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Abstract 

The underlying mechanisms regulating the ability of skeletal muscle to regenerate 

after acute “damaging” eccentric or “non-damaging” concentric exercise in young 

human skeletal muscle is poorly defined. Age-related impairments in the 

regenerative mechanisms may contribute to the age-related loss of muscle mass and 

function, which has negative consequences for overall health and disease. Thus, the 

first aim of this thesis was to initially investigate multiple targeted mechanisms 

previously implicated in the regeneration process, over a comprehensive time-course 

following eccentric versus concentric exercise in young adults. Within this study it 

was found that post-exercise, in general, increased anabolic and repressed catabolic 

signalling preceded functional decline, whereas inflammation and ubiquitin 

proteasome system-related breakdown increased once functional recovery was 

initiated/achieved. Eccentric exercise led to greater anabolic signalling and 

inflammatory signalling response. As such, this study has provided a benchmark of 

muscle regeneration in young skeletal muscle, which implicates early anabolic and 

catabolic regulation in the rapid adaptation of muscle, whereas inflammation and 

ubiquitin proteasome system-related breakdown likely mediate longer term 

remodelling/adaptations, which may be greater following eccentric exercise. Using 

this benchmark, the aim of the second study was to identify age-related changes in 

targeted regenerative mechanisms. Concentric exercise did not cause a molecular 

regenerative response, whilst eccentric exercise induced anabolic signalling and 

satellite cell activation, prior to and at the nadir of force, respectively. Compared to 

the younger adults, ageing per se was associated with increased inflammation, whilst 

anabolic and catabolic signalling post-eccentric and concentric exercise was blunted. 

Interestingly, satellite cell activity was induced in the old only following eccentric 
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exercise. These data suggest that eccentric exercise is potentially more advantageous 

for promoting muscle growth versus concentric exercise in older adults. Whilst, 

compared to the young, the old displayed blunted molecular responses which might 

underlie blunted muscle growth during ageing. Furthermore, the activation of 

satellite cells in the old might be the result of the impaired molecular mechanisms 

being suboptimal for repair thus, requiring additional regenerative means. In order to 

further characterise ageing muscle and the mechanisms of muscle regeneration, RNA 

sequencing was performed at the time of peak anabolic signalling to highlight more 

global and novel molecular networks. Ageing per se revealed genes involved in 

blood vessel development, plasma membrane and cell-cell junction expression were 

down-regulated, thus implicating these processes in age-related muscle loss. 

Following concentric exercise in older adults, there was an up-regulation of 

structural transcripts whilst there was a general down-regulation of genes related to 

metabolism, which might suggest impaired metabolism post-concentric exercise. 

Perhaps the blunted transcript responses contribute to the often observed age-related 

blunting of muscle mass adaptations in response to exercise training. Collectively, 

the data from this thesis has important implications for developing interventions for 

maximising hypertrophic responses and for counteracting the suboptimal 

regenerative responses observed in older adults. 
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IL-6  Interleukin 6 

IL-8  Interleukin 8 

IRMS   Isotope ratio mass spectrometer 

LEP  Leg extensor power 

MAPK  Mitogen-activated protein kinase  

MEB  Mitochondrial extraction buffer  

MLP  Modified leg press 

MPB   Muscle protein breakdown 

MPS  Muscle protein synthesis 

mRNA  Messenger ribose nucleic acid 

mTOR  Mechanistic/ mammalian target of rapamycin 

MuRF1 Muscle RING finger protein-1 
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MVC  Maximal voluntary contraction 

NCME  N-methoxycarbonyl methyl esters 

NF-κβ  Nuclear factor-kappaB 

NPB  Net protein balance  

NSAIDS Nonsteroidal anti-inflammatory drugs 

OCT  Optimal cutting temperature 

p70SK1 Ribosomal protein s6 kinase 

PA  Phosphatidic acid 

Pax7  Paired box protein 7 

PBS  Phosphate buffer saline 

PLD  Phospholipase D  

PPT  Pain pressure threshold 

RBE  Repeated bout effect 

RE  Resistance exercise 

RET  Resistance exercise training 

RPE  Rate of perceived exertion  

rps6  ribosomal protein s6 

SC  Satellite cell  

SPPBT  Short physical performance battery test 

TA   Tibialis anterior 

TC/EA  High temperature conversion elemental analyser 
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TNF-α  Tumour necrosis factor-α 

tRNA  Transfer ribonucleic acid 

UBI  Ubiquitin 

UPS  Ubiquitin proteasome system 

VAS   Visual analogue scale 

VSMOW Vienna standard mean ocean water 
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1  Literature Review  
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1.1 Skeletal Muscle: importance and plasticity 

1.1.1 The physiological role of muscle 

Skeletal muscle is the largest organ in the human body accounting for the majority of 

lean body mass and ~40-50% of whole body mass (188, 334). In occupying such 

mass, skeletal muscle performs key mechanical and biological functions essential to 

human life. One of the primary functions is to produce force and movement and 

maintain posture via the conversion of chemical into mechanical energy such that 

muscles pull on the bony lever system allowing joint movement (111, 167). This 

system permits the performance of necessary tasks for daily living such as rising 

from a chair and the more complex activities such as resistance exercise (RE).  

 

Another fundamental role of skeletal muscle is its contribution to regulating whole 

body protein, carbohydrate (CHO), and fat metabolism (99, 134, 318, 340). Skeletal 

muscle is the principal store of amino acids (AA), which are called upon by other 

tissues in times of need (i.e. starvation, burn injury) to synthesise organ-specific 

proteins (111, 354). Skeletal muscles provide the largest site for glucose uptake (74, 

318), which if disrupted has pathological consequences, such as the development of 

type II diabetes mellitus (75). Furthermore, skeletal muscle is a store for 

triglycerides, which are metabolised for the liberation of energy during exercise, 

however pathological increases in myocellular lipid content, as a result of altered 

metabolism, are observed in obesity (162).  

 

Thus, skeletal muscle is critical for locomotory and metabolic functions in humans. 

However, during ageing there is the loss of muscle mass and function, termed 
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sarcopenia and dynapenia, respectively (223, 286). The loss of muscle strength (~ 2-

4% per year) greatly exceeds the loss of muscle mass (~ 1% per year) (223). This 

was demonstrated in a five year follow up study period in 1678 older males, which 

found muscle torque declined by 16.1% where as the loss of thigh muscle mass 

equaled 5% (78). Reduced muscle strength is associated with poor physical function 

(330), increased falls (355) and is a predictor of all cause mortality (189). Moreover, 

the loss of muscle mass, mainly due to the loss of contractile protein, is associated 

with higher all-cause mortality (315), whereas greater muscle mass is associated 

with reduced all-cause mortality (308). In addition to ageing, detrimental declines in 

muscle mass and strength are observed in cases of muscle disuse and disease (295, 

336). As such, the maintenance of skeletal muscle mass is essential for the 

preservation of functional and metabolic health throughout one’s lifespan.  

 

1.1.2 Muscle plasticity 

Skeletal muscle is a highly plastic tissue capable of structural (i.e. increased muscle 

mass) and functional (i.e. increased muscle strength) remodelling in response to 

physiological demands such as exercise. For example, increases in skeletal muscle 

mass (hypertrophy) and strength are observed following 3 weeks of chronic 

resistance exercise training (RET) (38). Moreover, such plasticity means that muscle 

mass and function also rapidly deteriorate in response to pathophysiological cues 

such as disease and inactivity. To demonstrate, as little as 5 days of muscle disuse 

lead to decreases in skeletal muscle mass and strength (336). 
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Unaccustomed acute RE can induce disorganisation of the muscle contractile 

proteins leading to acute muscle dysfunction (i.e. reductions in force), which is 

typically restored within ~7 days owing to the intrinsic capability of muscles to 

regenerate (270). It is this process of rapid muscular regeneration that underpins its 

remarkable plasticity in response to exercise stimuli, whereby progressive 

accumulation of repeated regenerative responses to individual exercise bouts 

ultimately translate into muscle mass and functional gains. Muscle also rapidly 

adapts to initial unaccustomed RE by being less susceptible to muscle functional 

decline and sensations of muscle soreness during subsequent bouts of exercise, 

termed the repeated bout effect (RBE) (149). An impaired muscle regenerative 

capacity is associated with loss of muscle mass maintenance and health 

complications. For example, impaired muscle regeneration observed in the muscular 

dystrophies results in progressive muscle weakness and atrophy, culminating in early 

death (139). Understanding the mechanisms underpinning the processes of muscular 

regeneration from injurious events, such as unaccustomed RE, will therefore have 

important implications not only for optimising the hypertrophic adaptations to 

chronic RET but also for developing targeted countermeasures against pathological 

conditions of muscle wasting characterised by poor muscle regenerative capacity.  

 

Within the human literature the terms muscle regeneration, muscle repair and muscle 

remodelling/adaptation are often interchangeably used and there is yet to be a 

specific and widely accepted definition for each of these terms. As such, it is 

imperative that these are defined within the context of this thesis from the outset. 

Herein, muscle regeneration is defined as; any metabolic or molecular mechanism 

which is exercise and is regulated (i.e. up/down regulated) between the onset of 
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functional decline up to the cessation of adaptive responses (i.e. mechanisms which 

are still regulated in response to acute exercise even once force has returned to 

baseline). As such, the term muscle regeneration within this thesis encompasses 

muscle repair which is defined as; mechanisms that are regulated between the nadir 

of force and until basal force is restored, and muscle remodeling/ adaptation which is 

defined as; mechanisms that are regulated beyond the restoration of muscle function.  

 

1.2 Regulation of skeletal muscle plasticity by muscle protein turnover in 

response to acute exercise 

The balance between the synthesis and the breakdown of muscular proteins (i.e. net 

protein balance (NPB)) determines skeletal muscle mass. On a day-to-day basis, 

during the post-absorptive period muscle protein breakdown (MPB) (0.08-0.11%/h 

(260)) exceeds muscle protein synthesis (MPS) (0.03-0.07%/h (71, 172, 341)) i.e. 

MPB>MPS, creating a net negative protein balance and loss of muscular proteins 

(39). With the provision of nutrients, particularly AA, there is a significant (~3 fold) 

but transient (~1.5-2 h) increase in MPS (12) and depression in MPB (~50%) (345) 

i.e. MPB<MPS, leading to a positive net balance and gain of muscle proteins. This 

dynamic equilibrium exists such that on a day-to-day basis net balance is neutral and 

mass is maintained (MPB=MPS). Cumulative periods of positive NPB results in 

muscle mass gains (38), whereas cumulative periods of negative NPB results in the 

loss of muscle mass (atrophy) (260).  

 

Muscle protein turnover is critical for effective muscle regeneration following acute 

exercise and for muscle hypertrophy following chronic RET, since it governs the 

removal of damaged proteins (MPB) (45, 131) and deposits new functional proteins 
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essential for the restoration of muscle structure and function (MPS). The deposition 

and removal of proteins during the regenerative response to acute exercise may be a 

rapidly up-regulated acute response regulating the restoration of muscle function 

(23). The regulation of muscle protein turnover may also persist once function has 

been recovered to allow the muscle to remodel and adapt. Perturbations in either the 

synthesis and/or breakdown response following acute RE may attenuate acute 

structural and functional repair of skeletal muscles. Such perturbations could prolong 

functional deficits and structural damage, which may culminate in blunted muscle 

hypertrophy in response to chronic RET. However, the precise temporal interplay 

between MPS and MPB and how this relates to function following acute exercise is 

poorly defined.  

 

1.2.1 Muscle protein synthesis and anabolic signals  

1.2.1.1 Overview  

The nucleus of skeletal muscle fibres contain deoxyribonucleic acid (DNA), which 

contains the genetic material used for the synthesis of proteins. Two key processes; 

transcription and translation, are needed to generate proteins from DNA. 

Transcription is the process of transcripting genetic information from DNA into 

messenger ribonucleic acid (mRNA). The process of translating mRNA into protein 

is translation and is synchronized by three distinct stages: initiation, elongation and 

termination, of which initiation and elongation are principally regulated in response 

to exercise stimuli. 

 

Anabolic stimuli regulating muscle protein synthesis include exercise, nutrients and 
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hormones, which typically converge at the protein complex, mammalian target of 

rapamycin complex 1 (mTORC1) (Figure 1.1) (165). The phosphorylation of 

mTORC1 leads to the phosphorylation of the downstream protein substrate, 

ribosomal protein s6 kinase (p70S6K1), thereby phosphorylating eIF4B and eEF2, in 

turn enhancing protein translation (268). Additionally, phosphorylated p70S6K1 can 

enhance the activity of ribosomal protein s6 (rps6), which is increased in situations 

of enhanced protein synthesis (220). mTORC1 can also phosphorylate eukaryotic 

initiation factor 4E- binding protein (4EBP1), which is normally bound to eIF4E 

preventing the binding to eIF4G and thus the formation of the initiation complex 

(267, 285) inhibiting protein synthesis. When phosphorylated, eIF4E is released such 

that the initiation complex can be formed. As such, the regulation of mTORC1 

activity can enhance translation initiation and elongation thus enhancing muscle 

protein synthesis. Although much regulation of exercise/nutrient/hormone-induced 

protein synthesis is regulated via the mTORC1 signalling pathway, other pathways 

such as the protein kinase B (PKB) (PKB/Akt) and mitogen-activated protein kinase 

(MAPK) pathways can affect protein translation (168, 350).  
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Figure 1.1. Intracellular signalling pathways in skeletal muscle known to be 

involved in the regulation of muscle protein synthesis. 4EBP1 4E binding protein-

1; eEF2 eukaryotic elongation factor 2; eIF4E eukaryotic initiation factor 4E; 

ERK1/2 extracellular signal-regulated kinase 1/2; FAK Focal adhesion kinase; 

PKB/Akt protein kinase B; mTORC1 mammalian target of rapamycin complex 1; 

P90RSKS 90 kDa ribosomal S6 kinase; PA phosphatidic acid; PLD phospholipase D; 

RPS6 ribosomal protein S6 and S6K1 S6 kinase 1.  

 

1.2.1.2 Effects of acute RE 

In response to an acute bout of RE, MPS is stimulated two-to-three fold (171, 260). 

In the fasted state myofibrillar MPS is elevated for ~4 h (173) and mixed muscle 

MPS is elevated for up to 48 h (260), although in the absence of nutrition the muscle 
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remains in a negative net protein balance due to the concomitant increase in MPB 

(i.e. MPB>MPS) (260, 261). The duration of RE-induced increases in myofibrillar 

MPS can be extended to at least 24-72 h when combined with AA consumption 

administered post-exercise and on a daily basis (72, 222), potentiating the anabolic 

effects of RE. The stimulatory effect of RE beyond 24-48 h, up until functional 

recovery (i.e. ~7 days) after exercise is poorly defined, at least partially due to 

limitations with traditional tracer techniques only providing a snapshot of MPS 

within a limited time frame (347). However, the recent validation and application of 

the first stable isotope tracer in metabolic research, deuterium oxide (D2O) (294) 

provides an alternative to investigate MPS over longer time frames in humans (346, 

347). Therefore, future studies utilising the D2O tracer method can broaden current 

understanding of the cumulative and temporal MPS response to exercise, e.g. during 

muscle regeneration following acute exercise.  

 

While the precise mechanisms regulating the RE-induced increases in MPS remain 

unclear, a wealth of human studies have reported increased phosphorylation of 

mTOR and downstream substrates (p70S6K1, rps6 and 4EBP1) are fundamental to 

the MPS response (14, 85, 91, 239, 273). This is demonstrated via the up-regulation 

of mTORC1 signalling in the hours following acute RE (72, 173). The mechanically-

induced up-stream regulation of mTORC1 (i.e. mechanotransduction) is poorly 

defined. However, recent evidence has highlighted adhesion-related proteins such as 

focal adhesion kinase (FAK) and muscle intrinsic signalling via the production of the 

lipid second messenger, phosphatidic acid (PA)/ phospholipase D (PLD) are 

potential exercise-induced activators of mTORC1 (Figure 1.1). The accumulation of 

transient increases in MPS driven via increased growth signalling following acute 
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exercise can accumulate over a number of sequential exercise bouts leading to 

muscle growth (333).  

 

1.2.2 Muscle protein breakdown and catabolic signals 

1.2.2.1 Overview 

MPB is a critical process for the maintenance of healthy muscle since it removes 

damaged organelles, proteins, protein aggregates and toxic products, which lead to 

cell death and thereby improper functioning of the contractile units of muscle (131). 

As such, removal of damaged proteins is likely critical to the successful structural 

and functional adaptations in response to RE/RET. Compared to current 

understanding of MPS and the underlying regulators, a lot less is understood in 

regards to MPB and the molecular regulations since fewer studies exist and also due 

to the fact that there are multiple proteolytic systems involved in regulating MPB 

(13). The four main proteolytic systems are; ubiquitin-proteosome system (UPS) 

(232), autophagy-lysosomal (238), calpain’s (230) and caspase’s (351) (Figure 1.2).  

 

The UPS system is thought of as the main system for breakdown of the actomyosin 

proteins, which is independent of exercise mode (i.e. RE versus endurance exercise) 

(13, 245). Proteins degraded by the UPS are recognised by the 26S proteasome once 

at least four ubiquitin (Ub) molecules have been attached to the target protein. This 

is an ATP-requiring process regulated through the ubiquitin-activating enzyme (E1), 

ubiquitin-conjugating enzyme (E2) and ubiquitin-ligase enzymes (E3) (232). Studies 

in MuRF1 or MAFbx (E3 ligases) knock-out models have shown muscle atrophy 



 34 

was prevented (31), thus highlighting the importance of these two ligases in UPS-

mediated muscle breakdown.  

 

Figure 1.2. An overview of the four main proteolytic systems in skeletal muscle 

 

Autophagy-mediated breakdown is also capable of degrading myofibrillar proteins 

(206)  via the fusion of the protein containing-autophagosome with the lysosome to 

create an autolysome in which sequestered components are degraded 

(macroautophagy) (26). The lysosomal proteases, cathepsin B and L, are present in 

low levels within adult skeletal muscle and determine the proteolytic activity of the 

lysosomes (26, 235).  
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The calpains are activated in response to increased calcium levels and are capable of 

cleaving myofibrillar and structural proteins, which are then released into the 

cytoplasm and broken down or utilised for remodelling (20, 124). Similarly, 

caspases do not degrade proteins themselves but dismantle actomyosin structures to 

produce fragments for subsequent degradation (87). These cleaved fragments are 

proposed to be degraded by the UPS and autophagy pathways (123, 245). 

 

1.2.2.2 Effects of acute RE 

Coupled with RE-induced increases in MPS are concomitant increases in MPB (30, 

361), which can increase by ~30% and persist for up to 24 h post-exercise (260). 

Despite the smaller magnitude and shorter increase in MPB versus MPS (260), the 

muscle remains in a negative net protein balance when fasted. In some cases no 

changes in MPB after exercise have been observed, although this may simply be due 

to the single 24 h time point measurement perhaps missing any earlier or later 

detectable changes in MPB (113). Despite the major role of MPB in muscle protein 

turnover particularly following acute exercise, the temporal MPB response is less 

well defined than the MPS response since direct measurements of MPB in humans 

are challenging and particularly invasive. As such, the use of molecular surrogates as 

indicators of MPB provides useful information regarding the exercise-induced 

regulation of MPB. Although, disassociation between molecular changes and MPB 

have been found (126), highlighting the limitation in measuring proteolytic 

surrogates. 
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The mechanisms by which MPB is up-regulated during the post-exercise 

regeneration period are currently unknown but all of the four main muscle 

proteolytic signalling pathways are likely implicated. To demonstrate, increased 

mRNA of the E3 ligases, MuRF1 and MAfbx, were observed immediately after 

acute RE, which peaked ~1-2 h post-exercise and returned to pre-exercise levels ~8 h 

after exercise (192). Thus, the UPS pathway is implicated in the immediate and rapid 

regulation of muscle recovery from exercise. One study reported reduced autophagy 

induction in healthy young males up to 24 h post-RE (113). This further provides 

support for the UPS system being the main proteolytic system during the post-

exercise recovery period, and perhaps suggesting autophagy is not necessary. 

However, it could be speculated that autophagy is up-regulated at later stages of 

muscle regeneration.  

 

1.3 Muscle protein turnover response to acute eccentric versus concentric 

exercise 

RET has been identified as the safest and most effective method to improve muscle 

mass and function, even when compared to pharmacological interventions such as 

testosterone and growth hormone replacement (36). Conventional RE contractions 

can be segmented into two separate contractions, the eccentric (ECC) phase whereby 

the muscle lengthens whilst contracting and the concentric (CON) phase whereby the 

muscle shortens whilst contracting. During traditional RE exercise, the ECC phase 

i.e. the lowering phase, is under-loaded since contracting eccentrically produces 

greater force versus CON contractions (343), although the mechanisms which 

explain the differences in force production remain elusive (140). When performing 

isolated ECC exercise, this translates in to greater mass and functional gains when 
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compared to CON exercise training (283). However, the underlying protein turnover 

responses following ECC versus CON exercise are less well defined compared to 

conventional RE responses.  

 

1.3.1 Muscle protein synthesis and anabolic signals 

The investigation into contraction-specific differences of MPS and anabolic 

signalling during the regenerative period is limited to only a handful of studies. In 

fasted humans, mixed MPS was elevated above baseline at 3 (112%), 24 (65%) and 

48 (34%) h post-ECC and -CON knee flexion/extension exercise (8 x 8 sets at 80% 

CON 1-RM), although no differences in MPS were observed between contraction 

types (260). Similarly, Gibala et al. (2000) found no differences in MPS 24 h post 

ECC versus CON exercise (117). However, there was no basal MPS rate determined 

by Gibala et al. (2000), thus it is impossible for exercise-mediated changes in MPS 

to be established; in fact, the data would suggest that MPS is not elevated since they 

reported MPS of ~0.04-0.07%/h-1, which is within previously reported basal ranges 

(39). Eight habitually active males who engaged in step up with one leg (i.e. CON 

exercise) and step down with the contralateral leg (i.e. ECC exercise) for a total 

exercise time of 12 minutes displayed elevated myofibrillar MPS in the fed state 6 h 

post exercise, which was still heightened at 24 h (72), but this was independent of 

contraction type. Furthermore, no MPS differences were observed between acute 

bouts of ECC or CON knee extensions (6x10 maximal repetitions) between 1-3 or 3-

5 h post exercise (272).  
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Conversely, recreationally active males who performed 10 x 6 maximal ECC 

repetitions on one leg and the CON equivalent matched for work on the contralateral 

leg, found a more rapid rise in MPS at 4.5 h post-ECC exercise but MPS was similar 

between contraction-types at 8.5 h post-exercise (224). This would suggest 

(assuming breakdown is equal) that cumulative MPS following ECC exercise is 

greater compared to CON exercise. In addition to greater protein accretion, greater 

disruption to the myofibrillar contractile proteins (known as Z-disk streaming) was 

observed 1.5 h post-ECC versus CON exercise (224). Although, some authors 

suggest that Z-disk streaming represents remodelling as opposed to muscle damage 

since areas of Z-disk streaming contained increased myofibrillar-associated proteins 

such as desmin (356). It is hypothesised that greater disruption of the muscle 

proteins post-exercise requires a greater protein synthetic response to restore the 

structural integrity of the muscle contractile units, ultimately restoring muscle 

function. Furthermore, the greater protein accretion after acute ECC versus CON 

exercise (224) may explain the greater gains in mass and strength observed with 

chronic ECC training  (283).  

 

The results by Moore et al (2005), which show a contraction-specific difference in 

MPS, are in contrast to previous reports (72, 117, 260, 273), which may be explained 

by key methodological differences. Phillips et al. (1997) and Gibala et al. (2000) 

employed ECC exercise that was performed at 80% of the CON 1-RM, thus under-

loading the ECC phase. Therefore, sub-maximal MPS stimulation might have 

occurred for the ECC phase. Since MPS progressively increases with increased CON 

load from 20% 1-RM to 60-90% 1-RM in young healthy individuals (173), it can be 

expected that the same happens in response to ECC exercise. Moreover, the muscle 
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fraction analysed differed between studies. For example, Phillips et al. (1997) and 

Gibala et al. (2000) measured mixed MPS, meaning that the sample incorporated 

myofibrillar, sarcoplasmic, collagen and mitochondrial proteins, where as Moore et 

al. (2005) measured myofibrillar MPS. Since RE has been shown to promote 

myofibrillar protein synthesis, at least in the trained state (349), it could be 

hypothesised that measuring mixed MPS may conceal the true changes that occur in 

the muscle myofibrillar fraction.   

 

Additionally, the nutritional status of the participants differs between studies, since 

those in the Moore et al (2005) study were fed whilst Phillips et al (1997) 

investigated participants in the fasted state, thus suboptimal post-absorptive MPS 

may have masked any contraction-mediated differences. Furthermore, it is well 

acknowledged that the damaging effects of an unaccustomed bout of exercise i.e. 

muscle soreness and reduced muscle function, are attenuated following a sequential 

bout of exercise (i.e. RBE) (215). In the study by Rahbek et al (2015), participants 

were subjected to an exercise habituation protocol prior to the acute exercise bout 

which, although speculative, may have attenuated the MPS response due to the 

phenomenon of the RBE, masking any potential contraction mode differences since 

the exercise is no longer unaccustomed. However, no investigations have assessed 

MPS responses in tandem with the RBE, thus this is speculative.  

 

In summary, the majority of the literature thus far suggests that the MPS responses 

up to 48 h post-ECC versus CON exercise are similar. However, as muscle 

regeneration is a process that extends beyond 48 h we are limited in our 
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understanding of the full temporal and cumulative MPS time-course following ECC 

versus CON exercise during the regenerative period, which continues for at least 7 

days post-unaccustomed exercise (44, 63). Understanding MPS throughout muscle 

regeneration will aid the development of interventions intended to potentiate 

hypertrophic adaptations and counteract situations characterised by reduced 

regenerative capacity. Considering ECC exercise is capable of inducing greater 

functional deficits and ultrastructure changes, it must be the case that either: i) ECC 

exercise induces a greater and/or more prolonged MPS response to replace the 

greater volume of damaged and degraded proteins in order to restore muscle function 

or, ii) if there is no difference between ECC and CON exercise for MPS, improved 

efficiency of repair/ remodelling of existing proteins, which would not be detected 

with tracer-based measures of protein turnover, may account for enhanced chronic 

functional adaptation to ECC training. It is also possible that past research has 

missed vital early (i.e. 5 h) time points of investigation where muscle dysfunction 

may peak and thus warrants investigation, since this may be where contraction-

induced differences are the most divergent. As such, the contraction-specific MPS 

responses remain unclear and warrant further investigation.  

 

1.3.1.1 Anabolic signalling 

Increased post-exercise MPS is mediated by contraction-induced increases in mTOR 

signalling (85), which is necessary for functional recovery post-exercise in rodents 

(23). However, the temporal relationship between anabolic signalling and functional 

decline and recovery in humans remains to be investigated. Since chronic 

adaptations to ECC versus CON exercise training differ (283), it is logical to 

postulate that anabolic signalling may also differ between the contraction types, at 
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least at some stage throughout the training programme. As for contraction-specific 

regulation of MPS, only a handful of studies currently exist which compare the 

anabolic signalling response to ECC versus CON exercise in humans. In fasted 

untrained human’s, 4 x 6 unilateral maximal ECC contractions performed on a leg 

press caused significant increases in the phosphorylation of p70S6KThr389 and 

rps6Ser235/236 immediately after exercise which remained elevated 2 h post-exercise 

(91). Interestingly, performing 4 x 6 maximal CON or submaximal ECC contractions 

(same as maximal CON force), did not induce anabolic signalling. This might be due 

to the low number of contractions (91), since CON exercise has been shown to 

stimulate anabolic signalling elsewhere (72, 272). However, these data suggest that 

i) ECC exercise is a more potent stimulator of mTORC1 signalling than CON 

exercise, at least 2 h post-exercise, however no further measures were obtained 

beyond 2 h post-exercise in this study, and ii) when under-loaded (i.e. submaximal), 

ECC contractions have less potent anabolic effects compared to maximal ECC 

contractions. Further understanding of the temporal time course came from Rahbek 

and colleagues (2014) who found increases in the phosphorylation of mTORSer2448, 

p70S6KThr389 and rps6Ser235/236 1 h post ECC and CON exercise, which was 

maintained 3 and 5 h following ECC exercise only (272). This further supports the 

notion that ECC exercise results in a more prolonged increase in mTOR signalling 

but precludes understanding beyond 5 h post-exercise since no additional 

measurements were made (272). Conversely, Cuthbertson et al (2006) reported 

substantial increases in p70S6K1Thr389 within 3 h post-exercise, which remained 

increased up to 24 h post exercise, but no differences were observed between ECC 

versus CON contraction types (72). Interestingly, the stimulation of anabolic 

signalling was still detectable 24 h post-exercise regardless of exercise mode, which 
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is longer than reported by Rahbek et al (2014) following CON exercise. Although 

speculative, the familiarisation protocol employed by Rahbek and colleagues prior to 

the performance of an acute bout of exercise may have potentially diminished the 

longevity of anabolic signals shown following CON exercise (i.e. demonstrating a 

RBE) (55).  

 

Thus, both ECC and CON exercise stimulate mTOR signalling, which in some cases 

is more persistent following ECC exercise although the duration of contraction-

induced differences is unknown due to limited sampling time-points in previous 

studies investigating the early responses. Superior anabolic signalling post-ECC 

exercise may contribute to the greater acute contraction-induced increases in MPS 

(224) and chronic increases in muscle mass and function (283). However, 

investigations of contraction-specific temporal anabolic responses in tandem with 

MPS throughout the complete post-exercise muscle functional regenerative period 

are currently lacking. Such studies are required in order to understand the 

concordance between the two anabolic processes, which will highlight areas for 

intervention to potentiate anabolic responses, ultimately enhancing the regeneration 

process.  

 

1.3.2 Muscle protein breakdown and catabolic signals 

The invasive and technically challenging nature of measuring MPB directly in 

humans means that the literature regarding MPB during the muscle regenerative 

period is relatively sparse, nonetheless, studies do exist. Post-translational 

methylation of the actin and myosin histidine residues produces 3-methylistidine 
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(3MeH), which is not re-incorporated into protein thus the appearance (when 

assayed in muscle biopsy tissue) is often used as an indirect marker of MPB (95, 

102, 171). This method has produced varied results, for example ECC (~40% of 

VO2Max) or CON (~70% VO2Max) cycling for 60 minutes had negligible effects on 

proteolysis over a seven day period (262). When investigated over a longer time-

frame, untrained males demonstrated elevated 3MeH at 10-12 days post ECC cycle 

ergometry (250 W for 45 mins), indicative of enhanced myofibrillar MPB (95). 

Interestingly, following electrical stimulation (ES) in humans 3MeH was increased 

immediately post-ES, but no changes were observed following voluntary ECC 

contractions (138). The differences between the exercise mode may be explained by 

recruitment patterns inducing different levels of muscle damage. The Henneman’s 

size principle is applied during voluntary contractions whereby there is progressive 

recruitment of small slow fibres at low contraction forces leading to larger faster 

fibre recruitment at higher contractile forces. This is reversed during ES, where 

larger faster fibres are recruited first, perhaps increasing the potential for muscle 

damage since type II fibres have been suggested to be more susceptible to damage 

(63, 127). However, the lack of change in 3MeH following voluntary exercise may 

also be due to the reliability and sensitivity of using 3MeH as an indicator of MPB, 

which has been questioned (171).  

 

The application of 3MeH has been compared to the direct “tracee release method” 

developed by Zhang et al. (1996). This breakdown method sees the infusion of a 

tracer until isotopic equilibrium, at which point tracer infusion is ceased and tracer 

decay is monitored in the arterial and muscle intracellular pool (AA from arterial 

blood and intracellular protein breakdown) (Zhang et al. 1996). Mixed MPB 
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measured by the “trace release method” in fasted individuals found MPB was 

elevated 3 and 24 h post-ECC and post-CON exercise but had returned to baseline 

within 48 h (260). Conversely, there were no detectable changes when using the 

3MeH method (260). These data support the idea that 3MeH may be an inadequate 

method to accurately measure day-to-day changes in MPB. This data also 

demonstrated that rates of MPB do not differ between ECC versus CON exercise 

when measured directly. However, the protocol employed ECC exercise at 80% of 

the CON 1-RM. As such, whether or not there are changes in MPB when comparing 

ECC versus CON exercise matched for contraction-specific relative intensity is 

unknown. It might be logical to hypothesise that greater MPB would be expected 

after ECC versus CON exercise due to greater muscle damage and potentially a 

greater volume of exercise-induced damaged proteins which need replaced. 

However, this remains poorly defined.  

 

1.3.2.1 Catabolic signalling 

Due to the difficulties with directly measuring MPB, many studies have investigated 

surrogate targets as indirect markers of MPB. Current evidence implicates a role for 

all of the major muscle proteolytic signals in the post-ECC and -CON exercise 

recovery period. For example, the day after a bout of ECC-bias downhill running 

mRNA levels of the muscle specific calpain 3 and calpain 1 were decreased, whilst 

calpain 2 was increased (98). Interestingly, calpain 2 peaked 1 day post-exercise in 

tandem with the most observed ultrastructure damage in participants, and thus 

implicates calpain 2 in the cleavage of damaged myofibrillar proteins (98). In 

addition to regulating myofibrillar turnover, calpains are also appreciated to have 

roles in membrane repair (218), the assembly and maintenance of attachment 
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complexes (92) and sarcomere remodelling (170), all processes implicated in the 

remodelling of muscle after damaging exercise and/ or for mediating longer term 

muscle adaptation. Perhaps, the differential regulation of different calpain isoforms 

implicates them in different remodelling roles throughout muscle regeneration. 

However, this is speculative and would need to be investigated further in tandem 

with functional recovery. Similarly, calpain 2 expression was up-regulated 24 h 

following ECC but not CON exercise in young healthy males (332). This shows that 

calpain 2 is regulated by contraction-type, which might be related to the levels of 

muscle damage (117). Perhaps greater myofibrillar disruption requires a greater 

calpain response for the cleavage of more damaged muscle proteins. Following acute 

ECC exercise on an isokinetic dynamometer (10 x 30 reps, 30°s, 1 min), calpain 3 

autolysis (i.e. activation) was significantly increased 24 h post-exercise (230), by 

which point force had returned to normal. This would suggest to some extent that 

calpain 3 activation was not necessary for functional recovery, but might mediate 

sarcomeric repair and adaptation. Calpain 3 is recognised in sarcomere remodelling 

(170) and it is well acknowledged that the performance of a single bout of ECC 

exercise induces adaptation so that a subsequent bout of exercise is not as damaging 

(i.e. RBE). The authors speculate that perhaps calpain 3 mediates part of this 

remodelling process by adding extra sarcomeres in series (230). Raastad and 

colleagues (2010) investigated a more comprehensive time course of total calpain 

activity in response to 300 maximal ECC contractions and found calpain activity 

peaked 30 minutes after exercise (270). This rapid calpain response was not 

correlated to the number of fibers with myofibrillar disruptions, suggesting that 

calpain may regulate other processes in addition to/ rather than myofibrillar 

cleavage, such as the rebuilding of sarcomeres for adaptation (270). Compared to 



 46 

ECC exercise, the calpain response to isolated CON exercise is poorly defined. It is 

postulated that isolated CON exercise might not necessitate as much of a calpain 

response compared to ECC exercise since less myofibrillar disruptions in need of 

cleavage or remodelling would be expected.  

 

Similarly to calpains, caspase-3 dismantles the actomyosin structures which are 

subsequently degraded by the UPS (87). Following acute ECC exercise caspase-3 

activity was increased 6, 24 and 48 h post-ECC-exercise (163, 351), likely due to 

ECC exercise-induced compromised muscle membranes allowing the influx of Ca2+. 

The reported activation of caspase-3 overlaps to some extent with the calpain 

response, thus suggesting that both may initiate early protein cleavage of exercise-

induced damaged proteins for subsequent degradation in response to ECC exercise. 

To the authors knowledge, no research to date has investigated the effects of isolated 

CON exercise on caspase-3.   

 

Following calpain and caspase-induced dismantling, cleaved proteins are targeted for 

UPS-mediated degradation. No early changes were detected in the protein levels of 

the E3 ligase, MuRF1, as early as 30 minutes following acute ECC or CON exercise 

in young males (107). However, components of the UPS pathways have been 

reported to increase 6 h post-ECC exercise (352) and are still increased 48 h post-

ECC exercise (351). The early up-regulation (i.e. 6 h post-exercise) may suggest 

rapid degradation in response to muscle damaged proteins, which might contribute to 

rapid adaptation necessary for functional recovery. Furthermore, the persistence at 

48 h may suggest that degradation is also implicated in longer term muscle 
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adaptation. The effects of isolated CON exercise on UPS activity are poorly 

understood, although many studies have shown increases in the E3 ligases 

immediately after exercise (77) up to 24 h post-exercise (192) following 

conventional RE. UPS has also been implicated in muscle remodelling since 30 

minutes downhill running increased proteasome enzyme activity at 14 days post-

exercise (98). One report found no increase in ubiquitin-conjugated proteins, 

although this may be due to the single sampling time point at 24 h, therefore missing 

earlier or later changes (312).  

 

Non-calcium activated breakdown pathways are also purported to be activated in 

response to ECC exercise. Thirty minutes of downhill running did not change 

cathepsin B or L post exercise or the day after exercise, however both cathepsins 

increased by ~50% at 14 days post-exercise (98). These data suggest that the 

cathepsins may be implicated in the longer-term skeletal muscle remodelling 

following acute ECC exercise, since declines in power had returned by this point and 

calpains, caspase-3 and the UPS system have been implicated in earlier time-points. 

As such, further research is needed to understand the effect of resistance based ECC 

versus CON exercise on the temporality of the cathepsin response during muscle 

regeneration.  

 

In summary, despite the pivotal role of MPB for muscle regeneration and 

remodelling, limited research exists with regards to the temporality of the proteolytic 

pathways in response to acute ECC versus CON exercise. Such work is necessary 

since contraction-specific differences in the MPB and underlying molecular 
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proteolytic systems are plausible. This is because ECC exercise elicits greater 

muscle ultrastructural damage than CON exercise (117), thus theoretically this might 

represent greater volumes of exercise-induced damaged proteins. As such, following 

ECC exercise there may need to be a more extensive breakdown response in order to 

degrade these proteins. Furthermore, proteolytic systems may also be implicated in 

longer term remodelling demonstrated by the continued up-regulation once function 

has been restored.  

 

1.4 Transcriptomic responses to acute eccentric and concentric exercise  

Despite the great utility of measuring single or few target proteins/mRNA for 

characterising rapid physiological responses, such as early responses in muscle 

regeneration, the reality is that the biology is much more complex. In order to better 

understand the molecular networks regulating the rapid muscle regeneration 

response, researchers have started to implement the use of transcriptomics. 

Transcriptomics permits the detection of up to all of the mRNA (depending on the 

method used) at once within a biological sample, which can be analysed with 

advanced software to identify biological process/ cellular components/ molecular 

function networks that are regulated by the muscle damage and repair process. The 

most popular transcriptomic method for investigating gene expression is currently 

microarrays since it’s affordable for most laboratory’s and tens of thousands of 

transcripts can be detected at once (362). Although, more recently RNA sequencing 

has started to enter the field, likely due to the fact that all RNA transcripts can be 

detected and because the detection of transcripts is unbiased (i.e. no need for 

transcript specific probes) (329).  
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The utilisation of transcriptomics to broaden current understanding of the molecular 

networks regulating muscle regeneration has only been implemented in a handful of 

studies. Unique to ECC (versus CON) exercise was the up-regulation of cell growth, 

stress response, DNA damage, inflammation, ECM remodelling and signalling in 

young males (50). Since ECC exercise is associated with more muscle damage, this 

may explain the increase in damage and repair related transcripts. However, biopsies 

were taken at any time between 4-8 h post-exercise, thus there is a need for future 

studies to precisely define the temporal response, as this will be important for 

designing interventions to maximise growth responses and/ or speed up repair. Such 

work was done by Kostek and colleagues (2006) who found divergent transcriptional 

responses as early as 3 h following ECC versus CON exercise in healthy young 

males. Interestingly, it was shown that pathways and processes related to early 

growth and sarcomerogenesis were induced by ECC versus CON exercise. Such data 

may indicate the initiation of sarcomere repair and may also suggest the synthesis of 

new sarcomeres for the addition in series, part of muscle remodeling/adaptation. 

(169). However, this was using a muscle specific microarray and therefore may have 

missed out other potentially important players of muscle regeneration. Furthermore, 

no functional measures were made by Kostek et al., (2006), and thus investigations 

which detail the transcriptomic response at key functional time points throughout 

regeneration will provide valuable knowledge to the underlying molecular 

regulators. 
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1.5 Unaccustomed eccentric/ concentric exercise and its effect on skeletal 

muscle ultrastructure and function 

1.5.1 Manifestations of unaccustomed exercise 

Unaccustomed exercise, particularly ECC exercise, induces immediate declines in 

muscle force/function, which can typically recover within ~7 days (57, 148, 233). 

The extent of functional decline depends on the exercise mode, intensity and novelty 

(148). Whereby ECC exercise induces greater functional impairments compared to 

CON exercise (118), and those who are unaccustomed to exercise experience greater 

functional impairments compared to trained individuals (55, 57). Many theories exist 

to explain the mechanisms regulating force loss, although most are based on 

evidence from animal models and still today the precise mechanisms are unknown 

(148). The most prominent theory to date is an early theory put forward by Morgan 

(1990) referred to as the ‘popping sarcomere theory’. This theory proposes that 

repeated lengthening contractions force weak sarcomeres to a point of no actomyosin 

overlap, which results in disrupted sarcomeres when the myofilaments are unable to 

re-interdigitate (226). This inability to re-interdigitate manifests as Z-line streaming 

(110), which disrupts the mechanotransduction networks responsible for transferring 

force from the sarcomere to the ECM via the Z-lines (145). Ultimately, the reduced 

number of functional contractile units impairs muscle function. Since this is 

generally applicable to lengthening ECC contractions, the popping sarcomere theory 

is thought to explain the greater damage observed in ECC versus CON exercise. 

Another theory attributes force loss to perturbations in excitation-contraction 

coupling (E-C coupling). To demonstrate, Warren et al (1993) proposed that damage 

to E-C components prior to Ca2+ release might lead to an inability to activate the 

contractile apparatus resulting in attenuated force following exercise. Mouse soleus 
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muscle exposed to electrically stimulated ECC contractions resulted in post-exercise 

declines in tension which were recovered by 50mM caffeine, which promotes 

contraction by stimulating the diffusion of Ca2+ from the sarcoplasmic reticulum 

(266, 337). However, heightening Ca2+ release has not always been shown to 

mitigate force loss (225). Some studies have suggested that ‘popping’ of sarcomeres 

leads to greater forces impinging on E-C apparatus such as the t-tubule, leading to E-

C dysfunction and ultimately force loss, implicating both theories in the exercise-

induced loss of force (226).  

 

Initial evidence of actomyosin disruptions came from Friden et al. (1983) after ECC 

exercise induced Z-disk streaming. Many reports have since shown exercise induces 

Z-disk disruptions (224, 234), which have been reported to get progressively worse 

over time (234), peaking in disruption between 1-4 days post-exercise (248). Indeed, 

Z-disk disruption correlates with reduced force-generating capacity (270), making Z-

disk streaming the most accurate indicator of functional decline, thus weighing 

support for the role of impaired contractile unit function and/or force transmission as 

the cause of post-ECC functional decline.  

 

However, CON-induced Z-disk disruption has been shown, albeit to a much lesser 

magnitude than that induced by ECC exercise, denoted by significantly fewer 

disrupted fibres (118). The common and well acknowledged interpretation of Z-disk 

streaming is that it represents mechanically-induced damage of the sarcomeric 

proteins (109). However, this has been challenged with the notion that Z-disk 

streaming represents muscle remodelling since areas of Z-disk streaming contain 
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actin and desmin proteins possibly contributing to sarcomerogenesis (356). Perhaps, 

greater Z-disk streaming observed after ECC exercise represents a greater 

remodelling response needed to bring about muscle adaptation. Such remodelling 

may contribute to the attenuated muscle damage observed after a second damaging 

bout of exercise (i.e. RBE), although this is speculation. ECC exercise also induces 

the immediate separation of the ECM from the myofibres (310). ECC-induced ECM 

disruption, as indicated by increases in the ECM adhesion-modulating protein 

tenascin C, may contribute to force loss since the ECM is responsible for transferring 

~70% of lateral force produced by myofibres (63).  

 

After unaccustomed exercise is the delayed presentation of muscular soreness, 

termed delayed onset muscle soreness (DOMS), which is characterised by the 

tenderness to palpate the muscle (2, 7, 142). Soreness typically increases within the 

first 24 hours after exercise, peaks at ~24-48 h and subsides between 5-7 days after 

exercise (57). Many theories have been put forward with regards to the mechanisms 

of DOMS. One theory suggests DOMS is the result of an accumulation of lactic 

acid, although this has been refuted since CON exercise caused greater levels of 

lactate but lower levels of soreness (11, 52). Another theory implicated increased 

muscle spasms as a cause of DOMS, although the lack of reproducibility has also 

lead to this theory being refuted (2, 52). The contribution of muscle inflammation to 

DOMS has been appreciated. Increased infiltration of inflammatory cells and muscle 

swelling observed following exercise are implicated in the sensitisation of the nerve 

endings stimulating sensations of muscle soreness (108, 148). However, discordance 

between soreness and infiltrating inflammatory cells has been noted (158), as such 

inflammation does not fully explain DOMS. The mechanically induced disruption to 
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the contractile apparatus, which is associated with force loss, is not expected to 

induce significant muscle soreness since there are no pain receptors intramuscularly. 

Furthermore, it has been observed that the level of muscle soreness did not correlate 

with well known indirect markers of muscle damage (237), therefore providing 

evidence that mechanical damage of the sarcomeres is not necessarily a major 

contributor to DOMS. However, the mechanical disruption of the plasma membrane 

is thought to allow an infiltration of calcium into the cell, which can activate 

proteases such as calpains. The proteolytic activity at the Z-lines is thought to 

increase the chemical stimulation of nociceptors increasing muscle soreness, this is 

known as the enzyme efflux theory (52, 133). Additionally, mechanically-induced 

tears to the ECM are postulated to contribute to DOMS (2, 7, 142). This is postulated 

to be the result of ECM damage increasing inflammatory mediators, which in turn 

stimulate the nociceptors generating sensations of muscle soreness (63). In support 

of this theory, markers of ECM synthesis and inflammatory cells within the ECM 

increased in response to damaging exercise (63). 

 

Collectively, many theories have been hypothesised to contribute to DOMS, 

although no one theory appears to fully explain the onset of DOMS (148). It has thus 

been suggested that an amalgamation of all of the theories likely contribute to 

DOMS (148). Further insight into the regulation of DOMS may be achieved by 

investigating all of the plausible theories in tandem with muscle soreness measures 

in response to unaccustomed exercise.  
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Another manifestation of unaccustomed exercise is the increase in membrane 

permeability and subsequent leakage of the muscle specific protein, creatine kinase, 

into the blood, which is used as an indirect marker of exercise-induced muscle 

damage (EIMD) (236). Mechanisms regulating the permeability of the membrane are 

unknown, although theories have been put forward. Initial hypothesis suggested that 

the mechanical stress associated with exercise induces increased membrane 

permeability (217), although this is losing credibility since histological analysis in 

humans show no evidence of significant sarcolemma disruption despite elevated 

plasma CK (185).  

 

1.6 Skeletal muscle regeneration from unaccustomed exercise 

Following exercise-induced disruptions i.e. DOMS, force declines, ultrastructural 

and ECM damage, a myriad of intrinsic metabolic and molecular mechanisms appear 

to co-ordinate the regenerative response restoring the structural and functional 

phenotype of the muscle. Effective regeneration is necessary for the normal 

maintenance of healthy muscle in response to habitual activities of daily living, to 

continue with daily tasks following strenuous exercise and for muscle growth during 

RET. The precise mechanisms and the temporality of such processes regulating 

regeneration are poorly defined in humans. Traditional models of muscle 

regeneration suggest that four time-dependent and inter-related phases regulate 

regeneration; 1) degeneration 2) inflammation 3) regeneration and 4) 

remodelling/repair (48, 65) (Figure 1.3).  
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Figure 1.3.  Traditional model of muscle regeneration (taken from (48)). 

 

1.6.1 Degeneration 

In response to injury, damaged muscle fibres become ruptured and spontaneously 

contract creating gaps which divide the fibre into two half’s (159). This gap becomes 

occupied with hematoma from damaged blood vessels. Within hours of sarcolemma 

disruption a new membrane is formed, known as the contraction band, to isolate the 

area of damage preventing widespread necrosis (146). This is based on evidence 

found in rats using contusion and toxic based methods of injury (159, 275), thus it is 

unknown whether these event occurs in humans following voluntary contraction. 

Considering the lack of evidence of support membrane damage in humans (185), it is 

plausible that these sequence of events do not occur in humans. The necrosis of 
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muscle fibres is a consequence of infiltrating calcium, activating calcium-mediated 

proteolytic pathways to breakdown disrupted contractile proteins at least in rodents, 

denoting the degeneration phase (240). These degenerative/ necrotic events have 

been consistently shown in rodent models however, in healthy humans the presence 

of fibre necrosis following voluntary exercise is debated (63, 357). This would 

indicate that damage in rodents requires a re-establishment of muscle fibres, whereas 

humans require only sections of fibres or individual sarcomeres to be repaired (157).  

 

1.6.2 Inflammation 

Enhanced systemic and local inflammatory cells stimulate the post-exercise 

inflammatory response, which co-ordinates the phagocytosis of cellular debris and 

stimulates satellite cells (SC) for subsequent regeneration/ repair (320). The 

importance of efficient inflammation for effective muscle regeneration has been 

evidenced by rodent studies which show that the depletion or inhibition of 

inflammatory cells leads to slower and blunted muscle regeneration, which may be 

attributable to slower debris removal or reduced macrophages-related factor release, 

which stimulate SC needed for regeneration (4, 324). Such definitive work is yet to 

be done in humans, although the presence of an inflammatory response post-exercise 

in humans is well characterised.  

 

The release growth factors and cytokines such as tumor necrosis factor-alpha (TNF-

α) from the blood vessels stimulate the migration of inflammatory cells to the 

damaged fibres (202). The first inflammatory cell population to invade the damage 

site are neutrophils, which further stimulate inflammation via the secretion of pro-
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inflammatory cytokines (48). Eosinophils later invade the site contributing to cellular 

debris removal and SC activation (296). Soon after, blood derived monocytes are 

released and differentiate into pro-inflammatory M1 macrophages (8, 202, 296). 

Macrophages are the predominant inflammatory cell throughout the inflammatory 

process, accounting for 46-100% of infiltrating inflammatory cells (291), which are 

responsible for phagocytising cell debris, secreting pro-inflammatory cytokines such 

as TNF-α and release reactive oxygen species, which can further damage muscle 

tissue (48, 296, 322). M1 macrophages later convert into M2 macrophages to initiate 

the regeneration process via the promotion of SC and angiogenesis, via the release of 

factors and cytokines/ growth factors, respectively (48, 296).  

 

This sequence of events in post-exercise/ injury in human muscle is well 

acknowledged although the precise role in regulating functional decline and repair 

needs better characterisation (248). The systemic inflammatory response to 

unaccustomed exercise within humans has been extensively reviewed previously 

(248, 314). Most studies show increases in plasma interleukins (IL-6, IL-8, IL-1ra), 

and in some cases soluble TNF-α receptor 1, immediately after exercise which can 

remain increased for more than 24 h post exercise (66, 250–252, 255, 325), although 

results are variable likely due to the different exercise protocols used eliciting 

different levels of damage. Whether these increases in cytokines are a cause or a by 

product of muscle damage is questioned since comparisons between ECC versus 

CON exercise are less common. In one study, ECC cycling elicited greater increases 

in plasma IL-6 and CK compared to CON cycling (43), demonstrating ECC evokes a 

greater systemic cytokine response. Interestingly, other studies have shown no 
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difference in downhill versus level running (252). Thus, the origin of plasma 

cytokines remains elusive.  

 

Thus far, the local muscular inflammatory response in humans has received less 

attention than the systemic inflammatory response. Local inflammatory responses 

have been shown to be mediated after exercise and moreover, are contraction-type 

sensitive. For example, mRNA of TNF-α, IL6, IL-1β increased 4 h post ECC but not 

CON exercise and remained elevated for up to 24 h post-exercise (50, 143). 

Increased TNF-α has been implicated in promoting MPB (183), mediated by NF-κB 

signalling (130), therefore exercise-induced inflammation may promote local 

inflammatory cytokine up-regulation (TNF-α), stimulating muscle degradation. The 

greater inflammatory response after ECC versus CON exercise is likely due to the 

presence of greater muscle damage, necessitating inflammation to clear cellular 

debris and MPB to degrade exercise induced damaged proteins, paving the way for 

successful remodelling. The transcription factor, NF-κB, has been shown to increase 

in skeletal muscle following ECC exercise (151), and controls the transcription of 

>150 target genes (244), some of are implicated in growth responses. For example, 

transcription of c-Myc via NF-κβ subsequently activates genes promoting muscle 

hypertrophy (344) ribosomal biogenesis and protein synthesis (280). Moreover, c-

Myc gene expression increased following RE which strongly correlated to protein 

synthesis (342). As such, the activation of inflammatory pathways may also regulate 

anabolic and catabolic mechanisms. Greater inflammatory responses observed post-

ECC exercise may be one mechanism which facilitates the greater adaptations of 

skeletal muscle mass and function.   
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Cytokines also regulate the invasion of leucocytes to the area of muscle damage. The 

local inflammatory cell response shows early neutrophil invasion, where neutrophils 

were increased 45 minutes post downhill running, and remained elevated for 5 days, 

which was positively correlated with Z-disk damage (101). Thus neutrophils are 

thought to facilitate the removal of cell debris i.e. damaged Z-disk related proteins 

(321). Macrophages later infiltrate the muscle to the site of damage. Following ECC 

exercise, no changes in macrophages within muscle fibres were observed, however 

there were increases following ES (63). Instead, macrophages were found to increase 

within the perimysium and endomysium 24 and 96 h following voluntary exercise, 

which was also observed 96 and 192 h following ES (63). The difference in 

macrophage findings between voluntary and ES studies is likely due to the extent of 

muscle damage and necrosis, where by the greater the damage, the greater the 

macrophage response and infiltration into the muscle in order to remove damaged 

cells and initiate remodelling. Perhaps, voluntary-contraction induces greater muscle 

damage to the ECM (compared to the myofibrilar structures), which is critical to the 

proper functioning of muscle and muscle metabolism. Thus, macrophages are 

recruited to the ECM to restore ECM homeostasis. Similarly, following acute 

unaccustomed ECC exercise, macrophages increased in the periymysial and 

endomysial tissue 2 days following exercise and remained elevated 4 and 8 days 

post-exercise (64). This prolonged elevation in macrophages may represent both the 

up-regulation of the early M1 macrophages for the debris clearance, followed by the 

later up-regulation of M2 macrophages to initiate adaptive processes. Deyhle et al 

(2016) reported no changes in muscle infiltrating macrophages 2 and 27 days 

following 300 maximal ECC contractions (82). This may not be all that surprising 

since voluntary exercise has previously been shown to increase macrophages in the 
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ECM only, and not within muscle fibres (63). Furthermore, total (CD68) 

macrophages were quantified as opposed to either subpopulation of pro M1 (CD11b) 

or anti M2 (CD163) inflammatory macrophages, which potentially could have 

masked any changes in either subpopulation.  

 

Differences in exercise protocols and the lack of sequential muscle biopsies 

throughout the literature means that current understanding of the temporal local 

cytokine and leucocyte cell response during muscle regeneration following voluntary 

exercise is poorly defined (248). Virtually no evidence exists which compares the 

inflammatory response post-ECC versus CON exercise over a comprehensive time 

course, particularly in the context of how inflammation temporally relates to other 

essential aspects of muscle regeneration such as MPS, anabolic signalling and 

proteolysis. Such research is warranted to ordain a fundamental understanding 

skeletal muscle regeneration.  

 

1.6.3 Regeneration 

Current evidence suggests that the regenerative phase is initiated by the activation of 

quiescent SC, which migrate away from the basal lamina to the site of injury and 

enter the cell cycle for several rounds of proliferation (88, 89). Committed SC i.e. 

myoblasts, exit the cell cycle to differentiate into myocytes which fuse to form de 

novo muscle fibres or fuse into pre-existing damaged myofibrils increasing the 

capacity for protein synthesis by the addition of a nucleus (89). Rodent studies 

suggest SC are indispensable for muscle regeneration following injury (180, 210). 

Five days post cardiotoxin-induced injury caused small fibres (indicative of de novo 
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fibres, the result of SC fusion (211)) with centralized nuclei, indicative of muscle 

regeneration in wild-type animals. However, in Pax7+ eliminated mice there was no 

regenerative responses denoted by no fibres with centralised nuclei, demonstrating 

that SC are an essential requirement for muscle regeneration following injury (180). 

Similarly, mice subjected to mechanical overload by synergist ablation had an ~8 

fold increase in small regenerating fibres, which was significantly blunted in mice 

subjected to >90% SC ablation (210). SC are also purported to be important for 

functional recovery since mice subjected to γ-irradiation in order to prevent SC 

proliferation, displayed delayed functional recovery compared to the non-irradiated 

group (276). However, these responses are following supraphysiological ‘damage’ 

(i.e. cardiotoxin-induced injury) eliciting supraphysiological regenerative responses, 

and therefore do not necessarily mean SC’s are essential to human muscle 

regeneration in a physiological context.  

 

In humans, SC activation following acute ECC exercise occurs as early as 24 h post 

exercise, which typically peaks at 72 h, falling back towards baseline thereafter, at 

least in mixed muscle (i.e. both type I and II fibres) (302). The SC response has been 

shown to be contraction-specific. To demonstrate, Hyldahl et al (2014) reported 

exercise-induced muscle damage, evidenced by histological and functional 

measures, and mixed muscle SC activation 24 h following acute ECC exercise but 

not following a work and intensity matched bout of CON exercise. This suggests that 

the SC response may be a result of either the presence of muscle damage or due to 

the unique lengthening nature of ECC exercise. Although only speculative, increased 

SC proliferation may suggest a greater number of nuclei within pre-existing muscle 

fibres in order to repair the damage. Increased nuclei will provide greater DNA and 
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thus increase the potential for muscle growth. Whereas, following CON exercise the 

lack of SC response may suggest that the DNA capacity is great enough to bring 

about the required remodelling responses. Perhaps, greater SC responses following 

ECC versus CON exercise contribute to greater chronic adaptations. However, the 

work by Hyldahl et al (2014) only included the one post-exercise time point and thus 

may have potentially missed any other contraction-specific regulation at earlier or 

later time points. Although SC are purported to be activated in response to 

unaccustomed exercise in order to mediate regeneration, they have been shown to 

not be essential for hypertrophy. This is since muscle hypertrophy occurs in the 

absence of SC activity, probably because pre-existing myonuclei control a larger 

proportion of the cytoplasm when stimulated (210). As such, many questions remain 

around the role of SC in human skeletal muscle regeneration. 

 

The regenerative phase is also purported to be characterised by increased protein 

synthesis, essential for the deposition of functional proteins for muscle repair, 

adaptation and growth (221). However, as previously mentioned there is a lack of 

studies which have investigated the muscle protein synthetic response beyond the 

24-48 h post-exercise time frame, due to the limiting nature of traditional tracer 

methods. Traditional tracer methods are only capable of measuring MPS over short 

time-frames (i.e. 8-12 h), thus more advanced methods are required in order to 

ordain the MPS response during muscle regeneration following exercise. Advances 

in mass spectrometry has led to the oldest stable isotope tracer, deuterium oxide 

(D2O), being validated and successfully implicated in measuring cumulative MPS in 

humans over longer-time frames compared to traditional tracers (38, 346, 347). 

Therefore, there is a need for further studies in humans which utilise D2O tracers for 
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the measurement of MPS throughout the complete post-exercise functional recovery 

period. Such studies would provide a more accurate representation of the MPS 

response over the regenerative time-frame, and how this relates to other indices of 

muscular regeneration, as opposed to snap shots provided by stable-isotope infusion 

based tracers.   

 

1.6.4 Remodelling/repair 

The final phase of the muscle regeneration process is referred to as remodelling-

repair and is characterised by connective tissue remodelling, angiogenesis and the 

recovery of muscle function (48). In regards to connective tissue repair, in order to 

connect the broken edges of the damaged myofibre observed in rodents, fibrin and 

fibronectin derived from the blood combine to form a matrix to which fibroblasts can 

attach and produce collagens I and III (159). This results in the formation of scar 

tissue (116). The production of excessive scar tissue can lead to incomplete muscle 

repair and subsequently attenuated muscle function, reduced muscle elasticity and an 

increased risk of future susceptibility to EIMD. Repeated bouts of unsuccessful 

repair characterised by an accumulation of scar tissue are hypothesised to contribute 

to muscle loss (54).  

 

In summary, our current understanding of the temporality of the mechanisms 

contributing to muscle regeneration from both supra-physiologic (i.e. ES) and 

physiologic (i.e. exercise) mediated muscle injury is largely based upon rodent 

studies and correlative human studies of limited temporality. There exists no such 

study that has compared the contraction-specific regulation of multiple key 
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regenerative mechanisms over a comprehensive time-course simultaneously. Such 

investigations are necessary in order to enhance current fundamental understanding 

of the mechanisms regulating muscle remodelling process in humans following 

exercise. This will have significant implications for developing interventions which 

optimise hypertrophic adaptations to chronic resistance exercise training and for 

developing countermeasures against conditions of muscle wasting characterised by 

suboptimal muscle regenerative capacity. 

 

1.7 Ageing skeletal muscle    

The UK population is ageing: demographics show more than 10 million people 

within the UK are aged ≥ 65 years, which is set to double by the year 2050 (62). A 

key healthcare concern associated with ageing is the progressive loss of muscle mass 

(sarcopenia) (286), and function (dynapenia) (69, 227). Following peaks in muscle 

mass between the ages of 20-30 (353), the decline in muscle mass begins around the 

fourth decade of life (155) with losses of ~ 1% per year, equating to around 8% per 

decade, until ~ 70 years of age (223). Therefore, older individuals between the ages 

of 70-80 will only retain 60-80% of the muscle mass they had at ~ 30 years old 

(353). Thereafter, the rate of muscle loss increases to ~15% per decade in those 

beyond 80 years of age (78). The loss of muscle mass is primarily characterised by 

the loss of contractile proteins, observed by fewer and smaller muscle fibres, 

particularly of the type II muscle fibres (181). In addition to the loss of mass, there is 

an age-related loss of strength, which declines at a faster rate equating to 2-4% per 

year in men (125). Such losses in muscle strength are primarily a result of increased 

fat and connective tissue infiltrating between muscle fibres (70, 79).  
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Sarcopenia is associated with multiple physiological impairments such as reduced 

physical function, frailty and poor physical performance and can increase the risk of 

falls leading to a loss of independence (25). Additionally, since skeletal muscle is the 

largest tissue for glucose disposal, sarcopenia is associated with diabetes (306, 307) 

and an increased risk of mortality (175). Combined, the public healthcare bill 

associated with sarcopenia totalled $18.5 billion in the US alone in year 2000, 

equating to ~1.5% of the total expenditure on health (156). No European study to 

date has assessed the economic burden of sarcopenia (25), although it was estimated 

to be £5.7 billion annually in the UK (MRC, 2012).  

 

Several putative mechanisms underpinning the onset and progression of sarcopenia 

have been reported. These include blunted responses to anabolic stimuli i.e. exercise 

and nutrition (71, 128, 173), reduced SC functionality (160), chronic inflammation 

(293), hormone imbalances, neurodegeneration, genetic factors (258), inadequate 

protein intake (243), ectopic fat deposition and physical inactivity (35). Therefore, 

the etiology of sarcopenia is multifactorial. However, despite evidence for a role of 

all these processes in sarcopenia, the precise causes are still not fully delineated. As 

such, further work is needed to demarcate the mechanisms regulating sarcopenia in 

order to develop therapeutic interventions, which offset sarcopenic onset and 

progression. 

 

1.8 Muscle protein turnover in ageing at rest and during muscle regeneration 

after acute exercise 

Studies have investigated the possibility that deficits in the basal rate of MPS during 

ageing contribute to chronic muscle loss, however the majority of data shows that 
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there are no age-related differences in basal MPS (112, 173). The acute MPS 

response following exercise is however, blunted in the elderly compared to the 

young (112, 173) (i.e. anabolic resistance). Increased MPS is essential during 

regeneration to replenish the exercise-induced degraded and damaged proteins, thus 

restoring muscle structure and function and facilitating hypertrophy. Considering the 

age-related blunting of MPS in response to traditional RE paradigms (173), it is 

logical to hypothesise that the blunted MPS response during acute muscle 

regeneration from unaccustomed exercise may lead to a slower recovery of muscle 

function due to the slower replacement of damaged proteins with newer functional 

proteins. The relevance of investigating such acute responses is that impaired 

regenerative responses to acute exercise (whether MPS mediated or otherwise) may 

accumulate over repeated bouts of post-activity regenerative cycles leading to 

incremental muscle loss with age. 

 

In contrast to reports of anabolic blunting, limited evidence suggests that older 

humans are able to stimulate MPS during the recovery period following an acute 

bout of exercise to the same extent as younger counterparts. For example, in older 

untrained fasted individuals  following an acute bout of RE (6 sets of 8 reps 80% 1-

RM), mixed MPS was increased 10 minutes post-exercise but not 60 or 180 minutes 

post-exercise, whereas the young did not increase MPS until 180 minutes post-

exercise (298). This demonstrates a rapid but transient MPS response in the old 

which, the authors hypothesise may be due to an increased MPB in the old, freeing 

AA for MPS in the fasted state, or the exercise stimulus may not have been 

strenuous enough for the young thus delaying MPS (298). Others have shown a 

similar temporal response but a blunting of MPS in older adults. To demonstrate, an 
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acute bout of RE at 60-90% of 1-RM led to increases in myofibrillar MPS 1-2 h 

post-exercise in young fasted recreationally active males, which also increased in 

older adults but was suppressed compared to the young (173). Fry et al (2011) also 

reported no increase in mixed MPS in fasted physically active old males following 8 

sets of 10 repetitions at 70% 1-RM, whereas MPS increased 3 hours’ post-exercise 

and remained elevated 24 h after RE in the young males. The study by Fry et al 

(2011) reports no changes in MPS in the old where as Kumar et al (2009) do report 

an increase, albeit blunted compared to the younger males. The difference in 

findings may be due to the time point investigated as Fry et al (2011) measured MPS 

rates 3 h post-exercise where as Kumar et al (2009) report differences in MPS rates 

at 1-2 h post-exercise, thus Fry and colleagues may have missed any potential 

increases in MPS. In support of this idea, Kumar et al (2009) report no increase in 

MPS 2-4 h post-exercise suggesting that the age-related MPS response during 

recovery may be transient, more so than young adults. Furthermore, inconsistencies 

may be due to the muscle fractions analysed i.e. myofibrillar vs. mixed MPS.  

 

Thus, the current consensus is that the MPS response within older humans following 

an acute bout of RE is blunted compared to young humans (112). However, several 

limitations exist within the current literature. Currently, the time frame of 

investigation often has not extended beyond 24 h, thus the MPS response during 

later regenerative time points when other processes such as inflammation are thought 

to peak and function returns remains unknown. This may be explained by the limited 

applicability of traditional tracers for measuring longer-term responses thus the 

utilisation of D2O as a protein tracer in future research will help to delineate the 

temporal MPS response during regenerative periods in the old. Nonetheless, such 
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temporal understanding of the MPS response in relation to other aspects of 

regeneration in ageing muscle will provide insight into mechanisms regulating the 

MPS response, which could then be targeted with anabolic interventions aimed at 

maximising growth responses. Based on the literature reported, it may be suggested 

that MPS will not change beyond 24 h in older males as studies have reported it 

returning to baseline within 60 minutes - 4 h post-exercise or not changing at all, 

however these studies have employed conventional RE. The MPS response may be 

more extensive following ‘damaging’ ECC contractions compared to ‘non-

damaging’ CON contractions for two reasons; i) more ultrastructual damage may 

occur indicating the need for greater repair and ii) greater mechanical input (i.e. 

greater force lifted) following ECC may induce greater anabolic signals to make 

muscle proteins. If this were the case (i.e. that older people had enhanced MPS 

following ECC versus CON exercise), this may have implications on designing 

chronic exercise training programmes to maximise adaptations in mass and strength. 

Furthermore, such acute comparisons might be able to predict chronic adaptability.  

 

1.8.1 Anabolic signalling  

Age-related blunting of the anabolic signalling response to acute exercise appears to 

underlie the diminished MPS response. For example, in tandem with blunted MPS, 

suppressed phosphorylation of p70S6K1Thr389 and 4EBP1Thr37/46 was observed 10 

minutes, 1, 2 and 4 hours after acute RE in older versus younger counterparts (173). 

Thus, the blunted rise in MPS may due to suppressed increases in anabolic 

signalling. Extending current understanding of the anabolic signalling time course, 

Fry et al (2011) reported blunted MPS in tandem with attenuated increases in 

mTOR, p70S6K1, 4EBP1 signalling at 3, 6 and 24 hours after acute RE in older 
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compared to younger humans. Others have demonstrated no attenuation in 

translational signalling in older compared to younger untrained fasted humans 24 h 

following an acute bout of RE, despite blunted MPS (208). Hypothetically, blunting 

of anabolic signalling may not be as extensive following ECC exercise, since the 

greater mechanical strain may require greater anabolic signalling to repair greater 

structural damage and functional deficits. However, comparisons between exercise 

modes in older adults remains to be performed. Therefore, age-related blunting of 

mTOR signalling pathway following acute exercise may contribute to a reduced 

regenerative capacity compared younger counterparts, although age-related 

comparisons have not yet been investigated.   

 

1.9 Age-related transcriptomic profile; baseline and in response to acute RE 

Since the age-related loss of muscle mass and function is multi-factorial, the 

utilisation of transcriptomics provides an innovative tool to identify multiple 

potential gene regulators of sarcopenia. As RNA sequencing is still a relatively 

expensive and novel tool, not a large amount of data exists, however microarray 

have been implemented in a number of studies (259, 304, 339). At the transcriptomic 

level, ageing is associated with reduced expression of genes related to mitochondrial 

function (313) and energy metabolism (i.e. mitochondrial protein synthesis, 

tricarboxylic acid cycle activity) and an up-regulation of genes encoding proteasome 

components (339). Such metabolic dysregulation may contribute to muscle 

dysregulation during ageing.  

 



 70 

In response to conventional RE, which induced muscle damage in old and younger 

humans (denoted by plasma CK), stress and cellular compromise, inflammation and 

immune responses, necrosis, and protein degradation transcripts increased in the 

older adults (317). Thus, muscle damage seems to induce a greater response at the 

transcriptional level, which is related to catabolic events. Perhaps this could explain 

the less successful adaptations of older muscle to RET. If this is the case, perhaps 

ECC exercise in older adults would exacerbate this response, since ECC exercise 

induces more muscle damage. No studies have investigated the effects of contraction 

type on the transcriptomic response in older adults.  

 

1.10 Ageing and muscle regeneration to acute exercise 

Muscle regeneration is necessary for day-to-day muscle maintenance and co-

ordinates muscle adaptation in response to exercise. Impairments in the metabolic 

and molecular mechanisms regulating muscle regeneration is expected to accumulate 

and lead to perturbations in muscle mass and function over time. It has been 

hypothesised that the susceptibility to muscle damage is heightened in older muscle, 

and that recovery of muscle function is pro-longed. If so, these two functional 

responses must be underpinned by altered regenerative mechanisms, which may 

contribute to sarcopenia. 

 

1.10.1 Susceptibility to exercise-induced muscle damage  

Studies in rodents have shown that in response to a bout of ECC exercise, older 

muscles are more susceptible to a greater level of muscle damage evident through 

greater declines in muscle function compared to younger muscles (271). 
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Additionally, older muscle display prolonged or incomplete muscle regeneration 

evident by sustained force declines and the loss of muscle mass (271) compared to 

younger rodents. Therefore, it has been hypothesised that greater muscle dysfunction 

and impaired regeneration following acute exercise in older muscle may culminate 

over successive exercise bouts and thus contribute to the development and 

progression of sarcopenia and dynapenia (97). For example, greater force deficits 

were observed in older (26-27 months) versus younger (2-3 months) mice 10 

minutes (43 vs. 64% of the control value) and 3 days (44 vs. 58% of the control 

value) following 75 ECC contractions (359). Similarly, Brooks & Faulkner (1996) 

found the force deficit in old single fibre preparations to be greater that in the young 

(42). Radner and Faulkner (2006) found force to return to baseline 2 months after 

225 ECC contractions in the young, whereas the old still had a 32% reduction in 

force of the plantar flexor muscles. Others have found similar force decrements in 

young and old rodents but a faster recovery in the young (271). For example, 225 

lengthening contractions of the EDL in young and old mice resulted in similar 

decrements of maximum isometric tetanic force 3 days post, which returned to 

baseline by 28 days in the young but not completely in the old (41). In rats, 24 

lengthening contractions of the TA resulted in similar functional decrements 1 and 2 

days post-contraction in young and old, although recovery of force took significantly 

longer in the old compared to the young (14 vs. 5 days, respectively) (209).  

 

Whilst evidence within rodents is suggestive of a heightened damage and prolonged 

recovery following unaccustomed exercise in older muscle, evidence within humans 

is equivocal. Some have reported no age-related differences in regards to the extent 

of muscle functional decline (3, 56, 289). For example in active young and older 
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women matched for strength, 24 contractions of the forearm flexors at 115% 

isometric strength led to increases in CK and pain and a reduced ability to flex the 

arm yet no differences between the ages were observed (56). Some have shown no 

age-related delay in regeneration (3). A recent study found no difference in force 

declines or regenerative capacity in young versus older humans, concluding that 

exercise or co-morbidities may lead to impaired muscle regeneration rather than 

ageing per se (44). Conversely, other studies have shown age-related differences in 

the extent of muscle damage (201, 263, 288). At the histological level, immediately 

after ECC exercise in the form of resisting the backward motion of ergometer pedals 

(3 x 15 minutes, 80% VO2max) >90% of fibres in the old had damage compared to 

only 5-50% in the young, which may be attributable to reduced muscle mass and 

VO2Max in the old (201). However, the same biopsy incision site was used (different 

fascia incision), which may have overestimated the damage due to damage induced 

by the previous biopsy sample. Ultrastructure damage was also observed to be 

greater in older compared to younger women (288). Interestingly, Ploutz-Snyder et 

al., (2001) found greater declines in strength in sedentary older compared to 

sedentary younger women following an acute ECC exercise protocol, which were 

non-existent when older women were RE trained (263), demonstrating the protective 

effect of RE in ageing. Other studies demonstrate similar strength declines between 

young and old humans, however strength was recovered in the young by 3 days post-

exercise, but remained lower than baseline at 5 days post-exercise in the old (73). 

This might be due to reduced MPS in ageing, meaning not enough proteins essential 

to functional muscle recovery were synthesised (16). Contrary to most research, one 

study reported greater damage in younger compared to older males, denoted by 

larger decrements in force and larger increases in CK and soreness (177). The region 
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of interest within this study was the arm, which is less affected by the sarcopenic 

process compared to the legs which might explain why damage was greater in the 

young. 

 

Due to the association of ECC exercise being detrimental to muscle health in ageing 

humans (i.e. heightened sensitivity to muscle damage and pro-longed repair), the 

safety and use of ECC exercise in older populations has been questioned (194). 

However, more recent evidence has shown a similar time course in the decline of 

muscle function and the recovery following ECC exercise, in older versus younger 

adults (44). As such, the responses of older muscle to ECC exercise are still unclear. 

Potentially, ECC exercise offers greater utility in maximising anabolic responses 

compared to CON exercise in older adults, like it has been shown to in the young 

(224). Uncovering the true metabolic and molecular responses to ECC versus CON 

exercise has important implications for understanding the safety and effectiveness of 

such exercise interventions in the older population.  

 

1.10.2 Inflammation   

Chronic low-grade inflammation is associated with ageing and has been purported to 

contribute to sarcopenic progression (29). However, most research thus far is in non-

human models i.e. cells and rodents, whilst limited research has actually assessed 

local basal inflammation in older humans (249). Whether or not the release of 

cytokines is actually increased in ageing adults at rest compared to younger 

counterparts remains inconclusive since conflicting reports have been published. For 

example TNF-α mRNA has been reported to be similar (137) and also higher (179) 
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in older compared to younger humans at rest. Furthermore, most of these studies 

have assessed the mRNA expression rather than the protein levels, and therefore 

cannot inform on protein changes. Further research is required to delineate the basal 

local inflammatory state between the ages. It is intuitive to hypothesise that 

‘inflammaging’, where there is an age-related low-grade chronic inflammation, may 

lead to excessive macrophage responsiveness in turn increasing the number of 

fibrotic factors recruited. This response will result in excessive formation of ECM 

and infiltration of adipocytes at the same time reducing the SC responsiveness (202). 

Repeated cycles of inadequate repair in the ageing muscle in response to successive 

bouts of damaging exercise may culminate in excessive ECM as opposed to 

muscular proteins leading to reductions in muscle mass, function and quality. Thus, 

age-related perturbations in the basal inflammatory state may lead to perturbed 

muscle regeneration (76).  

 

The cytokine response following acute exercise in older compared to younger 

humans has produced varied findings. Reports have shown TNF-α concentrations to 

either increase similarly (137) or remain unchanged (277) in response to exercise. 

Although difference may be attributable to the different genders recruited for the 

study. In regards to local inflammatory responses, macrophage infiltration has been 

shown to be lower in older compared to younger men following unaccustomed 

exercise. Sedentary young and older males who completed acute RE displayed no 

changes in total macrophage (CD68) count 72 h post-exercise, and no basal 

significant difference in macrophages was reported between the ages (269). Pro-

inflammatory macrophages (CD11b) were higher at rest in young compared to old, 

and 72 h following exercise both pro and anti (CD163) inflammatory macrophages 
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increased in the young only (269). The lower number of macrophages following 

exercise in the elderly may perturb muscle regeneration since macrophages later 

change phenotype in order to recruit SC’s for regeneration. Overall, there is a 

paucity of data which has directly assessed the temporal local inflammatory response 

to unaccustomed exercise in older compared to younger humans following EIMD. 

Furthermore, how the inflammatory response following acute exercise relates to 

regenerative processes (i.e. MPS etc.) in older humans remains to be detailed.   

 

1.10.3 Regeneration/remodelling/repair  

Age-related perturbations in the SC response following acute-exercise may 

compromise muscle regeneration. However, reports regarding the basal SC status 

remain controversial, and some authors have found SC number to be reduced (292, 

326) whilst others have reported no change (84, 287) in older compared to younger 

muscle. Several differences between studies may explain discrepant finding such as 

the choice of muscle biopsied, the number of fibres analysed, the antibodies used for 

detection and the training history of participants (327). Studies have also shown that 

the age-related reduction in SC is also fibre-type specific. Indeed, Verdijk et al. 

(2007) demonstrated type II fibre atrophy to be associated with fewer SC compared 

to type I fibres (327). Whether this age-related fibre-type specific decline is a cause 

or consequence of age-related muscle loss is unknown. In addition to an age-related 

reduction in SC content, the functionality (i.e. proliferation/differentiation) of SC in 

response to acute exercise is thought to be compromised in ageing and may 

contribute to impaired muscle regeneration following damaging exercise. To 

demonstrate, 92 maximal unilateral ECC contractions increased SC proliferation in 

both the young and old 24 h post-exercise but the magnitude of increased SC 
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proliferation was blunted in the older humans (141 vs 51%, respectively) (84). When 

assessing fibre type specific changes, McKay et al. (2012) reported type II muscle 

fibre SC to increase during the 48 h recovery period following exercise in the young 

but not in the older humans (216). A key factor regulating the blunted SC response 

in the old may be attributable to the higher level of myostatin observed in the type II 

SC, since myostatin has been implicated in the cell cycle inhibition of SC (216). A 

recent study described a more comprehensive time course, which found the exercise-

induced increase in SC content to be delayed in the old compared to the young, 

increasing above baseline 72 h post-exercise rather than 48 h post, and a blunted SC 

activation response (303). These age-related perturbations may be due reductions in 

the activity of SC regulatory pathways, since MyoD expression increased to a lesser 

extent in the old. However, these findings were in response to conventional RE as 

opposed to either isolated ECC or CON, thus the response to different contraction 

types may be different. Blunted regenerative responses of SC during ageing may also 

be underpinned by diminished Notch signalling, which is critical for SC proliferation 

and differentiation (61). However, Buford et al. (2014) reported no age-related 

difference in SC at baseline or in response to ECC-induced muscle damage. A few 

methodological differences between studies may explain discrepant findings, for 

example type II specific changes in SC have been reported in several studies (216, 

326, 327) however, Buford et al. (2014) sampled the gastrocnemius which typically 

has a higher proportion of type I fibres compared to the vastus lateralis and thus may 

explain the absence of age-related differences. Buford et al. (2014) also controlled 

for confounding factors including physical activity level, thus the nonexistence of an 

age-related dysregulation may suggest that other factors are more pertinent than 

ageing per se.  
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Overall, the literature would suggest that acute unaccustomed exercise elicits a SC 

response in older humans although whether it is blunted or similar to younger 

individuals requires further investigation. More studies which investigate a 

comprehensive temporal SC response following damaging vs. non damaging 

exercise in older humans are needed in order to delineate the role of SC in age-

related skeletal muscle regeneration.  

 

1.11 Summary  

Skeletal muscle regeneration involves the timely co-ordination of multiple metabolic 

and molecular processes in order to successfully repair the form and function of 

skeletal muscle following acute exercise. As such, successful muscle regeneration is 

critical to the maintenance and augmentation of muscle mass and function across the 

lifespan. ECC versus CON exercise elicits greater functional decline of skeletal 

muscle following an acute bout of exercise which may evoke a greater regenerative 

response in order to repair the greater muscle damage. A contraction-specific 

difference in the regenerative response may therefore underlie differences in chronic 

adaptations (i.e. muscle mass and strength). Previous human studies have attempted 

to characterise the regenerative processes, however, a key limiting factor is the lack 

of temporal investigative time points. Furthermore, few attempts have been made to 

addresses the time-course of multiple regenerative processes within one single study. 

Research is thus warranted which aims to extensively delineate the time-course of 

multiple processes underlying muscle regeneration in healthy young muscle 

following acute ECC versus CON exercise. By comprehensively defining the normal 

muscle regenerative process, we can identify regenerative dysregulation, which may 

contribute to cases of muscle loss such as sarcopenia. Rodent data suggests muscle 
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regeneration following exercise in older rodents is impaired, which may contribute 

to the progression of sarcopenia. Few human studies have attempted to understand 

the mechanisms regulating age-related muscle regeneration, and those that have do 

not corroborate with rodent data. Discrepancies are most likely due to the time points 

investigated and the methods used to induce muscle damage. Thus, further research 

is warranted which aims to understand the temporal metabolic and molecular 

mechanisms regulating muscle regeneration in older humans, to identify whether 

there are age-related perturbations in the regenerative mechanisms, to which may 

contribute to the progression of sarcopenia. Although targeted markers of muscle 

regeneration (i.e. single or few target proteins/mRNA) provide key insight into the 

putative mechanisms regulating muscle regeneration, the biology is much more 

complex. The recent OMICS development, in particular transcriptomics, allows the 

detection of all mRNA at once within a sample using RNA sequencing techniques. 

As such, further work should implement novel RNA sequencing techniques to 

identify global molecular networks involved in regulating muscle regeneration in 

younger and older adults. In doing so, this will highlight key opportunities for 

interventions aimed at maximising muscle growth responses or rejuvenating 

impaired responses. 
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1.12 Aims of this programme of research 

The overall aims of this programme of research are three-fold:  

1) to define the temporal metabolic and molecular mechanisms regulating muscle 

regeneration in young healthy males,  

2) to determine whether the mechanisms of muscle regeneration following exercise 

display altered responses in older adults, and  

3) to investigate novel gene regulators of exercise-induced muscle regeneration 

between young and older adults.  

 

In order to achieve these aims, objectives are as follows: 

1) To investigate functional (force, power, soreness, pain, SPPBT), metabolic 

(myofibrillar MPS) and molecular (anabolic, catabolic and inflammatory signalling, 

histochemical analysis of inflammation and SC) markers of muscle regeneration in 

young healthy males following ECC (‘damaging’) vs. CON (‘non-damaging’) 

exercise  

2) To investigate functional (force, power, soreness, pain, SPPBT), metabolic 

(myofibrillar MPS) and molecular (anabolic, catabolic and inflammatory signalling, 

histochemical analysis of inflammation and SC) markers of muscle regeneration in 

old healthy males following ECC (‘damaging’) vs. CON (‘non-damaging’) exercise 

and compare to the young healthy males 

3) To investigate differential gene expression at baseline and 5 hours following ECC 

and CON exercise in young and older healthy sedentary males. 
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2  General Methods 
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This chapter outlines key general principles relating to the methods and sample 

analysis performed within this thesis.  

 

2.1 Serial skeletal muscle biopsies 

In order to characterise the temporality of the key regenerative mechanisms within 

human skeletal muscle it is vital to obtain serial biopsies. Previous reports have 

shown the biopsy procedure itself can induce ultrastructural (9), immunological 

(200), biochemical (319), protein signalling (9), and gene expression (132, 331) 

changes, some similar to those observed after ECC exercise (200). However, there 

are various factors which may account for the observed responses. For example, 

Aronson et al. (1998) reported biopsy-induced changes when the same incision site 

was used to take a serial biopsies, however when spaced ~5cm apart, no protein 

signalling changes where observed (9). Malm et al. (2000) only spaced serial 

biopsies by 2 cm, which is considered too close, thus by separating out the biopsy 

sites further it may reduce the chances of capturing biopsy-induced changes. 

Furthermore, the damage observed by RE is ~four fold greater than biopsies only 

(309), thus the exercise-induced regenerative responses can still be identified.  

 

More recent studies have shown no effect of serial biopsies through the same 

incision site on inflammatory or protein signalling cascades, most likely due to the 

angling of the biopsy needle ~3 cm (132) or ~5 cm (85) away from the previous site. 

Utilising new incision sites placed 2.5 cm apart was shown not to effect the muscle 

transcriptome (231). In summary, by strategically placing serial biopsies at least 3 

cm apart (as within this study), the capture of responses unrelated to the exercise i.e. 

due to the biopsy technique, can be avoided.  
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2.2 Muscle soreness  

Measures of DOMS are highly subjective and there is yet to be a gold standard 

device or method to assess DOMS in humans (58). To overcome this, the 10 cm 

visual analogue scale which ranges from no soreness (0 cm) to very very sore (10 

cm) (Figure 2.1) (34, 264) and an algometer (FPX Algometer, Wagner Instruments, 

Greenwich, Connecticut) (Figure 2.2), which has been previously established as a 

valid and reliable way to measure pressure pain threshold (PPT) threshold (103), 

were utilised in tandem.    

 

 

Figure 2.1. Visual analogue scale (VAS) used to measure reported soreness (not to 

scale) 
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Figure 2.2. Image of an algometer used to measure pain pressure threshold 

 

2.3 Modified leg press  

Participants performed an acute bout of unilateral ECC and unilateral CON exercise 

on a modified leg press (MLP) (Technogym, Gambettola, Italy) (Figure 2.3), 

specifically designed to be able to perform either type of isolated contraction, as 

described previously (106, 107). The MLP was chosen to conduct the exercise 

protocols as opposed to an isokinetic dynamometer (ID), which is frequently used in 

the literature (63, 138), as it elicited greater declines in force compared to the ID 

during pilot testing (data not shown), suggestive of greater skeletal muscle damage 

(57).  
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Figure 2.3. Leg press (A) modified with an electric winch and controller attached 

to the back of the machine (seen in B and C) which controls the movement of the 

chair by pulling or releasing a steel cable allowing the isolation of ECC or CON 

movements 

 

2.4 Principles of sample analysis  

2.4.1 Plasma creatine kinase  

Creatine kinase is an enzyme located within skeletal muscle that is released into the 

blood stream following intense exercise and is thus considered a marker for exercise-

induced muscle membrane disruption (233). The broad principles of this assay are; 

1) creatine kinase within the sample will catalyse the transfer of a high energy 
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phosphate group to ADP from creatine phosphate, 2) the resultant ATP 

phosphorylates glucose to produce glucose-6-phosphate in the presence of 

hexokinase, 3) glucose-6-phosphate is then oxidized by glucose-6-phosphate 

dehydrogenase and nicotinamide adenine dinucldotide phosphate (NADP) is reduced 

to nicotinamide adenine dinucldotide phosphate reduced (NADPH). It is the rate at 

which NADPH is formed which is monitored at 340 nm and is directly proportional 

to creatine kinase activity.  

 

2.4.2 Using deuterium oxide as a tracer to measure muscle protein synthesis  

Tracers have been used for many years within the area of skeletal muscle biology to 

determine reliable rates of muscle protein synthesis. The principle of common stable 

isotope tracers such as L-[ring- 13C6]-phenylalanine is that a known amount of 

labelled (i.e. tracer) and unlabelled (i.e. tracee) amino acid mix with the endogenous 

pool and over time are incorporated into protein (114). Measuring protein 

enrichment (tracer/tracee) against precursor enrichment (precursor: product labelling 

ratios) can then used to determine the fractional synthesis rate of  MPS (114). 

Despite great utility of this method, it is not without limitations. For example, such 

tracers require expensive sterile infusions, cannulations, multiple muscle biopsies 

performed by trained personnel and are limited to acute measurements of MPS (<8-

12 h) in a well-controlled laboratory environment (347). As such, more advanced 

tracer methods are required in order to measure MPS over longer time frames in 

free-living situations, in order to unravel the MPS response during physiological 

processes such as skeletal muscle regeneration.  
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The re-introduction and validation of D2O has led to the availability of a tracer 

which can permit longer-term, free-living measurements of MPS, whilst also 

negating the need for sterile infusions, controlled laboratory spaces for large 

amounts of time and requires reduced clinical needs. D2O is a stable isotope that is 

ingested orally and rapidly equilibrates within the human body water pool within ~2 

h (152), labelling all intracellular AA, in particular alanine (40, 114) (Figure 2.4). 

Rapid equilibration ensures that labelling gradient differences (i.e. body water versus 

alanine) are practically non-existent, as carbon-bound hydrogens on alanine are not 

subject to non-specific exchange (114). The assumption is made that alanine follows 

the enrichment of body water and plasma alanine closely reflects intracellular 

alanine and alanyl-transfer ribonucleic acid (alanyl-tRNA), the true protein synthesis 

precursor (40). Therefore, by taking non-invasive saliva samples it is thus possible to 

determine 2H labelling of the body water, which is used as a suitable surrogate 

precursor for alanyl-tRNA (40). Muscle biopsies permit the detection of deuterium-

labelled alanine into protein, which combined with the body water enrichment allow 

the calculation of the fractional synthesis rate (FSR). In humans, MPS measurements 

using D2O can be detected over several hours (346), days (27) and weeks (38), 

yielding similar results to traditional L [ring-13C6]-phenylalanine tracers (346). 
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Figure 2.4.  Illustration depicting D2O equilibrating and incorporating into the 

protein pool (adapted from (40, 114)). 

 

2.4.3 Immunoblotting  

Immunoblotting (otherwise known as western blotting) allows the investigation of 

molecular pathways involved in the regulation of transcription and translation 

following exercise which underpin key physiological responses such as muscle 

regeneration. A few of the main applications of immunoblotting include measuring 

post-translation modifications (such as phosphorylation (an indication of activation 

status)), protein abundance and protein localisation in a sample (21). The principle of 

immunoblotting is to detect a specific protein by creating an antibody:protein 

complex which can then be detected (with specific detection methods) and is 

achieved with the following steps; 1) extract protein fraction of interest from sample, 

2) quantify protein content, 3) separate the proteins (based on molecular weight) 

using electrophoresis, 4) transfer separated proteins to a membrane with a high 
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affinity for proteins, 5) reduce non-specific protein binding by ‘blocking’ the 

membrane using milk or bovine serum albumin, 6) incubate the membrane in the 

antibody specific for the protein of interest, 7) incubate the membrane in a secondary 

antibody that is linked to chemiluminescent (or another label) and 8) detection and 

quantification of the signal (21). The greater the density of the signal detected means 

greater levels of phosphorylation which is used as a proxy of greater activity of that 

protein (214).  

 

2.4.4 Histochemistry and immunohistochemistry 

Histochemistry and immunohistochemistry permit the investigation of specific 

molecular targets on frozen skeletal muscle tissue sections, which can be observed 

with light microscopy and fluorescent microscopy allowing the determination of the 

localisation of such targets. The principles of histochemistry and 

immunohistochemistry are similar to immunoblotting in that antibodies are utilised 

in order to detect the protein/s of interest in the sample and can be achieved with the 

following steps; 1) skeletal muscle must be cut into thin (~ 6-8 µm) sections using a 

cryostat set at ~ -22°C, 2) muscle sections are then mounted onto glass slides and left 

to air dry for at least 1.5 hours to improve section adherence, 3) blocking solution is 

added to reduce non-specific binding, 4) the section is incubated in the primary 

antibody of interest, 5) the muscle section in then incubated in a biotinylated 

secondary antibody with specificity for the first antibody, 6) an avidin-biotin 

complex (ABC) reagent is added to the section (30 minutes after being made to 

allow the ABC to form), this allows the secondary antibody to link the primary 

antibody to the ABC, 7) this complex can be visualised with the addition of 

diaminobenzidine (DAB HRP) horseradish peroxidase (HRP), which stains the 
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target protein brown. By utilising secondary antibodies which are visualized in 

different ways (i.e. fluorescent versus DAB HRP), double staining can be achieved 

such that more than one target protein can be visualised. This is particularly 

informative when wanting to look at the fibre-type specificity of a particular protein 

in skeletal muscle. 

 

2.5 Statistical Strategy 

To determine the correct statistical test all data were first checked for normal 

distribution. Data which failed normal distribution were subjected to non-parametric 

analysis. Friedman’s non-parametric test was used for not normally distributed 

ordinal scale data (212) followed by Dunn’s non-parametric multiple comparison 

test. Data which were normally distributed were subjected to parametric analysis. In 

the event of significance being detected, post-hoc multiple comparisons test were 

used to determine the point of significance. When comparing contraction types 

within age group (i.e. ECC versus CON exercise in young or older participants), a 

two-way (exercise type x time) repeated measures (time) within subject’s ANOVA 

will be used since both contraction types were performed by the same participant. 

The post-hoc test used was the Bonferroni correction since it can account for running 

many statistical analysis on many different dependent variables. When comparing 

age for a specific contraction type (i.e. young versus older participants for ECC or 

CON exercise) a two-way mixed-model ANOVA design was employed since 

comparing young versus older participants is between subjects and the time points 

measured following ECC or CON exercise is within subjects (i.e. within: time, 

between: age).  
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3 Exploring the Mechanisms 

Underpinning Human Skeletal 

Muscle Regeneration Following 

Acute Eccentric versus Concentric 

Exercise  

  



 91 

3.1 Abstract 

Background: Skeletal muscle regeneration involves a myriad of coordinated 

metabolic and molecular processes essential for muscle repair, and the maintenance 

and augmentation of muscle mass and function. However, the time-course of such 

mechanisms remain poorly defined. The aim of this study was to investigate multiple 

metabolic and molecular mechanisms implicated in human skeletal muscle 

regeneration over a comprehensive time-course following ECC versus CON exercise 

in young participants. Methods: Eight young (22±1 y) healthy exercise naïve 

participants performed a single bout of unilateral ECC (7×10 repetitions at 80% of 

ECC one-repetition maximum) and unilateral CON exercise (7×10 repetitions at 

80% of CON one-repetition maximum). Functional (muscle soreness, sensitivity to 

pain, peak torque, power and lower body function), biochemical (plasma creatine 

kinase), metabolic (MPS) and molecular responses (mTORC1 signalling, proteolytic 

activation, inflammatory signalling, macrophage infiltration, satellite cell 

proliferation) were measured at baseline (BL), immediately (0), 5, 24, 72 and 168 h 

after ECC and CON exercise. Results: Expectedly, both exercise modalities resulted 

in reduced peak torque, which was greater (0 & 5 h, P<0.05) and persisted for longer 

(72 h, P<0.0001) following ECC exercise. Increased mTOR (0 & 5 h, P<0.05), 

p70S6K1 (0 & 5 h, P<0.05) and rps6 (5 h, P<0.05) following ECC exercise, 

increased p70S6K1 (5 h, P<0.05) following CON exercise and repressed cathepsin L 

(37kDa, 0-24 h, P<0.05) following both exercise modalities preceded functional 

recovery. Increased TNF-α (ECC: 24-168 h, P<0.05; CON: 72-168 h, P<0.05) and 

NFκβ signalling (ECC: 72 h, P<0.05), macrophage infiltration (ECC: 72-168 h, 

P<0.05; CON: 72 h, P<0.05) and MuRF1 signalling (168 h, P<0.05) occurred 

alongside functional recovery after both ECC and CON exercise. No change in 
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satellite cell proliferation was observed. Conclusion: Overall, this study shows 

increased anabolic signalling and the repression of a lysosomal marker precede 

functional recovery and therefore may be implicated in rapid adaptation, whilst 

inflammatory signalling, macrophage infiltration and UPS activation occurred after 

functional recovery was initiated and thus might regulate chronic muscle adaptation. 

Despite similar temporality between contraction types, ECC exercise was associated 

with magnified anabolic signalling and inflammation. Combined, this may augment 

the post-exercise net anabolic environment which might explain the greater strength 

and mass adaptations observed following chronic ECC training.  
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3.2 Introduction  

Skeletal muscle is a highly plastic tissue, capable of intrinsically repairing structural 

abnormalities and restoring muscle dysfunction induced by electrical stimulation 

(ES) or unaccustomed, particularly eccentric (ECC), voluntary exercise (63). 

Pathological perturbations in muscle regeneration, for example as observed in 

muscular dystrophies, causes progressive muscle weakness and wasting (60). 

Normal functioning of the regenerative process also assures contraction-induced 

adaptation, such that muscle is more resistant to subsequent ‘damaging’ contractions 

(i.e. repeated bout effect (RBE)) (215). Successful regeneration/ adaptation over 

several exercise bouts such as RET, culminates in increased muscle mass and 

strength (141). Therefore, successful regeneration is critical for the maintenance, 

post-exercise adaptation and growth of skeletal muscle (15). As such, understanding 

the regulatory mechanisms of muscle regeneration is a fundamental, yet poorly 

understood aspect of skeletal muscle biology. Delineating such mechanisms will 

provide insight for optimising the muscular response to chronic exercise training and 

will also provide a healthy benchmark against which to identify perturbed 

regenerative responses in clinical populations, such as the ageing (97).  

 

Much of the current understanding of the metabolic and molecular processes 

regulating contraction-induced muscle damage and regeneration comes from animal 

models. Such models display immediate and persistent declines in peak torque (254), 

cytoskeletal disruption denoted by the progressive loss of desmin (186) and 

dystrophin (360) as early as 5 minutes post-exercise, myofibrillar disruption denoted 

by Z-disk streaming (241), marked inflammatory infiltration within the muscle fibres 

~24 h after  exercise (195), a later onset (48 h post-exercise) and prolonged (120 h 
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post-exercise) increase in muscle protein synthesis and breakdown (195) and satellite 

cell proliferation (276). This sequence of events conforms to the traditional, well 

established view that regeneration occurs in four sequential and time-dependant 

stages: degeneration, inflammation, regeneration and repair/remodelling (48, 65). 

More recently, data has implicated additional molecular mechanisms such as mTOR 

signalling for functional recovery (23), Ca2+ activated calpains for the cleavage of 

myofibrillar proteins (124, 229), activation of NFκB to promote the transcription of 

survival genes (228, 279) and up-regulated autophagic and UPS systems during the 

recovery period (164). These data highlight more novel mechanisms implicated in 

the regulation of exercise induced muscle damage (EIMD) and muscle regeneration, 

at least in rodents. 

 

However, data generated in rodents may not accurately represent human processes of 

regeneration due to the supraphysiological methods used (i.e. ES) (63). Disparities 

between rodent and human muscle regeneration is evident since the metabolic and 

molecular regenerative events and the time-course of these events differs. For 

example, in humans following voluntary ECC exercise the presence of fibre 

necrosis, loss of desmin and plasma membrane permeability is questioned (357), 

there is the early onset of increased anabolic signalling and MPS (~3–48 h post-

exercise) (72, 260), MPB is a rapid transient event (~3–24 h post-exercise) (260) and 

inflammatory cells infiltrate the ECM as opposed to the muscle fibre (63). Thus, in 

order to understand physiological regeneration in humans, voluntary contractions are 

more suitable. Furthermore, several critical processes involved in muscle 

regeneration have been over looked in human models. A key process being the 

central role of muscle protein turnover responses to acute exercise in orchestrating 
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the degradation of exercise-induced ‘damaged’ muscle proteins, and subsequent de 

novo protein synthesis to replace degraded proteins. No studies to date have directly 

measured muscle protein synthesis and/ or breakdown responses > 48 h post-

exercise, or in temporal correlation to other putative regulators of muscle 

regeneration (72, 172, 173, 224, 260). Additionally, the precise role of more novel 

regulators such as proteolytic markers; calpains, cathepsins and local inflammatory 

signalling markers; TNF-α and NFκβ in regulating either muscle functional recovery 

and/or muscular adaptation following acute exercise are poorly defined.  

 

Unaccustomed voluntary ECC contractions, where the muscle lengthens under 

tension, are commonly used as a method for inducing skeletal muscle damage and 

thus regeneration in humans compared to CON contractions, where the muscle 

shortens under tension (196). This is because markers of damage and regeneration 

(i.e. muscle soreness, dysfunction, inflammation) are exacerbated following ECC 

exercise (57). In addition to greater muscle damage, ECC training leads to greater 

chronic muscle adaptation demonstrated through greater gains in muscle mass and 

function, compared to CON exercise (283). Despite greater muscle damage, and 

greater chronic adaptations following ECC exercise, CON exercise training does 

induce chronic adaptations (i.e. increased muscle mass and function), therefore there 

will be a exercise-induced remodelling response. However, the extent of the 

regenerative response will likely differ between the two contraction types 

(highlighted by different chronic adaptations), although this concept is poorly 

defined. Thus, examining putative regenerative mechanisms between contraction 

modes will give greater insight into predictors of the remodelling process, rather than 

investigating either mode in isolation.  
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Understanding the temporality of key mechanisms regulating skeletal muscle 

regeneration (i.e. anabolic, catabolic, inflammatory and SC responses) following 

voluntary exercise is key since early metabolic and/ or molecular changes that 

precede functional recovery will provide insight into the putative mechanism 

regulating recovery of muscle function. Furthermore, metabolic and/ or molecular 

changes that occur once functional recovery has been initiated/ restored may underlie 

longer-term adaptations i.e. RBE and muscle growth in response to RET. This will 

have important implications for the development of training programmes aimed at 

maximising growth responses. Furthermore, this will produce a benchmark of 

healthy regenerative responses, which will be useful in identifying perturbed 

regenerative responses in pathological situations.  

 

Therefore, the aim of this study was to investigate multiple metabolic and molecular 

mechanisms implicated in human muscle regeneration over a comprehensive time-

course following ECC versus CON exercise in healthy young adults.  

 

3.3 Methods 

All testing took place in the Clinical, Metabolic and Molecular Physiology 

laboratories, part of the MRC-ARUK Centre of Excellence for Musculoskeletal 

Ageing Research based in the School of Medicine, University of Nottingham, Royal 

Derby Hospital, Derby. 
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3.3.1 Ethical considerations 

All procedures and amendments within the study were approved by the University of 

Nottingham Research Ethics Committee and conformed to the Declaration of 

Helsinki. Invasive muscle biopsies were performed by clinical research fellows and 

intravenous cannulation and blood sampling was performed by trained 

phlebotomists. All procedures were conducted using aseptic techniques and were 

performed in designated clinical or exercise laboratories with at least two people 

present.  

 

3.3.2 Participant recruitment and screening  

Participants recruited for the study were physically inactive young healthy males 

(22±1y, 23±2kg.m-2 body mass index, 265±18kg ECC 1-RM, 152±14kg CON 1-

RM) and were targeted by mailshots, local advertising in magazines, posters, flyer 

distribution, word of mouth and social media. Initial contact with participants 

included the provision of the participant information sheet and a health 

questionnaire. Interested participants returned the health questionnaire and were 

allocated a time and date for a screening session, providing no health contradictions 

were pre-disclosed.  

 

Participants attended the health screening session at ~9 am, fasted from 10 pm the 

previous evening. During the screening all of the risks and procedures were 

explained verbally as well as in writing and informed consent was obtained prior to 

performing a medical examination which included; recording past medical history, 

height, weight, body mass index (BMI), heart rate, blood pressure, a blood test (urea 
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and electrolytes, liver function test, thyroid function test, coagulation, full blood 

count, fasting glucose and lipid profile), peak flow and an electrocardiogram (ECG). 

Participants were excluded if they were physically active and/ or had a history of 

exercise training within the previous 12 months since exercise elicits muscular 

adaptation and can therefore attenuate the regenerative response (215). Participants 

were also excluded if they were taking any nutritional supplements or had the 

following:  BMI >30 kg/m2, a history or symptoms of cardiovascular/respiratory 

disease, thyroid disease, anaemia, diabetes, gastrointestinal disorders, liver disease, 

vertigo and malignancy or taking chronic medication known to affect muscle 

metabolism such as nonsteroidal anti-inflammatory drugs (NSAIDS), statins, 

paracetamol and/or aspirin.  

 

Following medical examination, participants performed a battery of functional tests 

which were used as the participant’s baseline functional measures if they were 

enrolled in the study. These tests were; the short physical performance battery test 

(SPPBT), peak torque of the quadriceps measured by maximal voluntary contraction 

(MVC) performed on an isokinetic dynamometer and quadriceps power.  

 

3.3.2.1 SPPBT 

The SPPBT is a measure of lower extremity function, which is  predictive of 

mortality (135). The SPPBT is composed of three tests completed in the following 

order; balance, gait speed and chair rise. The balance test consisted of three balances 

1) a side by side 2) semi-tandem and 3) tandem stand. After a visual demonstration 

of each balance, participants were required to complete each balance unaided 

without moving their foot position. When completed or if the participant was unable 
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to hold a balance for 10 seconds the rest of the balance tests were terminated and a 

score was given (Table 3.1). The gait speed test was a 2.44 m short walking course 

where participants were instructed to walk from the beginning of the course to the 

end at their normal walking speed. To ensure participants would walk at their normal 

speed, a visual demonstration was provided whist verbally saying phrases such as 

‘walk at your normal walking speed, as if you were walking to the shops or out on a 

walk’. At the end of the course, participants were asked to return to the start and 

repeat the gait test twice. The average of all three tests was taken and an overall 

score was given according to Table 3.1.  

 

Table 3.1. Scoring categories for the SPPBT  

Balance Test Gait Speed Chair Rise 

Time (Sec) Score Time (sec) Score Time (sec) Score 

Side-by-side 0-9, or unable 0 Could not do 
any 0 Could not do 

any 0 

Side-by-side 10, semi-tandem 
<10 1 > 6.52 1 > 16.7 1 

Semi-tandem 10, tandem 0-2 2 4.66-6.52 2 16.6-13.7 2 

Semi-tandem 10, tandem 3-9 3 3.62-4.65 3 13.6-11.2 3 

Tandem 10 4 <3.62 4 <11.1 4 

 

 

Chair rise was tested by placing a chair against the wall and asking the participants 

to sit in the chair with their arms across their chest and rise to a full stand and then 

fully sit down. This description was to ensure the chair was in a secure place and the 
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participant understood the movement, a visual demonstration was also provided 

beforehand. Participants were verbally instructed to start in the seated position and 

rise up and repeat this action an additional four times equaling five times in total, as 

quickly as they could. Participants were scored according to Table 3.1. Following the 

completion of all three tests, all test scores were tallied and participants were scored 

out of a total of 12.   

 

3.3.2.2 Peak torque 

Peak isometric torque of the quadriceps was measured by isometric MVC using an 

Isokinetic Dynamometer (ID) (Humac Norm, CSMI, Stoughton, USA). Participants 

were seated and secured into the chair by strapping the lower leg of interest onto a 

pad on the ID lever arm, the upper leg was strapped down with a Velcro pad and a 

seatbelt was worn across the torso. Adjustments were made to the position of the 

chair and the ID unit in order to line up the dynamometer fulcrum with the knee 

center of rotation at 90°, with full extension being 0°. Participants were instructed to 

push against the level arm as hard as they could for 5 seconds whilst being given 

verbal encouragement. Participants were asked to complete 3 x 5 second 

contractions at a 90° angle, each attempt was separated by 60 seconds.  

 

3.3.2.3 Power 

Unilateral quadriceps power was measured using the leg extensor power rig 

(University of Nottingham, Nottingham, UK), which has been deemed safe across all 

ages (22). The LEP consists of a seat for the participants to sit in and two foot plates 

which are connected a chain and a flywheel with a lever on the side to break the 



 101 

wheel (Figure 3.1) (22). Participants were instructed to place one foot on the foot 

pedal and on the count of three to push the footplate as hard and as fast as they could 

until the leg was extended (see Figure 3.1 B). Participants returned the foot to the 

starting position and were asked to perform an additional four attempts before 

switching to the contralateral leg and performing five contractions.  

 

Figure 3.1. Participant on the Nottingham leg extensor power rig at rest (A) and at 

the end of an attempt at producing peak leg power (B). 

 

Participants were free to withdraw from the study at any time without reason. All 

personal details and test results were kept confidential, anonymous and in a lockable 

filing cabinet and/or a password protected computer file. At least 72 h before 

commencing the study and throughout the whole duration of the study, participants 

were asked to refrain from exercise, nutritional supplements and NSAIDS.  
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3.3.3 Study design and procedures 

Participants were required to visit the laboratory on five separate occasions over 

twelve days (Figure 3.2). On the first visit (baseline), participants arrived fasted at 

~9 am and were asked to report the soreness in each leg measured using the VAS, as 

previously described (93, 178). This required participants to slowly rise from a chair 

and then sit back down, then immediately assess the pain in the quadriceps of each 

leg and mark correspondingly on the scale for each leg. PPT was measured by 

palpating the algometer parallel onto a region of interest of the quadriceps and 

graded pressure was applied until the pressure became uncomfortable, before the 

point of pain, for the participant as described previously (93). The approximate point 

of the origin, insertion and mid-belly of the m. vastus lateralis and the mid-belly of 

the rectus femoris and the m. vastus medialis were measured whilst the subject was 

in a seated position with the legs at a 90° angle. All points were marked out on the 

first day of the study and participants were asked to draw over the same point if it 

was fading to ensure consistency of measures throughout the study.  

 



 103 

 

Figure 3.2. Study protocol. 

 

Participants provided a baseline saliva sample prior to a baseline muscle biopsy. The 

biopsy sites were marked out on the first day of the study by a clinician. Initially the 

biopsy site was shaved (if needed), cleaned and anaesthetised with 1% Lidocaine and 

a small incision (~1 cm wide and ~2 cm deep) was made with a scalpel penetrating 

the skin and the fascia. Muscle biopsies were performed using the conchotome 

technique (83), yielding ~200 mg of tissue. Biopsy tissue was rapidly washed in ice-

cold PBS, blotted on gauze to remove excess blood, and obvious fat or connective 

tissue was removed with a scalpel and the muscle was snap frozen in liquid nitrogen. 

Biopsy tissue for histological/immunofluorescence analysis was blotted on 

phosphate buffer saline (PBS) soaked gauze and placed on top of a small amount of 

optimal cutting temperature (OCT) compound on a piece of cork and submerged into 
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liquid nitrogen cooled isopentane. To avoid any freeze damage, the consistency of 

the isopentane was ensured to be almost frozen with a liquid pool in the middle and 

at the top before use. Samples were left in isopentane for ~1 min and then rapidly 

transferred into a liquid nitrogen frozen bag and placed in liquid nitrogen. All muscle 

tissue was subsequently stored at -80°C for further analysis.  

 

Biopsy incision sites were closed with one stitch and covered with a large waterproof 

plaster. Participants were given verbal instructions on how to look after the biopsy 

sites and were provided with an information sheet with contact details in case of an 

emergency. Participants had the stitch removed within 5-7 days. As the use of 

NSAIDS were prohibited throughout this study, participants were prescribed with 

codeine for pain relief and were instructed to take it only if they needed it, not 

exceeding the maximum doses.  

 

Following the biopsy, participants provided a blood sample drawn by venipuncture 

from the antecubital fossa vein collected in to 3 x 4 ml lithium heparin blood tubes. 

Participants then consumed 3ml/kg of D2O (70 atom percent, Sigma-Aldrich, Poole, 

UK) (up to a maximum of 250 ml). The D2O dose was consumed in 3 equal doses 

separated by ~45 minutes each to minimise any associated side effects of D2O i.e. 

nausea and vertigo (114). Participants were required to collect daily saliva samples 

(at least 30 minutes after eating or drinking) at mid-day every day throughout the 

duration of the study, with the exception of the first day where two samples were 

collected; one before D2O consumption, and one 3 hours post to determine peak 

body water enrichment. Saliva (~300 µl) was collected in sterile plastic tubes and 
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refrigerated until the next study visit, where it was handed to the investigator to 

determine body water enrichment.  

  

Ninety-six hours later, participants arrived at ~8.30 am for visit 2 (0 h), having 

consumed a 250 ml liquid high energy nutritionally complete drink (Fortisip, 

Nutricia, Netherlands) at 07:00 am but remained fasted thereafter until visit 2 was 

complete at ~5.30 pm. The high energy nutritionally complete drink was included so 

that the participants had a standardised meal prior to the long study visit (~9 h). 

Participants performed isolated ECC exercise on one leg, and isolated CON exercise 

on the contralateral leg using the MLP. Legs were randomised to unilateral ECC and 

unilateral CON exercise. In order to perform an ECC contraction, the electronic 

motor attached at the back of the MLP was controlled to pull the chair back via a 

steel cable connecting the electric motor/ winch to the weight stack until the 

participant was in a starting position (exercise leg ~180°). When the chair was being 

pulled back, participants were instructed to not resist or facilitate the movement of 

the chair to ensure that no CON exercise component was being performed. Once the 

chair was released, participants lowered the weight stack in a controlled manner 

taking ~ 3 sec to complete the movement i.e. ECC contraction. To perform a CON 

contraction, participants started with the leg at 90° and lifted the weight until they 

reached ~180°, making the contraction last ~3 seconds. The electric motor then 

performed the lowering ECC phase of the contraction, participants were instructed to 

not lower the weight to ensure no ECC contraction was performed (Figure 3.3). 
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Figure 3.3. Participant on the MLP in the starting position with the leg ~90° (A). 

During an ECC contraction, participants lowered the weight depicted by the green 

arrow, during a CON contraction the participant lifted the weight stack depicted 

by the yellow arrow (B). 

 

Initially, participants were given verbal instructions and a visual demonstration of 

how to perform an isolated ECC and an isolated CON contraction on the MLP. 

Participants then performed 4 repetitions at 20 kg to become familiar with the 

isolated contraction followed by a warm-up consisting of 2 sets of 6 reps set at 40 

kg. Participants then had their ECC/CON one-repetition maximum (1-RM) 

determined. To begin, the first 1-RM attempt was an estimate of the participants 

50% 1-RM, based on the participants age and perceived strength. Borg’s scale of rate 

of perceived exertion was used as a gauge of how hard participants found the weight, 

aiding the determination of the subsequent weight to be tested. Subsequent attempts 

were increased in weight until the participant could no longer perform the 

contraction in a controlled manner, throughout the full range of motion and at a 

controlled speed (~ 3 seconds long). Each attempt was separated by 3 min.  
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Following 1-RM determination, participants performed the unilateral exercise 

protocol which consisted of 7 sets of 10 repetitions (3 second contractions) at 80% of 

ECC or CON 1-RM, with 2 minutes’ rest between sets. Immediately following 

cessation of the exercise, participants reported their soreness (VAS) and PPT was 

tested followed by a blood sample and muscle biopsy. Immediately following the 

biopsy, peak torque was measured by MVC followed by measurements of power and 

SPPBT. After the initial exercise bout, participants followed the same regime on the 

contralateral leg doing the opposing randomised exercise.  

 

Five hours following the cessation of the first exercise protocol (visit 2, 5 h) 

participants reported leg muscle soreness, PPT was measured, and a blood sample 

and muscle biopsy was taken from each leg.  Immediately following the biopsy, peak 

torque, power and the SPPBT were measured. Participants arrived at the laboratory 

fasted 24 h post-exercise for visit 3, 72 h post exercise for visit 4 and 168 h post 

exercise for visit 5. During these visits, participants reported leg soreness, PPT was 

measured, a single blood sample was taken and a muscle biopsy was obtained from 

each leg and the same functional exercise tests were performed.  

 

3.3.4 Data analysis  

3.3.4.1 Plasma Creatine Kinase Analysis  

Plasma was analysed for CK content as an indicator of muscle membrane damage. 

Blood samples were centrifugated at 3,200 rpm for 20 min at 4 °C after which, 

plasma was drawn, aliquoted and stored at -80°C until further analysis. Plasma CK 

was measured using a commercially available creatine kinase reagent for use on a 
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clinical chemistry analyser (Roche P800, Roche Diagnostics, Germany) by the 

Exeter Clinical Laboratory.  

 

3.3.4.2 Body water enrichment 

The measurement of body water enrichment has been described previously (38, 106, 

346, 347). Upon collection, saliva was transferred into an Eppendorf and centrifuged 

at 13,300 rpm for 10 min at 4°C. The supernatant was aliquoted and stored at -20°C 

for later analysis. Prior to analysis, samples were defrosted and 50-100 µl of saliva 

was placed in the cap of an inverted auto-sampler vial. Samples were placed inverted 

on a heating block for 4 h at 95°C and then rapidly cooled on ice for 10 min. This 

allowed the collection of water distillate which was then transferred into a vial insert 

within a new auto-sampler vial.  

 

To determine body water enrichment, saliva samples (0.1 µl) underwent direct liquid 

injection in to a high temperature conversion elemental analyser (TC/EA; Thermo 

Finnigan, Thermo Scientific, Hemel Hempstead, UK) and were immediately 

converted into H2 gas. The sample was sent to a connected Isotope Ratio Mass 

Spectrometer (IRMS, Delta V Advantage, Thermo, UK) where the 2H/1H ratio was 

determined (347). Each sample was injected sequentially four times to minimise 

sample carryover. A standard curve of a known D2O amount was run alongside to 

ensure accuracy of the machine.  
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δ2H (deuterium isotopic enrichment) was converted into atom% using the following 

equation:  

!"#$% = 100	×	!+	×	 ,-.	×	0.001 + 1
1 + !+	(,-.	×	0.001 + 1)  

 

Where AR is based on the Vienna Standard Mean Ocean Water (VSMOW), which is 

0.00015595 and represents the absolute ratio constant for deuterium. Atom% was 

then converted into atom% excess (APE) by correcting to the baseline sample (347). 

 

3.3.4.3 Muscle fractionation 

To determine deuterium labelling of alanine in the myofibrillar muscle fraction, ~40-

50 mg of frozen skeletal muscle tissue was rapidly homogenised with scissors in 10 

µl mg-1 ice cold homogenisation buffer (containing 50mM Tris-HCL, 1mM EDTA, 

1mM EGTA, 10mM β-glycerophosphate, 50mM NaF, 0.5mM Na3VO4 and a 

complete protease inhibitor cocktail tablet, pH 7.5) (Roche, West Sussex, UK). 

Homogenates were placed on a Vibrax shaker at a speed of 1,500 rpm for 10 min at 

room temperature followed by centrifugation at 11,000 g for 10 min at 4°C to pellet 

the myofibrillar, mitochondrial and collagen fraction. The supernatant containing the 

sarcoplasmic proteins was transferred into a new Eppendorf and frozen at -80°C for 

immunoblotting analysis. The remaining pellet was washed with 500 µl of 

homogenisation buffer and centrifuged at 11,000 g for 15 min. The supernatant was 

discarded and this step was repeated to ensure all sarcoplasmic proteins were 

removed. The pellet was transferred into a pre-cooled dounce homogeniser using 

500 µl mitochondrial extraction buffer (MEB) containing 20mM MOPS, 110mM 
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KCl and 1mM EGTA, pH 7.5. The pellet was manually homogenised 15 times to 

ensure adequate extraction of the mitochondria fraction without causing them to 

burst. The sample was transferred back into an Eppendorf using a further 500 µl 

MEB and centrifugated at 1,000 g for 5 min at 4°C to pellet large organelles. The 

resultant myofibrillar and collagen pellet were kept on ice whilst the supernatant 

containing the mitochondria was removed to a fresh Eppendorf and centrifugated 

11,000 g for 15 min at 4°C to pellet the mitochondria. The supernatant was discarded 

and 500 µl MEB was added and centrifugated at 11,000 g for 15 min at 4°C. The 

supernatant was removed and discarded and the mitochondrial pellet was stored at -

80°C for later analysis. To solubilise the myofibrillar fraction 750 µl of 0.3 N NaOH 

was added, vortex mixed and incubated in a water bath at 37°C for 30 min, vortex 

mixing at 15 and 30 min. Samples were centrifuged at 13,000 rpm for 10 min at 4°C 

and the solubilised myofibrillar fraction was transferred to a new boiling tube whilst 

the insoluble collagen pellet was washed twice with 1.5 ml 70% ethanol centrifuged 

at 10,00rpm for 5 min at 4°C, supernatant discarded and the collagen pellet was 

stored at -80°C. A further 750 µl of 0.3 N NaOH was added to the myofibrillar 

supernatant and centrifuged at 13,000 rpm for 10 min at 4°C and the supernatant was 

combined. To precipitate the myofibrillar proteins, 1 ml of 1 M perchloric acid was 

added to the supernatant, vortex mixed and cooled in the fridge (4°C) for 20 min 

after which samples were centrifuged at 3,200 rpm for 20 min at 4°C. The pellet was 

washed with 2 ml 70% ethanol and centrifuged at 3,000 rpm for 5 min at 4°C, this 

final step was repeated.  
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All muscle fraction pellets were added to 1 ml 0.1M HCl and 1 ml Dowex H+ resin 

and hydrolysed in the oven overnight at 110°C. Liberated amino acids were purified 

on Dowex H+ resin via cation exchange chromatography then eluted in NH4OH, 

dried and derivitised to their N-methoxycarbonyl methyl esters as described 

previously (38, 147, 346, 347). Samples i.e. the AA, were re-suspended in 60 µl 

distilled water and 32 µl methanol, followed by the addition of 10 µl pyridine and 8 

µl methylchloroformate and immediately vortex mixed for exactly 30 seconds. 

Samples were left at room temperature to react for 5 min followed by extraction in 

100 µl chloroform and 100 µl of 0.001 M of NaHCO3 to isolate the MCME AA. 

Molecular sieves were added to each sample and left at room temperature for 30 

seconds to remove excess water before the sample was transferred into auto-sampler 

vials.  

 

3.3.4.4 GC-pyrolysis-IRMS analysis 

Gas chromatography-pyrolysis-isotope ratio mass spectrometry was used to analyse 

the incorporation of deuterium into protein bound alanine, as previously described, 

within the myofibrillar muscle fraction (38, 347). A standard curve of a known 

amount of L-Alanine-2,3,3,3-d4 enrichment was run alongside each set of samples to 

test the measurement accuracy of the machine.  

 

3.3.4.5 Calculation of fractional synthesis rate 

The incorporation of deuterium-labelled alanine into bound protein was calculated to 

determine myofibrillar FSR using the body water enrichment (corrected for the mean 

number of deuterium moieties incorporated per alanine i.e. 3.7 and dilution from the 
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total number of hydrogens in the derivative i.e. 11) as the surrogate precursor 

labelling between biopsies (38, 347).  

 

Myofibrillar fractional synthesis rate (FSR) was calculated using the following 

equation:  

 

34+ = 	−	67	
−1	 89:;<;

89:=
"  

 

Where APEAla is the deuterium enrichment of protein-bound alanine, APEP is the 

mean precursor enrichment over the time period and t is the time between biopsies 

(38, 347).  

 

3.3.4.6 Immunoblotting  

The sarcoplasmic supernatant obtained through the fractionation process was 

measured on a NanoDrop Lite Spectrophotometer (Thermo Scientific, Hemel 

Hempstead, UK). Samples were standardised to 1mg/ml by diluting with 

homogenisation buffer and 3 x Laemmli loading buffer followed by vortexing and 

heating at 95°C for 5 min. Precisely 15 µg of sample was loaded into individual 

lanes on Criterion-XT Bis-Tris-12% SDS PAGEs (Bio-Rad, Hemel Hempstead, 

United Kingdom) for electrophoresis at 200 V for 55-60 min. Gels were placed in 

transfer buffer for ~10 min to equilibrate prior to cold transfer onto a methanol-

soaked PVDF membrane at 100 V for 45 min. Membranes were subsequently 

blocked in 2.5% low-fat milk (diluted in tris-buffered saline and 0.1% Tween-20 
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(TBS-T)) for 1 h at room temperature. Following 2 brief washes in TBS-T, 

membranes were gently rocked overnight at 4°C whilst incubated with the primary 

antibody. Primary antibodies were used at a dilution of 1:2000 in 2.5% bovine serum 

albumin (BSA) in TBS-T against the phosphorylation of mTORSer2448, eEF2Thr56, 

p70S6K1Thr389, rps6Ser240/244, 4EBP1Thr37/46, NFκβ p65Ser536 and for total content of 

Beclin 1, TNF-α (New England Biolabs, Hertfordshire, UK), MuRF1 (ECM 

Biosciences, Versailles, KY, USA), Cathepsin L and Calpain 1 (Abcam, Cambridge, 

UK). Following overnight incubation, membranes were washed in TBS-T (3x 5 min) 

and subsequently incubated in HRP-conjugated anti-rabbit or anti-mouse secondary 

antibody (1:2000 in 2.5% BSA in TBS-T; New England Biolabs, Hertfordshire, UK) 

for 1 h at room temperature whilst rocking. Membranes were washed in TBS-T (3 x 

5 min) and subsequently submerged in Chemiluminescent HRP substrate (Millipore 

Corporation, Billerica, MA, USA) for ~5 min and immediately imaged on a 

Chemidoc MP (Bio-Rad Laboratories, Hertforshire, UK). Protein bands were 

quantified by densitometry using Image Lab Version 5 (Bio-Rad Laboratories, 

Hertforshire, UK) ensuring no pixel saturation. Protein loading differences were 

corrected to total coomassie stained protein (338). Relative arbitrary units were 

normalised to coomassie stained proteins.  

 

3.3.4.7 Histology and Immunohistochemistry  

3.3.4.7.1 Muscle sectioning  

Serial transverse sections were cut at 6 µm using a cryostat (Leica CM1850; Leica 

Microsystems, Kista, Sweden) set at -22°C. Sections were mounted on Superfrost 

Plus slides (Thermo Scientific, Hemel Hempstead, UK) and left at room temperature 
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to air dry for at least 1.5 hours to improve adherence to the slide, before being stored 

at -80°C for subsequent staining.  

 

3.3.4.7.2 Muscle staining 

Pre-cut muscle sections were removed from -80°C freezer and left to thaw for at 

least 15 minutes. Slides were dabbed free of any excess water with tissue, avoiding 

direct contact with the muscle sections. A large circle was drawn around all the 

sections on the slide with a pap pen to form a hydrophobic barrier preventing the 

solutions from running off the slides, reducing the risk of the sections drying out. 

Slides were placed in coplin jars and washed in PBS (1x) for 10 min after which they 

were gently tapped and shaken dry and blocked in normal goat serum (Vector 

Laboratories, S-1000, Burlingame, CA) for 20-30 min at room temperature. The 

blocking agent was removed by gentle tapping and shaking of the slide and the 

primary monoclonal antibody was added for targets outlined below and incubated at 

37°C for 1 h. Following primary antibody removal, slides were washed in 1x PBS 

for 10 min, twice, and then incubated in biotinylated horse anti-mouse secondary 

antibody (Vector Laboratories, BA-2000, Burlingame, CA) at room temperature for 

1 h. Slides were washed in PBS (x1) for 10 min, twice. Slides were incubated in 

VectaStain ABC reagent (made 30 min before use to allow the avidin-biotin 

complex to form) (Vector Laboratories, PK-6100, Burlingame, CA) for 1 h and left 

at room temperature. Slides were washed in PBS (x1) for 10 min, twice. To visualise 

the antibody-antigen binding, an ImmPACT diaminobenzidine (DAB) HRP 

substrate kit (Vector Laboratories, SK-4105, Burlingame, CA) was added for 45 

seconds, staining the target brown. Slides were immediately placed in tap water to 

stop the DAB reaction and left under a running tap for 5 min. Sections were 
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dehydrated in 35, 70 and 100% ethanol for 2 min each and left to dry before 

mounting. 

 

3.3.4.7.2.1 Total	fibre	number	

Serial cross sections were stained for muscle fibre type and the cell membrane in 

order to count the total number of fibres. Primary antibodies against slow myosin 

(A4.951, Developmental Studies Hybridoma Bank, Iowa City, Iowa) and laminin for 

the cell membrane (2E8; Developmental Studies Hybridoma Bank, Iowa City, Iowa) 

were added. Total fibre number was counted using Image J software (National 

Institutes of Health, USA).  

 

3.3.4.7.2.2 CD68	

The macrophage staining protocol was similar to that previously described (203). 

The primary antibody CD68 (DAKO, M0718, Hamburg, Germany), considered a 

marker of total macrophages, was added. Sections were visualised under the 

microscope for counting with a Leica CM E light microscope (Leica Microsystems 

CMS, UK). All CD68+ were counted at a 10x magnification throughout the whole 

muscle section.  

 

3.3.4.7.2.3 Pax7		

To assess fibre type specific PAX7+ cells, marker of quiescent and activated SC, a 

two step staining process was used, similar to one that has been previously described 

(17). Initially, the section was treated as described above. In brief the section was 

thawed, washed, blocked, incubated with the primary monoclonal antibody against 
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Pax7 (Developmental Studies Hybridoma Bank, Iowa City, Iowa) followed by 

biotinylated horse anti-mouse secondary antibody. Vectastain ABC and DAB 

substrate were used to stain the Pax7+ cells brown and could be visualised using 

light microscopy. The same section was then incubated with slow myosin (A4.840; 

Developmental Studies Hybridoma Bank, Iowa City, Iowa) and laminin (2E8; 

Developmental Studies Hybridoma Bank, Iowa City, Iowa) at 37°C  for 1 h, washed 

with PBS and subsequently incubated in Alexa Fluor 546 (Thermo Scientific, Hemel 

Hempsted, UK) in a dark staining tray at room temperature for 1 h. Sections were 

mounted with Molecular Probes ProLong Gold Antifade Mountant (ThermoFisher 

Scientific, Hemel Hempstead, UK) and visualized using fluorescent microscopy 

(Nikon Eclipse 50i, Badhoevedorp, The Netherlands) where the basal lamina and 

type I fibres were fluorescent and type II fibres were unstained. Images of the whole 

section were taken at 20x magnification; fibre-type specific SC were counted in the 

whole section.  

 

3.3.5 Statistical Analysis 

The distribution of all data was analysed for normality using the Kolmogorov-

Smirnov test (accepted if P > 0.05). Data are presented as mean ± S.E.M. Paired t-

tests were performed to determine differences between ECC vs. CON 1-RM. Ordinal 

data (visual analogue scale) and data which failed normality testing (plasma CK 

concentrations) were analysed using the non-parametric Friedman one-way 

ANOVA. In the event of significance being detected, Dunn’s multiple comparisons 

test was used to determine the point of significance. The Dunns test was chosen as it 

is the appropriate multiple comparisons test for data that is not normally distributed. 

One person was removed for the determination of plasma CK concentrations, since 
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an outlier was detected (> 2 standard deviations from the mean). Differences were 

detected using repeated-measures (time) two-way (exercise type x time) ANOVA 

with a Bonferroni correction using GraphPad Prism 6 (La Jolla, CA, USA). A log 

transformation was performed for the phosphorylation of mTORSer2448 to achieve 

normal distribution, followed by a two-way RM ANOVA. To draw temporal 

comparisons between functional, metabolic and molecular outputs, data sets were 

normalised over a range of 0-100% according to the data span (i.e. for each set of 

data, 0% represented the lowest whilst 100% represented the highest value). For 

metabolic (FSR) and molecular (immunoblotting, histochemical and 

immunohistochemical staining) an n of 7 was used since a 5 h post-ECC exercise 

biopsy could not be obtained for one participant. The α-level of significance was set 

at P < 0.05.  

 

3.4 Results 

3.4.1 Muscle function, soreness and plasma CK responses to ECC vs CON 

exercise 

No effects of time or contraction type were observed for the SPPBT (data not 

shown). Compared to baseline, peak torque significantly declined immediately (0 h) 

(P<0.05) and remained significantly decreased 5 and 24 h post-CON exercise 

(P<0.0001) and there was a strong trend (p=0.05) for force decline 72 h post-CON 

exercise (Figure 3.4 A). Post-ECC exercise, peak torque also declined at 0 h 

(P<0.001) and remained decreased 72 h post-exercise (P<0.001), with a trend for 

decline 168 h post-ECC exercise (P=0.08); thus, ECC resulted in a prolonged peak 

force decrement versus CON exercise. When comparing the level of force decline 

between contraction modes, the reduction in peak torque was significantly more 
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pronounced following ECC versus CON exercise at 0 and 5 h post-exercise 

(P<0.05). Thus, unaccustomed ECC exercise cause greater and more sustained 

declines in peak torque versus CON exercise. Peak power was only impaired post-

ECC exercise, with significant impairments observed at 0, 5 and 24 h post-exercise 

(Figure 3.4 B). 
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Figure 3.4. Declines in peak torque (A) and power (B) following ECC vs. CON 

exercise. BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-exercise, 

respectively. *indicates significant difference at that time point compared to baseline 

(P<0.05), ** (P<0.01), *** (P<0.0005), **** (P<0.0001) and #indicates significant 

difference between contraction types at that time point (P<0.05). 
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CON exercise resulted in significantly increased sensations of muscle soreness 

(Figure 3.5 A) 24 h post-exercise only (P<0.01), although there was a strong trend 

for reduced pressure tolerance 5 h post-CON exercise (P=0.06) (Figure 3.5 B). 

However, after ECC exercise muscle soreness was increased 0, 5, 24 and 72 h post, 

and pressure tolerance was reduced at 5, 24 and 72 h post-ECC exercise (Figure 3.5 

A-B). Unaccustomed ECC contractions therefore induce an earlier onset and 

sustained presence of muscle soreness and impaired pressure tolerance versus CON 

exercise. No significant differences between the two contraction types were found.  

 



 121 

 

Figure 3.5. Perceived muscle soreness measured using the VAS (A) and changes 

in the PPT (B) pre and post ECC vs. CON exercise. BL, 0, 5, 24, 72, 168 refer to 

baseline, 0, 5, 24, 72, 168 h post-exercise, respectively. ** indicates significant 

difference at that time point compared to baseline (P<0.01), **** (P<0.0001) and # 

indicates trend at that time point compared to baseline (P=0.06). 
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Indicative of post-exercise muscle membrane disruption, plasma CK concentration 

was elevated 24 (P<0.05) and 72 h (P<0.01) post exercise (Figure 3.6). However, 

contraction mode-specific effects could not be delineated due to CK content being 

measured in the plasma and not in the skeletal muscles.   

 

This data show increases in soreness (VAS) and CK coupled with declines in PPT, 

peak torque and power indicating that both ECC and CON exercise are capable of 

inducing muscle disruption, which is exacerbated and prolonged following ECC 

versus CON exercise.  

 

Figure 3.6. Plasma creatine kinase levels prior to and up to 72 h following 

exercise. BL, 0 con, 0 ecc, 24 and 72 refer to baseline, 0 h post-CON exercise, 0 h 

post-ECC exercise, 24 and 72 h post-exercise, respectively. n=7. *indicates 

significant difference at that time point compared to baseline (P<0.05) and ** 

(P<0.01).  
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3.4.2 Muscle protein synthetic response to ECC vs CON exercise 

A single D2O bolus (70 atom percent) of 3ml/kg led to a peak in body water 

enrichment of 0.314 ± 0.007% 3 h post consumption and an enrichment of 0.159 ± 

0.005 on the final day (Figure 3.7 A). Body water enrichment followed an 

exponential decay pattern, decaying throughout the trial at ~0.014% per day (Figure 

3.7 B). Myofibrillar MPS did not significantly change throughout the time course of 

the study following either ECC or CON exercise although data were highly variable 

between 0-5 h (Figure 3.8 A). When these data were collapsed i.e. combining 

analysis of post-exercise changes in MPS by using all ECC and CON exercise FSR 

values together, there was still no exercise-induced change in MPS (Figure 3.8 B). 
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Figure 3.7. Deuterium body water enrichment and muscle protein incorporation 

A) time course of body water enrichment over 11 days following the oral 

consumption of D2O and B) natural logarithm transformed body water enrichment 

to determine decay constant and half life. 0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 

240 and 264 refer to 0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240 and 264 h post-

ingestion of D2O, respectively. * indicates significant difference from initial day 0 

body water enrichment (P<0.005). 
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Figure 3.8. Baseline and temporal response of myofibrillar FSR up to 168 h post-

exercise A) following ECC versus CON exercise and B) when the data was 

collapsed i.e. independent of contraction-type. BL-0, 0-5, 0-24, 0-72, 0-168 refers to 

BL-0, 0-5, 0-24, 0-72, 0-168 post-exercise, respectively. ** indicates significant 

difference from BL (P<0.01). 
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3.4.3 Anabolic and catabolic signalling responses to ECC versus CON exercise 

ECC exercise induced increased phosphorylation of anabolic signalling protein 

mTORSer2448 and its downstream effector p70S6K1Thr389 immediately (P<0.05) and 5 

h (P<0.005) post-ECC exercise (Figure 3.9 A-B). This early activation precedes the 

CON-induced phosphorylation of p70S6K1Thr389 at 5 h post-CON exercise (P<0.05). 

In comparison to CON, ECC exercise induced significantly greater phosphorylation 

of p70S6K1Thr389 immediately post-exercise. As with mTORSer2448, only ECC 

exercise significantly up-regulated rps6Ser240/244 at 5 h (P <0.01) with a strong trend 

for phosphorylation 24 h post-ECC exercise (P=0.05) (Figure 3.9 C). No significant 

changes in the phosphorylation of 4EBP1Thr37/46 or eEF2Thr56 were observed at any 

time point following either ECC or CON exercise (data not shown). 
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Figure 3.9. Temporal response of anabolic mTOR pathway signalling markers; 

mTORSer2448 (A), p70S6K1Thr389 (B) and rps6Ser240/244 (C) following ECC versus 
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CON exercise. BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-

exercise, respectively. RAU relative arbitrary units. * indicates significant difference 

at that time point compared to baseline (P<0.05), ** (P<0.01), *** (P<0.005), **** 

(P<0.001) and # denotes significant difference between groups at that time point 

(P<0.05).  

 

Muscle proteolytic regulation following ECC versus CON exercise revealed the 

lysosomal protease Cathepsin L (37 kDa) was down-regulated following both 

contraction types 0 to 24 h post-exercise (P<0.05) (Figure 3.10 A). The ubiquitin 

ligase MuRF1 (UPS marker) increased 168 h post ECC and CON exercise (Figure 

3.8 B), when function was regained. No changes in pro Cathepsin L (42 kDa), 

Cathepsin L (25 kDa), Beclin 1 (autophagy) or Calpain 1 (calcium-dependent 

cysteine protease) were observed at any time point following either contraction mode 

(data not shown).  
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Figure 3.10. Temporal response of proteolytic markers; active Cathepsin L (A) 

and MuRF1 (B) following ECC versus CON exercise. BL, 0, 5, 24, 72, 168 refer to 

baseline, 0, 5, 24, 72, 168 h post-exercise, respectively. RAU relative arbitrary units. 

* indicates significant difference at that time point compared to baseline (P<0.05).  
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3.4.4 Inflammatory response 

Immunoblotting against the inflammatory protein TNF-α revealed increased TNF-α 

24, 72 and 168 h post-ECC exercise (P<0.05). This rise in TNF-α post-ECC exercise 

presented earlier than the rise post-CON exercise at 72 h, which also remained 

elevated above baseline 168 h post-CON exercise (P<0.001) (Figure 3.11 A). Only 

ECC exercise induced the phosphorylation of the transcription factor NFκβ p65Ser536, 

a downstream effector of TNF-α, 72 h post-exercise (P<0.05) persisting with a trend 

at 168 h (P<0.08); no changes were observed between ECC vs. CON exercise 

(Figure 3.11 B). Histological muscle staining against CD68+ (a pan macrophage 

marker) found the number of CD68+ positive cells increased in the endomysial and 

perimysial space 72 h following ECC (P<0.0001) and CON exercise (P <0.01) but 

only persisted 168 h after ECC exercise (P<0.01) (Figure 3.11 C). No CD68+ cells 

were observed within the muscle fibre (representative images in Figure 3.11 D-F). 

No difference in muscle CD68+ expression existed between ECC vs. CON exercise.  
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Figure 3.11. Temporal changes in local inflammatory markers; TNF-α protein 

abundance (A), phosphorylation of NFκβ p65Ser536 (B) and muscle macrophage 
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infiltration (C) in response to ECC versus CON exercise. Representative images of 

macrophage infiltration (black circles) at baseline (D), 72 h post-ECC (E) and 168 

h post-ECC (F). BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-

exercise, respectively. RAU relative arbitrary units. *indicates significant difference 

at that time point compared to baseline (P<0.05), ** (P<0.01) and **** 

(P<0.0001).  

 

3.4.5 Satellite cell response 

No significant changes in mixed, type I or II specific Pax7+ cells were observed at 

any post ECC or CON exercise time point (Figure 3.12). When these data were 

collapsed i.e. not taking into account the contraction mode, there was still no change 

in mixed or fibre type-specific Pax7+ cells (data not shown). Thus, neither ECC or 

CON exercise induced SC activation up to seven days’ post-exercise. 
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Figure 3.12. Lack of satellite cell response following an acute bout of ECC versus 

CON exercise. (A) staining against type I fibres (black arrowheads) and laminin 

(white arrow) with unlabelled type II fibres (black asterisks), (B) baseline 

representative histochemical staining of SC’s (Pax7+ cells, arrows), (C) 

representative image of Pax7+ cells 168 h post-CON exercise and (D) quantification 

of mixed muscle Pax7+ cells pre-exercise and up to 168 h post-ECC vs. CON 

exercise (935±44 fibres analysed per time point), (E) quantification of type I and II 

specific Pax7+ cells pre- and up to 168 h post-ECC exercise and (F) quantification 

of type I and II specific Pax7+ cells pre and up to 168 h post CON exercise. 
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3.4.6 Temporality of human muscle regeneration  

Data spans were performed to investigate molecular events that precede the post-

exercise functional recovery of muscle, as putative regulators of muscle 

regeneration. As anticipated, anabolic signalling presented as an early post-exercise 

response preceding functional recovery (Figures 3.13 A and C). Cathepsin L 

protease inactivation also occurred early post-exercise, whereas MuRF-1 was only 

activated when muscle function was near returning to basal values (Figures 3.13 B 

and D). Macrophage infiltration of the ECM and inflammatory signalling (TNF-α 

and the downstream activator NF-κBp65Ser536) only increased once muscle function 

had past its nadir (Figures 3.14 A-D). Thus, concurrent activation of anabolic 

signalling and inactivation of lysosomal-mediated proteolytic signalling all present 

as early molecular responses preceding functional recovery to ECC exercise and, in 

general, CON exercise. The concomitant increase in the ubiquitin-proteasome 

system, macrophage infiltration and inflammatory signalling activation occurred 

once force had started to recover and thus may be required for longer-term repair/ 

augmentation of muscle ultrastructure and, ultimately, function. 
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Figure 3.13. Data spans of anabolic signalling and functional recovery for ECC 

(A) and CON (C) exercise, and catabolic signalling and functional recovery for 

ECC (B) and CON (D) exercise. BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 

168 h post-exercise, respectively. All significance values are presented in Figures 

3.4, 3.9 and 3.10. 
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Figure 3.14. Data spans demonstrating the temporality of macrophages and 

functional recovery following ECC (A) and CON (C) exercise, and inflammatory 

signalling and functional recovery following ECC (B) and CON (D) exercise. BL, 

0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-exercise, respectively. All 

significance values are presented in Figure 3.4 and 3.11. 
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3.5 Discussion 

This study shows novel temporal data regarding the mechanistic underpinnings of 

muscle regeneration following ECC versus CON exercise in healthy young males. 

Both ECC and CON exercise resulted in reduced peak torque (which correlates to 

myofibrillar disruption (270)) indicating the presence of muscle damage, 

highlighting that both exercise modes were successful at initiating skeletal muscle 

regenerative processes. The key findings of this study demonstrate that i) increased 

anabolic signalling and repression of lysosomal proteolysis precedes functional 

recovery following both ECC and CON exercise and ii) subsequent inflammatory 

signalling, macrophage infiltration and up-regulation of the ubiquitin-proteasome 

system occur alongside functional recovery after both ECC and CON exercise. 

Additionally, compared to CON, ECC exercise is associated with: i) greater and 

prolonged declines in muscle function, ii) earlier onset and greater magnitude of 

anabolic signalling, iii) earlier onset and sustained increases in inflammatory 

markers and iv) an activated inflammatory transcriptional response. 

 

Components of the anabolic mTORC1 signalling pathway were rapidly and 

transiently up-regulated during the early post-exercise phase following both ECC 

and CON exercise, preceding functional recovery. This is in agreement with an 

earlier study which found early and transient increases in mTORC1 signalling up to 

5 h post ECC and up to 1 h post-CON exercise in young adults (272). Whilst the 

present study reports a return of anabolic signalling to baseline by 24 h post ECC 

and CON exercise, others have reported mTOR signalling persisted for up to 8 days 

following 300 ECC contractions (221). However, it is unclear whether the 

participants in that study were fed when they returned to the laboratory for post-
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exercise measurements. Being in a fed state may confound the results since feeding 

alone can induce anabolic signalling and may induce a potentiation of the post-

exercise anabolic effect (348). Early anabolic signalling contributes to increased 

MPS, which is critical for synthesising structural and contractile proteins that replace 

damaged and degraded proteins in response to exercise-induced damage, therefore 

remodelling/repairing muscle structure and function. This is somewhat substantiated 

in rodents, since functional recovery was prolonged when mTOR signalling was 

inhibited (23). Recent work in humans has shown the MPS response to a single bout 

of unaccustomed RE was higher than after an acute RE session performed after three 

and ten weeks of RET (153). When MPS was normalised to ultrastructure damage 

(i.e. Z-disk streaming), the relative increase in MPS was similar across the RET 

programme, further highlighting that increased anabolic events are directed towards 

the remodelling/repair of the damaged muscle protein (153).  

 

Unexpectedly, no significant changes in myofibrillar MPS were shown following 

either ECC or CON exercise at any time-point investigated within this study. 

Previous work has shown increased MPS in response to a single bout of RE, ECC or 

CON exercise, a response which is well acknowledged (72, 172, 173, 224, 260). 

Herein, several instances were noted where the delta shift, representative of isotopic 

enrichment, was reduced at later time-points compared to earlier time-points. For 

example, in one young participant at 0 h post-ECC exercise mean delta was 260, 

which reduced to 203 5 h post-ECC exercise (all raw data can be viewed in 

Appendix 3.1). This drop in delta is unexpected since D2O is cumulative, therefore 

physiologically the delta should increase even in the absence of an external stimulus 
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(i.e. exercise). Perhaps, sample preparation errors may have lead to erroneous data. 

Consequently, all of the MPS analysis will be re-run and analysed.  

 

A novel finding of this study was the rapid repression (0 h) of the lysosomal protease 

Cathepsin L post-exercise, which occurred in tandem with increased mTOR and 

p70S6K1 signalling, preceding functional recovery. This repression was sustained 

for 24 h post-exercise, even once mTORC1 signalling had returned to baseline. 

Cathepsin L is implicated in the degradation of many myofibrillar proteins, including 

myosin heavy chain, alpha-actinin, actin, troponin T and troponin I (206). 

Suppression of Cathepsin L may indicate a reduced capacity for lysosomal-mediated 

dismantling of the contractile structure. Hypothetically, this suppression may reduce 

protein breakdown within the muscle, contributing to the accumulation of muscle 

proteins being synthesised. Few previous studies have investigated Cathepsin L 

regulation post-exercise. Feasson et al., (2002) reported no early change in muscle 

Cathepsin L enzyme activity, but did observe a late increase 14 days’ post-exercise. 

This led the authors to conclude that Cathepsin L may contribute to post-exercise 

muscle remodelling as opposed to functional recovery. Interestingly, this early 

proteolytic response seems to be unique to the lysosmal breakdown pathway, since 

no early changes were observed in local Beclin-1, Calpain-1 or MuRF1. It is possible 

that additional markers of proteolysis, which have not been measured here, may 

regulate early muscle regenerative responses. For example, Calpain 3 is activated 24 

h following ECC exercise (230), however Calpain 1 was chosen to be investigated 

herein since it is implicated in muscle protein degradation and subsequent shuttling 

to the UPS within physiological ranges of Ca2+, but the role in human muscle 

regeneration is poorly defined (229). Thus, the early increase in anabolic signalling 
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and repressed lysosomal activity, which precede functional recovery, suggest that 

both processes may be involved in functional recovery.  

 

Combining the data showing increased markers of anabolism and a repressed marker 

for protein degradation following exercise, suggests that there is a growth 

environment which facilitates muscle remodelling and possibly hypertrophy. 

Following ECC exercise, the onset of anabolic signalling was earlier than CON 

exercise, suggesting that this anabolic growth environment is greater following ECC 

exercise and thus may lead to greater muscle remodelling and may explain the 

greater hypertrophic adaptations reported (283). Since muscle is capable of 

adaptation after one bout of exercise in as short as seven days (i.e. the RBE) (55), it 

is likely that these processes are central for the rapid response of muscle to a single 

exercise-induced insult.  

 

In tandem with the late induction of inflammatory signalling and macrophage 

infiltration, the E3 ubiquitin ligase MuRF1 increased 168 h following both ECC and 

CON exercise, at which point force had fully recovered. MuFR1 is implicated in the 

degradation of the contractile filaments and the structural protein titin via the UPS 

(121), and therefore may indicate the activation of UPS-mediated proteolysis of 

sarcomeric proteins during the later stages of muscle regeneration. This late 

proteolytic activation may degrade any exercise-induced damaged proteins, which 

may not have been dismantled and degraded during the earlier time-points since 

lysosomal degradation was repressed. Although, as previously mentioned it is 

possible that other proteolytic signals not measured herein (i.e. calpain 3) were 
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activated earlier and have been missed (230). This late activation of MuFR1 and 

potentially increased UPS activity 168 h post-exercise, once function had recovered, 

may thus be required for longer term remodelling. Similar reports of increased UPS 

activation during late stages of regeneration have been reported (98), others have 

reported no change in MuRF1 protein levels, although the time frame investigated 

was acute (< 48 h), and there for may have missed later increases (273, 311). Despite 

demonstrating an early suppression of the lysosomal marker Cathepsin L and the late 

increase in the ubiquiting ligase MuRF1, we did not measure MPB directly. There 

does exist a disassociation between the abundance of proteolytic protein markers and 

MPB (126), thus we cannot infer whether or not MPB changed throughout the 

duration of this study.  

 

Based on the protein turnover related data (excluding MPS) presented herein, it may 

be suggested that where early anabolic processes are activated i.e. (0-5 h) the 

catabolic mechanisms are supressed, and once this anabolic environment has 

dissipated a catabolic environment is induced later (168 h) for the removal of 

damaged proteins. Furthermore, data from within this study suggests that the process 

of full muscle recovery/ regeneration at the molecular level takes longer than the 

typically investigated time-frame of 7 days’ post-exercise (since functional recovery 

occurs within this time). Such markers which occur beyond 7 days (i.e.  

inflammation and UPS activation) may potentially be novel candidates that appear to 

specifically be associated with the delayed remodelling of muscle beyond acute 

functional recovery in response to a single bout of strenuous exercise.  
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Increased TNF-α becomes evident once functional recovery is initiated i.e. the nadir 

of force has passed, and persists once muscle function is fully regained following 

both contraction types. The source of the observed elevations in TNF-α is unknown 

(232), and since TNF-α activation preceded significant increases in macrophages, it 

is unlikely that this source of TNF-α was macrophage-derived. However, TNF-α can 

drive the activation of pro-inflammatory macrophages within skeletal muscle (323) 

and may explain the increased infiltration of macrophages observed 72-168 h post-

exercise, in line with previous reports (247). Significant macrophage infiltration 

occurred after the most severe declines in muscle function, persisting once function 

had fully recovered. This observation may suggest a role for macrophages in 

promoting muscle remodeling for longer term muscle adaptation. In support of this 

notion, macrophage conditioned medium has been shown to increase muscle mass of 

regenerating muscle fibres (47), a consequence of increased SC proliferation (205), 

although this precise mechanisms remains to be shown in humans.  

 

Interestingly, we report no significant changes in SC following ECC or CON 

exercise throughout the regenerative process (although numerical increases were 

present). The lack of SC activation post-exercise is in contrast to previous reported 

studies which show elevated SC activation as early as 24 h post-ECC exercise (49, 

84). A number of reasons may explain the differential findings, primarily the total 

number of muscle fibres counted when enumerating SC content is important (197). 

This is because the SC content can vary across a single muscle cross-section with 

areas containing substantially more and substantially less SC, therefore it is 

recommended that as many fibre cross-sections as possible are counted (ideally the 

whole muscle cross section), with higher fibre numbers providing more reliable 
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results (197). Previous studies which have reported increased SC responses have 

used less than 400 fibres to analyse SC numbers (49, 63, 84). In the present study SC 

content was robustly determined at each time point by counting all of the SC on the 

muscle-cross section, averaging 935±44 fibres. It is also possible that SC activation 

may occur later than 168 h. In agreement with the current data, Farup et al (2014) 

report no changes in mixed or fibre type specific SC content 24, 48 or 168 h post-

ECC exercise. Interestingly, the study by Farup et al (2014) study quantified SC 

content on >450 fibres at all time points. Thus, the present data herein suggest SC 

activation is not required for functional recovery or muscle remodelling following 

ECC or CON exercise in healthy young sedentary males. Although these data refute 

the established dogma that SC are a requirement for muscle regeneration, it may be 

explained by the fact that SC are not required for longer-term muscular adaptation 

i.e. muscle hypertrophy (210). As such, these data suggest that the muscle intrinsic 

molecular mechanisms (i.e. proteolytic suppression, increased anabolic and 

inflammatory signalling and inflammatory infiltration) that are exercise-responsive 

are the essential global (i.e. in response to both ECC and CON exercise, albeit to 

different extents) processes for muscular adaptation to exercise in young muscle. 

Furthermore, this lack of SC response may indicate the muscle possesses sufficient 

capacity within nuclear DNA to transcribe and translate the material required to 

repair and grow muscle, and/ or the efficiency by which chaperone-mediated repair 

mechanisms can cope with repairing exercise-induced damaged proteins. Thus the 

muscle stimulus herein may not have induced fibre necrosis to the extent that SC 

were needed to fuse and repair damaged fibres.  
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Despite the generally accepted notion that muscle inflammation occurs after 

unaccustomed exercise, there are very few investigations into the human responses 

of the inflammatory-related transcription factor NF-κB following exercise (151). 

Therefore investigation of the temporal response of NF-κB to ECC versus CON 

exercise are lacking. In the inactive state, NFκβ is sequestered in the cytoplasm 

bound to IκB inhibitor proteins (33). The presence of TNF-α (amongst other 

inflammatory stimuli) induces the phosphorylation and subsequent degradation of 

the NF-κB inhibitor, IκBα, through the UPS (228). This releases the p50-p65 NF-κB 

heterodimer for translocation to the nucleus where it binds to target genes to regulate 

gene expression (228, 244). When active, NF-κB promotes the expression of > 150 

target genes, which relate to immunoreceptors, cytokines, cell adhesion molecules, 

cell surface receptors, apoptosis regulators, stress response and transcription factors 

(244). The present study is the first to show the activation of NF-κB 72 h post-

exercise, which was unique to ECC exercise despite the up-regulation of TNF-α 

following both ECC and CON exercise. Furthermore, the activation of NF-κB was 

initiated after the nadir of force suggesting that NF-κB activation did not not 

contribute to functional recovery and instead may be involved in subsequent muscle 

remodelling. This regulation of remodelling is unknown, however in mice NF-κB 

binds to the MuRF1 promoter, increasing gene expression of the E3 ubiquiting ligase 

thus promoting proteolysis (46). Herein, MuRF1 increased 168 h post-exercise and 

may indicate increased proteolysis of exercise-induced ‘damage’ proteins, essential 

for longer-term muscle remodelling. Furthermore, following ECC-bias exercise in 

rodents, NF-κB has also been implicated in modulating gene expression of several 

nitric oxide synthase (NOS) genes which are implicated in blood flow regulation, 

which is believed to be essential to muscle regeneration (187), although this remains 
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to be shown in humans. One of the few studies in humans found NF-κB was 

activated and localised to pericytes 3 h post-ECC exercise, implicating NF-κB in 

vascular remodelling (151), although later time points were not investigated. These 

processes may regulate adaptation observed following chronic ECC exercise. Further 

work is needed to understand which genes are regulated by NF-κB during skeletal 

muscle regeneration in humans.  

 

Herein both ECC and CON exercise elicited early anabolic signalling and early 

lysosomal inhibition which preceded functional recovery, followed by increased 

inflammatory signalling and macrophage infiltration once the recovery of force had 

been initiated. Despite general temporal similarities, contraction-specific differences 

were found. Compared to CON, ECC exercise resulted in the earlier onset of 

soreness and exacerbated and prolonged declines in peak torque indicating ECC 

exercise induced greater muscle disruption compared to CON exercise, which is a 

well acknowledged phenomenon (57). These data demonstrate the lengthening 

nature of ECC contractions leads to greater muscle damage. Interestingly, the nadir 

of force was 5 h post-ECC exercise, which to the authors knowledge has not been 

shown before in humans. One possible explanation may be fatigue, although 

typically this is subsided after 2 h (265). The high levels of tension placed on the 

fibres due to the lengthening nature of ECC contractions most likely explains the 

decline in force at 5 h (6). In addition, the mechanical lengthening of myofilaments 

likely explains the greater Z-line streaming observed following ECC versus CON 

exercise (224), although this was not investigated in this study.  
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In addition to greater muscle dysfunction, ECC exercise induced an earlier onset and 

greater magnitude of mTOR signalling proteins compared to CON exercise 

suggesting ECC exercise induces a greater net anabolic environment. This may be 

due to the greater and more prolonged declines in function, thus requiring a greater 

anabolic signalling response in order to restore the greater deficits in muscle 

function. Similar to the current study, a recent report found the phosphorylation of 

mTORSer2448, p70S6K1Thr389 and rps6Ser235/236 to increase following both ECC and 

CON exercise in humans, which was more persistent following ECC (up to 24 h 

post) compared to CON exercise (1 h post) (273). This finding provides further 

evidence of a greater anabolic signalling environment post-ECC exercise. This 

greater anabolic environment may culminate over successive exercise bouts of ECC 

exercise and translate into and explain the greater gains in muscle mass and strength 

observed following chronic ECC compared to CON training (283). Interestingly, 

ECC exercise lead to the unique up-regulation of NF-κB, despite similar levels of 

TNF-α. Perhaps other mechanisms not measured herein were responsible for the 

activation of NF-κB, such as Calpain 3 (228), although this needs to be investigated 

further. The fact that NF-κB was only activate post-ECC exercise may unique 

transcriptional responses which may mediate contraction-specific adaptation 

although this remains poorly defined.   

 

Collectively, these data suggest that anabolic, catabolic and inflammatory molecular 

responses are critical in orchestrating human skeletal muscle regeneration following 

exercise. However, the extent of anabolic and inflammatory responses was greater 

following ECC exercise which might elicit greater muscular adaptation. 
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This study is not without limitations. The absence of measuring MPB precludes our 

understanding into how protein catabolism is regulated throughout an extended post-

exercise regenerative period in relation to force and other regenerative mechanisms. 

The dynamic measurement of MPB is difficult and invasive in nature and thus static 

surrogates of the proteolytic pathways were investigated as an alternative. 

Furthermore, the lack of investigative time points beyond 168 h precludes our 

understanding of MPB, inflammatory and SC regulation during the remodelling 

phase. Future work should address a more comprehensive time course between 0-5 

and 24-168 h, where we observe anabolic and inflammatory environments, 

respectively, in order to further characterise the temporality of the mechanisms 

regulating regeneration. Additionally, future investigations should characterise the 

inflammatory response beyond 168 h.  

 

3.6 Conclusion  

Herein, we provide one of the most comprehensive studies to date investigating the 

temporality of established and novel regulators of muscle regeneration 

simultaneously following ECC vs. CON exercise in young exercise naïve males. 

This study shows anabolic signalling and lysosomal repression precede functional 

recovery and therefore regulate rapid adaptation, whilst inflammatory signalling, 

macrophage infiltration and UPS activation occur after functional recovery is 

initiated, likely mediating longer term/ chronic muscle adaptation. Despite similar 

temporality between contraction types, ECC exercise was associated with magnified 

muscle soreness, dysfunction, anabolic signalling and inflammation, augmenting the 

net anabolic environment which may explain the greater strength and mass 
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adaptations previously observed following chronic ECC training compared to CON 

training (283). 
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4 Exploring the Mechanisms 

Underpinning Age-Related Human 

Skeletal Muscle Regeneration 

Following Acute Eccentric versus 

Concentric Exercise  
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4.1 Abstract 

Background: Ageing is associated with reduced skeletal muscle mass and function, 

which may be a result of impairments in post-exercise skeletal muscle regenerative 

processes. However, the age-related differences in exercise-induced skeletal muscle 

regeneration remain poorly defined. The aim of this study was to investigate multiple 

metabolic and molecular mechanisms implicated in human skeletal muscle 

regeneration over a comprehensive time-course following ‘damaging’ eccentric 

(ECC) versus ‘non-damaging’ concentric (CON) exercise in young and older 

participants. Methods: Eight young (22±1 y) and eight older (70±1 y) healthy 

exercise naïve participants performed a single bout of unilateral ECC exercise (7×10 

repetitions at 80% of ECC one-repetition maximum) and unilateral CON exercise 

(7×10 repetitions at 80% of CON one-repetition maximum). Functional (muscle 

soreness, sensitivity to pain, peak torque, power and lower body function), 

biochemical (plasma creatine kinase) and molecular responses (mTORC1 signalling, 

proteolytic activation, inflammatory signalling, macrophage infiltration, satellite cell 

proliferation) were measured at baseline (BL), immediately (0), 5, 24, 72 and 168 h 

after ECC and CON exercise. Results: Both exercise modalities resulted in reduced 

peak torque, which onset earlier (0 & 5 h, P<0.05), was greater (0 & 5 h, P<0.05) 

and persisted for longer (72 h, P<0.01) following ECC exercise. p70S6K1 and rps6 

(5 h, P<0.05) increased following ECC exercise preceding functional recovery. 

Satellite cell proliferation increased 24 h post- ECC exercise (P<0.05), when 

functional restoration was underway. As expected, basal ECC and CON torque was 

higher in younger versus older participants (P<0.05). Older participants displayed 

blunted anabolic (mTOR and p70S6K1) and catabolic (cathepsin L (37 kDa)) 

signalling following exercise. Interestingly, older participants displayed higher basal 
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levels of muscle TNF-α compared to the young (P<0.05). TNF-α did not change at 

any post-ECC or CON time-point in the older participants, but was increased 24-168 

h after ECC and 72-168 h after CON exercise in the young (compared to BL, 

P<0.05). Similarly, basal macrophage infiltration was higher in the older versus 

younger participants (P<0.05), and only increased in the young post-ECC (72 and 

168 h, P<0.01) and CON (P<0.01) exercise. SC content was greater in older versus 

younger participants 24 h post-ECC exercise (P<0.01). Conclusion: In older adults, 

ECC exercise stimulated SC activation and induced greater anabolic signalling 

compared to CON exercise and is thus potentially a more potent exercise stimulus of 

muscle growth in ageing muscle. Blunted anabolic and catabolic signalling and 

higher basal inflammation in older adults may underlie the blunted adaptations to 

RET programmes and age-related loss of skeletal muscle mass and strength in older 

adults. However, these perturbations in regenerative mechanisms did not impede 

functional recovery. 
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4.2 Introduction 

The plasticity of skeletal muscle is diminished with advancing age, demonstrated by 

blunted anabolic responses to acute exercise (112) and attenuated absolute increases 

in muscle growth and strength in response to chronic RET (128). Although, it should 

be noted that some studies have shown equal growth and strength adaptations 

between young and older adults (136, 208). Over time, blunted anabolic responses 

accumulate presenting as age-related losses in muscle mass (i.e. sarcopenia) and 

strength (i.e. dynapenia) (223, 286). Sarcopenia is associated with functional 

impairments (154), falls, physical disability, morbidity (24), reduced quality of life 

(281) and premature mortality (175). Therefore, identifying regulators of sarcopenia 

is critical to developing effective countermeasures.  

 

Currently, the most effective intervention for counteracting age-related losses in 

skeletal muscle mass and strength is RET (36, 100). Conventional RE can be divided 

into two phases: ECC phase where the muscle contracts whilst lengthening, and the 

CON phase where the muscle contracts while shortening (106). Work-matched (e.g., 

80% 1-RM) ECC exercise produces greater forces than CON exercise, translating 

into superior gains in muscle mass and strength (283) at a reduced metabolic cost 

(i.e. reduced oxygen consumption) over the course of a training period (1). As such, 

ECC exercise interventions may be more efficacious than CON exercise for 

promoting muscle growth, and therefore, may harness potential as an intervention in 

populations characterised by low muscle mass, such as the elderly.  
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However, the safety of ECC exercise in older adults has been questioned since ECC 

contractions induce muscle damage (i.e. morphological disruption and the loss of 

force) to a greater extent than CON contractions (118). This damage necessitates a 

regenerative response in order to restore muscle homeostasis and promote muscular 

adaptation. Based on evidence in rodent models (41, 97, 271, 359), it has been 

hypothesised that the intrinsic muscle regenerative capacity in ageing is diminished. 

It is suggested that functional and structural deficits are not repaired effectively, 

which over subsequent bouts of exercise culminates losses of muscle mass and 

strength (97), further contributing to sarcopenia. However, the combination of 

mechanisms regulating human exercise-induced muscle damage and regenerative 

responses, especially in older adults; remain poorly defined.  

 

Some human research has shown greater muscle damage denoted by Z-disk 

streaming (201) and slower functional recovery (73) in older compared to younger 

adults. Conversely, others have shown similar damage and repair responses between 

the ages (56); thus, the age-related damage-regeneration response is humans remains 

unclear. Conceptually, age-related perturbations in human muscle regenerative 

capacity are plausible since ageing per se has been shown to be associated with 

attenuations in the basal population of SC (160, 328) and heightened basal muscle 

inflammation (219). Furthermore, in response to acute RE anabolic signalling, MPS 

(112, 173), inflammation (137) and the rise in SC activation (84) responses are 

blunted; although, contradictory evidence does exist (44, 287). Typically, previous 

studies have been limited to 24-48 h follow up periods measuring limited 

regenerative mechanisms, precluding a comprehensive understanding of the no-

doubt complex regenerative process in ageing.  
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The most comprehensive human investigation to date explored the regenerative 

process up to 7 days’ post exercise, although only 2 and 7 days’ post-exercise were 

assessed. This work found no age-related heightened damage susceptibility 

following ECC exercise denoted by similar changes in peak torque, muscle soreness 

and plasma CK (a marker of muscle membrane damage) in young and older adults 

(44). Furthermore, serum inflammatory markers, myogenic markers and angiogenic 

regenerative responses were similar between the ages, thus suggesting that ageing 

per se does not impair muscle regeneration (44). These results go against the 

generally accept dogma in rodents, which suggests that there are age-related 

attenuations in muscle regenerative mechanism. Consequently, further research into 

age-related human regenerative mechanisms is required. In addition, the central role 

of age-related protein turnover responses in degrading exercise-induced ‘damaged’ 

proteins and depositing new functional proteins has been overlooked since no studies 

have measured MPS and/ or MPB >48 h post-exercise (112, 172, 173).  

 

With these identified knowledge gaps, further research which investigates key 

exercise-induced regenerative mechanisms simultaneously over the time-course of 

functional decline and subsequent recovery in older versus younger adults is 

required. Such investigation may highlight age-related alterations in muscle 

regenerative capacity which may contribute to the progression of sarcopenia. 

Furthermore, this knowledge may aid the development of interventions aimed at 

recovering age-associated losses in regenerative capacity.  
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Therefore, the first aim of this study was to investigate multiple metabolic and 

molecular mechanisms implicated in human muscle regeneration over a 

comprehensive time-course following ECC ‘damaging’ exercise versus CON ‘non-

damaging’ exercise in older adults. A second aim of this study was to compare the 

regenerative responses between young and older adults. Combined, such data will 

enhance current understanding of muscle regeneration during ageing, and will 

highlight whether there are any differences in the regenerative responses between the 

ages which may go some way in explaining age-related muscle loss.  

 

4.3 Methods  

4.3.1 Study Design  

Eight older healthy exercise naïve male participants were recruited for the study 

(70±1y, 26±1kg.m-2 body mass index, 190±13kg ECC 1-RM, 95±6kg CON 1-RM), 

with all recruitment methods fully detailed in Chapter 3 (3.3.2). In brief, participants 

attended a health screening session to ensure suitability for the study and baseline 

data were collected (SPPBT, peak torque and power). Upon study inclusion, 

participants were required to visit the laboratory on five separate occasions over 

twelve days. On the first visit (baseline), participants arrived fasted at 9 am and 

muscle soreness (VAS) and PPT were measured. Participants provided a baseline 

saliva sample followed by a baseline muscle biopsy and a venous blood sample. 

Afterwards, participants consumed 3ml/kg of D2O (70% APE) in order to measure 

MPS, and provided daily saliva samples at mid-day everyday (collected at least 30 

minutes after eating or drink) throughout the duration of the study to determine body 

water enrichment.   
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Ninety-six hours later, participants arrived at ~8.30 am for visit 2 (0 h), having 

consumed a 250 ml liquid high energy nutritionally complete drink (Fortisip, 

Nutricia, Netherlands) at 07:00 am but remained fasted thereafter until visit 2 was 

complete, at ~5.30 pm. Participants acted as their own internal controls by 

performing ECC exercise on one leg and CON exercise on the contralateral leg using 

the MLP. Participants underwent a familiarisation, warm up and ECC/CON 1-RM 

testing prior to performing unilateral ECC/CON exercise on a MLP (7 sets of 10 

repetitions at 80% of ECC/CON 1-RM). Immediately following cessation of the 

exercise participants reported their soreness (VAS) and PPT, followed by a blood 

sample and muscle biopsy. Thereafter, peak torque, power and SPPBT were 

performed. After the initial exercise bout, participants followed the same regime on 

the contralateral leg doing the opposing randomised exercise.  

 

Five hours following the cessation of the exercise protocol (visit 2, 5 h) participants 

reported muscle soreness (VAS), PPT was measured, a blood sample taken and a 

muscle biopsy was taken from each leg. Immediately following the biopsy, peak 

torque, power and the SPPBT were performed. Participants arrived to the laboratory 

overnight fasted 24 h post-exercise for visit 3, 72 h post-exercise for visit 4 and 168 

h post-exercise for visit 5. During these visits, participants reported muscle soreness 

(VAS), PPT was measured, a single blood sample was obtained, a muscle biopsy 

was taken from each leg and the same functional exercise tests were performed.  
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4.3.2 Sample analysis 

All sample analysis methods are detailed fully in Chapter 3. In brief, saliva samples 

were used to determine body water enrichment (TC/EA- IRMS). Blood samples 

were used to determine plasma CK concentration (clinical chemistry analysis). 

Muscle biopsy samples were used to measure FSR (GC-pyrolysis-IRMS) anabolic, 

catabolic and inflammatory signalling (immunoblotting), inflammatory infiltration 

and SC activation (histology and immunohistochemistry).   

 

4.3.3 Statistical Analysis   

The distribution of all data was analysed for normality using the Kolmogorov-

Smirnov test (accepted if P > 0.05). Data are presented as mean ± S.E.M. Paired t-

tests were performed to determine differences between ECC vs. CON 1-RM. Ordinal 

data (visual analogue scale) and data which failed normality testing (plasma CK) 

were analysed using the non-parametric Friedman one-way ANOVA. In the event of 

significance being detected, Dunn’s multiple comparisons test was used to determine 

the point of significance. The Dunns test was chosen as it is the appropriate multiple 

comparisons test for data that is not normally distributed. Repeated-measures (time) 

two-way (exercise type x time) ANOVA with a Bonferroni post-hoc analysis was 

used to compare the effect of contraction type (GraphPad Prism 6, La Jolla, CA, 

USA). A log transformation was performed for the phosphorylation of mTORSer2448 

to achieve normal distribution, followed by a RM two-way ANOVA. To draw 

temporal comparisons between functional, metabolic and molecular outputs, data 

sets were normalised over a range of 0-100% according to the data span (i.e. for each 

set of data, 0% represented the lowest whilst 100% represented the highest value). 

The number of Pax7+ (SC) was more than 2 standard deviations away from the mean 



 160 

for one older adult and was therefore excluded as an outlier. Three sections across 

two participants for Pax7+ (SC) staining must be repeated and thus were excluded, 

therefore an n = 5 was used herein for Pax7+ (SC) analysis. Mixed model ANOVA 

(within: time, between: age) with Bonferroni post-hoc analysis was used to 

determine the age-related differences at baseline and in response to contraction type, 

using young participants from Chapter 2 as the young comparison (SPSS 23, Illinois 

Chicago, USA). The α-level of significance was set at P < 0.05.  

 

4.4 Results 

4.4.1 Muscle function, soreness and plasma CK responses to ECC versus CON 

exercise in older participants 

No effects of time or contraction type were observed for the SPPBT (data not 

shown). Compared to baseline, peak torque significantly declined immediately post-

ECC exercise (0 h) (P<0.0005) and remained significantly decreased at 72 h 

(P<0.01) post-ECC exercise (Figure 4.1 A). Post-CON exercise, peak torque 

declined at 24 h post-exercise only (P<0.01); thus ECC exercise resulted in a more 

rapid onset of functional decline which persisted for longer when compared to CON 

exercise. When comparing the declines in torque between contraction modes, the 

reduction in peak torque was significantly greater at 0 (P<0.05) and 5 h (P<0.01) 

post-ECC compared to CON exercise. Therefore, unaccustomed ECC exercise 

caused greater declines in peak torque versus CON exercise. Peak power was only 

impaired 5 h post-ECC exercise (P<0.01) with a significantly greater reduction 

compared to CON exercise at the same time (P<0.05) (Figure 4.1 B). Surprisingly, 

peak power significantly increased 168 h post-CON exercise (P<0.005). 
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Figure 4.1. Declines in peak torque (A) and power (B) following ECC vs. CON 

exercise in older participants. BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 

168 h post-exercise, respectively. * indicates significant difference at that time point 

compared to baseline (P<0.05), ** (P<0.01), *** (P<0.0005), **** (P<0.0001), # 

indicates significant difference between contraction types at that time point (P<0.05) 

and ## (P<0.01).  
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Figure 4.2. Perceived muscle soreness measured using the VAS (A) and changes 

in the PPT (B) pre and post ECC vs. CON exercise in older participants. BL, 0, 5, 

24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-exercise, respectively.  * 

indicates significant difference from baseline (P<0.05) and ** (P<0.005). 

 

BL 0 5 24 72 16
8

0

2

4

6

8

10

Time (h)

VA
S 

(c
m

)
ECC
CON

**

*

BL 0 5 24 72 16
8

0

5

10

15

20

Time (h)

A
lg

om
et

er
 (l

bs
)

** *

*

A

B



 163 

Increased sensations of muscle soreness were evident at 24 h post both CON 

(P<0.05) and ECC exercise (P<0.0005) (Figure 4.2 A). Reduced tolerance to 

pressure was present at 5 h post-CON (P<0.05) and ECC exercise (P<0.005), 

remaining reduced at 24 h post-ECC exercise only (P<0.05) (Figure 4.2 B). Despite 

similar reporting of muscle soreness in both exercise contraction types, ECC 

exercise resulted in sustained impairments of pressure tolerance versus CON 

exercise. Overall, no significant differences between the two contraction types were 

found. 

 

Consistent with reports in the literature (56), plasma CK concentration increased 72 

h following exercise (P<0.05) (Figure 4.3), indicative of muscle membrane 

disruption. However, contraction-specific effects could not be delineated as CK 

content was measured in the plasma and not in the skeletal muscles.  
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Figure 4.3. Plasma creatine kinase levels prior to and up to 72 h following 

exercise in older participants. BL, 0 con, 0 ecc, 24 and 72 refer to baseline, 0 h 

post-CON exercise, 0 h post-ECC exercise, 24 and 72 h post-exercise, respectively. * 

indicates significant difference at that time point compared to baseline (P<0.005).   

 

Taken together, these data demonstrate increases in soreness and CK, coupled with 

declines in pressure tolerance and muscle function, suggestive that both ECC and 

CON exercise are capable of inducing muscle disruption in older adults; although 

ECC exercise elicits an earlier onset, exacerbated and prolonged disruptive response 

versus CON exercise.   

 

4.4.2 Muscle protein synthetic response to ECC versus CON exercise 

A single D2O bolus (70 atom percent) of 3ml/kg led to a peak in body water 
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exponential decay pattern throughout the trial at ~0.017% per day (Figure 4.4 B). 

Myofibrillar MPS did not significantly change in response to ECC or CON exercise 

throughout the time course of the study, although the data was highly variable 

between 0-5 h (Figure 4.5 A). When the data was collapsed independent of 

contraction type i.e. n = 16 for each time-point, there were still no exercise-induced 

increases in MPS (Figure 4.5 B).  
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Figure 4.4. Deuterium body water enrichment and muscle protein incorporation 

A) time course of body water enrichment over 11 days following the oral 

consumption of D2O and B) natural logarithm transformed body water enrichment 

to determine decay constant and half life. 0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 

240 and 264 refer to 0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240 and 264 h post-

ingestion of D2O, respectively. * indicates significant difference from initial day 0 

body water enrichment (P<0.005). 
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Figure 4.5. Baseline and temporal response of myofibrillar FSR in older 

participants up to 168 h post-exercise A) following ECC versus CON exercise and 

B) when these data were collapsed i.e. independent of contraction-type. BL-0, 0-5, 

0-24, 0-72, 0-168 refers to BL-0, 0-5, 0-24, 0-72, 0-168 post-exercise, respectively. 

** indicates significant difference from BL (P<0.01). 
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4.4.3 Anabolic and catabolic signalling responses to ECC versus CON exercise 

Only ECC stimulated mTORC1 pathway signalling, which demonstrated a 

significant increase in p70S6K1Thr389 (P=0.050) (Figure 4.6 A) and rps6Ser240/244 5 h 

post-exercise (P<0.05) (Figure 4.6 B). No significant changes in the phosphorylation 

of anabolic signalling targets; mTORSer2448, 4EBP1Thr37/46 and eEF2Thr56 were 

observed, nor were there any changes in catabolic targets; pro Cathepsin L (42 kDa), 

Cathepsin L (25 kDa), Beclin 1 (autophagy) or Calpain 1 (calcium-dependent 

cysteine protease) at any time point following either ECC or CON exercise (data not 

shown). 
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Figure 4.6. Temporal response of anabolic mTOR pathway signalling markers; 

p70S6K1Thr389 (A) and rps6Ser240/244 (B) in response to ECC vs. CON exercise in 

older participants. BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-

exercise, respectively. RAU, relative arbitrary units. * indicates significant 

difference at that time point compared to baseline (P≤0.05). 
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Therefore, ECC exercise is capable of inducing a greater anabolic signalling 

response in ageing muscle compared to CON exercise. 

 

4.4.4 Inflammatory responses 

Immunoblotting against the inflammatory protein TNF-α and the phosphorylation of 

NFκβ p65Ser536 revealed no changes following either ECC or CON exercise (data not 

shown). Muscle macrophage infiltration of the endomysial and perimysial space did 

not significantly increase, although there was a trend for increased infiltration 24 h 

post-ECC exercise (P=0.07) (Figure 4.7). Thus, there was no significant 

inflammatory response following exercise.   
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Figure 4.7. Temporal response of muscle macrophage infiltration in response to 

ECC versus CON exercise in older participants (A). Representative images of 

macrophage infiltration (black circles) at baseline (B), 72 h post-ECC (C) and 168 

h post-ECC (D). BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-

exercise, respectively.  

 

4.4.5 Satellite cell response 

ECC exercise induced SC activation 24 h into the regenerative period (Figure 4.8 C, 

D), determined by increased Pax7+ cells. As a result of assessing temporal 
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relationships between different response parameters, it was observed that SC 

activation occurred once functional decline had past its nadir and recovery had 

started.  

 

 

Figure 4.8. Temporal profile of the satellite cell response following an acute bout 

of ECC versus CON exercise in older participants. (A) representative image of 

staining against type I fibres (white arrowheads) and laminin (white arrow) with 

unlabelled type II fibres (white asterisks), (B) multiplex staining of the baseline 

section with histochemical staining of SC’s (Pax7+ cells, black circle), (C) 
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representative image of Pax7+ cells 24 h post-ECC exercise, (D) quantification of 

mixed muscle Pax7+ cells pre-exercise and up to 168 h post-ECC versus CON 

exercise (1001±46 fibres analysed per time point), (E) quantification of type I and II 

specific Pax7+ cells pre- and up to 168 h post-ECC exercise and (F) quantification 

of type I and II specific Pax7+ cells pre and up to 168 h post CON exercise.  N=5. 

BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 168 h post-exercise, respectively. 

*indicates significant difference at that time point compared to baseline (P<0.05).  

 

4.4.6 Temporality of muscle regeneration  

Data spans were performed to demonstrate the temporality of molecular events 

preceding post-exercise muscle functional recovery during the regenerative period, 

as putative regulators of muscle recovery in ageing muscle. Anabolic signalling 

responses precede post-ECC exercise functional recovery (Figure 4.9 A). However, 

post-CON exercise non-significant peaks in anabolic signalling display a rightward-

shift after the nadir in function (Figure 4.9 D). Similarly, the unexpected lack of 

inflammatory response to both ECC and CON exercise fails to provide insight into 

the temporal relationship between inflammatory molecular events in ageing muscle 

and functional recovery (Figure 4.9 B and E). Consequently, the mechanisms 

regulating post-exercise functional recovery in ageing muscle remain obscure.  
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Figure 4.9. Comparisons between normalised (data span=100%) peak torque with 

markers of anabolic signalling (A, D), inflammatory signalling (B, E) and 
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macrophage and SC infiltration (C, F) following ECC (A-C) and CON (D-F) 

exercise in older participants. BL, 0, 5, 24, 72, 168 refer to baseline, 0, 5, 24, 72, 

168 h post-exercise, respectively. ** denotes significant difference at that time point 

from baseline for peak torque (P<0.01), *** (P<0.005), **** (P<0.0001). All 

significance values are presented in Figure 4.1, 4.6 and 4.8. 

 

4.4.7 Regenerative responses in younger versus older participants 

4.4.7.1 Muscle function, soreness and plasma CK responses in young versus 

older participants 

Despite age-related differences in baseline ECC peak torque production (P<0.005), 

older participants showed a similar temporal peak force decline to the young, both of 

which had recovered to baseline by 168 h. Peak torque following ECC exercise was 

significantly higher in the young at all time points except 5 h (P<0.05), where a 

trend for this difference was apparent (P=0.06) (Figure 4.10 A). As with ECC, age-

related differences were apparent for baseline CON peak torque production 

(P<0.05). Older participants displayed a delayed decline in peak torque post-CON 

exercise versus the young group (Figure 4.11 A), which recovered to baseline by 72 

h in both young and older groups. In addition to baseline, age-related differences in 

peak torque were observed at 168 h only (P<0.05) (Figure 4.11 A).  

 

The temporal response of reductions in peak power production following ECC 

exercise in the older group displayed a delayed onset and earlier recovery to peak 

power versus the young (Figure 4.10 B), with peak power returning to within 

baseline by 24 h in the older and 72 h in the younger participants. No peak power 

decline was observed in either age-group, and no age-related difference were 
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observed following CON exercise (Figure 4.11 B). Thus, there is no evidence of 

impaired functional recovery in older participants after a single bout of either ECC 

or CON exercise. 
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Figure 4.10 Temporal recovery of peak muscle torque (A) and power (B) after 

ECC exercise in young and older participants. BL, 0, 5, 24, 72, 168 refer to 

baseline, 0, 5, 24, 72, 168 h post-exercise, respectively. ** indicates significant 

difference versus baseline (P<0.01) *** (P<0.001) **** (P<0.0001). # indicates 

significant difference between young and older age groups at that time point 

(P<0.05), ### (P<0.005). 
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Figure 4.11 Temporal recovery of peak muscle torque (A) and power (B) after 

CON exercise in young and older participants. BL, 0, 5, 24, 72, 168 refer to 

baseline, 0, 5, 24, 72, 168 h post-exercise, respectively. * indicates significant 

difference versus baseline (P<0.05), ** (P<0.01) *** (P<0.001) **** (P<0.0001). # 

indicates significant difference between young and older age groups at that time 

point (P<0.05).  
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Post-ECC exercise perceptions of muscle soreness displayed earlier onset and 

sustained increases in the young versus older participants, whilst post-CON exercise 

soreness increased at 24 h only in both age groups (Appendix 4.1). Reduced 

tolerance to pressure-induced discomfort was also prolonged in young versus older 

participants post-ECC exercise. Post-CON exercise tolerance to pressure-induced 

discomfort occurred earlier in the older versus younger participants (Appendix 4.2). 

PPT was significant different between young and older participants only at 5 h post-

CON exercise (P<0.05). The increase in plasma CK was delayed in older adults, 

increasing 72 h post-exercise versus the increase at 24 h post-exercise observed in 

younger participants (Figure 4.12). 

 

Figure 4.12. Plasma creatine kinase content post-ECC/CON exercise in young 

and older participants. BL, 0 con, 0 ecc, 24 and 72 refer to baseline, BL, 0 h 

post-CON exercise, 0 h post-ECC exercise, 24 and 72 h post-exercise, 
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respectively. * indicates significant difference versus baseline (P<0.05), ** 

(P<0.005). 

 

The combination of these age comparisons suggest that older participants were not 

more susceptible to exercise-induced muscle ‘damage’ and that the functional post-

exercise muscle remodelling response to both ECC and CON exercise was not 

impaired in older healthy participants. 

 

4.4.7.2 Muscle protein synthetic response to ECC versus CON exercise in 

younger versus older participants 

Myofibrillar MPS was not significantly different between young versus older 

participants at any time-point post-ECC (Figure 4.13 A) or post-CON (Figure 4.13 

B). When these data were collapsed i.e. independent of age and contraction type 

(n=31), no significant changes were observed in myofibrillar MPS post-exercise 

(Figure 4.13 C).  
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Figure 4.13. Baseline and temporal response of myofibrillar FSR in young versus 

older participants up to 168 h post-ECC (A), post-CON exercise (B), and when the 

data was collapsed i.e. independent of age and contraction-type (C). BL-0, 0-5, 0-

24, 0-72, 0-168 refers to BL-0, 0-5, 0-24, 0-72, 0-168 post-exercise, respectively.  
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4.4.7.3 Anabolic and catabolic signalling responses in young versus older 

participants 

Post-ECC exercise, anabolic signalling (mTORSer2448, p70S6K1Thr38 and rps6Ser240/244) 

activation status was not increased in older participants, with the exception of 

p70S6K1Thr38 and rps6Ser240/244 at 5 h post (Figure 4.14 A-C). Post-CON exercise, no 

activation of anabolic signals was observed in the older group, although rps6Ser240/244 

phosphorylation was higher in older versus young participants at 72 h following 

CON exercise (P<0.01) (Figure 4.14 F). No age-related differences were observed at 

any time point for eEF2Thr56 or 4EBP1Thr37/46. Therefore, ECC exercise may 

rejuvenate some of the exercise-induced anabolic signals in older participants, 

although the extent and duration is blunted compared to younger counterparts.  
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Figure 4.14. Temporal response of molecular anabolic signalling markers post-

ECC (A-C) and –CON (D-F) exercise in young and older participants; 

mTORSer2448 (A, C) p70S6K1Thr389(B, E) and rps6Ser240/244 (C, F). BL, 0, 5, 24, 72 

and 168 refer to baseline, 0, 5, 24, 72 and 168 h post-exercise, respectively. RAU, 

relative arbitrary units. * indicates significant difference versus baseline (P<0.05), 

BL 0 5 24 72 16
8

0

5

10

15

LO
G

 p
-m

TO
R

Se
r2

44
8 /

 C
oo

m
as

si
e 

(R
A

U
) ** ***

BL 0 5 24 72 16
8

0

1×1010

2×1010

3×1010

p-
p7

0S
6K

1T
hr

38
9 /

 
C

oo
m

as
si

e 
(R

A
U

)

****

*

P=0.06

*

BL 0 5 24 72 16
8

0.0

5.0×1012

1.0×1013

1.5×1013

Time (h)

p-
rp

s6
Se

r2
40

/2
44

/ 
C

oo
m

as
si

e 
(R

A
U

) **
P=0.05*

P=0.7

BL 0 5 24 72 16
8

0

5

10

15
Young

Old

BL 0 5 24 72 16
8

0.0

5.0×109

1.0×1010

1.5×1010

2.0×1010

*

BL 0 5 24 72 16
8

0

2×1012

4×1012

6×1012

8×1012

1×1013

Time (h)

##

A

B

C

D

E

F



 185 

** (P<0.01), *** (P<0.001) **** (P<0.0001), ## indicates significant differences 

between groups at that time point.  

 

Of the four proteolytic systems examined (25, 37 and 42 kDa Cathepsins, MuRF1, 

Beclin 1 and Calpain 1), young demonstrated suppressed lysosomal activity (0-24 h 

post-ECC/CON exercise) and increased UPS activity (168 h post-ECC/CON 

exercise). In contrast, compared to baseline, older participants displayed no 

expression changes in any proteolytic markers post-ECC or post-CON exercise at 

any time point. Despite differences in the regulation of breakdown pathways, the 

only age-related difference identified was Calpain 1 content, which was higher 5 h 

post-ECC exercise in the older versus younger group (P<0.05) (Figure 4.15). Since 

the activity of proteolytic markers was regulated in the young but not the old, it 

might be that older participants display facets of impaired muscle remodelling/ 

protein turnover, though this cannot be confirmed and does not appear to translate to 

an acute functional deficit. 
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Figure 4.15. Temporal response of calpain 1 post-ECC exercise in young and 

older participants. BL, 0, 5, 24, 72 and 168 refer to baseline, 0, 5, 24, 72 and 168 h 

post-exercise, respectively. RAU, relative arbitrary units. #indicates significant 

difference between groups at that time point (P<0.05).  

 

4.4.7.4 Inflammatory responses 
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CON exercise (72 and 168 h), levels of inflammatory markers in older muscle 

remained unchanged after either contraction mode, resulting in levels that were not 
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(Figure 4.16 A and Figure 4.17 A). The inflammatory transcriptional response was 

unique to young post-ECC only (Figure 4.16 B and Figure 4.17 B), although greater 
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CON exercise (P<0.05) (Figure 14.7 B).  
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Figure 4.16. Temporal response of muscle inflammatory mediators post-ECC 

exercise in young and older participants; TNF-α (A) and NFκβ p65Ser536(B). BL, 

0, 5, 24, 72 and 168 refer to baseline, 0, 5, 24, 72 and 168 h post-exercise, 

respectively. RAU, relative arbitrary units. * indicates significant difference versus 

baseline (P<0.05) **** (P<0.0001). # indicates significant difference between 

young and older groups at that time point (P<0.05). 
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Figure 4.17. Temporal response of muscle inflammatory mediators post-CON 

exercise in young and older participants; TNF-α (A) and NFκβ p65Ser536(B). BL, 

0, 5, 24, 72 and 168 refer to baseline, 0, 5, 24, 72 and 168 h post-exercise, 

respectively. RAU, relative arbitrary units. **** indicates significant difference 

versus baseline (P<0.0001). # indicates significant difference between young and 

older groups at that time point (P<0.05). 
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Similarly, older participants had elevated basal levels of macrophage infiltration 

compared to younger participants (P<0.05) (Figure 4.18 A, B), which did not 

increase after ECC or CON exercise, unlike the young who demonstrated increased 

infiltration at 72 h post both exercise types (ECC P<0.001, CON P<0.01) and 168 h 

post-ECC (P<0.01). Macrophage infiltration was higher in older versus younger 

participants at 5 h post-CON and 24 h post-ECC exercise (P<0.05). Thus, age-

related increases in basal inflammation does not increase susceptibility to exercise-

induced inflammation, and inflammatory status does not impair the functional 

remodelling of ageing muscle to acute ECC and CON exercise. 
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Figure 4.18. Temporal response of muscle macrophage infiltration post-ECC (A) 

and –CON (B) exercise in young and older participants. BL, baseline; 0, 5, 24, 72, 

168 refer to 0, 5, 24, 72 and 168 h post-exercise. * indicates significant difference 

versus baseline (P<0.05), ** (P<0.01), **** (P<0.001), # indicates significant 

between groups at that time-point (P<0.05).  
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4.4.7.5 Satellite cell response 

Baseline SC content was not different between the age-groups. SC content was 

greater in older versus younger participants at 24 h post-ECC exercise (P<0.01) 

(Figure 4.19 A). This observation is likely due to significant SC activation at this 

time-point in the older participants. SC content was assessed in type 1 and type 2 

fibres and no post-exercise fibre-type specific SC changes were observed in either 

age-group (data not shown).  
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Figure 4.19. Temporal response of muscle satellite cell activation post-ECC (A) 

and –CON (B) exercise in young and older participants. BL, 0, 5, 24, 72 and 168 

refer to baseline, 0, 5, 24, 72 and 168 h post-exercise, respectively.  * indicates 

significant difference versus baseline (P<0.05), ## indicates significant difference 

between groups at that time point (P<0.01). 
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4.5 Discussion 

This study shows novel data regarding the age-related mechanisms regulating 

skeletal muscle regeneration in older adults following ECC versus CON exercise. 

Both ECC and CON exercise resulted in reduced peak torque indicating the presence 

of muscle damage, highlighting that both exercise modes were successful at 

initiating regenerative processes in older adults. The key findings of this study are 

that i) preceding functional recovery ECC exercise induces anabolic signalling, 

which is absent following CON exercise, ii) despite no inflammatory or proteolytic 

responses, muscle function was restored and iii) SC activation occurred once 

functional repair was initiated post-ECC exercise only. Additionally, compared to 

younger adults, older adults displayed i) blunted anabolic (mTOR and p70S6K1) and 

catabolic (cathepsin L (37 kDa)) signalling following exercise, ii) higher basal levels 

of inflammatory markers and iii) increased SC activation following ECC exercise. 

These age-related perturbations in metabolic processes (anabolic, catabolic and 

inflammatory) did not hamper functional recovery.    

 

In older adults following acute RE, mTOR signalling has been shown to increase for 

up to 24 h (208) or remain unchanged (112, 173). Herein, we show no change in 

phosphorylation status of mTOR pathway constituents up to 168 h after CON 

exercise. Since contraction-induced increases in MPS are dependent upon mTOR 

signalling (85), this may indicate that CON exercise did not increase MPS due to the 

absence of increases in anabolic signals, although discordance between anabolic 

signalling and MPS has been reported (126). This lack of change in the 

phosphorylation of mTOR pathway constituents and potential blunting of MPS may 

also suggest that CON exercise-induced damaged proteins are not effectively 
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replaced since it is the process of MPS that is responsible for synthesizing de novo 

proteins that replace degraded proteins (301). Conversely, ECC exercise was able to 

induce some level of anabolic signalling in older adults, therefore potentially 

creating a more anabolic environment during recovery compared to CON exercise. 

This difference between contraction modes may be related to the greater mechanical 

stress associated with ECC contractions further stimulating mTOR signalling, and 

therefore, may explain the enhanced gains in muscle mass observed following ECC 

versus CON exercise training (283). As further support for this notion, the extent of 

phosphorylation of mTOR signalling pathway constituents in the acute post-exercise 

period correlates with gains in muscle mass over time (316). Interestingly, muscle 

function recovered following both ECC and CON exercise despite disparate anabolic 

signalling, suggesting that anabolic signalling is not necessarily critical for 

functional recovery in older adults; a premise in contrast with previous rodent data 

(23). Furthermore, functional recovery following both exercise types highlights the 

safety of ECC and CON exercise in older adults. However, since anabolic signalling 

is absent following CON but somewhat restored following ECC exercise, ECC 

exercise may offer a more effective exercise intervention for promoting muscle 

growth in older adults.  

 

Previous studies have shown blunted mTOR signalling in older adults from 1 hour 

after RE up to 24 h compared to younger counterparts (112, 173). To our knowledge, 

this is the first study to investigate age-related differences in mTOR signalling more 

than 24 h post-ECC versus CON exercise. Herein, the exercise-induced increase in 

anabolic signalling was blunted in older adults following CON exercise, and was 

shorter lived following ECC exercise in the older versus younger adults. Thus, a 
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perturbed anabolic environment is present following both ECC and CON exercise in 

older adults, which may go some way to explain the attenuated increases in muscle 

mass and strength in response to RET when compared to younger adults (37). To 

fully elucidate the role of this blunted anabolic signalling in adaptive responses the 

chronic effect of ECC versus CON training in younger versus older adults needs to 

be tested.  

 

No significant changes in myofibrillar MPS were shown following either ECC or 

CON exercise at any time-point throughout the study. These data were unexpected 

since the acute stimulation of MPS in response to a single bout of RE, ECC or CON 

exercise has been well established and demonstrated in numerous previous studies in 

both young and older adults (72, 172, 173, 224, 260). Several instances were noted 

where the delta shift, representative of isotopic enrichment, was smaller at later time-

points compared to earlier time-points. For example, in one older adult at 0 h post-

CON exercise mean delta was 247 and reduced to 228 5 h post-CON (all raw data 

has been shown in Appendix 4.3). Since D2O is cumulative, this drop in delta is not 

physiologically possible, therefore sample preparation errors may have led to 

inaccurate data; all of the MPS analysis will be re-run and analysed.  

 

No changes in proteolytic markers were observed in older adults up to 168 h 

following either ECC or CON exercise. In contrast, previous research has shown 

similar changes in breakdown markers between young and older adults up to 24 h 

following RE (113). However, this finding was following conventional RE and was 

assessed as levels of mRNA (as opposed to protein), which may explain the 
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discrepant findings. The lack of proteolytic changes appears to be an unexpected 

age-related phenomenon, since suppression of lysosomal markers and increased UPS 

markers were observed in the young. However, defects in breakdown systems i.e. 

reduced removal of damaged organelles and proteins, are deleterious to muscle 

homeostasis and can lead to myofibre degeneration, muscle weakness and loss of 

muscle mass (166, 204). As such, perturbed proteolytic responses in older adults 

may suggest impaired muscle protein turnover and could impair muscle adaptation. 

Ultimately, in this acute study, the lack of proteolytic systems did not appear to 

translate to impairments in functional restoration.  

 

Interestingly, no local inflammatory response was evident up to 168 h following 

either ECC or CON exercise in older adults, despite heightened basal inflammatory 

marker levels. When compared to younger muscle, levels of inflammation (TNF-α 

and macrophages) became similar between the age-groups as inflammation increased 

in response to exercise in the young. It is generally accepted that systemic 

inflammation is heightened in  ageing and the wealth of research in this area has lead 

to the term “inflammaging” (105). However, only a few studies have confirmed 

increased levels of muscle inflammatory markers with ageing per se (129, 219), 

where others have shown no basal age-related differences (80, 137). In response to 

exercise, various studies have shown blunted or no detectable inflammatory 

responses in ageing muscle (80, 137). Thus, these novel data show that local skeletal 

muscle inflammation is up-regulated by ageing per se and is subsequently 

dysregulated following exercise in older adults. However, despite this, muscle 

function was restored by 168 h post-exercise. This is suggestive that inflammation is 

not necessary for functional repair, but instead mediates adaptive processes such as 
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ECM remodelling; a system in which maladaptation may accumulate over time to 

present as age-related losses in muscle mass. This premise is supported by data in 

young adults which shows that inflammation occurs once peak torque has past the 

nadir and persists once function has fully recovered.  

 

Herein, increased SC activation was unique to ECC exercise and occurred once 

functional decline had past the nadir. Thus, SC activation in older adults is most 

likely not necessary for functional recovery. This notion is consistent with findings 

by Dreyer et al., (2006) who found an increased number of SC per muscle fibre area 

24 h post-ECC exercise in older adults, although no measures of functional repair 

were taken. Increases in SC following a single exercise bout may, over the course of 

an exercise training programme, culminate in the greater numbers of SC observed in 

older adults in response to RET (290). Since SC activity increased following ECC 

exercise only, this may contribute to the greater gains in mass observed following 

ECC versus CON training (283). No basal differences were observed in the mixed or 

fibre type specific SC pool in young compared to older adults, and this is in line with 

previous reports (84, 287). Interestingly, SC activation was only increased in the 

older adults post-ECC exercise, a divergent finding compared to previous work 

where increases have been observed in both young and older participants, or there 

had been a blunted response in the older adults (84, 216). As alluded to previously 

(Chapter 3), SC content varies across a single muscle cross-section, so the most 

reliable way of detecting SC changes is to count as many fibres as possible (ideally 

the whole muscle cross section) (197). As such, divergent finding may be explained 

by the total fibre count. Herein, each whole cross-section was counted (1001±46 

fibres), compared to previous reports which used <150 muscle fibres (84), and 
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another study which reported ≥125 fibres (216), although the maximum number of 

total fibres was undisclosed (216). Nonetheless, data generated in the present study 

is suggestive that SC activation is required for muscle regeneration and adaptation 

following ECC exercise in older but not younger muscle, and may imply that that the 

intrinsic regenerative capacity in older adults is not sufficient compared to younger 

adults. Therefore, an additional mechanism i.e. SC activation, is required in order to 

facilitate muscle regeneration via the satellite cell nuclei incorporating into the fibre 

and thus increasing the capacity for mRNA synthesis required to regenerate the fibre 

(161).  

 

4.6 Conclusion 

Both ECC and CON exercise in older adults induced muscle dysfunction which was 

restored within the 168 h time-frame investigated. Compared to CON, ECC exercise 

induced a greater anabolic environment with regard to anabolic signalling proteins 

and stimulated SC activation. Therefore, ECC exercise in older adults is safe, 

tolerable and potentially a more potent stimulator of muscle growth in ageing 

muscle. In comparison to younger adults, older adults demonstrate higher basal 

inflammation and blunted anabolic, catabolic and inflammatory responses to 

exercise which do not affect functional recovery. The activation of SC is unique to 

older adults. Therefore, the regenerative mechanisms following acute exercise differ 

with advancing age. These age-related perturbations in key regenerative processes 

may underlie the blunted adaptations to RET programmes often seen in older muscle 

and ultimately may contribute to losses and/ or impaired maintenance of skeletal 

muscle mass and strength in older adults. 

  



 199 

5 Age-related Skeletal Muscle 

Transcriptomic Response to Acute 

Eccentric and Concentric 

Contractions 
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5.1 Abstract 

Background: The molecular mechanisms mediating the divergent functional 

adaptations to eccentric (ECC) versus concentric (CON) exercise may initiate within 

hours’ post-exercise, but are poorly understood. Age-related abnormalities in post-

exercise molecular responses may contribute to attenuated muscle adaptation in 

response to chronic ECC and CON exercise training. Methods: Eight young (22±1 

y) and eight older (70±1 y) healthy exercise naïve participants performed a single 

bout of unilateral ECC exercise (7×10 repetitions at 80% of ECC one-repetition 

maximum) and unilateral CON exercise (7×10 repetitions at 80% of CON one-

repetition maximum). Muscle biopsies were collected at baseline and 5 h post-ECC 

and post-CON exercise. Total RNA was extracted and subjected to next generation 

sequencing and differentially expressed genes tested for pathway enrichment using 

Gene Ontology (GO). Results: Older participants displayed 952 differentially 

expressed genes enriched for blood vessel development, plasma membrane and cell-

cell junction GO terms which were down-regulated at baseline. Independently of 

age, ECC and CON exercise elicited a similar post-exercise transcriptional response. 

Age-dependent post-ECC transcriptional profiles resulted in no GO term enrichment 

in young (81 up-regulated, 23 down-regulated) or older (151 up-regulated, 19 down-

regulated) participants. Post-CON exercise, no clear pattern of GO term enrichment 

was present in young (13 up-regulated, 2 down-regulated). Whereas post-CON 

exercise in the older participants displayed 147 uniquely up-regulated genes enriched 

for cell adhesion, extracellular organisation and blood vessel development pathways, 

and 28 uniquely down-regulated genes relating to the metabolism and/or catabolism 

of amino acids, lipids, carboxylic acid and DNA. Conclusions: Ageing is associated 

with distinct transcriptomic profiles at baseline and following ECC and CON 
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exercise. Such differences may contribute to the known impaired chronic adaptation/ 

remodelling that occurs in response to exercise training in ageing adults.  
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5.2 Introduction 

Associated with ageing is the progressive loss of muscle mass and function 

(sarcopenia and dynapenia, respectively) (223, 286), which compromises locomotory 

capabilities (25), metabolic health (306, 307) and ultimately increases the risk of 

premature mortality (175). RET is currently the most safe and effective 

countermeasure to enhance muscle mass and function in older adults (36, 100). 

Previous work and data within this thesis has shown that by segmenting 

conventional RE into ECC and CON contractions, the functional, metabolic and 

molecular responses are divergent, which might explain differences observed in 

chronic adaptations (283). For example, ECC exercise is associated with more 

muscle damage (117), pro-longed acute anabolic signalling (Chapter 3,4), greater 

muscle protein accretion (224), pro-longed inflammation (Chapter 3) and greater SC 

activation (Chapter 4). Furthermore, divergent responses to contraction-type have 

been noted between the ages. For example, anabolic signalling is blunted in older 

versus younger adults in response to both ECC and CON exercise (Chapter 4). 

Therefore, research is warranted which aims to elucidate the molecular regulators of 

divergent responses to different contraction-types in young and older adults. Such 

research may highlight opportunities for therapeutic intervention aimed at 

ameliorating muscle loss with ageing.  

 

Targeted molecular analysis such as real-time reverse transcriptase polymerase chain 

reaction (RT-qPCR), western blotting and/ or immunohistochemical/fluorescent 

staining are limited to the investigation of just one or a few target mRNA’s or 

proteins, and thus provide valuable insight but only into a limited number of putative 

molecular regenerative mechanisms. However, the true extent of molecular 
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mechanisms in the skeletal muscle regenerative processes are likely far more 

extensive and complex than currently understood. As such, more innovative analytic 

approaches are necessary in order to identify the complexity of such processes.  

 

The development of ’OMIC’ analysis, of particular interest transcriptomics, permits 

the detection of hundreds, tens of thousands or even all mRNA (depending on the 

method used) at once within a biological sample. As such, utilising transcriptomic 

analysis facilitates the identification of more global molecular networks involved in 

regulating muscle regeneration. Still today the most popular transcriptomic method 

for investigating gene expression is using microarrays (362). This is due to the 

combination of affordability and the capability to detect tens of thousands of 

transcripts simultaneously (362). However, there are limitations associated with 

microarrays, most notably the detection of only genes that transcripts have been 

designed for (362). Recently, there has been an increase in the number of studies 

implementing RNA sequencing which allows the discovery, profiling and 

quantification of all RNA transcripts in a biological sample (329). Although 

currently more expensive compared to microarrays, RNA sequencing allows the 

unbiased detection of novel transcripts including splice variants (i.e. no need for 

transcript specific probes). The enhanced specificity and sensitivity of RNA 

sequencing increases the detection of differential expression and low-abundance 

transcripts can be detected. The benefits of RNA sequencing over microarray 

suggest there is the potential that RNA sequencing will soon become the chosen 

method of choice to perform transcriptomics profiling (362).  
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In an attempt to understand the contraction-specific molecular mechanisms 

regulating muscle regeneration, global transcriptomic profiling has been 

implemented in both rodent (19, 51) and human studies (50, 169, 199). Genes related 

to ECM, cytoskeletal, hypertrophy, angiogenesis, signal transduction and stress 

response processes have been shown to be up-regulated, whereas genes related to 

gene transcription and translation, protein metabolism, mitochondrial structure and 

oxidative phosphorylation activity are down-regulated four hours after traditional RE 

in males (190). As such, the authors suggested that the transcriptional data might 

imply inhibited mitochondrial activity and increased protein accretion following 

acute RE (190). In order to define ECC-induced transcription responses, Chen and 

colleagues (2003) compared ECC-CON versus CON exercise responses 4-8 h post-

exercise. They found genes uniquely up-related following ECC-CON (and thus 

unique to ECC contractions) were related to cell growth, stress response, DNA 

damage, inflammation, ECM remodelling and signalling, whereas no genes were 

consistently down regulated (50). This may be related to the ‘damaging’ nature of 

ECC exercise, which is known to induce inflammation (Chapter 3) and ECM 

remodelling (149) in young healthy muscle. However, the lack of specific biopsy 

time point (i.e. biopsies were taken between 4-8 h) precludes understanding into the 

precise temporal responses, since remodelling responses can be rapid and might be 

different at 4 h versus 8 h post-exercise. Others have identified individual up and 

down-regulated differentially expressed genes 3 and 48 h after isolated ECC 

exercise, which were characterised into several biological categories; apoptosis, 

growth, proteolysis, metabolism, stress management and transcription (i.e. up and 

down-regulated genes in all categories) (199). These data highlight that many 

cellular processes are regulated during muscle regeneration. However, the small 
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subject population of only four males in this study likely prevented the detection of 

many gene changes that occurred (199). Only a handful of studies have directly 

compared the contraction-specific transcriptomic response in humans. Kostas and 

colleagues (2006) reported divergent transcriptional responses as early as 3 h 

following ECC versus CON exercise in healthy young males. For example, FBXO32 

(also known as MAFbx), which targets proteins for degradation, was down-regulated 

6 h post-ECC in relation to CON exercise and certain heat shock proteins, which are 

involved in rescuing proteins from misfolding, were up-regulated following ECC 

exercise (169). These regulatory responses might be due to the greater muscle 

damage associated with ECC contractions, and may underlie divergent chronic 

adaptations. 

 

Utilising OMIC approaches, several studies have highlighted genes which might 

mediate the ageing of skeletal muscle (86, 120, 258, 305, 313, 339). For example, 

ageing is associated with reduced expression of genes related to mitochondrial 

function (313). This might contribute to age-related reductions in mitochondrial 

protein synthesis and function (284). When compared to younger adults, older adults 

displayed down-regulated differentially expressed genes encoding energy 

metabolism (i.e. mitochondrial protein synthesis, tricarboxylic acid cycle activity), 

whereas differentially expressed genes encoding proteasome components were up-

regulated in older versus younger adults (339). This might suggest that ageing per se 

is associated with impaired metabolic processes, that contribute to muscle 

dysregulation during ageing. Drummond and colleagues (2011) identified small non-

coding microRNA (miRNA) Let-7 family members (Let-7b and Let-7e), which are 

involved in reducing cellular replication and were expressed at higher levels in older 
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versus younger adults. Further, increased Let-7 was associated with down-regulated 

cell cycle regulators and Pax7 (satellite cell) mRNA expression (86), that might 

contribute to reduced regenerative potential in ageing muscle. As such, there seems 

to be an age-related transcriptional regulation during ageing which differs from the 

young.  

 

Currently, only a handful of studies have utilised microarray techniques to 

investigate the age-related transcriptomic response to acute exercise. Twenty-four 

hours following acute RE 318 genes were differentially expressed in the old 

compared to only 87 in the young, although plasma creatine kinase was similar 

between the ages denoting similar levels of exercise-induced muscle ‘damage’ (317). 

In the older adults, up-regulated transcripts related to stress and cellular compromise, 

inflammation and immune responses, necrosis, and protein degradation (317). These 

data suggest older muscle induce a greater transcriptional response to exercise 

despite similar levels of ‘damage’ compared to the young, and thus may induce an 

altered regenerative response which is suboptimal to that of the young. However, 

this was following conventional RE, and so the age-related contraction-specific 

transcriptome response is unknown. Furthermore, this study investigated the 24 h 

post-exercise time-point, which misses the nadir of muscle function (post-ECC 

exercise), peaks in anabolic signalling and repressed proteolytic signalling, as shown 

in Chapter 3. As such, this study may have missed important transcriptional 

responses that are rapidly up-regulated as part of the rapid regeneration process.  
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Therefore, the aim of this study was to utilise RNA sequencing to identify age-

related transcriptional differences at baseline, and changes following acute ECC 

versus CON exercise in young versus older adults. Specifically, differential gene 

expression 5 h post ECC and CON was investigated since the nadir of force was at 5 

h post-ECC and repressed catabolic signalling and peak anabolic signalling occur 5 h 

post-ECC and CON (Chapter 3), indicative of transcriptional activity at this time. 

 

5.3 Methods 

5.3.1 Study Design 

Participants for this analysis were the same eight young (21±1 y, body mass index 

23±2 kg/m2; 80% ECC 1-RM 211±14 kg and 80% CON 1-RM 122±11 kg) and eight 

older  (70±1y, body mass index 26±1 kg/m2; 80% ECC 1-RM 155±9 kg and 80% 

CON 1-RM 79±6 kg) healthy exercise naïve males described in Chapter 3 and 

Chapter 4, respectively. The experimental protocol is fully described in Chapter 3, 

with analysis for this chapter based around the protocol from baseline until 5 h post 

exercise (visit 2), excluding the 0 h time-point (Figure 5.1). In brief, participants 

arrived for their first (baseline) visit fasted (for 11 h) at ~9 am for a baseline (m. 

vastus lateralis) muscle biopsy taken under local anesthesia. Ninety-six hours later, 

participants arrived at ~8.30 am for visit 2 having consumed a 250 ml of a liquid 

high energy nutritionally complete drink (Fortisip, Nutricia, Netherlands) at 07:00 

am. Participants then remained fasted until visit 2 was complete at approximately 

5.30 pm. Participants performed ECC exercise on one leg and CON exercise on the 

contralateral leg using a MLP. Participants underwent a familiarisation, warm up and 

ECC/CON 1-RM testing prior to performing unilateral ECC/CON exercise (7 sets of 
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10 repetitions at 80% of ECC/CON 1-RM). Five hours after the cessation of the 

exercise, participants had an additional muscle biopsy taken from each leg. 

 

Figure 5.1. Schematic of the study protocol for transcriptomic analysis 

 

5.3.2 RNA extraction and concentration 

Muscle biopsy tissue taken at baseline and 5 h post-ECC and CON exercise was 

shipped to the Beijing Genomics Institute (BGI) for RNA isolation. According to the 

institute’s instructions, muscle was homogenized in 1.5 ml of TRIzol (Invitrogen) for 

2 minutes using a TissueLyser II (Qiagen), and then left to rest for 5 minutes to 

allow the breakdown of cells and cellular components whilst maintaining the 

integrity of RNA. Afterwards, samples were centrifuged at 12,000 g for 5 minutes at 

4ºC. The RNA-containing supernatant was transferred into a new Eppendorf and 300 

µl of Chloroform/ isoamyl alcohol (24:1) was added and the tubes were vigorously 
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shaken. Samples were centrifuged at 12,000 g for 10 minutes at 4ºC after which the 

sample separated into 3 phases, the lower phenol-chloroform phase containing cell 

debris, an interphase containing DNA and protein and the upper aqueous phase 

containing RNA. The aqueous phase was decanted into a new Eppendorf and an 

equal volume (matching that of the supernatant) of isoamyl alcohol was added, 

mixed and left at -20 ºC for 2 hours for precipitation. Samples were centrifuged at 

13,600 rpm for 20 minutes at 4ºC, and the supernatant was discarded. The remaining 

RNA containing pellet was washed by adding 1 ml 75% ethanol and centrifuged at 

13,600 rpm for 3 minutes at 4ºC, this step was repeated. All ethanol was removed 

from the Eppendorf without disturbing the pellet, any excess ethanol was left to air 

dry off the RNA pellet. Between 20-30 µl of diethylpyrocarbonate-treated (i.e. 

RNase-free) water was added to dissolve the RNA pellet.  

 

To determine the quality of the RNA, samples were run on an Agilent 2100 

bioanalyser (Agilent Technologies). Only samples with an RNA integrity number 

(RIN) of ≥ 5.7 and RNA mass of >200 ng were accepted for RNA sequencing.  

 

5.3.3 RNA sequencing 

All processes involved for performing next generation RNA sequencing were 

performed by BGI. Library preparations were performed using TruSeq RNA library 

preparation kits. The first step in the library preparation work flow was to purify the 

poly-A containing mRNA, and thus most mature mRNA, from 0.1-1 µg total mRNA 

using Poly-T oligo attached magnetic beads. This removes ribosomal rRNA which 

accounts for >90% of total RNA (358), which would thus drown out the presence of 
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RNA of interest. A second round of purification fragments RNA to minimise 

secondary structure formation and reduce end biases (358). RNA fragments were 

reverse transcribed using random primers into the first cDNA strand, then the RNA 

template is removed and replaced by a second cDNA strand, this reverse 

transcription is necessary since sequencing technologies require DNA libraries 

(358). cDNA fragments then go through an end repair process where overhangs (i.e. 

unpaired nucleotides) were converted into blunt ends, and a single ‘A’ nucleotide is 

added to the 3’ end of the blunt fragments to prevent ligation with one another and 

there is the ligation of the adapters. Products were then purified and enriched with 

PCR to compile the cDNA library.  

 

Next generation sequencing was performed using the HiSeq 3000/HiSeq 4000 

Illumina sequencing by synthesis chemistry systems, using advanced patterned flow 

cell technology for maximised level of sample throughput.  

 

5.3.4 Sequence quality and the alignment of sequencing data 

The quality of raw sequencing reads was evaluated using FastQC (Babraham 

Bioinformatics), a quality control tool for high throughput sequencing data. In 

particular, the per base sequence quality, which shows the range of quality values 

across all bases at each point was only accepted if the median of the base was ≥ 20. 

Additionally, sequence duplication levels, which creates a plot showing the relative 

number of sequences with different degrees of duplication, was only accepted if non-

unique sequences make up less than 50% of the total. As the quality of reads was 

judged to be high no additional filtering or trimming to get rid of low quality reads 
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or sequences containing adaptor sequences was necessary. Reads were aligned to the 

human reference genome (hg38 NCBI - iGenomes) using Bowtie2 (176). A 'local' 

alignment was performed on single end reads with the 'very-sensitive' pre-set 

parameters. Further processing of the alignment files was performed using samtools 

(182). 

 

5.3.5 Identifying differential expression 

Reads mapping to known exons were counted using (184) in an unstranded fashion 

and using the human genome annotation as a reference (hg38 NCBI – iGenomes). 

To characterise the variation between sequencing samples, edgeR (282) was used to 

produce a multi-dimensional scaling (MDS) plot. The MDS plot identified the 

presence of two outliers in the samples (Appendix 5.1 A). The samples, a young 

baseline sample and an older 5 h post-ECC exercise sample, were removed from all 

subsequent analysis. The MDS plot of the remaining data showed a more clustered 

set of samples with no obvious outliers (Appendix 5.1 B). Differential expression 

was inferred between groups (i.e. young baseline vs young CON exercise) using 

edgeR. In the edgeR analysis genes were only included in the analysis if the counts 

per million (CPM) for that gene was greater than 2 in more than 10 samples. Counts 

were normalised by library size and biological and technical variation (dispersion) 

was estimated. Significance of differential expression was estimated using the 

Fisher's exact test and P-values were corrected for a false discovery rate using the 

method of Benjamini and Hochberg (28) with a significance cutoff of P-corr < 0.05. 
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To identify changes in expression between the age groups, first differentially 

expressed genes in the specific contraction groups (ECC and CON) were compared 

to baseline for each age group and compared the baseline of each age group. Then 

these differentially expressed genes were compared across the age groups in order to 

identify genes that are differentially expressed in both age groups or are unique to 

either the young or older groups.  

 

5.3.6 Pathway analysis 

Significantly differentially expressed genes were tested for pathway enrichment 

using Gene Ontology (GO) (10) and BINGO (198). This allowed the identification 

and visualisation of common functions, pathways and/or processes of differentially 

expressed genes. In this analysis the sample was the set of differentially expressed 

genes and the background was all genes that passed the filtering criteria in the edgeR 

analysis (as outlined above). To test for enrichment the hypergeometric test with 

correction for a false discovery rate was used, using the method of Benjamini and 

Hochberg (28) and a significance cutoff of P-corr < 0.05. The hypergeometric test 

was used in order to reduce the number of false positives identified. For this analysis 

the ‘Biological Process’ section of the GO was primarily focused on and utilised all 

annotations for human genes and GO terms. Significantly enriched terms were 

visualised as a network using BINGO and Cytoscape (297) a rank-rank 

hypergeometric overlay (RRHO) was performed prior to applying a P-value cut-off 

(P<0.05).  
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5.4 Results 

5.4.1 Age-related regulation of the baseline transcriptomic profile  

Initially, differences in baseline transcriptomic expression between age groups were 

compared. A total of 952 genes displayed significant differential expression in older 

versus younger participants; of these 328 were up-regulated and 624 were down-

regulated. Full lists of the differentially expressed genes can be found in 

Supplementary File 1. Using the Gene Ontology (GO) to identify the functions of 

differentially expressed genes, up-regulated genes clustered to several high-level and 

diverse GO terms. However, GO terms enriched for genes down-regulated in older 

muscle identified a pattern of reduced blood vessel development (using ‘Biological 

Process’ ontology, Figure 5.2 A), and of decreased plasma membrane, and cell-cell 

junction expression (using ‘Cellular Component’ ontology, Figure 5.2 B). Complete 

lists of enriched GO terms for all differentially expressed genes between older and 

younger individuals at baseline can be found in Supplementary File 2.
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Figure 5.2. Reduced differential expression of genes related to blood vessel development and cell membrane gene expression in older versus 

younger participants at baseline. (A) Reduced expression of terms associated with blood vessel development, using the ‘Biological Processes’ 

ontology. (B) Reduced expression of terms relating to the cell membrane and cell-cell junctions, using the ‘Cellular Component’ ontology. Each 

node in the network represents a GO term with the size of each node corresponding to the number of genes associated with that term. 

Significantly enriched terms are coloured yellow with more significant terms a deeper shade.
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5.4.2 Common transcriptomic responses characterise CON and ECC exercise, 

independent of age 

Since catabolic repression and peaks in anabolic signalling occurred after 5 h after both CON 

and ECC exercise, this relevant time point (i.e. 5 h post-exercise) was chosen to compare the 

transcriptional response to different contraction modes. Comparing baseline to 5 h post-CON 

and -ECC exercise, the muscle transcriptome displayed a pattern of significant differential 

gene expression in both age groups (Table 5.1).  

 

Table 5.1. Total numbers of significantly differentially expressed genes in skeletal muscle 

of young and older participants 5 hours following ECC and CON exercise.  

 Concentric Eccentric 

 Up-

regulated 

Down-

regulated 

Up-

regulated 

Down-

regulated 

Young 227 63 590 204 

Old 665 328 724 198 

 

Transcriptomic profiles between post-CON and post-ECC exercise differentially expressed 

genes were directly compared, within age groups (Figure 5.3). In young participants the up- 

and down-regulated transcriptional profiles of CON and ECC exercise are virtually identical. 

Similarly, in older participants there is large overlap between CON and ECC differentially 

expressed genes. Despite the higher number of contraction-unique up-regulated genes in 

older participants, these gene sets show no enrichment for GO terms suggesting that the 

genes do not coherently represent any specific functions or that these sets comprise poorly 
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annotated genes. Full lists of differentially expressed genes from baseline to post-exercise, 

and for the overlap between the contraction types can be found in Supplementary File 1. 

Complete lists of enriched GO terms for all contraction mode-associated differentially 

expressed genes can be found in Supplementary File 3. 

 

 

 

Figure 5.3. CON and ECC exercise induce a common transcriptomic response in young 

and older participants. Overlap of contraction mode-associated differentially expressed 

genes within age groups. Near complete overlap exists between up-regulated (top left Venn) 

and down-regulated (top right Venn) genes, 5 h after CON and ECC exercise in young 
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participants. Up-regulated (bottom left Venn) and down-regulated (bottom right Venn) genes 

in older participants after CON and ECC exercise also display predominant overlap. 

 

5.4.3 The effect of ageing on the muscle transcriptomic response to CON and ECC 

exercise: 

To determine whether older participants display a disparate post-exercise transcriptional 

profile compared to the young, GO term enrichment was first assessed for differentially 

expressed genes between baseline and post-CON exercise and baseline and post-ECC 

exercise within age groups. In the young, the ‘Biological Processes’ ontology identified 

between 6-115 high-level terms as up- or down-regulated after CON and ECC exercise, thus 

no consistent functional pattern emerges for the post-exercise transcriptional response in 

young participants. The response in older participants to ECC exercise similarly identified 

numerous high-level GO terms for up-regulated (138) and down-regulated (39) terms. Full 

lists of these GO terms can be viewed in Supplementary File 3. However, a post-CON 

exercise specific pattern of GO term enrichment arose in older participants: terms associated 

with blood vessel development and cell adhesion were up-regulated (Figure 5.4 A), and 

several terms relating to mitochondrial respiration were down-regulated (Figure 5.4 B).
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Figure 5.4. Transcriptomic profile of older participants 5 h post-CON exercise. (A) increased expression of GO term networks associated with 

cytoskeletal, cell adhesion and extra-cellular matrix (bottom left red insert) and blood vessel development (top right) (B) reduced expression of 

GO term network associated with mitochondrial metabolism (blue insert). Each node in the network represents a GO term with the size of each 

node corresponding to the number of genes associated with that term. Significantly enriched terms are coloured yellow with more significant 

terms a deeper shade.
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Post-CON and post–ECC exercise differentially expressed genes between young and older 

participants were overlaid to directly compare age-specific transcriptomic responses (Figure 

5.5). After CON exercise, few genes were uniquely up-regulated (13 genes) and down-

regulated (2 genes) in young participants, with no clear pattern of GO term enrichment. In 

contrast (and in line with older baseline to 5 h post-CON expression changes), post-CON 

older participants displayed: i) unique up-regulation of 147 genes enriched for terms 

associated with cell adhesion, extracellular organisation and blood vessel development and, 

ii) unique down-regulation of 28 genes enriched for terms relating to the metabolism and/or 

catabolism of amino acids, lipids, carboxylic acid and DNA (Table 5.2). Despite comparably 

high numbers of uniquely up-regulated and down-regulated genes after ECC exercise in both 

young and older groups, there was no GO term enrichment for any age-dependent ECC gene 

sets. Complete lists of enriched GO terms for post-exercise differentially expressed genes 

between age groups can be viewed in Supplementary File 3. 
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Figure 5.5. Unique age-related transcriptomic response to CON and ECC exercise. 

Overlap of age-associated differentially expressed genes within contraction modes. Both 

young and older participants display unique signatures of differential gene expression 5 h 

post-CON (up-regulated, top left Venn; down-regulated, top right Venn) and post-ECC (up-

regulated, bottom left Venn; down-regulated, bottom right Venn) exercise. 
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Table 5.2. Gene Ontology (GO) terms enriched for significantly differentially expressed 

genes in older participants, 5 h post-CON exercise. Dashed lines separate broad functional 

GO term classes. 

 

 

5.5 Discussion  

This study shows novel data regarding the age-related acute transcriptomic response to a 

single bout of ECC and CON exercise. The key findings of the study demonstrate: i) ageing 

per se is associated with a down-regulation of genes involved in blood vessel development, 

plasma membrane and cell-cell junction expression, ii) post-CON and post-ECC exercise 
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transcriptional profiles were virtually identical in both young and older adults, iii) 

differentially expressed genes between baseline and post-CON and baseline and post-ECC 

within age groups revealed post-CON in older muscle up-regulated genes related to blood 

vessel development and cell adhesion and down-regulated mitochondrial respiration related 

genes and iv) when post-CON and post-ECC differentially expressed genes between young 

and older age groups were overlaid, post-CON exercise in older adults displayed the unique 

up-regulation of genes enriched for terms related to cell adhesion, extracellular organisation 

and blood vessel development and unique down-regulation genes enriched for terms relating 

to the metabolism and/or catabolism of amino acids, lipids, carboxylic acid and DNA. 

 

5.5.1 Age-related basal muscle transcriptome 

Herein, ageing per se affected the muscle transcriptome since genes related to blood vessel 

development, plasma membrane and cell-cell junction were down regulated. Sufficient 

delivery of growth factors and nutrients to the muscle is purported to be necessary for the 

maintenance of muscle mass (157). A growing body of evidence suggests that ageing is 

associated with reduced capillarisation (59, 67), reduced angiogenic factors (i.e. vascular 

endothelial growth factor (VEGF)) and fewer capillaries per type II fibre’s (67), although 

attenuated capiliarisation in older adults is not always found (115, 335). In turn, this might 

limit the perfusion of skeletal muscle thereby restricting the delivery of essential nutrients, 

culminating in perturbed anabolic responses (157). Herein, age-related reductions in 

transcripts related to blood vessel development were reported which might underlie the 

purported age-related changes in angiogenesis. Such age-related alterations in angiogenesis 

have been hypothesised to contribute to sarcopenia (5). However, recent work has shown that 

restoring vascular responses in ageing was not associated with improved MPS responses 

(257). The maintenance of the muscle vasculature is also essential for muscle regeneration 
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(174) since increased VEGF, an important regulator of blood vessel formation, was 

associated with improved angiogenesis, regeneration and muscle strength combined with 

reduced fibrosis following injury, albeit in rodents (242). Therefore, it could be hypothesised 

that lower basal blood vessel development transcripts with advanced age may reduce the 

ability of muscle to regenerate from exercise.  

 

Other down-regulated genes were related to plasma membrane and cell-cell junction terms, 

including variants of integrin genes. Integrin’s form parts of attachment complexes, which are 

are protein-dense structures that physically tether the ECM to the contractile muscle proteins. 

Other proteins within these complexes are signalling molecules, receptors and structural 

proteins (68). Such complexes are required for the maintenance of muscle structure and 

function in worms (94), force transfer in rodents (274) and regulate exercise-induced muscle 

growth (104) and disuse atrophy (32) in humans. Indeed, mutations in attachment complex-

related genes leads to muscular dystrophy (207), which is typically characterised by the loss 

of muscle mass and increased muscular weakness (253). Thus the maintenance of such 

complexes is essential for structural and metabolic integrity of muscle. Basal down-regulation 

of these genes (as observed herein) may compromise structural integrity and metabolic 

homeostasis via reduced force transfer and metabolism, which chronically, may explain 

compromised skeletal muscle mass and function observed in ageing. Indeed, old rodents with 

disrupted dystrophin-associated glycoprotein complex display impaired force transmission 

(274). Such comprehensive work remains to be done in humans.  

 

A down-regulation in plasma membrane transcripts (including collagen transcripts) has been 

reported previously (246), and although this may perhaps suggest reduced EMC in ageing, 
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ageing is associated with increased collagen/ECM (274). This has been suggested to be the 

result of impaired degradation due to increased cross-linking of collagens, as opposed to 

increased gene expression and thus synthesis, has been suggested to the driver behind age-

related accumulation of ECM (122). This ECM dysregulation may underlie the progression 

of sarcopenia, since older adults display attenuated basal levels of matrix metalloproteinase-2 

(MMP-2) (80), which is involved in ECM breakdown, and basal MMP-2 gene expression 

correlates with muscle mass and strength gains following RET in older adults (81). Thus, 

chronic lower level expression could culminate and contribute to the loss of muscle mass and 

strength seen in ageing.  

 

5.5.2 Similar transcriptional responses following CON and ECC exercise 

The transcriptional responses 5 h post-CON and ECC exercise were similar (independent of 

age), which is in contrast to previous work reported in recreationally active males (169). This 

finding was somewhat unexpected since the extent of acute post-translational events (Chapter 

3 and 4) and chronic adaptations (gains in muscle mass and function) (283) to ECC exercise 

are generally more pronounced than following CON exercise. It is speculated herein that the 

post-exercise transcriptomic profiles are similar because participants were unaccustomed to 

exercise and therefore elicited a similar early phase non-specific post-exercise transcriptional 

response (213). This transcriptomic response is expected to become more refined overtime 

(i.e. in response to RET), coding for proteins that are specific to the resultant phenotypic 

adaptation (213). To support this idea, it was shown that in response to RE in untrained 

young healthy males, the protein synthetic response was non-specific increasing both 

myofibrillar and mitochondrial MPS, demonstrating the idea of a non-specific response 

during the early phases of RE during which generic proteins required for structural and 

metabolic adaptations are increased. Within the same study, after 10 weeks of RET this MPS 
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response was refined, such that only myofibrillar MPS increased, which contributes to the 

gains in muscle mass seen with RET (349). This highlights the refinement of the response 

over time, which may occur at the gene level.  

 

Furthermore, since transcriptional regulation is rapid, demonstrated by the varying number of 

differentially regulated transcripts over a small number of hours (169), it is plausible the 

presence of contraction-specific regulation of the transcriptome was missed due to only one 

post-exercise time-point being investigated. Herein, the 5 h post-exercise time-point was 

chosen since post-ECC exercise, the nadir of force was at 5 h and repressed catabolic 

signalling and peak anabolic signalling occurred 5 h post-ECC and CON exercise, indicative 

of transcriptional activity at this time. However, it is postulated that at times where other 

molecular mechanisms are disparate between the contraction types, for example the unique 

phosphorylation of NFκβSer536 at 72 h following ECC exercise in young participants (Chapter 

3), transcriptional regulation between contraction types may differ, and should be 

investigated. Moreover, because ECC versus CON exercise training do elicit different 

chronic adaptations in muscle mass and function (283), it is expected that transcriptional 

responses are divergent at some point, which should be investigated further.  

 

5.5.3 Age-related differences in the transcriptomic response to CON and ECC exercise 

Differentially expressed genes between baseline and post-CON and baseline and post-ECC 

within age groups revealed post-CON in older adults up-regulated genes related to blood 

vessel development and cell adhesion and down-regulated genes related to mitochondrial 

respiration. The increase in blood vessel development related genes might be a compensatory 

response in order to restore vascular homeostasis, since blood vessel development related 
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genes were down-regulated at baseline in older adults. Additionally, the increased blood 

vessel development-related genes may go some way in explaining the enhanced limb blood 

flow observed in older adults in response to RET (256). Furthermore, since the transcriptional 

response was investigated after an acute bout of exercise in adults unaccustomed to exercise, 

perhaps the increase in blood vessel development is necessary to remodel exercise-induced 

damage to the vascular system, since sites of injury typically need re-vascularised (157). 

However, if this was the case it would be expected that blood vessel development transcripts 

would increase after both ECC and CON exercise in both age groups, which was not 

observed. It is possible that temporal changes in blood vessel development related genes are 

regulated differently in ageing and in response to different contraction modes, and thus may 

have been missed since only one post-exercise time point was measured herein.  

 

The observed increases in cell adhesion transcripts may counteract age-related decreases in 

cell adhesion proteins (144, 274, 278) or on the other hand may contribute to the 

pathophysiological accumulation of adhesion proteins. An accumulation of such proteins has 

been reported in ageing as a compensatory mechanism to support the maintenance of muscle 

structural integrity since the contractile network undergoes re-organisation during ageing (i.e. 

different muscle protein isoforms) (18, 119).  

 

The down-regulation of mitochondrial respiration related genes in response to CON exercise 

in older adults may contribute to the age-related perturbations in mitochondrial metabolism. 

During ageing, mitochondrial protein synthesis and mitochondrial enzymes are decreased 

(284). These blunted responses likely contribute to age-related decline in mitochondrial 

function (284), which is hypothesised to contribute to sarcopenia (191). Additionally, the 
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down-regulated transcriptional response may translate into blunted exercise-induced 

adaptations. For example, following exercise (albeit endurance exercise), age-related 

perturbations were observed in mixed muscle protein synthesis which may have been driven 

through declines in mitochondrial protein synthesis (39, 90, 299), although this remains to be 

confirmed. It is therefore hypothesised that the down-regulation of genes related to 

mitochondrial metabolism following CON exercise contribute to the impaired remodelling/ 

chronic adaptation to exercise training in older adults via impairments in mitochondrial 

protein synthesis. Ultimately this contributes to mitochondrial dysfunction-induced declines 

in muscle function and may underlie sarcopenia (300, 339). 

 

When post-CON and post-ECC exercise differentially expressed genes between young and 

older age groups were overlaid, post-CON exercise in older adults displayed the unique up-

regulation of genes enriched for terms related to cell adhesion, extracellular organisation and 

blood vessel development and unique down-regulation genes enriched for terms relating to 

the metabolism and/or catabolism of amino acids, lipids, carboxylic acid and DNA. 

Collectively these data suggest that post-CON exercise in older adults there is a general up-

regulation of structural transcripts whilst there is the general down-regulation of genes related 

to metabolism. Although speculative, this is suggestive of impaired metabolism post-CON 

exercise may contribute to the often observed age-related blunting of muscle mass 

adaptations in response to RET (37). Furthermore, the up-regulated structural genes may 

result in a compensatory increase in adhesion proteins to maintain structural integrity during 

ageing (18, 119). 
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Additionally, in previous chapters (Chapter 3 and 4), it was noted that the transcriptionally 

induced response (NF-κβ) was unique to ECC exercise in the young and markers of 

inflammation were basally higher in the older adults. Therefore, the individual gene data was 

examined to see if any of the NF-κβ targets were regulated. Interestingly, differentially 

expression of the Myc (c-Myc) gene was up-regulated following ECC exercise in young and 

ECC and CON exercise in older adults (Supplementary File 3). NF-κβ mediates the 

transcription of c-Myc, which subsequently activates genes promoting muscle hypertrophy 

(344) and also enhances ribosomal biogenesis and protein synthesis (280). More recently, RE 

increased c-Myc gene expression, which strongly correlated to protein synthesis (342). Since 

c-Myc was up-regulated 5 h post-exercise, this may be one of the many genes implicated in 

regulating the anabolic responses observed during skeletal muscle regeneration.  

 

5.6 Conclusions 

Herein, we provide novel data regarding the age-related transcriptomic response to acute 

ECC and CON exercise. This study shows that ageing per se is associated with a basal 

repression of genes related to blood vessel development, plasma membrane and cell-cell 

junctions, which might be considered regulators of the ageing phenotype. Interestingly, the 

muscle transcriptome responds similarly to CON and ECC contractions, possible reflecting 

untrained adults. Post-CON exercise in ageing muscle there was a unique differential gene 

expression profile which was enriched for the up-regulation of blood vessel development and 

cell adhesion and down-regulation of mitochondrial respiration. Post-CON exercise 

compared to the young, older muscle displayed the unique up-regulation of genes enriched 

for terms associated with cell adhesion, extracellular organisation and blood vessel 

development and unique down-regulation genes enriched for terms relating to the metabolism 

and/or catabolism of amino acids, lipids, carboxylic acid and DNA. The down-regulation of 
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metabolism genes might contribute to the known impaired chronic adaptation/ remodelling 

that occurs in response to exercise training in ageing adults. Furthermore, up-regulated 

structural genes may be a compensatory mechanisms required to maintain the integrity of 

muscle structure during ageing. 
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6 General Discussion  
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Skeletal muscle is critical for the production of force, permitting the performance of 

necessary tasks for daily living such as rising from a chair and the more complex activities 

such as RE. In addition to necessary functional outputs, skeletal muscle contributes to the 

regulation of whole body metabolism. Indeed, skeletal muscle is the principle store of AA 

(111, 354), provides the largest site for glucose uptake (74, 318) and is a key store for 

triglycerides (162). Therefore, the maintenance of skeletal muscle mass is critical for the 

preservation of contractile function, metabolic health and ultimately survival. The loss of 

skeletal muscle mass and function with age (i.e. sarcopenia and dynapenia, respectively) is 

associated with poor physical function (330), falls (355) and higher all-cause mortality (315). 

This places a large economic burden on society due to increased hospitalisation and 

healthcare expenditure (156). As the ageing population continues to rise, major financial 

challenges will continue to be placed upon the economy (53). As such, delineating the 

underlying mechanisms and finding effective interventions to offset the progression of 

sarcopenia and dynapenia are key research priorities.  

 

Skeletal muscle is a highly plastic tissue capable of structural (i.e. mass) and functional (i.e. 

force) remodelling in response to RET (37). Unaccustomed exercise can induce muscle 

dysfunction (i.e. reduced force producing capacity) and structural ‘damage’ (i.e. Z-disk 

streaming), which is exacerbated following ECC (lengthening) versus CON (shortening) 

exercise (118). Functional deficits are restored within ~7 days owing to the intrinsic muscle 

regenerative capacity (270). This regenerative response underpins the adaptation of muscle in 

response to RE, whereby progressive accumulation of repeated regenerative responses to 

individual exercise bouts ultimately translates into muscle mass and functional gains. It has 

been hypothesised that impairments within the post-exercise regenerative process might 

contribute to the loss of muscle mass and function that is associated with ageing (97). Despite 
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the importance of muscle regeneration following unaccustomed exercise, the precise 

temporality of key regenerative mechanisms remains to be fully elucidated in human skeletal 

muscle, particularly in response to ECC versus CON exercise. Furthermore, whether there are 

age-related changes in the muscle regenerative processes remain poorly defined.  

 

Previous studies have shown protein turnover (260), anabolic signalling (91, 272), catabolic 

signalling (311), inflammation/ inflammatory signalling (221), and the activation of satellite 

cells (49, 84, 150) are all metabolic or molecular processes implicated in the post-exercise 

regenerative response. However, knowledge regarding the temporality and interplay of these 

mechanisms is limited due to the investigation of only one or a few mechanisms 

simultaneously and limited sampling times. In addressing these limitations, work within this 

thesis found increased anabolic signalling and repressed lysosomal signalling in the early 

period following both ECC and CON exercise and prior to the nadir of muscle function in 

young adults. The onset of anabolic signalling was earlier and the magnitude was greater 

following ECC exercise, potentially inducing a greater net anabolic environment than CON 

exercise. Once muscle function was past the nadir and repair had been initiated, inflammation 

increased following both exercise types. Although, post-ECC exercise the inflammatory 

response occurred earlier, remained active for longer, and led to an inflammatory 

transcriptional response (NF-κβ), which did not occur after CON exercise. Once function was 

fully recovered, UPS activity increased regardless of contraction-type. Thus molecular 

regenerative/adaptive processes continue despite the full recovery of muscle function. How 

long such molecular regenerative processes (i.e. inflammation and UPS-related activity) 

persist for after the full recovery of muscle function in young adults is unknown, and should 

be investigated in order to broaden our understanding of the processes regulating full muscle 

regeneration. Collectively, these data suggest that anabolic signalling and lysosomal 
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repression might regulate rapid adaptation, whilst inflammatory processes and UPS activation 

likely mediate longer term muscle adaptation in young healthy muscle following acute 

unaccustomed exercise. The greater anabolic and inflammatory responses following ECC 

may possibly translate into greater muscle adaptation and may go some way in explaining the 

greater gains in muscle mass and function observed following ECC versus CON exercise 

training (283), however this remains to be investigated. Furthermore, mechanisms regulating 

the unique activation of NF-κβ following acute-ECC exercise and the subsequent effects on 

target gene’s are unknown and should be investigated further. 

 

An important application of these data are the contribution towards optimising muscle 

hypertrophy. To demonstrate, it is shown that the protein turnover related responses i.e. 

anabolic and catabolic signalling, which contribute to changes in muscle mass, are increased 

and repressed early after exercise, respectively. Therefore, this presents a key time-frame in 

which nutritional interventions such as protein or other anabolic food stuffs known to 

stimulate muscle protein synthesis (12, 348) could be ingested in order to heighten the 

anabolic response and thus promote net protein balance. A greater net protein balance may 

have important implications on functional recovery (93) and longer term adaptation (333). 

Finally, these results provide a benchmark of healthy young human muscle regenerative 

responses to acute ECC ‘damaging’ and CON ‘non-damaging’ exercise, which has important 

implications for detecting impaired regenerative responses in clinical populations.  

 

Using this benchmark of healthy muscle regeneration, data within this thesis found an age-

related increase in local muscle inflammation at baseline, in line with previous reports (129, 

219), and blunted anabolic, catabolic and inflammatory responses to exercise in older healthy 
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adults. The blunted molecular responses might underlie the previously reported impaired 

acute muscle protein turnover (173) and chronic muscle mass and functional adaptation in 

ageing (37). As such, it might be accumulations of these impaired responses to individual 

exercise bouts which explain age-related losses in mass and function. Despite age-related 

impairments in the molecular regenerative processes measured, functional recovery was not 

impaired. This implies that other regenerative processes must regulate functional recovery, 

which may not have been measured herein and should be investigated further. Additionally, it 

would be interesting to investigate the impact of anti-inflammatory substances/nutraceuticals 

on the ageing regenerative response since ageing per se was associated with chronic local 

inflammation.  

 

SC activation was unique to older adults, a result which is in contrast to Dreyer et al., (2006) 

who found SC increase in both young and older adults but the response was blunted in the old 

versus the young adults (84). However, more contractions performed at a greater intensity 

were employed (84) compared to the protocol used in the present study, and thus may 

underlie the different responses. The precise reasons why SC were uniquely activated in the 

older adults cannot be deciphered from this study, although is it hypothesised that inadequate 

intrinsic molecular mechanisms specific to the older adults i.e. blunted anabolic, catabolic 

and inflammatory responses, necessitated additional molecular mechanisms i.e. SC, in order 

for muscle regeneration and adaptation following ECC exercise. This data has important 

implications for the development of countermeasures (i.e. nutritional, exercise or therapeutic) 

against cases of poor muscle regenerative capacity. To demonstrate, anabolic nutritional 

interventions (i.e. protein ingestion) could be implemented within a time-frame where 

anabolic signalling is shown to be increased in healthy younger muscle, but fails to increase 

in older muscle. Additionally, whey protein supplementation is able to induce greater 
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proliferation of SC during the recovery period (96). Consequently, protein based nutritional 

interventions throughout the regenerative period where anabolic and satellite cell mechanisms 

are activated (i.e. 0-24 h post-exercise) might induce a greater growth environment during 

muscle recovery and potentially greater muscle adaptation. 

 

Previously, the application of ECC exercise in ageing has been questioned due to the stigma 

that exercise-induced muscle damaged can lead to irreparable damage (193). Herein, 

following ECC exercise functional recovery was achieved which suggests that, at least from a 

functional point of view, ECC exercise is safe to perform in older adults. Furthermore, ECC 

exercise induced anabolic signalling and SC activation, which was not present following 

CON exercise which may indicate ECC exercise creates a greater anabolic and adaptive 

environment than CON exercise, which might promote greater muscular adaptation and 

explain greater gains in mass and function (283), although this remains speculative. This has 

important applications for the development of effective interventions aimed at optimising 

ageing muscle molecular regenerative responses. For example, ECC exercise could offer a 

more effective exercise training based intervention in ageing muscle for promoting muscle 

hypertrophy versus CON exercise training. Further work could investigate optimal ECC 

exercise training programmes i.e. the effect of intensity and duration, to fully maximise the 

exercise-induced anabolic effects.  

 

Current understanding of the precise molecular processes regulating age-related muscle 

regeneration processes are limited due to the use of very targeted analytical techniques, which 

only allow the investigation of one or a few target mRNA or proteins (i.e. western blotting 

and RT-qPCR). In an attempt to define more global molecular networks of muscle 
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regeneration, transcriptomic analysis has been implemented (219, 259). Studies utilising next 

generation sequencing, which is capable of detecting all mRNA, are sparse likely due to the 

expense and complex data analysis required (329). Utilising state-of-the-art RNA sequencing 

data within this thesis found ageing per se was associated with a down-regulation of genes 

involved in blood vessel development, plasma membrane and cell-cell junction expression. 

These age-related changes may explain the reduced capillarisation (59, 67) and compromised 

quantities of some cell adhesion proteins critical for force transfer and structural integrity 

(144, 274, 278). As such, these enriched genes could potentially be contributors to the age-

related loss of muscle mass and function. Although, during ageing compromised 

capillarisation is not always observed (115, 335) and not all structural proteins are reduced in 

quantity, in fact some increase (144, 274, 278). As such, these data provide important 

information which could inform on interventional strategies aimed at offsetting age-related 

muscle mass and functional decline. For example, exercise, nutritional and/or therapeutical 

interventions could be designed around enhancing blood vessel development during ageing. 

That being said, data has shown that restoring vascular responses in ageing was not 

associated with improved MPS responses (257), however improved vascularisation could 

improve other aspects of regeneration such as SC responsiveness (157).  

 

Surprisingly, following ECC versus CON exercise, the up and down-regulated transcriptional 

profiles were virtually identical, independent of age. This suggests that divergent contraction-

types elicit similar transcriptional responses, at least 5 h after unaccustomed exercise in 

healthy humans. Perhaps the transcriptomic profiles are similar because participants were 

unaccustomed to exercise and thus elicited a similar non-specific post-exercise transcriptional 

response, which may become more refined over time (213). Previously, it was shown that in 

response to RE in the untrained state, the muscle protein synthetic response was non-specific 
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increasing both myofibrillar and mitochondrial MPS, but in response to 10 weeks of RET this 

MPS response was refined, such that only myofibrillar MPS increased which explains the 

gains in muscle mass seen with RET (349). This highlights that generic proteins required for 

structural and metabolic adaptations are increased in the unaccustomed exercise state and that 

this specificity of response can become more refined with RET, which might hold true at the 

gene level. Additionally, it is plausible that contraction-specific regulation of the 

transcriptome was missed due to the RNA sequencing of only one post-exercise time-point. 

The 5 h post-exercise time-point was chosen to be investigated herein since the nadir of force 

was 5 h post-ECC and repressed catabolic signalling and peak anabolic signalling occurred 5 

h post-ECC and CON exercise, indicative of peak transcriptional activity at this time. Since 

chronic adaptations to ECC versus CON exercise are different (i.e. ECC exercise training 

produces greater gains in muscle mass and strength (283)) disparate transcriptional activity 

must occur at some point. Thus, further research is warranted which investigates the temporal 

transcriptional responses to ECC versus CON exercise to uncover at what point contraction-

specific changes in transcription are apparent, and what gene ontology terms are enriched. 

Furthermore, by investigating the temporality of the transcriptome response over a more 

comprehensive time-course will provide insight into which genes are involved in i) functional 

restoration, ii) longer-term remodelling and iii) both functional restoration and longer-term 

remodelling.  

 

In older adult’s post-CON exercise, these data showed that there was a unique differential 

gene expression profile enriched for the up-regulation of blood vessel development and cell 

adhesion and down-regulation of mitochondrial respiration. Since ageing per se was 

associated with down-regulated blood vessel development, the post-CON exercise up-

regulation of blood vessel development might be a compensatory response in order to restore 
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blood vessel development homeostasis. Further, enriched cell adhesion transcripts may be 

increased to counteract age-related decreases in cell adhesion proteins (144, 274, 278) or on 

the contrary may contribute to the accumulation of adhesion proteins, which can be a 

pathophysiological compensatory increase to maintain structural integrity during ageing (18, 

119). The down-regulation of mitochondrial respiration transcripts may underlie the exercise-

specific responses seen following RET in older adults (349). When post-CON and post–ECC 

exercise differentially expressed genes between young and older adults were overlaid, post-

CON exercise ageing muscle displayed the unique up-regulation of genes enriched for terms 

associated with cell adhesion, extracellular organisation and blood vessel development and 

the unique down-regulation genes enriched for terms relating to the metabolism and/or 

catabolism of amino acids, lipids, carboxylic acid and DNA. Together, these data seem to 

generally suggest that CON exercise in older adults results in an up-regulation of structurally-

related terms, and a down-regulation in metabolism-related terms. Although speculative, 

impaired metabolism post-CON exercise may contribute to the often observed age-related 

blunting of muscle mass adaptations in response to RET (37). Furthermore, the up-regulated 

structural genes may contribute to the accumulation of excess extracellular matrix and 

adhesion proteins, which increase as a compensatory mechanisms to maintain structural 

integrity during ageing (18, 119).  

 

In addition to suggested future work mentioned above, other avenues for future work are to; 

i) determine whether the molecular regenerative responses reported herein are attenuated 

following a second bout of exercise i.e. repeated bout effect, so that exercise interventions 

can be optimised, ii) investigate targeted and more global skeletal muscle regenerative 

mechanisms, as compliments to each other, over a period of exercise training. This will 

provide a more comprehensive understanding of the mechanisms which mediate longer term 
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adaptation/maladaptation during ageing and iii) more precisely define the temporal response 

of anabolic signalling responses during the early regenerative stage i.e. every hour from 

initiation until cessation, since herein only 0 and 5 h post-exercise time points were 

investigated. This will allow the optimisation of exercise and nutritional interventions aimed 

at potentiating the growth environment.  

 

To summarise, the data within this thesis found anabolic and catabolic signalling and 

inflammatory responses were essential global (i.e. responded to both exercise types) 

mechanisms involved in the regeneration/ adaptation of skeletal muscle to an acute exercise 

in younger healthy adults. ECC exercise caused greater anabolic signalling and lead to an 

inflammatory-related transcriptional response, potentially indicative of greater muscular 

adaptation capacity compared to CON exercise. In older adults, these molecular responses in 

general (i.e. both exercise types) were blunted, which might underlie the blunted age-related 

adaptations to chronic exercise training. Interestingly, ECC exercise caused a SC response in 

the older adults which might have been due to the global intrinsic mechanisms (i.e. anabolic, 

catabolic and inflammatory responses) being suboptimal, thus requiring additional 

mechanisms to support regeneration/ adaptation. Transcriptomic analysis revealed down-

regulated genes enriched for blood vessel development, plasma and cell-cell junctions in 

older adults, which may be contributors to the age-related loss of muscle mass and function. 

Post-ECC and CON exercise, similar transcriptional profiles were present which might 

represent an early phase non-specific remodelling response, which becomes refined over 

several exercise bouts. Finally, transcriptomic data seem to generally suggest that CON 

exercise in older adults results in an up-regulation of structurally-related terms, and a down-

regulation in metabolism-related terms. Impaired metabolism post-CON exercise may 

contribute to the often observed age-related blunting of muscle mass adaptations in response 
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to RET (37) and may up-regulate structural genes to increase extracellular matrix and 

adhesion proteins as a compensatory mechanisms to maintain structural integrity (18, 119). 
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