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Continuity and Admixture in the Last Five Millennia
of Levantine History from Ancient Canaanite
and Present-Day Lebanese Genome Sequences

Marc Haber,1,9,* Claude Doumet-Serhal,2,9 Christiana Scheib,3,9 Yali Xue,1 Petr Danecek,1

Massimo Mezzavilla,1 Sonia Youhanna,4 Rui Martiniano,1 Javier Prado-Martinez,1 Micha1 Szpak,1

Elizabeth Matisoo-Smith,5 Holger Schutkowski,6 Richard Mikulski,6 Pierre Zalloua,7,8 Toomas Kivisild,3

and Chris Tyler-Smith1,*

The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and

beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus

their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes

from �3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also

sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a

Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon)

and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived

from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using

linkage-disequilibrium decay patterns, that admixture occurred 6,600–3,550 years ago, coinciding with recorded massive population

movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a

Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addi-

tion, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry

arrived in the Levant around 3,750–2,170 years ago during a period of successive conquests by distant populations.
The Near East, including the Levant, has been central to

human prehistory and history from the expansion out

of Africa 50–60 thousand years ago (kya),1 through post-

glacial expansions2 and the Neolithic transition 10 kya,

to the historical period when Ancient Egyptians, Greeks,

Phoenicians, Assyrians, Babylonians, Persians, Romans,

and many others left their impact on the region.3 Aspects

of the genetic history of the Levant have been inferred

from present-day DNA,4,5 but the more comprehensive

analyses performed in Europe6–11 have shown the limita-

tions of relying on present-day information alone and

highlighted the power of ancient DNA (aDNA) for ad-

dressing questions about population histories.12 Unfortu-

nately, although the few aDNA results from the Levant

available so far are sufficient to reveal how much its his-

tory differs from that of Europe,13 more work is needed

to establish a thorough understanding of Levantine ge-

netic history. Such work is hindered by the hot and some-

times wet environment,12,13 but improved aDNA technol-

ogies including use of the petrous bone as a source of

DNA14 and the rich archaeological remains available

encouraged us to further explore the potential of aDNA

in this region. Here, we present genome sequences from

five Bronze Age Lebanese samples and show how they
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improve our understanding of the Levant’s history over

the last five millennia.

During the Bronze Age in the Levant, around 3–4 kya, a

distinctive culture emerged as a Semitic-speaking people

known as the Canaanites. The Canaanites inhabited an

area bounded by Anatolia to the north, Mesopotamia to

the east, and Egypt to the south, with access to Cyprus

and the Aegean through the Mediterranean. Thus the

Canaanites were at the center of emerging Bronze Age

civilizations and became politically and culturally influ-

ential.15 They were later known to the ancient Greeks as

the Phoenicians who, 2.3–3.5 kya, colonized territories

throughout the Mediterranean reaching as far as the

Iberian Peninsula.16 However, for uncertain reasons but

perhaps related to the use of papyrus instead of clay for

documentation, few textual records have survived from

the Canaanites themselves and most of their history

known today has been reconstructed from ancient Egyp-

tian and Greek records, the Hebrew Bible, and archaeolog-

ical excavations.15 Many uncertainties still surround the

origin of the Canaanites. Ancient Greek historians believed

their homeland was located in the region of the Persian

Gulf,16,17 but modern researchers tend to reject this hy-

pothesis because of archaeological and historical evidence
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Table 1. Samples Analyzed in This Study

ENA Number
Burial
Number

Time Years
Ago

Mapped
Readsa

Mapped
Read %

Coverage
Genomic Coverage MT Sexb MT Haplogroup Y Haplogroup

ERS1790733 54 3,700c 69,084,826 6.24 1.19 110 M N1a3a J1-P58

ERS1790732 63 3,650d 98,293,308 9.20 1.69 109 M HV1b1 J2-M12

ERS1790730 65 3,650d 73,701,096 7.57 1.24 124 F K1a2 –

ERS1790731 75 3,750d 128,355,897 15.48 2.32 164 F R2 –

ERS1790729 46 3,750d 23,323,399 2.64 0.40 53 F H1bc –

aExcluding PCR duplicates
bGenetically determined
cRadiocarbon date
dArchaeological date
of population continuity through successive millennia in

the Levant. The Canaanite culture is alternatively thought

to have developed from local Chalcolithic people who

were themselves derived from people who settled in

farming villages 9–10 kya during the Neolithic period.15

Uncertainties also surround the fate of the Canaanites:

the Bible reports the destruction of the Canaanite cities

and the annihilation of its people; if true, the Canaanites

could not have directly contributed genetically to pre-

sent-day populations. However, no archaeological evi-

dence has so far been found to support widespread destruc-

tion of Canaanite cities between the Bronze and Iron Ages:

cities on the Levant coast such as Sidon and Tyre show con-

tinuity of occupation until the present day.

aDNA research has the potential to resolve many ques-

tions related to the history of the Canaanites, including

their place of origin and fate. Here, we sampled the petrous

portionof temporal bones belonging tofiveancient individ-

uals dated to between 3,750 and 3,650 years ago (ya) from

Sidon, which was a major Canaanite city-state during this

period (Figures S1 and S2). We extracted DNA and

built double-stranded libraries according to published pro-

tocols without uracil-DNA glycosylase treatment.18–21 We

sequenced the libraries on an Illumina HiSeq 2500 using

23 75 bp reads and processed the sequences using the

PALEOMIX pipeline.22 We retained reads R30 bp and

collapsed pairs with minimum overlap of 15 bp, allowing

a mismatch rate of 0.06 between the pairs. We mapped the

merged sequences to the hs37d5 reference sequence,

removed duplicates, removed two bases from the ends of

each read, and randomly sampled a single sequence with a

minimum quality of R20 to represent each SNP. We ob-

tained a genomic coverage of 0.4–2.33 and amitochondrial

DNA (mtDNA) genome coverage of 53–1643 (Table 1).

Y chromosome genotypes were jointly called across males

from the 1000 Genomes Project, present-day Lebanese,

and two identified Canaanite males using FreeBayes

v.0.9.18.23 A maximum likelihood phylogeny was inferred

using RAxML v.8.2.1024 and visualized using iTOL

v.3.5.3.25 In order to assess ancient DNA authenticity, we

estimated mtDNA and X chromosome contamination26–28

(Table S1) and restricted some analyses to sequences with
The Americ
aDNA damage patterns29,30 (Figures S3 and S4), demon-

strating that the sequence data we present are endogenous

and minimally contaminated.

Additionally, we sequenced whole genomes of 99 pre-

sent-day Lebanese individuals with informed consent to

�83 coverage on an Illumina HiSeq 2500 using 23

100 bp reads in a study approved by The Wellcome Trust

Sanger Institute’s HumanMaterials and Data Management

Committee (13/010 and 14/072). We merged the low-

coverage Lebanese data with four high-coverage (303)

Lebanese samples,31 1000 Genomes Project phase 3 CEU,

YRI, and CHB populations,32 and sequence data previously

published from regional populations (Egyptians, Ethio-

pians, and Greeks).1,31 Raw calls were generated using

bcftools (bcftools mpileup -C50 -pm3 -F0.2 -d10000 j
bcftools call -mv, version 1.2-239-g8749475) and filtered

to include only SNPs with the minimum of two alternate

alleles in at least one population and site quality larger

than ten; we excluded sites with a minimum per-popula-

tion HWE and total HWE less than 0.0133 and sites within

3 bp of an indel. The filtered calls were then pre-phased us-

ing shapeit (v.2.r790)34 and their genotypes refined using

beagle (v.4.1).35 We have previously described the genetic

structure in the Lebanese population using array data

from �1,300 individuals.4 A principal component analysis

(PCA) using the 99 sequenced present-day individuals

show that they capture the previously described genetic

diversity with distinct clusters reflecting the different cul-

tural groups in Lebanon today (Figure S5).

We combined our ancient andmodern samples with pre-

viously published ancient data6–11,13,36–38 (Figure 1A) re-

sulting in a dataset of 389 individuals and 1,046,317

SNPs when ancient and Lebanese samples were analyzed,

and 546,891 SNPs when 2,583 modern samples from the

Human Origins genotype data were included in the anal-

ysis (i.e., the small dataset was used only when a modern

population other than the Lebanese was included in the

test).9,39 A pooled Lebanese sequence dataset (99 low

coverage plus 4 high coverage) was used in all analyses

except for the PCA and ADMIXTURE where a subset of

15 randomly selected individuals (5 from each group

described in Figure S5) was used to avoid sample size
an Journal of Human Genetics 101, 274–282, August 3, 2017 275



Figure 1. Population Locations and Genetic Structure
(A) The map shows the location of the newly sequenced Bronze Age Sidon samples (pink triangle labeled with red text), as well as the
locations of published ancient samples used as comparative data in this study.
(B) PCA of ancient Eurasian samples (colored shapes) projected using eigenvectors from present-day Eurasian populations (gray points).
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bias. The ancient samples were grouped following the

labels assigned by Lazaridis et al.13 on the basis of archaeo-

logical culture, chronology, and genetic clustering. We

used this dataset to shed light on the genetic history

of the Canaanites, resolving their relationship to other

ancient populations and assessing their genetic contribu-

tion to present-day populations.

We first explored our dataset using PCA40 on present-

day West Eurasian (including Levantine) populations

and projected the ancient samples onto this plot (Figures

1B and S6). The Bronze Age Sidon samples (Sidon_BA)

overlap with present-day Levantines and were positioned

between the ancient Levantines (Natufians/Neolithic)

and ancient Iranians (Neolithic/Chalcolithic). The overlap

between the Bronze Age and present-day Levantines sug-

gests a degree of genetic continuity in the region. We

explored this further by computing the statistic f4(Leba-

nese, present-day Near Easterner; Sidon_BA, Chimpanzee)

using qpDstat39 (with parameter f4mode: YES) and found

that Sidon_BA shared more alleles with the Lebanese

than with most other present-day Levantines (Figure S7),

supporting local population continuity as observed in

Sidon’s archaeological records. When we substituted pre-

sent-day Near Easterners with a panel of 150 present-day

populations available in the Human Origins dataset, we

found that only Sardinians and Italian_North shared

significantly more alleles with Sidon_BA compared with

the Lebanese (Figure S8). Sardinians are known to have re-

tained a large proportion of ancestry from Early European

farmers (EEFs) and therefore the increased affinity to

Sidon_BA could be related to a shared Neolithic ancestry.

We computed f4(Lebanese, Sardinian/Italian_North;

Sidon_BA, Levant_N) and found no evidence of increased

affinity of Sardinians or Italian_North to Sidon_BA after

the Neolithic (both Z-scores are positive). We next wanted

to explore whether the increased affinity of Sidon_BA to

the Lebanese could also be observed when analyzing func-

tionally important regions of the genome that are less sus-

ceptible to genetic drift. Our sequence data allowed us to

scan loci linked to phenotypic traits and loci previously

identified as functional variants in the Lebanese and other

Levantines.41–43 Using a list of 84 such variants (Table S2),

we estimated the allele frequency (AF) in Sidon_BA using

ANGSD26 based on a method from Li et al.44 and calcu-

lated Pearson pairwise correlation coefficients between

AF in Sidon_BA and AF in Africans, Europeans, Asians,32

and Lebanese. We found a high significant correlation be-

tween Sidon_BA and the Lebanese (r ¼ 0.74; 95% CI ¼
0.63–0.82; p value ¼ 8.168 3 10�16) and lower correla-

tions between Sidon_BA and Europeans (r ¼ 0.56), Afri-

cans (r ¼ 0.55), and Asians (r ¼ 0.53) (Figure S9). These

results support population continuity in the region

and suggest that several present-day genetic disorders

might stem from risk alleles that were already present in

the Bronze Age population. In addition, SNPs associated

with phenotypic traits show that Sidon_BA and the Leba-

nese had comparable skin, hair, and eye colors (in general:
The Americ
light intermediate skin pigmentation, brown eyes, and

dark hair) with similar frequencies of the underlying

causal variants in SLC24A5 and HERC2, but with

Sidon_BA probably having darker skin than Lebanese

today from variants in SLC45A2 resulting in darker

pigmentation (Table S2).

The PCA shows that Sidon_BA clusters with three indi-

viduals from Early Bronze Age Jordan (Jordan_BA) found

in a cave above the Neolithic site of ‘Ain Ghazal and prob-

ably associated with an Early Bronze Age village close to

the site.13 This suggests that people from the highly differ-

entiated urban culture on the Levant coast and inland peo-

ple with different modes of subsistence were nevertheless

genetically similar, supporting previous reports that the

different cultural groups who inhabited the Levant during

the Bronze Age, such as the Ammonites, Moabites, Israel-

ites, and Phoenicians, each achieved their own cultural

identities but all shared a common genetic and ethnic

root with Canaanites.15 Lazaridis et al.13 reported that

Jordan_BA can be modeled as mixture of Neolithic

Levant (Levant_N) and Chalcolithic Iran (Iran_ChL). We

computed the statistic f4(Levant_N, Sidon_BA; Ancient

Eurasian, Chimpanzee) and found that populations from

the Caucasus and ancient Iran shared more alleles with

Sidon_BA than with Neolithic Levant (Figure 2A and

S10). We then used qpAdm8 (with parameter allsnps: YES)

to test whether Sidon_BA can be modeled as mixture of

Levant_N and any other ancient population in the dataset

and found good support for the model of Sidon_BA being a

mixture of Levant_N (48.4% 5 4.2%) and Iran_ChL

(51.6% 5 4.2%) (Figure 2B; Table S3).

In addition, the two Sidon_BA males carried the Y-chro-

mosome haplogroups45 J-P58 (J1a2b) and J-M12 (J2b)

(Tables 1 and S4; Figure S11), both common male lineages

in the Near East today. Haplogroup J-P58 is frequent in the

Arabian peninsula with proposed origins in the Zagros/

Taurus mountain region.46 It forms the vast majority of

the Y chromosomes in southwestern Mesopotamia and

reaches particularly high frequencies (74.1%) in Marsh

Arabs in Iraq.47 On the other hand, haplogroup J-M12 is

widespread at low frequency from the Balkans to India

and the Himalayas, with Albanians having the highest pro-

portions (14.3%).48We compiled frequencies of Y-chromo-

some haplogroups in this geographical area and their

changes over time in a dataset of ancient and modern

Levantine populations (Figure S12), and note, similarly

to Lazaridis et al.,13 that haplogroup J was absent in all

Natufian and Neolithic Levant male individuals examined

thus far, but emerged during the Bronze Age in Lebanon

and Jordan along with ancestry related to Iran_ChL. All

five Sidon_BA individuals had different mitochondrial

DNA haplotypes49 (Table 1), belonging to paragroups

common in present-day Lebanon and nearby regions

(Table S5) but with additional derived variants not

observed in our present-day Lebanese dataset.

We next sought to estimate the time when the

Iran_ChL-related ancestry penetrated the Levant. Our
an Journal of Human Genetics 101, 274–282, August 3, 2017 277



Figure 2. Admixture in Bronze Age Levantine Populations
(A) The statistic f4(Levant_N, Sidon_BA; Ancient Eurasian, Chim-
panzee) is most negative for ancient populations from the Cauca-
sus and Iran, suggesting an increase in ancestry related to these
populations in Sidon after the Neolithic period. The plot shows
the estimated statistic value and 53 standard errors.
(B) Modeling Sidon as mixture between Neolithic Levant and an
ancient Eurasian population shows that Chalcolithic Iran fits the
model best when using a large number of outgroups: Ust_Ishim,
Kostenki14, MA1, Han, Papuan, Ami, Chukchi, Karitiana, Mbuti,
Switzerland_HG, EHG, WHG, and CHG. Sidon_BA can then be
modeled using qpAdm as 0.484 5 0.042 Levant_N and 0.516 5
0.042 Iran_ChL.
results support genetic continuity since the Bronze Age

and thus our large dataset of present-day Lebanese pro-

vided an opportunity to explore the admixture time using

admixture-induced linkage disequilibrium (LD) decay.

Using ALDER50 (with mindis: 0.005), we set the Lebanese

as the admixed test population and Natufians, Levant_N,

Sidon_BA, Iran_N, and Iran_ChL as reference populations.

To account for the small number of individuals in the refer-

ence populations and the limited number of SNPs in the

dataset, we took a lenient minimum Z-score ¼ 2 to be sug-

gestive of admixture. The most significant result was for

mixture of Levant_N and Iran_ChL (p ¼ 0.013) around

1815 54 generations ago, or�5,0005 1,500 ya assuming
278 The American Journal of Human Genetics 101, 274–282, August
a generation time of 28 years (Figure S13A). This admixture

time, based entirely on genetic data, fits the known ages of

the samples based on archaeological data since it falls

between the dates of Sidon_BA (3,650–3,750 ya) and

Iran_ChL (6,500–5,500 ya). The admixture time also over-

laps with the rise and fall of the Akkadian Empire which

controlled the region from Iran to the Levant between

�4.4 and 4.2 kya. The Akkadian collapse is argued to

have been the result of a widespread aridification event

around 4,200 ya.51,52 Archaeological evidence in this

period documents large-scale influxes of refugees from

Northern Mesopotamia toward the south, where cities

and villages became overpopulated.53 Our confidence in-

tervals for the admixture dates are wide and therefore the

historical links suggested here should be considered with

caution. Future sampling of ancient DNA from northern

Syria and Iraq will reveal whether these populations carried

the Iran_ChL-related ancestry and also provide a better

understanding of the origin of the eastern migrants and

the time when they arrived in the Levant.

Although f4 tests showed that present-day Lebanese

share significantly more alleles with Sidon_BA than other

Near Eastern populations do, indicating genetic continu-

ity, we failed to model the present-day Lebanese using

streams of ancestry coming only from Levant_N and

Iran_ChL (qpAdm rank1 p ¼ 8.36 3 10�7), in contrast to

our success with Sidon_BA. We therefore further explored

our dataset by running ADMIXTURE54 in a supervised

mode using Western hunter-gatherers (WHG), Eastern

hunter-gatherers (EHG), Levant_N, and Iran_N as refer-

ence populations. These four populations have been previ-

ously13 found to contribute genetically to most West

Eurasians. The ADMIXTURE results replicate the findings

from qpAdm for Sidon_BA and show mixture of Levant_N

and ancient Iranian populations (Figure 3A). However,

the present-day Lebanese, in addition to their Levant_N

and ancient Iranian ancestry, have a component (11%–

22%) related to EHG and Steppe populations not found

in Bronze Age populations (Figure 3A). We confirm the

presence of this ancestry in the Lebanese by testing

f4(Sidon_BA, Lebanese; Ancient Eurasian, Chimpanzee)

and find that Eurasian hunter-gatherers and Steppe popu-

lations share more alleles with the Lebanese than with

Sidon_BA (Figures 3B and S14). We next tested a model

of the present-day Lebanese as a mixture of Sidon_BA

and any other ancient Eurasian population using qpAdm.

We found that the Lebanese can be best modeled as

Sidon_BA 93% 5 1.6% and a Steppe Bronze Age popula-

tion 7% 5 1.6% (Figure 3C; Table S6). To estimate the

time when the Steppe ancestry penetrated the Levant, we

used, as above, LD-based inference and set the Lebanese

as admixed test population with Natufians, Levant_N,

Sidon_BA, Steppe_EMBA, and Steppe_MLBA as reference

populations.We found support (p¼ 0.00017) for amixture

between Sidon_BA and Steppe_EMBA which has occurred

around 2,950 5 790 ya (Figure S13B). It is important to

note here that Bronze Age Steppe populations used in
3, 2017



Figure 3. Admixture in Present-Day Le-
vantine Populations
(A) Supervised ADMIXTURE using Le-
vant_N, Iran_N, EHG, and WHG as refer-
ence populations. A Eurasian ancestry
found in Eastern hunter-gatherers and the
steppe Bronze Age appears in present-day
Levantines after the Bronze Age.
(B) The statistic f4(Sidon_BA, Lebanese;
Ancient Eurasian, Chimpanzee) confirms
the ADMIXTURE results and is most nega-
tive for populations from the steppe and
Eurasian hunter-gatherers. We show the
estimated statistic value and 53 standard
errors.
(C) Present-day Lebanese can be modeled
as mixture between Bronze Age Sidon and
a steppe population. The model with mix
proportions 0.932 5 0.016 Sidon_BA and
0.068 5 0.016 steppe_EMBA for Lebanese
is supported with the lowest SE.
the model need not be the actual ancestral mixing popula-

tions, and the admixture could have involved a population

which was itself admixed with a Steppe-like ancestry pop-

ulation. The time period of this mixture overlaps with the

decline of the Egyptian empire and its domination over the

Levant, leading some of the coastal cities to thrive,

including Sidon and Tyre, which established at this time

a successful maritime trade network throughout the Med-

iterranean. The decline in Egypt’s power was also followed

by a succession of conquests of the region by distant pop-

ulations such as the Assyrians, Persians, and Macedonians,

any or all of whom could have carried the Steppe-like

ancestry observed here in the Levant after the Bronze Age.

In this report we have analyzed ancient whole-genome

sequence data from a Levantine civilization and provided

insights into how the Bronze Age Canaanites were related

to other ancient populations and how they have contrib-

uted genetically to present-day ones (Figure 4). Many of

our inferences rely on the limited number of ancient sam-

ples available, and we are only just beginning to recon-

struct a genetic history of the Levant or the Near East as

thoroughly as that of Europeans who, in comparison,

have been extensively sampled. In the future, it will be

important to examine samples from the Chalcolithic/Early

Bronze Age Near East to understand the events leading to

admixture between local populations and the eastern mi-
The Americ
grants. It will also be important to analyze samples from

the Iron Age to trace back the Steppe-like ancestry we

find today in present-day Levantines. Our current results

show that such studies are feasible.
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Figure 4. Genetic History of the Levant
(A) A model of population relationships
which fits the qpAdm results from Lazaridis
et al.13 (solid arrows) and this study (dotted
arrows). Percentages on arrows are the in-
ferred admixture proportions.
(B) Levant timeline of historical events
with genetically inferred admixture dates
shown as colored double-ended arrows
with length representing the SE.
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