sum of the off diagonal elements and called the deviation

from Ci, Q
k,j
i is the kth row and jth column of Qi. Given the average eigenstructure

of the covariance matrices an average covariance matrix may be constructed from the

eigenvector decomposition as:

C̄ = ŪQ̄ŪT (5.6)

Where C̄ is a matrix in which the entries represent the average weight at the covariance

matrices of each time series and Q̄ is the average of diagonals of Ci projected onto Ū

which might also be called the average eigenvalues (Fay & Yoneki, 2011). In addition, the

statistical distribution of deviations, δi, from the average provides us with an interesting

picture about the underlying structure of the covariance matrices as will be shown in

the following section.

5.3.1 Empirical Results

In this Section we compare the spatial SSA models with SSA based on JD in order to

determine if this non-spatial clustering of the time series is advantageous. The results are

compared with those obtained via MSSA and MBSSA (all 48 states together) in terms

of their accuracy at predicting short, medium and long-term horizons. The second part

looks at the distribution of δi and presents the first of 5 alternate clustering maps of the

USA.

5.3.1.1 JD versus SVD

In this section JD-MBSSA and MBSSA are compared given that both use just a sin-

gle eigenspace (the JD average eigenvectors and the eigenvectors of the sum of the 48

6The eigenvectors of A+A equal that of A equal that of JD(A,A).
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covariance matrices respectively). Thus, both JD-MBSSA and MBSSA consider all 48

series together. Tables B.15 to B.20 compare the out-of-sample RMSE and the RRMSE

results for MSSA, MBSSA, JD-MSSA and JD-MBSSA.

Table 5.2 presents the summary statistics of the RMSE and RRMSE at each horizon.

The result indicates JD-MBSSA does not perform well compared to its counterpart,

MBSSA (and JD-MSSA compared to MSSA). The average RMSE’s for four horizons

are 1.40, 1.63, 1.53 and 1.43.

It might be concluded that SVD performs better than JD for this particular data sets.

However, JD provides a stacked matrix with the diagonal matrices (or equivalently an

array with the diagonal matrices) as the same format as the covariance matrices. The

stacked matrix can be then used for grouping covariance matrices into clusters based

on their common structure to understand the processes underlying them. As discussed

earlier, this common structure can be found by looking at the distribution of δi.

Table 5.2: Summary statistics (JD, Tensor and SOEM clusters vs SVD).
Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Ten-MS Ten-MBS SOEM-MS SOEM-MBS JD−MBSSA
MBS

Ten−MSSA
MBS

SOEM−MBS
MBS

1 0.12 0.08 0.12 0.12 0.13 0.08 0.10 0.07 1.40 1.01 0.88

3 0.37 0.20 0.38 0.32 0.36 0.20 0.27 0.18 1.63 1.01 0.87

6 0.77 0.40 0.83 0.60 0.84 0.40 0.58 0.37 1.53 1.01 0.92

12 1.68 0.76 2.09 1.08 2.76 0.76 1.22 0.73 1.43 1.00 0.96

Note: The following abbreviations are used to take up less space: MS(MSSA), MBS(MBSSA)

JD-MS(JD based MSSA) and Ten-MS(Tensor based MSSA) and so on.

5.3.1.2 Clustering states on δi

The purpose of cluster analysis of δi is to determine the inner structure of clustered

states which can be an alternative procedure to partition multivariate time series to have

better forecast performance. The cluster analysis essentially shows geography of USA

employment. Here the most commonly used methods of clustering, such as Gaussian

mixture model (Dempster et al., 1977; Day, 1969), kmeans (Lloyd, 1982; MacQueen

et al., 1967) and Hierarchical clustering (Johnson, 1967; Lance & Williams, 1967) are

used to discover subclasses of USA states. Note that the optimal clustering is subjective

and depends on the method used for measuring similarities and dissimilarities and related

parameters used for partitioning.

Gaussian mixture model The analysis starts with estimating the underlying prob-

ability distribution of off diagonal elements squared via a Gaussian Mixture Model

(GMM) (McLachlan & Peel, 2004) in which the problem of choosing the number of

modes (components) can be reformulated as a statistical model choice problem. In
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Figure 5.5: Distribution of δi (kernel smoothing is employed for the overall average.)

this context, δi are viewed as coming from a mixture of probability distributions, each

representing a different cluster.

Examining the distribution of deviations, δi, from the average, a more interesting be-

haviour may be observed. Figure 5.5 illustrates the empirical distribution of δi, i =

1, . . . , 48. It is evident that the distribution is multi-modal; i.e. the underlying process

has different modes of operation. It also divides δi in a way that conforms reasonably

well with intuitive ideas of natural clustering. Figure 5.5 shows a mixture of 3 dif-

ferent modes 7. This is particularly useful as it allows the multivariate system to be

characterised by different modes of behaviour at different times.

A cluster mapping of USA is also shown in Figure 5.6 which provides sectoral and

cross-sectoral statistical analysis of regional data. This map creates a dataset on the

presence of clusters across geographical characteristics according to the clusters provided

by GMM. According to the map, there are 3 (blue, red and yellow) clusters concentrated

in a subset of geographic areas however these clusters are scattered and do not follow a

particular pattern. For example, states like New York, Florida and California tend to

have same types of economic activity while having by far the largest distance. Conversely,

there is clearly a geographic contiguity in the clusters which suggests neighbouring states

economies are linked.

7 The model with the lowest Bayesian information criterion (BIC) is preferred
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Figure 5.6: States clustered with GMM.

Kmeans clustering Another way to cluster states is via Kmeans (Sammut & Webb,

2011). It basically measures dissimilarity based upon Euclidean distance. The Kmeans

algorithm requires one to specify the number of clusters, K. However, there are some

specific measures that can be used to examine the number of clusters in Kmeans (Sam-

mut & Webb, 2011). Here, we set K = 3 so a fair comparison may be made with the

other techniques in this Chapter. Figure 5.7 maps the regional clusters provided by

Kmeans.

Figure 5.7: States clustered with Kmeans.

According to Figure 5.7, 44% of states in West and Midwest are in one cluster, compared

to 22% in South (and Washington and Wyoming from West). On the other hand, New

York, Florida, Nevada and Oregon belong to the same cluster which is very close to

those provide by GMM. Again we see a large degree of contiguity between the states but

there are also some states clustered together which would not appear to be a natural

cluster. For example Vermont is grouped with the southern states and Florida would
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not typically be clustered with the southern states. (See further comments in the next

Section.)

Hierarchical clustering A similar analysis can be performed based on a Hierarchical

clustering technique. In this context, the dendogram is the main graphical tool for

obtaining insight into how the states cluster. Looking at the dendogram for the sum of

off diagonal component squared, there are clearly three very distinct groups; the right

hand group seems to consist of two more distinct cluster, while most of the observations

in the left hand group are clustering together at about the same height. Surprisingly,

Arizona is picked as a distinct cluster. Therefore, for this data set, it looks like either

three or four groups might be an interesting place to start investigating.
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Figure 5.8: Dendogram.

Note that in Figure 5.9 three clusters are again identified but in this case the blue cluster

has been further subdivided to show the sub-clusters present in Figure 5.8. The three

main clusters do not appear to offer a reasonable clustering with Oregon, Mississippi and

New York together. However, the sub-clusters of the Blue cluster do appear to show the

dark sub-cluster running diagonally across the states with lighter sub-clusters radiating

either side.
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Figure 5.9: States Hierarchically clustered.

5.3.1.3 Forecasting clustered states

Using the above we showed there exist a definite spatial correlation among states using

unemployment data. Although, there is a large variation in the clusters formed by

the above mentioned clustering algorithms. All seems to confirm the level of economic

activity and neighbouring between states is relative to their unemployment rate.

The detailed results forecasting USA unemployment rates based on the clusters provided

by GMM, Kmeans and hierarchical is reported in B.9, B.10, B.11,B.12, B.13, and B.14 in

Appendix B. MSSA and MBSSA using clusters are compared with MSSA and MBSSA

using all 48 states together for each clustering. A summary of those results is provided

in Table 5.3. There is not a clear indication of which grouping procedure is most likely

to provide better forecasts. Meanwhile, the summary shows that MBSSA is still signifi-

cantly superior to MSSA. The results of comparing km-MBSSA and hierarchical-MBSSA

with MBSSA, however, reveal using clustered states could not improve forecasting ac-

curacy of MBSSA. The average RRMSE shows GMM is slightly better than Kmeans

and hierarchical. Overall, it might be concluded that for all horizons, difference between

these three techniques is negligible.

Table 5.3: Summary statistics for clustering based on JD.
Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

1 0.08 0.08 0.12 0.08 0.12 0.08 0.12 1.01 0.98 1.02

3 0.20 0.20 0.38 0.19 0.37 0.20 0.37 1.01 0.95 1.01

6 0.40 0.40 0.85 0.38 0.79 0.40 0.77 1.01 0.96 1.01

12 0.76 0.76 2.65 0.75 1.83 0.77 1.69 1.00 0.99 1.01
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5.4 Projection pursuit with Tensor decomposition

As discussed before, MSSA looks for orthogonality between time series to decompose

covariance matrices together. Although it does not expose communality between their

modes. Therefore, we used JD to find a common set of eigenvectors, between all covari-

ance matrices of multivariate series. Analysis provided in the previous section showed

even a common set of eigenvectors can not solve the problem since those common modes

between different groups of time series are still supporting each other.

The problem with JD can be expressed in two ways. First, JD can only allow us

to identify common modes between all covariance matrices and second using δi as a

feature (scalar/vector) is not an ideal choice as it can only provide one dimensional

clustering. To be more specific, the distribution of off diagonal squared, δi, only relies

on how far we are from the average eigenspace and therefore different clusters which

have the same distance from that average are indistinguishable. In this part, we bring a

multidimensional view to decompose the covariance matrices using a more generalised

format of JD, called tensor analysis.

5.4.1 Tensor Analysis

(Lathauwer, 2011) shows that in the third-order case the computation of the PARAFAC/-

CANDECOMP of a tensor X is equivalent to the simultaneous diagonalisation of its

matrix slices. In this part, we aim to capture the latent structure underlying the data

via a Tucker transform. The covariance matrices of multivariate series are considered

as tensors instead of more conventional matrix representations. In this approach, the

multi-way data is decomposed using the Tucker decomposition without constraints to

obtain basis factors and consequential features from the core tensors.

Figure 5.10, diagrammatically shows the 3-way decomposition of the M covariance ma-

trices C
(m)
i,j as performed via the Tucker transform. The input tensor is a L × L ×M

tensor with three modes and this is then decomposed into three matrices and a core

tensor. The core tensor is a lower dimensional approximation of the original tensor in

which the projection amplitudes of the 3−modes are given by U (1), U (2) and U (3).

If we examine the core tensor sliced along the 3rd mode then the first slice represents the

strongest direction in the slices of the original tensor. Lets assume that there are three

clusters in the data (in the sense that within each cluster there is a common eigenspace)

and that the blue cluster is the dominant cluster (Figure 5.10). Then the first slice of the

core will contain approximately the (average) eigenvalues of the first cluster and U (1)

and U (2) will contain their eigenvectors. The second slice of the core will contain the

coefficients of projection of the second cluster onto the eigenspace of the first cluster. As
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Figure 5.10: Tucker transform.

this is not the eigenspace of the second cluster these coefficients will contain strong off-

diagonal elements. Similarly, the projections of the third cluster onto the eigenspace of

the first will not be diagonal and is contained in the third slice. Thus, in Figure 5.10 the

core tensor is shown as having a diagonally dominant first slice and the colours mixing in

the subsequent slices. U (3) gives the projection of each time series into the slices. In an

ideal situation where the clusters are distinct U (3) would be block diagonal containing

just 1 to indicate which core represents which cluster. However, as seen in Figure 5.4,

for the unemployment rate times series used there is a large similarity between the time

series. Thus the first slice of the tensor contains the average directions, and the second

and subsequent slices contain projections of the deviations from the average of each time

series. U (3) thus contains the extent to which each time series requires these deviations

to produce a reasonable reconstruction and so U (3) may be considered as a projection of

the time series into a 3D space/co-ordinate system which separates the time series and

so may be used for clustering.

5.4.2 Empirical results

In this section we replace SVD with Tucker transform, on a tensor-sized L × L × 48

covariance matrices. Different values for the window length, L, are examined and we

found L = 3 is the suitable choice for all 48 states combined. Our analysis also confirms

the above discussion that the first core carries most of the power.8 The second core

shows that the sum of off-diagonal elements is indeed stronger than the diagonal. On

the other hand, the primary eigenvectors of the two projections U (1) and U (2) are similar.

8The sum of diagonal of each core is its power.
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5.4.2.1 Clustering with Tensor-modes

Here we aim to investigate the underlying clustering of states by studying the factor

matrices associated to the covariance matrices. This information is gained via U (3).

As a matrix with L dimension U (3) can be considered as a weight matrix that allows

us to model spatial characteristic of states in a partitioning framework. It also allows

us to apply multidimensional clustering which includes more flexibility along multiple

dimensions.

Figure 5.11 shows the clustering map of USA produced by applying Kmeans to the

co-ordinates in U (3). It clusters New York and its neighbours with Florida as well as

Washington, Montana from North-West. In addition the belt going from Arizona to

Arkansas also belongs to the same cluster. On the other hand, Louisiana is captured as

an independent cluster while the rest of the country is just one big block. As mentioned

before, like any unsupervised methods the subjective clustering criteria is user-defined

and can vary substantially depending on which measure is used.

Figure 5.11: States clustered with Tensor-Kmeans.

5.4.2.2 Forecasting

In this part, what most interests us is to see the forecasting performance of the clus-

tered states using MSSA and MBSSA. We used U (3) to extract two different types of

information; a weight matrix and the clusters in the last Section. For the former, the

distance between states in U (3) is treated as a geographical distance and the Euclidean

distance between the rows is calculated via Formula 5.1. As in the spatial model we

have (Y (1), Y (2)) which can be used for forecasting. The latter, 3D dimensional clus-

tering using kmeans is applied on U (3) to find clusters. The results of each forecasts is

shown in Tables 5.4 and 5.2.
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Table 5.4: Summary statistics comparing spatial SSA and tensor SSA using

a single eigenspace/cluster.

Steps RMSE RRMSE

h Tensor-MSSA Tensor-MBSSA BD-MSSSA BD-MBSSA Tensor−MBSSA
BD−MBSSA

Tenspr−MSSA
MSSA

1 0.13 0.07 0.12 0.07 0.96 1.07

3 0.36 0.18 0.32 0.17 1.00 1.11

6 0.84 0.37 0.60 0.33 1.10 1.37

12 2.76 0.76 1.02 0.64 1.18 1.45

Table 5.4 only compares the results with those obtained by BD in Section 5.2. The

difference between the tensor based approach and the BD approach is marginal with the

border distance giving marginally superior results.

Additionally, Table 5.2 shows the differences between of clustered series via U (3) and

MBSSA is negligible.

5.5 Projection pursuit with a self-organising map

In Section 5.3 we noted that two time series can be considered to have matched com-

ponents if their eigenvectors are similar. As seen in Section 5.4 the Tucker transform

based approach is not ideal essentially because we have only one option for selection

of U (1) and so can never produce a set of core slices that are all diagonally dominant.

Due to the small angles between the eigenvectors of each cluster we require a technique

that can produce clusters with closely aligned bases. Rather what we seek is a set of

clusters whose centres are defined by orthonormal eigenspaces which are non-orthogonal

to each other (i.e. each cluster may contain very similar eigenvectors and in some cases

we expect the angles between them to be quite small).

5.5.1 Self Organising Eigenspace Map

Specifically, K clusters are sought, S1:K , each defined by a set of orthonormal vectors,

{Uk}k=1:K such that the off-diagonal coefficients of the covariance matrices, Ci, projected

onto the orthonormal set within each cluster is minimised as:

argmin
{Uk}k=1:K

K∑
k=1

∑
∀Ci∈Sk

< Uk, Ci > (5.7)

where < Uk, Ci > denotes some distance measure between the eigenvectors of a cluster

and the covariance matrix of an American state. The optimisation in Equation (5.7)
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Figure 5.12: self-organising eigenspace map.

depends on the number of clusters, and in addition an optimal set of eigenvectors must

be found; as neither is known it would be desirable to infer both during the solution.

Here, we employ the Self Organising Eigenspace Map (SOEM) algorithm (SOEM) (Fay

& Rahmani, 2017) which is inspired by the Kohonen neural network but which incorpo-

rates matrix inputs and employs a weighted JD as the core update mechanism. Figure

5.12 shows diagrammatically the SOEM proposed for clustering the covariance matrices

of the times series.

5.5.1.1 SOFM vs SOEM

A Kohonen neural network consists of a grid of topologically distributed nodes each

with an associated function. An input is presented to this grid (i.e. the functions

are evaluated for the input at every node) and the location of the maximum (or mini-

mum) activation is called the winner. During training the winning nodes function (and

crucially) its neighbours are updated so as to reinforce the activation. Assuming the

network training converges, the distribution of the winning nodes reflects the topologi-

cal ordering of the inputs, in addition, the nodes should place themselves such that the

input which maximise them are sampled from the same underlying distribution as that

of the input space (Tatoian & Hamel, 2016). In such a case the 2-D grid of nodes may

be considered a lower dimensional mapping of the input space and as such useful for

clustering. Specifically, the Kohonen map (also called the Self Organising Feature Map

(SOFM)) and its variant, the SOEM consist of the following steps:

1. The competitive step. In an SOFM each node has an associated vector, ~vi,j

and given a vector input ~x the winning node, s, is:

s = argmin
i,j

(||~vi,j − ~x||) (5.8)
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For an SOEM each node has an associated orthonormal basis, {Ui,j}, and the

winning node, s, is that which aligns best with the projection space of the matrix

input, C, as:

s = argmin
i,j

off2{(UTi,jUi,j)−1UTi,jCUi,j} (5.9)

2. The update step. In an SOFM the node vectors are rotated towards the input

vector according to:

~vi,j ← ~vi,j − ν(~vi,j − ~x)h(s, i, j) (5.10)

where ν is a gain term ∈ [0, 1], h(s, i, j) is a kernel which is (typically) monoton-

ically decreasing with the distance from node i, j to the winning node s. For an

SOEM the node bases are rotated towards the input matrices according to:

Ui,j ← J2

(
Ui,j |

[
~vi,jUi,j h(s1, i, j)C1 h(s2, i, j)C2 . . . h(sM , i, j)CM

])
(5.11)

where J2(·) is the joint diagonalisation of the old vector set with a scaled/weighted

set of the input matrices and h(sk, i, j) is a monotonically decreasing function in

the distance between {i, j} and sk. Note that for an SOFM each input presented

updates ~vi,j in an iterative fashion while for an SOEM all the inputs are used

simultaneously to update a basis9.

3. The iteration step. After all inputs have been presented the algorithm typically

changes and for example ν may be reduced (thus slowing the refinement of the

node vectors to stop oscillations). Also, h(sk, i, j) may be changed, for example

if h(sk, i, j) = N (0, σh) is a Gaussian kernel then the width of this kernel may be

reduced after each iteration (thus allowing a local rather global refinement of the

solution). In the current research our SOEM employs a Gaussian kernel with σh

= 1/4 width of the grid allowing each input to effect a large section of the grid.

Following step 3 the algorithm returns to step 1 and iterates until a stopping condition

is found (in this research a set number of iterations is given although the algorithm may

be stopped, for example, when the kernels effective radius falls below one). The SOEM

is initialised by assigning random vectors to each node which are then adjusted to form

a basis using Gram Schmidt orthogonalisation. In addition, each input is scaled such

that it has unity norm. In the first iteration, the winning nodes are assigned randomly;

this ensures the first iteration spans the entire eigenspace of the inputs.

9We experimented with iterative updates but found that the eigenspaces are adapted either too slowly
or quickly to each input and so would not converge.
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5.5.2 Empirical results

Figure 5.13(a) shows the first iteration demonstrating that the winning nodes are uni-

formly distributed. Figure 5.13(b) shows the second iteration and demonstrates that

some clustering is already starting to appear. Figure 5.13(c) shows the final iteration;

as can be seen there are 3 distinct clusters. The red cluster on the left the blue cluster

and the yellow cluster in the middle which borders both larger clusters. Figures 5.14(a)

to 5.14(d) show the values of off2(||Ui,j , C||) (i.e. the distances in Equation (5.7)) for

indicative states. As can be seen California and New York have a lower value towards

grid location (0,0) (the blue cluster) while Texas and Iowa prefer location (30,30). The

key point in these figures is that the transition across the grid is smooth showing that

the SOEM has achieved a topological ordering from the data.

In (Tatoian & Hamel, 2016) the authors propose two measures for evaluating the con-

vergence of a Kohonen neural network. The first measure is the topographic accuracy

defined as the average number of neighbours of winning nodes that came second:

εT = 1/n

n∑
i=1

1/||s(n), s
(n)
2 ||H (5.12)

where ||s(n), s
(n)
2 ||H is the distance between the location of the winning node s, for input

n and that location which came second, s2. In addition, || · ||H, denotes the Hamming

distance in the sense that it is 0 if s and s2 are not neighbours. In a (ideal) topologically

ordered space the winning and second place nodes would always be neighbours and this

is the motivation for the measure in (5.12). The value of εT for the map trained in this

research is 0.1875 showing that approximately 20% of the time the 2nd best location is a

neighbour of the winning node. However, this number does not concur with the general

impression conveyed by Figures 5.14(a) to 5.14(d) because it does not take into account

the noise present in an empirical ordering.

Instead we report the average distance to s2 averaged over all the state which is 3.92.

Indeed, the distance from the ith place loser increases monotonically from the winner

as shown in Figure 5.15. This demonstrates that a topological ordering has occurred as

there is linear relationship between the place achieved and the distance to the winner.

5.5.2.1 Clustering with SOEM

Figure 5.16 presents the clustering of states given by the SOEM. It quite clearly shows

a central band of red states and east and west coast states in a blue cluster. In addition,

there is also a third yellow cluster of states located in the far South. From an intuitive

point of view this clustering appears to make sense as states such as Florida, New York

and California are clustered together while the more agricultural central states are also

clustered together.
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Table 5.5: Summary statistics (MSSA, MBSSA, and BD vs SOEM).

Steps RMSE

h MS MBS BD-MS BD-MBS SOEM-MS SOEM-MBS

1 0.12 0.08 0.12 0.07 0.10 0.07
3 0.37 0.20 0.32 0.17 0.27 0.18
6 0.77 0.40 0.60 0.33 0.58 0.37
12 1.68 0.76 1.02 0.64 1.22 0.73

Note: The following abbreviations are used to take up less space: MS(MSSA), MBS(MBSSA) BD-MS(JD based
MSSA) and SOEM-MS(SOEM based MSSA) and so on.

5.5.2.2 Forecasting clustered states

The overall forecasting results obtained by forecasting each cluster together is given in

Table 5.2 in comparison with Table 5.1 which are combined in Table 5.5 below. The

SOEM clusters lead to a lower RMSE than the MBSSA models in all cases and a similar

performance to the BD-MBSSA models. It should be noted that SOEM BD-MSSSA

comparison is not quite a fair comparison as the BD models essentially consist of pairs

of time series individual to each state (i.e. equivalent to 48 clusters) while the SOEM

is restricted to just 3 clusters. In addition the SOEM provides us with an excellent

performance and clustering while neither the BD or the MBSSA models can provide

clustering and the alternate clustering techniques cannot provide excellent performance.

5.5.3 Summary and conclusion

This Chapter concentrated on pooling time series together in such a way as to reinforce

their common modes. As noted in Section 5.3 there is a large similarity/commonality

between the time series modes in the data used here but yet pooling all time series

together results in degradation of performance (Table 5.1). We investigated different

means of pooling time series. The first was based on the physical location of the states

themselves Section 5.2, the remaining Sections employed the data itself to extract some

common pooling (Sections 5.3, 5.4, and 5.5).

The Tensor based, SOEM based and three JD based clusters shown in Figures 5.6, 5.7, 5.9, 5.11,

5.16 are interesting. From one point of view they are all different however each shows

geographical contiguity and so we can conclude that in some sense the techniques are

capturing commonalities between the time series. In all of the maps the states sur-

rounding New York are by and large clustered with New York and also we see the

mid-western state consistently co-clustered. Florida and California differ and there also

seems to be a belt of states Oregon, Nevada and Arizona that are clustered together

in several cases. Perhaps Nevada and Arizona make sense both being primarily desert

states but only Oregon’s east contains desert. However, while there is some consistency
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between the clusters when it comes to producing forecasts from the clusters we see that

only the SOEM based cluster provides forecast improvement over the spatial clusters in

Section 5.2. This is impressive as the comparison is not fair for the SOEM based models

which are restricted to three clusters, the spatial models in essence containing a unique

clustering for each state.



Chapter 5 Latent and Reduced Space Multivariate Singular Spectrum Analysis 113

30

20

Grid x

10

00

10

Grid y

20

2

1.5

1

0.5

0
30

|W
in

n
e
rs

|

(a) Nodes activated in the initial iteration.
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(b) Nodes activated in the second iteration.
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(c) Nodes activated in the final (10th) iteration.

Figure 5.13: Distribution of winning nodes over several iterations.
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(a) California.
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(b) New York
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(c) Texas.
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(d) Iowa.

Figure 5.14: Distance measure, < {Ui,j}, C >, for four sample American states.
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Figure 5.15: The x-axis is the number of places behind the winning node (i.e. 2nd
place, 3rd place etc), the y-axis shows the average euclidean distance from the winning

node of that node.
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Figure 5.16: States clustered with SOEM.





Chapter 6

Conclusion

The one unifying element in this thesis is the focus on the SSA modes in multivariate

time series, their relationship with each other and their evolution. SSA is based on the

eigenvalue-eigenvector decomposition of the M-lag covariance matrix, therefore these

modes can be expressed via the obtained eigenvectors. These eigenvectors are the core

element of the SSA algorithm, in both the reconstruction and forecasting stages.

Our preliminary analysis was designed to show that we can use bootstrapping on the

coefficients as well as the forecasts in SSA. The performance improvement is marginal

but most interesting is perhaps Figure 3.3 in which we see that post a structural break

the coefficients of the LRF are less concentrated and most worryingly this persists. SSA

forecasting uses information from the eigenvectors to find the LRF coefficients. We found

that the LRF is violated post break (Section 4.2.2). This outcome is also confirmed by

the distribution of the coefficients which shows they are less concentrated around their

mean (Section 3.3.2). In fact this uncertainty can bring more uncertainty into forecasting

as well. To address this issue we proposed a state dependent coefficients in which the

transition function depends on the state (Section 4.2.3).

The state dependent model was then empirically tested in both univariate and multi-

variate cases. For example, for the univariate case, we benchmarked against the most

commonly used classical time series models such as ARIMA, ARFIMA, ETS, GARCH,

SSA and bootstrap SSA (see Tables 4.4, 4.5 and 4.6), and observed most notably our

proposed model, Bayesian SSA outperforms them all. The same results are also reported

for the multivariate case (see Tables 4.11, 4.12 and 4.13), where the benchmarks are the

VAR, VECM and MSSA models. The classical models basically suffer in the presence

of a structural break but as found in (Serrano & Robles Fernandez, 2001), surprisingly,

including structural break information into the model results in no significant gains.

Additionally, the effects of a structural break last only as long as the break itself and

the maximum effective lag of the autoregressive models, whereas for SSA it lasts longer

as the trajectory matrix contains a full historical time series.

117
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Although MBSSA outperforms MSSA, it was found that the existence of common modes

between the time series (Industrial Production Indicator) perturbs the performance of

separability in MSSA (Section 4.4.2.3). Therefore, we found that MBSSA-8, for example,

does not always perform as good as MBSSA-2. The reason for this is that MBSSA cannot

separate the modes of similar but distinct time series. Using ICA-MBSSA-8 increases

the accuracy of the model significantly. ICA is just one possible prepossessing step to

reduce multicolinearity. However, it would be desirable to separate time series with

different modes in the first instance before modelling. However, testing all combinations

of time series requires N(2N−1 − 1) models be tested which becomes computationally

complex and overly time-consuming.

In Chapter 5 we further investigated the above idea using the USA unemployment rate

series. Since they are geographically distributed, information can be used to model

cross-sectional spatial dependency among multiple time series. This information is in-

corporated into the model as an explanatory series by using two different weightings,

the Inverse-Distance weight and the Distance-Boundary weights. The Moran test, Table

B.2, shows that there is a statistically significant spatial interdependency in each case.

In fact, the gains made by combining spatial interdependency and Bayesian MSSA and

as we expected multivariate models are far better than the univariate ones (Table 5.1).

Next, it was found that the angle between the USA unemployment time series eigen-

vectors differs slightly, Figure 5.4. In spite of the slight differences small angles between

eigenvectors can lead to significant forecast differences as shown later in Tables 5.3 and

5.4. Our first attempt was to replace the SVD used in the decomposition stage of the

SSA algorithm with joint diagonalisation to include communality between multiple time

series modes (Section 5.3) Surprisingly, the common eigenspace provided by JD had

little effect on improving the performance of the LRF coefficients. The reason for that is

those common modes between different groups of series are still supporting each other.

As another alternative we viewed the covariance matrices as a multidimensional array,

tensor (Section 5.4), and used a higher dimensional tensor decomposition, the Tucker

transform.

The Tucker transform was found, like JD, to not be an ideal replacement for the SVD.

The Tucker decomposition does not spread power equally among cores, for example,

most power is always given to the first core while stronger values in the second core are

given by off diagonal elements. Therefore, the Tucker transform is unable to produce a

set of core slices that are diagonally dominant.

A Self organising eigenspace map was later proposed (Section 5.5) to cluster the Ameri-

can states into sets of non-orthogonal eigenvectors. Table 5.5 shows a gain in forecasting

achieved while using the SOEM over the spatial weights.

The clustering maps of the American states is yet another interesting part of this

research. Five different clustering maps resulted from analysis based on kmeans-JD,
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GMM-JD, Hierarchical-JD, kmeans-Tensor and the SOEM. These can be compared in-

terestingly with maps produced in other studies such as (Kotkin J, 2013), and (Nelson

& Rae, 2016). There are differences but a general agreement in terms of the contiguity

of the regions detected in our study.

This thesis also reveals that it is possible to combine clustering independently with our

proposed Bayesian MSSA, and so the gains made from using MBSSA are not lost when

we introduce differing reconstruction paradigms (Table 5.5).

From another angle the work in this thesis found an interesting parallel between horizon-

tal MSSA and SSA when we have a time series with a sudden structural break (Section

4). If we consider the time series pre and post structural break to be two time series

then in fact this is equivalent to horizontal MSSA.

The SDM model examined assumes a Gaussian posterior for the coefficients of the LRF

model but further work involving a non-Gaussian posterior may be interesting such as

via the unscented Kalman filter or the particle filter. Also this might provide us with a

means to reject noise in the time series which can have an adverse effect on forecasts. It

would be of interest to look at different kinds of non-linearity in the SDM (i.e. change

the random walk model in Equation (4.12)). This would be interesting and in fact might

align with the idea of using the unscented Kalman filter or particle filter.

There are several variants of the SOFM that could also be tried such as growing a mesh

rather than apriori specifying a 30×30 grid; this is because the effect of boundary nodes

having only 3 neighbours can distort the final clusters (Fritzke, 1993). It would also be

interesting to derive a test for the SOEM to explore if the distribution of the eigenvector

bases are sampled from the same distribution as that of the covariance matrices. For an

SOFM this is easily performed using a t-test (Tatoian & Hamel, 2016) but in the SOEM

case we have two sets of matrices one of which is in fact a basis so its not clear if an

approach such as that in two sample tests for high dimensional covariance matrices (for

example (Li & Chen, 2012)) would work. Indeed, as the SOEM is at an introductory

stage it would be interesting to determine when it might converge for general matrices

or under what circumstances.
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A.1 Granger-Newbold test

Granger and Newbold (1986) noticed an easy way to test the null of comparing forecast-

ing errors through the following transformation. Assume U = e1 + e2, and V = e1 + e2

where e1 and e2 are forecast erors for model 1 and 2. Then, (U, V ) has a bivariate

normal distribution with parameters E[U ] = µ1 + µ2, E[V ] = µ1 − µ2, V ar(U) =

σ2
1 + σ2

2 − 2ρeσ1σ2, V ar(V ) = σ2
1 + σ2

2 + 2ρeσ1σ2 and Cov(U, V ) = σUV = ρσUσV In

terms of the original population, σUV = σ2
1 − σ2

2. If the mean squared prediction errors

in the original population are equal, then the covariance in the transformed popula-

tion must be zero. Then the null hypothesis in terms of the transformed population,

H0 : Cov(U ;V ) = 0. A direct way to test the null is to use the sample covariance around

the population means which leads to the following statistics:

sUV

[
n∑
j=1

u2
jv

2
j /n

2]
1
2

∼ N(0, 1)

The standard precautions are called for in using a standard error to test a statistical

hypothesis. It is only justified in the case where the test statistic tends to normality.

For more details see (Mizrach, 1996).
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Figure A.1: Industrial Production Indicators for France.
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Figure A.2: Industrial Production Indicators for Germany.
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Figure A.3: Industrial Production Indicators for the UK.
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Figure B.1: Unemployment rates for United States.
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Table B.1: Descriptive statistics for Unemployment Rate.
States Mean SD Skewness Kurtosis SW ADF States Mean SD Skewness Kurtosis SW ADF

AL 6.7 2.4 0.9 0.5 0.0* 0.15 NC 6.0 2.1 1.0 0.0 0.0* 0.29

AR 6.6 1.5 0.3 -0.9 0.0* 0.61 ND 4.0 0.9 0.7 -0.3 0.0* 0.19

AZ 6.4 1.9 0.9 -0.1 0.0* 0.02 NE 3.6 0.9 0.8 0.1 0.0* 0.38

CA 7.5 2.0 0.7 -0.3 0.0* 0.02 NH 4.5 1.5 0.4 -0.8 0.0* 0.01

CO 5.6 1.6 0.3 -0.5 0.0* 0.08 NJ 6.5 1.9 0.4 -1.0 0.0* 0.04

CT 5.5 1.8 0.4 -0.5 0.0* 0.07 NM 6.8 1.4 -0.2 -0.1 0.0* 0.07

DE 5.3 1.8 0.4 -1.3 0.0* 0.50 NV 6.8 2.6 1.2 0.6 0.0* 0.08

FL 6.4 2.0 0.6 -0.1 0.0* 0.07 NY 6.7 1.6 0.2 -0.9 0.0* 0.04

GA 6.0 1.7 1.0 0.1 0.0* 0.43 OH 6.9 2.1 1.1 0.9 0.0* 0.41

IA 4.8 1.5 0.9 -0.1 0.0* 0.55 OK 5.3 1.5 0.5 -0.3 0.0* 0.28

ID 6.0 1.5 0.2 -0.4 0.0* 0.18 OR 7.3 1.9 0.7 -0.6 0.0* 0.09

IL 7.1 2.0 0.7 -0.1 0.0* 0.35 PA 6.6 1.8 0.9 1.0 0.0* 0.28

IN 6.3 2.4 0.8 -0.2 0.0* 0.58 RI 6.6 2.3 0.6 -0.5 0.0* 0.01

KS 4.8 1.0 0.7 0.3 0.0* 0.10 SC 6.6 2.0 0.9 0.3 0.0* 0.05

KY 7.0 1.9 0.7 -0.6 0.0* 0.38 SD 3.8 0.8 0.6 -0.6 0.0* 0.33

LA 7.2 2.2 0.9 0.1 0.0* 0.44 TN 6.7 2.0 1.0 0.3 0.0* 0.34

MA 5.7 1.8 0.4 -0.6 0.0* 0.02 TX 6.2 1.3 0.3 -0.6 0.0* 0.08

MD 5.4 1.4 0.4 -1.0 0.0* 0.32 UT 5.1 1.6 0.7 0.1 0.0* 0.13

ME 5.9 1.6 0.1 -1.2 0.0* 0.22 VA 4.8 1.3 0.1 -0.6 0.0* 0.23

MI 8.3 2.9 0.7 0.1 0.0* 0.37 VT 4.9 1.4 0.6 -0.3 0.0* 0.07

MN 5.0 1.3 0.7 0.4 0.0* 0.22 WA 7.1 1.8 0.7 -0.1 0.0* 0.09

MO 6.0 1.6 0.7 0.2 0.0* 0.35 WI 5.6 1.8 0.9 0.3 0.0* 0.44

MS 8.0 2.0 0.7 -0.5 0.0* 0.51 WV 8.3 3.1 1.0 0.8 0.0* 0.12

MT 5.8 1.3 0.1 -0.3 0.0* 0.49 WY 5.1 1.5 0.6 -0.1 0.0* 0.14

Note:* indicates results are statistically significant at α=0.01.
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Table B.2: Local Moran test for Unemployment Rate.
States ID BD States ID BD

Ii ZIi P-value Ii ZIi P-value Ii ZIi P-value Ii ZIi P-value

AL 0.683 6.176 0.000 0.867 1.782 0.037 NC 0.321 2.921 0.002 -0.068 -0.089 0.535

AR 0.067 0.969 0.166 0.404 1.005 0.157 ND 0.446 5.338 0.000 3.281 5.736 0.000

AZ -0.030 -0.088 0.535 0.272 0.585 0.279 NE 0.370 3.961 0.000 2.599 5.849 0.000

CA -0.008 0.100 0.460 0.926 1.480 0.069 NH 0.222 1.138 0.128 1.029 1.815 0.035

CO 0.250 3.013 0.001 0.601 1.500 0.067 NJ 0.027 0.271 0.393 0.424 0.640 0.261

CT -0.010 0.062 0.475 -0.109 -0.151 0.560 NM 0.049 0.854 0.196 0.002 0.043 0.483

DE 0.002 0.129 0.449 -0.179 -0.190 0.575 NV -0.037 -0.126 0.550 0.573 1.188 0.117

FL 0.247 3.684 0.000 0.329 0.504 0.307 NY 0.060 0.464 0.321 0.060 0.153 0.439

GA 0.670 6.203 0.000 0.337 0.748 0.227 OH 0.310 3.194 0.001 0.873 1.942 0.026

IA 0.118 1.471 0.071 0.802 1.989 0.023 OK 0.007 0.303 0.381 0.042 0.111 0.456

ID 0.028 0.425 0.335 -0.008 0.029 0.488 OR -0.028 -0.046 0.518 0.915 1.857 0.032

IL 0.019 0.377 0.353 -0.050 -0.063 0.525 PA -0.014 0.051 0.480 0.272 0.650 0.258

IN 0.307 3.014 0.001 0.822 1.655 0.049 RI 0.465 1.844 0.033 0.130 0.215 0.415

KS 0.127 1.499 0.067 1.000 2.084 0.019 SC 0.344 3.055 0.001 -0.014 0.011 0.496

KY 0.456 4.709 0.000 0.588 1.474 0.070 SD 0.584 6.236 0.000 3.734 8.192 0.000

LA 0.339 3.427 0.000 1.331 2.209 0.014 TN 0.547 5.565 0.000 0.407 1.133 0.129

MA 0.437 1.708 0.044 0.202 0.508 0.306 TX 0.032 0.693 0.244 0.042 0.109 0.457

MD 0.015 0.205 0.419 0.070 0.186 0.426 UT 0.016 0.355 0.361 0.004 0.057 0.477

ME 0.320 2.053 0.020 1.586 1.634 0.051 VA 0.155 1.338 0.090 0.032 0.114 0.455

MI 0.047 0.724 0.235 0.006 0.044 0.482 VT 0.201 1.316 0.094 0.518 0.831 0.203

MN 0.265 3.134 0.001 1.713 3.582 0.000 WA -0.042 -0.140 0.556 0.915 1.303 0.096

MO -0.012 0.111 0.456 0.051 0.177 0.430 WI -0.006 0.155 0.439 -0.353 -0.640 0.739

MS 0.396 3.673 0.000 1.339 2.629 0.004 WV 0.094 1.079 0.140 -0.317 -0.613 0.730

MT 0.139 1.601 0.055 0.650 1.186 0.118 WY 0.286 3.151 0.001 0.963 2.375 0.009

Note:* indicates results are statistically significant at α=0.01.
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Table B.3: Bivariate post-sample forecast accuracy measures with spatial weights

for UR of states AL,AR,AZ,CA,CO,CT,DE,FL.
Series Steps RMSE RRMSE

h SS BS ID-MS BD-MS ID-MBS BD-MS Tens-MS Tens-NBS ID−MS
S

ID−MBS
BS

ID−MBS
ID−MS

BD−MBS
BD−MS

BD−MBS
ID−MBS

AL 1 0.12 0.12 0.12 0.12 0.06 0.06 0.13 0.06 1.00 0.54 * 0.52 * 0.54 * 1.02

3 0.41 0.22 0.40 0.37 0.17 0.17 0.42 0.18 0.99 0.78 * 0.42 * 0.45 * 1.01

6 0.82 0.46 0.81 0.78 0.35 0.35 0.96 0.44 0.98 0.76 * 0.43 * 0.45 * 1.01

12 1.56 1.13 1.56 1.21 0.80 0.79 2.26 1.13 1.00 0.71 * 0.51 * 0.65 * 0.99

AR 1 0.06 0.07 0.06 0.07 0.05 0.05 0.07 0.05 0.98 0.76 * 0.85 * 0.78 * 0.98

3 0.17 0.14 0.16 0.18 0.13 0.13 0.20 0.13 0.97 0.94 * 0.79 * 0.70 * 1.00

6 0.39 0.26 0.40 0.42 0.24 0.24 0.50 0.26 1.04 0.95 * 0.61 * 0.58 * 1.00

12 0.71 0.44 0.71 0.68 0.42 0.42 1.15 0.44 1.01 0.94 * 0.59 * 0.62 * 1.00

AZ 1 0.09 0.10 0.09 0.09 0.07 0.07 0.09 0.06 1.00 0.68 * 0.75 * 0.74 * 0.99

3 0.27 0.18 0.26 0.26 0.17 0.17 0.27 0.15 0.98 0.97 * 0.66 * 0.66 * 0.99

6 0.55 0.34 0.59 0.55 0.32 0.31 0.56 0.33 1.06 0.92 * 0.54 * 0.57 * 0.99

12 1.20 0.70 1.19 1.17 0.59 0.58 1.32 0.70 0.99 0.84 * 0.50 * 0.50 * 0.99

CA 1 0.10 0.09 0.10 0.09 0.05 0.05 0.10 0.05 1.00 0.55 0.54 * 0.53 * 0.98 *

3 0.49 0.14 0.29 0.29 0.13 0.12 0.29 0.11 0.59 * 0.89 * 0.44 * 0.43 * 0.98

6 0.75 0.32 0.66 0.57 0.28 0.28 0.58 0.30 0.87 * 0.88 * 0.43 * 0.49 * 0.99

12 1.13 0.84 1.16 1.11 0.68 0.68 1.30 0.83 1.02 0.81 * 0.59 * 0.61 * 0.99

CO 1 0.10 0.10 0.09 0.09 0.07 0.07 0.10 0.06 0.91 0.67 * 0.78 * 0.79 * 1.01

3 0.31 0.18 0.30 0.30 0.18 0.19 0.33 0.16 0.98 0.99 * 0.61 * 0.61 * 1.02

6 0.73 0.40 0.72 0.71 0.36 0.36 0.79 0.39 0.99 0.89 * 0.49 * 0.51 * 1.01

12 1.44 0.87 1.19 1.10 0.66 0.66 1.64 0.87 0.83 * 0.76 * 0.55 * 0.60 * 1.00

CT 1 0.08 0.08 0.07 0.07 0.06 0.06 0.07 0.05 0.81 0.75 * 0.88 * 0.81 * 0.92 *

3 0.22 0.15 0.22 0.22 0.14 0.14 0.22 0.12 1.00 0.63 * 0.63 * 0.67 * 1.06

6 0.46 0.32 0.49 0.46 0.26 0.31 0.50 0.26 1.07 0.58 * 0.54 * 0.68 * 1.19

12 0.94 0.63 0.85 0.93 0.62 0.63 1.04 0.62 0.91 0.66 * 0.72 * 0.67 * 1.02

DE 1 0.10 0.11 0.10 0.10 0.09 0.07 0.10 0.07 1.00 0.86 * 0.96 0.70 0.72 *

3 0.28 0.26 0.28 0.27 0.17 0.26 0.28 0.16 1.00 0.66 * 0.61 0.93 1.50

6 0.55 0.43 0.53 0.52 0.29 0.43 0.58 0.29 0.97 0.67 * 0.54 * 0.83 * 1.48

12 1.33 0.69 0.97 1.26 0.57 0.68 1.25 0.57 0.73 * 0.84 * 0.59 * 0.54 * 1.19

FL 1 0.17 0.12 0.16 0.16 0.08 0.08 0.16 0.07 0.95 0.65 * 0.49 * 0.50 * 1.00

3 0.39 0.20 0.38 0.38 0.18 0.18 0.43 0.17 0.99 0.87 * 0.46 * 0.47 * 1.00

6 0.70 0.37 0.72 0.69 0.34 0.34 0.96 0.36 1.04 0.92 * 0.47 * 0.49 * 1.00

12 1.36 0.81 1.30 1.10 0.69 0.69 2.86 0.81 0.95 0.85 * 0.53 * 0.63 * 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.4: Bivariate post-sample forecast accuracy measures with spatial weights

for UR of states GA,IA,ID,IL,IN,KS,KY,LA.
Series Steps RMSE RRMSE

h SS BS ID-MS BD-MS ID-MBS BD-MS Tens-MS Tens-NBS ID−MS
S

ID−MBS
BS

ID−MBS
ID−MS

BD−MBS
BD−MS

BD−MBS
ID−MBS

GA 1 0.12 0.11 0.12 0.18 0.10 0.11 0.11 0.07 0.97 0.91 * 0.86 0.60 1.07

3 0.30 0.26 0.29 0.29 0.18 0.26 0.32 0.16 0.97 0.70 * 0.62 * 0.88 * 1.42

6 0.56 0.45 0.56 0.56 0.33 0.45 0.60 0.32 1.01 0.73 * 0.59 * 0.80 * 1.37

12 1.58 0.75 1.11 1.24 0.71 0.75 1.33 0.72 0.70 * 0.96 * 0.64 * 0.60 * 1.05

IA 1 0.21 0.18 0.21 0.21 0.12 0.12 0.26 0.16 1.00 0.66 * 0.56 * 0.56 * 1.00

3 0.35 0.28 0.35 0.35 0.21 0.21 0.81 0.27 1.00 0.73 * 0.59 * 0.59 * 1.00

6 0.49 0.39 0.51 0.49 0.29 0.29 2.67 0.38 1.04 0.75 * 0.57 * 0.60 * 1.00

12 0.80 0.69 0.80 0.64 0.50 0.50 0.81 0.68 1.00 0.73 * 0.62 * 0.78 * 1.00

ID 1 0.08 0.09 0.08 0.08 0.06 0.06 0.08 0.06 1.00 0.63 * 0.71 * 0.71 * 1.00

3 0.24 0.14 0.24 0.24 0.12 0.12 0.24 0.13 0.99 0.85 * 0.50 * 0.49 * 0.99

6 0.42 0.27 0.43 0.41 0.23 0.23 0.43 0.27 1.03 0.85 * 0.54 * 0.55 * 0.99

12 0.93 0.57 0.80 0.66 0.46 0.45 0.85 0.57 0.87 * 0.81 * 0.57 * 0.69 * 0.98

IL 1 0.12 0.11 0.11 0.11 0.07 0.07 0.12 0.06 1.00 0.64 * 0.59 * 0.59 * 1.00

3 0.38 0.20 0.38 0.38 0.18 0.18 0.39 0.18 1.00 0.91 * 0.48 * 0.48 * 1.01

6 0.74 0.38 0.77 0.72 0.35 0.35 0.82 0.37 1.05 0.90 * 0.45 * 0.48 * 1.00

12 1.38 0.77 1.24 1.18 0.61 0.61 1.75 0.78 0.90 0.79 * 0.49 * 0.52 * 1.00

IN 1 0.12 0.12 0.12 0.12 0.11 0.11 0.12 0.07 1.00 0.87 * 0.88 * 0.87 * 0.99

3 0.35 0.30 0.35 0.35 0.24 0.33 0.40 0.20 0.99 0.80 * 0.69 0.94 1.37

6 0.74 0.50 0.72 0.72 0.47 0.56 0.95 0.49 0.98 0.94 * 0.65 * 0.79 * 1.20

12 1.38 1.21 1.37 1.76 1.01 1.02 2.17 1.21 1.00 0.84 * 0.74 * 0.58 * 1.00

KS 1 0.12 0.10 0.12 0.12 0.07 0.06 0.12 0.07 0.98 0.69 * 0.55 * 0.53 * 0.97 *

3 0.34 0.18 0.34 0.34 0.15 0.15 0.35 0.16 1.00 0.85 * 0.44 * 0.43 * 0.98 *

6 0.59 0.31 0.61 0.61 0.27 0.27 0.78 0.31 1.04 0.86 * 0.44 * 0.44 * 0.99 *

12 1.02 0.55 0.94 0.73 0.46 0.45 2.11 0.53 0.92 0.84 * 0.49 * 0.62 * 0.98 *

KY 1 0.10 0.10 0.10 0.10 0.06 0.06 0.10 0.06 1.00 0.64 * 0.65 * 0.65 * 1.00

3 0.30 0.19 0.30 0.30 0.17 0.16 0.31 0.16 1.00 0.89 * 0.54 * 0.54 * 0.99

6 0.64 0.41 0.68 0.63 0.35 0.35 0.74 0.40 1.06 0.87 * 0.52 * 0.55 * 0.99

12 1.19 0.88 1.19 1.06 0.70 0.70 1.76 0.88 1.00 0.79 * 0.59 * 0.66 * 1.00

LA 1 0.79 0.51 0.79 0.79 0.32 0.31 0.79 0.42 1.00 0.62 * 0.40 * 0.39 * 0.97 *

3 1.29 0.81 1.26 1.25 0.60 0.58 1.29 0.79 0.97 0.74 * 0.48 * 0.46 * 0.97 *

6 1.45 1.05 1.37 1.35 0.82 0.80 1.45 1.05 0.94 0.79 * 0.60 * 0.59 * 0.96 *

12 1.58 1.42 1.57 1.68 1.31 1.15 1.63 1.46 0.99 0.92 * 0.83 * 0.68 * 0.88 *

Note:* indicates results are statistically significant at α=0.01.
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Table B.5: Bivariate post-sample forecast accuracy measures with spatial weights

for UR of states MA,MD,ME,MI,MN,MO,MS,MT.
Series Steps RMSE RRMSE

h SS BS ID-MS BD-MS ID-MBS BD-MS Tens-MS Tens-NBS ID−MS
S

ID−MBS
BS

ID−MBS
ID−MS

BD−MBS
BD−MS

BD−MBS
ID−MBS

MA 1 0.08 0.08 0.08 0.08 0.05 0.05 0.08 0.05 0.99 0.61 * 0.65 * 0.64 * 0.98

3 0.23 0.15 0.23 0.23 0.13 0.13 0.23 0.13 1.00 0.88 * 0.57 * 0.56 * 0.98

6 0.50 0.31 0.43 0.44 0.30 0.31 0.47 0.32 0.87 0.96 * 0.70 * 0.72 * 1.04

12 0.99 0.63 0.86 0.93 0.60 0.63 1.06 0.62 0.87 0.95 0.70 * 0.67 * 1.04

MD 1 0.08 0.09 0.09 0.09 0.07 0.08 0.09 0.06 1.10 0.78 * 0.81 * 0.83 * 1.03

3 0.27 0.17 0.26 0.26 0.18 0.18 0.27 0.16 0.95 1.03 0.70 * 0.71 * 1.02

6 0.52 0.28 0.47 0.48 0.29 0.32 0.58 0.29 0.89 1.02 0.62 * 0.67 * 1.10

12 0.94 0.52 0.87 0.98 0.53 0.54 1.20 0.51 0.93 1.01 0.60 * 0.56 * 1.03

ME 1 0.08 0.09 0.08 0.08 0.07 0.07 0.09 0.06 1.00 0.78 * 0.84 * 0.87 * 1.03

3 0.25 0.16 0.27 0.27 0.17 0.19 0.28 0.15 1.11 1.05 0.62 * 0.70 * 1.12

6 0.48 0.32 0.51 0.51 0.33 0.38 0.61 0.33 1.06 1.02 0.65 * 0.75 * 1.16

12 0.92 0.62 0.90 1.06 0.62 0.63 1.30 0.61 0.98 1.01 0.69 * 0.60 * 1.02

MI 1 0.10 0.12 0.10 0.09 0.08 0.08 0.11 0.06 0.99 0.64 * 0.81 * 0.83 * 1.00

3 0.37 0.22 0.37 0.37 0.21 0.21 0.39 0.18 1.00 0.94 * 0.56 * 0.56 * 1.00

6 0.85 0.46 0.88 0.84 0.39 0.39 0.96 0.44 1.04 0.85 * 0.45 * 0.47 * 1.00

12 1.72 1.24 1.71 1.55 0.94 0.94 2.31 1.23 0.99 0.75 * 0.55 * 0.61 * 1.00

MN 1 0.10 0.09 0.10 0.10 0.06 0.06 0.11 0.06 1.00 0.66 * 0.55 * 0.55 * 1.00

3 0.34 0.17 0.33 0.34 0.14 0.15 0.34 0.15 0.99 0.83 * 0.43 * 0.42 * 1.01

6 0.66 0.38 0.65 0.66 0.30 0.30 0.81 0.37 0.99 0.79 * 0.46 * 0.46 * 1.00

12 1.03 0.79 1.03 0.87 0.61 0.60 1.90 0.80 1.00 0.77 * 0.59 * 0.70 * 0.99

MO 1 0.17 0.12 0.16 0.16 0.07 0.07 0.16 0.07 0.98 0.60 * 0.43 * 0.43 * 1.00

3 0.46 0.24 0.48 0.47 0.20 0.20 0.49 0.22 1.05 0.82 * 0.41 * 0.43 * 1.01

6 0.75 0.46 0.79 0.78 0.38 0.38 1.08 0.45 1.05 0.83 * 0.48 * 0.49 * 1.00

12 1.27 0.94 1.21 1.07 0.72 0.72 2.89 0.93 0.95 0.77 * 0.60 * 0.67 * 1.00

MS 1 0.39 0.22 0.38 0.38 0.13 0.13 0.44 0.16 0.98 0.59 * 0.34 * 0.33 * 0.98

3 0.61 0.48 0.69 0.69 0.37 0.36 1.45 0.46 1.12 0.76 * 0.53 * 0.53 * 0.99

6 0.98 0.75 1.05 0.97 0.58 0.58 5.07 0.75 1.07 0.78 * 0.56 * 0.60 * 0.99

12 1.40 1.09 1.33 1.38 0.85 0.85 53.08 1.11 0.95 0.78 * 0.64 * 0.61 * 0.99

MT 1 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.04 0.96 0.86 * 0.78 * 0.76 * 0.98

3 0.34 0.09 0.28 0.14 0.08 0.09 0.14 0.08 0.82 * 0.91 * 0.29 * 0.68 * 1.15

6 0.75 0.18 0.39 0.24 0.18 0.18 0.28 0.18 0.52 * 0.99 * 0.46 * 0.73 * 0.97

12 1.01 0.42 0.77 0.79 0.35 0.53 0.55 0.41 0.77 * 0.83 * 0.45 * 0.67 * 1.54

Note:* indicates results are statistically significant at α=0.01.
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Table B.6: Bivariate post-sample forecast accuracy measures with spatial weights

for UR of states NC,ND,NE,NH,NJ,NM,NV,NY.
Series Steps RMSE RRMSE

h SS BS ID-MS BD-MS ID-MBS BD-MS Tens-MS Tens-NBS ID−MS
S

ID−MBS
BS

ID−MBS
ID−MS

BD−MBS
BD−MS

BD−MBS
ID−MBS

NC 1 0.10 0.11 0.10 0.10 0.07 0.07 0.11 0.06 0.99 0.63 * 0.68 * 0.67 * 0.99

3 0.30 0.18 0.31 0.31 0.16 0.16 0.35 0.15 1.03 0.88 * 0.51 * 0.49 * 0.98

6 0.63 0.40 0.74 0.64 0.34 0.34 0.73 0.39 1.18 0.87 * 0.46 * 0.53 * 0.99

12 1.24 0.91 1.25 1.16 0.72 0.72 1.71 0.91 1.01 0.79 * 0.58 * 0.62 * 1.00

ND 1 0.08 0.08 0.07 0.07 0.06 0.06 0.07 0.06 0.90 0.82 * 0.86 * 0.85 * 0.98

3 0.19 0.15 0.20 0.20 0.14 0.14 0.20 0.14 1.04 0.97 * 0.72 * 0.70 * 0.98

6 0.32 0.24 0.41 0.32 0.24 0.24 0.45 0.23 1.26 1.01 0.59 * 0.75 * 1.01

12 0.48 0.37 0.45 0.49 0.38 0.37 0.85 0.37 0.94 1.00 0.84 * 0.76 * 0.99

NE 1 0.07 0.08 0.07 0.07 0.06 0.06 0.08 0.06 0.99 0.76 * 0.80 * 0.79 * 0.98

3 0.23 0.16 0.22 0.22 0.14 0.14 0.23 0.15 0.99 0.89 * 0.62 * 0.63 * 0.99

6 0.34 0.24 0.38 0.34 0.22 0.22 0.45 0.23 1.11 0.92 * 0.58 * 0.64 * 1.00

12 0.66 0.42 0.51 0.47 0.36 0.36 0.83 0.42 0.78 * 0.84 * 0.70 * 0.75 * 0.99

NH 1 0.07 0.08 0.07 0.07 0.05 0.05 0.07 0.05 1.00 0.68 * 0.74 * 0.73 * 0.98

3 0.21 0.15 0.21 0.21 0.14 0.14 0.21 0.15 1.00 0.91 * 0.68 * 0.67 * 0.99

6 0.44 0.31 0.46 0.44 0.30 0.30 0.48 0.31 1.04 0.97 0.66 * 0.69 * 1.00

12 0.92 0.52 0.83 0.84 0.53 0.60 1.08 0.51 0.90 1.03 0.64 * 0.72 * 1.13

NJ 1 0.09 0.09 0.09 0.09 0.06 0.06 0.09 0.06 1.00 0.63 * 0.65 * 0.65 * 1.00

3 0.24 0.15 0.24 0.24 0.15 0.15 0.25 0.13 1.00 0.94 * 0.60 * 0.60 * 1.01

6 0.54 0.35 0.56 0.55 0.32 0.33 0.57 0.35 1.04 0.92 * 0.58 * 0.59 * 1.01

12 1.01 0.81 1.08 1.04 0.70 0.70 1.39 0.82 1.08 0.86 * 0.64 * 0.68 * 1.00

NM 1 0.08 0.07 0.08 0.08 0.05 0.05 0.08 0.05 1.00 0.75 * 0.70 * 0.70 * 1.00

3 0.19 0.12 0.19 0.19 0.11 0.13 0.19 0.12 0.97 0.90 * 0.58 * 0.69 * 1.17

6 0.37 0.26 0.37 0.37 0.24 0.26 0.38 0.26 1.02 0.93 * 0.64 * 0.71 * 1.09

12 0.75 0.55 0.70 0.77 0.50 0.50 0.78 0.55 0.94 0.91 * 0.71 * 0.66 * 1.01

NV 1 0.10 0.10 0.08 0.08 0.06 0.06 0.08 0.05 0.80 0.59 * 0.79 * 0.77 * 0.98

3 0.25 0.17 0.25 0.25 0.16 0.16 0.26 0.13 1.00 0.95 * 0.62 * 0.61 * 0.99

6 0.63 0.36 0.69 0.63 0.33 0.33 0.63 0.34 1.09 0.93 * 0.48 * 0.53 * 0.99

12 1.39 0.81 1.39 1.32 0.66 0.66 1.42 0.80 1.00 0.81 * 0.47 * 0.50 * 1.00

NY 1 0.09 0.09 0.09 0.09 0.06 0.06 0.09 0.06 1.00 0.70 * 0.70 * 0.69 * 0.98

3 0.28 0.16 0.28 0.28 0.15 0.16 0.28 0.14 1.00 0.97 * 0.54 * 0.57 * 1.04

6 0.58 0.33 0.62 0.57 0.32 0.32 0.60 0.33 1.06 0.97 * 0.52 * 0.55 * 0.99

12 1.07 0.68 0.98 1.06 0.61 0.61 1.34 0.68 0.92 * 0.90 * 0.62 * 0.57 * 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.7: Bivariate post-sample forecast accuracy measures with spatial weights

for UR of states OH,OK,OR,PA,RI,SC,SD,TN.
Series Steps RMSE RRMSE

h SS BS ID-MS BD-MS ID-MBS BD-MS Tens-MS Tens-NBS ID−MS
S

ID−MBS
BS

ID−MBS
ID−MS

BD−MBS
BD−MS

BD−MBS
ID−MBS

OH 1 0.09 0.10 0.09 0.09 0.06 0.06 0.09 0.06 0.96 0.65 * 0.69 * 0.69 * 1.00

3 0.27 0.16 0.28 0.28 0.16 0.16 0.30 0.14 1.01 0.97 * 0.57 * 0.56 * 1.01

6 0.60 0.35 0.60 0.59 0.32 0.32 0.70 0.35 1.01 0.91 * 0.53 * 0.55 * 1.00

12 1.14 0.80 1.08 0.96 0.64 0.64 1.58 0.81 0.95 0.80 * 0.59 * 0.67 * 1.00

OK 1 0.10 0.10 0.09 0.09 0.08 0.07 0.10 0.07 0.98 0.77 * 0.82 * 0.78 * 0.95 *

3 0.26 0.19 0.26 0.25 0.19 0.18 0.31 0.17 0.98 1.02 0.75 * 0.72 * 0.95 *

6 0.57 0.36 0.55 0.55 0.35 0.34 0.72 0.35 0.96 0.99 0.65 * 0.61 * 0.96 *

12 1.02 0.68 0.95 0.87 0.60 0.57 1.57 0.67 0.93 0.88 * 0.63 * 0.65 * 0.95 *

OR 1 0.10 0.12 0.10 0.10 0.06 0.06 0.11 0.06 1.01 0.51 * 0.58 * 0.58 * 1.00

3 0.38 0.21 0.38 0.38 0.17 0.17 0.40 0.18 1.00 0.79 * 0.44 * 0.44 * 1.00

6 0.78 0.49 0.94 0.77 0.40 0.40 0.97 0.48 1.22 0.80 * 0.42 * 0.52 * 1.00

12 1.51 1.25 1.50 1.21 0.87 0.87 2.34 1.23 0.99 0.70 * 0.58 * 0.72 * 1.00

PA 1 0.09 0.08 0.09 0.09 0.06 0.06 0.09 0.06 1.00 0.68 * 0.62 * 0.62 * 1.00

3 0.25 0.15 0.25 0.25 0.13 0.13 0.25 0.14 1.02 0.85 * 0.51 * 0.51 * 1.00

6 0.42 0.29 0.46 0.42 0.26 0.26 0.48 0.29 1.07 0.89 * 0.57 * 0.62 * 1.00

12 0.78 0.55 0.78 0.72 0.49 0.49 1.01 0.56 0.99 0.89 * 0.63 * 0.68 * 1.00

RI 1 0.08 0.08 0.08 0.08 0.05 0.05 0.08 0.05 1.00 0.57 * 0.57 * 0.57 * 1.00

3 0.23 0.14 0.23 0.23 0.11 0.11 0.23 0.11 0.99 0.82 * 0.49 * 0.49 * 1.01

6 0.47 0.25 0.46 0.46 0.25 0.26 0.49 0.25 0.99 0.99 * 0.55 * 0.55 * 1.01

12 0.86 0.57 0.87 0.84 0.56 0.62 0.96 0.58 1.01 0.98 0.64 * 0.73 * 1.10

SC 1 0.10 0.11 0.10 0.10 0.07 0.07 0.11 0.06 1.00 0.61 * 0.67 * 0.67 * 0.99

3 0.37 0.19 0.37 0.36 0.18 0.18 0.38 0.16 1.00 0.97 0.50 * 0.50 * 0.98

6 0.74 0.38 0.77 0.71 0.37 0.37 0.83 0.37 1.03 0.97 0.48 * 0.51 * 0.99

12 1.43 1.00 1.44 1.21 0.78 0.79 2.03 0.97 1.01 0.78 * 0.55 * 0.65 * 1.01

SD 1 0.13 0.09 0.12 0.12 0.06 0.06 0.12 0.07 0.92 0.68 * 0.49 * 0.48 * 1.00

3 0.31 0.17 0.31 0.31 0.13 0.13 0.35 0.16 1.00 0.77 * 0.44 * 0.44 * 1.01

6 0.48 0.29 0.51 0.48 0.23 0.23 0.83 0.28 1.07 0.77 * 0.44 * 0.47 * 1.00

12 0.75 0.53 0.75 0.61 0.40 0.40 2.54 0.52 1.00 0.74 * 0.53 * 0.65 * 1.00

TN 1 0.11 0.11 0.10 0.10 0.06 0.06 0.11 0.07 0.99 0.58 * 0.61 * 0.61 * 1.00

3 0.31 0.21 0.31 0.31 0.17 0.17 0.36 0.18 1.00 0.79 * 0.54 * 0.54 * 1.00

6 0.74 0.46 0.75 0.72 0.36 0.36 0.92 0.45 1.01 0.77 * 0.48 * 0.49 * 1.00

12 1.45 0.96 1.40 1.14 0.74 0.74 2.12 0.97 0.96 0.77 * 0.53 * 0.65 * 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.8: Bivariate post-sample forecast accuracy measures with spatial weights

for UR of states TX,UT,VA,VT,WA,WI,WV,WY.
Series Steps RMSE RRMSE

h SS BS ID-MS BD-MS ID-MBS BD-MS Tens-MS Tens-NBS ID−MS
S

ID−MBS
BS

ID−MBS
ID−MS

BD−MBS
BD−MS

BD−MBS
ID−MBS

TX 1 0.07 0.08 0.07 0.07 0.06 0.05 0.07 0.05 1.00 0.74 * 0.77 * 0.74 * 0.96 *

3 0.19 0.13 0.20 0.20 0.13 0.13 0.21 0.12 1.05 1.02 0.65 * 0.64 * 0.95

6 0.39 0.27 0.48 0.42 0.26 0.26 0.47 0.27 1.24 0.97 0.54 * 0.61 * 0.99

12 0.69 0.57 0.78 0.78 0.51 0.48 1.06 0.57 1.12 0.89 * 0.65 * 0.61 * 0.94 *

UT 1 0.24 0.18 0.23 0.22 0.11 0.11 0.22 0.14 0.95 0.60 * 0.48 * 0.49 * 1.00

3 0.61 0.29 0.61 0.61 0.20 0.20 0.72 0.24 1.00 0.68 * 0.33 * 0.33 * 1.01

6 0.99 0.56 0.99 0.99 0.41 0.42 1.85 0.53 0.99 0.74 * 0.42 * 0.42 * 1.00

12 1.59 1.03 1.65 1.26 0.72 0.72 9.10 1.01 1.04 0.70 * 0.44 * 0.57 * 1.00

VA 1 0.09 0.09 0.09 0.09 0.06 0.06 0.09 0.06 1.01 0.68 * 0.71 * 0.72 * 1.02

3 0.27 0.17 0.27 0.27 0.16 0.16 0.28 0.15 1.00 0.94 * 0.57 * 0.59 * 1.03

6 0.51 0.33 0.50 0.50 0.31 0.31 0.61 0.34 0.98 0.91 * 0.61 * 0.62 * 1.02

12 0.89 0.66 0.88 0.89 0.58 0.58 1.33 0.65 0.99 0.88 * 0.66 * 0.66 * 1.01

VT 1 0.09 0.09 0.09 0.09 0.07 0.07 0.10 0.07 1.00 0.77 * 0.77 * 0.78 * 1.00

3 0.32 0.18 0.32 0.32 0.17 0.18 0.34 0.17 1.00 0.96 0.52 * 0.56 * 1.07

6 0.58 0.34 0.61 0.59 0.34 0.36 0.75 0.34 1.06 1.00 0.56 * 0.61 * 1.06

12 0.86 0.71 0.91 0.92 0.65 0.66 1.40 0.71 1.06 0.92 * 0.72 * 0.71 * 1.01

WA 1 0.09 0.10 0.09 0.09 0.06 0.06 0.10 0.06 1.00 0.59 * 0.64 * 0.64 * 1.00

3 0.31 0.17 0.31 0.31 0.14 0.14 0.32 0.15 1.00 0.82 * 0.45 * 0.45 * 1.00

6 0.67 0.38 0.81 0.64 0.33 0.33 0.75 0.38 1.21 0.85 * 0.40 * 0.51 * 1.00

12 1.15 0.84 1.18 0.94 0.65 0.65 1.70 0.83 1.03 0.77 * 0.55 * 0.69 * 1.00

WI 1 0.09 0.10 0.08 0.08 0.06 0.06 0.09 0.06 0.93 0.63 * 0.77 * 0.76 * 0.98 *

3 0.27 0.19 0.25 0.25 0.17 0.17 0.31 0.16 0.94 0.87 * 0.66 * 0.66 * 1.00

6 0.62 0.40 0.60 0.60 0.33 0.33 0.79 0.39 0.97 0.85 * 0.55 * 0.56 * 1.00

12 1.18 0.93 1.17 1.01 0.68 0.68 1.89 0.91 0.99 0.73 * 0.58 * 0.68 * 1.00

WV 1 0.10 0.10 0.10 0.10 0.07 0.07 0.10 0.07 1.00 0.71 * 0.70 * 0.70 * 0.97 *

3 0.34 0.18 0.34 0.33 0.17 0.17 0.35 0.16 1.00 0.96 0.51 * 0.50 * 0.97 *

6 0.71 0.33 0.71 0.67 0.33 0.32 0.80 0.32 1.00 1.01 0.46 * 0.48 * 0.97 *

12 1.20 0.64 1.20 1.17 0.60 0.58 1.63 0.62 1.00 0.93 * 0.50 * 0.50 * 0.97 *

WY 1 0.07 0.08 0.07 0.07 0.07 0.07 0.18 0.05 1.00 0.85 * 0.97 0.93 0.96 *

3 0.22 0.16 0.22 0.22 0.15 0.18 0.23 0.14 0.99 0.96 0.68 * 0.81 * 1.18

6 0.51 0.32 0.50 0.50 0.31 0.33 0.55 0.32 0.97 0.96 0.63 * 0.67 * 1.07

12 1.01 0.62 0.97 0.94 0.57 0.55 1.23 0.61 0.96 0.91 * 0.59 * 0.58 * 0.96 *

Note:* indicates results are statistically significant at α=0.01.
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Table B.9: Multivariate post-sample forecast accuracy for clustered states with

JD for UR of states AL,AR,AZ,CA,CO,CT,DE,FL.
Series Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

AL 1 0.07 0.08 0.13 0.07 0.13 0.07 0.13 1.10 1.00 1.00

3 0.20 0.21 0.41 0.20 0.41 0.20 0.41 1.07 1.00 1.00

6 0.45 0.47 0.94 0.45 0.94 0.45 0.94 1.04 1.00 1.00

12 1.08 1.00 2.15 1.08 2.16 1.08 2.17 0.92 * 1.00 1.00

AR 1 0.06 0.06 0.07 0.06 0.07 0.06 0.07 1.13 1.00 1.00

3 0.14 0.16 0.20 0.14 0.20 0.14 0.20 1.18 1.00 1.00

6 0.27 0.31 0.50 0.27 0.51 0.27 0.50 1.14 1.00 1.00

12 0.44 0.50 1.16 0.43 1.18 0.44 1.16 1.15 1.00 1.00

AZ 1 0.07 0.07 0.09 0.07 0.09 0.09 0.09 0.97 * 0.97 * 1.30

3 0.18 0.18 0.27 0.18 0.27 0.20 0.22 0.97 * 0.97 * 1.09

6 0.37 0.36 0.56 0.36 0.57 0.41 0.43 0.97 * 0.97 * 1.10

12 0.74 0.72 1.33 0.71 1.34 0.79 0.81 0.97 * 0.97 * 1.07

CA 1 0.06 0.07 0.10 0.06 0.10 0.06 0.10 1.05 1.00 1.00

3 0.16 0.16 0.29 0.16 0.29 0.16 0.29 1.05 1.00 1.00

6 0.36 0.37 0.58 0.36 0.58 0.36 0.58 1.05 1.00 1.00

12 0.82 0.83 1.29 0.81 1.30 0.82 1.29 1.01 1.00 1.00

CO 1 0.07 0.07 0.10 0.06 0.10 0.07 0.10 0.98 0.86 * 1.00

3 0.21 0.21 0.33 0.14 0.33 0.21 0.33 0.98 0.68 * 1.00

6 0.45 0.44 0.78 0.29 0.78 0.45 0.78 0.98 0.65 * 1.00

12 0.78 0.79 1.62 0.61 1.62 0.78 1.61 1.00 0.78 * 1.00

CT 1 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.87 * 0.87 * 1.01

3 0.18 0.15 0.22 0.15 0.22 0.19 0.22 0.83 * 0.83 * 1.08

6 0.38 0.31 0.49 0.31 0.49 0.38 0.49 0.81 * 0.81 * 0.99

12 0.75 0.68 1.02 0.68 1.02 0.77 1.02 0.91 * 0.91 * 1.04

DE 1 0.08 0.08 0.10 0.08 0.10 0.08 0.10 1.02 1.00 1.00

3 0.17 0.18 0.28 0.17 0.28 0.17 0.28 1.04 1.00 1.00

6 0.34 0.36 0.59 0.34 0.59 0.34 0.59 1.04 1.00 1.00

12 0.57 0.57 1.28 0.57 1.28 0.57 1.28 1.01 1.00 1.00

FL 1 0.09 0.09 0.15 0.08 0.15 0.09 0.15 1.00 0.88 * 1.00

3 0.21 0.21 0.39 0.20 0.39 0.21 0.39 1.00 0.94 * 1.00

6 0.43 0.43 0.77 0.40 0.76 0.43 0.76 1.00 0.94 * 1.00

12 0.81 0.81 1.81 0.79 1.61 0.81 1.63 1.00 0.97 * 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.10: Multivariate post-sample forecast accuracy for clustered states with

JD for UR of states GA,IA,ID,IL,IN,KS,KY,LA.
Series Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

GA 1 0.08 0.08 0.10 0.07 0.10 0.08 0.10 1.00 0.93 * 1.00

3 0.19 0.19 0.32 0.18 0.32 0.19 0.32 1.00 0.93 * 1.00

6 0.37 0.37 0.60 0.34 0.59 0.37 0.60 1.00 0.93 * 1.00

12 0.74 0.73 1.38 0.74 1.28 0.74 1.33 1.00 1.00 * 1.00

IA 1 0.16 0.16 0.23 0.16 0.23 0.16 0.23 1.00 1.00 1.00

3 0.28 0.28 0.55 0.28 0.55 0.28 0.55 1.00 1.00 1.00

6 0.39 0.39 0.94 0.39 0.93 0.39 0.93 1.00 1.00 1.00

12 0.68 0.68 1.93 0.68 1.91 0.68 1.90 1.00 1.00 1.00

ID 1 0.06 0.06 0.08 0.06 0.08 0.06 0.08 1.01 1.00 1.00

3 0.14 0.14 0.24 0.14 0.24 0.14 0.24 1.02 1.00 1.00

6 0.29 0.29 0.42 0.29 0.43 0.29 0.43 1.02 1.00 1.00

12 0.60 0.61 0.83 0.60 0.93 0.60 0.85 1.03 1.00 1.00

IL 1 0.07 0.07 0.12 0.07 0.12 0.07 0.12 1.01 1.00 1.00

3 0.20 0.20 0.38 0.19 0.38 0.20 0.38 1.01 1.00 1.00

6 0.39 0.39 0.81 0.39 0.81 0.39 0.81 1.01 1.00 1.00

12 0.78 0.78 1.72 0.78 1.75 0.78 1.72 1.00 1.00 1.00

IN 1 0.08 0.08 0.12 0.07 0.12 0.08 0.12 1.02 0.91 * 1.00

3 0.22 0.22 0.40 0.19 0.40 0.22 0.40 1.01 0.89 * 1.00

6 0.49 0.50 0.95 0.52 0.95 0.49 0.95 1.00 1.05 1.00

12 1.17 1.15 2.17 1.07 2.18 1.17 2.15 0.98 0.91 * 1.00

KS 1 0.08 0.08 0.12 0.08 0.12 0.08 0.12 1.02 1.00 1.00

3 0.19 0.20 0.33 0.19 0.33 0.19 0.33 1.02 1.00 1.00

6 0.34 0.35 0.70 0.34 0.70 0.34 0.70 1.02 1.00 1.00

12 0.63 0.65 1.50 0.63 1.50 0.63 1.49 1.03 1.00 1.00

KY 1 0.07 0.07 0.10 0.07 0.10 0.07 0.10 1.00 1.08 1.00

3 0.17 0.17 0.31 0.19 0.31 0.17 0.31 1.00 1.09 1.00

6 0.41 0.41 0.73 0.44 0.73 0.41 0.74 1.00 1.07 1.00

12 0.86 0.86 1.69 0.82 1.65 0.86 1.71 1.00 0.94 1.00

LA 1 0.44 0.44 0.89 0.44 0.85 0.44 0.83 1.00 1.00 1.00

3 0.81 0.81 3.00 0.81 2.57 0.81 2.40 1.00 1.00 1.00

6 1.08 1.08 8.10 1.08 5.24 1.08 4.37 1.00 1.00 1.00

12 1.66 1.66 54.39 1.66 16.28 1.66 9.78 1.00 1.00 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.11: Multivariate post-sample forecast accuracy for clustered states with

JD for UR of states MA,MD,ME,MI,MN,MO,MS,MT.
Series Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

MA 1 0.07 0.06 0.08 0.06 0.08 0.06 0.08 0.90 * 0.90 * 0.86 *

3 0.21 0.18 0.23 0.18 0.23 0.16 0.23 0.84 * 0.84 * 0.78 *

6 0.42 0.38 0.47 0.38 0.47 0.36 0.47 0.91 * 0.91 * 0.86 *

12 0.70 0.63 1.04 0.63 1.05 0.61 1.04 0.90 * 0.90 * 0.87 *

MD 1 0.07 0.07 0.09 0.07 0.09 0.07 0.09 1.02 1.00 1.00

3 0.18 0.18 0.27 0.17 0.27 0.18 0.27 1.03 0.98 1.00

6 0.33 0.34 0.58 0.31 0.58 0.33 0.58 1.04 0.95 1.00

12 0.55 0.57 1.22 0.53 1.22 0.55 1.21 1.04 0.96 1.00

ME 1 0.07 0.07 0.09 0.07 0.09 0.07 0.09 1.02 1.03 1.00

3 0.18 0.19 0.28 0.13 0.28 0.18 0.28 1.04 0.74 * 1.00

6 0.35 0.35 0.62 0.32 0.62 0.35 0.62 1.01 0.91 * 1.00

12 0.57 0.55 1.34 0.54 1.36 0.56 1.34 0.98 0.95 * 1.00

MI 1 0.07 0.07 0.11 0.07 0.11 0.07 0.11 1.01 1.00 1.00

3 0.20 0.20 0.39 0.19 0.39 0.20 0.39 1.01 0.96 * 1.00

6 0.46 0.46 0.95 0.44 0.95 0.46 0.95 1.00 0.96 * 1.00

12 1.25 1.24 2.30 1.22 2.30 1.25 2.28 0.99 0.97 * 1.00

MN 1 0.06 0.06 0.11 0.06 0.11 0.06 0.11 1.02 0.96 * 1.00

3 0.17 0.17 0.33 0.18 0.33 0.17 0.33 1.01 1.08 1.00

6 0.38 0.38 0.76 0.37 0.76 0.38 0.76 1.00 0.97 * 1.00

12 0.78 0.77 1.64 0.77 1.63 0.78 1.62 0.98 0.98 * 1.00

MO 1 0.08 0.08 0.16 0.08 0.16 0.08 0.16 1.00 1.00 1.00

3 0.22 0.22 0.46 0.22 0.46 0.22 0.46 1.00 1.00 1.00

6 0.46 0.46 0.93 0.46 0.94 0.46 0.94 1.00 1.00 1.00

12 0.90 0.90 2.06 0.90 1.98 0.90 1.97 1.00 1.00 1.00

MS 1 0.17 0.19 0.38 0.19 0.38 0.24 0.38 1.14 1.14 1.40

3 0.48 0.51 0.97 0.51 0.96 0.55 0.99 1.05 1.05 1.14

6 0.76 0.80 1.90 0.80 1.87 0.87 1.97 1.05 1.05 1.14

12 1.09 1.13 3.93 1.13 3.74 1.19 4.32 1.04 1.04 1.10

MT 1 0.04 0.04 0.06 0.04 0.06 0.04 0.06 1.00 1.00 1.00

3 0.09 0.09 0.14 0.09 0.14 0.09 0.14 1.01 1.00 1.00

6 0.20 0.20 0.28 0.20 0.28 0.20 0.28 1.01 1.00 1.00

12 0.44 0.44 0.55 0.44 0.56 0.44 0.55 1.01 1.00 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.12: Multivariate post-sample forecast accuracy for clustered states with

JD for UR of states NC,ND,NE,NH,NJ,NM,NV,NY.
Series Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

NC 1 0.08 0.08 0.11 0.07 0.11 0.08 0.11 1.03 0.92 * 1.00

3 0.19 0.19 0.35 0.02 0.35 0.19 0.35 1.04 0.10 1.00

6 0.41 0.43 0.74 0.04 0.74 0.41 0.73 1.04 0.10 1.00

12 0.81 0.80 1.71 0.82 1.72 0.81 1.71 0.98 1.01 1.00

ND 1 0.06 0.06 0.07 0.06 0.07 0.06 0.07 1.00 1.00 1.00

3 0.15 0.15 0.20 0.15 0.20 0.15 0.20 1.00 1.00 1.00

6 0.26 0.26 0.45 0.26 0.46 0.26 0.45 0.99 1.00 1.00

12 0.40 0.39 0.86 0.39 0.88 0.39 0.86 1.00 1.00 1.00

NE 1 0.06 0.06 0.08 0.06 0.08 0.06 0.08 1.01 0.85 * 1.00

3 0.16 0.16 0.23 0.15 0.23 0.16 0.23 1.00 0.93 * 1.00

6 0.26 0.26 0.44 0.24 0.44 0.26 0.45 1.01 0.94 * 1.00

12 0.46 0.46 0.82 0.44 0.82 0.46 0.84 1.01 0.96 * 1.00

NH 1 0.07 0.07 0.07 0.07 0.07 0.07 0.07 1.03 1.03 1.00

3 0.20 0.20 0.21 0.20 0.21 0.20 0.21 1.02 1.02 1.00

6 0.35 0.36 0.48 0.44 0.48 0.35 0.48 1.02 1.24 1.00

12 0.61 0.63 1.08 0.61 1.08 0.60 1.08 1.04 1.01 1.00

NJ 1 0.07 0.07 0.09 0.07 0.09 0.06 0.09 0.91 * 0.91 * 0.88 *

3 0.19 0.16 0.24 0.16 0.24 0.16 0.24 0.87 * 0.87 * 0.84 *

6 0.44 0.39 0.56 0.39 0.56 0.38 0.56 0.89 * 0.89 * 0.86 *

12 0.78 0.79 1.32 0.79 1.32 0.80 1.33 1.02 1.02 1.03

NM 1 0.05 0.05 0.08 0.05 0.08 0.05 0.08 1.00 1.00 1.00

3 0.13 0.13 0.19 0.13 0.19 0.13 0.19 0.99 1.00 1.00

6 0.30 0.29 0.38 0.30 0.39 0.30 0.38 0.99 1.00 1.00

12 0.61 0.60 0.77 0.61 0.86 0.61 0.79 0.99 1.00 1.00

NV 1 0.06 0.06 0.08 0.06 0.08 0.06 0.08 0.93 * 0.93 * 0.97 *

3 0.16 0.15 0.26 0.15 0.26 0.15 0.26 0.93 * 0.93 * 0.96 *

6 0.36 0.35 0.63 0.35 0.63 0.35 0.63 0.97 * 0.97 * 0.98 *

12 0.75 0.77 1.40 0.77 1.41 0.75 1.41 1.02 1.02 1.01

NY 1 0.07 0.07 0.09 0.07 0.09 0.07 0.09 0.92 * 0.92 * 0.90 *

3 0.19 0.17 0.28 0.17 0.28 0.17 0.28 0.91 * 0.91 * 0.88 *

6 0.41 0.38 0.59 0.38 0.59 0.37 0.59 0.92 * 0.92 * 0.90 *

12 0.66 0.64 1.28 0.64 1.29 0.64 1.29 0.97 * 0.97 * 0.97 *

Note:* indicates results are statistically significant at α=0.01.
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Table B.13: Multivariate post-sample forecast accuracy for clustered states with

JD for UR of states OH,OK,OR,PA,RI,SC,SD,TN.
Series Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

OH 1 0.06 0.06 0.09 0.06 0.09 0.06 0.09 1.01 1.00 1.00

3 0.16 0.16 0.30 0.16 0.30 0.16 0.30 1.02 1.00 1.00

6 0.38 0.38 0.70 0.38 0.70 0.38 0.70 1.01 1.00 1.00

12 0.82 0.81 1.60 0.82 1.60 0.82 1.59 0.99 1.00 1.00

OK 1 0.08 0.08 0.10 0.08 0.10 0.08 0.10 0.97 * 1.00 1.00

3 0.21 0.21 0.30 0.21 0.31 0.21 0.30 0.97 * 1.00 1.00

6 0.40 0.39 0.72 0.40 0.72 0.40 0.72 0.97 * 1.00 1.00

12 0.72 0.69 1.58 0.72 1.60 0.72 1.59 0.96 * 1.00 1.00

OR 1 0.07 0.07 0.11 0.07 0.11 0.08 0.11 1.02 1.02 1.09

3 0.20 0.21 0.40 0.21 0.40 0.22 0.40 1.02 1.02 1.09

6 0.49 0.49 0.94 0.49 0.95 0.51 0.95 1.01 1.01 1.04

12 1.11 1.09 2.19 1.09 2.21 1.01 2.20 0.98 0.98 0.91

PA 1 0.07 0.07 0.09 0.07 0.09 0.07 0.09 1.02 1.00 1.00

3 0.15 0.16 0.25 0.15 0.25 0.15 0.25 1.03 1.00 1.00

6 0.31 0.32 0.48 0.31 0.48 0.31 0.48 1.03 1.00 1.00

12 0.54 0.54 1.02 0.54 1.03 0.54 1.02 1.00 1.00 1.00

RI 1 0.06 0.06 0.08 0.06 0.08 0.06 0.08 1.04 1.08 1.00

3 0.14 0.15 0.23 0.14 0.23 0.14 0.23 1.05 1.00 1.00

6 0.32 0.34 0.48 0.31 0.48 0.32 0.48 1.08 0.98 1.00

12 0.70 0.73 0.95 0.65 0.95 0.69 0.94 1.04 0.93 * 1.00

SC 1 0.07 0.08 0.11 0.07 0.11 0.07 0.11 1.03 1.00 1.00

3 0.18 0.19 0.38 0.18 0.38 0.18 0.38 1.03 1.00 1.00

6 0.39 0.40 0.83 0.39 0.83 0.39 0.83 1.03 1.00 1.00

12 0.88 0.85 2.02 0.87 2.04 0.88 2.01 0.97 * 1.00 1.00

SD 1 0.07 0.07 0.12 0.06 0.12 0.07 0.12 1.00 0.90 * 1.00

3 0.16 0.16 0.31 0.15 0.31 0.16 0.31 1.00 0.92 * 1.00

6 0.29 0.29 0.67 0.28 0.67 0.29 0.67 1.00 0.97 * 1.00

12 0.54 0.54 1.38 0.52 1.36 0.54 1.36 1.00 0.96 * 1.00

TN 1 0.07 0.07 0.11 0.07 0.11 0.07 0.11 1.00 1.00 1.00

3 0.20 0.20 0.36 0.20 0.36 0.20 0.36 1.00 1.00 1.00

6 0.46 0.46 0.90 0.46 0.90 0.46 0.90 1.00 1.00 1.00

12 0.97 0.97 2.15 0.97 2.03 0.97 2.03 1.00 1.00 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.14: Multivariate post-sample forecast accuracy for clustered states with

JD for UR of states TX,UT,VA,VT,WA,WI,WV,WY.
Series Steps RMSE RRMSE

h MBS km-MBS km-MS GMM-MBS GMM-MS Hier-MBS Hier-MS km−MBS
MBS

GMM−MBS
MBS

Hier−MBS
MBS

TX 1 0.06 0.06 0.07 0.06 0.07 0.06 0.07 1.00 1.00 1.00

3 0.17 0.17 0.21 0.17 0.21 0.17 0.21 1.00 1.00 1.00

6 0.36 0.36 0.47 0.36 0.47 0.36 0.47 1.00 1.00 1.00

12 0.65 0.65 1.05 0.65 1.05 0.65 1.04 1.00 1.00 1.00

UT 1 0.14 0.14 0.22 0.14 0.22 0.14 0.22 1.01 1.01 1.00

3 0.25 0.25 0.63 0.22 0.63 0.25 0.63 1.01 0.88 1.00

6 0.54 0.55 1.25 0.53 1.25 0.54 1.24 1.00 0.98 1.00

12 0.98 0.98 2.74 0.97 2.73 0.98 2.66 1.00 0.99 1.00

VA 1 0.07 0.07 0.09 0.06 0.09 0.07 0.09 1.01 0.86 * 1.00

3 0.18 0.18 0.28 0.16 0.28 0.18 0.28 1.01 0.91 * 1.00

6 0.35 0.36 0.60 0.34 0.60 0.35 0.60 1.01 0.96 * 1.00

12 0.59 0.59 1.30 0.58 1.30 0.59 1.29 1.00 0.98 * 1.00

VT 1 0.08 0.08 0.10 0.08 0.10 0.08 0.10 1.00 1.00 1.00

3 0.20 0.20 0.34 0.20 0.34 0.20 0.34 1.00 1.00 1.00

6 0.35 0.35 0.75 0.35 0.75 0.35 0.75 1.00 1.00 1.00

12 0.62 0.62 1.58 0.62 1.41 0.62 1.41 1.00 1.00 1.00

WA 1 0.06 0.06 0.10 0.06 0.10 0.06 0.10 1.00 1.00 1.00

3 0.16 0.16 0.32 0.16 0.32 0.16 0.32 1.00 1.00 1.00

6 0.39 0.39 0.75 0.39 0.74 0.39 0.74 1.00 1.00 1.00

12 0.79 0.79 1.88 0.79 1.67 0.79 1.65 1.00 1.00 1.00

WI 1 0.06 0.06 0.09 0.06 0.09 0.06 0.09 1.01 0.99 1.00

3 0.18 0.18 0.31 0.17 0.31 0.18 0.31 1.01 0.96 * 1.00

6 0.40 0.40 0.78 0.38 0.78 0.40 0.78 1.01 0.95 * 1.00

12 0.83 0.81 1.88 0.80 1.89 0.83 1.86 0.98 0.96 * 1.00

WV 1 0.07 0.08 0.10 0.08 0.10 0.11 0.10 1.19 1.19 1.59

3 0.18 0.23 0.35 0.23 0.35 0.31 0.35 1.29 1.29 1.76

6 0.34 0.41 0.79 0.41 0.79 0.59 0.79 1.21 1.21 1.72

12 0.63 0.78 1.60 0.78 1.61 1.09 1.61 1.24 1.23 1.73

WY 1 0.06 0.06 0.07 0.06 0.07 0.06 0.07 1.00 1.00 1.00

3 0.17 0.17 0.23 0.17 0.23 0.17 0.22 1.00 1.00 1.00

6 0.35 0.35 0.55 0.35 0.54 0.35 0.54 1.00 1.00 1.00

12 0.67 0.67 1.52 0.67 1.34 0.67 1.32 1.00 1.00 1.00

Note:* indicates results are statistically significant at α=0.01.



Appendix B 141

Table B.15: Multivariate post-sample forecast accuracy for clustered states with

JD, Tensor, SOEM for UR of states AL,AR,AZ,CA,CO,CT,DE,FL.
Series Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Tensor-MS Tensor-MBS SOEM-MS SOEM-MBS JD−MBS
MBS

Tensor−MBS
MBS

SOEM−MBS
MBS

AL 1 0.13 0.07 0.12 0.12 0.13 0.08 1.23 0.06 1.74 1.10 0.92 *

3 0.41 0.20 0.50 0.41 0.42 0.21 1.23 0.18 2.05 1.07 0.93 *

6 0.94 0.45 0.93 0.84 0.96 0.47 1.27 0.44 1.86 1.04 0.98

12 2.15 1.08 2.10 1.56 2.26 1.00 1.62 1.13 1.44 0.92 1.04

AR 1 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.05 1.21 1.13 0.94 *

3 0.20 0.14 0.20 0.19 0.20 0.16 0.20 0.13 1.40 1.18 0.93 *

6 0.50 0.27 0.50 0.45 0.50 0.31 0.51 0.26 1.66 1.14 0.95 *

12 1.15 0.44 1.19 0.77 1.15 0.50 1.18 0.44 1.76 1.15 1.00

AZ 1 0.09 0.07 0.09 0.09 0.09 0.07 0.09 0.06 1.29 0.97 * 0.85 *

3 0.27 0.18 0.29 0.27 0.27 0.18 0.27 0.15 1.46 0.97 * 0.81 *

6 0.57 0.37 0.60 0.55 0.56 0.36 0.57 0.33 1.47 0.97 * 0.89 *

12 1.34 0.74 1.37 1.19 1.32 0.72 1.34 0.70 1.61 0.97 * 0.95 *

CA 1 0.10 0.06 0.09 0.09 0.10 0.07 0.10 0.05 1.52 1.05 0.78 *

3 0.29 0.16 0.33 0.29 0.29 0.16 0.29 0.11 1.84 1.05 0.73 *

6 0.57 0.36 0.58 0.57 0.58 0.37 0.57 0.30 1.60 1.05 0.85 *

12 1.27 0.82 1.28 1.19 1.30 0.83 1.25 0.83 1.46 1.01 1.02

CO 1 0.10 0.07 0.09 0.09 0.10 0.07 0.10 0.06 1.22 0.98 * 0.78 *

3 0.33 0.21 0.31 0.30 0.33 0.21 0.33 0.16 1.44 0.98 * 0.74 *

6 0.78 0.45 0.77 0.73 0.79 0.44 0.78 0.39 1.62 0.98 * 0.87 *

12 1.60 0.78 1.59 1.20 1.64 0.79 1.58 0.87 1.54 1.00 1.12

CT 1 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.05 1.06 0.87 * 0.78 *

3 0.22 0.18 0.22 0.22 0.22 0.15 0.22 0.12 1.22 0.83 * 0.69 *

6 0.50 0.38 0.50 0.46 0.50 0.31 0.49 0.26 1.20 0.81 * 0.69 *

12 1.04 0.75 1.07 0.86 1.04 0.68 1.02 0.62 1.15 0.91 * 0.83 *

DE 1 0.10 0.08 0.10 0.10 0.10 0.08 0.10 0.07 1.29 1.02 0.92 *

3 0.28 0.17 0.28 0.28 0.28 0.18 0.28 0.16 1.59 1.04 0.89 *

6 0.58 0.34 0.59 0.55 0.58 0.36 0.58 0.29 1.61 1.04 0.85 *

12 1.26 0.57 1.29 1.03 1.25 0.57 1.23 0.57 1.81 1.01 1.00

FL 1 0.15 0.09 0.15 0.13 0.16 0.09 0.15 0.07 1.38 1.00 0.79 *

3 0.39 0.21 0.40 0.38 0.43 0.21 0.39 0.17 1.79 1.00 0.82 *

6 0.76 0.43 0.79 0.69 0.96 0.43 0.76 0.36 1.62 1.00 0.84 *

12 1.61 0.81 1.66 1.32 2.86 0.81 1.62 0.81 1.62 1.00 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.16: Multivariate post-sample forecast accuracy for clustered states with

JD, Tensor, SOEM for UR of states GA,IA,ID,IL,IN,KS,KY,LA.
Series Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Tensor-MS Tensor-MBS SOEM-MS SOEM-MBS JD−MBS
MBS

Tensor−MBS
MBS

SOEM−MBS
MBS

GA 1 0.10 0.08 0.10 0.10 0.11 0.08 0.10 0.07 1.35 1.00 0.87 *

3 0.32 0.19 0.32 0.32 0.32 0.19 0.32 0.16 1.68 1.00 0.85 *

6 0.59 0.37 0.60 0.57 0.60 0.37 0.59 0.32 1.55 1.00 0.88 *

12 1.31 0.74 1.32 1.14 1.33 0.73 1.29 0.72 1.54 1.00 0.97 *

IA 1 0.23 0.16 0.23 0.21 0.26 0.16 0.23 0.16 1.34 1.00 0.99

3 0.54 0.28 0.57 0.35 0.81 0.28 0.55 0.27 1.26 1.00 0.99 *

6 0.92 0.39 0.98 0.49 2.67 0.39 0.96 0.38 1.25 1.00 0.97 *

12 1.85 0.68 1.98 0.80 0.81 0.68 2.04 0.68 1.18 1.00 0.99

ID 1 0.08 0.06 0.08 0.08 0.08 0.06 2.59 0.06 1.26 1.01 0.96 *

3 0.24 0.14 0.24 0.24 0.24 0.14 2.63 0.13 1.71 1.02 0.93 *

6 0.43 0.29 0.44 0.42 0.43 0.29 2.68 0.27 1.48 1.02 0.96 *

12 0.84 0.60 0.97 0.80 0.85 0.61 2.97 0.57 1.34 1.03 0.95 *

IL 1 0.12 0.07 0.11 0.11 0.12 0.07 0.12 0.06 1.69 1.01 0.93 *

3 0.38 0.20 0.38 0.38 0.39 0.20 0.38 0.18 1.95 1.01 0.92 *

6 0.81 0.39 0.81 0.73 0.82 0.39 0.81 0.37 1.86 1.01 0.95 *

12 1.72 0.78 1.75 1.22 1.75 0.78 1.74 0.78 1.56 1.00 1.00

IN 1 0.12 0.08 0.12 0.12 0.12 0.08 0.13 0.07 1.50 1.02 0.90 *

3 0.40 0.22 0.38 0.35 0.40 0.22 0.40 0.20 1.61 1.01 0.92 *

6 0.94 0.49 0.92 0.72 0.95 0.50 0.96 0.49 1.46 1.00 1.00

12 2.12 1.17 2.09 1.37 2.17 1.15 2.21 1.21 1.17 0.98 1.03

KS 1 0.12 0.08 0.12 0.12 0.12 0.08 0.12 0.07 1.50 1.02 0.84 *

3 0.33 0.19 0.33 0.34 0.35 0.20 0.33 0.16 1.78 1.02 0.83 *

6 0.69 0.34 0.70 0.58 0.78 0.35 0.71 0.31 1.69 1.02 0.91 *

12 1.47 0.63 1.48 0.90 2.11 0.65 1.56 0.53 1.44 1.03 0.85 *

KY 1 0.10 0.07 0.10 0.10 0.10 0.07 0.10 0.06 1.41 1.00 0.91 *

3 0.31 0.17 0.30 0.30 0.31 0.17 0.31 0.16 1.74 1.00 0.93 *

6 0.73 0.41 0.72 0.63 0.74 0.41 0.74 0.40 1.54 1.00 0.98 *

12 1.69 0.86 1.65 1.20 1.76 0.86 1.75 0.88 1.39 1.00 1.02

LA 1 0.83 0.44 0.85 0.79 0.79 0.44 1.27 0.42 1.81 1.00 0.95 *

3 2.38 0.81 2.80 1.26 1.29 0.81 1.32 0.79 1.56 1.00 0.98 *

6 4.29 1.08 6.27 1.37 1.45 1.08 1.51 1.05 1.27 1.00 0.97 *

12 9.35 1.66 22.01 1.58 1.63 1.66 2.08 1.46 0.95 1.00 0.88 *

Note:* indicates results are statistically significant at α=0.01.
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Table B.17: Multivariate post-sample forecast accuracy for clustered states with

JD, Tensor, SOEM for UR of states MA,MD,ME,MI,MN,MO,MS,MT.
Series Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Tensor-MS Tensor-MBS SOEM-MS SOEM-MBS JD−MBS
MBS

Tensor−MBS
MBS

SOEM−MBS
MBS

MA 1 0.08 0.07 0.08 0.08 0.08 0.06 0.08 0.05 1.13 0.90 * 0.76 *

3 0.23 0.21 0.23 0.23 0.23 0.18 0.23 0.13 1.11 0.84 * 0.63 *

6 0.47 0.42 0.48 0.46 0.47 0.38 0.47 0.32 1.09 0.91 * 0.75 *

12 1.06 0.70 1.04 0.88 1.06 0.63 1.05 0.62 1.26 0.90 * 0.88 *

MD 1 0.09 0.07 0.09 0.09 0.09 0.07 0.09 0.06 1.25 1.02 0.90 *

3 0.27 0.18 0.27 0.27 0.27 0.18 0.27 0.16 1.50 1.03 0.91 *

6 0.58 0.33 0.59 0.50 0.58 0.34 0.57 0.29 1.53 1.04 0.90 *

12 1.20 0.55 1.21 0.88 1.20 0.57 1.17 0.51 1.61 1.04 0.93 *

ME 1 0.09 0.07 0.08 0.08 0.09 0.07 0.09 0.06 1.20 1.02 0.87 *

3 0.28 0.18 0.27 0.39 0.28 0.19 0.28 0.15 2.14 1.04 0.83 *

6 0.61 0.35 0.61 0.59 0.61 0.35 0.60 0.33 1.70 1.01 0.96 *

12 1.32 0.57 1.35 1.10 1.30 0.55 1.28 0.61 1.95 0.98 1.08

MI 1 0.11 0.07 0.10 0.10 0.11 0.07 0.11 0.06 1.43 1.01 0.93 *

3 0.39 0.20 0.37 0.37 0.39 0.20 0.39 0.18 1.87 1.01 0.92 *

6 0.95 0.46 0.92 0.84 0.96 0.46 0.96 0.44 1.84 1.00 0.97 *

12 2.26 1.25 2.21 1.72 2.31 1.24 2.33 1.23 1.37 0.99 0.98 *

MN 1 0.11 0.06 0.10 0.10 0.11 0.06 0.11 0.06 1.65 1.02 0.91 *

3 0.33 0.17 0.32 0.34 0.34 0.17 0.33 0.15 2.06 1.01 0.93 *

6 0.75 0.38 0.74 0.66 0.81 0.38 0.77 0.37 1.71 1.00 0.97 *

12 1.59 0.78 1.59 1.03 1.90 0.77 1.69 0.80 1.32 0.98 1.02

MO 1 0.16 0.08 0.16 0.16 0.16 0.08 0.16 0.07 2.18 1.00 0.94 *

3 0.46 0.22 0.45 0.46 0.49 0.22 0.47 0.22 2.05 1.00 0.96 *

6 0.93 0.46 0.94 0.75 1.08 0.46 0.96 0.45 1.65 1.00 0.99

12 1.93 0.90 1.94 1.22 2.89 0.90 2.08 0.93 1.36 1.00 1.04

MS 1 0.38 0.17 0.41 0.38 0.44 0.19 0.38 0.16 2.26 1.14 0.93 *

3 0.99 0.48 1.18 0.69 1.45 0.51 0.95 0.46 1.42 1.05 0.96 *

6 1.98 0.76 2.85 0.97 5.07 0.80 1.83 0.76 1.27 1.05 0.99

12 4.34 1.09 10.19 1.32 53.08 1.13 3.56 1.11 1.22 1.04 1.02

MT 1 0.06 0.04 0.06 0.06 0.06 0.04 0.06 0.04 1.40 1.00 0.97 *

3 0.14 0.09 0.14 0.14 0.14 0.09 0.14 0.08 1.64 1.01 0.95 *

6 0.28 0.20 0.30 0.25 0.28 0.20 0.28 0.18 1.24 1.01 0.93 *

12 0.55 0.44 0.59 0.60 0.55 0.44 0.54 0.41 1.37 1.01 0.94 *

Note:* indicates results are statistically significant at α=0.01.
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Table B.18: Multivariate post-sample forecast accuracy for clustered states with

JD, Tensor, SOEM for UR of states NC,ND,NE,NH,NJ,NM,NV,NY.
Series Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Tensor-MS Tensor-MBS SOEM-MS SOEM-MBS JD−MBS
MBS

Tensor−MBS
MBS

SOEM−MBS
MBS

NC 1 0.11 0.08 0.10 0.10 0.11 0.08 0.11 0.06 1.34 1.03 0.82 *

3 0.35 0.19 0.34 0.33 0.35 0.19 0.35 0.15 1.75 1.04 0.81 *

6 0.73 0.41 0.73 0.67 0.73 0.43 0.74 0.39 1.62 1.04 0.94 *

12 1.69 0.81 1.71 1.27 1.71 0.80 1.74 0.91 1.56 0.98 1.11

ND 1 0.07 0.06 0.07 0.07 0.07 0.06 2.58 0.06 1.11 1.00 0.94 *

3 0.20 0.15 0.20 0.20 0.20 0.15 2.63 0.14 1.34 1.00 0.93 *

6 0.45 0.26 0.46 0.32 0.45 0.26 2.71 0.23 1.26 0.99 0.91 *

12 0.85 0.40 0.90 0.45 0.85 0.39 2.98 0.37 1.13 1.00 0.94 *

NE 1 0.08 0.06 0.07 0.07 0.08 0.06 0.08 0.06 1.14 1.01 0.93 *

3 0.23 0.16 0.23 0.23 0.23 0.16 0.23 0.15 1.41 1.00 0.93 *

6 0.45 0.26 0.47 0.34 0.45 0.26 0.45 0.23 1.34 1.01 0.91 *

12 0.83 0.46 0.95 0.55 0.83 0.46 0.83 0.42 1.20 1.01 0.91 *

NH 1 0.07 0.07 0.07 0.07 0.07 0.07 0.52 0.05 1.01 1.03 0.78 *

3 0.21 0.20 0.21 0.21 0.21 0.20 0.67 0.15 1.05 1.02 0.74 *

6 0.48 0.35 0.48 0.47 0.48 0.36 1.02 0.31 1.33 1.02 0.88 *

12 1.07 0.61 1.08 0.80 1.08 0.63 1.98 0.51 1.33 1.04 0.85 *

NJ 1 0.09 0.07 0.09 0.09 0.09 0.07 0.09 0.06 1.26 0.91 * 0.80 *

3 0.24 0.19 0.24 0.24 0.25 0.16 0.24 0.13 1.30 0.87 * 0.69 *

6 0.56 0.44 0.57 0.54 0.57 0.39 0.56 0.35 1.23 0.89 * 0.79 *

12 1.35 0.78 1.43 1.04 1.39 0.79 1.33 0.82 1.34 1.02 1.05

NM 1 0.08 0.05 0.08 0.08 0.08 0.05 0.08 0.05 1.41 1.00 0.93 *

3 0.19 0.13 0.19 0.19 0.19 0.13 0.19 0.12 1.46 0.99 0.88 *

6 0.38 0.30 0.40 0.40 0.38 0.29 0.38 0.26 1.34 0.99 0.87 *

12 0.78 0.61 0.89 0.84 0.78 0.60 0.77 0.55 1.38 0.99 0.90 *

NV 1 0.08 0.06 0.08 0.08 0.08 0.06 2.88 0.05 1.31 0.93 * 0.83 *

3 0.26 0.16 0.25 0.25 0.26 0.15 2.90 0.13 1.62 0.93 * 0.83 *

6 0.63 0.36 0.63 0.63 0.63 0.35 2.97 0.34 1.74 0.97 * 0.93 *

12 1.43 0.75 1.43 1.39 1.42 0.77 3.08 0.80 1.85 1.02 1.07

NY 1 0.09 0.07 0.09 0.09 0.09 0.07 0.09 0.06 1.23 0.92 * 0.79 *

3 0.28 0.19 0.28 0.28 0.28 0.17 0.28 0.14 1.45 0.91 * 0.73 *

6 0.60 0.41 0.60 0.56 0.60 0.38 0.59 0.33 1.37 0.92 * 0.81 *

12 1.31 0.66 1.34 1.02 1.34 0.64 1.30 0.68 1.54 0.97 1.03

Note:* indicates results are statistically significant at α=0.01.
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Table B.19: Multivariate post-sample forecast accuracy for clustered states with

JD, Tensor, SOEM for UR of states OH,OK,OR,PA,RI,SC,SD,TN.
Series Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Tensor-MS Tensor-MBS SOEM-MS SOEM-MBS JD−MBS
MBS

Tensor−MBS
MBS

SOEM−MBS
MBS

OH 1 0.09 0.06 0.09 0.09 0.09 0.06 0.09 0.06 1.44 1.01 0.92 *

3 0.30 0.16 0.29 0.28 0.30 0.16 0.30 0.14 1.70 1.02 0.87 *

6 0.69 0.38 0.69 0.60 0.70 0.38 0.70 0.35 1.58 1.01 0.93 *

12 1.58 0.82 1.57 1.23 1.58 0.81 1.62 0.81 1.50 0.99 0.99

OK 1 0.10 0.08 0.10 0.09 0.10 0.08 2.60 0.07 1.18 0.97 * 0.85 *

3 0.30 0.21 0.30 0.26 0.31 0.21 2.64 0.17 1.23 0.97 * 0.80 *

6 0.72 0.40 0.72 0.57 0.72 0.39 2.74 0.35 1.42 0.97 * 0.86 *

12 1.57 0.72 1.60 0.96 1.57 0.69 3.02 0.67 1.33 0.96 * 0.94 *

OR 1 0.11 0.07 0.10 0.10 0.11 0.07 1.42 0.06 1.46 1.02 0.87 *

3 0.40 0.20 0.38 0.38 0.40 0.21 1.46 0.18 1.89 1.02 0.88 *

6 0.96 0.49 0.93 0.78 0.97 0.49 1.68 0.48 1.59 1.01 0.99

12 2.27 1.11 2.24 1.50 2.34 1.09 2.51 1.23 1.35 0.98 1.10

PA 1 0.09 0.07 0.09 0.09 0.09 0.07 0.09 0.06 1.44 1.02 0.93 *

3 0.25 0.15 0.25 0.26 0.25 0.16 0.25 0.14 1.69 1.03 0.90 *

6 0.48 0.31 0.49 0.43 0.48 0.32 0.47 0.29 1.39 1.03 0.95 *

12 1.01 0.54 1.05 0.78 1.01 0.54 1.00 0.56 1.45 1.00 1.03

RI 1 0.08 0.06 0.08 0.08 0.08 0.06 2.90 0.05 1.37 1.04 0.84 *

3 0.23 0.14 0.23 0.23 0.23 0.15 2.93 0.11 1.62 1.05 0.81 *

6 0.48 0.32 0.48 0.48 0.49 0.34 3.02 0.25 1.51 1.08 0.79 *

12 0.94 0.70 0.93 0.84 0.96 0.73 3.39 0.58 1.21 1.04 0.83 *

SC 1 0.11 0.07 0.10 0.10 0.11 0.08 0.11 0.06 1.40 1.03 0.83 *

3 0.38 0.18 0.36 0.36 0.38 0.19 0.38 0.16 1.98 1.03 0.88 *

6 0.82 0.39 0.82 0.74 0.83 0.40 0.84 0.37 1.92 1.03 0.94 *

12 1.99 0.88 1.99 1.43 2.03 0.85 2.04 0.97 1.63 0.97 1.11

SD 1 0.12 0.07 0.12 0.12 0.12 0.07 0.12 0.07 1.78 1.00 0.96 *

3 0.31 0.16 0.31 0.31 0.35 0.16 0.32 0.16 1.87 1.00 0.97 *

6 0.66 0.29 0.67 0.48 0.83 0.29 0.68 0.28 1.67 1.00 0.96 *

12 1.33 0.54 1.36 0.74 2.54 0.54 1.44 0.52 1.37 1.00 0.96 *

TN 1 0.11 0.07 0.10 0.10 0.11 0.07 0.11 0.07 1.40 1.00 0.92 *

3 0.36 0.20 0.34 0.31 0.36 0.20 0.36 0.18 1.58 1.00 0.93 *

6 0.90 0.46 0.88 0.72 0.92 0.46 0.91 0.45 1.57 1.00 0.99

12 2.01 0.97 1.98 1.39 2.12 0.97 2.07 0.97 1.43 1.00 1.00

Note:* indicates results are statistically significant at α=0.01.
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Table B.20: Multivariate post-sample forecast accuracy for clustered states with

JD, Tensor, SOEM for UR of states TX,UT,VA,VT,WA,WI,WV,WY.
Series Steps RMSE RRMSE

h MS MBS JD-MS JD-MBS Tensor-MS Tensor-MBS SOEM-MS SOEM-MBS JD−MBS
MBS

Tensor−MBS
MBS

SOEM−MBS
MBS

TX 1 0.07 0.06 0.07 0.07 0.07 0.06 0.07 0.05 1.16 1.00 0.81 *

3 0.21 0.17 0.20 0.20 0.21 0.17 0.21 0.12 1.19 1.00 0.71 *

6 0.47 0.36 0.47 0.42 0.47 0.36 0.47 0.27 1.16 1.00 0.76 *

12 1.04 0.65 1.04 0.77 1.06 0.65 1.06 0.57 1.20 1.00 0.88 *

UT 1 0.22 0.14 0.22 0.22 0.22 0.14 0.99 0.14 1.55 1.01 0.98

3 0.62 0.25 0.62 0.61 0.72 0.25 1.01 0.24 2.44 1.01 0.96 *

6 1.22 0.54 1.23 0.99 1.85 0.55 1.04 0.53 1.83 1.00 0.98

12 2.59 0.98 2.57 1.61 9.10 0.98 1.36 1.01 1.64 1.00 1.03

VA 1 0.09 0.07 0.09 0.09 0.09 0.07 0.09 0.06 1.24 1.01 0.86 *

3 0.28 0.18 0.27 0.27 0.28 0.18 0.28 0.15 1.54 1.01 0.87 *

6 0.60 0.35 0.60 0.51 0.61 0.36 0.60 0.34 1.44 1.01 0.96 *

12 1.28 0.59 1.30 0.88 1.33 0.59 1.25 0.65 1.48 1.00 1.10

VT 1 0.10 0.08 0.09 0.09 0.10 0.08 0.10 0.07 1.22 1.00 0.87 *

3 0.34 0.20 0.32 0.32 0.34 0.20 0.34 0.17 1.65 1.00 0.85 *

6 0.75 0.35 0.74 0.58 0.75 0.35 0.74 0.34 1.65 1.00 0.97 *

12 1.39 0.62 1.37 0.84 1.40 0.62 1.36 0.71 1.35 1.00 1.15

WA 1 0.09 0.06 0.09 0.09 0.10 0.06 0.09 0.06 1.45 1.00 0.93 *

3 0.32 0.16 0.31 0.31 0.32 0.16 0.32 0.15 1.92 1.00 0.90 *

6 0.73 0.39 0.73 0.62 0.75 0.39 0.72 0.38 1.61 1.00 0.98 *

12 1.62 0.79 1.67 1.12 1.70 0.79 1.59 0.83 1.41 1.00 1.05

WI 1 0.09 0.06 0.09 0.08 0.09 0.06 0.09 0.06 1.38 1.01 0.92 *

3 0.31 0.18 0.30 0.26 0.31 0.18 0.31 0.16 1.48 1.01 0.93 *

6 0.78 0.40 0.76 0.61 0.79 0.40 0.79 0.39 1.52 1.01 0.98

12 1.84 0.83 1.80 1.17 1.89 0.81 1.90 0.91 1.41 0.98 1.09 *

WV 1 0.10 0.07 0.10 0.10 0.10 0.08 0.76 0.07 1.38 1.19 0.94 *

3 0.35 0.18 0.34 0.34 0.35 0.23 0.77 0.16 1.92 1.29 0.93 *

6 0.79 0.34 0.79 0.69 0.80 0.41 0.86 0.32 2.02 1.21 0.95 *

12 1.63 0.63 1.68 1.18 1.63 0.78 1.31 0.62 1.88 1.24 0.99

WY 1 0.07 0.06 0.07 0.07 0.18 0.06 0.07 0.05 1.21 1.00 0.90 *

3 0.22 0.17 0.22 0.22 0.23 0.17 0.22 0.14 1.33 1.00 0.84 *

6 0.54 0.35 0.54 0.50 0.55 0.35 0.54 0.32 1.42 1.00 0.90 *

12 1.31 0.67 1.33 0.99 1.23 0.67 1.32 0.61 1.49 1.00 0.91 *

Note:* indicates results are statistically significant at α=0.01.
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