
BOURNEMOUTH UNIVERSITY

DOCTORAL THESIS

Fast and Exact Geodesic Computation using
Edge-based Windows Grouping

Author:

Yipeng QIN

Supervisor:

Dr. Hongchuan YU

Prof. Jianjun ZHANG

A thesis submitted in partial fulfilment of the requirements of

Bournemouth University for the degree of Doctor of Philosophy

National Centre for Computer Animation

July 20, 2017

i

Copyright Statement
This copy of the thesis has been supplied on condition that anyone who con-
sults it is understood to recognise that its copyright rests with its author and
due acknowledgement must always be made of the use of any material con-
tained in, or derived from, this thesis.

ii

Abstract

Computing discrete geodesic distance over triangle meshes is one of the fun-
damental problems in computational geometry and computer graphics. As the
“Big Data Era” arrives, a fast and accurate solution to the geodesic computa-
tion problem on large scale models with constantly increasing resolutions is
desired. However, it is still challenging to deal with the speed, memory cost
and accuracy of the geodesic computation at the same time.

This thesis addresses the aforementioned challenge by proposing the Edge-
based Windows Grouping (EWG) technique. With the local geodesic infor-
mation encoded in a “window”, EWG groups the windows based on the mesh
edges and processes them together. Thus, the interrelationships among the
grouped windows can be utilized to improve the performance of geodesic
computation on triangle meshes.

Based on EWG, a novel exact geodesic algorithm is proposed in this the-
sis, which is fast, accurate and memory-efficient. This algorithm computes
the geodesic distances at mesh vertices by propagating the geodesic infor-
mation from the source over the entire mesh. Its high performance comes
from its low computational redundancy and management overhead, which
are both introduced by EWG. First, the redundant windows on an edge can
be removed by comparing its distance with those of the other windows on the
same edge. Second, the windows grouped on an edge usually have similar
geodesic distances and can be propagated in batches efficiently. To the best of
my knowledge, the proposed exact geodesic algorithm is the fastest and most
memory-efficient one among all existing methods.

In addition, the proposed exact geodesic algorithm is revised and em-
ployed to construct the geodesic-metric-based Voronoi diagram on triangle
meshes. In this application, the geodesic computation is the bottleneck in both
the time and memory costs. The proposed method achieves low memory cost
from the key observation that the Voronoi diagram boundaries usually only
cross a minority of the meshes’ triangles and most of the windows stored on
edges are redundant. As a result, the proposed method resolves the memory
bottleneck of the Voronoi diagram construction without sacrificing its speed.

iii

Contents

Copyright Statement i

Abstract ii

List of Figures ix

List of Tables x

List of Abbreviations xi

Acknowledgements xii

Declaration xiii

1 Introduction 1

1.1 Background . 1

1.1.1 Geodesics in Differential Geometry 2

1.1.2 Geodesics in Computational Geometry 3

1.2 Motivation . 5

1.3 Contributions . 6

1.4 Thesis Outline . 7

1.5 List of Publications . 8

2 Related Work 9

2.1 Discrete Geodesic Algorithms 9

2.1.1 Computational Geometry Approach 10

iv

2.1.1.1 Euclidean Cost Metric 10

2.1.1.2 Weighted Cost Metric 19

2.1.2 Partial Differential Equation (PDE) Approach 24

2.1.2.1 Discrete Eikonal Equation 24

2.1.2.2 Discrete Poisson Equation 26

2.2 Voronoi Diagram on Surfaces 28

2.2.1 Voronoi Diagrams on 2D Planes 28

2.2.2 Voronoi Diagrams on 3D Polyhedral Surfaces 31

3 Edge-based Windows Grouping 33

3.1 Discrete Geodesic Problem (DGP) Definition 33

3.1.1 Single-Source DGP (SS-DGP) 34

3.1.2 Voronoi Diagram oriented DGP (VD-DGP) 34

3.2 Preliminaries . 35

3.2.1 Locally Shortest Paths on Triangle Meshes 35

3.2.2 Globally Shortest Paths on Triangle Meshes 38

3.3 Edge-based Windows Grouping (EWG) 38

3.3.1 Window Definition and Propagation 39

3.3.2 Applying EWG on Window Propagation 41

3.3.2.1 EWG Definition 42

3.3.2.2 EWG Window Propagation 43

3.3.2.3 EWG Performance Evaluation 45

3.3.3 EWG-based Solutions to Geodesic Problems 46

3.3.3.1 Solution to the SS-DGP problem 46

3.3.3.2 Solution to the VD-DGP problem 47

4 Fast and Exact SS-DGP Algorithm 50

4.1 Algorithm Overview . 51

4.2 EWG in Window List Propagation Within a Triangle 52

v

4.2.1 Pairwise Window Pruning Within a Triangle 53

4.2.2 Principles for Window Pruning 59

4.2.3 EWG-based Window List Propagation 62

4.2.3.1 Window List Splitting 63

4.2.3.2 Window List Propagation 67

4.2.3.3 Window List Merging 68

4.2.4 Algorithmic Choices Justification 70

4.3 EWG in Wavefront Propagation Over a Mesh 74

4.3.1 Face-Sorted Wavefront Propagation 74

4.3.2 Vertex-Sorted Wavefront Propagation 79

4.3.3 Algorithmic Choices Justification 81

4.4 Complexity Analysis . 83

4.5 Experimental Results . 83

4.5.1 Overall Performance 84

4.5.2 Performance Profiling 84

4.5.3 Scalability . 87

4.5.4 Robustness . 87

4.6 Summary . 92

5 Fast and Memory-Efficient Voronoi Diagram Construction 93

5.1 Redundant Window Removal (RWR) 94

5.1.1 Preliminaries . 94

5.1.2 Redundant Windows Removal (RWR) 97

5.1.3 Performance Verification 100

5.2 Applying RWR in Geodesic Computation 102

5.2.1 Wavefront Collision 105

5.2.2 Priorities Definition 106

5.3 Complexity Analysis . 107

vi

5.4 Experimental Results . 107

5.4.1 Comparison with Liu et al. (2011) 107

5.4.2 Comparison with Xu et al. (2014) 118

5.4.3 Comparison with VTP 119

5.4.4 Application to Remeshing 119

5.5 Summary . 121

6 Conclusion and Future Work 123

6.1 Conclusion . 123

6.2 Future Work . 124

A Model Collection 135

B VTP Ablation Study 138

C VTP Variants Comparison 141

D Distribution of Window Propagations 146

E Performance Comparison between VTP and Others 148

F VTP Performance Profiling 153

G Longest Length in a Triangle 155

H RWR Performance Verification 157

I Performance Comparison among VD-DGP Algorithms 159

J Voronoi Diagram Construction Performance Profiling 164

vii

List of Figures

1.1 Accuracy of the fast marching method and the heat method
against the mesh quality. 6

2.1 The structure of related works on discrete geodesic algorithms. 9

2.2 Illustration of the incremental insertion method. 28

2.3 Illustration of the divide and conquer method. 30

2.4 Illustration of the plane-sweep method. 31

3.1 Convert the source point s to a vertex of the mesh by subdivi-
sions. 34

3.2 Illustration of the two cases of a shortest path on a triangle
mesh. 35

3.3 Illustration of the triangle strip and the planar unfolding. . . . 36

3.4 Illustration of a locally shortest path passing through a vertex. 37

3.5 Illustration of the geodesic visible cone in a triangle strip. . . . 39

3.6 Illustration of the window data structure. 40

3.7 Three cases of the window propagation in a face. 41

3.8 Illustration of EWG definitions. 42

3.9 The two cases of the EWG window propagation module. . . . 44

3.10 The reason for employing the EWG Definition 3.1 in the so-
lution of the SS-DGP problem. 47

3.11 The reason for employing the EWG Definition 3.2 in the so-
lution of the VD-DGP problem. 48

4.1 Three configurations of the separating point of a window. . . . 53

viii

4.2 The three cases that w0 and w1 are propagated from the same
edge to another edge. 54

4.3 The three cases thatw0 andw1 are propagated from two edges
to the third edge. 55

4.4 The three cases that w0 and w1 are propagated from the same
edge to two other edges. 56

4.5 The three cases of checking windows with vertices. 57

4.6 The three cases thatw0 andw1 are propagated from two edges
to two edges. 58

4.7 Window configurations for Proposition 4.1. 59

4.8 Window configurations for Proposition 4.2. 60

4.9 Window configurations for Proposition 4.3. 61

4.10 Window configurations for Proposition 4.4. 62

4.11 One Angle Two Sides (Rule 1). 64

4.12 Ablation study on Rule 1. 66

4.13 Window List Propagation (Rule 2). 67

4.14 Window List Merging (Rule 3). 69

4.15 Ablation study on Rule 2 and 3. 71

4.16 Face-sorted wavefront propagation. 75

4.17 Order-free secondary merger. 78

4.18 Vertex-sorted wavefront propagation. 79

4.19 Comparison of running times of three common components
on two models. 86

4.20 Comparison of scalability against recent geodesic algorithms. . 88

4.21 Comparison of robustness against anisotropic triangulation. . . 89

4.22 Robustness of individual components against anisotropic tri-
angulation (window propagation component). 90

4.23 Robustness of individual components against anisotropic tri-
angulation (window pruning component). 91

ix

4.24 Robustness of individual components against anisotropic tri-
angulation (window management component). 91

5.1 Voronoi diagram on the Buste model (3K faces) 95

5.2 Illustration of intersections between mesh edges and Voronoi
cell boundaries. 96

5.3 Illustration of redundant primitives. 96

5.4 Illustration of the monotonicity for window propagations. . . . 97

5.5 Illustration of an inactive region. 98

5.6 Illustration of Proposition 5.1. 99

5.7 Performance verification on RWR. 101

5.8 Illustration of the triangle-oriented region expansion scheme. . 102

5.9 Vertex-sorted Triangle Propagation. 103

5.10 The window trimming rule in the MMP algorithm. 103

5.11 The collision of the propagation wavefront. 105

5.12 Illustration of the vertex’s priority definition. 106

5.13 Examples of Voronoi diagrams on meshes. 108

5.14 Performance comparison between FWP-MMP based Voronoi
diagram construction algorithm and ours on the number of
sources. 112

5.15 Comparison of running times of four common components in
Voronoi diagram construction on two models. 113

5.16 Comparison of scalability against FWP-MMP based Voronoi
diagram construction algorithm. 115

5.17 Comparison of robustness against anisotropic triangulation
(Time). 116

5.18 Comparison of robustness against anisotropic triangulation
(Memory). 117

5.19 Illustration of remeshing. 120

G.1 Illustration of Lemma G.1. 155

x

List of Tables

4.1 Performance comparison between VTP-Exhaustive and VTP. . 72

4.2 Performance comparison between VTP-Trimming and VTP. . 73

4.3 Performance comparison between VTP-MMP, VTP-CH and
VTP. 73

4.4 Performance comparison between FTP and VTP. 81

4.5 Performance comparison between OPVTP and VTP. 82

4.6 The mean and standard deviation of performance ratios be-
tween other algorithms and the proposed VTP algorithm. . . . 84

4.7 Performance comparison with state-of-the-art geodesic algo-
rithms. 85

5.1 Performance comparison with Liu et al. (2011) 109

5.2 The mean and standard deviation of the performance ratios
between other algorithms and the proposed window-VTP al-
gorithm. 110

5.3 Performance comparison between MMP, FWP-MMP and the
proposed window-VTP on five representative models. 110

5.4 Performance comparison with Xu et al. (2014) 118

5.5 Performance comparison with VTP 120

5.6 Performance comparison with the FWP-MMP version of Liu
et al. (2011) on remeshing. 121

xi

List of Abbreviations

2D Two Dimensional
3D Three Dimensional
AP-DGP All-Pairs Discrete Geodesic Problem
CGAL Computational Geometry Algorithms Library
CH Chen-Han
DGP Discrete Geodesic Problem
EWG Edge-based Windows Grouping
FIFO First-In-First-Out
FMM Fast Marching Method
FTP Face-oriented Triangle Propagation
FWP Fast Wavefront Propagation
GIS Geographic Information Systems
GPU Graphics Processing Unit
ICH Improved Chen-Han
MMP Mitchell-Mount-Papadimitriou
NP Non-deterministic Polynomial-time
ODE Ordinary Differential Equation
OPFTP Order-Preserving Face-oriented Triangle Propagation
OPVTP Order-Preserving Vertex-oriented Triangle Propagation
PC Personal Computer
PCH Parallel Chen-Han
PDE Partial Differential Equation
RWR Redundant Window Removal
SS-DGP Single-Source Discrete Geodesic Problem
VC Voronoi Cell
VD-DGP Voronoi Diagram oriented Discrete Geodesic Problem
VTP Vertex-oriented Triangle Propagation

xii

Acknowledgements
First of all, I would like to express my sincere gratitude to my supervisors
Dr. Hongchuan Yu and Prof. Jianjun Zhang for their priceless advices and
continuous support on my research. Their constant pursuit of cutting-edge
research inspires me to dive deeper and deeper into my research topic.

Besides my supervisors, I would like to thank Prof. Yizhou Yu and Xi-
aoguang Han from the University of Hong Kong for their stimulating com-
ments on my work and our sleepless nights before the deadline.

My sincere thanks also goes to Daniel Cox, Sunny Choi, Jan Lewis and
other colleagues at Bournemouth University for their efforts on all the admin-
istrative works of my campus life. I would also like to thank all my labmates
for the fun we have had in the past years.

Last but not the least, I would like to thank my parents and my wife for
backing me up to overcome all the encountered difficulties during my re-
search. Your encouragements always get me out of my frustrating moments.

Gratitude also goes to the financial support from Bournemouth University,
which makes my PhD research possible.

xiii

Declaration
This thesis has been created by myself and has not been submitted in any pre-
vious application for any degree. The work in this thesis has been undertaken
by myself except where otherwise stated.

1

Chapter 1

Introduction

1.1 Background

The shortest path problem is a classic problem in graph theory. It aims at
finding a shortest path between two vertices of a graph. The most important
shortest path algorithm so far is the Dijkstra’s algorithm which solves the
problem by dynamic programming (Dijkstra, 1959). Since many real-world
problems can be represented with graphs, the shortest path algorithms are
widely used in various areas, for example, route planning and navigation,
geographic information systems (GISs), computer games, and sever selection.
A detailed survey of the graph-based shortest path algorithms can be found in
Sommer’s work (Sommer, 2014). However, the demands for shortest paths
are not limited to graphs.

In the 1970s and 1980s, applications in robotics and autonomous naviga-
tion motivated the study of optimal collision-free path planning algorithms in
both two-dimensional (2D) and three-dimensional (3D) spaces (Lozano-Pérez
and Wesley, 1979; O’Rourke et al., 1985; Mount, 1985a; Sharir and Schorr,
1986). For the 2D shortest path problem with polygonal obstacles, a com-
mon solution is to build a visibility graph (Lozano-Pérez and Wesley, 1979;
Sharir and Schorr, 1986) and construct the shortest paths by searching it with
the Dijkstra’s algorithm (Dijkstra, 1959). The time complexity of this method
is O(n2 log n), where n is the number of obstacle corners. However, the 3D
shortest path problem with polyhedral obstacles is much more difficult and
is proven to be Non-deterministic Polynomial-time (NP) hard by Canny and
Reif (1987).

Thanks to its usefulness as an important distance metric of surfaces, an
important special case of the general 3D shortest path problem attracts re-
search interests from the computational geometry community. This special

Chapter 1. Introduction 2

case is formulated as the discrete geodesic problem (DGP) by Mitchell et al.
(1987) and it aims to find a shortest path between two vertices on a polyhe-
dral surface in the 3D Euclidean space. These shortest paths are known as
the geodesic paths and their lengths are known as the geodesic distances. Ac-
cording to the number of source and destination vertices, the DGP problem
has three variants:

(1) The Discrete Geodesic Problem (DGP), which finds the geodesic path
between one source vertex and one destination vertex.

(2) The Single-Source Discrete Geodesic Problem (SS-DGP), which finds
the geodesic paths from one source vertex to all the other vertices of the
polyhedral surface.

(3) The All-Pairs Discrete Geodesic Problem (AP-DGP), which finds the
geodesic paths between all pairs of vertices on the polyhedral surface.

This thesis focuses on solving the SS-DGP problem since it can be extended
to solve the other two problems. For the DGP problem, it can be solved by
performing the SS-DGP algorithm at its source vertex since its source and
destination vertices are a subset of those of the SS-DGP problem. For the
AP-DGP problem, the all-pairs geodesic paths it requires can be obtained by
performing the SS-DGP algorithm at each vertex of the polyhedral surface.
However, these extensions are not necessarily the optimal solution to the DGP
and AP-DGP problems.

Traditionally, the geodesics are studied in two fields of mathematics: the
differential geometry and the computational geometry. Thus, an overview of
geodesics from the perspectives of these two fields is presented in the follow-
ing two sections.

1.1.1 Geodesics in Differential Geometry

Kline (1990) reviewed the development of differential geometry as a chapter
in his book. Originally, the theory of surfaces is founded by Euler and ex-
tended by Monge. Then, immense amount of work on this subject is made by
Gauss, who started working on geodesy and map-making in 1816. In 1827,
Gauss published his definitive paper titled “General Investigations of Curved
Surfaces”, in which Gauss solved the problem of finding the geodesics on sur-
faces by the calculus of variations. Note that the term geodesic is introduced

Chapter 1. Introduction 3

by Liouville in 1850 from the word geodesy. Gauss also proposed the idea
that a surface is a space in itself. This idea was generalized by Riemann and
opened up the new field of Riemannian geometry in non-Euclidean geometry.
Thus, the geodesics play a fundamental role in the development of differential
geometry.

Intuitively, the geodesic is a generalized notion of the straight line from
planes to curved spaces, which is locally shortest. According to Polthier and
Schmies (1998), a curve is a geodesic if its geodesic curvature is zero, and
thus the geodesics on smooth surfaces can be computed by solving a ordinary
differential equation (ODE) related to the geodesic curvature.

In practice, computers have a discrete nature and the data they process
are usually discretized in advance. Thus, the smooth surfaces are usually dis-
cretized as triangle meshes to be processed by computers. However, this dis-
cretization results in zero curvature points on the triangle faces of the meshes.
Thus, the concepts and methods from the differential geometry cannot be ap-
plied in this scenario and should be discretized as well. For example, Polthier
and Schmies (1998) proposed a discrete version of the geodesic curvature and
used the Runge-Kutta method to solve the ODE associated with it. However,
the geodesic paths computed by their method are locally shortest, which are
less useful in many real-world applications (e.g. path planning) requiring the
globally shortest paths. To compute globally shortest geodesics, some other
methods based on the relationship between geodesic distances and physical
phenomena (e.g. wave, heat) on surfaces are proposed (Kimmel and Sethian,
1998; Crane et al., 2013). However, these methods cannot avoid introducing
errors and thus only yield an approximate solution.

1.1.2 Geodesics in Computational Geometry

In computational geometry, surfaces are assumed to be polyhedral, which are
usually represented by triangle meshes. Although the general 3D shortest path
problem is proven to be NP-hard (Canny and Reif, 1987), the DGP problem
is not and the first concern of it is its computational complexity.

The pioneer work on this issue is the algorithm proposed by Sharir and
Schorr (1986), which solves the DGP problem on a convex polyhedral sur-
face in O(n3 log n) time, where n is the number of vertices of the surface.
Although their algorithm only operates on convex polyhedral surfaces, the

Chapter 1. Introduction 4

planar unfolding technique employed by it laid the foundation of many fol-
lowing works since it converts the problem from 3D polyhedral surfaces to
2D planes. Sharir and Schorr’s algorithm is then improved by Mount (1985a)
to achieve an O(n2 log n) time complexity and extended by O’Rourke et al.
(1985) to operate on possibly non-convex polyhedral surfaces in O(n5) time.
Although the algorithm proposed by O’Rourke et al. (1985) has a high time
complexity ofO(n5), it proves that the DGP problem can be solved in polyno-
mial time. After that, the major concern of solving the DGP problem moves
to its asymptotic complexity.

Mitchell et al. (1987) improved the time and space complexities of solv-
ing the SS-DGP problem on polyhedral surfaces to O(n2 log n) and O(n2) re-
spectively. Chen and Han (1990) further improved them to O(n2) and O(n),
which are the best asymptotic complexities so far.1 However, it is interesting
that Mitchell et al.’s algorithm runs much faster than Chen and Han’s algo-
rithm in practice although having a larger asymptotic complexity (Surazhsky
et al., 2005). Since then, the major concern moves to improve the practical
performance of geodesic algorithms.

Xin and Wang (2009) improved the algorithm proposed by Chen and Han
(1990) by reducing its redundancy effectively. However, performing such
redundancy reduction requires a priority queue. Although employing a pri-
ority queue increases the time complexity of their algorithm to O(n2 log n),
it runs thousands times faster than the original Chen and Han’s algorithm.
To further accelerate it, Ying et al. (2014) proposed an parallel implementa-
tion of Xin and Wang’s algorithm which runs an order of magnitude faster.
Observing that the priority queue consumes the majority of the time in the
algorithms proposed by Mitchell et al. (1987) and Xin and Wang (2009), Xu
et al. (2015) proposed to replace the priority queue with a bucket structure
and their method can improve the speed by a factor of 3-10.

Apart from solving the DGP problem exactly, some approximation algo-
rithms are also proposed. For example, the algorithms which approximate the
geodesic paths by constructing and searching a graph (Agarwal et al., 2002;
Ying et al., 2013) and those by iteratively refining a rough initial path (Kanai
and Suzuki, 2001).If different weights are assigned to the faces of the polyhe-

1Kapoor (1999) proposed an algorithm and claimed it runs inO(n log2 n) time. However,
it is not widely accepted by the academia since its details are too complex (O’Rourke, 1999).

Chapter 1. Introduction 5

dral surfaces, the geodesics on them become quite different and are discussed
in some other works (Mitchell and Papadimitriou, 1991; Sun and Reif, 2006;
Aleksandrov et al., 2010).

1.2 Motivation

The research on geodesics is motivated by both the theoretical studies and the
practical applications:

• Theoretically, finding the geodesics is an important topic in both differ-
ential geometry and computational geometry (Section 1.1). Thus, the
analysis and improvement on geodesic computations will push forward
the research frontiers of these two fields.

• In practice, the geodesic distances and paths are widely used in com-
puter graphics. For example, Voronoi diagram construction (Liu et al.,
2011; Xu et al., 2014) , remeshing (Peyré and Cohen, 2006; Liu et al.,
2011), skeleton extraction (Liu et al., 2011; Liu, 2015), water wave an-
imation (Liu et al., 2006), mesh segmentation (Lai et al., 2006), cloth
simulation (Zink and Hardy, 2007; Kim et al., 2012) and point pattern
analysis (Liu et al., 2011). Thus, the improvement on geodesic compu-
tations will make these applications perform better.

Within the field of geodesic computations, this thesis focuses on the ex-

act geodesic computation since it yields a robust and accurate solution to the
DGP problem, which cannot be achieved by the state-of-the-art approxima-
tion algorithms (Figure 1.1).

However, the exact geodesic algorithms are usually slow and consume
lots of memory. In some applications, the geodesic computation is even the
performance bottleneck. For example, the geodesic algorithm proposed by
Surazhsky et al. (2005) is employed by Liu et al. (2011) to construct Voronoi
diagrams on triangle meshes and it consumes the majority of the time and
memory. Thus, it is desired to improve the exact geodesic computations on
triangle meshes, which is the central topic in this thesis. In addition, an im-
proved exact geodesic algorithm can be used as a better alternative to those
used in geometry processing softwares. For example, the algorithm proposed
by Xin and Wang (2009) is employed by the Computational Geometry Algo-
rithms Library (CGAL) (Kiazyk et al., 2016).

Chapter 1. Introduction 6

Model Size

(# Faces)
Mesh Quality

Fast Marching Method Heat Method

Average Error Max Error Average Error Max Error

5k
Good

2.16% 12.67% 3.52% 25.12%

22k 1.08% 13.59% 0.74% 40.25%

5k
Bad

3.97% 40.67% Failed

22k 3.33% 93.33% Failed

Faces: 5K

Faces: 22K

Bad Quality Mesh Good Quality Mesh

FIGURE 1.1: Accuracy of the fast marching method (Kimmel and Sethian,
1998) and the heat method (Crane et al., 2013) against the mesh quality. The
results show that these two algorithms produce large errors and may even fail
on bad quality meshes.

1.3 Contributions

This thesis presents a new technique named Edge-based Windows Grouping

(EWG) to improve the exact geodesic computation on triangle meshes, where
the window is a basic data structure encoding the geodesic information. The
contribution of the EWG technique is:

• A novel structure to process nearby windows in batches. The EWG
technique groups all the windows on an edge into one or two window
lists associated with the edge, and processes the window lists instead of
the individual windows.

Based on the EWG technique, a novel exact geodesic algorithm is pro-
posed to solve the SS-DGP problem on triangle meshes. Its contributions are:

• A new geodesic computation framework based on EWG. The pro-
posed geodesic algorithm has an O(n2) time complexity. It runs 4-
15 times faster than the MMP (Surazhsky et al., 2005) and ICH (Xin

Chapter 1. Introduction 7

and Wang, 2009) algorithms, 2-4 times faster than the FWP-MMP and
FWP-CH algorithms (Xu et al., 2015), and also incurs the least memory
usage.

• A complete list of scenarios for pairwise window cross checking and
pruning inside a triangle.

• A set of rules and algorithms for window list propagation within a
triangle.

Then, the proposed exact geodesic algorithm is revised to improve the
geodesic-based Voronoi diagram construction on triangle meshes. Its contri-
butions are:

• A novel Redundant Window Removal (RWR) method to remove
redundant windows during the Voronoi diagram construction.

• The high efficiency of Voronoi diagram construction. The proposed
method runs 3-8 times faster than Liu et al.’s (2011) method, 1.2 times
faster than its FWP-MMP variant and more importantly uses 10-70
times less memory than both of them, which is ideal for large scale
models.

1.4 Thesis Outline

This chapter presents the background and motivation of the exact geodesic
computation, and lists the contributions of this work. The following chapters
of this thesis is organized as follows:

Chapter 2 reviews the related works of discrete geodesic algorithms and
Voronoi diagrams.

Chapter 3 defines the geodesic problems to be solved, introduces the pre-
liminaries to understand the following chapters and proposes the key tech-
nique, Edge-based Windows Grouping (EWG), in this thesis.

Chapter 4 proposes a novel exact geodesic algorithm to solve the SS-DGP
problem on triangle meshes based on the EWG technique. This chapter shows
how EWG is applied to improve the exact geodesic computation by reducing
its redundancy and management cost.

Chapter 1. Introduction 8

Chapter 5 shows how the proposed exact geodesic algorithm is revised to
improve the geodesic-based Voronoi diagram construction on triangle meshes.

Chapter 6 concludes this thesis and suggests some possible future direc-
tions of the current work.

1.5 List of Publications

The research of this thesis has led to the following publications in peer re-
viewed journals and conferences:

• Yipeng Qin*, Xiaoguang Han*, Hongchuan Yu, Yizhou Yu, and Jianjun
Zhang (*Joint first authors). 2016. Fast and exact discrete geodesic
computation based on triangle-oriented wavefront propagation. ACM
Trans. Graph. 35, 4, Article 125 (July 2016), 13 pages (Link).

• Yipeng Qin, Hongchuan Yu, Jianjun Zhang. 2017. Fast and Memory-
Efficient Voronoi Diagram Construction on Triangle Meshes. Com-
puter Graphics Forum, 36, 5 (July 2017), 12 pages (to appear).

https://doi.org/10.1145/2897824.2925930

9

Chapter 2

Related Work

Computing discrete geodesic distance over triangle meshes is one of the fun-
damental problems in computational geometry and computer graphics (Sec-
tion 1.2). This chapter reviews the related works on the discrete geodesic
algorithms (Section 2.1) and the Voronoi diagram on surfaces (Section 2.2),
which is an important application of the discrete geodesic algorithms.

2.1 Discrete Geodesic Algorithms

This section reviews important discrete geodesic algorithms hierarchically by
classifying them according to their approaches, cost metrics and object types
(Figure 2.1). Without loss of generality, letM = (V,E, F) be a triangle mesh
representing a polyhedral surface, where V , E, F are respectively the sets of
vertices, edges and faces. Let s be the geodesic source, t be the geodesic
destination and n be the number of vertices of mesh M .

Discrete Geodesic

Algorithms

PDE
Computational

Geometry

Euclidean Weighted

Convex Polyhedra General Polyhedra

Hierarchical Levels

Cost Metrics

Object Types

Approaches

FIGURE 2.1: The structure of related works on discrete geodesic algorithms.

Chapter 2. Related Work 10

2.1.1 Computational Geometry Approach

In computational geometry, the discrete geodesic paths on mesh M consist of
straight line segments passing through faces of M and their lengths (geodesic
distances) rely on the employed cost metric. Hence, Section 2.1.1.1 reviews
the discrete geodesic algorithms under an important special cost metric, the
Euclidean cost metric, and Section 2.1.1.2 reviews those under a more general
cost metric, the Weighted cost metric.

2.1.1.1 Euclidean Cost Metric

Employing Euclidean distances as the cost metric, the shortest path between
any two points on a face f ∈ M is a straight line segment since f is a planar
triangle. More generally, the shortest path between any two points on different
faces of mesh M is a polyline l = (A1, A2, A3, ..., An), where Ai(1 ≤ i ≤ n)

are the vertices of the polyline. Note that despite the first vertex A1 and the
last vertex An, the inner vertices Ai(2 ≤ i ≤ n− 1) reside on:

(1) Edges for convex polyhedra (Sharir and Schorr, 1986);

(2) Vertices or edges for general polyhedra (Mitchell et al., 1987).

Due to this difference, the discrete geodesic algorithms which operate on
convex polyhedra and general polyhedra (possibly non-convex) are reviewed
respectively as follows.

Convex Polyhedral Surface According to the methods used, the discrete
geodesic algorithms for convex polyhedral surfaces are classified into four
categories as follows.

(A) Ridge theory based algorithms Sharir and Schorr (1986) proposed
an algorithm to compute discrete geodesics on convex polyhedral surfaces in
O(n3 log n) time. Their key idea is to subdivide mesh M into O(n) disjoint
“peels” in the pre-processing stage, and unfold each “peel” into a common
plane on which the geodesic computations are performed. This subdivision
process relies on the ridge theory: a point p on mesh M is defined as a ridge

point if there exists more than one shortest paths from the source point s to p.
Furthermore, they proved that:

• The shortest paths on M cannot pass through vertices or ridge points;

Chapter 2. Related Work 11

• Ridge points form finite many straight line segments;

• The set R of vertices and ridge points of M is closed, connected and
contains no closed path.

Thus, R is a tree whose leaves are vertices of M and it is the boundary of
the subdivided peels of M . Algorithmically, the construction of R follows
the idea of the Dijkstra’s algorithm (Dijkstra, 1959) which organises events
in a priority queue and processes them from near to far. Let σ = (θ1, θ2) be
a peel in a polar coordinate system with the source point s as the origin. In
the initialisation process, the peels adjacent to s are created and inserted into
the priority queue. In the main loop, the peel σ on edge e closest to source
point is extracted from the priority queue and trimmed with other peels on e.
Then, the child peel of σ is inserted into the priority queue. The loop stops
when the priority queue is empty. At this point, mesh M is subdivided into
O(n) peels and the shortest path query between any destination point t and
the source point s can be answered inO(n) time. This construction procedure
costs O(n3 log n) time and uses O(n2) space to store the peels tree R. The
limitations of Sharir and Schorr’s algorithm are:

• Only on convex polyhedra that the ridge points form straight line seg-
ments. Thus, it is difficult to extend this algorithm to general polyhedra.

• A O(n3 log n) pre-processing procedure is required, which is difficult
to implement and time-consuming.

To improve the performance of Sharir and Schorr’s algorithm, Mount
(1985a) further investigated the ridge theory and observed that the constructed
peels are the Voronoi diagram of a set P containing the unfolded images of
the source point s. Since the image points in P and the peels are in one-to-
one correspondence, the size of P in a face is bounded by O(n). Based on
this observation, Mount’s algorithm avoids explicitly generating ridges and
represents the peels using P ’s Voronoi diagram. In this way, Mount’s algo-
rithm improved the time complexity of the pre-processing stage in Sharir and
Schorr’s algorithm to O(n2 log n) using O(n2) space. After pre-processing,
the shortest path from the source point s to any destination point t ∈ M can
be constructed in O(k + log n) time by locating t in P ’s Voronoi diagram
and back-tracing, where k is the number of faces passed by the shortest path.
For the O(n2) space cost to store P ’s Voronoi diagram, Mount showed that

Chapter 2. Related Work 12

it can be reduced to O(n log n) by efficiently storing O(n) different but sim-
ilar lists with O(n) elements each. However, this technique is applied after
constructing P ’s Voronoi diagram and thus the peak memory cost of Mount’s
algorithm is still O(n2). To reduce it, Mount (1987) proposed to record the
ordered incidence of geodesics on an edge by a tree structure, and thus the
overall memory cost of Mount’s algorithm is reduced to O(n log n) by shar-
ing common sub-trees.

(B) Path mapping algorithms Hershberger and Suri (1998) proposed an
algorithm to construct an approximate shortest path between two points on
mesh M in O(n) time with bounded error factor of 2. Their main idea is to
build a simplified representation of meshM , on which the approximate short-
est path is computed and mapped back to M without increasing the length. In
more details, mesh M is approximated using wedges, which is extended from
the bounding box and is independent toM ’s complexity. Note that the wedges
always contain M from convexity. Let fs and ft be the two faces contain the
source point s and the destination point t on mesh M . Let Hs and Ht be the
two planes defined by fs and ft. According to the dihedral angle α(Hs, Ht),
their algorithm contains two cases:

(1) α(Hs, Ht) ≥ π/3. In this case, the wedge is constructed as a 2-plane
wedge W (Hs, Ht). Then, the approximate shortest path is constructed
on W (Hs, Ht) and mapped to mesh M .

(2) α(Hs, Ht) < π/3. In this case, multiple 3-plane wedges are constructed
by combining the horizon plane Hi(1 ≤ i ≤ k, k ≤ n) with Hs and
Ht as W (Hs, Hi, Ht). Here, the horizon plane is defined as follows.
First, divide all the faces of mesh M into two groups according to the
sign of ~iz · ~nf , where ~iz is the unit vector along positive z-axis and ~nf

is the outer normal of a face f . Then, the edges which form the bound-
ary between the two groups are defined as the horizon edges and the
vertical planes passing through them are defined as the horizon planes.
Obviously, the number of horizon planes k ≤ n. For all the constructed
wedges, compute the shortest path distances on them. Then, map the
path providing the minimum distance to mesh M .

Their algorithm can be extended to solve the SS-DGP geodesic problem under
the same error bound in O(n log n) time by building an approximate shortest
path tree.

Chapter 2. Related Work 13

Although Hershberger and Suri’s algorithm is simple and achieves linear
time complexity, its error bound factor of 2 is high. To this end, Har-Peled
et al. (1996) extended Hershberger and Suri’s algorithm to achieve an im-
proved error bound factor as (1 + ε), where 0 < ε < 1. Their main idea is
to construct a closer approximation G for mesh M with a grid lattice rather
than the wedges used by Hershberger and Suri (1998). To construct the ap-
proximate mesh G, mesh M is first expanded to M ′ by a factor r ≈ ε1.5d,
where d is the approximate shortest distance between the source point s and
the destination point d computed by Hershberger and Suri’s algorithm. Then,
G is constructed between M and M ′ that M ⊆ G ⊆ M ′. Since M is in the
interior of G, the approximate shortest paths on G cannot be smaller than the
true shortest ones on M . Similar to Hershberger and Suri’s algorithm, the
approximate shortest path on G is mapped to mesh M without increasing the
length. However, at the cost of flexible error bounds, the time complexity of
Har-Peled et al.’s algorithm depends on both n and ε as:

O(n ·min {1/ε1.5, log n}+ 1/ε4.5log(1/ε))

Their algorithm can also be extended to solve the SS-DGP geodesic prob-
lem in O(n/ε4.5(log n + log 1/ε)) time. Agarwal et al. (1997) improved
Har-Peled et al.’s algorithm by constructing another approximate mesh Q

between M and M ′ using the approximation scheme proposed by Dudley
(1974). Their algorithm achieves a time complexity of O(n log (1/ε) + 1/ε3)

for the approximate shortest path construction between two points on M and
O(n/ε3 + (n/ε1.5) log n) for solving the SS-DGP geodesic problem. Agar-
wal et al.’s algorithm is further improved by Har-Peled (1999a) with an O(n)

pre-processing procedure. After pre-processing, the time complexity achieves
O(log n/ε1.5 + 1/ε3) for the approximate shortest path construction between
two points on M and O(n(1 + log n/ε1.5 + 1/ε3)) for solving the SS-DGP
geodesic problem.

(C) Graph-based algorithms Agarwal et al. (2002) proposed an graph-
based algorithm to compute the approximate shortest path between two points
on mesh M with an error bound factor of (1 + ε). Their algorithm contains
three major steps:

(1) Construct a graph G in the vicinity of mesh M in O(n/
√
ε) time with

O(1/ε4) space. This makes the size of G independent from M ;

(2) Construct a shortest path on G and project it to M in O(n/ε) time;

Chapter 2. Related Work 14

(3) Refine the resulting path heuristically to improve its quality.

Their experiments show that constructing the graph by a very coarse grid and
applying their shortcutting heuristic yield the best result.

(D) Conforming subdivision algorithms Schreiber and Sharir (2007) pro-
posed an exact algorithm to solve the SS-DGP geodesic problem in optimal
time O(n log n) using O(n log n) space. Their algorithm follows the contin-
uous Dijkstra paradigm (Mitchell et al., 1987) which propagates the “wave-
front” from the source point s over the mesh M from near to far. The key
point of their algorithm is to employ the conforming subdivision technique
(Hershberger and Suri, 1999) and generalize it to 3D polyhedral surfaces.
This generalized technique constructs an oct-tree-like structure on vertices of
mesh M and uses it to control the wavefront propagation. After the propaga-
tion, an implicit representation of the shortest paths on mesh M is computed,
and the shortest path queries between any destination point t and the source
point s can be reported in O(log n + k) time, where k is the number of faces
passed by the shortest path. Schreiber (2009) extended this algorithm to three
kinds of realistic polyhedron which are possibly non-convex:

(1) Terrain polyhedron T . The maximum face slope of T is bounded by a
fixed constant.

(2) Uncrowded polyhedron U . Each axis-parallel square of side length l
whose distance to any vertex of U is at least l is intersected by at most
a constant number of faces of U .

(3) Self-conforming polyhedra S. For each edge e of S, the number of
faces within the shortest path distance O(‖e‖) from e is bounded by a
constant.

General Polyhedral Surface According to the methods used, the discrete
geodesic algorithms for general (possibly non-convex) polyhedral surfaces
are classified into four categories as follows.

(A) Window propagation algorithms Mitchell et al. (1987) proposed an
important discrete geodesic algorithm, namely the MMP (Mitchell-Mount-
Papadimitriou) algorithm, to solve the SS-DGP problem in O(n2 log n) time
and O(n2) space. Their algorithm employs the continuous Dijkstra technique
extended from the Dijkstra’s algorithm (Dijkstra, 1959), and propagates the

Chapter 2. Related Work 15

“wavefront” from the source point s over meshM from near to far. The wave-
front consists of intervals, which is similar to the peels (Sharir and Schorr,
1986) and encodes the geodesic information of an unfolded face sequence
from the source point s to an edge. That is, for any two points p and q in an
interval, the shortest paths from the source point s to p and q pass through
the same face sequence. Note that the face sequences may contain saddle
vertices as pseudo-sources since the object mesh may be non-convex. Then,
the SS-DGP problem is solved by keeping track the intervals on edges during
the wavefront propagation. To minimize the redundancy among intervals on
an edge, Mitchell et al. suggested to trim the intervals into disjoint ones and
organize them in an ordered list according to their positions. The algorithm
terminates when each edge of the mesh is subdivided into a list of end-to-end
linked intervals and these intervals contain the geodesic information of any
point on the mesh. With such subdivisions, the geodesic path queries can be
reported in O(k + log n) time, where k is the number of faces passed by the
shortest path.

Surazhsky et al. (2005) implemented the MMP algorithm (Mitchell et al.,
1987) and tested it on various laser-scanned models. In their implementation,
the intervals used by Mitchell et al. are called windows, and the trimming pro-
cedure between windows is fulfilled by solving a quadratic equation. Their
experimental results show that the MMP algorithm runs in sub-quadratic time,
which is much faster than the worst-case time complexity of O(n2 log n). In
addition, they proposed an approximate version of the MMP algorithm by
merging adjacent windows under bounded error during the wavefront propa-
gation. This approximation algorithm is compared to the popular fast march-
ing method (Kimmel and Sethian, 1998) and the results show that it outper-
forms the fast marching method in both the running time and the accuracy.

Since then, several incremental works are done to improve the perfor-
mance of the MMP algorithm. Liu et al. (2007) observed that the degenerate
cases induced by floating point calculation occur frequently when applying
the MMP algorithm to real world models. Thus, they systematically analysed
all the degenerated cases and handled them accordingly, which makes the
MMP algorithm more robust. Addressing the redundancy caused by the em-
ployed data structure, Liu (2013) proposed to use an edge-based data structure
rather than the half-edge data structure (Surazhsky et al., 2005) in implement-
ing the MMP algorithm. Experimental results show that the running time is

Chapter 2. Related Work 16

reduced by 44% and the memory cost is reduced by 29% on average. Observ-
ing that the priority queue costs the majority of the running time in the MMP
algorithm, Xu et al. (2015) proposed to replace it with a bucket structure. As
a result, their method runs 3-10 times faster than the original MMP algorithm.

Chen and Han (1990) proposed an important algorithm, namely the CH
(Chen-Han) algorithm, to solve the SS-DGP problem using an approach dif-
ferent from the continuous Dijkstra technique. Their main idea is to build a
sequence tree using the First-In-First-Out (FIFO) queue, and each node in the
sequence tree contains the geodesic information of an unfolded face sequence
where geodesic paths reside. Note that the sequence tree can be viewed as a
dual of the peels structure proposed by Sharir and Schorr (1986). However,
the size of the tree can be exponential without an effective redundancy re-
duction rule. To this end, Chen and Han proposed the “one angle, one split”
rule to remove the redundant nodes at vertices of the object mesh. With this
rule, they proved that the sequence tree contains only O(n) leaf nodes for
convex polyhedra and at most additional O(n) leaf nodes (caused by saddle
vertices) for non-convex polyhedra. Thus, the sequence tree can be built in
O(n2) time using O(n) space, which are the best asymptotic complexities for
the exact discrete geodesic algorithms so far. After building the sequence tree,
the geodesic path queries can be reported in O(k+ log n) time, where k is the
number of faces passed by the shortest path. The CH algorithm is first imple-
mented by Kaneva and O’Rourke (2000). Their experimental results verify
the O(n2) time complexity and O(n) space complexity in practice. However,
Surazhsky et al. (2005) reported that their implementation of the MMP algo-
rithm is many times faster than Kaneva and O’Rourke’s implementation of
the CH algorithm, although having a larger time complexity O(n2 log n).

Investigating in this abnormal phenomenon, Xin and Wang (2009) pro-
posed the ICH (Improved Chen-Han) algorithm as an improved version of the
CH algorithm. In their algorithm, the sequence tree nodes are called windows

as Surazhsky et al. (2005) did. Observing that more than 99% of the windows
generated in the CH algorithm are useless, they proposed an effective window
filtering rule to filter out such useless windows. Furthermore, they employed
the continuous Dijkstra technique used in the MMP algorithm (Mitchell et al.,
1987) to organize the windows by a priority queue. Note that introducing the
priority queue increases the time complexity of their algorithm to O(n2 log n)

and makes it difficult to prove that its space complexity is still O(n). How-
ever, their experimental results show that their method greatly outperforms

Chapter 2. Related Work 17

the CH algorithm and runs comparable to the MMP algorithm while using
considerably less space. Ying et al. (2014) proposed a parallel version of
the ICH algorithm, which runs an order of magnitude faster than the serial
ICH algorithm. Since the ICH algorithm also employs the continuous Dijk-
stra technique, its priority queue costs the majority of the running time as the
MMP algorithm does. To this end, Xu et al. (2015) proposed to replace it with
a bucket structure and and achieves a speed-up factor of 2-5.

(B) Graph-based algorithms O’Rourke et al. (1985) extended Sharir and
Schorr’s (1986) algorithm to solve the DGP problem on general polyhedra,
only requiring the surfaces to be orientable. Assuming both the source and
destination points to be vertices of mesh M , their algorithm is performed in
two steps:

(1) Build a vertex-to-vertex graph by computing the shortest straight-line

distances between all pairs of vertices on mesh M . The straight-line

distance is the length of a path between two vertices that the path is a
straight line on the unfolded face sequence (Sharir and Schorr, 1986)
and does not contain any intermediate vertices.

(2) Construct the shortest path by searching the vertex-to-vertex graph.

This algorithm has a high time complexity of O(n5). Thus, it has little prac-
tical value and has not been implemented so far. However, it shows that the
DGP problem on general polyhedra can be solved in polynomial time.

Similar to O’Rourke et al.’s idea, Balasubramanian et al. (2009) proposed
a discrete geodesic algorithm to solve the AP-DGP problem. Their algorithm
also constructs the vertex-to-vertex graph using the minimal geodesic dis-
tances, i.e. the straight-line distances used by O’Rourke et al. (1985), and
computes the all-pairs shortest distances by searching the graph. Although the
theoretical time complexity of their algorithm is exponential, they observed
that its practical running time is no more than O(n3).

Ying et al. (2013) proposed an approximation algorithm to answer fre-
quent shortest path queries on a mesh by searching a related graph. Com-
pared to the graphs constructed by O’Rourke et al. (1985) and Balasubrama-
nian et al. (2009), their graph is sparser since they only compute the shortest
distances in the user-defined geodesic disks around each vertex rather than
the entire mesh. The shortest distances in these geodesic disks are computed
by either the MMP algorithm (Surazhsky et al., 2005) or the ICH algorithm

Chapter 2. Related Work 18

(Xin and Wang, 2009). Let K be the user-defined size of each geodesic disk
(K < n), their graph can be constructed in O(nK2 logK) time. Then, the
shortest path queries can be answered by searching the constructed graph.
Not counting the graph construction time, their experimental results show
that their method outperforms the state-of-the-art approximate geodesic algo-
rithms (Kimmel and Sethian, 1998; Surazhsky et al., 2005; Crane et al., 2013)
in both the running time and the accuracy.

To answer the open problem raised by Agarwal et al. (1997) that whether
the DGP problem on general polyhedra can be solved approximately in sub-
quadratic time, Varadarajan and Agarwal (2000) proposed two algorithms:

(1) The first one runs in O(n5/3 log5/3 n) time with an error bound factor of
7(1 + ε) ;

(2) The second one runs slightly faster in O(n8/5 log8/5 n) time but has an
larger error bound factor of 15(1 + ε).

In these two algorithms, mesh M is first partitioned into O(n/r) patches and
each patch contains at most r faces, where r is a chosen parameter. Then, for
each patch Pi, a set of points are added to its boundary and the approximate
shortest paths between all pairs of such points form a graph Gi. Finally, these
graphs Gi are merged to form a global graph G. By ensuring that the source
and destination points are vertices of G, the shortest path between them is
constructed by performing the Dijkstra’s algorithm (Dijkstra, 1959) on G.

(C) Iterative refining algorithms Kanai and Suzuki (2001) proposed an
approximation algorithm to solve the DGP problem on general polyhedra by
iteratively refining an rough initial path. In each iteration, their algorithm
performs the following three steps:

(1) Perform the Dijkstra’s algorithm (Dijkstra, 1959) on the graph Gi to
construct a path pi between the source and destination points.

(2) Find the region Ri where the shortest path may reside based on pi.

(3) Refine the region Ri by adding extra points on its edges and form the
new graph Gi+1.

LetG0 be the graph of the meshM , the algorithm operates by replacingGi by
Gi+1 iteratively. As the region Ri becomes narrower, the constructed path pi

Chapter 2. Related Work 19

becomes closer to the shortest path. In their algorithm, the trade-off between
accuracy and performance depends on the number of extra points added to
each edge, which is user-defined. The experimental results show that their
algorithm runs 100 to 1000 times faster than the CH algorithm (Chen and
Han, 1990) with 0.4% error.

(D) Others Kapoor (1999) proposed a controversial algorithm to solve the
DGP problem on general polyhedra and claimed that it runs in O(n log2 n)

time using O(n) space. This algorithm also employs the continuous Dijk-
stra technique and maintains the wavefront using a sequence of circular arcs.
However, according to O’Rourke (1999) and Surazhsky et al. (2005), the de-
tails of this algorithm is too complex because it calls many other complicated
computational geometry algorithms as subroutines. Thus, it is not widely ac-
cepted by academia and may never been implemented.

Har-Peled (1999b) generalized his previous algorithm (Har-Peled, 1999a)
to solve the SS-DGP problem on general polyhedra approximately. Let ε be
the error bound factor (0 < ε ≤ 1), his main idea is to construct a subdi-
vision of mesh M of size O((n/ε) log (1/ε)) such that the geodesic distance
queries can be reported in O(log (n/ε)) time. The time complexity of this
construction is:

(1) O(n2 log n+ (n/ε) log (1/ε) log (n/ε)) for general polyhedra;

(2) O((n/ε3) log 1/ε+ (n/ε1.5) log(1/ε) log n) for convex polyhedra.

However, the performance of this algorithm on general polyhedra can never
be better than the MMP algorithm (Mitchell et al., 1987) since it uses the
exact shortest distance map generated by MMP as an input.

2.1.1.2 Weighted Cost Metric

To model the difficulty of the paths passing through some pieces of a surface,
the faces of a mesh are required to be weighted in some applications. For
example, in the path planning task of computer games, walking on grass lands
or mountains usually costs more time than walking on flat roads. To meet this
demand, a weight wi is associated with each face fi of the mesh M . Then,
the length of the sub-path crossing face fi is multiplied by wi, and the length
of a path is computed by summing up the lengths of all its sub-paths. Due to
the diversity of the weighting schemes, it is difficult to compute the geodesic
paths on weighted polyhedral surfaces. According to the methods used, the

Chapter 2. Related Work 20

discrete geodesic algorithms for weighted polyhedral surfaces are classified
into two categories as follows.

(A) Refraction-based algorithms Mitchell and Papadimitriou (1991) pro-
posed an approximation algorithm to solve the SS-DGP problem on weighted
polyhedral surfaces with an error bound factor of (1 + ε) that ε > 0. Their
main idea is to employ the continuous Dijkstra technique (Mitchell et al.,
1987) and apply the Snell’s Law of Refraction from the optics theory to con-
trol the direction of a path crossing an edge of a mesh. The rationale behind
this application of the Snell’s Law is that the path light traverses is always the
one with the minimum propagation time (the Fermat’s Principle). Following
the Snell’s Law, a shortest path from the source point is viewed as a ray of
light and achieves local optimality by being “bent” at mesh edges. Their al-
gorithm runs in O(ES) time using O(E) space, where E is the number of
“events” processed by the continuous Dijkstra algorithm and is bounded by
O(n4); S is the time cost of performing a numerical search procedure to find
a (1 + ε)-approximate path within a given face sequence and is bounded by
O(n4 log nNW

εw
), where N is the maximum integer coordinate of any vertex

of the mesh, W and w are the maximum and minimum finite integer weights
assigned to faces of the mesh respectively. Thus, the worst-case time cost of
their algorithm is O(n8 log nNW

εw
) and the worst-case memory cost is O(n4).

However, since it is a worst-case analysis, their algorithm may perform much
better in practice.

(B) Graph-based algorithms Mata and Mitchell (1997) proposed an ap-
proximation algorithm to solve the DGP problem on a weighted polyhedral
surface by constructing and searching a graph. In their algorithm, the graph
is constructed in two steps:

(1) k evenly-spaced cones are defined to approximate the round angle of
each vertex v of mesh M .

(2) Within each cone of v, at most one link is built to connect it with another
vertex or a critical point on some edge of M .

By searching the constructed graph using the Dijkstra’s algorithm (Dijkstra,
1959), approximate shortest paths with an error bound factor of (1 +O(W

wkθ
))

can be constructed, where W are w are the maximum and minimum finite
integer weights assigned to faces of the mesh respectively, θ is the minimum

Chapter 2. Related Work 21

interior face angles of the mesh. The size of the graph is O(kn) and its con-
struction costs O(kn3) time. To test its performance, their algorithm is im-
plemented and compared with some other simple heuristic algorithms. The
experimental results show that their algorithm outperforms others in both the
query time and the accuracy.

Lanthier et al. (1997, 2001) proposed another graph-based approxima-
tion algorithm with three variants to solve the DGP problem on weighted
polyhedral surfaces. Compared to Mata and Mitchell’s algorithm which links
vertices or critical points by approximating the round angles, their algorithm
constructs the graph by placing and linking extra points on edges of the mesh
M . According to the point-placing scheme employed, their algorithm has
three variants:

(1) Fixed scheme. This scheme places k points evenly on each edge of mesh
M , where k is a positive integer. For each face fi ∈ M , a graph Gi is
constructed by linking every pair of points (or vertices) on different
edges of fi. The final graph G is constructed by merging all the face
graphs Gi. By applying the Dijkstra’s algorithm (Dijkstra, 1959) on G,
an approximate shortest path between two points onM with an additive
error bound factor ofW |L| can be constructed inO(n5) time, whereW
is the maximum weight assigned to faces ofM andL is the longest edge
of M .

(2) Interval scheme. This scheme can be viewed as an improved version of
the Fixed Scheme. Instead of placing a fixed number of points on each
edge, this scheme places points on edges with a fixed interval length,
e.g. |L| /(k + 1), where L is the longest edge of M and k is a positive
integer. As a result, the number of placed points is considerably reduced
in practice. However, the worst case analysis of this scheme remains the
same as the Fixed Scheme.

(3) Spanner scheme. To improve the time complexity of the Fixed Scheme

and the Interval Scheme, Lanthier et al. proposed to reduce the number
of links between placed points in each face, which is implemented by
introducing the notion of the spanner (Clarkson, 1987). As a result, the
algorithm’s time complexity is improved to O(n3 log n) at the cost of a
larger approximation error. In more details, the length of an obtained
approximate path is increased to βp + W |L|, where β > 1, p is the

Chapter 2. Related Work 22

length of the exact shortest path, W is the maximum weight assigned to
faces of M and L is the longest edge of M .

Their experimental results on typical terrain data show that adding a smaller
constant number of points (i.e. six) per edge is sufficient to obtain a near-
optimal result and thus the practical running time of their algorithm is reduced
to O(n log n).

Lanthier et al. (2003) proposed a parallel implementation of their algo-
rithm (Lanthier et al., 1997, 2001) to speed up the computation. In their
implementation, a general spatial indexing storage structure, namely multidi-

mensional fixed partition, is employed to achieve load balancing and reduce
the processors’ idle time. To make a fair performance evaluation, they tested
the implementation on different platforms including, a network of worksta-
tions, a Beowulf cluster and a symmetric multiprocessing architecture.

Given an error bound factor (1 + ε) that ε > 0, Aleksandrov et al. (1998)
proposed a graph-based approximation algorithm to solve the DGP problem
on weighted polyhedral surfaces. Similar to the idea of Lanthier et al. (1997,
2001), their algorithm places extra points on edges of mesh M to gener-
ate an augmented graph G. In more details, they place k = O(logδ |L|/r)
points on each edge of M in a geometric progression manner, where L is the
longest edge of M , r equals the minimum distance from any vertex of M to
the boundary of the union of its incident faces times ε, θ is the minimum of
all the face angles of M and δ ≥ 1 + ε sin θ. Then, the approximate shortest
paths are obtained by performing the Dijkstra’s algorithm (Dijkstra, 1959) on
G. The time cost of their algorithm is O(mn logmn+ nm2), where m is the
total number of extra points added. To improve this algorithm, Aleksandrov
et al. (2000) proposed to:

(1) Reduce the number of points placed by modifying the point placing
scheme. Let pi, pi+1 be two adjacent points placed on an edge e ∈ M
in a geometric progression manner, x be a point on the boundary of
the union of e’s two adjacent faces. Then, it is required that the angle
6 axb < πε

2
.

(2) Prune the search of the Dijkstra’s algorithm using the Snell’s Law. Let
ai be a node in the graph and ai−1 be its preceding node in ai’s shortest
path. Then, the next node to be updated from ai must be in the geodesic

cone of ai−1ai defined by the Snell’s Law.

Chapter 2. Related Work 23

As a result, the time cost is reduced to O(n
ε

log 1
ε
(1√

ε
+ log n)) while the error

bound factor is still (1 + ε).

Sun and Reif (2006) improved the algorithm proposed by Aleksandrov
et al. (2000) by replacing the pruned Dijkstra’s algorithm with their BUSH-

WHACK algorithm to search the constructed graphG. Similar to Aleksandrov
et al.’s idea, they dynamically maintain a small number of incident edges to
each vertex of G which may contribute to a shortest path. However, com-
pared to the overlapping geodesic cones used by Aleksandrov et al. (2000),
the intervals used in their algorithm are mutually exclusive. Thus, the search
space of finding a shortest path is further reduced and the time cost of their
algorithm is O(n

ε
log 1

ε
(log 1

ε
+ log n)). In addition, they improved the point

placing scheme used by Aleksandrov et al. (2000) to make the time complex-
ity of their algorithm independent of W

w
, where W and w are the maximum

and minimum weights assigned to faces of the mesh respectively.

Aleksandrov et al. (2005) improved their previous algorithm (Aleksandrov
et al., 2000) by introducing a new point-placing scheme. In their algorithm,
the extra points are placed in a geometric progression way on the bisectors

rather than the edges of each face of the object mesh M . They proved that:

• For a bisector l of angle α at a vertex v, the number of extra points
placed on it is bounded by 1.61

sinα
log2

2|l|
r(v)

1√
ε

log2
2
ε
, where r(v) represents

the weighted radius r(v) for each face incident to v.

• The total number of extra points placed is bounded by C(P) n√
ε

log2
2
ε
,

where C(P) < 4.83Γ log2 2L, L is the maximum of the ratios |l(v)|
r(v)

among all vertices v ∈ M , Γ is the average of the reciprocals of the
sinuses of angles on mesh M .

As a result, their algorithm runs in O(C(P) n√
ε

log n
ε

log 1
ε
) time with the same

error bound (1 + ε). Based on this algorithm, Aleksandrov et al. (2010) pro-
posed two approximation algorithms to solve the SS-DGP and AP-DGP query
problems on weighted polyhedra surfaces respectively:

• To solve the SS-DGP query problem, they employed a single-source
query data structure SSQ which can answer the shortest distance queries
in logarithmic time with an error factor of (1 + ε). The SSQ data struc-
ture can be constructed in O(n√

ε
log n

ε
log 1

ε
) time using O(n√

ε
log 1

ε
)

space (Aleksandrov et al., 2005).

Chapter 2. Related Work 24

• To solve the AP-DGP query problem, they first partition the object mesh
M into regions with “small-cost” boundaries by generalizing a parti-
tioning algorithm for planar graphs (Lipton and Tarjan, 1979). Then,
an all-pairs query data structure APQ is constructed as a collection
of the SSQ data structures based on the partitioned regions. With the
constructed APQ, the shortest distance query can be answered in O(q)

time, where q ∈ (1√
ε

log2 1
ε
, (g+1)2/3n1/3

√
ε

) is a user-defined parameter, g
is the genus of the mesh. The APQ data structure can be constructed in
O((g+1)n2

ε3/2q
log n

ε
log4 1

ε
) time using O((g+1)n2

ε3/2q
log4 1

ε
) space.

2.1.2 Partial Differential Equation (PDE) Approach

The PDE-based discrete geodesic algorithms compute geodesics on polyhe-
dral surfaces by solving discretized Partial Differential Equations (PDEs).
These algorithms are usually fast and easy to implement. However, they can-
not provide an exact solution. Furthermore, their approximation errors are
usually unbounded and depend heavily on the mesh quality. According to the
PDE solved, this section reviews two kinds of important PDE-based discrete
geodesic algorithms: the ones solving the discrete Eikonal equation (Section
2.1.2.1) and those solving the discrete Poisson equation (Section 2.1.2.2).

2.1.2.1 Discrete Eikonal Equation

The Eikonal equation |∇T |F = 1 is a partial differential equation charac-
terising the propagation of waves, where T is the time when the wavefront
arrives at a point, F is the speed of the propagating wavefront. It shows that
the gradient of the arrival time is inversely proportional to the speed of the
wavefront (Sethian, 1996). By setting the speed of the wavefront F ≡ 1 on
meshM , the arrive time of each point p ∈M is equivalent to p’s geodesic dis-
tance. According to the types of the mesh, the algorithms to solve the discrete
Eikonal equation are classified into two categories as follows.

(A) Regular grids Sethian (1996) proposed an important algorithm to
solve the discrete Eikonal equation on regular grids, which is known as the
Fast Marching Method (FMM) algorithm. Their main idea is to compute the
arrival time T for each vertex of the grid by propagating the wavefront out-
ward in an “upwind” fashion. That is, the wavefront vertices are maintained

Chapter 2. Related Work 25

in a priority queue and the one with the minimum arrival time T is first pro-
cessed. The computation of T follows the discrete Eikonal Equation,

[max(max (D−xij T, 0)−min (D+x
ij T, 0))2

+ max(max (D−yij T, 0)−min (D+y
ij T, 0))2] = 1/F 2

ij

In the above equation, the gradient of T is discretized by the finite difference
method, for example, D+x

ij T = (Ti+1,j − Ti,j)/(∆x). The time cost of their
algorithm is O(n log n).

Yatziv et al. (2006) improved the time cost of the FMM algorithm toO(n)

by replacing the priority queue used with a bucket structure called the untidy

queue. The error bound of their algorithm is of the same magnitude with the
original FMM algorithm.

Bertelli et al. (2006) extended the FMM algorithm to compute all-pairs
distance on rectangular grids. Their key observation is that more than 90% of
the distance calculations are repeated when naively running the FMM algo-
rithm n times for each vertex. To remove such redundancy, they proposed a
method to reuse the previous calculated distances. The experimental results
show that their algorithm not only reduced the redundancy but also improved
the accuracy of distance calculations. However, the theoretical time com-
plexity of their algorithm remains O(n2 log n), which is the same as naively
running the FMM algorithm n times.

(B) Triangle meshes Kimmel and Sethian (1998) extended the FMM al-
gorithm proposed by Sethian (1996) to solve the SS-DGP problem on triangle
meshes. Similar to the ideas of Dijkstra (1959) and Sethian (1996), their al-
gorithm computes the geodesic distances of vertices by processing them from
near to far using a priority queue. Let p be a vertex to be processed, the
geodesic distance of p is updated by the triangles containing processed ver-
tices in p’s 1-ring neighbourhood. This update contains two cases:

(1) The triangle contains two processed vertices. In this case, the geodesic
distance of p is computed by solving the discrete Eikonal equation in
the triangle, which is essentially a quadratic equation.

(2) The triangle is obtuse and contains only one processed vertex. Let a be
the processed vertex. In this case, the adjacent triangles opposing the
obtuse angle are unfolded to a plane until another processed vertex b is
found. Then, the vertices p, a, b form a virtual triangle and the geodesic

Chapter 2. Related Work 26

distance of p is computed by solving the discrete Eikonal equation in
this virtual triangle.

The error of the first case is O(emax) and that of the second case is O(emax

π−θmax
),

where emax is the length of the longest edge and θmax is the widest angle of
the mesh. Thus, the accuracy of their algorithm depends on the mesh quality.
For near-degenerate meshes, the error becomes unbounded and may yield
poor results. After the distance field computation, the geodesic paths can be
constructed by performing the gradient descent method.

Martínez et al. (2005) proposed an algorithm to refine the geodesic path
generated by the FMM algorithm. Their main idea is to refined the initial
path constructed by FMM iteratively by a discrete geodesic flow based on the
straightest geodesics theory (Polthier and Schmies, 1998). They proved that
the refined path has a shorter length and converges to a local minimum.

Xin and Wang (2007) proposed an algorithm to construct an exact locally
shortest geodesic path on triangle meshes based on the FMM algorithm. Simi-
lar to the idea of Martínez et al. (2005), they proposed to construct the locally
shortest path by iteratively refining a rough initial path. First, to obtain a
more accurate initial path, they improved the FMM algorithm by classifying
all edges into seven types to control the wavefront propagation more precisely.
Second, the obtained initial path is refined by iteratively optimizing the face
sequence containing the path. The optimization continues until the face se-
quence contains the exact locally shortest path. Note that the shortest path in
a face sequence is computed by a visibility-based algorithm inspired by the
MMP algorithm (Mitchell et al., 1987) rather than the discrete geodesic flow
used by Martínez et al. (2005).

2.1.2.2 Discrete Poisson Equation

The geodesic distance field d on a triangle meshM can be obtained by solving
the Poisson equation ∆d = ∇·X , where X is a vector field constructed from
M representing the approximation of d’s gradient ∇d. This is equivalent to
solving the minimization problem

∫
M
|∇d−X|.

Xin et al. (2012) proposed an algorithm to compute the geodesic distance
fields on broken meshes (e.g. containing holes, gaps and short-cuts) in an

Chapter 2. Related Work 27

iterative manner. The initial distance field d0 is defined as the Euclidean dis-
tances from the source vertex to all the other vertices of the mesh. In each
iteration, their algorithm contains three steps:

(1) Smooth di and normalize its gradient field such that ‖∇di‖ = 1.

(2) Compute the distance field di+1 by solving Poisson equation with∇di.

(3) Remove the minimal points other than the source in di+1 by smoothing.

Their experimental results show that the computed distances are insensitive to
the defects of the mesh but smoother than the geodesic distances. In addition,
their algorithm is not guaranteed to converge.

Crane et al. (2013) proposed an algorithm to compute geodesic distances
on triangle meshes using the Varadhan’s formula, which describes the rela-
tionship between heat and geodesic distance on a Riemannian manifold as,

d(x, y) = lim
t→0

√
−4t log kt,x(y)

where d(x, y) is the geodesic distance between two points x and y, t is the
time, kt,x(y) is the heat kernel. Let d be the geodesic distance field to be
computed, their algorithm divides the geodesic computation into three steps:

(1) Compute the heat flow for a fixed time t over the mesh to approximate
the gradient field∇d of d.

(2) Normalizes∇d such that ‖∇d‖ = 1.

(3) Solve the Poisson equation with ∇d to recover d.

Their algorithm can be implemented in an efficient way to run in near-linear
time by pre-factoring the Laplacian matrix used. Similar to the algorithm
proposed by Xin et al. (2012), the distances calculated by their method is a
smoothed approximation of the geodesic distances. The experimental results
show that their method runs faster than the FMM algorithm (Kimmel and
Sethian, 1998) while producing similar errors.

Chapter 2. Related Work 28

2.2 Voronoi Diagram on Surfaces

According to Aurenhammer (1991), the Voronoi diagram of a set of sources
partitions the surface into a collection of regions. Each such region is asso-
ciated to a unique source si and all the points in the region are closer to si
than any other sources. Thus, the Voronoi diagram is closely related to the
shortest path problem. This section reviews the methods to construct Voronoi
diagrams on two important types of surfaces: the 2D planes (Section 2.2.1)
and the 3D polyhedral surfaces (Section 2.2.2).

2.2.1 Voronoi Diagrams on 2D Planes

The Voronoi diagrams on 2D planes are well-studied in the mid-late 20th cen-
tury and three typical algorithms to construct them are reviewed as follows.

The Incremental Insertion method Green and Sibson (1978) proposed to
construct the Voronoi diagram on the 2D plane by incrementally inserting
sources. Figure 2.2 illustrates the process of inserting a new source v into an
existing Voronoi diagram. This process contains two steps:

𝐴

𝐵
𝐶

𝐷

𝑣

𝐴

𝐵
𝐶

𝐷

𝑣

(a) (b)

𝑒

FIGURE 2.2: Illustration of the incremental insertion method. (a) Source v is
inserted. (b) The resulting Voronoi diagram.

(1) First, find the nearest source of v in the existing Voronoi diagram. For
example in Figure 2.2 (a), A is the nearest source to v and v falls in
A’s Voronoi region. The perpendicular bisector between v and A con-
tributes to a boundary edge of v’s Voronoi region, i.e. edge e.

Chapter 2. Related Work 29

(2) Second, the boundary of v’s Voronoi region is constructed recursively
edge by edge. For example in Figure 2.2 (a), the construction starts
from e and is performed along the red arrows. During the construction,
the Voronoi diagram is updated by traversing and removing the redun-
dant parts of the old boundaries, which reside in v’s region. Figure 2.2
(b) shows the resulting Voronoi diagram after the insertion.

Let k be the number of sources inserted. Then, the worst time complexity of
the first stage isO(k). However, Green and Sibson (1978) found that utilizing
the boundaries of the existing Voronoi diagram as a heuristic can reduce the
expect time cost to O(

√
k). For the second stage, its worst time complexity

is also O(k). In practice, Green and Sibson (1978) observed that the average
number of a source’s boundary edges approaches six in large configurations.
Thus, the expected time cost of the second stage is O(1). In summary, the
worst time cost of this algorithm is O(n2) for n sources, while its expected
time cost is O(n1.5).

Since the performance bottleneck of the incremental insertion method is
the nearest neighbour search when inserting a new source, Ohya et al. (1984)
accelerated it by ordering the insertions appropriately. In their method, the
plane is partitioned into unit square grids, and the sources are placed into these
grids according to their positions. Then, the insertion of sources is ordered
according to the grids’ adjacency. As a result, the practical running time of
the nearest neighbour search is reduced toO(1) and the overall algorithm runs
inO(n) time for n sources, which reaches the lower bound of constructing 2D
planar Voronoi diagrams.

The Divide and Conquer method The classic divide and conquer paradigm
is widely used in designing fast algorithms. Shamos and Hoey (1975) first
proposed to apply it in constructing the Voronoi diagrams on the 2D plane. In
their method, the given n sources are first divided into two groups L and R by
a line, each containing n/2 source. Suppose the Voronoi diagrams of L and R
are constructed, they showed that these two Voronoi diagrams can be merged
in linear time by constructing the polyline dividing them (e.g. polyline P in
Figure 2.3). Note that the constructed polyline is part of the boundaries of
the resulting Voronoi diagram. As a result, their method can construct the
Voronoi diagram in O(n log n) time by recursively dividing the n sources.
Here, O(n log n) is both the worst-case and expected time complexities.

Chapter 2. Related Work 30

𝐿 𝑅

𝑃

FIGURE 2.3: Illustration of the divide and conquer method.

The Plane-Sweep method Fortune (1986) proposed an algorithm to con-
struct the Voronoi diagrams by simulating a line sweeping through the 2D
plane. This line is denoted as the sweep line and considered as a source in
the construction as well. In their algorithm, the Voronoi diagram is only con-
structed in the region swept by the sweep line. As Figure 2.4 shows, the
concepts used are introduced as follows:

• Sweep Line. A horizontal line sweeping from top to bottom.

• Swept Region. A region containing the swept sources and the con-
structed part of the Voronoi diagram.

• Beach Line. Since the bisector between a line and a point is a parabola,
the beach line is a chain of such parabola arcs between the sweep line

and the swept sources.

• Break Point. The point shared by two parabola arcs.

During the sweeping, the sweep line moves from the top to the bottom of
the plane. The beach line follows the sweep line and its structure changes
when a new parabola arc is added (i.e. a new source is swept), or an old
one vanishes. Then, the Voronoi diagram is constructed by tracking the break

points since they reside on the Voronoi boundaries. In their algorithm, the
moves of the sweep line is implemented by sorting sources’ y-coordinates
in a priority queue, and the beach line is organized using a binary tree for
efficient searching and updating. Fortune (1986) proved that the the beach

Chapter 2. Related Work 31

Sweep Line

Beach Line

Break Point
Swept Region

FIGURE 2.4: Illustration of the plane-sweep method.

line’s structure changes at most O(n) times. Thus, the time complexity of
their algorithm is O(n log n).

2.2.2 Voronoi Diagrams on 3D Polyhedral Surfaces

In computer graphics and computational geometry, 3D surfaces are usually
assumed to be polyhedral and represented by triangle meshes. In this con-
text, geodesics are used as the distance metric because they reflect the in-
trinsic properties of the surfaces and are invariant to isometric deformations.
Thus, the Voronoi diagrams on 3D polyhedral surfaces are also known as the
geodesic Voronoi diagrams, which can be constructed by the computational
geometry approach or the PDE approach.

Computational Geometry Approach Mount (1985b) first proposed an al-
gorithm to construct the geodesic Voronoi diagrams based on the MMP algo-
rithm (Mitchell et al., 1987). The distinct advantage of the MMP algorithm
is to bring necessary geodesic information to edges of the mesh, and thus the
geodesic Voronoi diagram can be constructed face by face. In such faces, the
problem degenerates to the Voronoi diagram construction on 2D planes. Thus,
Mount (1985b) proposed to solve it by employing the divided-and-conquer
method (Shamos and Hoey, 1975). Note that the Voronoi boundaries on 3D
polyhedral surfaces contain not only straight line segments but also hyper-
bolic segments (caused by saddle vertices), which are more complex than
those on 2D planes. Let n be the number of mesh vertices, this algorithm runs
in O(n2 log n) time using O(n2) space. However, it lacks explicit details and
has not been implemented so far.

Chapter 2. Related Work 32

Following Mount’s work, Liu et al. (2011) proposed a practical algorithm
to construct the geodesic Voronoi diagram on triangle meshes based on the
necessary geodesic information provided by the MMP algorithm (Mitchell
et al., 1987). Their algorithm is essentially a triangle-marching scheme which
tracks the Voronoi boundaries. However, to make the marching scheme sim-
ple, the triangle faces must be subdivided to guarantee that each edge con-
tains at most one intersection point with the Voronoi boundaries. Let k be
the number of triangles passed by the Voronoi boundaries, their algorithm
runs in O(k log k) time. In practice, since the Voronoi diagram is usually
more sparse than the meshes, k � n, where n is the number of mesh vertices.
Thus, the performance bottleneck of their method is the geodesic computation
part which costs O(n2 log n) time and O(n2) space.

Xu et al. (2014) extended Liu et al.’s work to construct polyline-sourced
geodesic Voronoi diagrams on triangle meshes. In their algorithm, a method
is proposed to reduce the memory cost of the geodesic Voronoi diagram con-
struction. In more details, this method performs the redundancy checks re-
peatedly on the geodesic information stored on mesh edges. Since the cost
of the redundancy check is large, performing it frequently is time-consuming.
Thus, their method suffers from the trade-off between the running time and
the memory-cost.

PDE Approach Kimmel and Sethian (1999) proposed to construct geodesic
Voronoi diagrams approximately using the Fast Marching Method (FMM) al-
gorithm (Kimmel and Sethian, 1998). First, the geodesic distances at vertices
are calculated by performing the FMM algorithm on all the sources simulta-
neously. Then, the Voronoi boundaries are constructed by marching along the
triangles whose vertices’ geodesic distances are defined by different sources.
For each such triangle, the Voronoi boundary curve is linearly interpolated
by the different distance maps provided by its vertices. Let n be the number
of mesh vertices, the geodesic computation part costs O(n log n) time (Kim-
mel and Sethian, 1998) and the Voronoi diagram construction part costs O(n)

time. Although this algorithm is fast, potentially large errors may occur on
near-degenerate meshes since it is based on PDE.

33

Chapter 3

Edge-based Windows Grouping

Mitchell et al. (1987) showed that the exact geodesics on triangle meshes can
be computed by performing window propagations. Here, a window encodes
the information of a geodesic cone originating from the source point. Then,
the exact geodesics over a mesh surface are computed by progressively prop-
agating and updating windows. The organization of this chapter is shown as
follows:

• Section 3.1 defines the two geodesic problems to be solved in this thesis.

• Section 3.2 presents the geometric preliminaries of the exact geodesics
on triangle meshes.

• Section 3.3 proposes the Edge-based Windows Grouping (EWG) tech-
nique, which is the foundation of this research.

3.1 Discrete Geodesic Problem (DGP) Definition

First, a polyhedral surfaceM inR3 is given, which is defined by its associated
vertices V , edges E and faces F , i.e. M = (V,E, F). Then, a special point s
is given as the source. Without loss of generality,

(1) M is assumed to be a triangle mesh since the polygonal faces of M can
be triangulated in linear time (Chazelle, 1991).

(2) s is assumed to be a vertex of M since the source points on edges or
faces of M can be converted to vertices in constant time (Figure 3.1).

Chapter 3. Edge-based Windows Grouping 34

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝑠𝑠

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝑠𝑠

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝑠𝑠

(𝑎𝑎)

(𝑏𝑏)

𝐷𝐷

𝐴𝐴

𝐵𝐵

𝐶𝐶

𝑠𝑠 𝐷𝐷

FIGURE 3.1: Convert the source point s to a vertex of the mesh by subdivisions.
(a) The source point s is in the interior of ∆ABC. Link s to vertices A, B, C.
Then, ∆ABC is subdivided into ∆sAB, ∆sBC, ∆sAC respectively and s
is converted to a vertex of the mesh. (b) The source point s is on the edge
AC shared by ∆ABC and ∆ACD. Link s to vertices B, D. Then, ∆ABC
is subdivided into ∆sAB and ∆sBC, ∆ACD is subdivided into ∆sAD and
∆sDC. s is converted to a vertex of the mesh.

3.1.1 Single-Source DGP (SS-DGP)

Following Mitchell et al. (1987), the classic single-source discrete geodesic
problem on triangle meshes is defined as:

Single-Source Discrete Geodesic Problem (SS-DGP).
Instance: A source vertex s on a triangle mesh M .
Question: Find the geodesic distances from s to all the other vertices of

M in the Euclidean metric such that the corresponding geodesic paths stay on
the mesh M .

3.1.2 Voronoi Diagram oriented DGP (VD-DGP)

An important application of the discrete geodesic algorithm is to construct
Voronoi diagrams on triangle meshes (Liu et al., 2011). This application re-
quires retaining multi-source geodesics on edges of a mesh M . Thus, the
Voronoi diagram oriented discrete geodesic problem is defined as:

Chapter 3. Edge-based Windows Grouping 35

Voronoi Diagram oriented Discrete Geodesic Problem (VD-DGP).
Instance: A set of source vertices s0, s1, ..., sn on a triangle mesh M .
Question: Find and retain the geodesic information from s0, s1, ..., sn to

Evd on M in the Euclidean metric such that the corresponding geodesic paths
stay on mesh M , where Evd ⊆ E is the set of edges which contribute to the
Voronoi diagram construction.

3.2 Preliminaries

3.2.1 Locally Shortest Paths on Triangle Meshes

Starting from the simple case: given a face f of a mesh M , the shortest path
between two points s and d in f is the straight line segment linking them
(Figure 3.2 (a)).

𝐴

𝐵

𝐶

𝑠

𝐴(𝑠)

𝐵

𝐶

(𝑎) (𝑏)

𝑑

𝐷(𝑑)

𝑥

𝑦

𝑧

𝑝

FIGURE 3.2: Illustration of the two cases of a shortest path on a triangle mesh.
(a) The shortest path between two points s and d in a face ∆ABC is a straight
line segment sd. Note that s and d can be located in the interior or on the bound-
ary of ∆ABC. (b) Two points s and d are in ∆ABC and ∆BCD respectively.
The shortest path between them is a polyline spd but not the straight line seg-
ment sd connecting them. Note that s and d may coincide with the vertices of
the faces, e.g. the vertices A and D in the figure.

However, the shortest path between two points s and d is no longer a
simple straight line segment if s and d are on two different faces of mesh
M respectively. In this case, the straight line segment linking s and d may
not stay on M and the shortest path between them is a polyline crossing a
sequence of faces with its vertices on edges of M (Figure 3.2 (b)). Such a
face sequence is denoted as a triangle strip.

Chapter 3. Edge-based Windows Grouping 36

Triangle strip Let s be the source vertex, a triangle strip T starting from s

is defined as a sequence of faces f1, f2, ..., fm+1 that two consecutive faces fi
and fi+1 (1 ≤ i ≤ m) are adjacent on the mesh by sharing a common edge
ei (Figure 3.3 (a)). Unless specified, the triangle strips mentioned later are all
simple, i.e. a face appears at most once in a triangle strip.

𝑠
𝑓1

𝑓2

𝑓3

𝑒1
𝑒2 𝑒3 𝑒𝑚

𝑓𝑚+1

𝑓𝑚

(𝑎)

(𝑏)

𝑠
𝑓1 𝑒1

𝑓2
𝑒2 𝑓3

𝑒3
𝑓𝑚𝑒𝑚

𝑓𝑚+1

𝑻

𝑻′

𝑻

FIGURE 3.3: Illustration of the triangle strip and the planar unfolding. (a) A
triangle strip T starting from a vertex s. (b) The obtained 2D triangle strip T ′

by performing planar unfolding on the 3D triangle strip T . The red dashed
lines show some shortest paths on T ′, which are straight line segments. Note
that the straight line segments are restricted to fall inside T ′. Otherwise, the
computed 2D shortest paths cannot be mapped back to the 3D triangle strip T .

Although the triangle strips simplify the search space of shortest paths
from the entire mesh, it remains difficult to find shortest paths on them due to
their 3D nature. Thus, to further simplify the problem and utilize the exten-
sive knowledge from 2D computational geometry, a technique named planar

unfolding is employed to unfold 3D triangle strips onto 2D planes.

Planar Unfolding Given a triangle strip T = (f1, f2, ..., fm+1) and its cor-
responding edge sequence e1, e2, ..., em (Figure 3.3 (a)), T is unfolded in this
way: rotate f1 around e1 until its plane coincides with that of f2, rotate f1 and
f2 around e2 until their plane coincides with that of f3, continue in this way
until all faces f1, f2, ..., fm lie in the plane of fm+1.

Chapter 3. Edge-based Windows Grouping 37

The planar unfolding process only involves rotations, and thus no distor-
tion is introduced. As Figure 3.3 (b) shows, a triangle strip is unfolded from
3D to a 2D plane where the shortest path between two points is the straight
line segment linking them. Note that the shortest path computed on the un-
folded triangle strip can be mapped back to the 3D mesh without distortion.

Based on the above discussions, Mitchell et al. (1987) characterised the
locally shortest paths on triangle meshes as follows:

Lemma 3.1. The general form of a locally shortest path is a path that goes

through an alternating sequence of vertices and edge sequences such that the

unfolded image of the path along any edge sequence is a straight line segment

and both the angles of the path passing through a vertex are greater than or

equal to π.

𝑠

𝜋 𝜋
𝑣𝑝

𝑠

≥ 𝜋 ≥ 𝜋

𝑠

𝜋 𝜋

(𝑎) (𝑏) (𝑐)

𝑣𝑠 𝑣𝑠

FIGURE 3.4: Illustration of a locally shortest path passing through a vertex.
(a) The vertex vp is a planar vertex. Thus, both the angles of the locally short-
est path passing through it is π. (b) The vertex vs is a saddle vertex. Thus,
the locally shortest path passing through it must lie in the “invisible” region it
causes (the red shaded region). The “invisible” region is bounded by the two
locally shortest paths passing through vs whose angles are π. (c) The vertex vs
is a saddle vertex. Thus, at least one of the angles of the locally shortest path
passing through it is larger than π.

Lemma 3.1 mentioned two cases of the locally shortest path according to
the types of the vertex passed:

• A planar vertex vp whose round angle equals 2π. In this case, both the
angles of the path passing through v equals π (Figure 3.4 (a)).

• A saddle vertex vs whose round angle is larger than 2π. In this case, at
least one of the two angles of the path passing through vs is larger than
π (Figure 3.4 (b)(c)).

Chapter 3. Edge-based Windows Grouping 38

In geodesic studies, the second case attracts more attention since it causes
“invisible” regions on the mesh from the source vertex. The geodesic paths of
all the points in an “invisible” region pass through the corresponding saddle
vertex. Thus, the saddle vertices are usually referred to as pseudo sources.

3.2.2 Globally Shortest Paths on Triangle Meshes

The preceding section characterises the locally shortest paths on a triangle
mesh M by introducing the triangle strip and planar unfolding. However,
there may be multiple locally shortest paths from a source vertex s to a des-
tination vertex d on M . Among them, only the ones with the shortest length
are the globally shortest paths. Thus, the globally shortest paths from s to d
can be found by comparing the lengths of all the locally shortest paths link-
ing them. In addition, the geodesic distance of d is the length of the globally
shortest paths and is unique. Mitchell et al. (1987) characterised the globally
shortest paths formally as follows:

Lemma 3.2. A globally shortest path is a geodesic, and it has the additional

property that no edge can appear in more than one edge sequence and each

edge sequence must be simple. If p(x) and p(y) are geodesic paths from s to

points x and y, then they can intersect only at vertices of M , and if they do

intersect at v, then that subpath of p(x) from s to v has the same length as

that subpath of p(y) from s to v.

In Lemma 3.2, the vertex v is essentially a saddle vertex and it states that
the geodesic paths do not intersect on edges or faces of a triangle mesh M .

3.3 Edge-based Windows Grouping (EWG)

The Edge-based Windows Grouping (EWG) technique is proposed to improve
the exact geodesic computation on triangle meshes. Its main idea is to group
the windows on an edge into one or two window lists and process them in
batches. Before discussing the details of EWG, the definition and propagation
of windows are first proposed as follows.

Chapter 3. Edge-based Windows Grouping 39

3.3.1 Window Definition and Propagation

The feature of an individual geodesic path is discussed in Section 3.2. How-
ever, since a source vertex s can emanate an infinite number of geodesic
paths on a triangle mesh, an efficient data structure is required to encode the
geodesic information emanated from s for computational purpose. Based on
the observation that many adjacent geodesic paths are from the same trian-
gle strip, Mitchell et al. (1987) proposed such a data structure called window,
which is also employed by the work of this thesis.

𝑠
𝑝

𝑠
𝑝

𝑠
𝑝

𝑠
𝑝

……

FIGURE 3.5: Illustration of the geodesic visible cone in a triangle strip. s is the
source vertex. p is the projection of the pseudo source, which must be a saddle
vertex.

Chapter 3. Edge-based Windows Grouping 40

According to the discussion in Section 3.2.1, the shortest paths in an un-
folded triangle strip are straight line segments and these shortest paths form a
visible cone. Figure 3.5 shows how the visible cone changes when the triangle
strip is unfolded from p. A window is a data structure encoding the geodesic
information of an unfolded triangle strip including the visible cone, which is
defined as follows:

Window definition A window is defined asw = (∆ABC, a0, a1, p, d0, d1, σ),
where ∆ABC stands for the triangle it enters fromAB and shows the unfold-
ing direction of the triangle strip (this is equivalent to the half edge used by
Surazhsky et al. (2005)). Two scalar parameters, a0 and a1, mark the two end-
points of w, which lies on the edge AB, and a0 denotes the endpoint closer
to A. Every window w is created by the source vertex s or a pseudo source,
which must be a saddle vertex. Here p represents the projection of this pseudo
source on the plane determined by ∆ABC, and d0, d1 are the distances from
a0, a1 to p respectively. a0, a1, p, d0, d1 together encode the information of the
visible cone from p. σ denotes the geodesic distance from the pseudo source
to the source vertex s.

𝑠
𝜎

𝑝

𝑑0

𝑑1

𝑎0
𝑎1

𝐴

𝐵

𝐶
𝑤

𝑠
𝜎

𝑝

𝑑0

𝑑1

𝑎0
𝑎1

𝐴

𝐵

𝐶
𝑤

(𝑎)

(𝑏)

FIGURE 3.6: Illustration of the window data structure.

Figure 3.6 (a) shows an illustration of window w in an unfolded triangle
strip. It can be seen thatw is narrowed by the boundary vertices of the triangle
strip. Since the parameters of a window contain all the geodesic information
of an unfolded triangle strip, the geodesic computation can be implemented

Chapter 3. Edge-based Windows Grouping 41

by propagating windows without considering the corresponding triangle strip
(Figure 3.6 (b)). That is, the operation of unfolding triangle strips is converted
to updating the parameters of windows. Let w be a window to be propagated
across ∆ABC from the edgeAB. As Figure 3.7 shows, the three points a0, a1

and p of w form a 2D visible cone from p whose boundaries are the rays −→pa0

and −→pa1. According to the positions of the intersection points x, y between
−→pa0, −→pa1 and the edges of ∆ABC, the propagation of w contains three cases:

𝑤0

𝐴

𝐵

𝐶

𝑎1
𝑎0

𝑝

𝑤1𝐴

𝐵

𝐶

𝑎1
𝑎0

𝑝

𝑤 𝑤

(𝑎) (𝑏) (𝑐)

𝐴

𝐵

𝐶

𝑎1

𝑎0

𝑝

𝑤

𝑤0

𝑤1

𝑥

𝑦

𝑥
𝑦

𝑥

𝑦

FIGURE 3.7: Three cases of the window propagation in a face. (a) A window
w is propagated from the edge AB to the edges AC and BC as the windows
w0 and w1 respectively. (b) w is propagated from AB to AC as w0. (c) w is
propagated from AB to BC as w1.

(1) If x and y are on the edgesAC andBC respectively, there are two valid
propagation directions. First, the window w is propagated to AC as the
window w0 whose endpoints are x and C. Second, w is propagated to
BC as the window w1 whose endpoints are C and y.

(2) If both x, y are on the edge AC, there is only one valid propagation
direction. The window w is propagated to AC as the window w0 whose
endpoints are x and y.

(3) If both x, y are on the edge BC, there is only one valid propagation
direction. The window w is propagated to BC as the window w1 whose
endpoints are x and y.

With the above knowledge, EWG groups nearby windows on an edge into
window lists and process them in batches, whose details are shown as follows.

3.3.2 Applying EWG on Window Propagation

This section defines EWG and shows how to propagate the windows grouped
by EWG in batches.

Chapter 3. Edge-based Windows Grouping 42

3.3.2.1 EWG Definition

According to the number of window lists associated with an edge, the def-
inition of EWG has two variants and are presented respectively as follows
(Figure 3.8):

𝑒

𝑓0

𝑓1 𝑤𝑙0

𝑤𝑙1 𝑒
𝑤𝑙

(𝑎) (𝑏)

FIGURE 3.8: (a) Illustration of Definition 3.1. (b) Illustration of Definition 3.2.

Definition 3.1. For an edge e of a mesh M , two window lists wl0 and wl1
(corresponding to the two faces f0 and f1 sharing e) are defined and associ-

ated with e. wl0 contains the windows to be propagated through f0 and wl1
contains the windows to be propagated through f1. The range and operations

of this definition is introduced as follows,

Range: the window lists wl0 and wl1.

Operations:

(1) Window list query. For an edge e of a mesh M , this operation queries

the window lists wl0 and/or wl1 associated with it.

(2) Window query. For a queried window list (e.g. wl0 or wl1), this opera-

tion queries the window(s) stored in it.

Definition 3.2. For an edge e of a mesh M , a window list wl is defined and

associated with e. wl contains all the windows propagated to e. The range

and operations of this definition is introduced as follows,

Range: the window list wl.

Operations:

(1) Window list query. For any edge e of mesh M , this operation queries

the window list wl associated with it.

Chapter 3. Edge-based Windows Grouping 43

(2) Window query. For a queried window list wl, this operation queries the

window(s) stored in it.

To illustrate how to use the defined EWG technique, the window propa-
gations are implemented in terms of EWG as follows.

3.3.2.2 EWG Window Propagation

The exact geodesics on a triangle mesh M can be computed by iteratively
propagating the windows edge by edge from a source vertex s or a set of
source vertices s0, s1, ..., sn over M (Mitchell et al., 1987). Compared to the
previous methods which organises such propagations by individual windows
(Surazhsky et al., 2005; Xin and Wang, 2009; Xu et al., 2015), the work in this
thesis applies the EWG technique to group nearby windows in window lists
and propagate them together in batches. This process is summarized as the
EWG-based window propagation framework, which is outlined as follows,

Initialization. Create the initial window lists on the edges in the 1-ring neigh-
bourhood of a source vertex s or a set of source vertices s0, s1, ..., sn. Then,
push all these window lists into a priority queue Q.

EWG-based Window Propagation.
Step 1. Pop a window list wl from Q.
Step 2. Propagate each window in wl across its corresponding triangle face
and update the corresponding window list(s).
Step 3. Remove the redundant windows in the updated window list(s). Push
these window lists into Q if they can be further propagated.
Step 4. If Q is empty, finish; otherwise, goto Step 1.

The above framework can be divided into three modules, which are shared
by all the window-based exact geodesic algorithms (Surazhsky et al., 2005;
Xin and Wang, 2009; Xu et al., 2015):

• Window propagation (Step 2). This module performs window propa-
gations across the faces of a mesh M .

• Window redundancy reduction (Step 3). This module identifies the
redundant windows and remove them during the propagation. It also
guarantees the termination of the algorithm.

• Window management (Step 1,4). This module manages the window
propagations in order, which makes the window redundancy reduction

Chapter 3. Edge-based Windows Grouping 44

module more effective. The proposed framework employs the continu-
ous Dijkstra technique (Mitchell et al., 1987) and propagates the win-
dows grouped by EWG from near to far according to their distances
from the source vertex or vertices. Thus, the redundant windows can be
removed at the earliest stage.

Among the three modules of the proposed framework, the window prop-

agation module is implemented by propagating all the windows in a window
list defined in the two EWG definitions (Definition 3.1 and Definition 3.2).
Thus, the propagation of a window list wl has two cases:

• wl is a window list defined in Definition 3.1. In this case, all the win-
dows inwl have the same propagation direction. Thus, wl is propagated
by simply traversing and propagating each window in it across the same
face (Figure 3.9 (a)).

• wl is a window list defined in Definition 3.2. In this case, the windows
in wl may have different propagation directions. Hence, wl is propa-
gated by traversing and propagating each window in it across the face
recorded by the window (Figure 3.9 (b)).

𝐴

𝐵

𝐶

𝐴

𝐵

𝐶

𝐷

(𝑎) (𝑏)

FIGURE 3.9: The two cases of the EWG window propagation module. (a) The
window list wl = (w0, w1, w2, ..., wn) is defined by Definition 3.1. Thus, all
the windows in it are propagated across ∆ABC. (b) wl is defined by Defini-
tion 3.2. Thus, the windows in it are propagated across ∆ABC and ∆ABD
respectively according to their recorded directions.

The other two modules window redundancy reduction and window manage-

ment are the key modules since they determine the time costs of the exact
geodesic algorithms. To illustrate how EWG is applied in these two modules
and achieves high performance, the following section evaluates the perfor-
mance of EWG by comparing it with existing methods.

Chapter 3. Edge-based Windows Grouping 45

3.3.2.3 EWG Performance Evaluation

All the state-of-the-art exact geodesic algorithms (Surazhsky et al., 2005; Xin
and Wang, 2009; Xu et al., 2015) employ an individual-window-based propa-
gation framework, in which the window propagation, window redundancy re-
duction and window management are all based on individual windows rather
than the grouped window lists. Compared to them, the proposed EWG-based
window propagation framework has the following distinct advantages,

• Low window redundancy EWG groups the windows on edges to-
gether into window lists. Thus, the extra inter-window geodesic infor-

mation among the windows in a window list can be utilized to removed
the redundancy more thoroughly.

• Low window management cost Both the proposed framework and
the existing exact geodesic algorithms employ the continuous Dijkstra
technique (Mitchell et al., 1987) to manage the window propagation
from near to far by a priority queue. However, compared to the ex-
isting methods whose priority queues employ individual windows as
elements, the proposed framework employs window lists as the priority
queue elements. Since the number of window lists is much smaller that
that of windows, the window management cost of the proposed frame-
work is dramatically reduced.

The rationale of these advantages is from the uniqueness of geodesic dis-
tances (Section 3.2.2). Such uniqueness shows that the redundant part of a
window can be removed by constructing shorter paths to the points in it from
other windows. However, since the total number of the windows on a mesh
is large, it is infeasible and unnecessary to remove a window’s redundancy by
checking it with all the other windows on the mesh. Thus, a natural choice
is to check a window with the nearby ones on the same edge. After this re-
dundancy removal process, the valid windows on an edge will have similar
distances whose range is related to the edge’s length. This makes the propa-
gation of window lists reasonable.

The above-mentioned advantages of EWG make the solutions of the SS-
DGP and VD-DGP problems (Section 3.1) fast and memory-efficient, which
will be discussed in the following section.

Chapter 3. Edge-based Windows Grouping 46

3.3.3 EWG-based Solutions to Geodesic Problems

3.3.3.1 Solution to the SS-DGP problem

The SS-DGP problem focuses on computing the geodesic distances from a
source vertex to all the other vertices of a triangle mesh (Section 3.1.1). To
maintain such geodesic distances, a vector D = (d1, d2, ..., dn) is employed,
where n is the number of mesh vertices. Then, the SS-DGP problem can be
solved by constantly updating D during window propagation.

Challenge: a both fast and memory-efficient SS-DGP algorithm The SS-
DGP problem can be solved by all the four state-of-the-art exact geodesic
algorithms (Surazhsky et al., 2005; Xin and Wang, 2009; Xu et al., 2015):

• The Mitchell-Mount-Papadimitriou (MMP) algorithm.

• The Improved Chen-Han (ICH) algorithm.

• The Fast-Wavefront-Propagation MMP (FWP-MMP) algorithm.

• The Fast-Wavefront-Propagation CH (FWP-CH) algorithm.

Among them, the MMP and FWP-MMP algorithms usually run faster than
the ICH and FWP-CH algorithms but consume thousands times more memory
(Xin and Wang, 2009; Xu et al., 2015). Thus, it is still challenging to design
a both fast and memory-efficient SS-DGP algorithm.

Employed EWG Definition: Definition 3.1 The geodesic distance of a ver-
tex v on the mesh is determined by the windows propagated to it from the
opposite edges in its 1-ring neighbourhood. On each such opposite edge e, it
is straightforward to group the windows which may contribute to v’s geodesic
distance as a window list. Since these windows have the same propagation
direction, Definition 3.1 is employed in this scenario (Figure 3.10).

Solution The challenge of the SS-DGP solution is addressed as follows,

• Fast speed As discussed in Section 3.3.2.3, the proposed SS-DGP al-
gorithm is fast because it has lower window redundancy and window
management cost than the existing methods.

• Low memory cost Since the SS-DGP problem only involves computing
the geodesic distances at vertices, the propagated windows are deleted
but not retained on the edges of meshes as the MMP and FWP-MMP

Chapter 3. Edge-based Windows Grouping 47

𝑣

𝑒

FIGURE 3.10: The reason for employing the EWG Definition 3.1 in the solu-
tion of the SS-DGP problem. The bold red line denote a 1-ring opposite edge
e of vertex v. The window list wle on edge e is defined according to Definition
3.1, which contains the windows propagating to the direction of v.

algorithms do. In addition, applying EWG makes the window redun-
dancy lower than the existing methods (Section 3.3.2.3). Thus, the pro-
posed SS-DGP algorithm is memory-efficient.

Based on the above ideas, a fast and memory-efficient SS-DGP algorithm is
proposed in Chapter 4.

3.3.3.2 Solution to the VD-DGP problem

The VD-DGP problem requires retaining the geodesic information on a set of
edges Evd of a triangle mesh which contribute to the Voronoi diagram con-
struction (Section 3.1.2). To retain such geodesic information, the propagated
windows on the edges of Evd must be kept. Then, the VD-DGP problem can
be solved by constantly updating the windows on edges ofEvd during window
propagation.

Challenge: a both fast and memory-efficient Voronoi diagram construc-
tion method The geodesic computation costs the majority of the time and
memory in the Voronoi diagram construction (Liu et al., 2011). Among the
four state-of-the-art exact geodesic algorithms (Surazhsky et al., 2005; Xin
and Wang, 2009; Xu et al., 2015), only the MMP and FWP-MMP algorithms
can be used since they retain the propagated windows on edges of the mesh,
which provides the necessary geodesic information for the Voronoi diagram
construction. However, although these two algorithms are relatively fast, the

Chapter 3. Edge-based Windows Grouping 48

retained windows cost large amounts of memory (Surazhsky et al., 2005) and
becomes their bottleneck. Thus, it is still challenging to propose a both fast
and memory-efficient Voronoi diagram construction method.

𝐴

𝐵

FIGURE 3.11: The reason for employing the EWG Definition 3.2 in the so-
lution of the VD-DGP problem. The retained windows on the edge AB are
optimized into non-overlapping ones for the Voronoi diagram construction.

Employed EWG Definition: Definition 3.2 In the MMP and FWP-MMP
algorithms, the retained windows on edges are trimmed into non-overlapping
ones and ordered according to their positions, which form an elegant structure
for the Voronoi diagram construction (Liu et al., 2011). Following it, Defini-
tion 3.2 is employed to provide the necessary geodesic information for the
Voronoi diagram construction (Figure 3.11).

Solution The challenge of the geodesic-based Voronoi diagram construction
is addressed as follows,

• Fast speed Compared to the existing methods, the proposed Voronoi
diagram construction method is fast because it has lower window man-
agement cost in geodesic computation (Section 3.3.2.3). Note that the
window redundancy reduction module in the proposed method does not
contribute to the speed-up because it employs the same “window trim-
ming rule” used by the MMP and FWP-MMP algorithms to optimize
the retained windows on edges for the Voronoi diagram construction.

• Low memory cost To provide the necessary geodesic information for
the Voronoi diagram construction, the propagated windows must be re-
tained on edges. However, since the Voronoi diagrams are usually more
sparse than meshes, the retained windows on most of the edges are re-
dundant can be removed. By applying EWG, such retained windows
are grouped as window lists. Thus, they can be removed efficiently

Chapter 3. Edge-based Windows Grouping 49

in batches by identifying the redundant window lists, which makes the
proposed method memory-efficient.

Based on the above ideas, a fast and memory-efficient method to construct the
geodesic-based Voronoi diagram on triangle meshes is proposed in Chapter 5.

50

Chapter 4

Fast and Exact SS-DGP Algorithm

To solve the SS-DGP problem which computes the geodesic distances from
a source vertex to all the other vertices of a triangle mesh (Section 3.1.1), an
EWG-based fast and memory-efficient exact geodesic algorithm is proposed
in this chapter. The high performance of this algorithm comes from its low
window redundancy, low window management cost, and that it does not retain
propagated windows on edges (Section 3.3.3.1). To illustrate how EWG is
applied to achieve such high performance, this chapter is organized as follows:

• Section 4.1 overviews the proposed algorithm.

• Section 4.2 introduces how EWG is applied to reduce window redun-
dancy in the window list propagation within a triangle. When a win-
dow list is propagated, its redundancy can be removed by performing
the pairwise window pruning. Here, EWG helps to form more window
pairs by accumulating windows in window lists and propagating them
together. Thus, the redundant windows can be pruned more thoroughly.

• Section 4.3 introduces how EWG is applied to reduce window man-
agement cost when propagating the wavefront over a mesh. The wave-
front contains the window lists to be propagated and its propagation is
managed by a priority queue. Here, EWG is applied to build the con-
nections between mesh edges and window lists so that the window lists
can be propagated by sorting mesh primitives (e.g. vertices). Thus, the
window management cost is dramatically reduced since the number of
mesh primitives is much smaller than that of the windows.

• Section 4.4 analyses the complexity of the proposed algorithm.

• Section 4.5 shows the experimental results of the proposed algorithm.

• Section 4.6 summarizes this chapter.

Chapter 4. Fast and Exact SS-DGP Algorithm 51

4.1 Algorithm Overview

This section briefly overviews the proposed EWG-based SS-DGP algorithm
and its outline is shown in Algorithm 1. To concisely refer to it, the proposed
algorithm is named as VTP (Vertex-oriented Triangle Propagation).

Initialization Given a triangle mesh M and a source vertex s, a single win-
dow is created for every opposite edge of s in its 1-ring neighbourhood and
stored in the corresponding window list. All the adjacent vertices of s is
pushed into a priority queue. A vector D is created to maintain the geodesic
distances of the vertices of M during propagation.

Algorithm 1 Vertex-oriented Triangle Propagation (VTP) Outline

Input: M - Mesh, S - Source set;
Output: D - a vector containing the geodesic distances of M ’s vertices;
1: procedure VTP(M , S)
2: Perform initialization; . Initialization
3: Push all adjacent vertices of S into a priority queue Q;
4: while !Q.empty() do . Wavefront Propagation
5: Pop a vertex v from Q;
6: Update the wavefront and the traversed area R;
7: Propagate the window lists on previous wavefront edges through

the newly added triangles of R; . Window List Propagation
8: Update Q and D;
9: end while

10: end procedure

Window List Propagation EWG groups windows as window lists and prop-
agates them in batches. In this scenario, any two windows picked from a
window list can form a window pair. To remove the redundancy of such a
window pair during propagation, a set of effective rules are proposed from
exhaustively studying the pairwise window pruning cases inside a triangle.
Then, these rules are applied to prune redundant windows in the three stages
of the window list propagation: window list splitting, window list propagation
and window list merging. As a result, the proposed VTP algorithm achieves
low window redundancy.

Wavefront Propagation EWG builds the connections between window lists
and mesh edges. Thus, the wavefront is defined as the boundary edges of the
traversed area, which is a single connected region containing all the visited
triangles of the mesh. The wavefront is then propagated by gradually en-
closing unvisited triangles abutting the traversed area in a continuous Dijkstra

Chapter 4. Fast and Exact SS-DGP Algorithm 52

style (Mitchell et al., 1987). That is, a priority queue is employed to add the
unvisited triangles into the traverse area according to their distances from the
source vertex. Each time the traversed area expands, the window lists on the
previous wavefront edges are propagated through the newly added triangles
until they reach the updated wavefront or be removed during propagation. In
the proposed VTP algorithm, vertices are employed as the priority queue ele-
ments since it can add multiple triangles from its 1-ring neighbourhood to the
traversed area every time, which yields low window management cost.

4.2 EWG in Window List Propagation Within
a Triangle

The proposed VTP algorithm employs the EWG-based window propagation
framework (Section 3.3.2.2) to compute the geodesic distances of mesh ver-
tices by propagating window lists. These window lists are defined by Defi-
nition 3.1 which is more suitable for the SS-DGP problem (Section 3.3.3.1).
When propagating a window list, a non-redundant window may become par-
tially or completely redundant after the propagation. Such a change of status
is caused by another overlapping window propagated through the same tri-
angle from the same window list. These two windows form a window pair,
which works as the basic unit for redundancy identification and removal in the
proposed algorithm. Note that EWG is applied to from more window pairs by
accumulating windows in window lists so that the redundancy can be removed
more thoroughly. To illustrate it, this section is organized as follows:

• Section 4.2.1 enumerates the pairwise window pruning cases in a trian-
gle exhaustively and derives the corresponding window pruning rules.

• Section 4.2.2 studies the principles of window pruning.

• Section 4.2.3 introduces how to apply the derived rules in the window
list propagation.

• Section 4.2.4 justifies the algorithmic choices of the proposed VTP al-
gorithm in terms of the window list propagation.

Chapter 4. Fast and Exact SS-DGP Algorithm 53

4.2.1 Pairwise Window Pruning Within a Triangle

This section exhaustively enumerates the pairwise window pruning cases in a
triangle and derives the corresponding pruning rules. The proof of these rules
will be given in the next section as Proposition 4.1, 4.2, 4.3 and 4.4. These
rules are used to prune redundant windows in the EWG-based window list
propagation, which will be discussed in Section 4.2.3.

First, consider the propagation of a single window inside a triangle. This
window initially stays on one edge of the triangle. After one step of prop-
agation, it either moves to another edge of the same triangle or partially
cover both opposite edges (Section 3.3.1). Now, consider two windows in-
side the same triangle simultaneously. Even if both windows are initially
non-redundant, after one step of propagation, one of them may become par-
tially or completely redundant because the relative position between the two
windows may have changed.

Consider two windows w0 and w1, whose respective pseudo sources are p
and q. Let σ0 = w0.σ and σ1 = w1.σ. Let ∆ABC be the triangle where one-
step propagation of w0 and w1 takes place, and w′0 and w′1 be their propagated
version, respectively. Denote a0 = w0.a0, a1 = w0.a1, b0 = w1.a0, b1 =

w1.a1, and a′0 = w′0.a0, a′1 = w′0.a1, b′0 = w′1.a0, b′1 = w′1.a1. Note that p
does not lie inside the visible cone of w1 since otherwise w1 should have been
split into two windows. Similarly, q does not lie inside the visible cone of w0.
Define g(pa) = σ0 + ||pa|| and g(pab) = σ0 + ||pa||+ ||ab||, where p = w0.p,
a and b are two other points on the plane determined by ∆ABC. g(qa) and
g(qab) have similar definitions. And, g(Aa) = D(A) + ||Aa|| where D(A)

is the shortest distance so far at vertex A. g(Ba) and g(Ca) have similar
definitions. 〈pab〉 and 〈qab〉 represent the sub-windows defined by the three
points. The separating point of a window is defined as follows.

(𝑎) (𝑏) (𝑐)

𝐴

𝐵

𝐶

𝑝

𝑎0 𝑎1
𝑑0 𝑑1

𝑆

𝑠𝑝

𝜎

𝐴

𝐵

𝐶

𝑝

𝑎0 𝑎1

𝑑0 𝑑1

𝑆

𝑠𝑝

𝜎

𝐴

𝐵

𝐶

𝑝

𝑎0

𝑎1𝑑0
𝑑1

𝑆

𝑠𝑝

𝜎

FIGURE 4.1: Three configurations of the separating point of a window.

Chapter 4. Fast and Exact SS-DGP Algorithm 54

Separating Point Definition Let w be a window to be propagated through
∆ABC from edge AB. The separating point sp of w is the intersection be-
tween AB and the shortest path between w.p and C routed through inter-
val [a0, a1]. It can be easily verified that w.sp = w.a1 if w only propa-
gates to AC; w.sp = w.a0 if w only propagates to BC. When w propa-
gates to two edges, w.sp is the intersection between line segments AB and
pC. Thus, the window structure used in this chapter is extended as w =

(∆ABC, a0, a1, p, d0, d1, σ, sp). Figure 4.1 shows an illustration of the three
possible positions of the separating point of a window.

The 15 cases which may produce redundant windows inside ∆ABC are
listed and classified into five situations. The corresponding windows pruning
rules are discussed in each situation respectively as follows.

Situation 1: Propagating w0 and w1 from the same edge to another edge.
Here, only the configuration where w0 and w1 are propagated fromAB toAC
is discussed, other configurations in this situation can be dealt with similarly.
Without loss of generality, assume a0 < b0. This situation is refined into three
cases (Case 1, Case 2 and Case 3) according to the relative position between
w′0 and w′1 (Figure 4.2). The corresponding window pruning rules are shown
as follows.

(𝑎)

𝐴

𝐵

𝐶

𝑝 𝑞

𝑎0 𝑎1

𝑏0
𝑏1

𝑎0
′

𝑎1
′

𝑏0
′

𝑏1
′

𝑏1
′

𝐴

𝐵

𝐶

𝑝 𝑞

𝑎0 𝑎1

𝑏0 𝑏1

𝑏0
′

𝑎1
′

𝑎0
′

𝑏1
′

𝑏1
′

𝐴

𝐵

𝐶

𝑝 𝑞

𝑏0
′

𝑎0
′

𝑏1
′

𝑎1
′

𝑎0 𝑎1

𝑏0 𝑏1

𝑢

(𝑏) (𝑐)

𝐶𝑎𝑠𝑒 1 𝐶𝑎𝑠𝑒 2 𝐶𝑎𝑠𝑒 3

𝑎0 < 𝑏0 and 𝑎0′ ≤ 𝑏0
′ ≤ 𝑎1

′

and 𝑞𝑏0′ ∩ 𝑝𝑎0′ ∉ 𝑝𝑎0
𝑎0 < 𝑏0 and 𝑏0′ < 𝑎0

′ < 𝑏1
′ 𝑎0 < 𝑏0 and 𝑏1′ ≤ 𝑎0

′

FIGURE 4.2: The three cases that w0 and w1 are propagated from the same
edge to another edge.

• Pruning rules for Case 1:

– If g(pb′0) > g(qb′0), delete 〈pb′0a′1〉.

– If b′1 ≤ a′1 and g(pb′1) ≤ g(qb′1), delete w′1.

– If b′1 ≤ a′1 and g(pb′1) > g(qb′1), delete 〈pb′1a′1〉.

Chapter 4. Fast and Exact SS-DGP Algorithm 55

– If b′1 > a′1 and g(pa′1) < g(qa′1), delete 〈qb′0a′1〉.

• Pruning rules for Case 2:

– If g(pa′0) < g(qa′0), delete 〈qb′0a′0〉.

– If g(pa′0) ≥ g(qa′0), delete w′0.

– If b′1 ≤ a′1 and g(pb′1) ≤ g(qb′1), delete w′1.

– If b′1 ≤ a′1 and g(pb′1) > g(qb′1), delete 〈pb′1a′1〉.

– If b′1 > a′1 and g(pa′1) < g(qa′1), delete 〈qb′0a′1〉.

• Pruning rules for Case 3:

– Let u = qb′1 ∩ pa′0. If g(pu) < g(qu), delete w′1; else, delete w′0.

These rules are derived using Proposition 4.1. Case 2 is actually the same as
step 2 (Delete Dominated Candidate Intervals) of procedure Insert-Interval

(I, c) in the MMP algorithm (Mitchell et al., 1987). And the other two cases
are novel. Note that in Case 1, the cross checking is not performed when
a0 < b0, a′0 ≤ b′0 ≤ a′1 and qb′0 ∩ pa′0 ∈ pa0 as this special case rarely happens
in the proposed algorithm. This is because the two windows satisfying the
condition should have already crossed each other inside a triangle they passed
through earlier and it is very likely that cross checking has been performed
between them.

(𝑎)

𝐴

𝐵

𝐶

𝑝

𝑞𝑎0 𝑎1
𝑏0

𝑏1
𝑎0
′

𝑎1
′

𝑏0
′

𝑏1
′

𝑏1
′

𝐴

𝐵

𝐶

𝑝

𝑞𝑎0 𝑎1
𝑏0

𝑏1
𝑏0
′

𝑎1
′

𝑎0
′

𝑏1
′

𝑏1
′

𝐴

𝐵

𝐶

𝑝

𝑞

𝑏0
′

𝑎0
′

𝑏1
′

𝑎1
′

𝑎0 𝑎1
𝑏0

𝑏1
𝑢

(𝑏) (𝑐)

𝐶𝑎𝑠𝑒 4 𝐶𝑎𝑠𝑒 5 𝐶𝑎𝑠𝑒 6

𝑎0
′ ≤ 𝑏0

′ ≤ 𝑎1
′ 𝑏0

′ < 𝑎0
′ < 𝑏1

′ 𝑏1
′ ≤ 𝑎0

′

FIGURE 4.3: The three cases that w0 and w1 are propagated from two edges to
the third edge.

Situation 2: Propagating w0 and w1 from two edges to the third edge.
Assume w0 is propagated from AB to AC, and w1 is propagated from BC to
AC. Then, three cases are derived (Case 4, Case 5 and Case 6) corresponding

Chapter 4. Fast and Exact SS-DGP Algorithm 56

to Cases 1-3, respectively (Figure 4.3). The window pruning rules are also the
same as those in the first three cases.

Situation 3: Propagating w0 and w1 from the same edge to two other
edges. Assume both w0 and w1 lie on AB, and they are respectively propa-
gated to BC and AC. This situation is refined into Case 7, Case 8 and Case 9
shown in Figure 4.4. The corresponding window pruning rules are shown as
follows.

(𝑎)

𝐴

𝐵

𝐶

𝑝 𝑞

𝑏0
′

𝑎0
′

𝑏1
′

𝑎1
′

𝑎0 𝑎1 𝑏0 𝑏1

(𝑏) (𝑐)

𝐶𝑎𝑠𝑒 7 𝐶𝑎𝑠𝑒 8 𝐶𝑎𝑠𝑒 9

both 𝑤0′ and 𝑤1′ cover one edge one of 𝑤0′ and 𝑤1′ cover two edges both 𝑤0′ and 𝑤1′ cover two edges

𝐴

𝐵

𝐶

𝑝 𝑞

𝑎0 𝑎1𝑏0 𝑏1

𝑎0
′

𝑎1
′

𝑏0
′

𝑏1
′

𝐴

𝐵

𝐶

𝑝 𝑞

𝑎1

𝑏0
𝑏1

𝑏0
′

𝑎1
′

𝑎0
′ 𝑏1

′

𝑎0

FIGURE 4.4: The three cases that w0 and w1 are propagated from the same
edge to two other edges.

• Pruning rules for Case 7:

– When a0 < b1, if g(pa0C) > g(qb1C), delete w′0; else delete w′1.

• Pruning rules for Case 8:

(1) For w′1 ∈ AC.

– When w0.sp < b1, if g(pC) < g(qb1C), delete w′1;
else, delete 〈pCa′1〉.

– If w0.sp > b1 and g(pC) > g(qb1C), delete 〈pa′0C〉.

(2) For w′1 ∈ BC.

– When w0.sp > b0, if g(pC) < g(qb0C), delete w′1;
else, delete 〈pa′0C〉.

– If w0.sp < b0 and g(pC) > g(qb0C), delete 〈pCa′1〉.

• Pruning rules for Case 9:

– If g(pC) > g(qC), delete 〈pCa′1〉; else, delete 〈pb′0C〉.

Chapter 4. Fast and Exact SS-DGP Algorithm 57

Case 7 only shows the configuration where w′0 lies on BC and w′1 lies
on AC, and other configurations can be dealt with similarly. The pruning
rules in this case are based on Proposition 4.4. Similarly, in Case 8, only
the configuration where w′0 covers two edges is shown. The pruning rules in
this case are based on Proposition 4.2 and 4.3. Among these rules, rule (1) is
based on Proposition 4.2 (2) and 4.3 (1) while rule (2) is based on Proposition
4.2 (1) and 4.3 (2). Case 7 and Case 8 are quite useful in removing redundant
windows in the proposed geodesic algorithm. Case 9 is exactly the same as
the “One-Angle-One-Split” rule in the CH algorithm (Chen and Han, 1990).

Situation 4: Checking with vertices. In this situation, the “checking with
vertices” rule in the ICH algorithm (Xin and Wang, 2009) is extended to the
two-window scenario. The corresponding window pruning rules are shown as
follows.

(𝑎) (𝑏) (𝑐)

𝐶𝑎𝑠𝑒 10 𝐶𝑎𝑠𝑒 11 𝐶𝑎𝑠𝑒 12

check two windows in Situation 1 check two windows in Situation 2 check one window

𝐴

𝐵

𝐶

𝑝 𝑞

𝑎0
𝑎1

𝑏0
𝑏1

𝑏0
′

𝑎1
′

𝑎0
′ 𝑏1

′

𝐴

𝐵

𝐶

𝑝

𝑞𝑎0 𝑎1

𝑏0

𝑏1
𝑎0
′

𝑎1
′

𝑏0
′

𝑏1
′

𝐵

𝐶

𝑝

𝑎0 𝑎1

𝑎0
′

𝐴

𝑎1
′

FIGURE 4.5: The three cases of checking windows with vertices.

• Pruning rules for Case 10:

– If a1 < b1 and g(pa1C) < g(qb1C), delete w′1.

• Pruning rules for Case 11:

– If g(pa1C) < g(qb1C), delete w′1.

– If g(qb0A) < g(pa0A), delete w′0.

• Pruning rules for Case 12:

– If g(Aa′1) < g(pa′1) or g(Ca′0) < g(pa′0) or g(Ba′0) < g(pa′0),
delete w′0.

Chapter 4. Fast and Exact SS-DGP Algorithm 58

As shown in Figure 4.5, Case 10 illustrates the configuration where both
windows are propagated from the same edge to another edge. The pruning
rule is based on Proposition 4.4 (1). Case 11 illustrates the same configu-
ration as in Situation 2. The corresponding pruning rules are derived from
Proposition 4.4. Case 12 shows the same configuration as that in Theorem
3.2 of the ICH algorithm (Xin and Wang, 2009). The corresponding pruning
rule can be derived from Proposition 4.1.

Situation 5: Propagating w0 and w1 from two edges to two edges. In
addition, the three cases where the two windows are propagated from two
different edges to two edges are discussed.

(𝑎) (𝑏) (𝑐)

𝐶𝑎𝑠𝑒 13 𝐶𝑎𝑠𝑒 14 𝐶𝑎𝑠𝑒 15

𝐴

𝐵

𝐶

𝑝

𝑞
𝑎0

𝑎1
𝑏0

𝑏1

𝑎0
′

𝑎1
′

𝑏0
′ 𝑏1

′

𝐴

𝐵

𝐶

𝑝

𝑞

𝑎0 𝑎1

𝑏0

𝑏1

𝑏0
′

𝑎1
′

𝑎0
′

𝑏1
′ 𝐴

𝐵

𝐶

𝑝

𝑞
𝑎0 𝑎1

𝑏0

𝑏1

𝑎0
′

𝑎1
′

𝑏0
′

𝑏1
′

FIGURE 4.6: The three cases that w0 and w1 are propagated from two edges to
two edges.

Figure 4.6 (a) shows Case 13 where both w′0 and w′1 cover one edge only.
Assume w′0 lies on AC. Then, there are three possible ways to propagate
w1: from BC to AB, from AC to AB and from AC to BC. All these con-
figurations induce checking between two windows propagated to the same
edge from different sides. A possible solution is the strategy proposed by
Liu (2013). In this section, this case is skipped since it requires solving a
quadratic equation, which is of relatively high computational cost. Case 14
(only one window is propagated from one edge to two other edges) and Case
15 (both windows are propagated from one edge to two other edges) are also
shown in Figure 4.6, where both windows can be split into sub-windows and
these cases can be reduced to Cases 1-9 and Case 13.

Chapter 4. Fast and Exact SS-DGP Algorithm 59

4.2.2 Principles for Window Pruning

The preceding section exhaustively enumerated the 15 pairwise window prun-
ing cases in a triangle and derived the corresponding pruning rules. In this
section, the derived rules are summarized into 8 window pruning principles
and proved as follows. In the following discussion, let w0 and w1 be two win-
dows, p and q be their respective pseudo sources, σ0 and σ1 be the geodesic
distances from their pseudo sources to the true source vertex s, and all geo-
metric primitives are assumed to lie on the same plane.

Proposition 4.1.
(1) As Figure 4.7 (a) shows, suppose a line pK in w0 intersects the upper ray
of w1 at point K. Then, w1 is redundant if σ0 + ||pK|| < σ1 + ||qK||.
(2) As Figure 4.7 (b) shows, suppose a line qK in w1 intersects the upper ray
of w0 at point K. Then, w0 is redundant if σ1 + ||qK|| < σ0 + ||pK||.

𝑝 𝑞

𝜎0 𝜎1

𝐾

𝑝 𝑞

𝜎0 𝜎1

𝐾

𝑠 𝑠 𝑠 𝑠

𝑤0𝑤1
𝑤0𝑤1

(𝑏)(𝑎)

FIGURE 4.7: Window configurations for Proposition 4.1. (a) The blue shad-
owed area shows the visible cone of window w0. The red rays are the bound-
aries of window w1. (b) The red shadowed area shows the visible cone of
window w1. The blue rays are the boundaries of window w0.

Proof. Here, only the case in Figure 4.7 (a) is proved since the two cases are
symmetrical and can be proved in a similar way.

As shown in Figure 4.7 (a), for any point X on the segment pK, it can
be derived that σ1 + ||qX|| + ||XK|| ≥ σ1 + ||qK|| > σ0 + ||pK|| = σ0 +

||pX||+ ||XK||. Then σ1 + ||qX|| > σ0 + ||pX||. This means p can provide

Chapter 4. Fast and Exact SS-DGP Algorithm 60

a shorter path from the source to any point on pK that is also inside w1, and
w1 becomes redundant.

Proposition 4.2.
(1) As Figure 4.8 (a) shows, suppose a polyline pGQ from w0 intersects the
upper ray of w1 at point Q. Then, w1 is redundant if σ0 + ||pG|| + ||GQ|| <
σ1 + ||qQ||.
(2) As Figure 4.8 (b) shows, suppose a polyline qHR from w1 intersects the
upper ray of w0 at point R. Then, w0 is redundant if σ1 + ||qH|| + ||HR|| <
σ0 + ||pR||.

𝑝 𝑞

𝜎0 𝜎1

𝑄

(𝑄)

(𝐺)

𝐺

𝑝 𝑞

𝜎0 𝜎1

𝐻
𝑅

(𝑅)

(𝐻)

𝑠 𝑠 𝑠 𝑠

𝑤0𝑤1 𝑤0𝑤1

(𝑏)(𝑎)

FIGURE 4.8: Window configurations for Proposition 4.2. (a) The blue shad-
owed area shows the visible cone of window w0. The red rays are the bound-
aries of window w1. (b) The red shadowed area shows the visible cone of
window w1. The blue rays are the boundaries of window w0.

Proof. Here, only the case in Figure 4.8 (a) is proved since the two cases are
symmetrical and can be proved in a similar way.

As shown in Figure 4.8 (a), the case where G lies outside w1 can be re-
duced to the case in Figure 4.7 (a) where G is set to p. When G lies inside the
visible cone of w1, w1 is split into two sub-windows with the dashed red line
shown in Figure 4.8 (a). For the upper sub-window, the conclusion can be
reached directly by taking G as p in Figure 4.7 (a); for the lower sub-window,
it can be derived that σ0+||pG||+||GQ|| < σ1+||qQ|| ≤ σ1+||qG||+||GQ||.

Chapter 4. Fast and Exact SS-DGP Algorithm 61

Then, σ0 + ||pG|| < σ1 + ||qG|| is reached, which means w1 is redundant ac-
cording to Figure 4.7 (a) and Proposition 4.1 (1).

Proposition 4.3.
(1) As Figure 4.9 (a) shows, considering the same scenario as in Figure 4.7
(a), let E be a point on the extended part of pK and D a point on the segment
qK. Then, w1 is redundant if σ0 + ||pE|| < σ1 + ||qD||+ ||DE||.
(2) As Figure 4.9 (b) shows, considering the same scenario as in Figure 4.7
(b), let S be a point on the extended part of qK and O a point on the segment
pK. Then, w0 is redundant is σ1 + ||qS|| < σ0 + ||pO||+ ||OS||.

𝑝 𝑞

𝜎0 𝜎1

𝐾

𝐷

𝐸

𝑝 𝑞

𝜎0 𝜎1

𝐾

𝑂

𝑆

𝑠 𝑠 𝑠 𝑠

𝑤0𝑤1 𝑤0𝑤1

(𝑏)(𝑎)

FIGURE 4.9: Window configurations for Proposition 4.3. (a) The blue shad-
owed area shows the visible cone of window w0. The red rays are the bound-
aries of window w1. (b) The red shadowed area shows the visible cone of
window w1. The blue rays are the boundaries of window w0.

Proof. Here, only the case in Figure 4.9 (a) is proved since the two cases are
symmetrical and can be proved in a similar way.

As shown in Figure 4.9 (a), it can be derived that σ0 + ||pK||+ ||KE|| <
σ1 + ||qD||+ ||DE|| ≤ σ1 + ||qK||+ ||KE||. Then, σ0 + ||pK|| < σ1 + ||qK||
is reached, and the conclusion can be derived using Proposition 4.1 (1).

Proposition 4.4.
(1) As Figure 4.10 (a) shows, considering the same scenario as in Figure 4.8
(a), let F be a point on the extended part of GQ and D a point on the segment
qK. Then, w1 is redundant if σ0 + ||pG||+ ||GF || < σ1 + ||qD||+ ||DF ||.
(2) As Figure 4.10 (b) shows, considering the same scenario as in Figure 4.8

Chapter 4. Fast and Exact SS-DGP Algorithm 62

(b), let T be a point on the extended part of HR and O a point on the segment
pK. Then, w0 is redundant if σ1 + ||qH||+ ||HT || < σ0 + ||pO||+ ||OT ||.

𝑝 𝑞

𝜎0 𝜎1

𝐾𝐺
𝑄

𝐷

𝐹

𝑝 𝑞

𝜎0 𝜎1

𝐾
𝑂

𝑇

𝐻
𝑅

𝑠 𝑠 𝑠 𝑠

𝑤0𝑤1 𝑤0𝑤1

(𝑏)(𝑎)

FIGURE 4.10: Window configurations for Proposition 4.4. (a) The blue shad-
owed area shows the visible cone of window w0. The red rays are the bound-
aries of window w1. (b) The red shadowed area shows the visible cone of
window w1. The blue rays are the boundaries of window w0.

Proof. Here, only the case in Figure 4.10 (a) is proved since the two cases are
symmetrical and can be proved in a similar way.

As shown in Figure 4.10 (a), it can be derived that σ0 + ||pG||+ ||GQ||+
||QF || < σ1 + ||qD||+ ||DF || ≤ σ1 + ||qQ||+ ||QF ||. Then, σ0 + ||pG||+
||GQ|| < σ1 + ||qQ|| is reached, which means w1 is redundant according to
Proposition 4.2 (1).

4.2.3 EWG-based Window List Propagation

Most of the window pruning operations discussed in Section 4.2.1 perform
cross checking between pairs of nearby windows. If more windows are accu-
mulated in a triangle and propagate simultaneously, more window pairs can
be formed and the window pruning can be carried out more thoroughly. To
make this happen, the local window propagation within the same triangle are
synchronized by employing the EWG-based window propagation framework

(Section 3.3.2.2), which simultaneously propagates a collection of windows
from one triangle edge to its two opposite edges.

Chapter 4. Fast and Exact SS-DGP Algorithm 63

In this section, three rules are proposed for the window list propagation
and window pruning within a triangle. Rule 1 splits a window list into two
sublists before propagation and each sublist only needs to be propagated to
another single edge. Rule 2 propagates a window list from one edge to another
edge and efficiently prunes those propagated windows that have just become
redundant. Rule 3 merges two window lists propagated from different source
edges to the same destination edge.

Although an exhaustive list of scenarios for pairwise window pruning
within a triangle has been identified, the proposed three rules in this section do
not perform cross checking for all window pairs. Instead, they prune redun-
dant windows by performing pairwise checking between spatially adjacent
windows only. As a result, they do not remove all redundant windows. The
rationale behind this strategy is that all-pairs checking is too expensive while
pairwise checking between spatially adjacent windows can already remove
most of the redundant windows. This will be validated in Section 4.2.4.

4.2.3.1 Window List Splitting

Let ∆ABC be the triangle where the window list propagation is performed.
Consider a window list wl = {w0, w1, ..., wk} on edge AB, and this window
list is going to be propagated across ∆ABC. First, define the distance to
C via wl as wl.dis = mini{wi.σ + dist(wi.p, wi.sp) + dist(wi.sp, C)}. In
fact, this distance defines the length of the shortest path on the mesh from
the source vertex s to C routed through the windows in wl. Let the window
supporting the shortest distance to C be ws. Next, define the separating point
of wl as wl.sp = ws.sp. Note that the separating point of a window wi ∈ wl
can be calculated using the intersection between PC(P = wi.p) and AB.
Let this intersection be t. It can be derived that wi.sp = wi.a0 if t < wi.a0,
wi.sp = wi.a1 if t > wi.a1 and wi.sp = t otherwise.

Then, the Proposition 4.5 for splitting a window list is proposed as fol-
lows. It is based on Cases 7-9 in Figure 4.4 and Case 10 in Figure 4.5.

Proposition 4.5. One Angle Two Sides (Rule 1)
For each window w ∈ wl and w 6= ws, the propagation of w to BC is re-

dundant if w.sp < wl.sp, and the propagation of w to AC is redundant if

w.sp > wl.sp.

Chapter 4. Fast and Exact SS-DGP Algorithm 64

𝐴

𝐵

𝐶

𝑤𝑠
(𝑤𝑠) (𝑤𝑠)

𝑠𝑝(𝑠𝑝)
(𝑠𝑝) 𝐴

𝐵

𝐶

𝑤𝑙. 𝑠𝑝

(𝑎) (𝑏)

FIGURE 4.11: One Angle Two Sides (Rule 1).

Proof. Let w′s be the propagated version of ws within ∆ABC. As shown in
Figure 4.11 (a), there are three possible positions of w′s with respect to vertex
C. For each w ∈ wl, let w′ be the propagated version of w. The proof
proceeds by enumerating all window configurations and the corresponding
window pruning rules from Section 4.2.1.
(1) If w′s ∈ AC and w′ ∈ BC and w.sp < ws.sp, ws.sp = ws.a1, w′ is
redundant according to Case 7 in Figure 4.4.
(2) If w′s ∈ AC and w′ ∈ AC and w.sp > ws.sp, ws.sp = ws.a1, w′ is
redundant according to Case 10 in Figure 4.5.
(3) If w′s ∈ AC and w′ covers C, ws.sp = ws.a1, according to Case 8 rule 1)
in Figure 4.4, the part of w′ on BC is redundant if w.sp < ws.sp, and the part
of w′ on AC is redundant if w.sp > ws.sp.
(4) If w′s ∈ BC and w.sp < ws.sp and w′ ∈ BC, ws.sp = ws.a0, w′ is
redundant according to the symmetric Case of Case 10 in Figure 4.5.
(5) If w′s ∈ BC and w.sp > ws.sp and w′ ∈ AC, ws.sp = ws.a0, w′ is
redundant according to Case 7 in Figure 4.4.
(6) If w′s ∈ BC and w′ covers C, ws.sp = ws.a0, the conclusion can be
reached according to Case 8 rule 2) in Figure 4.4.
(7) If w′s covers C and w′ covers C, the conclusion can be reached according
to Case 9 in Figure 4.4.
(8) If w′s covers C and w′ ∈ AC and w.sp > ws.sp, w′ is redundant according
to Case 8 rule 1) in Figure 4.4.
(9) If w′s covers C and w′ ∈ BC and w.sp < ws.sp, w′ is redundant according
to Case 8 rule 2) in Figure 4.4.

Note that this proposition is applicable to all three possible configurations

Chapter 4. Fast and Exact SS-DGP Algorithm 65

of ws shown in Figure 4.11 (a). Intuitively, windows on AB can be split into
two subsets by ws. This rule is named as the “One Angle Two sides" since it
can be considered as a generalized version of the “One-Angle-One-Split" rule
proposed by Chen and Han (1990). In fact, the original “One-Angle-One-
Split" rule is equivalent to performing crossing checking when both windows
cover vertex C, which is exactly Case 9 in Figure 4.4. This generalized rule
is actually much more powerful. It performs more thorough window pruning
by taking into account three novel cases (Case 7, Case 8 and Case 10).

The detailed procedure of enforcing Rule 1 has the following steps: first,
compute separating points wi.sp(i = 1, ..., k) for all windows and locate ws;
second, split window wi(i 6= s) into two sub-windows if wi covers vertex C,
and remove a subset of the updated windows using Proposition 4.5; third, re-
maining windows that should be propagated to AC form a window list wlleft
and those windows that should be propagated to BC form another window
list wlright; finally, update the vertex distance by setting D(C) to wl.dis if
wl.dis < D(C). As shown in Figure 4.11 (b), the dashed gray window and
the gray side of the blue window are pruned since their sp (dark point and
blue point) lies on the left of wl.sp (red point).

To validate the performance of Rule 1, a comparison is conducted between
the VTP algorithm and its variant without Rule 1 (Figure 4.12). That is, when
Rule 1 is turned off, to split a window list to two sides, two sub-windows
for each window that covers two opposite edges are created and no pruning
operations are performed on any windows or sub-windows. This comparison
is conducted on ten models with different model sizes, and the results on two
models (Armadillo and Asian Dragon) are shown in Figure 4.12. The rest of
the results have been included in Appendix B. It can be observed that Rule 1
saves approximately 25% running time and 50% window propagations.

Remark Rule 1 prunes many redundant windows using the separating point
of a window list before propagating them. Compared with MMP (Mitchell
et al., 1987; Surazhsky et al., 2005) and ICH algorithms (Xin and Wang,
2009) which only perform window trimming or filtering after propagation,
the proposed Rule 1 significantly reduces the time for propagating redundant
windows.

Chapter 4. Fast and Exact SS-DGP Algorithm 66

Armadillo (F: 345K)

Asian Dragon (F: 1.4M)

FIGURE 4.12: Ablation study on Rule 1. The left y-axis represents running
time and the right y-axis represents the number of window propagations.

Chapter 4. Fast and Exact SS-DGP Algorithm 67

4.2.3.2 Window List Propagation

After enforcing Rule 1, the window list wl has been cleaned and split into
wlleft and wlright. In this section, the method to perform window pruning
when propagating each sublist from one edge to another edge is discussed.
Extending from the method in Section 3.3.2.2, the workflow for propagating
wlleft = {w0, w1, ..., wm} fromAB toAC is given below (propagatingwlright
from AB to CB is similar).

𝐴

𝐵

𝐶

FIGURE 4.13: Window List Propagation (Rule 2).

Procedure WindowListPropagation(wl) (Rule 2)
Step 0. Perform one step of propagation for all windows in wl. Let w′i be the
propagated version of wi.
Step 1. Set i = wl.head and j = i+ 1.
Step 2. If j == NULL, finish; otherwise, perform pairwise window pruning
between wi and wj according to Case 1, Case 2 and Case 3 in Figure 4.2.
Step 3. If wj is removed from the list in Step 2, set j = j+ 1 and goto Step 2.
In the event that wi is removed in Step 2, if i == wl.head, set i = j, j = j+1

and goto Step 4; otherwise, set i = i− 1 and goto Step 2. If neither wi nor wj
is removed, set i = j, j = j + 1 and goto Step 4.
Step 4. If j == NULL, finish; otherwise, goto Step 2.

There is a double loop in the above procedure. Index j is associated with
the outer loop and index i is associated with the inner loop. This procedure
is illustrated in Figure 4.13, where it traverses all windows in the outer loop
(red arrow) and checks each window against its preceding windows in the
inner loop (black arrow). Its time complexity is O(m), which is proved by
Proposition 4.6 as follows.

Proposition 4.6. Applying Rule 2 to a window list with N windows costs

O(N) time.

Chapter 4. Fast and Exact SS-DGP Algorithm 68

Proof. Let wl = {w0, w1, w2, ..., wn} be the input window list, and ti be the
number of times pairwise cross checking is performed between wi and its pre-
ceding windows. Since pairwise cross checking between wi and its preceding
windows is terminated only when it reaches a preceding window that cannot
be removed, such cross checking removes ti − 1 redundant windows. In the
worst case, pairwise cross checking between wi+1 and its preceding windows
needs to be performed i + 1 times, and the total number of redundant win-
dows removed before wi+1 is reached is

∑i
k=1(tk − 1). It can be derived that

ti+1 ≤ i+1−
∑i

k=1(tk−1), that is
∑i+1

k=0 tk ≤ 2i+1. Thus
∑n

k=0 tk ≤ 2n+1,
which indicates linear time complexity.

Checking with vertices During the process of enforcing Rule 2, for each
propagated window on AC, Case 12 in Figure 4.5 is also applied by checking
the window against the distance to vertices, which is the same as the filtering
rule in ICH (Xin and Wang, 2009).

The ablation study on Rule 2 is shown together with Rule 3 in the next
section since they have similar functions.

4.2.3.3 Window List Merging

Suppose a window list wll = {wl0, wl1, ..., wlm} is given on AC, which is
propagated from AB. In this section, the following procedure to propagate
windows from another list w̃l

r
= {w0, w1, ..., wn} from BC to AC is pre-

sented, and the propagated windows are merged with wll. Meanwhile, the
window pruning is performed on the merged window list using Cases 1-6 in
Figure 4.2 and Figure 4.3.

Procedure PrimeMerge(wll, w̃l
r
) (Rule 3) consists of the following steps.

First, perform one step of propagation for all windows in w̃l
r
. Let w′i be the

propagated version of wi. Then, for each window from w′0 to w′n, run the
following substeps: (i) append it to wll; (ii) set j = wll.tail and i = j − 1;
(iii) perform pairwise checking and pruning on the updated wll using Steps
2-4 in Rule 2 except that in Step 2, instead of considering Cases 1-3 only, it is
required to check where the two windows are from and use either Cases 1-3
(if both windows are propagated from the same edge) or Cases 4-6 (if the two
windows are propagated from two different edges).

Chapter 4. Fast and Exact SS-DGP Algorithm 69

𝐴

𝐵

𝐶

FIGURE 4.14: Window List Merging (Rule 3).

This procedure is named PrimeMerge() because it will be used for merg-
ing window lists on an edge for the first time. It is complementary to proce-
dure SecondMerge() in Section 4.3.1. Figure 4.14 shows an illustration of
the main loop (red arrow) and the inner loop (black arrow) of this procedure.
The time complexity of PrimeMerge() is O(m + n), which is proved by
Proposition 4.7.

Proposition 4.7. PrimeMerge(wl, wl′) costsO(M+N) time, whereM and

N are the number of windows in wl and wl′, respectively.

Proof. The complexity of PrimeMerge() can be derived in a similar way
as the proof of Proposition 4.6 from that it enforces a variant of Rule 2 on
the appended window list of size M +N . Thus, performing PrimeMerge()

costs O(M +N) time.

Order Preservation. A window list wl = {w0, w1, ..., wk} is spatially coher-
ent if wi.a0 ≤ wi+1.a0 for all i = 0, ..., k − 1.

Proposition 4.8. If both wlAB and wlBC are spatially coherent, the window

list wll = wlAB→AC obtained after applying Rule 1 and Rule 2 is also spa-

tially coherent. And the merged list obtained after applying Rule 3 is still

spatially coherent.

Proof. Rule 1 in Section 4.2.3.1 does not affect the order of the windows in
the list. In the following, Rule 2 is first proved by induction to preserve the
spatial order. Consider propagating wlAB = {w0, w1, ..., wk} (already split
by Rule 1) to AC. Let the propagated version of window wi be w′i. During
the steps of Rule 2, assume the sublist from w′0 to w′i are already spatially
coherent. Then, it is needed to prove that both Step 2 and Step 3 in Rule
2 preserve the spatial order of the sublist from w′0 to w′j(j = i + 1). Let

Chapter 4. Fast and Exact SS-DGP Algorithm 70

a0 = wi.a0, a1 = wi.a1, b0 = wj.a0, b1 = wj.a1 and a′0 = w′i.a0, a′1 = w′i.a1,
b′0 = w′j.a0, b′1 = w′j.a1. The following cases are discussed where w′j is not
spatially coherent with w′i:
(i) b′1 < a′0. This corresponds to Case 3 in Figure 4.2. One of the windows is
redundant and should be removed.
(ii) b′0 < a′0 < b′1. This corresponds to Case 2 in Figure 4.2. After being
checked against the rules in this case, if both windows survive, w′j must have
been partially trimmed. The trimmed w′j has become spatially coherent with
w′i and its preceding windows.

For all these cases, the removal of w′j does not affect the spatial order of
its preceding sublist and the removal of w′i triggers pairwise cross checking
betweenw′j andw′i−1. As such checking is continued until a spatially coherent
window is found or all preceding windows are removed, the conclusion can
be reached.

The order preservation property of Rule 3 can be reached according to
Cases 1-6 in Figure 4.2 and Figure 4.3 in a similar way.

To validate the performance of Rule 2 and 3, a comparison is conducted
between the VTP algorithm and its variant without Rule 2 and 3 (Figure 4.15).
Here, these two rules are not dealt with separately since they are two similar
rules to maintain the spatial coherence of window lists. When both Rules 2
and 3 are turned off, no pairwise cross checking are performed after propa-
gating a window list or merging two window lists. This comparison is also
conducted on ten models, and the results on two models (Armadillo and Asian
Dragon) are shown in Figure 4.15. The rest of the results are shown in Ap-
pendix B. It can be observed that Rules 2 and 3 together save approximately
15% running time and 30% window propagations.

4.2.4 Algorithmic Choices Justification

To justify the algorithmic choices of VTP in terms of the window list prop-
agation, this section compares it against four alternatives: VTP-Exhaustive,
VTP-Trimming, VTP-MMP and VTP-CH.

VTP-Exhaustive vs. VTP To reduce window redundancy more thoroughly,
EWG is employed by VTP to form more window pairs. However, VTP does
not perform the pairwise window pruning between all pairs of windows in a
window list but only the spatially adjacent one. Although this strategy does

Chapter 4. Fast and Exact SS-DGP Algorithm 71

Armadillo (F: 345K)

Asian Dragon (F: 1.4M)
FIGURE 4.15: Ablation study on Rule 2 and 3. The left y-axis represents run-
ning time and the right y-axis represents the number of window propagations.

Chapter 4. Fast and Exact SS-DGP Algorithm 72

not remove all redundant windows, it is time-efficient and removes most of
them. To justify it, VTP is compared with VTP-Exhaustive, which is a vari-
ant of VTP that performs exhaustive pairwise window pruning in a window
list. Table 4.1 shows the comparison results on five representative models.
The complete results are shown in Appendix C. It can be seen that VTP-
Exhaustive performs fewer window propagations but runs much slower than
VTP.

Model Performance
Algorithms

VTP-Exhaustive VTP

Bunny

(F:144K)

Time(s) 4.557 0.78

window propagations 4,801,056 4,943,670

Peak Memory(MB) 1.22 1.24

Rocker Arm

(F:482K)

Time(s) 36.586 4.13

window propagations 24,289,066 25,654,638

Peak Memory(MB) 3.43 3.70

Asian Dragon

(F:1,400K)

Time(s) 49.954 9.495

window propagations 46,926,451 48,217,896

Peak Memory(MB) 4.036 4.373

Neptune

(F:4,008K)

Time(s) 665.847 47.629

window propagations 239,054,124 246,364,008

Peak Memory(MB) 15.62 16.38

Lucy

(F:14,464K)

Time(s) 16559 549.934

window propagations 2,703,707,866 2,808,823,718

Peak Memory(MB) 66.096 69.42

TABLE 4.1: Performance comparison between VTP-Exhaustive and VTP on
running time, peak memory usage and total number of window propagations.
F : means the number of faces on a model.

VTP-Trimming vs. VTP In VTP, the window redundancy is removed by
performing the proposed window pruning rules based on simple distance com-
parisons. An alternative to these rules is the “window trimming” rule used by
the MMP algorithm (Surazhsky et al., 2005). However, it requires solving
quadratic equations and is of high time cost. To justify the choice of the pro-
posed window pruning rules, VTP is compared with VTP-Trimming, which
is a variant of VTP that performs window trimming instead of window prun-
ing following the proposed Rule 2 and Rule 3 when two windows overlap
on an edge. Table 4.2 shows the comparison results on five representative
models. The complete results are shown in Appendix C. It can be seen that
VTP-Trimming runs slower than VTP though it performs fewer window prop-
agations.

VTP-MMP/CH vs. VTP To evaluate the overall performance of the pro-
posed Rules 1,2 and 3, a comparison is conducted between VTP and VTP-
MMP/CH, which are two variants of VTP that replace the proposed three

Chapter 4. Fast and Exact SS-DGP Algorithm 73

Model Performance
Algorithms

VTP-Trimming VTP

Bunny

(F:144K)

Time(s) 0.872 0.78

window propagations 4,686,252 4,943,670

Peak Memory(MB) 1.146 1.24

Rocker Arm

(F:482K)

Time(s) 4.655 4.13

window propagations 24,380,006 25,654,638

Peak Memory(MB) 3.49 3.70

Asian Dragon

(F:1,400K)

Time(s) 13.763 9.495

window propagations 46,316,630 48,217,896

Peak Memory(MB) 4.017 4.373

Neptune

(F:4,008K)

Time(s) 58.49 47.629

window propagations 239,375,390 246,364,008

Peak Memory(MB) 15.962 16.38

Lucy

(F:14,464K)

Time(s) 615.215 549.934

window propagations 2,733,324,263 2,808,823,718

Peak Memory(MB) 66.848 69.42

TABLE 4.2: Performance comparison between VTP-Trimming and VTP on
running time, peak memory usage and total number of window propagations.
F : means the number of faces on a model.

rules with the window redundancy reduction rules used in the MMP and ICH
algorithms (Surazhsky et al., 2005; Xin and Wang, 2009) respectively. Table
4.3 shows the comparison results on five representative models. The complete
results are shown in Appendix C. It can be seen that VTP runs the fastest and
performs the least window propagations.

Model Performance
Algorithms

VTP-CH VTP-MMP VTP

Bunny

(F:144K)

Time(s) 2.672 1.304 0.78

window propagations 12,491,178 6,454,800 4,943,670

Peak Memory(MB) 1.71 340.45 1.24

Rocker Arm

(F:482K)

Time(s) 15.449 6.954 4.13

window propagations 69,208,037 33,947,674 25,654,638

Peak Memory(MB) 5.32 1797.18 3.70

Asian Dragon

(F:1,400K)

Time(s) 29.492 15.388 9.495

window propagations 109,311,094 61,995,300 48,217,896

Peak Memory(MB) 5.253 3354.04 4.373

Neptune

(F:4,008K)

Time(s) 158.912 60.297 47.629

window propagations 606,937,112 278,925,270 246,364,008

Peak Memory(MB) 17.65 14221.35 16.38

Lucy

(F:14,464K)

Time(s) 1809.91

Out of memory

549.934

window propagations 6,859,484,793 2,808,823,718

Peak Memory(MB) 78.31 69.42

TABLE 4.3: Performance comparison between VTP-MMP, VTP-CH and VTP
on running time, peak memory usage and total number of window propaga-
tions. F : means the number of faces on a model.

Chapter 4. Fast and Exact SS-DGP Algorithm 74

4.3 EWG in Wavefront Propagation Over a Mesh

To remove the redundant windows at the earliest stage, VTP employs the con-
tinuous Dijkstra technique (Mitchell et al., 1987) to propagate the wavefront
from near to far using a priority queue. To avoid the high computational costs
of such priority queues in previous methods (Surazhsky et al., 2005; Xin and
Wang, 2009; Xu et al., 2015), EWG is employed to change the sorting el-
ements from windows to mesh primitives (e.g. vertices). This is achieved
by the connections between EWG window lists and mesh edges. Since the
number of mesh primitives is much smaller than that of windows, the window
management cost of VTP is significantly cut down.

The wavefront propagation of VTP is implemented by a triangle-oriented
region growing scheme. In this scheme, all visited triangles form a single con-
nected region, called the traversed area, over the mesh surface. The boundary
of this traversed area is defined as the propagation wavefront. The proposed
algorithm expands this traversed area in a continuous Dijkstra style by grad-
ually enclosing unvisited triangles abutting the traversed area. During each
iteration, the proposed algorithm adds one or more unvisited triangles to the
traversed area, and the wavefront is also updated. LetR andR′ be the existing
and expanded traversed area respectively. The region outside R but inside R′

is denoted as ∆R, which consists of the newly added triangles. This section
is organized as follows:

• Section 4.3.1 presents a basic face-sorted propagation algorithm.

• Section 4.3.2 extends the propagation algorithm from face-sorted to
vertex-sorted, which achieves improved performance.

• Section 4.3.3 justifies the algorithmic choices of the proposed VTP al-
gorithm in terms of the wavefront propagation.

4.3.1 Face-Sorted Wavefront Propagation

As shown in Figure 4.16 (a) and (b), the proposed face-sorted geodesic al-
gorithm expands the traversed area one triangle face at a time. Its outline is
given below.

Initialization. Create a single window for every opposite edge of S in its 1-
ring neighborhood (bold blue lines around S in Figure 4.16 (a)), and push all

Chapter 4. Fast and Exact SS-DGP Algorithm 75

𝑆
𝐷

𝐹

𝐸 𝐴 𝐵

𝐶

𝑆

𝐷
𝐸

𝐴 𝐵

𝐶

(𝑎) (𝑏)

FIGURE 4.16: Face-sorted wavefront propagation.

triangles that are outside the 1-ring neighborhood of S and share at least one
opposite edge of S to Q. Set D(S) = 0, D(P) = dist(S, P) if P is a 1-ring
neighbor of S, and D(V) =∞ for all other vertices.

Wavefront Propagation.
Step 1. Pop the triangle with the highest priority from Q and add it to R. This
single triangle forms ∆R.
Step 2. If this triangle has only one edge on the previous wavefront (∆DEF
in Figure 4.16 (a)), propagate the window list on DE to both DF and FE us-
ing Rule 1 and Rule 2. Push adjacent triangles sharing either DF or FE with
∆DEF into Q and calculate their priority; if any of these adjacent triangles
is already in Q, simply update its priority.
Step 3. If the popped triangle has two edges on the previous wavefront
(∆ABC in Figure 4.16 (a)), run procedure GeodesicUpdate() on each of
the window lists residing on CA and AB, respectively. GeodesicUpdate()
updates geodesic distances at vertices in the expanded traversed area R′ while
propagating the given window list inside both R and ∆R. Push the adjacent
triangle sharing BC with ∆ABC into Q and calculate its priority.
Step 4. If Q is empty, finish; otherwise, goto Step 1.

The priority of a triangle is defined as follows. For a triangle which shares
only one edge with the wavefront, such as ∆DEF in Figure 4.16 (a), its
priority is defined as the negative distance from S to F via wlDE , which
is −wlDE.dis, where wlDE.dis is defined in Section 4.2.3.1. For a triangle
which shares two edges with the wavefront, such as ∆ABC in Figure 4.16 (a),
its priority is defined as the larger one between −wlAB.dis and −wlCA.dis.

Geodesic Update. Once a new triangle, such as ∆ABC in Figure 4.16 (a),

Chapter 4. Fast and Exact SS-DGP Algorithm 76

has been added to the traversed area, windows inside ∆R are propagated from
previous wavefront edges (such as CA and AB) to new wavefront edges in
∆R (such asBC). In addition, windows insideR need to be propagated again
along previously unexplored paths, such as AB → AC → the interior of R
and AC → AB → the interior of R, because these paths might give rise to
smaller geodesic distances from S to some vertices in R. Therefore, window
lists are propagaed along these paths, and the geodesic distances at vertices in
R are updated along the way until all the propagated windows have been either
removed by windows pruning rules or merged into window lists residing on
edges of the wavefront in R.

Note that when there are two window lists on the same wavefront edge,
they need to be merged. The window list mergers at edges on the wavefront
are classified into two categories. Mergers taking place at new wavefront
edges in ∆R are called prime mergers while mergers taking place at wave-
front edges in R are called secondary mergers. Prime mergers are handled
by Rule 3 in Section 4.2.3.3, and secondary mergers will be discussed later in
this section.

Procedure GeodesicUpdate(wlist)
Step 1 Push wlist to an FIFO queue W .
Step 2 Pop a window list wl from W . If wl is on an internal edge e of the
expanded traversed areaR′ and the propagation tries to enter a triangle f from
e, propagate wl to the two opposite edges of e in the triangle f using Rule 1
and Rule 2. Meanwhile, update the distances at vertices if needed, and push
the non-empty propagated window lists on the opposite edges into W .
Step 3 If wl resides on a wavefront edge (ew), save wl on ew. If ew ∈ ∆R

and ew already has another window list wlew , run PrimeMerge(wl, wlew);
otherwise, if ew ∈ R and ew already has another window list wlew , run
SecondMerge(wl, wlew).
Step 4 If W is empty or all propagated windows have been pruned, finish;
otherwise, goto Step 2.

During geodesic update, window lists are propagated not only towards
the wavefront, but also towards the interior of the previously traversed area
to make sure none of the paths is overlooked. When multiple window lists
reach the same edge on the wavefront, they are merged; but when they reach
the same edge inside the traversed area, they move forward independently
without any interaction. There are multiple reasons for this strategy.

Chapter 4. Fast and Exact SS-DGP Algorithm 77

• First, whether merging window lists reaching the same edge or not only
affects efficiency, but does not affect the overall correctness of the pro-
posed geodesic algorithm.

• Second, merging window lists reaching the same edge on the wavefront
is useful because it removes redundant windows at an early stage and
only propagates a compact set of windows towards the unvisited area of
the mesh, thus reducing the computational cost in later stages.

• Third, such a merger at an internal edge of the traversed area is not
as important because near optimal distance values have been computed
at most vertices in this area and these distance values can prune win-
dows very effectively. Therefore, all windows entering the traversed
area would be eventually pruned after being propagated a small number
of steps. This statement is verified by the experiment on the distribution
of window propagations (Section 4.3.3), which show that on average
96.25% propagations are prime propagations.

Order-Preserving Secondary Merger. When a secondary merger is per-
formed at an edge on the wavefront, the merged window list can be made
spatially coherent to ensure its further propagation compatible with the pro-
posed three rules. Let an existing window list at an edge ew on the wave-
front be wlew , and an incoming window list propagated from another edge
to ew during geodesic update be wlg = {wg0, w

g
1, ..., w

g
k}. The procedure

OPSecondMerge(wlew , wl
g) incrementally inserts each window from wlg

into wlew by performing a binary search in the ordered list of the first end-
points of all windows in wlew . Its time complexity is analysed as follows.

Proposition 4.9. OPSecondMerge(wl, wl′) costs O(N log(M + N)) time,

where M and N are the number of windows in wl and wl′, respectively.

Proof. The complexity of OPSecondMerge() can be derived easily using
the fact that a binary search has logarithmic complexity.

Order-Free Secondary Merger. Since the frequency of secondary mergers
is relatively low in the proposed algorithm, the following simple secondary
merging scheme is also designed, which does not strictly maintain spatial
coherence in the merged window list.

Chapter 4. Fast and Exact SS-DGP Algorithm 78

𝐷

𝐸

𝑃

FIGURE 4.17: Order-free secondary merger.

Procedure SecondMerge(wlDE, wl
g) (Figure 4.17): Ifwlg is propagated from

PE, append it to the tail of wlDE; if wlg is propagated from DP , append the
entire wlDE to the tail of wlg .

The order-free secondary merger is finally employed by the proposed al-
gorithm since it runs faster than the order-preserving version, which does not
remove many more redundant windows and sometimes even keeps slightly
more redundant windows (verified by the experiment in Section 4.3.3). The
reason is threefold:

• First, the merged window list from an order-free secondary merger is
still piecewise ordered. Windows in the list propagated from DP are
likely located to the left of the windows in wlDE , and windows in the
list propagated from PE are likely located to the right of the windows
in wlDE .

• Second, the procedure for order-preserving secondary merger only en-
forces spatial coherence, and leaves window pruning to the next itera-
tion.

• Third, the order-free version does not incur the cost of binary search,
and thus reaches a better trade-off.

The face-oriented propagation algorithm with order-free secondary merger
is named as FTP, and the version with order-preserving secondary merger is
named as OPFTP.

Chapter 4. Fast and Exact SS-DGP Algorithm 79

4.3.2 Vertex-Sorted Wavefront Propagation

Instead of expanding one triangle at a time, the wavefront could expand mul-
tiple triangles every time. A natural choice for the latter case adds all unvis-
ited triangles in the 1-ring neighborhood of a vertex on the wavefront to the
traversed area during every expansion. A variant of the proposed geodesic
algorithm based on this expansion scheme is given below. The priority queue
in this variant holds all vertices on the wavefront, and the priority of a vertex
in the queue is simply defined as the negative most recently updated distance
at the vertex.

(𝑎) (𝑏)

𝑆

𝐷
𝐸

𝐴 𝐵

𝐶

𝑅 𝐴

∆𝑅

FIGURE 4.18: Vertex-sorted wavefront propagation.

The revised geodesic algorithm also proceeds in a continuous Dijkstra
style. As shown in Figure 4.18 (a), a vertex A with the highest priority is
chosen from the priority queue Q in each iteration. Unvisited triangles in the
1-ring neighborhood of A are added to the traversed area. And run procedure
GeodesicUpdate() on each of wlAB and wlAE respectively (AB and AE are
the two edges on the previous wavefront incident to A). The geodesic update
process is constrained within the updated traversed area R′.

This variant of the proposed algorithm is finally employed since it runs
faster than FTP, which is verified in Section 4.3.3. The reason for its high
performance is that it propagates windows on the wavefront through multiple
newly added triangles during each iteration and, thus, reduces the overall data
management overhead. Although this variant processes multiple triangles ev-
ery time, it only runs procedure GeodesicUpdate() twice since the triangles
are connected.

Chapter 4. Fast and Exact SS-DGP Algorithm 80

This vextex-sorted propagation algorithm with order-free secondary merger
is named as VTP, and the version with order-preserving secondary merger is
named as OPVTP. The pseudo code of VTP is shown in Algorithm 2, which
is the final version of the proposed algorithm.

Algorithm 2 EWG-based SS-DGP Algorithm (VTP)

Input: M - Mesh, S - Source set;
Output: D - a vector containing the geodesic distances of M ’s vertices;
1: procedure VTP(M , S)
2: Denote the wavefront as wf and the area it encloses as R;
3: Define a priority queue Q and a FIFO queue W ;
4: Perform initialization as in Section 4.3.1;
5: Push all adjacent vertices of S into Q;
6: while Q is not empty do
7: Pop a vertex v from Q;
8: Let E(v) be the subset of nonincident 1-ring edges of v;
9: Push the edges on the wavefront incident to v into W ;

10: while W is not empty do
11: Pop an edge e from W ;
12: Suppose the opposite edges of e are e0 and e1

13: Propagate wle to e0 and e1 using Rules 1 and 2;
14: Update distance vector D and priority queue Q;
15: Let the propagated lists be wle→e0 and wle→e1
16: for each edge ei do
17: if wle→ei is not empty then
18: Let wlei be the existing window list on ei
19: if ei /∈ R and ei ∈ E(v) then
20: PrimeMerge(wle→ei , wlei);
21: else if ei ∈ wf then
22: SecondMerge(wle→ei , wlei);
23: else
24: Push ei to W ;
25: end if
26: end if
27: end for
28: end while
29: Update wavefront wf and R.
30: end while
31: end procedure

Saddle Vertices. Finally, this part discusses how to handle the following sce-
narios where a saddle vertex (pseudo source) is visited. The first scenario
applies to FTP only. When a triangle ∆ABC sharing two edges with the pre-
vious wavefront joins the traversed area as shown in Figure 4.16 (a), and A
is a saddle vertex. The second scenario applies to VTP only. When a vertex

Chapter 4. Fast and Exact SS-DGP Algorithm 81

A with the highest priority is chosen from the previous wavefront, and A is a
saddle vertex. Third, when the distance at v, a vertex not on the wavefront,
is updated during the GeodesicUpdate() procedure, v is a saddle vertex. The
following special procedure is performed in all these scenarios: for each op-
posite edge in the 1-ring neighborhood of the saddle vertex, create a new win-
dow as in the ICH algorithm (Xin and Wang, 2009). If this window lies on
an edge of the new wavefront, add it to the beginning of the existing window
list on this edge; otherwise, call GeodesicUpdate() to propagate this single
window inside R. In addition, the distance at every 1-ring neighbor of the
saddle vertex is updated as in (Xin and Wang, 2009).

4.3.3 Algorithmic Choices Justification

To justify the algorithmic choices of VTP in terms of wavefront propagation,
this section compares VTP against two alternatives: FTP and OPVTP, and
counts the the distribution of window propagations.

Model Performance
Algorithms

FTP VTP

Bunny

(F:144K)

Time(s) 1.044 0.78

window propagations 4,755,872 4,943,670

Peak Memory(MB) 1.20 1.24

Rocker Arm

(F:482K)

Time(s) 4.84 4.13

window propagations 25,013,422 25,654,638

Peak Memory(MB) 3.68 3.70

Asian Dragon

(F:1,400K)

Time(s) 13.223 9.495

window propagations 46,525,313 48,217,896

Peak Memory(MB) 4.10 4.373

Neptune

(F:4,008K)

Time(s) 64.113 47.629

window propagations 243,102,435 246,364,008

Peak Memory(MB) 15.90 16.38

Lucy

(F:14,464K)

Time(s) 617.343 549.934

window propagations 2,668,122,127 2,808,823,718

Peak Memory(MB) 67.81 69.42

TABLE 4.4: Performance comparison between FTP and VTP on running time,
peak memory usage and total number of window propagations. F : means the
number of faces on a model.

FTP vs. VTP The difference between VTP and FTP is that VTP adds more
faces to the traversed area than FTP during each iteration and lets windows on
the previous wavefront propagate through these faces to reach the new wave-
front. This strategy pushes the wavefront forward faster. To justify the choice
of VTP over FTP as the final algorithm, a comparison is performed between
them. Table 4.4 shows the comparison results on five representative models.

Chapter 4. Fast and Exact SS-DGP Algorithm 82

The complete results are shown in Appendix C. It can be seen that VTP runs
faster than FTP even though it usually performs more window propagations.

OPVTP vs. VTP This part compares VTP with OPVTP by applying them
to all the 55 testing models (Appendix A). Table 4.5 shows the comparison
results on five representative models. The complete results are shown in Ap-
pendix C. It can be seen that enforcing spatial coherence increases the overall
running time but does not remove many more redundant windows. Therefore,
VTP strikes a better balance between the overall speed and the thoroughness
in window pruning.

Model Performance
Algorithms

OPVTP VTP

Bunny

(F:144K)

Time(s) 0.908 0.78

window propagations 4,875,712 4,943,670

Peak Memory(MB) 1.22 1.24

Rocker Arm

(F:482K)

Time(s) 5.173 4.13

window propagations 25,723,669 25,654,638

Peak Memory(MB) 3.71 3.70

Asian Dragon

(F:1,400K)

Time(s) 11.42 9.495

window propagations 47,573,341 48,217,896

Peak Memory(MB) 4.20 4.373

Neptune

(F:4,008K)

Time(s) 60.192 47.629

window propagations 244,586,129 246,364,008

Peak Memory(MB) 16.19 16.38

Lucy

(F:14,464K)

Time(s) 608.414 549.934

window propagations 2,734,517,299 2,808,823,718

Peak Memory(MB) 68.01 69.42

TABLE 4.5: Performance comparison between OPVTP and VTP on running
time, peak memory usage and total number of window propagations. F : means
the number of faces on a model.

Distribution of Window Propagations As mentioned in Section 4.3.2, in
an iteration of the proposed VTP algorithm, R and R′ stand for the existing
and expanded traversed areas, respectively, and ∆R stands for the region out-
side R but inside R′ (Figure 4.18). Denote the window propagations taking
place inside ∆R prime propagations, and those inside R secondary propaga-
tions. Then, these two types of propagations are counted on all 55 testing
models (Appendix A) and the results are given in Appendix D. The results
show that on average 96.25% propagations are prime propagations. This find-
ing confirms that it is important to perform window propagation and pruning
efficiently and thoroughly inside ∆R and the proposed algorithmic designs
satisfy this demand. On the other hand, there are few secondary propagations
and the overall performance would not be much affected by the thoroughness
of window pruning during secondary propagations and mergers. Thus, the
decision to perform order-free secondary mergers is reasonable.

Chapter 4. Fast and Exact SS-DGP Algorithm 83

4.4 Complexity Analysis

Let n be the number of vertices on the mesh. First, the complexities of FTP
and OPFTP algorithms are discussed. It is easy to verify that these algo-
rithms are improved versions of the original CH algorithm (Chen and Han,
1990), in the worst case, the number of created windows are still O(n2). It
is obvious that it takes linear time to execute Rule 1 (Section 4.2.3.1), and
SecondMerge() (Section 4.3.1) costs O(1) time. According to Proposition
4.6 and 4.7, all window list propagation and pruning operations in FTP have
linear complexity with respect to the windows involved. Therefore, their total
cost is O(n2), and the same tasks in OPFTP cost O(n2 log n), where log n is
due to the binary search in OPSecondMerge() (Proposition 4.9). For win-
dow management, since FTP organizes triangle faces instead of windows, the
time complexity of this part is O(n log n). In summary, the time complexity
of FTP is O(n2 + n log n) = O(n2), and the time complexity of OPFTP is
O(n2 log n+ n log n) = O(n2 log n).

Likewise, the time complexity of VTP is O(n2), and the time complex-
ity of OPVTP is O(n2 log n). Similar to all existing algorithms, the space
complexity of the proposed algorithms is also O(n2).

4.5 Experimental Results

To validate the performance of the proposed VTP algorithm, experiments
have been conducted to compare it against existing state-of-the-art algorithms:
MMP, ICH, FWP-MMP and FWP-CH (Surazhsky et al., 2005; Xin and Wang,
2009; Xu et al., 2015), on a variety of models. Specifically, 55 models are col-
lected, including sculptures, animals and manmade objects, for testing (Ap-
pendix A). The resolution of these models (number of faces) ranges from
10K to 14M. To evaluate overall performance, three measures, i.e. running
time, total number of window propagations and peak memory usage, are em-
ployed. All the algorithms are tested using a PC with an Intel Core i7-3770
3.40GHz CPU and 32GB memory. For better reading experience, the results
on some of the testing models are shown in this section and all the remain-
ing results are given in the Appendix. In the experiments, the first vertex on
all meshes is chosen as the source vertex. To make fair comparisons, a fixed
threshold ε = 10−6 is adopted for distance comparisons throughout the fol-
lowing experiments as Xu et al. (2015). Prior to performance comparisons,

Chapter 4. Fast and Exact SS-DGP Algorithm 84

the correctness of the VTP algorithm is conformed by comparing the results
from VTP against those from the exact implementation of the MMP algorithm
(Surazhsky et al., 2005).

4.5.1 Overall Performance

All algorithms in the comparison have been tested on all 55 models and the
detailed results are given in Appendix E. The mean and standard deviation of
performance ratios are calcuated between other algorithms and the proposed
VTP algorithm. The details are shown in Table 4.6.

ICH vs. VTP MMP vs. VTP FWP-CH vs. VTP FWP-MMP vs. VTP
Time 6.21/1.88 6.11/1.90 3.37/0.57 2.03/0.33

window propagations 2.26/0.23 1.24/0.11 2.28/0.30 1.25/0.11
Memory 1.21/0.13 377.78/300.635 1.22/0.13 377.78/300.651

TABLE 4.6: The mean and standard deviation of performance ratios between
other algorithms and the proposed VTP algorithm on running time, the number
of window propagations and peak memory usage.

It can be seen from the table that the proposed VTP algorithm on aver-
age runs 6 times as fast as both ICH and MMP, more than 3 times as fast
as FWP-CH, and twice as fast as FWP-MMP. The VTP algorithm has 56%
fewer window propagations than ICH and FWP-CH, and 20% fewer window
propagations than MMP and FWP-MMP. Furthermore, the VTP algorithm
on average uses 17% less memory than ICH and FWP-CH, and 99.7% less
memory than MMP and FWP-MMP. Note that MMP algorithms are fast but
memory intensive while existing CH algorithms are memory efficient but rel-
atively slow. The proposed VTP algorithm is impressive in the sense that it
achieves the best performance in both aspects. For example, it uses 99.7%
less memory than FWP-MMP while still being twice as fast. Detailed results
on 5 representative testing models are shown in Table 4.7.

4.5.2 Performance Profiling

As mentioned in Section 3.3.2.2, all geodesic algorithms based on window
propagation have three primary components: window propagation, window
pruning (window redundancy reduction) and window management. The run-
ning times of these individual components in all participating algorithms are
profiled on ten models. Here, the results on two models (Armadillo and Asian

Chapter 4. Fast and Exact SS-DGP Algorithm 85

M
o
d
el

P
erfo

rm
a
n
ce

A
lg
o
rith

m
s

IC
H

M
M
P

F
W
P
-C
H

F
W
P
-M
M
P

V
T
P

B
u

n
n

y

(F
:1

4
4

K
)

T
im

e(s)
5

.0
3

4
4

.6
1

2
3

.0
5

6
1

.7
3

7
0

.7
8

#
 w

in
d

o
w

 p
ro

p
ag

atio
n

s
1

2
,3

0
5

,5
7

9

6
,4

8
5

,3
2

0

1
2

,3
2

7
,9

9
1

6

,4
5

1
,3

5
2

4

,9
4

3
,6

7
0

P
eak

 M
em

o
ry

(M
B

)
1

.6
9

3

4
0

.4
5

1

.7
0

3

4
0

.4
6

1

.2
4

R
o

ck
er A

rm

(F
:4

8
2

K
)

T
im

e(s)
3

6
.5

7
7

3
3

.2
8

6
1

9
.5

3
6

1
1

.8
6

7
4

.1
3

#
 w

in
d

o
w

 p
ro

p
ag

atio
n

s
6

8
,5

5
3

,8
4

6

3
3

,9
8

9
,6

3
8

7

0
,5

1
3

,1
8

6

3
5

,9
4

0
,3

8
6

2

5
,6

5
4

,6
3

8

P
eak

 M
em

o
ry

(M
B

)
5

.2
9

1
7

9
7

.1
6

5
.4

2
1

7
9

7
.1

9
3

.7
0

A
sian

 D
rag

o
n

(F
:1

,4
0

0
K

)

T
im

e(s)
7

3
.2

0
4

7
3

.0
9

2
3

5
.6

3
7

2
3

.6
7

4
9

.4
9

5

#
 w

in
d

o
w

 p
ro

p
ag

atio
n

s
1

0
7

,7
4

2
,0

9
4

6

2
,1

6
1

,5
8

3

1
0

8
,1

2
2

,2
1

8

6
2

,0
2

5
,7

1
7

4

8
,2

1
7

,8
9

6

P
eak

 M
em

o
ry

(M
B

)
5

.1
8

4
3

3
5

4
.0

4
5

.2
0

7
3

3
5

4
.0

5
4

.3
7

3

N
ep

tu
n

e

(F
:4

,0
0

8
K

)

T
im

e(s)
4

5
5

.2
7

1
4

2
4

.3
3

1
1

9
3

.9
4

5
1

2
0

.0
1

2
4

7
.6

2
9

#
 w

in
d

o
w

 p
ro

p
ag

atio
n

s
5

8
5

,7
8

4
,1

5
9

2

7
0

,9
3

0
,1

9
8

6

0
2

,5
8

7
,8

3
1

2

8
4

,5
8

1
,6

9
6

2

4
6

,3
6

4
,0

0
8

P
eak

 M
em

o
ry

(M
B

)
1

6
.9

6

1
4

2
2

5
.2

6

1
7

.1
4

1

4
2

1
9

.7
6

1

6
.3

8

L
u

cy

(F
:1

4
,4

6
4

K
)

T
im

e(s)
8

8
9

4
.8

7

O
u

t o
f m

em
o

ry

2
4

1
5

.8
8

O
u

t o
f m

em
o

ry

5
4

9
.9

3
4

#
 w

in
d

o
w

 p
ro

p
ag

atio
n

s
6
,8

3
7
,6

7
0
,6

0
2

6
,8

4
1
,7

2
9
,3

3
7

2
,8

0
8
,8

2
3
,7

1
8

P
eak

 M
em

o
ry

(M
B

)
7

8
.2

9
7

8
.2

8
6

9
.4

2

TABLE 4.7: Performance comparison with state-of-the-art geodesic algorithms
on running time, peak memory usage and total number of window propaga-
tions. F : means the number of faces on a model.

Chapter 4. Fast and Exact SS-DGP Algorithm 86

0
2
4
6
8

10
12

ICH MMP FWP-CH FWP-MMP VTP

Ti
m
e(
s)

Armadillo (F: 345K)

Window propagation Window pruning
Window management

0

20

40

60

80

100

ICH MMP FWP-CH FWP-MMP VTP

Ti
m
e(
s)

Asian Dragon (F: 1.4M)

Window propagation Window pruning
Window management

FIGURE 4.19: Comparison of running times of three common components on
two models.

Chapter 4. Fast and Exact SS-DGP Algorithm 87

Dragon) are shown in Figure 4.19 and the rest of the results have been in-
cluded in Appendix F. It can be seen that the proposed VTP algorithm out-
performs other existing algorithms in the efficiency of all three components.
Thanks to the triangle-based propagation strategy, the proposed algorithm
cuts down the time spent on priority queue management at the same time per-
forms more thorough window pruning. Without solving any quadratic equa-
tions as MMP algorithms, all the proposed pruning rules only require com-
parisons between two distances. This also reduces the computational cost of
window pruning itself.

4.5.3 Scalability

The scalability of the proposed VTP algorithm, i.e. how the performance of
VTP varies with increasing mesh resolution, is further studied. First, three
test models (Cow, Shark and Knot) are chosen. Let each of them have six
different resolutions through subdivision. The number of faces ranges from
0.1M to 2M in these subdivided models. For each model, its ratios between
the running times of both FWP-CH and FWP-MMP and that of VTP on all
six resolutions is calculated. The experiments are designed to show how the
ratios change with the changing resolution. As illustrated in Figure 4.20,
the timing ratios increase with an increasing resolution. That is, the proposed
VTP algorithm achieves more significant performance gain when dealing with
larger models.

4.5.4 Robustness

This section further validates that the proposed VTP algorithm is robust to
mesh triangulation quality. As in FWP (Xu et al., 2015), a sequence of meshes
(eight) with different degrees of anisotropy but a fixed resolution on two test-
ing models (Fertility with 800K faces and Hand with 200K faces) are created
respectively. Here, g(M) =

Σf∈F g
′(f)

|F | is also used to measure the degree of
anisotropy of a mesh M , where g′(f) = PH

2
√

3S
and P , H , S are the half-

perimeter, longest edge length and area of f respectively. All these meshes
with varied degrees of anisotropy are generated using the method in (Zhong
et al., 2013).

The curves in Figure 4.21 show how the running times change with in-
creasing anisotropy (g). The proposed VTP algorithm is the most robust

Chapter 4. Fast and Exact SS-DGP Algorithm 88

Model Performance Algorithms
ICH MMP FWP-CH FWP-MMP VTP-CH VTP-MMP VTP

Bunny
(F: 144 K)

Time(s) 5.034 4.612 3.056 1.737 2.672 1.304 0.78
window propagations 12,305,579 6,485,320 12,327,991 6,451,352 12,491,178 6,454,800 4,943,670

Peak memory(MB) 1.69 340.45 1.70 340.46 1.71 340.45 1.24

Rocker Arm
(F: 482 K)

Time(s) 36.577 33.286 19.536 11.867 15.449 6.954 4.13
window propagations 68,553,846 33,989,638 70,513,186 35,940,386 69,208,037 33,947,674 25,654,638

Peak memory(MB) 5.29 1797.16 5.42 1797.19 5.35 1797.16 3.70

Asian Dragon
(F: 1,400 K)

Time(s) 73.204 73.092 35.637 23.674 29.492 15.388 9.495
window propagations 107,742,094 62,161,583 108,122,218 62,025,717 109,311,094 61,995,300 48,217,896

Peak memory(MB) 5.184 3354.04 5.207 3354.05 5.23 3354.03 4.373

Neptune
(F: 4,008 K)

Time(s) 455.271 424.331 193.945 120.012 158.912 60.297 47.629
window propagations 585,784,159 270,930,198 602,587,831 284,581,696 606,937,112 278,925,270 246,364,008

Peak memory(MB) 16.96 14225.26 17.14 14219.76 17.26 14224.78 16.38

Lucy
(F: 14,464 K)

Time(s) 8894.87 Out of
memory

2415.88 Out of
memory

1853.66 Out of
memory

549.934
window propagations 6,837,670,602 6,841,729,337 6,859,484,793 2,808,823,718

Peak memory(MB) 78.29 78.28 79.32 69.42

Table 1: Performance comparison with state-of-the-art geodesic algorithms on running time, peak memory usage and total number of window
propagations. F : means the number of faces on a model.

0

2

4

6

8

10

12

T
im

e(
s)

Window propagation Window pruning

Window management

0

20

40

60

80

100

T
im

e(
s)

Window propagation Window pruning

Window management

Asian Dragon (F: 1.4M)Armadillo (F: 345K)

Figure 8: Comparison of running times of three common compo-
nents on two models.

6.1 Comparison with Existing Algorithms

In this section, we compare the performance of our final algorithm
(VTP) with existing state-of-the-art algorithms (ICH, MMP, FWP-
CH, and FWP-MMP) in four aspects. Prior to performance com-
parisons, we have confirmed the correctness of our algorithm by
comparing the results from VTP against those from the exact im-
plementation of MMP [Surazhsky et al. 2005].

Overall Performance All algorithms in our comparison have
been tested on all 55 models and the detailed results are given in the
supplemental materials. We calculate the mean and standard devi-
ation of performance ratios between other algorithms and our VTP
algorithm. The details are shown in Table 2. It can be seen from the
table that our algorithm on average runs 6 times as fast as both ICH
and MMP, more than 3 times as fast as FWP-CH, and twice as fast
as FWP-MMP. Our algorithm has 56% fewer window propagations
than ICH and FWP-CH, and 20% fewer window propagations than
MMP and FWP-MMP. Furthermore, our algorithm on average uses
17% less memory than ICH and FWP-CH, and 99.7% less memory
than MMP and FWP-MMP. Note that MMP algorithms are fast but
memory intensive while existing CH algorithms are memory effi-
cient but relatively slow. Our algorithm is impressive in the sense
that it achieves the best performance in both aspects. For exam-
ple, it uses 99.7% less memory than FWP-MMP while still being
twice as fast. Detailed results on 5 representative testing models are
shown in Table 1.

Performance Profiling As mentioned, all geodesic algorithm-
s based on window propagation have three primary components:

window propagation, window pruning and window management.
We profile the running times of these individual components in all
participating algorithms on ten models. We only show the results
on two models (Armadillo and Asian Dragon) in Fig 8 and the rest
of the results have been included in the supplemental materials. We
can see that our algorithm outperforms other existing algorithms in
the efficiency of all three components. Thanks to the triangle-based
propagation strategy, our algorithm cuts down the time spent on pri-
ority queue management at the same time performs more thorough
window pruning. Without solving any quadratic equations as MMP
algorithms, all our pruning rules only require comparisons between
two distances. This also reduces the computational cost of window
pruning itself.

Scalability We further study how the performance of our algo-
rithm varies with increasing mesh resolution. We first choose three
test models (Cow, Shark and Knot) and let each of them have six
different resolutions through subdivision. The number of faces
ranges from 0.1M to 2M in these subdivided models. For each mod-
el, we calculate ratios between the running times of both FWP-CH
and FWP-MMP and that of VTP on all six resolutions, and show
how they change with the changing resolution. As illustrated in Fig
9, the timing ratios increase with an increasing resolution. That
is, our algorithm achieves more significant performance gain when
dealing with larger models.

Robustness In this section, we further validate that our algorith-
m is robust to mesh triangulation quality. As in FWP [Xu et al.
2015], we first create a sequence of meshes (eight) with different
degrees of anisotropy but a fixed resolution on two testing models

2.7

3.2

3.7

0.00 0.50 1.00 1.50 2.00

R
at

io

#Faces (millions)

FWP-CH v.s. Our Algorithm

Cow Shark Knot

1.9

2.4

2.9

3.4

0.00 0.50 1.00 1.50 2.00

R
a
ti

o

Faces (millions)

FWP-MMP v.s. Our Algorithm

Cow Shark Knot

Figure 9: Comparison of scalability against recent geodesic al-
gorithms. The x-axis represents mesh resolution, and the y-axis
represents performance ratio.

Model Performance Algorithms
ICH MMP FWP-CH FWP-MMP VTP-CH VTP-MMP VTP

Bunny
(F: 144 K)

Time(s) 5.034 4.612 3.056 1.737 2.672 1.304 0.78
window propagations 12,305,579 6,485,320 12,327,991 6,451,352 12,491,178 6,454,800 4,943,670

Peak memory(MB) 1.69 340.45 1.70 340.46 1.71 340.45 1.24

Rocker Arm
(F: 482 K)

Time(s) 36.577 33.286 19.536 11.867 15.449 6.954 4.13
window propagations 68,553,846 33,989,638 70,513,186 35,940,386 69,208,037 33,947,674 25,654,638

Peak memory(MB) 5.29 1797.16 5.42 1797.19 5.35 1797.16 3.70

Asian Dragon
(F: 1,400 K)

Time(s) 73.204 73.092 35.637 23.674 29.492 15.388 9.495
window propagations 107,742,094 62,161,583 108,122,218 62,025,717 109,311,094 61,995,300 48,217,896

Peak memory(MB) 5.184 3354.04 5.207 3354.05 5.23 3354.03 4.373

Neptune
(F: 4,008 K)

Time(s) 455.271 424.331 193.945 120.012 158.912 60.297 47.629
window propagations 585,784,159 270,930,198 602,587,831 284,581,696 606,937,112 278,925,270 246,364,008

Peak memory(MB) 16.96 14225.26 17.14 14219.76 17.26 14224.78 16.38

Lucy
(F: 14,464 K)

Time(s) 8894.87 Out of
memory

2415.88 Out of
memory

1853.66 Out of
memory

549.934
window propagations 6,837,670,602 6,841,729,337 6,859,484,793 2,808,823,718

Peak memory(MB) 78.29 78.28 79.32 69.42

Table 1: Performance comparison with state-of-the-art geodesic algorithms on running time, peak memory usage and total number of window
propagations. F : means the number of faces on a model.

0

2

4

6

8

10

12

T
im

e(
s)

Window propagation Window pruning

Window management

0

20

40

60

80

100

T
im

e(
s)

Window propagation Window pruning

Window management

Asian Dragon (F: 1.4M)Armadillo (F: 345K)

Figure 8: Comparison of running times of three common compo-
nents on two models.

6.1 Comparison with Existing Algorithms

In this section, we compare the performance of our final algorithm
(VTP) with existing state-of-the-art algorithms (ICH, MMP, FWP-
CH, and FWP-MMP) in four aspects. Prior to performance com-
parisons, we have confirmed the correctness of our algorithm by
comparing the results from VTP against those from the exact im-
plementation of MMP [Surazhsky et al. 2005].

Overall Performance All algorithms in our comparison have
been tested on all 55 models and the detailed results are given in the
supplemental materials. We calculate the mean and standard devi-
ation of performance ratios between other algorithms and our VTP
algorithm. The details are shown in Table 2. It can be seen from the
table that our algorithm on average runs 6 times as fast as both ICH
and MMP, more than 3 times as fast as FWP-CH, and twice as fast
as FWP-MMP. Our algorithm has 56% fewer window propagations
than ICH and FWP-CH, and 20% fewer window propagations than
MMP and FWP-MMP. Furthermore, our algorithm on average uses
17% less memory than ICH and FWP-CH, and 99.7% less memory
than MMP and FWP-MMP. Note that MMP algorithms are fast but
memory intensive while existing CH algorithms are memory effi-
cient but relatively slow. Our algorithm is impressive in the sense
that it achieves the best performance in both aspects. For exam-
ple, it uses 99.7% less memory than FWP-MMP while still being
twice as fast. Detailed results on 5 representative testing models are
shown in Table 1.

Performance Profiling As mentioned, all geodesic algorithm-
s based on window propagation have three primary components:

window propagation, window pruning and window management.
We profile the running times of these individual components in all
participating algorithms on ten models. We only show the results
on two models (Armadillo and Asian Dragon) in Fig 8 and the rest
of the results have been included in the supplemental materials. We
can see that our algorithm outperforms other existing algorithms in
the efficiency of all three components. Thanks to the triangle-based
propagation strategy, our algorithm cuts down the time spent on pri-
ority queue management at the same time performs more thorough
window pruning. Without solving any quadratic equations as MMP
algorithms, all our pruning rules only require comparisons between
two distances. This also reduces the computational cost of window
pruning itself.

Scalability We further study how the performance of our algo-
rithm varies with increasing mesh resolution. We first choose three
test models (Cow, Shark and Knot) and let each of them have six
different resolutions through subdivision. The number of faces
ranges from 0.1M to 2M in these subdivided models. For each mod-
el, we calculate ratios between the running times of both FWP-CH
and FWP-MMP and that of VTP on all six resolutions, and show
how they change with the changing resolution. As illustrated in Fig
9, the timing ratios increase with an increasing resolution. That
is, our algorithm achieves more significant performance gain when
dealing with larger models.

Robustness In this section, we further validate that our algorith-
m is robust to mesh triangulation quality. As in FWP [Xu et al.
2015], we first create a sequence of meshes (eight) with different
degrees of anisotropy but a fixed resolution on two testing models

2.7

3.2

3.7

0.00 0.50 1.00 1.50 2.00

R
at

io

#Faces (millions)

FWP-CH v.s. Our Algorithm

Cow Shark Knot

1.9

2.4

2.9

3.4

0.00 0.50 1.00 1.50 2.00

R
a
ti

o

Faces (millions)

FWP-MMP v.s. Our Algorithm

Cow Shark Knot

Figure 9: Comparison of scalability against recent geodesic al-
gorithms. The x-axis represents mesh resolution, and the y-axis
represents performance ratio.

FIGURE 4.20: Comparison of scalability against recent geodesic algorithms.
The x-axis represents mesh resolution, and the y-axis represents performance
ratio.

Chapter 4. Fast and Exact SS-DGP Algorithm 89

Fertility (F: 800 K)Hand (F: 200 K)

gg

Figure 10: Comparison of robustness against anisotropic triangu-
lation. The x-axis represents the degree of anisotropy, and the y-axis
represents running time.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

1
2
3
4
5
6
7
8
9

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

0.3

0.8

1.3

1.8

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

(a) window propagation (b) window pruning (c) window management

Figure 11: Robustness of individual components against anisotrop-
ic triangulation.

(Fertility with 800K faces and Hand with 200K faces) respectively.

Here, we also use g(M) =
∑

f∈F g′(f)
|F | to measure the degree of

anisotropy of a mesh M , where g′(f) = PH

2
√
3S

and P,H, S are the
half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [Zhong et al. 2013].

The curves in Fig 10 show how the running times change with in-
creasing anisotropy (g). Our algorithm is the most robust among
all algorithms since its running time does not obviously increase
when the input mesh has a much larger anisotropy. As all related
algorithms have the same three components (window propagation,
window pruning and window management), we further show how
the running times of each component changes with increasing g on
the Armadillo model in Fig 11. In general, a larger value of g
generates more windows. Without efficient window pruning, ICH
and FWP-CH spend more time on window propagation when g is
increasing, as shown in Fig 11(a). For window pruning, MMP and
FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Fig 11(b). As
MMP and ICH algorithms use a priority queue for managing win-
dows, they need more time to process more windows, as shown in
Fig 11(c). Though FWP-based methods significantly reduce the
cost of window management, they still require extra cost to process
an increased number of windows, which gives rise to a minor in-
crease in their running times, as shown in Fig 11(c). In contrast, our
algorithm is insensitive to the number of windows since it manages
triangle vertices instead of windows. As a result, the running times
of our components change the least with increasing anisotropy.

6.2 Comparison among Algorithmic Choices

We first justify the choice of VTP as our final algorithm by com-
paring it against other variants, including FTP, OPVTP, VTP-

(a) (b)

(c) (d)

Figure 12: Ablation study on the three rules. (a) and (b) are result-
s on model Armadillo (F: 345K), while (c) and (d) are results on
model Asian Dragon (F: 1.4M). The left y-axis represents running
time and the right y-axis represents the number of window propa-
gations.

Exhaustive, VTP-Trimming, and VTP-MMP/CH. These compar-
isons were conducted on all 55 models. We show results on 5 rep-
resentative models in Table 1 and Table 3, and the complete results
are given in the supplemental materials.

FTP vs. VTP The difference between VTP and FTP is that VTP
adds more faces to the traversed area than FTP during each itera-
tion and lets windows on the previous wavefront propagate through
these faces to reach the new wavefront. This strategy pushes the
wavefront forward faster. From the results in Table 3, we find that
VTP runs faster than FTP even though it usually performs more
window propagations.

OPVTP vs. VTP We have also compared VTP with OPVTP by
applying them to all 55 testing models. The results in Table 3 indi-
cate that enforcing spatial coherence increases the overall running
time but does not remove many more redundant windows. VTP
strikes a better balance between the overall speed and the thorough-
ness in window pruning.

VTP-Exhaustive vs. VTP We have implemented a variant of the
VTP algorithm by performing redundancy checking on all possible
window pairs within the same window list as well as across differ-
ent window lists inside the same triangle. This scheme essentially
performs exhaustive pairwise window checking, hence, the name
VTP-Exhaustive. As seen in Table 3, this variant performs fewer
window propagations but runs much slower than VTP.

VTP-Trimming vs. VTP We have also implemented a variant
named VTP-Trimming, which performs window trimming as in
[Surazhsky et al. 2005] instead of window pruning following our
Rule 2 and Rule 3 when two windows overlap on an edge. As
shown in Table 3, this method runs slower than VTP though it per-
forms fewer window propagations. This is because window trim-
ming by solving quadratic equations is expensive.

Fertility (F: 800 K)Hand (F: 200 K)

gg

Figure 10: Comparison of robustness against anisotropic triangu-
lation. The x-axis represents the degree of anisotropy, and the y-axis
represents running time.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

1
2
3
4
5
6
7
8
9

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

0.3

0.8

1.3

1.8

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

(a) window propagation (b) window pruning (c) window management

Figure 11: Robustness of individual components against anisotrop-
ic triangulation.

(Fertility with 800K faces and Hand with 200K faces) respectively.

Here, we also use g(M) =
∑

f∈F g′(f)
|F | to measure the degree of

anisotropy of a mesh M , where g′(f) = PH

2
√
3S

and P,H, S are the
half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [Zhong et al. 2013].

The curves in Fig 10 show how the running times change with in-
creasing anisotropy (g). Our algorithm is the most robust among
all algorithms since its running time does not obviously increase
when the input mesh has a much larger anisotropy. As all related
algorithms have the same three components (window propagation,
window pruning and window management), we further show how
the running times of each component changes with increasing g on
the Armadillo model in Fig 11. In general, a larger value of g
generates more windows. Without efficient window pruning, ICH
and FWP-CH spend more time on window propagation when g is
increasing, as shown in Fig 11(a). For window pruning, MMP and
FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Fig 11(b). As
MMP and ICH algorithms use a priority queue for managing win-
dows, they need more time to process more windows, as shown in
Fig 11(c). Though FWP-based methods significantly reduce the
cost of window management, they still require extra cost to process
an increased number of windows, which gives rise to a minor in-
crease in their running times, as shown in Fig 11(c). In contrast, our
algorithm is insensitive to the number of windows since it manages
triangle vertices instead of windows. As a result, the running times
of our components change the least with increasing anisotropy.

6.2 Comparison among Algorithmic Choices

We first justify the choice of VTP as our final algorithm by com-
paring it against other variants, including FTP, OPVTP, VTP-

(a) (b)

(c) (d)

Figure 12: Ablation study on the three rules. (a) and (b) are result-
s on model Armadillo (F: 345K), while (c) and (d) are results on
model Asian Dragon (F: 1.4M). The left y-axis represents running
time and the right y-axis represents the number of window propa-
gations.

Exhaustive, VTP-Trimming, and VTP-MMP/CH. These compar-
isons were conducted on all 55 models. We show results on 5 rep-
resentative models in Table 1 and Table 3, and the complete results
are given in the supplemental materials.

FTP vs. VTP The difference between VTP and FTP is that VTP
adds more faces to the traversed area than FTP during each itera-
tion and lets windows on the previous wavefront propagate through
these faces to reach the new wavefront. This strategy pushes the
wavefront forward faster. From the results in Table 3, we find that
VTP runs faster than FTP even though it usually performs more
window propagations.

OPVTP vs. VTP We have also compared VTP with OPVTP by
applying them to all 55 testing models. The results in Table 3 indi-
cate that enforcing spatial coherence increases the overall running
time but does not remove many more redundant windows. VTP
strikes a better balance between the overall speed and the thorough-
ness in window pruning.

VTP-Exhaustive vs. VTP We have implemented a variant of the
VTP algorithm by performing redundancy checking on all possible
window pairs within the same window list as well as across differ-
ent window lists inside the same triangle. This scheme essentially
performs exhaustive pairwise window checking, hence, the name
VTP-Exhaustive. As seen in Table 3, this variant performs fewer
window propagations but runs much slower than VTP.

VTP-Trimming vs. VTP We have also implemented a variant
named VTP-Trimming, which performs window trimming as in
[Surazhsky et al. 2005] instead of window pruning following our
Rule 2 and Rule 3 when two windows overlap on an edge. As
shown in Table 3, this method runs slower than VTP though it per-
forms fewer window propagations. This is because window trim-
ming by solving quadratic equations is expensive.

FIGURE 4.21: Comparison of robustness against anisotropic triangulation. The
x-axis represents the degree of anisotropy, and the y-axis represents running
time.

Chapter 4. Fast and Exact SS-DGP Algorithm 90

among all algorithms since its running time does not obviously increase when
the input mesh has a much larger anisotropy. As all related algorithms have
the same three components (window propagation, window pruning and win-
dow management), Figure 4.22, 4.23 and 4.24 further shows how the running
times of each component changes with increasing g on the Armadillo model.
In general, a larger value of g generates more windows. Without efficient
window pruning, ICH and FWP-CH spend more time on window propaga-
tion when g is increasing, as shown in Figure 4.22. For window pruning,
MMP and FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Figure 4.23. As MMP
and ICH algorithms use a priority queue for managing windows, they need
more time to process more windows, as shown in Figure 4.24. Though FWP-
based methods significantly reduce the cost of window management, they still
require extra cost to process an increased number of windows, which gives
rise to a minor increase in their running times, as shown in Figure 4.24. In
contrast, the proposed VTP algorithm is insensitive to the number of windows
since it manages triangle vertices instead of windows. As a result, the running
times of VTP’s components change the least with increasing anisotropy.

Fertility (F: 800 K)Hand (F: 200 K)

gg

Figure 10: Comparison of robustness against anisotropic triangu-
lation. The x-axis represents the degree of anisotropy, and the y-axis
represents running time.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

1 1.2 1.4 1.6 1.8 2

g

ICH MMP

FWP-CH FWP-MMP

VTP

0.3

0.8

1.3

1.8

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

ICH MMP

FWP-CH FWP-MMP

VTP

(a) window propagation (b) window pruning (c) window management

Figure 11: Robustness of individual components against anisotrop-
ic triangulation.

(Fertility with 800K faces and Hand with 200K faces) respectively.

Here, we also use g(M) =
∑

f∈F g′(f)
|F | to measure the degree of

anisotropy of a mesh M , where g′(f) = PH

2
√
3S

and P,H, S are the
half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [Zhong et al. 2013].

The curves in Fig 10 show how the running times change with in-
creasing anisotropy (g). Our algorithm is the most robust among
all algorithms since its running time does not obviously increase
when the input mesh has a much larger anisotropy. As all related
algorithms have the same three components (window propagation,
window pruning and window management), we further show how
the running times of each component changes with increasing g on
the Armadillo model in Fig 11. In general, a larger value of g
generates more windows. Without efficient window pruning, ICH
and FWP-CH spend more time on window propagation when g is
increasing, as shown in Fig 11(a). For window pruning, MMP and
FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Fig 11(b). As
MMP and ICH algorithms use a priority queue for managing win-
dows, they need more time to process more windows, as shown in
Fig 11(c). Though FWP-based methods significantly reduce the
cost of window management, they still require extra cost to process
an increased number of windows, which gives rise to a minor in-
crease in their running times, as shown in Fig 11(c). In contrast, our
algorithm is insensitive to the number of windows since it manages
triangle vertices instead of windows. As a result, the running times
of our components change the least with increasing anisotropy.

6.2 Comparison among Algorithmic Choices

We first justify the choice of VTP as our final algorithm by com-
paring it against other variants, including FTP, OPVTP, VTP-

(a) (b)

(c) (d)

Figure 12: Ablation study on the three rules. (a) and (b) are result-
s on model Armadillo (F: 345K), while (c) and (d) are results on
model Asian Dragon (F: 1.4M). The left y-axis represents running
time and the right y-axis represents the number of window propa-
gations.

Exhaustive, VTP-Trimming, and VTP-MMP/CH. These compar-
isons were conducted on all 55 models. We show results on 5 rep-
resentative models in Table 1 and Table 3, and the complete results
are given in the supplemental materials.

FTP vs. VTP The difference between VTP and FTP is that VTP
adds more faces to the traversed area than FTP during each itera-
tion and lets windows on the previous wavefront propagate through
these faces to reach the new wavefront. This strategy pushes the
wavefront forward faster. From the results in Table 3, we find that
VTP runs faster than FTP even though it usually performs more
window propagations.

OPVTP vs. VTP We have also compared VTP with OPVTP by
applying them to all 55 testing models. The results in Table 3 indi-
cate that enforcing spatial coherence increases the overall running
time but does not remove many more redundant windows. VTP
strikes a better balance between the overall speed and the thorough-
ness in window pruning.

VTP-Exhaustive vs. VTP We have implemented a variant of the
VTP algorithm by performing redundancy checking on all possible
window pairs within the same window list as well as across differ-
ent window lists inside the same triangle. This scheme essentially
performs exhaustive pairwise window checking, hence, the name
VTP-Exhaustive. As seen in Table 3, this variant performs fewer
window propagations but runs much slower than VTP.

VTP-Trimming vs. VTP We have also implemented a variant
named VTP-Trimming, which performs window trimming as in
[Surazhsky et al. 2005] instead of window pruning following our
Rule 2 and Rule 3 when two windows overlap on an edge. As
shown in Table 3, this method runs slower than VTP though it per-
forms fewer window propagations. This is because window trim-
ming by solving quadratic equations is expensive.

g
FIGURE 4.22: Robustness of individual components against anisotropic trian-
gulation (window propagation component).

Chapter 4. Fast and Exact SS-DGP Algorithm 91

Fertility (F: 800 K)Hand (F: 200 K)

gg

Figure 10: Comparison of robustness against anisotropic triangu-
lation. The x-axis represents the degree of anisotropy, and the y-axis
represents running time.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

1
2
3
4
5
6
7
8
9

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

ICH MMP

FWP-CH FWP-MMP

VTP

0.3

0.8

1.3

1.8

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

(a) window propagation (b) window pruning (c) window management

Figure 11: Robustness of individual components against anisotrop-
ic triangulation.

(Fertility with 800K faces and Hand with 200K faces) respectively.

Here, we also use g(M) =
∑

f∈F g′(f)
|F | to measure the degree of

anisotropy of a mesh M , where g′(f) = PH

2
√
3S

and P,H, S are the
half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [Zhong et al. 2013].

The curves in Fig 10 show how the running times change with in-
creasing anisotropy (g). Our algorithm is the most robust among
all algorithms since its running time does not obviously increase
when the input mesh has a much larger anisotropy. As all related
algorithms have the same three components (window propagation,
window pruning and window management), we further show how
the running times of each component changes with increasing g on
the Armadillo model in Fig 11. In general, a larger value of g
generates more windows. Without efficient window pruning, ICH
and FWP-CH spend more time on window propagation when g is
increasing, as shown in Fig 11(a). For window pruning, MMP and
FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Fig 11(b). As
MMP and ICH algorithms use a priority queue for managing win-
dows, they need more time to process more windows, as shown in
Fig 11(c). Though FWP-based methods significantly reduce the
cost of window management, they still require extra cost to process
an increased number of windows, which gives rise to a minor in-
crease in their running times, as shown in Fig 11(c). In contrast, our
algorithm is insensitive to the number of windows since it manages
triangle vertices instead of windows. As a result, the running times
of our components change the least with increasing anisotropy.

6.2 Comparison among Algorithmic Choices

We first justify the choice of VTP as our final algorithm by com-
paring it against other variants, including FTP, OPVTP, VTP-

(a) (b)

(c) (d)

Figure 12: Ablation study on the three rules. (a) and (b) are result-
s on model Armadillo (F: 345K), while (c) and (d) are results on
model Asian Dragon (F: 1.4M). The left y-axis represents running
time and the right y-axis represents the number of window propa-
gations.

Exhaustive, VTP-Trimming, and VTP-MMP/CH. These compar-
isons were conducted on all 55 models. We show results on 5 rep-
resentative models in Table 1 and Table 3, and the complete results
are given in the supplemental materials.

FTP vs. VTP The difference between VTP and FTP is that VTP
adds more faces to the traversed area than FTP during each itera-
tion and lets windows on the previous wavefront propagate through
these faces to reach the new wavefront. This strategy pushes the
wavefront forward faster. From the results in Table 3, we find that
VTP runs faster than FTP even though it usually performs more
window propagations.

OPVTP vs. VTP We have also compared VTP with OPVTP by
applying them to all 55 testing models. The results in Table 3 indi-
cate that enforcing spatial coherence increases the overall running
time but does not remove many more redundant windows. VTP
strikes a better balance between the overall speed and the thorough-
ness in window pruning.

VTP-Exhaustive vs. VTP We have implemented a variant of the
VTP algorithm by performing redundancy checking on all possible
window pairs within the same window list as well as across differ-
ent window lists inside the same triangle. This scheme essentially
performs exhaustive pairwise window checking, hence, the name
VTP-Exhaustive. As seen in Table 3, this variant performs fewer
window propagations but runs much slower than VTP.

VTP-Trimming vs. VTP We have also implemented a variant
named VTP-Trimming, which performs window trimming as in
[Surazhsky et al. 2005] instead of window pruning following our
Rule 2 and Rule 3 when two windows overlap on an edge. As
shown in Table 3, this method runs slower than VTP though it per-
forms fewer window propagations. This is because window trim-
ming by solving quadratic equations is expensive.

g
FIGURE 4.23: Robustness of individual components against anisotropic trian-
gulation (window pruning component).

Fertility (F: 800 K)Hand (F: 200 K)

gg

Figure 10: Comparison of robustness against anisotropic triangu-
lation. The x-axis represents the degree of anisotropy, and the y-axis
represents running time.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

ICH MMP

FWP-CH FWP-MMP

VTP

1
2
3
4
5
6
7
8
9

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

0.3

0.8

1.3

1.8

1 1.2 1.4 1.6 1.8 2

T
im

e(
s)

g

ICH MMP

FWP-CH FWP-MMP

VTP

(a) window propagation (b) window pruning (c) window management

Figure 11: Robustness of individual components against anisotrop-
ic triangulation.

(Fertility with 800K faces and Hand with 200K faces) respectively.

Here, we also use g(M) =
∑

f∈F g′(f)
|F | to measure the degree of

anisotropy of a mesh M , where g′(f) = PH

2
√
3S

and P,H, S are the
half-perimeter, longest edge length and area of f respectively. All
these meshes with varied degrees of anisotropy are generated using
the method in [Zhong et al. 2013].

The curves in Fig 10 show how the running times change with in-
creasing anisotropy (g). Our algorithm is the most robust among
all algorithms since its running time does not obviously increase
when the input mesh has a much larger anisotropy. As all related
algorithms have the same three components (window propagation,
window pruning and window management), we further show how
the running times of each component changes with increasing g on
the Armadillo model in Fig 11. In general, a larger value of g
generates more windows. Without efficient window pruning, ICH
and FWP-CH spend more time on window propagation when g is
increasing, as shown in Fig 11(a). For window pruning, MMP and
FWP-MMP require binary search and solving quadratic equations,
which also entails longer running times, as shown in Fig 11(b). As
MMP and ICH algorithms use a priority queue for managing win-
dows, they need more time to process more windows, as shown in
Fig 11(c). Though FWP-based methods significantly reduce the
cost of window management, they still require extra cost to process
an increased number of windows, which gives rise to a minor in-
crease in their running times, as shown in Fig 11(c). In contrast, our
algorithm is insensitive to the number of windows since it manages
triangle vertices instead of windows. As a result, the running times
of our components change the least with increasing anisotropy.

6.2 Comparison among Algorithmic Choices

We first justify the choice of VTP as our final algorithm by com-
paring it against other variants, including FTP, OPVTP, VTP-

(a) (b)

(c) (d)

Figure 12: Ablation study on the three rules. (a) and (b) are result-
s on model Armadillo (F: 345K), while (c) and (d) are results on
model Asian Dragon (F: 1.4M). The left y-axis represents running
time and the right y-axis represents the number of window propa-
gations.

Exhaustive, VTP-Trimming, and VTP-MMP/CH. These compar-
isons were conducted on all 55 models. We show results on 5 rep-
resentative models in Table 1 and Table 3, and the complete results
are given in the supplemental materials.

FTP vs. VTP The difference between VTP and FTP is that VTP
adds more faces to the traversed area than FTP during each itera-
tion and lets windows on the previous wavefront propagate through
these faces to reach the new wavefront. This strategy pushes the
wavefront forward faster. From the results in Table 3, we find that
VTP runs faster than FTP even though it usually performs more
window propagations.

OPVTP vs. VTP We have also compared VTP with OPVTP by
applying them to all 55 testing models. The results in Table 3 indi-
cate that enforcing spatial coherence increases the overall running
time but does not remove many more redundant windows. VTP
strikes a better balance between the overall speed and the thorough-
ness in window pruning.

VTP-Exhaustive vs. VTP We have implemented a variant of the
VTP algorithm by performing redundancy checking on all possible
window pairs within the same window list as well as across differ-
ent window lists inside the same triangle. This scheme essentially
performs exhaustive pairwise window checking, hence, the name
VTP-Exhaustive. As seen in Table 3, this variant performs fewer
window propagations but runs much slower than VTP.

VTP-Trimming vs. VTP We have also implemented a variant
named VTP-Trimming, which performs window trimming as in
[Surazhsky et al. 2005] instead of window pruning following our
Rule 2 and Rule 3 when two windows overlap on an edge. As
shown in Table 3, this method runs slower than VTP though it per-
forms fewer window propagations. This is because window trim-
ming by solving quadratic equations is expensive.

g
FIGURE 4.24: Robustness of individual components against anisotropic trian-
gulation (window management component).

Chapter 4. Fast and Exact SS-DGP Algorithm 92

4.6 Summary

In this chapter, the EWG-based window propagation framework is employed
to design a novel exact geodesic algorithm (VTP) in solving the SS-DGP
problem. In VTP, EWG is applied to both the window list propagation and
the wavefront propagation. For the window list propagation, EWG helps to
form more window pairs so that the pairwise windows pruning can be per-
formed more thoroughly. For the wavefront propagation, EWG helps to re-
duce the window management cost by building connections between mesh
edges and window lists. Thus, the sorting can be performed on mesh vertices
instead of windows, which significantly cuts down the time spent on window
management. As a result, VTP outperforms all recent methods in terms of
running time, peak memory usage and the total number of window propaga-
tions. According to experiments, the VTP geodesic algorithm runs 4-15 times
faster than MMP and ICH algorithms and 2-4 times faster than FWP-MMP
and FWP-CH algorithms.

93

Chapter 5

Fast and Memory-Efficient
Voronoi Diagram Construction

Computing geodesic-metric-based Voronoi diagrams on triangle meshes
works as a foundation for various applications in computer graphics, includ-
ing remeshing (Peyré and Cohen, 2006; Liu et al., 2011), surface reconstruc-
tion (Peethambaran and Muthuganapathy, 2015) and point pattern analysis
(Liu et al., 2011), etc. In these applications, geodesics are used as the dis-
tance metric because they reflect the intrinsic properties of surfaces and are
invariant to isometric deformations. To construct accurate Voronoi diagrams,
Liu et al. (2011) employed the MMP algorithm (Surazhsky et al., 2005) to it.
Compared to the VTP algorithm proposed in the previous chapter, the MMP
algorithm has a unique feature: all the propagated windows are stored and
trimmed on edges. The distinct advantage is to bring necessary geodesic in-
formation to edges for Voronoi diagram construction, and it is summarized as
the VD-DGP problem in this thesis (Section 3.1.2). However, as the MMP
algorithm always consumes lots of time and memory, it has become the bot-
tleneck of constructing geodesic based Voronoi diagrams. Recently, Xu et al.
(2015) proposed the FWP-MMP algorithm as an accelerated version of the
MMP algorithm. But it still occupies too much memory to be applied to large
scale models.

To speed up geodesic computation and save memory, the VTP algorithm
proposed in the previous chapter is employed. In addition, it is revised as
the window-VTP algorithm to provide necessary geodesic information for
Voronoi diagram construction as the MMP algorithm do. Moreover for the
Voronoi diagram over a mesh, the boundaries of Voronoi cells only occupy a
small number of triangles on it. Thus, most of the windows are redundant in
constructing Voronoi diagrams.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 94

This chapter aims to reduce redundant computation so as to save time and
memory. To this end, the Redundant Window Removal (RWR) process is
proposed to remove redundant windows during the construction of a Voronoi
diagram, and is involved in the proposed window-VTP algorithm by selec-
tively retaining windows on edges. The key point is to detect and remove
redundant windows simultaneously with the geodesic wavefront propagation.
This chapter is organized as follows:

• Section 5.1 proposes a novel Redundant Window Removal (RWR)
method to remove redundant windows during the Voronoi diagram con-
struction. In this method, the EWG technique (Chapter 3) is employed
to identify and remove the redundant windows efficiently in batches.

• Section 5.2 proposes the window-VTP algorithm by revising the VTP
algorithm (Chapter 4) to provide the necessary geodesic information for
Voronoi diagram construction, and shows how to apply RWR in it.

• Section 5.3 analyses the complexity of the proposed algorithm.

• Section 5.4 shows the experimental results of the proposed algorithm.

• Section 5.5 summarizes this chapter.

5.1 Redundant Window Removal (RWR)

Since the boundaries of Voronoi cells only cross a minority of the meshes’
triangles, most of the windows stored on edges are redundant. By applying
EWG, these redundant windows are grouped as window lists on edges. Thus,
this section aims to identify and remove such windows in batches which oc-
cupy a large amount of memory during the Voronoi diagram construction.

5.1.1 Preliminaries

For a triangle mesh M , its Voronoi diagram is a set of Voronoi cells parti-
tioning M . As Figure 5.1 shows, the boundaries separating Voronoi cells are
closed curves spread over a small number of triangles. The definitions of
Voronoi cells and their boundaries are presented as follows:

Voronoi Cell Definition (Liu et al., 2011). For a given set of source points
s0, s1, ..., sn on mesh M , let Dsi(p) be the geodesic distance from source si

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 95

FIGURE 5.1: Voronoi diagram on the Buste model (3K faces). Left: Voronoi
diagram on the rendered model. Right: Voronoi diagram on the wireframe
model. The green points are sources. The red curves are the boundaries of
Voronoi cells.

to point p on M . Consequently, the Voronoi cell (VC) of each source point is
defined as:

V C(si) = {p|Dsi(p) ≤ Dsj(p), i 6= j, p ∈M}

Voronoi Boundary Definition. With the Voronoi cell definition above, the
boundaries of Voronoi cells are formed by the collection of points q satisfying:

∃i, j and ∀k such that Dsi(q) = Dsj(q) ≤ Dsk(q), i 6= j 6= k (5.1)

Window Definition. Following the window definition in Section 3.3.1, a
window w is defined as w = (∆ABC, a0, a1, p, d0, d1, σ, si). Note that a new
parameter si is added to the definition to record the source vertex from which
the window is propagated.

Redundant Window Definition. As Figure 5.2 shows, suppose q is the in-
tersection point of an edge and a Voronoi boundary. Then, q must satisfy
the condition Equation 5.1 and is shared by two adjacent windows originat-
ing from two different sources respectively. The triangles occupied by the
Voronoi boundaries always contain such intersection points. That is, a valid

triangle contains windows propagated from different sources. Otherwise, this
triangle is invalid. In terms of windows, the redundant primitives on a mesh

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 96

are defined as below.

𝑠𝑖 𝑠𝑗

𝑞

𝑠𝑖

𝑠𝑗

𝑞

FIGURE 5.2: Illustration of intersections between mesh edges and Voronoi cell
boundaries. The left Voronoi cell (in blue) is from source si and the right one
(in green) is from source sj . The red curve denotes the boundary between them.
Point q is the intersection shared by two windows from si and sj respectively
that Dsi(q) = Dsj (q). The two figures show two configurations of the source
positions.

Definition 5.1. Given a mesh M with computed geodesics, the redundant

primitives on M are (Figure 5.3):

𝑠𝑖 𝑠𝑗
FIGURE 5.3: Illustration of redundant primitives, including redundant triangles
(yellow) and redundant edges (green).

• Redundant triangle. A triangle is redundant if all the windows on its

three edges are from the same source.

• Redundant edge. An edge is redundant if both adjacent triangles are

redundant triangles.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 97

• Redundant window. A window is redundant if it resides on a redundant

edge.

5.1.2 Redundant Windows Removal (RWR)

Definition 5.1 can be directly used to identify redundant windows after the
termination of geodesic computation on a mesh. However, too much memory
have been consumed. To avoid it, the redundant windows must be identified
and removed as early as possible during the geodesic computation. To this
end, the inactive region is defined as follows:

Definition 5.2. An inactive region is a region behind the geodesic wavefront,

in which all the windows will be no longer updated.

In other words, the geodesic distances of points in some inactive region
have already determined. To depict the inactive region, it is necessary to first
briefly address the monotonicity of window propagations.

𝐴

𝐵

𝐶

𝑝

𝑤
𝑞

𝑠

𝜎

𝑤′
𝑟

FIGURE 5.4: Illustration of the monotonicity for window propagations. Point
r (blue) resides in the window w′ propagated from w, segment pr intersects
edge AB at point q (purple).

Monotonicity. Mitchell et al. (1987) proposed the “continuous Dijkstra”
technique to organize geodesic wavefront propagation from near to far mono-

tonically. Herein, the wavefront consists of all the windows to be propagated
and these windows are managed by a priority queue. In the priority queue, the
priority of a windoww is defined as−dmin(w), i.e. the negative minimum dis-
tance of a window. As Figure 5.4 shows, if w′ is a child window propagated

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 98

from w, it can be derived that:

dmin(w′) = min (σ + ‖pr‖) ≥ min (σ + ‖pq‖) ≥ dmin(w)

That is, the minimum distances of windows popped from the priority queue
are monotonously increasing.

𝑆3

𝑤𝑛

𝑓
𝑒max

Inactive RegionInactive Region

Wavefront

FIGURE 5.5: Illustration of an inactive region. Left: the segments in red de-
note the propagation wavefront wf and the green shadowed area is the Inactive
Region. Right: dmin(f) is the length of the orange path, emax is the longest
edge of face f , dmin(wn) is the length of the blue path.

Inactive Region Formation. To compute geodesics, windows are organized
as the wavefront and propagated from near to far. Let wn be the nearest
window on the wavefront. It can be inferred with the monotonicity that the
geodesic distance of a point p is determined if it is shorter than dmin(wn). To
apply this to forming the inactive region, the upper bound of points’ distances
within a triangle is estimated as dmin(f) + ‖emax‖, where dmin(f) is the min-
imum distance of face f , emax is f ’s longest edge. Then, all the triangles f
satisfying dmin(f)+‖emax‖ ≤ dmin(wn) form the inactive region (Figure 5.5).
This process is summarized as Proposition 5.1 and shown as follows.

Proposition 5.1. The inactive region is formed by all triangles satisfying

dmin(f) + ‖emax‖ ≤ dmin(wn) and none of the windows in it can be updated

by later window propagations.

Proof. Let f be a face satisfying dmin(f) + ‖emax‖ ≤ dmin(wn) and q is the
point determining dmin(f), i.e. dmin(f) = δ + ‖pq‖ = d(q) (Figure 5.6).

Let r be an arbitrary point in any window on the edges of f , construct a
path to r by linking q and r with a line segment. Then, the geodesic distance
d(r) of r must not be larger than the length of the constructed path, i.e. d(r) ≤

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 99

𝐴

𝐵

𝐶

𝑝

𝑞

𝑠

𝜎

𝑟

FIGURE 5.6: Illustration of Proposition 5.1.

dmin(f) + ‖qr‖. Since ‖qr‖ ≤ ‖emax‖ (see Lemma G.1 in Appendix G),

d(r) ≤ dmin(f) + ‖qr‖ ≤ dmin(f) + ‖emax‖

Knowing that f satisfies dmin(f) + ‖emax‖ ≤ dmin(wn), then

d(r) ≤ dmin(wn).

Thus, d(r) cannot be updated by wn since wn cannot provide a shorter
distance to r. Let wo be any other window on the propagation wavefront
that dmin(wn) ≤ dmin(wo). Then, according to the monotonicity of window
propagations,

dmin(wn) ≤ dmin(w′n)

dmin(wo) ≤ dmin(w′o)

where w′n and w′o are child windows propagated from wn and wo respectively.
Then, it can be derived that,

d(r) ≤ dmin(wn) ≤ dmin(w′n)

d(r) ≤ dmin(wn) ≤ dmin(wo) ≤ dmin(w′o)

Thus, d(r) cannot be updated by all later window propagations. Since r is
arbitrarily selected, all windows on f ’s edges will not be updated.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 100

Redundant Windows Removal (RWR) Redundant windows always appear
within inactive regions. Thus, RWR works on inactive regions. Let f be a
redundant triangle for removal, d = dmin(wn) be the distance of the nearest
window on the propagation wavefront. Then, RWR is performed in two steps:

Step 1. Judge if f is in the inactive region with Proposition 5.1. If so, continue
to Step 2; else, finish.
Step 2. Check f ’s redundancy with Definition 5.1. If f is redundant, also
check if its edges are redundant and remove all windows on the redundant
edges.

This process is summarized in Procedure 3.

Procedure 3 Redundant Windows Removal (RWR)
Input: f - Face;

d - Distance of the nearest window on the wavefront;
Output: f ′ - The face after redundancy removal;
1: procedure RWR(f , d)
2: Let emax be the longest edge of f ;
3: if dmin(f) + ‖emax‖ ≤ d then
4: Check f ’s redundancy;
5: if f is redundant then
6: for each edge ei ∈ f do
7: Let fi be the face sharing edge ei with f ;
8: if fi is redundant then
9: Empty the windows on ei;

10: end if
11: end for
12: end if
13: end if
14: end procedure

5.1.3 Performance Verification

To verify that the proposed RWR procedure effectively reduces memory cost,
this section compares memory costs against nearest distance dmin(wn) of the
wavefront between two scenarios of Voronoi diagram construction: with and
without RWR. The tests are performed on ten models selected from the model
set (Appendix A). Figure 5.7 shows the results on two models (Armadillo and
Asian Dragon) and the rest of the results have been included in Appendix
H. It can be seen that applying RWR dramatically reduces the memory cost
of Voronoi diagram construction. Specifically, methods without RWR, e.g.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 101

0

100

200

300

400

500

0 20 40 60

M
em

o
ry

 (
M

B
)

Nearest Distance dmin(wn)

Armadillo (F: 345K)

With DWR Without DWRWith RWR Without RWR

0

1000

2000

3000

0 20 40 60 80

M
em

o
ry

 (
M

B
)

Nearest Distance dmin(wn)

Asian Dragon (F: 1.4M)

With DWR Without DWRWith RWR Without RWR

FIGURE 5.7: Performance verification on RWR. The x-axis represents the
distance of the nearest window on the wavefront during propagation, i.e.
dmin(wn). The y-axis represents real-time memory cost during propagation.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 102

Liu et al. (2011), store all propagated windows on edges of the mesh and
their memory costs are cumulative. On the contrary, RWR removes redundant
windows in time with geodesic wavefront propagations. Thus, the memory
cost is effectively reduced.

5.2 Applying RWR in Geodesic Computation

To construct geodesic-metric-based Voronoi diagrams, the window-VTP al-
gorithm is proposed by revising the original VTP algorithm (Chapter 4). The
window-VTP algorithm is essentially a multi-source geodesic algorithm and
takes triangles as the primitive for distance propagation. For each source, all
visited triangles form its own traversed area. The boundary of the traversed
area is defined as the propagation wavefront.

(𝑎) (𝑏)

𝑅

∆𝑅

𝐼

∆𝐼
𝑅𝑣

FIGURE 5.8: Illustration of the triangle-oriented region expansion scheme. (a)
Expansion of the traversed area R. (b) Expansion of the inactive region I .

For simplicity, consider the one source scenario here. The proposed al-
gorithm expands its traversed area R and inactive region I at the same time
(Figure 5.8). Note that the inactive region I is a proper subset of the tra-
versed area R, i.e. I ⊂ R, and the windows in I will not be updated. Both
R and I are expanded in continuous Dijkstra style, and gradually involving
unvisited triangles abutting the wavefront. First, the proposed algorithm cre-
ates the initial windows of each source within its 1-ring neighbourhood and
pushes all the adjacent vertices of each source into a priority queue Q. Note
that only one priority queue Q is defined for all traversed areas since every
vertex is involved in Q in terms of the propagation distance of the wavefront.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 103

When a vertex is popped from the priority queue Q, the proposed window-
VTP algorithm performs the following:

• Expanding traversed area R. As Figure 5.8 (a) shows, let ∆R be the
unvisited triangles in v’s 1-ring neighbourhood. Then, R is expanded
by involving ∆R into R, and the wavefront is also updated accordingly.
Then, the windows on the previous wavefront (e.g. vE and vB in Fig-
ure 5.9) are propagated through ∆R and R either till they reach the
wavefront, or are eliminated during propagation. To manage windows

𝑆𝑖

𝐷
𝐸

𝑣 𝐵

𝐶

FIGURE 5.9: Vertex-sorted Triangle Propagation Qin et al. (2016).

on the wavefront for the Voronoi diagram construction, the propagated
windows are trimmed on edges using the windows trimming rule (Fig-
ure 5.10) and binary insertion scheme proposed by the MMP algorithm
(Surazhsky et al., 2005).

0

𝑦

𝑥

𝑠0 𝑠1

𝑏0 𝑏1 0

𝑦

𝑥

𝑠0 𝑠1

𝑝

𝑑 𝑑

(𝑎) (𝑏)

FIGURE 5.10: The window trimming rule in the MMP algorithm (Surazhsky
et al., 2005). This rule trims two overlapping windows into non-overlapping
ones.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 104

• Expanding Inactive region I . As Figure 5.8 (b) shows, the expansion
of I is limited inside R. In the region between I and R, let ∆I be the
triangles satisfying Proposition 5.1. Then, I is expanded by involving
∆I in I . When a triangle is added into I , the windows on it are removed
by performing procedure RWR().

Algorithm 4 window-VTP algorithm
Input: M - Mesh;

S - Source set;
Output: M ′ - Mesh with sufficient geodesic information for

Voronoi diagram constructions;
1: procedure window-VTP(M , S)
2: Step 0. Perform Initialization.

• For each source Si, create a window for every opposite edge of Si
in its 1-ring neighborhood (bold blue lines around Si in Figure 5.9).
• Push all adjacent vertices of Si into a priority queue Q.
• Define a priority queue Qi, which is used to organize the expansion
of the inactive regions;

3: while !Q.empty() do
4: Step 1. Pop a vertex v from Q;
5: Step 2. Update the wavefront and traversed areas;
6: Step 3. Expanding the traversed areas.

• Push the windows on edges of the wavefront incident to v into
FIFO queue W ;

7: while !W.empty() do
8: • Pop a window w from W ;

• Propagate w across a triangle;
• Retain and trim the propagated windows;
• Push the propagate windows into W if they survives the
trimming and haven’t reached the wavefront;

9: end while
10: Step 4. Expanding the inactive regions.
11: while !Qi.empty() do
12: • Let f be Qi.front();

• PerformRWR() on f to check if f is in the inactive regions;
If so, remove the redundant windows on it; else, break the
loop;

13: end while
14: Step 5. Update vertices’ and triangles’ priorities;
15: Step 6. Push the faces newly added to the traversed areas into Qi;

16: end while
17: end procedure

The outline of the proposed algorithm is shown in Algorithm 4 and two
challenges are rising as below.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 105

(1) How to deal with the collision of the wavefronts? Note that it may be a
self-intersection of one wavefront or meeting of two wavefronts.

(2) How to define the priorities for triangles and vertices in Qi and Q prop-
erly (in Step 4, 5)?

5.2.1 Wavefront Collision

Proposition 5.2. The proposed window-VTP algorithm automatically han-

dles the wavefront collisions and requires no extra operations.

𝑆1

𝑆2 𝑆3𝐴

𝐵
𝐶

𝑅3

𝑅1

𝑅2

FIGURE 5.11: The collision of the propagation wavefront. The wavefront con-
sists of three parts from three different sources, S1, S2 and S3 (red, blue and
green line segments).

As Figure 5.11 shows, the propagation wavefront consists of different
parts corresponding to different sources. When different parts of the wave-
front collide with each other, simply let the windows propagate through the
wavefront and enter the interior of the traversed areas. The propagations of
these windows will stop when they reach the updated wavefront or be elimi-
nated by the retained windows on edges in the traversed areas using the win-
dows trimming rule (Surazhsky et al., 2005). Thus, no extra operation is
required. For example in Figure 5.11, the wavefront collides when ∆ABC is
added to the traversed areas. Then, the windows on edges AB, AC, BC are
propagated into the interior of R1, R2 and R3 (the dashed arrows in Figure
5.11). These propagations will stop upon reaching the updated wavefront (the
bold red, green, blue line segments in Figure 5.11) or be eliminated on the
interior edges (the grey line segments in Figure 5.11).

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 106

5.2.2 Priorities Definition

The key point of performing the procedure RWR() during wavefront propa-
gation is to form the inactive region, which resort to two priorities: the face’s
priority and the vertex’s. Recall that the inequality of dmin(f) + ‖emax‖ ≤
dmin(wn) is used to identify whether a face f is in the inactive region (Propo-
sition 5.1). In the proposed algorithm, the priorities are defined as follows:

Face’s Priority. A face f ’s priority in the priority queue Qi is defined as
−(dmin(f) + ‖emax‖).

Vertex’s Priority. A vertex v’s priority in the priority queue Q is defined as
the negative minimum of the current shortest distances to v’s incident edges
on the wavefront. For example in Figure 5.12,

−dmin(A) = −min{dmin(AB), dmin(AC)}

In addition, if wn is on AB or AC, −dmin(A) = −dmin(wn).

𝑆

𝑤𝑛 𝐴𝐵

𝐶

FIGURE 5.12: Illustration of the vertex’s priority definition. The propagation
wavefront are the black and red line segments. wn is the nearest window on the
wavefront.

Note that the two defined priorities are just the left and right sides of in-
equality dmin(f) + ‖emax‖ ≤ dmin(wn) (Proposition 5.1), and thus they can
be directly used when performing procedure RWR().

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 107

5.3 Complexity Analysis

This section focuses on the complexity of geodesic computation since it is the
dominant part of the Voronoi diagram construction (Liu et al., 2011).

Let n be the number of vertices on a mesh. It is easy to verify that the pro-
posed window-VTP algorithm is an improved version of the original MMP
algorithm (Mitchell et al., 1987). In the worst case, the number of windows
generated in the geodesic computation part is O(n2) and the time complexity
of geodesic computation is O(n2 log n). For the redundant windows removal
(RWR) part, the checking and deletion processes are performed on each win-
dow and thus accounts for O(n2) time. In addition, the expansion of the
inactive region is triangle-oriented and thus costs O(n log n) time for O(n)

triangles.

In summary, the time complexity of window-VTP is O(n2 log n + n2 +

n log n) = O(n2 log n). Since the redundant windows removal process does
not consume extra memory, the space complexity of the proposed algorithms
is O(n2).

5.4 Experimental Results

To evaluate the performance of the proposed algorithm, experiments have
been conducted on a variety of models. Specifically, the test models are se-
lected from the model set (Appendix A), including sculptures, animals and
manmade objects. The resolution of these models (number of faces) ranges
from 10K to 14M. All the algorithms are tested using a HP Z420 Workstation
with an Intel Xeon E5-1650 3.20GHz CPU and 32GB memory. Unless spec-
ified, the experiments randomly select 30 vertices as the sources on meshes,
as shown by Liu et al. (2011). Figure 5.13 shows the constructed Voronoi
diagrams on some example models.

5.4.1 Comparison with Liu et al. (2011)

Overall Performance According to Liu et al. (2011), constructing the geodesic-
metric-based Voronoi diagram consists of two stages,

• Stage 1. Compute geodesic distance fields on edges of mesh M .

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 108

FIGURE 5.13: Examples of Voronoi diagrams on meshes. The faces of the
models are: Bunny (5K faces), Cow (10K faces), Dancingchildren (20K faces).

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 109

• Stage 2. Extract the valid triangles which contain Voronoi cells’ bound-
aries. March them to track and reconstruct the boundaries of Voronoi
cells’ by linking the intersections between them and edges of M .

The overall performance of the proposed algorithm is evaluated by two
measures on the two stages: running time and peak memory usage respec-
tively. As Table 5.1 shows, the geodesic computation part consumes the ma-
jority of time and memory in both Liu et al.’s method and ours. However,
when replacing the MMP algorithm used in Liu et al. (2011) by the proposed
window-VTP algorithm for geodesic computation, the Voronoi diagram con-
struction runs 3-8 times faster and uses 10-70 times less memory.

Model Performance Liu et al. (2011) Ours Ratio

Horse
(F: 96K)

Time(s) 1.966 + 0.015 0.66 + 0.015 2.93

Peak memory(MB) 109.40 + 0.035 9.98 + 0.035 10.93

Bunny
(F: 144K)

Time(s) 3.637 + 0.028 1.07 + 0.028 3.34

Peak memory(MB) 187.00 + 0.046 14.86 + 0.046 12.55

Igea
(F: 268K)

Time(s) 10.916 + 0.048 3.019 + 0.048 3.57

Peak memory(MB) 478.06 + 0.065 26.50 + 0.065 18.00

Armadillo
(F: 345K)

Time(s) 9.863 + 0.046 2.982 + 0.046 3.27

Peak memory(MB) 440.33 + 0.066 21.09 + 0.066 20.81

Pulley
(F: 392K)

Time(s) 23.917 + 0.115 5.345 + 0.115 4.40

Peak memory(MB) 792.08 + 0.086 39.69 + 0.086 19.91

Rocker arm
(F: 482K)

Time(s) 32.012 + 0.091 6.985 + 0.091 4.54

Peak memory(MB) 1013.34 + 0.099 41.50 + 0.099 24.36

Asian dragon
(F: 1,400K)

Time(s) 110.083 + 0.255 20.281 + 0.255 5.37

Peak memory(MB) 2770.81 + 0.143 76.75 + 0.144 36.04

IsidoreHorse
(F: 2,209K)

Time(s) 89.538 + 0.211 21.229 + 0.211 4.17

Peak memory(MB) 2574.06 + 0.189 46.79 + 0.189 54.79

Happy buddha
(F: 2,583K)

Time(s) 482.715 + 1.291 58.946 + 1.291 8.04

Peak memory(MB) 8218.60 + 0.406 161.98 + 0.406 50.61

Neptune
(F: 4,008K)

Time(s) 832.83 + 0.784 96.843 + 0.784 8.54

Peak memory(MB) 13070.70 + 0.262 176.30 + 0.262 74.03

TABLE 5.1: Performance comparison with Liu et al. (2011). The results are
shown in an addition manner as: “geodesic computation” + “Voronoi diagram
construction”.

Since the geodesic computation part is the bottleneck of Voronoi diagram
construction, a more comprehensive comparison on it is performed as follows.

Performance Comparison on Geodesic Computation To evaluate the per-
formance of the geodesic part, three measures are used: running time, total

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 110

number of windows stored after propagation and peak memory usage. Algo-
rithms in this comparison have been tested on all 55 models in the model set.
For better reading experience, some of the testing results are shown here and
the others are given in Appendix I.

MMP vs. window-VTP FWP-MMP vs. window-VTP

Time 3.98/1.55 1.21/0.18

windows stored 48.96/38.98 48.96/38.99

Peak Memory 21.24/15.16 21.24/15.16

TABLE 5.2: The mean and standard deviation of the performance ratios be-
tween other algorithms and the proposed window-VTP algorithm on running
time, the number of windows stored and peak memory usage.

The mean and standard deviation of performance ratios are calculated
between MMP, FWP-MMP and the proposed window-VTP algorithm. The
details are shown in Table 5.2. It can be seen that window-VTP on aver-
age runs 4 times as fast as MMP and comparable to FWP-MMP (1.2 times
faster). The window-VTP algorithm on average uses 95.29% less memory
than MMP and FWP-MMP. Furthermore, the window-VTP algorithm stores
97.96% less windows than MMP and FWP-MMP algorithms after propaga-
tion, which shows that it removes redundant windows effectively. Note that

Model Performance
Algorithms

MMP FWP-MMP window-VTP

Bunny

(F:144K)

Time(s) 3.637 1.27 1.07

windows stored 2,451,104 2,451,105 85,959

Peak Memory(MB) 187.00 187.00 14.86

Rocker Arm

(F:482K)

Time(s) 32.012 9.088 6.985

windows stored 13,282,080 13,282,139 271,040

Peak Memory(MB) 1013.34 1013.35 41.50

Asian Dragon

(F:1,400K)

Time(s) 110.083 28.247 20.281

windows stored 36,317,620 36,317,847 346,142

Peak Memory(MB) 2770.81 2770.83 76.75

Neptune

(F:4,008K)

Time(s) 832.83 173.055 96.843

windows stored 171,319,703 171,374,203 857,068

Peak Memory(MB) 13070.70 13074.80 176.30

Lucy

(F:14,464K)

Time(s)

Out of memory Out of memory

806.118

windows stored 12,071,796

Peak Memory(MB) 921.005

TABLE 5.3: Performance comparison between MMP, FWP-MMP and the pro-
posed window-VTP on five representative models.

the proposed window-VTP algorithm is impressive since it resolves the mem-
ory bottleneck of Voronoi diagram oriented computation of geodesics, whilst
not sacrificing the speed. For example, it uses 95.29% less memory than

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 111

FWP-MMP while still being 1.2 times as fast. Detailed results on 5 represen-
tative testing models are shown in Table 5.3.

Number of Sources This part studies how the proposed algorithm performs
with varying number of sources. First, three test models (Maxplanck, Angel,
RedCircularBox) are chosen. For each model, eleven sets of sources are cho-
sen randomly whose sizes range from 1 to 1000. Then, the ratios between
the running time, peak memory of FWP-MMP based Voronoi diagram con-
struction algorithm and that of ours on all source sets are calculated. The
experiments are designed to show how the ratios change with changing num-
ber of sources.

As illustrated in Figure 5.14, the time ratios increase within the range
of source number at [1,100] and drop within the range at (100,1000]. This
inconsistency is caused by RWR and the VTP wavefront propagation. When
the number of sources increases,

• RWR is invoked less times. This is because the more triangles the
Voronoi boundary occupies, the fewer the redundant windows.

• The performance of VTP wavefront propagation depends on the scale
of the models, i.e. VTP performs better than the others on large scale
meshes. Herein, the size of Voronoi cells becomes smaller when the
number of sources increases. VTP has to work within each cell, that is,
the models’ size becomes smaller for VTP.

The time ratio in Figure 5.14 shows that in the range of [1,100], reducing
RWR dominantly causes the time ratio increasing. In the range of (100,1000],
the size of Voronoi cells becomes smaller, which leads to the performance of
VTP decreasing. The low performance of VTP dominantly causes the time
ratio decreasing at that time.

However, the memory ratio in Figure 5.14 shows that the memory cost
is close to that of FWP-MMP with an increasing number of sources. Nev-
ertheless, the proposed algorithm still runs faster than the FWP-MMP based
Voronoi diagram construction algorithm and uses more than 3 times less mem-
ory for 1000 sources.

Performance Profiling This section profiles the running time of different
components in the Voronoi diagram construction, showing how it is accel-
erated. As proposed in Liu et al. (2011), the Voronoi diagram construction
contains two components: the computation of geodesics and the construction

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 112

1

1.2

1.4

1 1,000

T
im

e
R

at
io

10 100

#Sources (log scale)

FWP-MMP v.s. Our Algorithm

Maxplanck Angel RedCircularBox

0

40

80

Maxplanck Angel

120

1 1,000

M
em

o
ry

 R
at

io

10 100

#Sources (log scale)

FWP-MMP v.s. Our Algorithm
RedCircularBox

FIGURE 5.14: Performance comparison between FWP-MMP based Voronoi
diagram construction algorithm and ours on the number of sources. The x-axis
represents the number of sources in logarithmic scale, and the y-axis represents
the performance (time, memory) ratio.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 113

0

2
4

6

8
10

12

14

Liu et al. (2011) FWP-MMP

Version

Ours

T
im

e(
s)

Armadillo (F: 345K)

Window propagation Window redundancy reduction

Window management Voronoi diagram construction

0
20
40
60
80

100
120
140

Liu et al. (2011) FWP-MMP

Version

Ours

T
im

e(
s)

Asian Dragon (F: 1.4M)

Window propagation Window redundancy reduction

Window management Voronoi diagram construction

FIGURE 5.15: Comparison of running times of four common components in
Voronoi diagram construction on two models. The comparison is performed
on three versions of the solution: (1) the original method in Liu et al. (2011);
(2) the FWP-MMP version which replaces the MMP algorithm used by Liu
et al. (2011) with the FWP-MMP algorithm Xu et al. (2015); (3) The proposed
version which replaces the MMP algorithm used by Liu et al. (2011) with the
proposed window-VTP algorithm.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 114

of a Voronoi diagram. In addition, the geodesic computation component can
be further subdivided into three components: window propagation, window

redundancy reduction and window management (Section 3.3.2.2). Thus, the
running times of these four individual components in all participating algo-
rithms are profiled on ten models selected from the model set. Figure 5.15
shows the results on two models, Armadillo and Asian Dragon (the rest of the
results have been included in Appendix J). Compared to the geodesic com-

putation components, the time cost of Voronoi diagram construction is ex-
tremely small and can be neglected. For geodesic computation components,
it can be seen that the VTP framework effectively reduces the window man-
agement cost of the Voronoi diagram construction. Furthermore, although an
extra RWR process is added in the proposed method, the running time of the
window redundancy reduction component is not dramatically increased as its
time cost is small compared to other computations (e.g. binary insertion and
windows trimming).

Scalability First, three test models (Cow, Shark and Knot) are chosen. Let
each of them have six different resolutions through subdivision. The num-
ber of faces ranges from 0.1M to 2M in these subdivided models. For each
model, its ratios between the running time, peak memory of FWP-MMP based
Voronoi diagram construction algorithm and that of ours on all six resolutions
is calculated. The experiments are designed to show how the ratios change
with the changing resolution. As illustrated in Figure 5.16, both the timing ra-
tios and memory cost ratios increase with an increasing resolution. As shown,
the rate of increase in performance for the proposed algorithm is proportional
to the size of the models.

Robustness This section further validates that the proposed algorithm is ro-
bust to mesh triangulation quality. As in FWP Xu et al. (2015), a sequence
of meshes (eight) with different degrees of anisotropy but a fixed resolution
on two testing models (Fertility with 800K faces and Hand with 200K faces)
are created respectively. Here, g(M) =

Σf∈F g
′(f)

|F | is also used to measure the
degree of anisotropy of a mesh M , where g′(f) = PH

2
√

3S
and P , H , S are

the half-perimeter, longest edge length and area of f respectively. All these
meshes with varied degrees of anisotropy are generated using the method in
Zhong et al. (2013). The curves in Figure 5.17 and Figure 5.18 show how
the running times and peak memories change with increasing anisotropy (g)

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 115

1

1.3

1.6

1.9

0.00 0.50 1.00 1.50 2.00

T
im

e
R

at
io

#Faces (millions)

FWP-MMP version v.s. Ours

Cow Shark Knot

5

20

35

50

0.00 0.50 1.00 1.50 2.00

M
em

o
ry

 R
at

io

#Faces (millions)

FWP-MMP version v.s. Ours

Cow Shark Knot

FIGURE 5.16: Comparison of scalability against FWP-MMP based Voronoi
diagram construction algorithm. The x-axis represents the mesh resolution,
and the y-axis represents running time ratio or memory cost ratio.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 116

0
2
4
6
8

10
12

1 1.3 1.6 1.9

Ti
m

e(
s)

g

Liu et al. (2011) FWP-MMP version Ours

0
20
40
60
80

100
120

1 1.3 1.6 1.9 2.2

Ti
m

e(
s)

g

Liu et al. (2011) FWP-MMP version Ours

FIGURE 5.17: Comparison of robustness against anisotropic triangulation
(Time). The x-axis represents the degree of anisotropy, and the y-axis rep-
resents running time.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 117

400

300

200

100

0
1 1.3 1.6 1.9

M
em

or
y(

M
B

)

g

Liu et al. (2011) FWP-MMP version Ours

0

500

1000

1500

2000

2500

1 1.3 1.6 1.9 2.2

M
em

or
y(

M
B

)

g

Liu et al. (2011) FWP-MMP version Ours

FIGURE 5.18: Comparison of robustness against anisotropic triangulation
(Memory). The x-axis represents the degree of anisotropy, and the y-axis rep-
resents peak memory.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 118

respectively. Note that the peak memories of Liu et al.’s method and its FWP-
MMP based version are almost the same since both of them store all propa-
gated windows on edges. The proposed window-VTP algorithm is the most
robust among all algorithms since its running time and peak memory does not
obviously increase when the input mesh has a much larger anisotropy.

5.4.2 Comparison with Xu et al. (2014)

As Xu et al. (2014) have used the MMP algorithm to compute geodesics , its
performance has already been compared in the preceding section and thus not
discussed here.

Model Performance
window-VTP + Xu et al. (2014)

(𝐜 = 𝟏)
Ours

Horse
(F: 96K)

Time(s) 1.16 0.68
Peak memory(MB) 13.38 10.01

Bunny
(F: 144K)

Time(s) 1.93 1.10
Peak memory(MB) 19.95 14.90

Igea
(F: 268K)

Time(s) 5.42 3.07
Peak memory(MB) 35.97 26.56

Armadillo
(F: 345K)

Time(s) 5.04 3.03
Peak memory(MB) 33.75 21.16

Pulley
(F: 392K)

Time(s) 12.60 5.46
Peak memory(MB) 58.17 39.78

Rocker arm
(F: 482K)

Time(s) 12.41 7.08
Peak memory(MB) 63.53 41.60

Asian dragon
(F: 1,400K)

Time(s) 42.17 20.54
Peak memory(MB) 132.99 76.90

IsidoreHorse
(F: 2,209K)

Time(s) 29.73 21.51
Peak memory(MB) 128.62 46.98

Happy buddha
(F: 2,583K)

Time(s) 160.47 60.24
Peak memory(MB) 493.70 162.39

Neptune
(F: 4,008K)

Time(s) 195.45 97.63
Peak memory(MB) 514.98 176.56

TABLE 5.4: Performance comparison with Xu et al. (2014).

Xu et al. (2014) proposed another method to reduce the memory cost of
Voronoi diagram construction rather than the proposed RWR technique. The
main deficiency of their method is the inefficiency of the redundancy check.
In their method, the redundancy check is performed on all unlabelled trian-
gles rather than just the ones in the inactive region (Proposition 5.1). Thus,
windows on many triangles are repeatedly checked since they are not inac-
tive and will be updated by later propagated windows. In addition, since

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 119

the cost of their redundancy check is large, performing it frequently is time-
consuming. Thus, their method suffers from the trade-off between running
time and memory-cost. In more details, they perform one redundancy check
with every cn window propagations, where n is the face number of the mesh
and c is a user-defined parameter to balance the performance. A smaller
c means that the redundancy check is performed more frequently, reducing
memory cost but sacrificing the running time.

On the contrary, the proposed RWR technique performs the redundancy
check efficiently in the inactive region every time a vertex is popped from the
priority queue. To make a fair comparison, the proposed algorithm is com-
pared with an improved version of Xu et al. (2014) which uses the proposed
window-VTP for geodesic computation but still employs their redundancy re-
duction method rather than the proposed RWR (Table 5.4). In the experi-
ments, the parameter c is set as 1 for a balanced performance. It can be seen
that the proposed algorithm outperforms theirs in both running time and peak
memory.

5.4.3 Comparison with VTP

The original VTP algorithm does not retain windows, while the revised ver-
sion keeps partial windows. Compared to the original VTP, this experiment
shows how the change influences the performance.

In this experiment, the performance are compared using the proposed win-

dow-VTP with the original VTP to solve the SS-DGP problem, with the first
vertex set as the source on the mesh. As Table 5.5 shows, window-VTP runs
approximately two times slower than VTP. The main reason is that the win-

dow-VTP has to strictly sort windows on edges by binary insertion. However,
Voronoi diagrams are usually more sparse than meshes and there is no distinct
decline in performance.

5.4.4 Application to Remeshing

Due to that the Delaunay triangulation of a point set S is the dual of its
Voronoi diagram, the proposed algorithm can be applied to remesh the dense
models reconstructed from range data. In this context, the number of sources
is usually fairly large and reaches the order of hundreds. Figure 5.19 shows
the remeshing result of the Neptune model with 4K randomly selected sources.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 120

Model Performance VTP window-VTP

Horse

(F: 96K)

Time(s) 0.64 1.13

Peak memory(MB) 1.25 5.67

Bunny

(F: 144K)

Time(s) 0.88 1.50

Peak memory(MB) 1.08 4.56

Igea

(F: 268K)

Time(s) 2.04 4.11

Peak memory(MB) 2.00 9.10

Armadillo

(F: 345K)

Time(s) 1.68 2.68

Peak memory(MB) 1.31 5.62

Pulley

(F: 392K)

Time(s) 3.97 8.71

Peak memory(MB) 4.53 18.58

Rocker arm

(F: 482K)

Time(s) 4.26 9.32

Peak memory(MB) 3.26 14.32

Asian dragon

(F: 1,400K)

Time(s) 9.74 20.95

Peak memory(MB) 3.72 16.77

IsidoreHorse

(F: 2,209K)

Time(s) 10.41 17.72

Peak memory(MB) 2.76 12.19

Happy buddha

(F: 2,583K)

Time(s) 31.44 68.75

Peak memory(MB) 8.44 40.46

Neptune

(F: 4,008K)

Time(s) 51.62 91.14

Peak memory(MB) 14.42 37.26

TABLE 5.5: Performance comparison with VTP.

FIGURE 5.19: Illustration of remeshing with the proposed algorithm.

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 121

To show the performance of our method, we compare it with the FWP-
MMP version of Liu et al.’s (2011) method on six dense models selected from
the proposed dataset, whose numbers of faces range from 1.4M to 6.4M. For
each model, 2K sources are randomly selected if its number of faces is less
than 2M; otherwise, 4K sources are selected. As Table 5.6 shows, our method
runs faster and uses much less memory than the FWP-MMP version of Liu et
al.’s (2011) method in the remeshing problem.

Samples: 2000

Model Performance FWP-MMP version Ours

Asian dragon

(F: 1,400K)

Time(s) 14.07 11.18

Peak memory(MB) 863.93 170.65

Pensatore

(F: 1,996K)

Time(s) 25.02 17.24

Peak memory(MB) 1503.96 251.48

Seahorse

(F: 2,014K)

Time(s) 23.24 17.26

Peak memory(MB) 1455.77 230.63

Samples: 4000

Model Performance FWP-MMP version Ours

Happy buddha

(F: 2,583K)

Time(s) 28.21 23.48

Peak memory(MB) 1690.61 310.59

Neptune

(F: 4,008K)

Time(s) 52.26 39.07

Peak memory(MB) 2925.16 422.98

Vase lion

(F: 6,370K)

Time(s) 111.381 72.22

Peak memory(MB) 5567.37 673.80

TABLE 5.6: Performance comparison with the FWP-MMP version of Liu et
al.’s (2011) method on remeshing.

5.5 Summary

In this chapter, the RWR procedure is presented to reduce the memory cost of
constructing the geodesic-metric-based Voronoi diagrams, in which windows
on edges are grouped by EWG within the inactive regions so that they can be
removed together in time. The proposed window-VTP algorithm incorporates
the RWR procedure in the vertex-oriented wavefront propagation framework.
As a result, the window-VTP algorithm effectively resolves the memory bot-
tleneck of the Voronoi diagram construction while not sacrificing the speed.
In terms of experiments, the proposed algorithm runs 3-8 times faster than

Chapter 5. Fast and Memory-Efficient Voronoi Diagram Construction 122

Liu et al.’s (2011) method, 1.2 times faster than its FWP-MMP variant and
more importantly uses 10-70 times less memory than both of them.

123

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, the Edge-based Windows Grouping (EWG) technique is pro-
posed to improve the performance of exact geodesic computation on triangle
meshes, which is ideal for large scale models. Specifically, EWG groups
“windows” into “window lists” on edges and builds the connections between
them. Compared to previous methods which organize the geodesic wave-
front propagation by individual windows, the EWG-based window propaga-
tion framework propagates nearby windows on edges in batches. Then, the
inter-window geodesic information among windows in each window list can
be used to reduce window redundancy and window management cost during
propagation. As a result, both the running time and memory cost of exact
geodesic computations can be reduced.

Based on EWG, a fast and memory-efficient exact geodesic algorithm,
namely VTP, is first proposed to solve the single-source discrete geodesic
problem (SS-DGP). On one hand, VTP employs EWG to group windows
into window lists on edges. Hence, many window pairs can be formed in a
window list. In each window pair, the redundancy is identified and removed
effectively by simple distance comparisons. Thus, VTP achieves low window
redundancy and runs fast. In addition, due to that such redundancy reduc-
tion process do not require retaining propagated windows on edges, VTP’s
memory cost is low. On the other hand, EWG builds the connections between
mesh edges and window lists. Thus, the wavefront can be propagated by sort-
ing vertices instead of windows in a priority queue. Since the number of mesh
vertices is much smaller than that of windows, the window management cost
is dramatically reduced and this further accelerates VTP. As a result, the pro-
posed VTP algorithm is the fastest and most memory-efficient exact geodesic

Chapter 6. Conclusion and Future Work 124

algorithm so far.

Then, the proposed VTP algorithm is revised and applied to construct the
geodesic-metric-based Voronoi diagram on triangle meshes. In this applica-
tion, the geodesic computation part consumes the majority of the time and
memory and is the performance bottleneck. To speed up the computation, the
EWG-based window propagation framework in VTP is employed to organize
the wavefront propagation by sorting vertices. Thus, the window manage-
ment cost is dramatically reduced. To reduce the memory cost, the redundant
windows which do not contribute to the Voronoi diagram construction are
grouped on edges by EWG and removed in batches efficiently. As a result,
the proposed algorithm resolves the memory bottleneck of the Voronoi dia-
gram construction without sacrificing its speed.

6.2 Future Work

The work in this thesis leads to the following directions for future work:

Weighted SS-DGP Algorithm The VTP algorithm proposed in this thesis
focuses on the geodesic computation under the Euclidean cost metric, i.e.
the difficulty of the paths passing through all faces of the mesh is the same.
However, to obtain a more realistic model, the faces of the mesh are usually
weighted in some applications, e.g. route planning tasks in computer games.
Thus, extending the proposed VTP algorithm to solve the weighted SS-DGP
problem is an interesting future direction and may result in some useful appli-
cations. The main challenge in this direction is that the shortest paths on the
unfolded triangle strips are no longer straight line segments. Thus, the win-
dow propagation should be redesigned into a weighted version. However, the
proposed EWG may also be applied to accelerate the computation by group-
ing the weighted windows on edges and processing them in batches.

VTP Parallelization To accelerate the computation, parallelizing a tradi-
tional CPU-based serial algorithm to run on Graphics Processing Unit (GPU)
has become an increasing trend in the past decade. Such parallelization usu-
ally requires to divide the original CPU-based algorithm into many similar
but independent sub-tasks, which form a parallel structure. Following this
trend, Ying et al. (2014) first proposed the PCH algorithm for exact geodesic
computations, which is a parallelized version of the CH algorithm (Chen and

Chapter 6. Conclusion and Future Work 125

Han, 1990). Their experiments show that PCH runs a magnitude faster than
the ICH algorithm (Xin and Wang, 2009). However, since their method is
based on the ICH algorithm whose redundancy reduction rules are not effec-
tive, large amounts of redundant windows are propagated. Compared to the
ICH algorithm, the proposed VTP algorithm uses EWG to group windows
into window lists on edges and several effective windows pruning rules are
proposed to remove windows redundancy. Thus, it is expected that paralleliz-
ing the VTP algorithm can achieve better performance than PCH. In addition,
VTP processes the windows in window lists in batches, which can be poten-
tially implemented as independent and similar sub-tasks. This may further
improve the performance of the parallelized VTP algorithm.

All-Pair Exact Geodesic Computation The VTP algorithm proposed in this
thesis focuses on solving the Single-Source Discrete Geodesic Problem (SS-
DGP). However, for applications like generating bending invariant signatures
(Elad and Kimmel, 2003) and near-isometric surface parametrization (Bala-
subramanian et al., 2010), the All-Pair Discrete Geodesic Problem (AP-DGP)
is involved and needs to be solved. Although the AP-DGP problem can be
simply solved by performing the SS-DGP algorithm on all vertices in turn,
it may cause redundancies and worsen the performance. Since the EWG
technique proposed in this thesis groups windows on edges as window lists,
the windows redundancy can be reduced using the inter-window information.
Thus, it is expected that applying EWG and utilizing such inter-window infor-
mation can improve the performance of all-pair exact geodesic computations.

Shape Processing Recently, Xin et al. (2016) showed that the distances
of geodesic loops can be used to design intrinsic and discriminative shape
descriptors, which are used in shape retrieval tasks. The computation of
geodesic loops requires finding a path linking two windows on the opposite
sides of an edge. Since the proposed EWG technique is essentially based
on edges, it is expected that applying EWG helps to find valid window pairs
containing such paths efficiently. In addition, Xin et al. (2016) used the ICH
algorithm (Xin and Wang, 2009) to compute exact geodesics in their imple-
mentation. Since our VTP algorithm outperforms ICH in both running time
and memory cost, it is expected that using our VTP for exact geodesic com-
putations can further improve the performance of the applications proposed
in (Xin et al., 2016).

Chapter 6. Conclusion and Future Work 126

Geodesic Remeshing With the development of 3D scanning technology,
large quantity of models are obtained via 3D reconstruction algorithms us-
ing scanned range data. However, the reconstructed meshes are usually with
nonuniform triangle aspect ratio, which is not desired in applications that in-
volves solving partial differential equations on meshes. Thus, a mesh is often
required to be uniformly remeshed so that the triangles in the resulting mesh
are as close as possible to equilateral triangles. To solve this problem, Peyré
and Cohen (2006) proposed an algorithm based on the geodesic farthest point
sampling (Eldar et al., 1997). However, since they used the Fast Marching
Method (FMM) (Kimmel and Sethian, 1998) for approximate geodesic dis-
tance computations, large errors may be produced on the meshes with sliver
triangles. To make the remeshing robust and accurate, Liu et al. (2011) pro-
posed a similar algorithm based on exact geodesics computed by the MMP
algorithm (Surazhsky et al., 2005). Nevertheless, the MMP algorithm is slow
and consumes too much memory. Since the proposed VTP algorithm out-
performs MMP in both speed and memory cost, the work on implementing
geodesic remeshing algorithms using the proposed VTP algorithm (with pos-
sible modifications) is worth pursuing.

127

Bibliography

K. P. Agarwal, S. Har-Peled, and M. Karia. Computing approximate shortest
paths on convex polytopes. Algorithmica, 33(2):227–242, 2002. 4, 13

P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan. Approximat-
ing shortest paths on a convex polytope in three dimensions. J. ACM, 44
(4):567–584, July 1997. 13, 18

L. Aleksandrov, M. Lanthier, A. Maheshwari, and J. R. Sack. Algorithm The-

ory — SWAT’98: 6th Scandinavian Workshop on Algorithm Theory Stock-

holm, Sweden, July 8–10, 1998 Proceedings, chapter An ε — Approxima-
tion algorithm for weighted shortest paths on polyhedral surfaces, pages
11–22. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. 22

L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Approximation algorithms
for geometric shortest path problems. In Proceedings of the Thirty-second

Annual ACM Symposium on Theory of Computing, STOC ’00, pages 286–
295, New York, NY, USA, 2000. ACM. 22, 23

L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approximate
shortest paths on weighted polyhedral surfaces. J. ACM, 52(1):25–53, Jan.
2005. 23

L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and
J.-R. Sack. Algorithms for approximate shortest path queries on weighted
polyhedral surfaces. Discrete & Computational Geometry, 44(4):762–801,
2010. 5, 23

F. Aurenhammer. Voronoi diagrams—a survey of a fundamental ge-
ometric data structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.
28

M. Balasubramanian, J. Polimeni, and E. Schwartz. Exact geodesics and
shortest paths on polyhedral surfaces. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 31(6):1006–1016, June 2009. 17

BIBLIOGRAPHY 128

M. Balasubramanian, J. R. Polimeni, and E. L. Schwartz. Near-isometric
flattening of brain surfaces. NeuroImage, 51(2):694–703, 2010. 125

L. Bertelli, B. Sumengen, and B. Manjunath. Redundancy in all pairs fast
marching method. In Image Processing, 2006 IEEE International Confer-

ence on, pages 3033–3036, Oct 2006. 25

J. Canny and J. Reif. New lower bound techniques for robot motion plan-
ning problems. In Foundations of Computer Science, 1987., 28th Annual

Symposium on, pages 49–60, Oct 1987. 1, 3

B. Chazelle. Triangulating a simple polygon in linear time. Discrete & Com-

putational Geometry, 6(3):485–524, 1991. 33

J. Chen and Y. Han. Shortest paths on a polyhedron. In Proceedings of

the Sixth Annual Symposium on Computational Geometry, SCG ’90, pages
360–369, New York, NY, USA, 1990. ACM. 4, 16, 19, 57, 65, 83, 124

K. Clarkson. Approximation algorithms for shortest path motion planning.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of

Computing, STOC ’87, pages 56–65, New York, NY, USA, 1987. ACM.
21

K. Crane, C. Weischedel, and M. Wardetzky. Geodesics in heat: A new ap-
proach to computing distance based on heat flow. ACM Trans. Graph., 32
(5):152:1–152:11, Oct. 2013. 3, 6, 18, 27

E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269–271, 1959. 1, 11, 14, 18, 20, 21, 22, 25

R. Dudley. Metric entropy of some classes of sets with differentiable bound-
aries. Journal of Approximation Theory, 10(3):227 – 236, 1974. 13

A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE

Trans. Pattern Anal. Mach. Intell., 25(10):1285–1295, Oct. 2003. 125

Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strat-
egy for progressive image sampling. IEEE Transactions on Image Process-

ing, 6(9):1305–1315, Sep 1997. 126

S. Fortune. A sweepline algorithm for voronoi diagrams. In Proceedings

of the Second Annual Symposium on Computational Geometry, SCG ’86,
pages 313–322, New York, NY, USA, 1986. ACM. 30

BIBLIOGRAPHY 129

P. J. Green and R. Sibson. Computing dirichlet tessellations in the plane. The

Computer Journal, 21(2):168, 1978. 28, 29

S. Har-Peled. Approximate shortest paths and geodesic diameter on a convex
polytope in three dimensions. Discrete & Computational Geometry, 21(2):
217–231, 1999a. 13, 19

S. Har-Peled. Constructing approximate shortest path maps in three dimen-
sions. SIAM Journal on Computing, 28(4):1182–1197, 1999b. 19

S. Har-Peled, M. Sharir, and K. R. Varadarajan. Approximating shortest paths
on a convex polytope in three dimensions. In Proceedings of the Twelfth

Annual Symposium on Computational Geometry, SCG ’96, pages 329–338,
New York, NY, USA, 1996. ACM. 13

J. Hershberger and S. Suri. Practical methods for approximating shortest paths
on a convex polytope in {R3}. Computational Geometry, 10(1):31 – 46,
1998. 12, 13

J. Hershberger and S. Suri. An optimal algorithm for euclidean shortest paths
in the plane. SIAM Journal on Computing, 28(6):2215–2256, 1999. 14

T. Kanai and H. Suzuki. Approximate shortest path on a polyhedral surface
and its applications. Computer-Aided Design, 33(11):801 – 811, 2001. 4,
18

B. Kaneva and J. O’Rourke. An implementation of chen & han’s shortest
paths algorithm. In Proceedings of the 12th Canadian Conference on Com-

putational Geometry, Fredericton, New Brunswick, Canada, August 16-19,

2000, 2000. 16

S. Kapoor. Efficient computation of geodesic shortest paths. In Proceedings

of the Thirty-first Annual ACM Symposium on Theory of Computing, STOC
’99, pages 770–779, New York, NY, USA, 1999. ACM. 4, 19

S. Kiazyk, S. Loriot, and É. C. de Verdière. Triangulated surface mesh shortest
paths. In CGAL User and Reference Manual. CGAL Editorial Board, 4.9
edition, 2016. 5

T.-Y. Kim, N. Chentanez, and M. Müller-Fischer. Long range attachments
- a method to simulate inextensible clothing in computer games. In Pro-

ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, SCA ’12, pages 305–310, Aire-la-Ville, Switzerland, Switzer-
land, 2012. Eurographics Association. 5

BIBLIOGRAPHY 130

R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. Pro-

ceedings of the National Academy of Sciences, 95(15):8431–8435, 1998. 3,
6, 15, 18, 25, 27, 32, 126

R. Kimmel and J. A. Sethian. Fast voronoi diagrams and offsets on trian-
gulated surfaces. In Proc. of AFA Conf. on Curves and Surfaces, pages
193–202. University Press, 1999. 32

M. Kline. Mathematical thought from ancient to modern times, volume 3.
Oxford University Press, 1990. 2

Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, and R. R. Martin. Feature sensitive mesh
segmentation. In Proceedings of the 2006 ACM Symposium on Solid and

Physical Modeling, SPM ’06, pages 17–25, New York, NY, USA, 2006.
ACM. 5

M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating weighted short-
est paths on polyhedral surfaces. In Proceedings of the Thirteenth Annual

Symposium on Computational Geometry, SCG ’97, pages 274–283, New
York, NY, USA, 1997. ACM. 21, 22

M. Lanthier, A. Maheshwari, and J. R. Sack. Approximating shortest paths
on weighted polyhedral surfaces. Algorithmica, 30(4):527–562, 2001. 21,
22

M. Lanthier, D. Nussbaum, and J.-R. Sack. Parallel implementation of geo-
metric shortest path algorithms. Parallel Computing, 29(10):1445 – 1479,
2003. High Performance Computing with geographical data. 22

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36(2):177–189, 1979. 24

S. Liu, X. Jin, C. C. L. Wang, and J. X. Chen. Water wave animation on mesh
surfaces. Computing in Science and Engg., 8(5):81–87, Sept. 2006. 5

Y. Liu. Semi-continuity of skeletons in two-manifold and discrete voronoi
approximation. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 37(9):1938–1944, Sept 2015. 5

Y. Liu, Z. Chen, and K. Tang. Construction of iso-contours, bisectors, and
voronoi diagrams on triangulated surfaces. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 33(8):1502–1517, Aug 2011. vi, x, 5,
7, 32, 34, 47, 48, 93, 94, 102, 107, 109, 111, 113, 118, 121, 122, 126, 164

BIBLIOGRAPHY 131

Y.-J. Liu. Exact geodesic metric in 2-manifold triangle meshes using edge-
based data structures. Computer-Aided Design, 45(3):695 – 704, 2013. 15,
58

Y.-J. Liu, Q.-Y. Zhou, and S.-M. Hu. Handling degenerate cases in exact
geodesic computation on triangle meshes. The Visual Computer, 23(9):
661–668, 2007. 15

T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Commun. ACM, 22(10):560–570, Oct.
1979. 1

D. Martínez, L. Velho, and P. C. Carvalho. Computing geodesics on triangular
meshes. Computers & Graphics, 29(5):667 – 675, 2005. 26

C. S. Mata and J. S. B. Mitchell. A new algorithm for computing shortest
paths in weighted planar subdivisions (extended abstract). In Proceedings

of the Thirteenth Annual Symposium on Computational Geometry, SCG
’97, pages 264–273, New York, NY, USA, 1997. ACM. 20, 21

J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem:
Finding shortest paths through a weighted planar subdivision. J. ACM, 38
(1):18–73, Jan. 1991. 5, 20

J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete
geodesic problem. SIAM Journal on Computing, 16(4):647–668, 1987.
2, 4, 10, 14, 15, 16, 19, 20, 26, 31, 32, 33, 34, 37, 38, 39, 43, 44, 45, 52,
55, 65, 74, 97, 107

D. M. Mount. On finding shortest paths on convex polyhedra. Technical
report, DTIC Document, 1985a. 1, 4, 11, 12

D. M. Mount. Voronoi diagrams on the surface of a polyhedron. Technical
report, DTIC Document, 1985b. 31, 32

D. M. Mount. Storing the subdivision of a polyhedral surface. Discrete &

Computational Geometry, 2(2):153–174, 1987. 12

T. Ohya, M. Iri, and K. Murota. Improvements of the incremental method for
the voronoi diagram with computational comparison of various algorithms.
J. OPER. RES. SOC. JAPAN., 27(4):306–336, 1984. 29

J. O’Rourke. Computational geometry column 35. SIGACT News, 30(2):
31–32, June 1999. 4, 19

BIBLIOGRAPHY 132

J. O’Rourke, S. Suri, and H. Booth. STACS 85: 2nd Annual Symposium on

Theoretical Aspects of Computer Science Saarbrücken, January 3–5, 1985,
chapter Shortest paths on polyhedral surfaces, pages 243–254. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1985. 1, 4, 17

J. Peethambaran and R. Muthuganapathy. Reconstruction of water-tight sur-
faces through delaunay sculpting. Computer-Aided Design, 58:62 – 72,
2015. Solid and Physical Modeling 2014. 93

G. Peyré and L. D. Cohen. Geodesic remeshing using front propagation.
International Journal of Computer Vision, 69(1):145–156, 2006. 5, 93,
126

K. Polthier and M. Schmies. Mathematical Visualization: Algorithms, Appli-

cations and Numerics, chapter Straightest Geodesics on Polyhedral Sur-
faces, pages 135–150. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998. 3, 26

Y. Qin, X. Han, H. Yu, Y. Yu, and J. Zhang. Fast and exact discrete
geodesic computation based on triangle-oriented wavefront propagation.
ACM Trans. Graph., 35(4):125:1–125:13, July 2016. 103

Y. Schreiber. An optimal-time algorithm for shortest paths on realistic poly-
hedra. Discrete & Computational Geometry, 43(1):21–53, 2009. 14

Y. Schreiber and M. Sharir. An optimal-time algorithm for shortest paths on a
convex polytope in three dimensions. Discrete & Computational Geometry,
39(1):500–579, 2007. 14

J. A. Sethian. A fast marching level set method for monotonically advanc-
ing fronts. Proceedings of the National Academy of Sciences, 93(4):1591–
1595, 1996. 24, 25

M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the

16th Annual Symposium on Foundations of Computer Science, SFCS ’75,
pages 151–162, Washington, DC, USA, 1975. IEEE Computer Society. 29,
31

M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM Jour-

nal on Computing, 15(1):193–215, 1986. 1, 3, 4, 10, 11, 15, 16, 17

C. Sommer. Shortest-path queries in static networks. ACM Comput. Surv., 46
(4):45:1–45:31, Mar. 2014. 1

BIBLIOGRAPHY 133

Z. Sun and J. H. Reif. On finding approximate optimal paths in weighted
regions. Journal of Algorithms, 58(1):1 – 32, 2006. 5, 23

V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H. Hoppe. Fast
exact and approximate geodesics on meshes. ACM Trans. Graph., 24(3):
553–560, July 2005. 4, 5, 6, 15, 16, 17, 18, 19, 40, 43, 45, 46, 47, 48, 65,
72, 73, 74, 83, 84, 93, 103, 105, 126, 148, 159

K. R. Varadarajan and P. K. Agarwal. Approximating shortest paths on a
nonconvex polyhedron. SIAM Journal on Computing, 30(4):1321–1340,
2000. 18

S.-Q. Xin and G.-J. Wang. Efficiently determining a locally exact shortest
path on polyhedral surfaces. Computer-Aided Design, 39(12):1081 – 1090,
2007. 26

S.-Q. Xin and G.-J. Wang. Improving chen and han’s algorithm on the discrete
geodesic problem. ACM Trans. Graph., 28(4):104:1–104:8, Sept. 2009. 4,
5, 6, 16, 18, 43, 45, 46, 47, 57, 58, 65, 68, 73, 74, 81, 83, 125, 148

S.-Q. Xin, D. T. P. Quynh, X. Ying, and Y. He. A global algorithm to com-
pute defect-tolerant geodesic distance. In SIGGRAPH Asia 2012 Technical

Briefs, SA ’12, pages 23:1–23:4, New York, NY, USA, 2012. ACM. 26, 27

S.-Q. Xin, W. Wang, S. Chen, J. Zhao, and Z. Shu. Intrinsic girth function for
shape processing. ACM Trans. Graph., 35(3):25:1–25:14, Apr. 2016. 125

C. Xu, Y.-J. Liu, Q. Sun, J. Li, and Y. He. Polyline-sourced geodesic voronoi
diagrams on triangle meshes. Computer Graphics Forum, 33(7):161–170,
2014. vi, 5, 32, 118, 119

C. Xu, T. Wang, Y.-J. Liu, L. Liu, and Y. He. Fast wavefront propagation
(fwp) for computing exact geodesic distances on meshes. Visualization and

Computer Graphics, IEEE Transactions on, 21(7):822–834, July 2015. 4,
7, 16, 17, 43, 45, 46, 47, 74, 83, 87, 93, 113, 114, 148, 159, 164

L. Yatziv, A. Bartesaghi, and G. Sapiro. O(n) implementation of the fast
marching algorithm. Journal of Computational Physics, 212(2):393 – 399,
2006. 25

X. Ying, X. Wang, and Y. He. Saddle vertex graph (svg): A novel solution to
the discrete geodesic problem. ACM Trans. Graph., 32(6):170:1–170:12,
Nov. 2013. 4, 17

BIBLIOGRAPHY 134

X. Ying, S.-Q. Xin, and Y. He. Parallel chen-han (pch) algorithm for discrete
geodesics. ACM Trans. Graph., 33(1):9:1–9:11, Feb. 2014. 4, 17, 124

Z. Zhong, X. Guo, W. Wang, B. Lévy, F. Sun, Y. Liu, and W. Mao. Particle-
based anisotropic surface meshing. ACM Trans. Graph., 32(4):99:1–99:14,
July 2013. 87, 114

N. Zink and A. Hardy. Cloth simulation and collision detection using geom-
etry images. In Proceedings of the 5th International Conference on Com-

puter Graphics, Virtual Reality, Visualisation and Interaction in Africa,
AFRIGRAPH ’07, pages 187–195, New York, NY, USA, 2007. ACM. 5

135

Appendix A

Model Collection

All the 55 models used in the thesis for performance testing are listed as fol-
lows, which are from the AIM@SHAPE shape repository (A), Large Geo-
metric Models Archive at Georgia Institute of Technology (B), Suggestive
Contour Gallery provided by Princeton University (C) and Stanford scanning
repository (D).

Fast and Exact Discrete Geodesic Computation Based on

Triangle-Oriented Wavefront Propagation

(Supplemental Materials)

Yipeng Qin1* Xiaoguang Han2* Hongchuan Yu1 Yizhou Yu2 Jianjun Zhang1

1 Bournemouth University 2 The University of Hong Kong (* Joint first authors)

Part I. Model Collection

All the 55 models used in the paper for performance testing are listed as follows, which are from the

AIM@SHAPE shape repository (A), Large Geometric Models Archive at Georgia Institute of Technology

(B), Suggestive Contour Gallery provided by Princeton University (C) and Stanford scanning repository (D).

Twirl © A Sword © A Femur © A Cow © C Venus © A

Foot © A Camel © A Homer Simpson © A Dilo © A Sketched Vase © A

Knot © A Buste © A Casting © A Horse © C Shark © A

Fast and Exact Discrete Geodesic Computation Based on

Triangle-Oriented Wavefront Propagation

(Supplemental Materials)

Yipeng Qin1* Xiaoguang Han2* Hongchuan Yu1 Yizhou Yu2 Jianjun Zhang1

1 Bournemouth University 2 The University of Hong Kong (* Joint first authors)

Part I. Model Collection

All the 55 models used in the paper for performance testing are listed as follows, which are from the

AIM@SHAPE shape repository (A), Large Geometric Models Archive at Georgia Institute of Technology

(B), Suggestive Contour Gallery provided by Princeton University (C) and Stanford scanning repository (D).

Twirl © A Sword © A Femur © A Cow © C Venus © A

Foot © A Camel © A Homer Simpson © A Dilo © A Sketched Vase © A

Knot © A Buste © A Casting © A Horse © C Shark © A

Fast and Exact Discrete Geodesic Computation Based on

Triangle-Oriented Wavefront Propagation

(Supplemental Materials)

Yipeng Qin1* Xiaoguang Han2* Hongchuan Yu1 Yizhou Yu2 Jianjun Zhang1

1 Bournemouth University 2 The University of Hong Kong (* Joint first authors)

Part I. Model Collection

All the 55 models used in the paper for performance testing are listed as follows, which are from the

AIM@SHAPE shape repository (A), Large Geometric Models Archive at Georgia Institute of Technology

(B), Suggestive Contour Gallery provided by Princeton University (C) and Stanford scanning repository (D).

Twirl © A Sword © A Femur © A Cow © C Venus © A

Foot © A Camel © A Homer Simpson © A Dilo © A Sketched Vase © A

Knot © A Buste © A Casting © A Horse © C Shark © A

Appendix A. Model Collection 136

Pegasus © A Bunny © C Bimba © A Elephant © A Hand © A

Filigree © A Woodfish © A Maxplanck © C Duck © A Tooth © A

Moai © A Dancing Children © A Igea © C Cup © A Armadillo © C

Vase © A Red Circular Box © A Julius Caesar © A Pulley © A Eros © A

Frog © A Magalie’s Hand © A Wooden Chair © A Angel © B Rocker Arm © A

Pegasus © A Bunny © C Bimba © A Elephant © A Hand © A

Filigree © A Woodfish © A Maxplanck © C Duck © A Tooth © A

Moai © A Dancing Children © A Igea © C Cup © A Armadillo © C

Vase © A Red Circular Box © A Julius Caesar © A Pulley © A Eros © A

Frog © A Magalie’s Hand © A Wooden Chair © A Angel © B Rocker Arm © A

Pegasus © A Bunny © C Bimba © A Elephant © A Hand © A

Filigree © A Woodfish © A Maxplanck © C Duck © A Tooth © A

Moai © A Dancing Children © A Igea © C Cup © A Armadillo © C

Vase © A Red Circular Box © A Julius Caesar © A Pulley © A Eros © A

Frog © A Magalie’s Hand © A Wooden Chair © A Angel © B Rocker Arm © A

Pegasus © A Bunny © C Bimba © A Elephant © A Hand © A

Filigree © A Woodfish © A Maxplanck © C Duck © A Tooth © A

Moai © A Dancing Children © A Igea © C Cup © A Armadillo © C

Vase © A Red Circular Box © A Julius Caesar © A Pulley © A Eros © A

Frog © A Magalie’s Hand © A Wooden Chair © A Angel © B Rocker Arm © A

Pegasus © A Bunny © C Bimba © A Elephant © A Hand © A

Filigree © A Woodfish © A Maxplanck © C Duck © A Tooth © A

Moai © A Dancing Children © A Igea © C Cup © A Armadillo © C

Vase © A Red Circular Box © A Julius Caesar © A Pulley © A Eros © A

Frog © A Magalie’s Hand © A Wooden Chair © A Angel © B Rocker Arm © A

Fertility © A Heptoroid © C Pierrot © A Bozbezbozzel © A Chinese Dragon © A

Ramesses © A Asian Dragon © D Pensatore © A Seahorse © A IsidoreHorse © A

Happy Buddha © B Cervino Terrain © A Neptune © A Vase Lion © A Lucy © C

Part II. Performance Comparison

We test state-of-the-art algorithms (ICH[1], MMP[2][3], FWP-CH[4], FWP-MMP[4]) and our algorithms

(VTP-MMP, VTP-CH, VTP-Exhaustive, VTP-Trimming, FTP, OPVTP, VTP) on all 55 models shown above.

To evaluate the overall performance, we measure the running time, total number of window propagations

and peak memory usage. All the results are shown in Table 1 and Table 2.

Appendix A. Model Collection 137

Fertility © A Heptoroid © C Pierrot © A Bozbezbozzel © A Chinese Dragon © A

Ramesses © A Asian Dragon © D Pensatore © A Seahorse © A IsidoreHorse © A

Happy Buddha © B Cervino Terrain © A Neptune © A Vase Lion © A Lucy © C

Part II. Performance Comparison

We test state-of-the-art algorithms (ICH[1], MMP[2][3], FWP-CH[4], FWP-MMP[4]) and our algorithms

(VTP-MMP, VTP-CH, VTP-Exhaustive, VTP-Trimming, FTP, OPVTP, VTP) on all 55 models shown above.

To evaluate the overall performance, we measure the running time, total number of window propagations

and peak memory usage. All the results are shown in Table 1 and Table 2.

Fertility © A Heptoroid © C Pierrot © A Bozbezbozzel © A Chinese Dragon © A

Ramesses © A Asian Dragon © D Pensatore © A Seahorse © A IsidoreHorse © A

Happy Buddha © B Cervino Terrain © A Neptune © A Vase Lion © A Lucy © C

Part II. Performance Comparison

We test state-of-the-art algorithms (ICH[1], MMP[2][3], FWP-CH[4], FWP-MMP[4]) and our algorithms

(VTP-MMP, VTP-CH, VTP-Exhaustive, VTP-Trimming, FTP, OPVTP, VTP) on all 55 models shown above.

To evaluate the overall performance, we measure the running time, total number of window propagations

and peak memory usage. All the results are shown in Table 1 and Table 2.

138

Appendix B

VTP Ablation Study

This part shows more performance comparisons of the proposed VTP algo-
rithm with and without Rule 1 and comparisons with and without Rules 2&3.
In addition to the two models (Armadillo and Asian Dragon) used in the the-
sis, this part shows the results on 8 other models with various resolutions.
Part V. Ablation Study

In this part, we show more performance comparisons of our VTP algorithm with and without Rule 1 and

comparisons with and without Rules 2&3. The results on the same 8 models used in Part IV are shown

below.

Horse (F: 96K)

Bunny (F: 144K)

Igea (F: 268K)

Part V. Ablation Study

In this part, we show more performance comparisons of our VTP algorithm with and without Rule 1 and

comparisons with and without Rules 2&3. The results on the same 8 models used in Part IV are shown

below.

Horse (F: 96K)

Bunny (F: 144K)

Igea (F: 268K)

Appendix B. VTP Ablation Study 139

Part V. Ablation Study

In this part, we show more performance comparisons of our VTP algorithm with and without Rule 1 and

comparisons with and without Rules 2&3. The results on the same 8 models used in Part IV are shown

below.

Horse (F: 96K)

Bunny (F: 144K)

Igea (F: 268K)

Pulley (F: 392K)

Rocker Arm (F: 482K)

IsidoreHorse (F: 2M)

Pulley (F: 392K)

Rocker Arm (F: 482K)

IsidoreHorse (F: 2M)

Pulley (F: 392K)

Rocker Arm (F: 482K)

IsidoreHorse (F: 2M)

Appendix B. VTP Ablation Study 140

Happy Buddha (F: 2.6M)

Neptune (F: 4M)

References:

[1] Xin, S. Q., & Wang, G. J. (2009). Improving Chen and Han's algorithm on the discrete geodesic problem. ACM Transactions

on Graphics (TOG), 28(4), 104.

[2] Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem. SIAM Journal on

Computing, 16(4), 647-668.

[3] Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., & Hoppe, H. (2005, July). Fast exact and approximate geodesics on

meshes. In ACM transactions on graphics (TOG) (Vol. 24, No. 3, pp. 553-560). ACM.

[4] Xu, C. X., Wang, T. Y., Liu, Y. J., Liu, L. G., & He, Y. (2015). Fast Wavefront Propagation (FWP) for Computing Exact

Geodesic Distances on Meshes. IEEE transactions on visualization and computer graphics, 21(7), 822-834.

Happy Buddha (F: 2.6M)

Neptune (F: 4M)

References:

[1] Xin, S. Q., & Wang, G. J. (2009). Improving Chen and Han's algorithm on the discrete geodesic problem. ACM Transactions

on Graphics (TOG), 28(4), 104.

[2] Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem. SIAM Journal on

Computing, 16(4), 647-668.

[3] Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., & Hoppe, H. (2005, July). Fast exact and approximate geodesics on

meshes. In ACM transactions on graphics (TOG) (Vol. 24, No. 3, pp. 553-560). ACM.

[4] Xu, C. X., Wang, T. Y., Liu, Y. J., Liu, L. G., & He, Y. (2015). Fast Wavefront Propagation (FWP) for Computing Exact

Geodesic Distances on Meshes. IEEE transactions on visualization and computer graphics, 21(7), 822-834.

141

Appendix C

VTP Variants Comparison

This part compares the performance among the variants of the proposed VTP
algorithm, including VTP-Exhaustive, VTP-Trimming, VTP-CH, VTP-MMP,
FTP and OPVTP, on the 55 models shown in Appendix A. F: means the num-
ber of faces of the model.

Model Performance

Algorithms

VTP-

Exhaustive

VTP-

Trimming
VTP-CH VTP-MMP FTP OPVTP VTP

Twirl

(F: 10K)

Time(s) 0.112 0.041 0.091 0.052 0.060 0.043 0.04

#window propagations 197,217 192,691 361,272 260,380 191,053 192,235 201,107

Peak memory(MB) 0.251 0.252 0.30 13.07 0.243 0.25 0.254

Sword

(F: 29K)

Time(s) 3.639 0.24 0.55 0.336 0.315 0.261 0.209

#window propagations 1,468,797 1,451,652 3,009,123 1,559,334 1,512,011 1,459,627 1.499,968

Peak memory(MB) 0.576 0.573 0.66 82.18 0.61 0.57 0.581

Femur

(F: 30K)

Time(s) 0.75 0.17 0.36 0.222 0.175 0.159 0.144

#window propagations 832,253 808,575 1,825,281 1,084,096 812,559 830,433 848,057

Peak memory(MB) 0.305 0.296 0.38 58.64 0.30 0.31 0.309

Cow

(F: 36K)

Time(s) 0.76 0.23 0.42 0.263 0.211 0.181 0.176

#window propagations 977,109 944,698 2,084,408 1,255,395 952,731 970,775 993,393

Peak memory(MB) 0.594 0.584 0.69 68.46 0.59 0.59 0.598

Venus

(F: 43K)

Time(s) 1.908 0.31 0.757 0.479 0.302 0.292 0.27

#window propagations 1,732,229 1,676,392 3,906,934 2,302,895 1,705,248 1,744,113 1,760,343

Peak memory(MB) 0.66 0.658 0.87 125.68 0.659 0.661 0.672

Foot

(F: 44K)

Time(s) 2.2 0.42 0.792 0.534 0.361 0.374 0.303

#window propagations 1,935,202 1,885,004 4,095,235 2,550,736 1,905,123 1,942,112 1,963,132

Peak memory(MB) 1.621 1.594 1.61 140.87 1.45 1.47 1.627

Camel

(F: 48K)

Time(s) 0.799 0.26 0.501 0.361 0.261 0.222 0.21

#window propagations 1,145,645 1,101,856 2,588,770 1,433,425 1,112,089 1,133,446 1,166,711

Peak memory(MB) 0.437 0.419 0.57 78.57 0.44 0.45 0.441

HomerSimpson

(F: 48K)

Time(s) 1.316 0.341 0.66 0.381 0.304 0.279 0.248

#window propagations 1,455,144 1,421,497 3,101,274 1,850,498 1,424,124 1,458,000 1,482,477

Peak memory(MB) 0.798 0.779 0.97 103.48 0.79 0.791 0.808

Dilo

(F: 54K)

Time(s) 0.794 0.272 0.554 0.323 0.305 0.251 0.238

#window propagations 1,178,516 1,138,802 2,510,230 1,566,420 1,147,055 1,166,106 1,198,835

Peak memory(MB) 0.578 0.570 0.79 80.08 0.575 0.581 0.587

Appendix C. VTP Variants Comparison 142

Continue from previous table

Model Performance

Algorithms

VTP-

Exhaustive

VTP-

Trimming
VTP-CH VTP-MMP FTP OPVTP VTP

SketchedVase

(F: 54K)

Time(s) 2.695 0.354 0.876 0.629 0.451 0.349 0.314

#window propagations 2,082,535 2,042,643 4,548,918 2,926,886 2,082,301 2,080,132 2,119,200

Peak memory(MB) 0.642 0.645 0.77 147.74 0.65 0.64 0.651

Knot

(F: 56K)

Time(s) 1.906 0.376 0.77 0.499 0.399 0.350 0.302

#window propagations 1,998,630 1,926,644 4,191,262 2,557,102 2,000,353 2,003,573 2,015,140

Peak memory(MB) 0.359 0.347 0.46 144.12 0.358 0.359 0.36

Buste

(F: 60K)

Time(s) 1.376 0.371 0.76 0.527 0.362 0.363 0.299

#window propagations 1,684,666 1,655,014 3,967,893 2,110,539 1,659,081 1,695,365 1,739,991

Peak memory(MB) 0.646 0.631 0.82 117.89 0.640 0.651 0.658

Casting

(F: 90K)

Time(s) 2.965 0.761 1.311 0.743 0.62 0.6 0.516

#window propagations 2,948,477 2,861,050 6,363,310 3,474,086 2,896,291 2,931,236 2,995,809

Peak memory(MB) 1.089 1.072 1.36 188.33 1.088 1.09 1.105

Horse

(F: 96K)

Time(s) 3.184 0.67 1.567 0.863 0.651 0.641 0.517

#window propagations 3,262,520 3,157,608 8,106,166 4,410,197 3,240,048 3,283,168 3,317,318

Peak memory(MB) 1.368 1.344 1.80 231.53 1.350 1.369 1.384

Shark

(F: 107K)

Time(s) 6.821 0.855 2.081 1.312 0.908 0.919 0.758

#window propagations 5,032,274 4,886,346 10,962,701 6,213,042 4,983,023 5,058,816 5,112,354

Peak memory(MB) 1.011 1.0 1.20 352.92 1.011 1.012 1.015

Pegasus

(F: 127K)

Time(s) 3.06 0.767 1.814 1.015 0.861 0.873 0.693

#window propagations 3,559,660 3,470,668 7,761,300 4,767,038 3,491,952 3,558,053 3,631,004

Peak memory(MB) 1.671 1.652 2.06 249.17 1.65 1.68 1.696

Bunny

(F: 144K)

Time(s) 4.557 0.872 2.672 1.304 1.044 0.908 0.78

#window propagations 4,801,056 4,686,252 12,491,178 6,454,800 4,755,872 4,875,712 4,943,670

Peak memory(MB) 1.22 1.146 1.71 340.45 1.20 1.22 1.24

Bimba

(F: 149K)

Time(s) 7.005 1.094 3.04 1.634 1.428 1.27 0.982

#window propagations 5,655,097 5,464,752 12,933,807 7,655,990 5,595,011 5,700,385 5,749,138

Peak memory(MB) 2.239 2.171 2.81 407.11 2.20 2.249 2.258

Elephant

(F: 160K)

Time(s) 7.686 1.282 3.452 1.927 1.579 1.558 1.179

#window propagations 6,679,878 6,521,389 14,795,030 9,187,716 6,607,611 6,728,077 6,779,937

Peak memory(MB) 3.116 3.066 3.92 487.31 3.109 3.149 3.157

Hand

(F: 176K)

Time(s) 14.187 2.196 4.451 3.129 1.955 2.003 1.638

#window propagations 9,975,156 9,654,198 22,295,976 13,895,643 9,924,021 10,134,178 10,071,080

Peak memory(MB) 2.680 2.623 3.05 733.33 2.652 2.721 2.689

Filigree

(F: 186K)

Time(s) 3.031 0.88 2.178 1.12 1.255 1.0 0.821

#window propagations 3,977,864 3,877,297 8,294,639 4,852,485 3,870,035 3,928,044 4,066,106

Peak memory(MB) 1.467 1.443 1.81 257.83 1.439 1.451 1.49

Woodfish

(F: 191K)

Time(s) 12.921 1.832 5.094 2.756 2.01 2.054 1.542

#window propagations 9,535,507 9,326,365 22,434,888 12,619,027 9,453,888 9,641,025 9,722,818

Peak memory(MB) 2.873 2.796 3.60 693.69 2.80 2.889 2.899

Maxplanck

(F: 210K)

Time(s) 20.913 2.426 7.169 3.541 2.569 2.663 1.891

#window propagations 12,250,767 12,035,550 30,642,469 16,150,075 12,194,999 12,578,888 12,597,188

Peak memory(MB) 3.334 3.285 4.31 887.99 3.30 3.399 3.405

Appendix C. VTP Variants Comparison 143

 Continue from previous table

Model Performance

Algorithms

VTP-

Exhaustive

VTP-

Trimming
VTP-CH VTP-MMP FTP OPVTP VTP

Duck

(F: 219K)

Time(s) 30.999 3.74 9.209 4.538 2.919 3.54 2.53

#window propagations 16,323,333 15,828,827 42,977,191 21,059,883 16,297,522 16,887,512 16,821,923

Peak memory(MB) 3.655 3.490 5.25 1160.22 3.650 3.79 3.743

Tooth

(F: 220K)

Time(s) 24.13 2.74 7.543 3.972 3.05 3.11 2.339

#window propagations 14,130,211 13,841,486 33,695,533 18,534,740 14,035,011 14,397,995 14,458,399

Peak memory(MB) 4.741 4.658 6.13 1037.37 4.71 4.80 4.833

Moai

(F: 238K)

Time(s) 25.846 2.965 8.818 4.286 3.64 3.276 2.483

#window propagations 14,748,182 14,421,835 36,615,050 19,858,675 14,676,991 15,097,323 15,085,009

Peak memory(MB) 4.548 4.467 6.10 1076.09 4.49 4.74 4.631

DancingChildren

(F: 265K)

Time(s) 8.352 1.837 4.736 2.309 2.285 2.143 1.707

#window propagations 8,344,456 8,143,451 18,226,736 10,416,158 8,195,406 8,360,313 8,501,699

Peak memory(MB) 3.524 3.49 4.25 566.14 3.501 3.533 3.569

Igea

(F: 268K)

Time(s) 16.214 2.124 7.087 3.369 2.377 2.41 1.995

#window propagations 12,310,461 12,114,442 32,998,672 17,106,678 12,533,960 12,664,898 12,673,530

Peak memory(MB) 2.168 2.151 3.11 890.92 2.212 2.210 2.218

Cup

(F: 316K)

Time(s) 91.437 6.241 16.825 8.34 6.788 6.753 5.465

#window propagations 32,361,352 29,710,676 69,021,313 35,266,895 32,080,266 32,702,102 32,580,614

Peak memory(MB) 9.782 8.793 11.06 1880.35 9.770 9.98 9.835

Armadillo

(F: 345K)

Time(s) 5.196 1.829 4.692 2.206 2.141 1.975 1.628

#window propagations 19,193,615 7,596,092 19,584,534 10,258,285 7,745,552 7,884,201 8,084,456

Peak memory(MB) 2.03 1.396 2.01 538.32 1.399 1.401 1.458

Vase

(F: 354K)

Time(s) 47.964 4.324 13.569 7.304 4.650 5.112 4.056

#window propagations 25,461,130 24,848,861 60,607,873 33,891,566 25,400,117 25,978,005 26,004,542

Peak memory(MB) 5.609 5.438 7.00 1860.06 5.80 5.82 5.743

Red Circular

Box

(F: 360K)

Time(s) 7.203 1.882 4.991 2.195 2.471 2.577 1.763

#window propagations 7,583,520 7,384,425 17,247,883 9,275,636 7,426,105 7,509,066 7,781,762

Peak memory(MB) 1.518 1.521 1.95 479.66 1.525 1.53 1.554

Julius Caesar

(F: 386K)

Time(s) 10.683 2.9 9.383 3.605 3.119 3.03 2.372

#window propagations 12,417,028 12,044,577 35,093,981 17,022,542 12,322,351 12,708,557 12,744,572

Peak memory(MB) 2.116 2.073 2.52 877.05 2.149 2.152 2.153

Pulley

(F: 392K)

Time(s) 32.359 4.44 13.325 6.252 5.501 5.599 4.242

#window propagations 21,472,248 21,090,529 49,453,462 28,510,288 21,518,838 22,007,199 21,989,818

Peak memory(MB) 4.911 4.882 6.12 1537.16 5.01 5.12 5.030

Eros

(F: 394K)

Time(s) 11.146 3.199 7.91 3.347 3.59 3.265 2.623

#window propagations 11,493,579 11,249,885 28,928,294 14,327,257 11,456,266 11,665,873 11,856,262

Peak memory(MB) 2.525 2.430 3.63 752.46 2.521 2.598 2.602

Frog

(F: 394K)

Time(s) 24.242 4.179 12.728 5.719 4.559 4.388 3.175

#window propagations 19,324,968 19,356,277 57,143,731 30,435,416 20,838,259 20,221,979 20,134,270

Peak memory(MB) 3.479 3.518 5.11 1393.93 3.69 3.62 3.610

Magalie'sHand

(F: 396K)

Time(s) 8.802 2.712 8.501 3.503 3.508 2.958 2.387

#window propagations 11,095,197 10,626,126 30,829,525 15,577,298 10,948,457 11,111,123 11,324,832

Peak memory(MB) 2.861 2.775 4.31 764.68 2.875 2.881 2.895

Appendix C. VTP Variants Comparison 144

Continue from previous table

Model Performance

Algorithms

VTP-

Exhaustive

VTP-

Trimming
VTP-CH VTP-MMP FTP OPVTP VTP

WoodenChair

(F: 408K)

Time(s) 34.168 4.273 12.511 5.958 5.019 4.961 4.071

#window propagations 21,544,323 20,858,337 51,026,008 29,503,171 21,488,002 21,881,208 21,937,266

Peak memory(MB) 4.866 4.747 5.67 1541.42 4.856 4.928 4.935

Angel

(F: 474K)

Time(s) 14.23 3.175 8.354 4.443 3.812 3.705 2.877

#window propagations 15,525,223 15,126,178 36,360,538 20,982,691 15,397,863 15,718,815 15,858,241

Peak memory(MB) 2.239 2.202 2.82 1105.82 2.212 2.251 2.272

Rocker Arm

(F: 482K)

Time(s) 36.586 4.655 15.449 6.954 4.83 5.169 4.13

#window propagations 24,289,066 24,380,006 69,208,037 33,947,674 25,013,422 25,723,699 25,654,638

Peak memory(MB) 3.43 3.49 5.32 1797.18 3.68 3.71 3.70

Fertility

(F: 483K)

Time(s) 30.432 4.961 14.837 6.719 5.905 5.502 4.133

#window propagations 23,589,123 23,873,376 63,236,514 32,461,272 24,995,619 24,523,539 24,686,942

Peak memory(MB) 4.345 4.359 5.68 1588.54 4.64 4.311 4.465

Heptoroid

(F: 573K)

Time(s) 47.982 7.359 17.634 10.691 8.425 7.46 5.556

#window propagations 33,930,378 33,605,904 72,113,378 52,419,840 33,900,519 34,370,470 34,287,452

Peak memory(MB) 5.254 5.238 6.07 2520.55 5.24 5.39 5.284

Pierrot

(F: 887K)

Time(s) 74.345 10.325 36.26 15.232 13.149 11.713 9.136

#window propagations 49,306,554 49,909,353 153,799,315 74,822,570 54,026,799 51,796,977 51,644,860

Peak memory(MB) 5.326 3569.28 9.42 3569.23 5.88 5.73 5.614

Bozbezbozzel

(F: 911K)

Time(s) 45.808 5.521 22.211 11.952 9.601 8.768 7.005

#window propagations 38,123,582 36,572,880 92,447,464 56,200,036 37,691,146 38,404,143 38,660,645

Peak memory(MB) 6.171 5.942 7.89 2731.02 6.058 6.209 6.229

Chinese

dragon

(F: 1,222K)

Time(s) 133.271 17.996 47.582 21.553 19.245 18.052 16.435

#window propagations 72,048,774 69,750,625 169,903,995 99,337,629 71,568,095 72,635,813 72,865,547

Peak memory(MB) 9.842 9.611 11.82 5284.42 9.789 9.802 9.918

Asian Dragon

(F: 1,400K)

Time(s) 49.954 13.763 29.492 15.388 13.011 11.415 9.495

#window propagations 46,926,451 46,316,630 109,311,094 61,995,300 46,523,513 47,572,141 48,217,896

Peak memory(MB) 4.036 4.017 5.253 3354.04 4.10 4.20 4.373

Ramesses

(F: 1,653K)

Time(s) 36.667 9.834 22.466 9.691 13.125 10.669 8.938

#window propagations 32,930,864 32,144,860 79,642,701 38,664,117 32,478,771 33,036,958 34,128,397

Peak memory(MB) 2.853 2.879 3.92 2014.17 2.842 2.901 2.948

Pensatore

(F: 1,996K)

Time(s) 97.4 21.606 67.756 24.9 25.879 23.201 20.328

#window propagations 84,606,295 85,631,449 256,922,732 130,392,192 88,479,353 88,527,448 88,716,654

Peak memory(MB) 5.728 5.75 9.62 6051.53 5.79 5.792 5.797

Seahorse

(F: 2,014K)

Time(s) 206.269 24.674 83.202 35.234 29.061 28.843 21.869

#window propagations 126,848,230 125,823,913 324,094,284 172,033,093 126,316,839 129,482,659 130,860,212

Peak memory(MB) 5.596 5.589 7.65 9295.01 5.593 5.75 5.767

IsidoreHorse

(F: 2,209K)

Time(s) 25.143 12.622 35.209 16.547 17.449 13.428 11.28

#window propagations 41,341,363 39,453,625 134,929,706 68,234,985 40,457,511 40,760,043 42,350,025

Peak memory(MB) 3.002 2.919 5.23 2725.09 2.985 2.998 3.062

Happy

Buddha

(F: 2,583K)

Time(s) 381.02 34.973 103.901 49.307 41.205 42.453 33.373

#window propagations 164,137,340 159,542,907 410,199,299 218,302,329 165,473,466 167,592,235 166,942,683

Peak memory(MB) 9.160 9.084 12.82 11408.55 9.32 9.59 9.337

Appendix C. VTP Variants Comparison 145

Continue from previous table

Model Performance

Algorithms

VTP-

Exhaustive

VTP-

Trimming
VTP-CH VTP-MMP FTP OPVTP VTP

Cervino

Terrain

(F: 3,146K)

Time(s) 124.557 31.251 72.083 32.869 42.257 36.542 28.287

#window propagations 121,895,449 132,331,239 279,286,307 108,256,256 125,640,081 125,847,948 135,012,449

Peak memory(MB) 4.95 5.77 7.07 5627.34 5.76 5.75 5.85

Neptune

(F: 4,008K)

Time(s) 665.847 58.49 158.912 60.297 64.011 60.187 47.629

#window propagations 239,054,124 239,375,390 606,937,112 278,925,270 243,102,352 244,573,921 246,364,008

Peak memory(MB) 15.62 15.962 17.65 14221.35 16.1 16.19 16.38

VaseLion

(F: 6,370K)

Time(s) 2560.92 160.497 461.345
Out of

memory

174.235 162.705 145.455

#window propagations 687,375,867 681,210,620 1,729,700,093 686,216,897 702,119,736 704,638,382

Peak memory(MB) 38.481 38.385 52.21 38.45 39.22 39.257

Lucy

(F: 14,464K)

Time(s) 16559 615.215 1809.91
Out of

memory

617.343 608.414 549.934

#window propagations 2,703,707,866 2,733,324,263 6,859,484,793 2,668,122,127 2,734,517,299 2,808,823,718

Peak memory(MB) 66.096 66.848 78.31 67.81 68.01 69.42

146

Appendix D

Distribution of Window
Propagations

This part counts prime propagations and secondary propagations (which are
defined in the thesis) when applying the proposed VTP algorithm to all the 55
testing models in Appendix A and the results are shown as follows. F: means
the number of faces of the model.

Model
Prime

Propagation

Secondary

Propagation
Model

Prime

Propagation

Secondary

Propagation

Twirl

(F: 10K)

181,258

(90.13%)

19,849

(9.87%)

Cup

(F: 316K)

31,974,614

(98.14%)

606,000

(1.86%)

Sword

(F: 29K)

1,278,123

(85.21%)

221,845

(14.79%)

Armadillo

(F: 345K)

7,589,687

(96.88%)

494,769

(3.12%)

Femur

(F: 30K)

811,336

(95.67%)

36,721

(4.33%)

Vase

(F: 354K)

25,656,081

(98.66%)

348,461

(1.34%)

Cow

(F: 36K)

948,889

(95.52%)

44,504

(4.48%)

Red Circular Box

(F: 360K)

7,562,316

(97.18%)

219,446

(2.82%)

Venus

(F: 43K)

1,712,462

(97.28%)

47,881

(2.72%)

Julius Caesar

(F: 386K)

12,487,132

(97.98%)

257,440

(2.02%)

Foot

(F: 44K)

1,892,852

(96.42%)

70,280

(3.58%)

Pulley

(F: 392K)

21,670,966

(98.55%)

318,852

(1.45%)

Camel

(F: 48K)

1,116,892

(95.73%)

49,819

(4.27%)

Eros

(F: 394K)

11,625,065

(98.05%)

231,197

(1.95%)

HomerSimpson

(F: 48K)

1,413,690

(95.36%)

68,787

(4.64%)

Frog

(F: 394K)

19,820,175

(98.44%)

314,095

(1.56%)

Appendix D. Distribution of Window Propagations 147

Continue from previous table

Model
Prime

Propagation

Secondary

Propagation
Model

Prime

Propagation

Secondary

Propagation

Dilo

(F: 54K)

1,134,338

(94.62%)

63,278

(5.47%)

Magalie's Hand

(F: 396K)

11,123,250

(98.22%)

201,882

(1.78%)

SketchedVase

(F: 54K)

1,954,114

(92.21%)

165,086

(7.79%)

WoodenChair

(F: 408K)

21,509,489

(98.05%)

427,777

(1.95%)

Knot

(F: 56K)

1,945,416

(96.54%)

69,724

(3.46%)

Angel

(F: 474K)

15,334,919

(96.7%)

523,322

(3.3%)

Buste

(F: 60K)

1,659,429

(95.37%)

80,562

(4.63%)

Rocker Arm

(F: 482K)

25,031,230

(97.57%)

623,408

(2.43%)

Casting

(F: 90K)

2,894,850

(96.63%)

100,959

(3.37%)

Fertility

(F: 483K)

23,588,373

(95.55%)

1,098,569

(4.45%)

Horse

(F: 96K)

3,228,746

(97.33%)

88,572

(2.67%)

Heptoroid

(F: 573K)

32,713,658

(95.41%)

1,573,794

(4.59%)

Shark

(F: 107K)

4,836,798

(94.61%)

275,556

(5.39%)

Pierrot

(F: 887K)

49,770,152

(96.37%)

1,874,708

(3.63%)

Pegasus

(F: 127K)

3,512,633

(96.74%)

118,371

(3.26%)

Bozbezbozzel

(F: 911K)

37,829,441

(97.85%)

831,204

(2.15%)

Bunny

(F: 144K)

4,821,561

(97.53%)

122,109

(2.47%)

Chinese Dragon

(F: 1,222K)

72,158,751

(99.03%)

706,796

(0.97%)

Bimba

(F: 149K)

5,655,427

(98.37%)

93,711

(1.63%)

Ramesses

(F: 1,653K)

32,179,666

(94.29%)

1,948,713

(5.71%)

Elephant

(F: 160K)

6,615,185

(97.57%)

164,752

(2.43)

Asian dragon

(F: 1,400K)

46,086,665

(95.58%)

2,131,231

(4.42%)

Hand

(F: 176K)

9,750,820

(96.82%)

320,260

(3.18%)

Pensatore

(F: 1,996K)

85,513,983

(96.39%)

3,202,671

(3.61%)

Filigree

(F: 186K)

3,780,259

(92.97%)

285,847

(7.03%)

Seahorse

(F: 2,014K)

125,193,965

(95.67%)

5,666,247

(4.33%)

Woodfish

(F: 191K)

9,424,327

(96.93%)

298,491

(3.07%)

IsidoreHorse

(F: 2,209K)

41,155,754

(97.18%)

1,194,271

(2.82%)

Maxplanck

(F: 210K)

12,262,103

(97.34%)

335,085

(2.66%)

Happy Buddha

(F: 2,583K)

161,199,855

(96.56%)

5,742,828

(3.44%)

Duck

(F: 219K)

16,525,857

(98.24%)

296,066

(1.76%)

Cervino Terrain

(F: 3,146K)

117,649,848

(87.41%)

17,362,601

(12.59%)

Tooth

(F: 220K)

13,955,247

(96.52%)

503,152

(3.48%)

Neptune

(F: 4,008K)

240,451,272

(97.6%)

5,912,736

(2.4%)

Moai

(F: 238K)

14,674,697

(97.28%)

410,312

(2.72%)

Vase Lion

(F: 6,370K)

685,613,146

(97.3%)

19,025,236

(2.7%)

DancingChildren

(F: 265K)

8,179,485

(96.21%)

322,214

(3.79%)

Lucy

(F: 14,464K)

2,756,860,479

(98.15%)

51,963,239

(1.85%)

Igea

(F: 268K)

12,444,139

(98.19%)

229,391

(1.81%)

Mean 96.25% 3.75%

Standard Deviation 0.026 0.026

148

Appendix E

Performance Comparison between
VTP and Others

This part compares the performance between VTP and the state-of-the-art
exact geodesic algorithms: ICH, MMP, FWP-CH and FWP-MMP (Surazhsky
et al., 2005; Xin and Wang, 2009; Xu et al., 2015) on all the 55 models shown
in Appendix A.

Model Performance
Algorithms

ICH MMP FWP-CH FWP-MMP VTP

Twirl

(F: 10K)

Time(s) 0.116 0.134 0.085 0.062 0.04

#window propagations 346,691 260,339 355,482 262,748 201,107

Peak memory(MB) 0.28 13.07 0.29 13.07 0.254

Sword

(F: 29K)

Time(s) 0.996 1.002 0.748 0.437 0.209

#window propagations 2,973,951 1,537,986 3,019,022 1,634,507 1.499,968

Peak memory(MB) 0.65 82.18 0.66 82.02 0.581

Femur

(F: 30K)

Time(s) 0.594 0.604 0.387 0.264 0.144

#window propagations 1,799,106 1,089,745 1,803,536 1,084,237 848,057

Peak memory(MB) 0.37 58.64 0.38 58.64 0.309

Cow

(F: 36K)

Time(s) 0.756 0.814 0.453 0.328 0.176

#window propagations 2,047,472 1,257,463 2,049,564 1,250,713 993,393

Peak memory(MB) 0.69 68.46 0.69 68.46 0.598

Venus

(F: 43K)

Time(s) 1.379 1.525 0.813 0.579 0.27

#window propagations 3,868,758 2,309,841 3,871,332 2,301,511 1,760,343

Peak memory(MB) 0.86 125.68 0.86 125.68 0.672

Foot

(F: 44K)

Time(s) 1.65 1.941 1.096 0.679 0.303

#window propagations 4,056,466 2,558,311 4,057,698 2,548,552 1,963,132

Peak memory(MB) 1.60 140.86 1.59 140.87 1.627

Camel

(F: 48K)

Time(s) 0.888 0.877 0.564 0.376 0.21

#window propagations 2,547,675 1,434,054 2,551,711 1,429,049 1,166,711

Peak memory(MB) 0.57 78.57 0.57 78.57 0.441

HomerSimpson

(F: 48K)

Time(s) 1.166 1.304 0.815 0.49 0.248

#window propagations 3,052,442 1,853,265 3,054,551 1,845,828 1,482,477

Peak memory(MB) 0.97 103.48 0.97 103.48 0.808

Appendix E. Performance Comparison between VTP and Others 149

Continue from previous table

Model Performance
Algorithms

ICH MMP FWP-CH FWP-MMP VTP

Dilo

(F: 54K)

Time(s) 0.9 0.985 0.581 0.4 0.238

#window propagations 2,437,808 1,567,105 2,466,709 1,568,832 1,198,835

Peak memory(MB) 0.78 80.08 0.79 80.09 0.587

SketchedVase

(F: 54K)

Time(s) 1.51 1.959 0.881 0.766 0.314

#window propagations 4,299,781 2,788,262 4,319,563 2,798,371 2,119,200

Peak memory(MB) 0.75 147.74 0.75 147.74 0.651

Knot

(F: 56K)

Time(s) 1.412 1.576 0.875 0.63 0.302

#window propagations 4,158,394 2,556,797 4,148,550 2,543,995 2,015,140

Peak memory(MB) 0.45 144.12 0.45 144.12 0.36

Buste

(F: 60K)

Time(s) 1.444 1.412 0.885 0.558 0.299

#window propagations 3,914,969 2,119,762 3,920,578 2,108,560 1,739,991

Peak memory(MB) 0.81 117.89 0.81 117.89 0.658

Casting

(F: 90K)

Time(s) 2.547 2.586 1.499 0.943 0.516

#window propagations 6,288,906 3,485,917 6,307,579 3,468,718 2,995,809

Peak memory(MB) 1.35 188.33 1.35 188.33 1.105

Horse

(F: 96K)

Time(s) 3.187 3.129 2.25 1.146 0.517

#window propagations 7,944,765 4,404,199 7,963,743 4,384,422 3,317,318

Peak memory(MB) 1.81 231.51 1.78 231.53 1.384

Shark

(F: 107K)

Time(s) 4.222 4.827 2.345 1.685 0.758

#window propagations 10,980,857 6,265,563 11,116,740 6,307,618 5,112,354

Peak memory(MB) 1.21 352.92 1.22 352.94 1.015

Pegasus

(F: 127K)

Time(s) 3.392 3.64 2.184 1.361 0.693

#window propagations 7,598,676 4,782,987 7,646,452 4,751,645 3,631,004

Peak memory(MB) 2.03 249.17 2.06 249.17 1.696

Bunny

(F: 144K)

Time(s) 5.034 4.612 3.056 1.737 0.78

#window propagations 12,305,579 6,485,320 12,327,991 6,451,352 4,943,670

Peak memory(MB) 1.69 340.45 1.70 340.46 1.24

Bimba

(F: 149K)

Time(s) 6.018 6.542 3.547 2.248 0.982

#window propagations 12,730,540 7,685,795 12,771,938 7,650,043 5,749,138

Peak memory(MB) 2.78 407.11 2.79 407.11 2.258

Elephant

(F: 160K)

Time(s) 7.383 8.019 4.021 2.667 1.179

#window propagations 14,594,865 9,215,918 14,619,409 9,175,973 6,779,937

Peak memory(MB) 3.89 487.31 3.89 487.31 3.157

Hand

(F: 176K)

Time(s) 10.385 13.322 5.632 4.214 1.638

#window propagations 21,915,233 13,848,650 22,049,873 13,963,632 10,071,080

Peak memory(MB) 3.02 733.33 3.06 733.33 2.689

Filigree

(F: 186K)

Time(s) 3.507 3.719 2.177 1.495 0.821

#window propagations 8,002,484 4,836,918 8,228,318 4,957,377 4,066,106

Peak memory(MB) 1.80 257.83 1.81 257.85 1.49

Woodfish

(F: 191K)

Time(s) 11.183 12.116 6.064 3.742 1.542

#window propagations 22,234,036 12,638,238 22,245,833 12,592,783 9,722,818

Peak memory(MB) 3.60 693.69 3.58 693.69 2.899

Appendix E. Performance Comparison between VTP and Others 150

Continue from previous table

Model Performance
Algorithms

ICH MMP FWP-CH FWP-MMP VTP

Maxplanck

(F: 210K)

Time(s) 15.405 15.342 8.312 4.914 1.891

#window propagations 30,447,971 16,184,715 30,458,413 16,141,584 12,597,188

Peak memory(MB) 4.31 887.99 4.31 887.99 3.405

Duck

(F: 219K)

Time(s) 22.84 21.496 11.411 6.463 2.53

#window propagations 42,760,744 21,077,986 42,790,802 21,728,282 16,821,923

Peak memory(MB) 5.25 1160.22 5.25 1160.25 3.743

Tooth

(F: 220K)

Time(s) 19.403 21.129 9.638 5.898 2.339

#window propagations 33,512,612 18,564,126 33,502,205 18,518,680 14,458,399

Peak memory(MB) 6.15 1037.37 6.12 1037.37 4.833

Moai

(F: 238K)

Time(s) 20.632 21.707 10.616 6.495 2.483

#window propagations 36,344,587 19,904,387 36,363,511 19,849,151 15,085,009

Peak memory(MB) 6.10 1076.09 6.09 1076.09 4.631

DancingChildren

(F: 265K)

Time(s) 9.846 9.634 5.444 3.426 1.707

#window propagations 17,977,851 10,463,582 18,047,429 10,403,108 8,501,699

Peak memory(MB) 4.21 566.13 4.26 566.14 3.569

Igea

(F: 268K)

Time(s) 15.211 14.232 8.532 4.586 1.995

#window propagations 32,561,369 17,137,879 32,522,412 17,066,447 12,673,530

Peak memory(MB) 3.11 890.91 3.10 891.01 2.218

Cup

(F: 316K)

Time(s) 46.262 50.203 20.175 11.499 5.465

#window propagations 68,373,922 35,226,751 68,454,171 35,150,391 32,580,614

Peak memory(MB) 11.05 1880.35 11.04 1880.43 9.835

Armadillo

(F: 345K)

Time(s) 8.878 7.858 5.196 2.976 1.628

#window propagations 19,132,785 10,298,238 19,193,615 10,215,363 8,084,456

Peak memory(MB) 2.00 538.32 2.03 538.32 1.458

Vase

(F: 354K)

Time(s) 35.388 42.203 19.614 10.912 4.056

#window propagations 60,147,611 33,770,683 60,908,787 33,733,987 26,004,542

Peak memory(MB) 7.00 1860.04 7.01 1860.04 5.743

Red Circular

Box

(F: 360K)

Time(s) 7.812 7.025 5.375 2.83 1.763

#window propagations 16,771,179 9,368,831 16,875,650 9,267,397 7,781,762

Peak memory(MB) 1.89 479.66 1.92 479.66 1.554

Julius Caesar

(F: 386K)

Time(s) 16.331 13.234 9.963 4.861 2.372

#window propagations 34,460,870 17,112,887 34,602,443 17,006,880 12,744,572

Peak memory(MB) 2.46 877.05 2.49 877.05 2.153

Pulley

(F: 392K)

Time(s) 29.392 33.032 15.508 9.497 4.242

#window propagations 48,803,681 28,566,263 48,880,682 28,455,748 21,989,818

Peak memory(MB) 6.03 1537.16 6.05 1537.18 5.030

Eros

(F: 394K)

Time(s) 15.341 12.538 9.259 4.567 2.623

#window propagations 28,320,100 14,437,016 28,452,631 14,322,675 11,856,262

Peak memory(MB) 3.56 752.46 3.61 752.46 2.602

Frog

(F: 394K)

Time(s) 29.975 26.453 15.663 8.305 3.175

#window propagations 55,709,004 29,663,952 55,703,101 29,603,551 20,134,270

Peak memory(MB) 5.08 1393.92 5.08 1393.93 3.610

Appendix E. Performance Comparison between VTP and Others 151

Continue from previous table

Model Performance
Algorithms

ICH MMP FWP-CH FWP-MMP VTP

Magalie'sHand

(F: 396K)

Time(s) 15.725 13.059 9.658 4.537 2.387

#window propagations 28,775,730 14,885,683 29,864,392 14,824,480 11,324,832

Peak memory(MB) 4.08 764.60 4.23 764.63 2.895

WoodenChair

(F: 408K)

Time(s) 28.429 29.839 14.405 8.977 4.071

#window propagations 50,355,149 29,553,762 50,435,328 29,450,039 21,937,266

Peak memory(MB) 5.65 1541.40 5.67 1541.42 4.935

Angel

(F: 474K)

Time(s) 16.42 17.172 9.695 6.366 2.877

#window propagations 35,750,531 21,046,492 36,277,286 21,441,579 15,858,241

Peak memory(MB) 2.81 1105.82 2.82 1105.82 2.272

Rocker Arm

(F: 482K)

Time(s) 36.577 33.286 19.536 11.867 4.13

#window propagations 68,553,846 33,989,638 70,513,186 35,940,386 25,654,638

Peak memory(MB) 5.29 1797.16 5.42 1797.19 3.70

Fertility

(F: 483K)

Time(s) 34.202 30.594 18.306 9.576 4.133

#window propagations 60,924,913 31,420,922 60,920,074 31,321,993 24,686,942

Peak memory(MB) 5.70 1588.50 5.68 1588.84 4.465

Heptoroid

(F: 573K)

Time(s) 42.112 71.431 21.288 17.357 5.556

#window propagations 66,227,523 48,580,064 67,386,876 49,942,806 34,287,452

Peak memory(MB) 5.78 2520.55 5.92 2520.60 5.284

Pierrot

(F: 887K)

Time(s) 102.416 88.012 45.395 24.695 9.136

#window propagations 150,271,829 73,707,582 150,295,550 73,740,134 51,644,860

Peak memory(MB) 9.17 3569.21 9.21 3569.28 5.614

Bozbezbozzel

(F: 911K)

Time(s) 57.35 64.402 28.083 18.558 7.005

#window propagations 90,769,891 55,949,635 91,001,989 55,767,105 38,660,645

Peak memory(MB) 7.85 2731.02 7.88 2731.02 6.229

Chinese dragon

(F: 1,222K)

Time(s) 126.488 160.468 53.518 39.839 16.435

#window propagations 167,453,594 99,261,429 167,627,646 98,941,538 72,865,547

Peak memory(MB) 11.75 5284.42 11.73 5284.43 9.918

Asian Dragon

(F: 1,400K)

Time(s) 73.204 73.092 35.637 23.674 9.495

#window propagations 107,742,094 62,161,583 108,122,218 62,025,717 48,217,896

Peak memory(MB) 5.184 3354.04 5.207 3354.05 4.373

Ramesses

(F: 1,653K)

Time(s) 42.246 34.253 26.193 14.708 8.938

#window propagations 77,345,899 38,983,510 78,805,085 40,122,773 34,128,397

Peak memory(MB) 3.59 2014.17 3.73 2014.17 2.948

Pensatore

(F: 1,996K)

Time(s) 189.217 158.819 81.927 49.049 20.328

#window propagations 252,500,639 129,966,322 253,345,289 129,968,435 88,716,654

Peak memory(MB) 9.56 6051.50 9.67 6051.53 5.797

Seahorse

(F: 2,014K)

Time(s) 200.439 203.342 97.221 58.201 21.869

#window propagations 322,605,156 172,324,693 322,460,340 171,858,409 130,860,212

Peak memory(MB) 7.55 9294.98 7.53 9295.03 5.767

IsidoreHorse

(F: 2,209K)

Time(s) 63.183 49.591 43.972 23.295 11.28

#window propagations 103,331,867 52,406,687 110,210,607 59,846,982 42,350,025

Peak memory(MB) 4.48 2725.09 4.74 2725.09 3.062

Appendix E. Performance Comparison between VTP and Others 152

Continue from previous table

Model Performance
Algorithms

ICH MMP FWP-CH FWP-MMP VTP

Happy

Buddha

(F: 2,583K)

Time(s) 320.813 386.681 135.018 99.984 33.373

#window propagations 394,485,853 215,162,089 410,662,438 230,681,707 166,942,683

Peak memory(MB) 12.25 11408.39 12.88 11410.54 9.337

Cervino

Terrain

(F: 3,146K)

Time(s) 179.285 117.187 92.968 46.331 28.287

#window propagations 267,838,521 107,191,823 273,131,668 112,447,283 135,012,449

Peak memory(MB) 6.94 5627.32 7.04 5630.01 5.85

Neptune

(F: 4,008K)

Time(s) 455.271 424.331 193.945 120.012 47.629

#window propagations 585,784,159 270,930,198 602,587,831 284,581,696 246,364,008

Peak memory(MB) 16.96 14225.26 17.14 14219.76 16.38

VaseLion

(F: 6,370K)

Time(s) 2012.72

Out of memory

604.662

Out of memory

145.455

#window propagations 1,721,300,347 1,729,607,080 704,638,382

Peak memory(MB) 52.17 52.24 39.257

Lucy

(F: 14,464K)

Time(s) 8894.87

Out of memory

2415.88

Out of memory

549.934

#window propagations 6,837,670,602 6,841,729,337 2,808,823,718

Peak memory(MB) 78.29 78.28 69.42

153

Appendix F

VTP Performance Profiling

To profile the running times of the three individual components (window
propagation, window pruning and window management) in state-of-the-art
algorithms and the proposed VTP algorithm, in addition to the two models
(Armadillo and Asian Dragon) used in the thesis, this part also show the re-
sults on 8 other models with various resolutions.

Filigree

(F: 186K)

3,780,259

(92.97%)

285,847

(7.03%)

Seahorse

(F: 2,014K)

125,193,965

(95.67%)

5,666,247

(4.33%)

Woodfish

 (F: 191K)

9,424,327

(96.93%)

298,491

(3.07%)

IsidoreHorse

(F: 2,209K)

41,155,754

(97.18%)

1,194,271

(2.82%)

Maxplanck

 (F: 210K)

12,262,103

(97.34%)

335,085

(2.66%)

Happy Buddha

 (F: 2,583K)

161,199,855

(96.56%)

5,742,828

(3.44%)

Duck

(F: 219K)

16,525,857

(98.24%)

296,066

(1.76%)

Cervino Terrain

 (F: 3,146K)

117,649,848

(87.41%)

17,362,601

(12.59%)

Tooth

(F: 220K)

13,955,247

(96.52%)

503,152

(3.48%)

Neptune

 (F: 4,008K)

240,451,272

 (97.6%)

5,912,736

(2.4%)

Moai

(F: 238K)

14,674,697

(97.28%)

410,312

(2.72%)

Vase Lion

(F: 6,370K)

685,613,146

(97.3%)

19,025,236

(2.7%)

DancingChildren

 (F: 265K)

8,179,485

(96.21%)

322,214

(3.79%)

Lucy

(F: 14,464K)

2,756,860,479

 (98.15%)

51,963,239

(1.85%)

Igea

(F: 268K)

12,444,139

(98.19%)

229,391

(1.81%)

Mean 96.25% 3.75%

Standard Deviation 0.026 0.026

Part IV. Comparison of Running Times of Three Common Components

To profile the running times of the three individual components (window propagation, window pruning and

window management) in state-of-the-art algorithms and our VTP algorithm, in addition to the two models

(Armadillo and Asian Dragon) used in the paper, we also show the results on 8 other models with various

resolutions.

Horse (F: 96K) Bunny (F: 144K)

0

1

2

3

4

5

T
im

e(
s)

Window propagation Window pruning

Window management

0

1

2

3

4

5

6

7

T
im

e(
s)

Window propagation Window pruning

Window management

Igea (F: 268K) Pulley (F: 392K)

Rocker Arm (F: 482K) IsidoreHorse (F: 2M)

Happy Buddha (F: 2.6M) Neptune (F: 4M)

0

5

10

15

20

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

60

70

80

T
im

e(
s)

Window propagation Window pruning

Window management

0

100

200

300

400

500

T
im

e(
s)

Window propagation Window pruning

Window management

0

100

200

300

400

500

600

T
im

e(
s)

Window propagation Window pruning

Window management

Appendix F. VTP Performance Profiling 154
Igea (F: 268K) Pulley (F: 392K)

Rocker Arm (F: 482K) IsidoreHorse (F: 2M)

Happy Buddha (F: 2.6M) Neptune (F: 4M)

0

5

10

15

20

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50
T

im
e(

s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

60

70

80

T
im

e(
s)

Window propagation Window pruning

Window management

0

100

200

300

400

500

T
im

e(
s)

Window propagation Window pruning

Window management

0

100

200

300

400

500

600

T
im

e(
s)

Window propagation Window pruning

Window management

Igea (F: 268K) Pulley (F: 392K)

Rocker Arm (F: 482K) IsidoreHorse (F: 2M)

Happy Buddha (F: 2.6M) Neptune (F: 4M)

0

5

10

15

20

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

T
im

e(
s)

Window propagation Window pruning

Window management

0

10

20

30

40

50
T

im
e(

s)

Window propagation Window pruning

Window management

0

10

20

30

40

50

60

70

80

T
im

e(
s)

Window propagation Window pruning

Window management

0

100

200

300

400

500

T
im

e(
s)

Window propagation Window pruning

Window management

0

100

200

300

400

500

600

T
im

e(
s)

Window propagation Window pruning

Window management

155

Appendix G

Longest Length in a Triangle

Lemma G.1. Given a triangle whose three edges’ lengths are a, b and c

respectively. Let l be the length of a line segment whose endpoints are on the

triangle’s edges. Then, l ≤ max(a, b, c).

Proof. As Figure G.1 shows, assume G is the line segment GH’s endpoint on
edge DE, ‖DF‖ = a, ‖EF‖ = b, ‖DE‖ = c, ‖DG‖ = λc that 0 ≤ λ ≤ 1.
Construct a circle whose centre is G and radius r = max(a, b, c). Lemma
G.1 is proved via showing that ∆DEF is in the circle so that the length l
of any line segment in ∆DEF starting from G is less or equal to r. This is
equivalent to proving that ‖DG‖ ≤ r = max(a, b, c), ‖EG‖ ≤ max(a, b, c)

and ‖GF‖ ≤ max(a, b, c).

𝑙 𝑥

𝜆𝑐

𝑟

𝐷

𝐸

𝐹

𝐺𝐷

𝐺
𝐸

𝐹

𝑐

𝑎

𝑏

𝐻

𝛼

FIGURE G.1: Illustration of Lemma G.1.

Obviously, ‖DG‖ ≤ max(a, b, c) and ‖EG‖ ≤ max(a, b, c) since they
are parts of edge DE that ‖DE‖ = c ≤ max(a, b, c). Let x = ‖GF‖,
α = 6 FDE. Then, ‖GF‖ ≤ max(a, b, c) is proved as follows.

Appendix G. Longest Length in a Triangle 156

From the Law of cosines,

cosα =
a2 + c2 − b2

2ac
=
a2 + (λc)2 − x2

2a(λc)

Therefore,

x2 = a2 + (λc)2 − 2a(λc) cosα

= a2 + (λc)2 − λ(a2 + c2 − b2)

= (1− λ)a2 + λb2 + λc2(λ− 1)

Then, according to which is the maximum among a, b and c, the proof of
‖GF‖ ≤ max(a, b, c) is divided into three cases as follows:

(1) If max(a, b, c) = a,

x2 − a2 = −λa2 + λb2 + λc2(λ− 1)

= λ(b2 − a2) + λc2(λ− 1)

Since λ ≥ 0, λ− 1 ≤ 0 and b2 − a2 ≤ 0, it can be derived that x2 − a2 ≤ 0.

(2) If max(a, b, c) = b,

x2 − b2 = (1− λ)a2 + (λ− 1)b2 + λc2(λ− 1)

= (λ− 1)(b2 − a2) + λc2(λ− 1)

Since λ ≥ 0, λ− 1 ≤ 0 and b2 − a2 ≥ 0, it can be derived that x2 − b2 ≤ 0.

(3) If max(a, b, c) = c,

x2 − c2 = (1− λ)a2 + λb2 + λc2(λ− 1)− c2

≤ max(a2, b2) · (1− λ+ λ) + λc2(λ− 1)− c2

= max(a2, b2)− c2 + λc2(λ− 1) ≤ 0

Since λ ≥ 0, λ − 1 ≤ 0 and max(a2, b2) − c2 ≤ 0, it can be derived that
x2 − c2 ≤ 0.

157

Appendix H

RWR Performance Verification

To verify that the RWR procedure proposed in the thesis effectively reduces
memory cost, this section compares memory costs against nearest distance
dmin(wn) of the wavefront between two variants of the Voronoi diagram con-
struction: with and without RWR. In this part, the results on 8 other models
with various resolutions are shown in addition to the two models (Armadillo
and Asian Dragon) used in the thesis.

0

50

100

150

0 2 4 6 8 10

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

Horse (F: 96K)

With DWR Without DWR

0
50

100
150
200

0 20 40 60 80 100

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

Bunny (F: 144K)

With DWR Without DWRWith RWR Without RWR With RWR Without RWR

0
100
200
300
400
500

0 2 4 6 8

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

Igea (F: 268K)

With DWR Without DWR

0
200
400
600
800

0 10 20 30

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

Pulley (F: 392K)

With DWR Without DWRWith RWR Without RWR With RWR Without RWR

Appendix H. RWR Performance Verification 158

0

500

1000

1500

0 5 10 15 20 25

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

Rocker Arm (F: 482K)

With DWR Without DWR

0

1000

2000

3000

0 5 10 15 20 25

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

IsidoreHorse (F: 2M)

With DWR Without DWRWith RWR Without RWR With RWR Without RWR

0
2000
4000
6000
8000

0 2 4 6

M
em

or
y

(M
B

)

Nearest Distance dmin(wn)

Happy Buddha (F: 2.6M)

With DWR Without DWR

0
3000
6000
9000

12000
15000

0 10 20 30 40
M

em
or

y
(M

B
)

Nearest Distance dmin(wn)

Neptune (F: 4M)

With DWR Without DWRWith RWR Without RWR With RWR Without RWR

159

Appendix I

Performance Comparison among
VD-DGP Algorithms

This part compares the performance among state-of-the-art Voronoi diagram
oriented geodesic algorithms, MMP (Surazhsky et al., 2005), FWP-MMP (Xu
et al., 2015) and the proposed window-VTP on the model set proposed in
Appendix A.

Model Performance
Algorithms

MMP FWP-MMP window-VTP

Twirl
(F: 10K)

Time(s) 0.073 0.032 0.031
#windows stored 71,918 71,918 10,835

Peak memory(MB) 5.49 5.49 1.77

Sword
(F: 29K)

Time(s) 0.374 0.164 0.147
#windows stored 342,133 342,332 33,806

Peak memory(MB) 26.10 26.12 4.94

Femur
(F: 30K)

Time(s) 0.292 0.124 0.119
#windows stored 263,839 263,839 22,463

Peak memory(MB) 20.13 20.13 3.36

Cow
(F: 36K)

Time(s) 0.408 0.16 0.14
#windows stored 360,289 360,289 27,630

Peak memory(MB) 27.49 27.49 3.41

Venus
(F: 43K)

Time(s) 0.57 0.267 0.22
#windows stored 518,629 518,629 35,210

Peak memory(MB) 39.57 39.57 4.52

Foot
(F: 44K)

Time(s) 0.581 0.235 0.226
#windows stored 495,620 495,624 32,785

Peak memory(MB) 37.81 37.81 5.45

Camel
(F: 48K)

Time(s) 0.626 0.303 0.28
#windows stored 533,141 533,141 28,674

Peak memory(MB) 40.68 40.68 4.34

HomerSimpson
(F: 48K)

Time(s) 0.651 0.256 0.241
#windows stored 533,641 533,649 39,277

Peak memory(MB) 40.71 40.71 5.74

Appendix I. Performance Comparison among VD-DGP Algorithms 160

Continue from previous table

Model Performance
Algorithms

MMP FWP-MMP window-VTP

Dilo
(F: 54K)

Time(s) 0.789 0.355 0.294
#windows stored 684,702 684,720 37,512

Peak memory(MB) 52.24 52.25 5.04

SketchedVase
(F: 54K)

Time(s) 1.234 0.42 0.392
#windows stored 945,438 945,438 80,584

Peak memory(MB) 72.13 72.13 10.85

Knot
(F: 56K)

Time(s) 1.073 0.345 0.328
#windows stored 738,428 738,428 41,106

Peak memory(MB) 56.34 56.34 6.73

Buste
(F: 60K)

Time(s) 0.957 0.369 0.342
#windows stored 654,859 654,859 40,265

Peak memory(MB) 49.96 49.96 6.84

Casting
(F: 90K)

Time(s) 1.566 0.66 0.609
#windows stored 1,121,043 1,121,043 53,522

Peak memory(MB) 85.53 85.53 9.68

Horse
(F: 96K)

Time(s) 1.966 0.685 0.66
#windows stored 1,433,970 1,433,990 59,009

Peak memory(MB) 109.40 109.41 9.98

Shark
(F: 107K)

Time(s) 2.345 0.868 0.817
#windows stored 1,748,695 1,748,791 74,777

Peak memory(MB) 133.42 133.42 11.82

Pegasus
(F: 127K)

Time(s) 2.749 0.977 0.932
#windows stored 1,849,764 1,849,768 67,633

Peak memory(MB) 141.13 141.13 12.97

Bunny
(F: 144K)

Time(s) 3.637 1.27 1.07
#windows stored 2,451,104 2,451,105 85,959

Peak memory(MB) 187.00 187.00 14.86

Bimba
(F: 149K)

Time(s) 3.576 1.358 1.218
#windows stored 2,461,523 2,461,523 83,382

Peak memory(MB) 187.80 187.80 13.40

Hand
(F: 176K)

Time(s) 7.345 2.296 2.076
#windows stored 4,517,908 4,517,982 175,080

Peak memory(MB) 344.69 344.70 22.73

Filigree
(F: 186K)

Time(s) 3.518 1.36 1.284
#windows stored 2,363,812 2,363,913 84,379

Peak memory(MB) 180.35 180.35 17.05

Woodfish
(F: 191K)

Time(s) 6.458 2.028 1.821
#windows stored 3,875,027 3,875,066 112,070

Peak memory(MB) 295.64 295.64 19.47

Maxplanck
(F: 210K)

Time(s) 7.105 2.346 2.121
#windows stored 4,384,798 4,384,805 129,240

Peak memory(MB) 334.53 334.53 20.64

Appendix I. Performance Comparison among VD-DGP Algorithms 161

Continue from previous table

Model Performance
Algorithms

MMP FWP-MMP window-VTP

Duck
(F: 219K)

Time(s) 7.969 2.615 2.406
#windows stored 4,739,873 4,740,044 136,862

Peak memory(MB) 364.62 361.64 22.47

Tooth
(F: 220K)

Time(s) 8.479 2.709 2.365
#windows stored 4,717,835 4,717,834 137,556

Peak memory(MB) 359.94 359.94 22.66

Moai
(F: 238K)

Time(s) 9.165 2.963 2.603
#windows stored 5,171,473 5,171,567 137,861

Peak memory(MB) 394.55 394.56 25.11
Dancing
Children
(F: 265K)

Time(s) 8.526 2.79 2.501
#windows stored 4,891,962 4,891,983 130,293

Peak memory(MB) 373.23 373.23 22.04

Igea
(F: 268K)

Time(s) 10.916 3.362 3.019
#windows stored 6,266,009 6,266,232 161,435

Peak memory(MB) 478.06 478.08 26.50

Cup
(F: 316K)

Time(s) 15.955 4.317 3.827
#windows stored 7,130,333 7,130,438 172,881

Peak memory(MB) 544.00 544.01 32.86

Armadillo
(F: 345K)

Time(s) 9.863 3.304 2.982
#windows stored 5,771,551 5,771,552 109,213

Peak memory(MB) 440.33 440.33 21.09

Vase
(F: 354K)

Time(s) 17.61 5.07 4.6
#windows stored 9,000,357 9,000,338 204,435

Peak memory(MB) 686.67 686.67 28.35
Red circular

box
(F: 360K)

Time(s) 8.67 3.053 2.763
#windows stored 5,058,283 5,058,359 95,243

Peak memory(MB) 385.92 385.92 16.65

Julius Caesar
(F: 386K)

Time(s) 17.102 5.198 4.435
#windows stored 8,302,679 8,302,680 163,670

Peak memory(MB) 633.44 633.44 29.08

Pulley
(F: 392K)

Time(s) 23.917 6.622 5.345
#windows stored 10,381,917 10,382,287 218,368

Peak memory(MB) 792.08 792.11 39.69

Eros
(F: 394K)

Time(s) 15.908 4.892 4.393
#windows stored 7,977,843 7,977,925 146,482

Peak memory(MB) 608.66 608.67 27.93

Frog
(F: 394K)

Time(s) 25.859 6.93 5.366
#windows stored 10,599,549 10,599,799 264,306

Peak memory(MB) 808.68 808.70 46.46

Magalie's hand
(F: 396K)

Time(s) 16.947 4.923 4.237
#windows stored 7,828,886 7,828,888 137,411

Peak memory(MB) 597.30 597.30 32.20

Appendix I. Performance Comparison among VD-DGP Algorithms 162

Continue from previous table

Model Performance
Algorithms

MMP FWP-MMP window-VTP

WoodenChair
(F: 408K)

Time(s) 20.081 5.995 5.232
#windows stored 10,611,023 10,611,108 166,678

Peak memory(MB) 809.56 809.56 29.84

Angel
(F: 474K)

Time(s) 21.463 6.764 5.67
#windows stored 10,797,339 10,797,405 191,428

Peak memory(MB) 823.77 823.78 29.56

Rocker arm
(F: 482K)

Time(s) 32.012 9.088 6.985
#windows stored 13,282,080 13,282,139 271,040

Peak memory(MB) 1013.34 1013.35 41.50

Fertility
(F: 483K)

Time(s) 35.412 9.235 6.986
#windows stored 14,209,376 14,213,322 343,115

Peak memory(MB) 1084.09 1084.39 49.44

Heptoroid
(F: 573K)

Time(s) 88.438 16.295 11.854
#windows stored 25,684,650 25,686,036 680,891

Peak memory(MB) 1959.58 1959.69 110.13

Pierrot
(F: 887K)

Time(s) 102.134 22.831 15.986
#windows stored 30,719,649 30,720,244 471,137

Peak memory(MB) 2343.72 2343.77 82.37

Bozbezbozzel
(F: 911K)

Time(s) 67.579 16.903 13.444
#windows stored 25,725,566 25,725,665 297,927

Peak memory(MB) 1962.70 1962.71 54.70
Chinese
dragon

(F: 1,222K)

Time(s) 137.814 32.257 22.836
#windows stored 42,905,252 42,905,259 461,210

Peak memory(MB) 3273.41 3273.41 89.39

Ramesses
(F: 1,653K)

Time(s) 55.345 21.233 15.4
#windows stored 22,398,278 22,398,569 232,074

Peak memory(MB) 1708.85 1708.88 36.93

Asian dragon
(F: 1,400K)

Time(s) 110.083 28.247 20.281
#windows stored 36,317,620 36,317,847 346,142

Peak memory(MB) 2770.81 2770.83 76.75

Pensatore
(F: 1,996K)

Time(s) 258.372 60.713 37.665
#windows stored 67,448,762 67,448,895 592,650

Peak memory(MB) 5145.93 5145.94 111.73

Seahorse
(F: 2,014K)

Time(s) 366.545 72.9 47.885
#windows stored 90,781,860 90,782,014 716,661

Peak memory(MB) 6926.11 6926.12 145.24

IsidoreHorse
(F: 2,209K)

Time(s) 89.538 31.107 21.299
#windows stored 33,738,770 33,738,791 283,255

Peak memory(MB) 2574.06 2574.07 46.79

Happy buddha
(F: 2,583K)

Time(s) 482.715 105.009 58.946
#windows stored 107,722,874 107,732,048 912,637

Peak memory(MB) 8218.60 8219.30 161.98

Appendix I. Performance Comparison among VD-DGP Algorithms 163

Continue from previous table

Model Performance
Algorithms

MMP FWP-MMP window-VTP

Cervino
Terrain

(F: 3,146K)

Time(s) 259.395 66.332 45.838
#windows stored 72,176,116 72,195,898 575,108

Peak memory(MB) 5506.60 5508.11 104.44

Neptune
(F: 4,008K)

Time(s) 832.83 173.055 96.843
#windows stored 171,319,703 171,374,203 857,068

Peak memory(MB) 13070.70 13074.80 176.30

Vase lion
(F: 6,370K)

Time(s)
Out of Memory Out of Memory

238.298
#windows stored 2,299,918

Peak memory(MB) 333.65

Lucy
(F: 14,464K)

Time(s)
Out of Memory Out of Memory

806.118
#windows stored 12,071,796

Peak memory(MB) 921.005

164

Appendix J

Voronoi Diagram Construction
Performance Profiling

This section profiles the running times of the four individual components
(Voronoi diagram construction, window propagation, window redundancy re-
duction and window management) in the Voronoi diagram construction. The
comparison is performed on three versions of the solution, (1) the original
method in (Liu et al., 2011); (2) the FWP-MMP version which replaces the
MMP algorithm used by (Liu et al., 2011) with the FWP-MMP algorithm
(Xu et al., 2015); (3) The proposed version which replaces the MMP algo-
rithm used by (Liu et al., 2011) with the proposed window-VTP algorithm. In
addition to the two models (Armadillo and Asian Dragon) used in the thesis,
the results on 8 other models with various resolutions are also shown in this
part.

0

0.5

1

1.5

2

2.5

3

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Horse (F: 96K)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

0

1

2

3

4

5

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Bunny (F: 144K)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

Appendix J. Voronoi Diagram Construction Performance Profiling 165

0
2
4
6
8

10
12
14

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Igea (F: 268K)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

0

10

20

30

40

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Pulley (F: 392K)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

0

10

20

30

40

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Rocker Arm (F: 482K)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

0

20

40

60

80

100

120

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

IsidoreHorse (F: 2M)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

0

100

200

300

400

500

600

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Happy Buddha (F: 2.6M)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

0

200

400

600

800

1000

Liu et al. (2011) FWP-MMP
Version

Ours

Ti
m

e(
s)

Neptune (F: 4M)

Voronoi diagram construction Window management

Window redundancy reduction Window propagation

	Copyright Statement
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgements
	Declaration
	1 Introduction
	1.1 Background
	1.1.1 Geodesics in Differential Geometry
	1.1.2 Geodesics in Computational Geometry

	1.2 Motivation
	1.3 Contributions
	1.4 Thesis Outline
	1.5 List of Publications

	2 Related Work
	2.1 Discrete Geodesic Algorithms
	2.1.1 Computational Geometry Approach
	2.1.1.1 Euclidean Cost Metric
	2.1.1.2 Weighted Cost Metric

	2.1.2 Partial Differential Equation (PDE) Approach
	2.1.2.1 Discrete Eikonal Equation
	2.1.2.2 Discrete Poisson Equation

	2.2 Voronoi Diagram on Surfaces
	2.2.1 Voronoi Diagrams on 2D Planes
	2.2.2 Voronoi Diagrams on 3D Polyhedral Surfaces

	3 Edge-based Windows Grouping
	3.1 Discrete Geodesic Problem (DGP) Definition
	3.1.1 Single-Source DGP (SS-DGP)
	3.1.2 Voronoi Diagram oriented DGP (VD-DGP)

	3.2 Preliminaries
	3.2.1 Locally Shortest Paths on Triangle Meshes
	3.2.2 Globally Shortest Paths on Triangle Meshes

	3.3 Edge-based Windows Grouping (EWG)
	3.3.1 Window Definition and Propagation
	3.3.2 Applying EWG on Window Propagation
	3.3.2.1 EWG Definition
	3.3.2.2 EWG Window Propagation
	3.3.2.3 EWG Performance Evaluation

	3.3.3 EWG-based Solutions to Geodesic Problems
	3.3.3.1 Solution to the SS-DGP problem
	3.3.3.2 Solution to the VD-DGP problem

	4 Fast and Exact SS-DGP Algorithm
	4.1 Algorithm Overview
	4.2 EWG in Window List Propagation Within a Triangle
	4.2.1 Pairwise Window Pruning Within a Triangle
	4.2.2 Principles for Window Pruning
	4.2.3 EWG-based Window List Propagation
	4.2.3.1 Window List Splitting
	4.2.3.2 Window List Propagation
	4.2.3.3 Window List Merging

	4.2.4 Algorithmic Choices Justification

	4.3 EWG in Wavefront Propagation Over a Mesh
	4.3.1 Face-Sorted Wavefront Propagation
	4.3.2 Vertex-Sorted Wavefront Propagation
	4.3.3 Algorithmic Choices Justification

	4.4 Complexity Analysis
	4.5 Experimental Results
	4.5.1 Overall Performance
	4.5.2 Performance Profiling
	4.5.3 Scalability
	4.5.4 Robustness

	4.6 Summary

	5 Fast and Memory-Efficient Voronoi Diagram Construction
	5.1 Redundant Window Removal (RWR)
	5.1.1 Preliminaries
	5.1.2 Redundant Windows Removal (RWR)
	5.1.3 Performance Verification

	5.2 Applying RWR in Geodesic Computation
	5.2.1 Wavefront Collision
	5.2.2 Priorities Definition

	5.3 Complexity Analysis
	5.4 Experimental Results
	5.4.1 Comparison with Liu2011-GeodesicApplications
	5.4.2 Comparison with Xu2014-Voronoi
	5.4.3 Comparison with VTP
	5.4.4 Application to Remeshing

	5.5 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Model Collection
	B VTP Ablation Study
	C VTP Variants Comparison
	D Distribution of Window Propagations
	E Performance Comparison between VTP and Others
	F VTP Performance Profiling
	G Longest Length in a Triangle
	H RWR Performance Verification
	I Performance Comparison among VD-DGP Algorithms
	J Voronoi Diagram Construction Performance Profiling

