
Repurpose 2D Character Animations for a VR
Environment using BDH Shape Interpolation

Simone Barbieri1,2,3, Ben Cawthorne3, Zhidong Xiao2, and Xiaosong Yang2

1 Centre for Digital Entertainment, Bournemouth, United Kingdom
2 Bournemouth University, Bournemouth, United Kingdom

3 Thud Media, Cardiff, United Kingdom
sbarbieri@bournemouth.ac.uk

(a)4 (b)4 (c)5 (d)5

Fig. 1. Two examples of 2D characters placed in a 3D environment using our frame-
work.

Abstract. Virtual Reality technology has spread rapidly in recent years.
However, its growth risks ending soon due to the absence of quality con-
tent, except for few exceptions. We present an original framework that
allows artists to use 2D characters and animations in a 3D Virtual Re-
ality environment, in order to give an easier access to the production of
content for the platform. In traditional platforms, 2D animation repre-
sents a more economic and immediate alternative to 3D. The challenge in
adapting 2D characters to a 3D environment is to interpret the missing
depth information. A 2D character is actually flat, so there is not any
depth information, and every body part is at the same level of the oth-
ers. We exploit mesh interpolation, billboarding and parallax scrolling
to simulate the depth between each body segment of the character. We
have developed a prototype of the system, and extensive tests with a 2D
animation production show the effectiveness of our framework.

Keywords: Virtual reality · Animation · 2D characters in 3D environ-
ment · Shape interpolation · Billboarding · Parallax Scrolling

4 Copyright ©, Esoteric Software
5 Copyright ©, Toot Enterprises Limited

1 Introduction

In the last few years, the interest in Virtual Reality technology has greatly grown.
The increase in the graphical processing power has, in fact, allowed consumers
to get high-end experiences with a reasonable price. Despite the strong interest
towards this technology, the quality content is still very limited at the moment,
so the entire platform, at least for the entertainment industry, risks becoming
merely a gimmick or a tech demo [28].

In the recent years, indie games have spread widely and have become an
important reality in the video game industry [23]. Many of these games are
realized by very few people, or, in some cases, even by single individuals, such
as Braid [10] or Undertale [17]. Moreover, a large number of these games are
realized in 2D. In traditional platforms, in fact, 2D represents a more economic
and immediate alternative to the 3D animation, which is particularly diffuse in
video games, but it is becoming increasingly popular in animation as well. As
a matter of fact, while 2D animation requires as much skill as 3D animation, it
is still faster to produce, since it has a dimension less to take in account while
animating. The 2D asset production is also less expensive and faster to realize.

As Virtual Reality places the user in the centre of a 3D environment, many
content creators that could bring quality products for the platform are stopped
by the cost of the production of a full 3D environment and characters. Using 2D
characters in VR would definitely reduce the production cost. However, there is
an important challenge to solve in order to use 2D character in a 3D environment.
2D characters and animations, in fact, do not have any depth information. When
they are inserted in a 3D context, without any revision, they would appear just
flat, and they would ruin the user’s immersion in the VR experience.

In this paper, we address this problem by presenting an original framework
to retarget 2D animation contents for Virtual Reality application. We combine
two classical computer graphics techniques – billboarding and parallax scrolling
– with a new shape interpolation method to simulate the depth in 2D characters
and animations, in order to exploit them in a 3D VR environment.

The problem we aim to solve with this paper could be considered as an exten-
sion of the problem to make appear and interact 2D object in a 3D environment.
Depending on the medium, this problem is solved in different ways. For video
games, for example, it is often used the previously cited billboarding, which ro-
tates the 2D elements in the environment towards the camera, in order to do
not let the user see that they are actually 2D. This technique is used especially
with user interface, but even for effects, background elements – trees, clouds –
or characters. This happens, for example in the video game Mario Kart 64 [22],
where the characters are prerendered from 3D models, but in the actual game
they appear as 2D sprites. For what concerns films, it is easier to handle the
problem. The camera in a film is, in fact, controlled by the director and the
user will never have the chance to watch somewhere that has not been settled
by the director himself. Thus, inserting 2D elements is a straightforward task,
usually performed by visual effects compositors. An example could be seen in the
film Who Framed Roger Rabbit [35], in which cartoon characters interact with

the real world. For traditional animation, letting the character interact with 3D
object requires a similar procedure. With VR, it must be considered that the
user can watch in any direction at any time, and even slightly move inside a
predefined area, hence a traditional composite cannot be realized.

The rest of the paper is organized as follows: in Section 2 we present a brief
review of the related work; in Section 3 we give an exhaustive explanation of the
system, including a detailed description of the three technologies we combined
for our framework; in Section 4 we show and analyze the results we obtained
with the proposed system; in Section 5 we draw our conclusions and explain the
future works that could be done to improve the framework.

2 Related Work

Merging 2D and 3D In this paper, we present a method that combine to-
gether 2D characters in a 3D environment. In computer graphics there are sev-
eral subfields that attempt a similar task, or, more generally, merging 2D and 3D
elements. Due to the great amount of different subfield in this category, we in-
troduce in this section only the groups we believe are the most close and relevant
to our work.

One of these subfields is the hybrid animation [25], which combines 2D and 3D
animation media. There are several examples of 2D films that include 3D objects.
One of the most remarkable example is The Iron Giant [9], which features an
entire 3D character, the Iron Giant itself, in a 2D animated film. In 2002, in
the film Spirit: Stallion of the Cimarron [4], DreamWork Pictures revealed a
technology to use 3D characters while the camera is significantly far away from
them, to “take over” to a 2D animation when the camera gets closer [15]. In
the same year, Walt Disney Pictures, in the film Treasure Planet [14], presents
a hybrid character, namely a 2D character with 3D components.

Sỳkora and colleagues [29] introduce a method to allow users to specify depth
inequalities in some sections of a 2D character, in order to generate a 2.5D pop-
up. This technique has different objectives, such as enhancing the perception of
depth in a 2D character, producing 3D-like shading or even stereoscopic images.
This method, however, produces several artefacts due to the incorrect estima-
tion of the contour thickness. Jain et al. [21] propose a technique for adding a
3D secondary motion – the motion of objects in response to the one from a pri-
mary character – to a 2D character exploiting physical effects. Usually this kind
of effects are hand-animated and they are particularly time-consuming. Their
method, however, integrate simulation methods to replicate cloth motion.

Another subfield which combine 2D and 3D techniques is the generation
of 3D animations from 2D sketches. Davis and colleagues [16] are the first to
introduce a specific method to pose articulated figures with sketches. Their tool
requires as input a keyframe sequence sketched from the artist and the system
will reconstruct all the possible 3D poses that match the input sketch and that
have a valid ranking score, which is computed according to a set of heuristics.
The 3D poses are ordered by their ranking score, and the user can select the

pose that is the closest to his idea. However, this method has a few problems,
such as the necessity of the user to specify the template of the skeleton through
a configuration file and the manual annotation of the sketch. These problems
are addressed by Mao et al. [24], who present a tool in which the user does not
need any more to manually specify the template of the skeleton; in fact, now
he can select one from a list categorised by gender, ethnicity and age. Then
the user draws the stick figure, by using the thickness of a connection between
two joints to express the depth of that body part. Jain et al. [20] propose a
method to recreate a hand-drawn animation in a 3D environment. The generated
animation consists of a reconstruction of motion capture poses, which match the
user’s animation, but does not follow exactly the animator’s drawing. The main
difference with the previous methods is that exploits a database to reconstructs
the animation.

More recent works in this subfield allow posing character with very few lines.
Guay and colleagues [18], for instance, take the concept of the “line of action”,
a technique used in drawing to grant a dynamic look to a character, and, while
giving it a formal definition, they use it to pose a 3D character with a single
stroke. Hahn et al. [19] introduce an original concept: the sketch abstraction.
Fundamentally, it is a way to connect the character’s rigging to the 2D input
sketch. The abstraction is bound to some points in the mesh. Then, it estab-
lishes a correspondence between the abstraction and the input sketch, which can
be computed with a straightforward in-order correspondence by considering the
drawing direction, or by using the closest-point matching between the two sets
of points. The final posing is therefore retrieved by solving an optimisation prob-
lem. Barbieri et al. [7] propose a method to automatically compute the sketch
abstraction, thus removing a redundant task for the user in the previous method.

The final subfield of computer graphics related to our work we introduce
is the crowd simulation, which is the reproduction of the movement of a vast
number of character at the same time, typically in a 3D environment. One of
the techniques used to display this amount of entities is the image-based render-
ing. Tecchia et al. [30] follow this approach, by using pre-generating impostors
[27] – textured polygons that face the camera and replace more complex objects
– rendered from different viewpoints. Depending on the position of the user,
the most appropriate impostor is displayed. This method has the downside of
requiring a huge amount of memory, as it requires a render of each character,
from different perspectives and multiple frames for each of them. Aubel et al.
[5] solve this problem by using dynamically generated impostors. In this way,
no storage is used for impostors that are not active in the scene. In addition to
the movement of the camera, for the generation of the images for the impostors
they have to take in account the self-deformation too, as the character are not
static objects. They solve the problem updating the impostor only if the dis-
tance between some pre-determined points in the character’s skeleton changes
significantly. Yang and colleagues [34] combine this two approaches by using
both pre-generated snapshots and synthesizing new ones dynamically. To pro-

duce the new images, they use segments of the pre-generated one, avoiding thus
the rendering of the geometric model multiple times.

2D Shape Interpolation The interpolation of planar shapes is a well-known
problem in computer graphics and there exist many approaches in literature
which address this problem. Besides offering an exhaustive review of the most
relevant classical methods of mesh morphing, Alexa [2] provides a comprehensive
explanation of the terminology and mathematical background required for the
proper understanding of the problem.

The As-Rigid-As-Possible (ARAP) technique [3] aims to generate rigidity-
preserving interpolations. By blending the interior of the shape rather than
the boundaries, it creates locally least-distorting in-between shapes. It linearly
blends the rotation and scaling components of the transformation for each pair
of triangles from the source and target shapes, to consequently reconstruct the
shape sequence. Despite this method offers a better control on local distortions
compared to classic methods, it also produces artefacts if the source and target
shapes present a large-scale deformation. To solve this problem, Choi et al. [13]
and Baster et al. [8] used a different procedure to choose the rotation angles and
thus guarantee coherence between adjacent triangles.

Xu et al. [33] related the rigid interpolation to the Poisson problem, thus
offering a formal mathematical definition to the problem. However, this method
is almost identical to [3]. The main difference is the weighting, which allow the
result to not depend significantly on the tessellation of the mesh. Nonetheless,
this method undergoes the same problem of [3], presenting distorted results
whether large rotations are applied.

Weber and Gotsman [32] presented a method to produce smooth conformal
mappings by blending the angular factor – the local orientation change induced
by the mapping – on the shape’s boundary. Chen et al. [11] extended their
method by supporting the wider class of quasi-conformal mappings, in order to
provide interpolations with a bounded amount of conformal distortion. Chien et
al. [12] improved [11] presenting an algorithm two orders of magnitude faster.
Moreover, the method from Chien et al. is meshless, thus provides results with
increased smoothness.

3 2D Characters in a 3D Environment

The proposed framework allows the users to repurpose 2D characters and an-
imations in a 3D, VR environment. As shown in figure 2, the characters are
split up into different body parts, which have their own meshes and each one is
independent from the others. Our system simulates the depth between the dif-
ferent body parts of the characters by moving them in the scene according to the
position of the viewer. It exploits 3 different techniques: billboarding, parallax
scrolling and 2D shape interpolation.

In this section we explain how these techniques work together to simulate
the depth.

Fig. 2. Every character is split up into different body parts.4

3.1 Billboarding

The billboarding, well explained by [1], is a technique with which some polygons,
called billboard, are drawn in order to always face the viewer. Whenever the view
changes, the orientation of the billboard changes as well, as shown in figure 3.
Usually, the billboarding technique is used to represent phenomena, such as fire,
smoke, clouds, or similar objects which do not have a solid surface. In our new
framework, we apply the billboarding to each body part of the characters, to
force them to always face the viewer, hiding their 2D nature as flat surfaces in
a 3D environment.

To determine the rotation matrix of a billboard which rotates around the y-
axis, and with the viewer looking towards the negative z -axis, we first compute
the eye vector from the model view matrix M :

~Veye = M−1


0
0
−1

0

 .

The rotation θ about the y-axis is then computed as:

cosθ = ~Veye · ~Vfront ,

sinθ = ~Veye · ~Vright ,

where

~Vfront =
(
0, 0, 1

)
,

~Vright =
(
1, 0, 0

)
.

The rotation matrix R around the y-axis:

R =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 . (1)

is then concatenated to the M matrix. The matrix MR is therefore used to
transform the billboard geometry.

Fig. 3. This example shows how the billboarding works. B1, B2 and B3 are the bill-
boards, which always face the camera.

3.2 Parallax scrolling

The parallax scrolling, as properly described by [6], is a technique with which
different layers of images in a scene moves by the camera at different speeds – the
closest is faster while the farthest is slower – in order to give an illusion of depth to
the observer. In the proposed system, we developed a new technology that exploit
the parallax scrolling to move at different speed the different body parts of the
characters. When the viewer turns around the character, the body components
in the closest half of the character’s body move in the viewer’s opposite direction,
while the ones in the farthest half move in the same direction. The central part,
such as the torso, differently, does not move at all, except for the rotation due to
the billboarding. Furthermore, according to parallax scrolling, the closest parts
move faster. The reversed movement of the farthest component is explained by
the negative speed of their movement, as they move slower than the closest parts.

A layer λ is assigned to each body part of the character that should move
when the camera is rotated. The torso’s λ is 0, so it will not move. For the closest
parts, it will be positive, while negative for the farthest ones. When the camera

is moved by a translation Tcamera, the body parts will simply be moved by:

Tbodypart =
Tcamera · λ

ζ
, (2)

where ζ is a balancing parameter.

3.3 2D shape interpolation

As we mentioned in Section 2, the 2D Shape Interpolation is particularly studied
in computer graphics. There are several methods that solve this problem. For
our system, we chose to rely on Bounded Distortion Harmonic (BDH) Shape In-
terpolation [12]. This method produce “provably good”[26] harmonic mappings
– they are smooth, locally injective and have bounded conformal isometric dis-
tortion – such that its geometric distortion is bounded by the input mapping’s
one. Moreover, this method does not employ mathematical optimization. As our
system requires to compute the interpolation for each body part of each charac-
ter every time the user moves significantly in the scene, the parallel capability
of this method makes it the most appropriate for our framework.

BDH shape interpolation allow us to obtain an interpolating function f :
[0, 1]×Ω→ R2 from two input locally injective sense-preserving harmonic map-
pings f0, f1 : Ω → R2. The idea of the method is to interpolate the Jacobian
Jf and then to integrate it to retrieve an interpolation. By identifying R2 with
C and using the complex notation z = x + iy, they define a planar harmonic
mapping as a mapping f : Ω → C where f(x + iy) = u(x, y) + iv(x, y) and
the components u and v are harmonic. On a simply-connected domain Ω, any
harmonic planar mapping f can be written as the sum of a holomorphic and an
anti-holomorphic function:

f(z) = Φ(z) + Ψ(z) . (3)

For such mapping, fz = Φ′ is holomorphic and fz̄ = Ψ′ is anti-holomorphic.
This decomposition allows them to interpolate the similarity and anti-similarity

parts of Jf independently by interpolating fz and fz̄, as they are holomorphic
and anti-holomorphic respectively. Thus, they obtain Φ and Ψ, the holomor-
phic and anti-holomorphic components of the interpolated mapping. These two
components are defined by the Cauchy complex barycentric coordinates [31]:

Φ(z) =

n∑
j=1

Cj(z)φj , Ψ(z) =

n∑
j=1

Cj(z)ψj . (4)

To compute fz, Chien et al. introduce a formula for f tz to linearly interpolate
the angle of the closest rotation transformation by linearly interpolating the
arguments of f0

z and f1
z . This can be obtained by linearly interpolating the

logarithms of f0
z and f1

z , as expressed by this formula:

f tz = (f0
z)1−t(f1

z)t . (5)

The following manipulation shows that these logarithms are linearly interpo-
lated:

f tz = exp
(

(1− t) log f0
z

)
· exp

(
t log f1

z

)
= exp

(
(1− t) log f0

z + t log f1
z

)
= |f0

z |1−t · |f1
z |t · exp

(
i · (1− t) arg(f0

z) + t arg(f1
z)
)
.

f tz is essentially a holomorphic interpolation which linearly interpolates the ar-
gument. As such, it has to interpolate f0

z and f1
z so that the scaling constant is

fixed.
For what concerns the anti-holomorphic part fz̄, Chien et al. introduce two

different methods. Here we are going to discuss only the method we used for our
framework. For fz̄ cannot be used the logarithmic interpolation, as f1

z̄ and f1
z̄

typically are 0 at points in Ω, and a logarithm for them cannot be defined.
A new quantity is introduced: η = gzgz = µ|gz|2, which is anti-holomorphic

and where g is a planar mapping. This quantity is linearly interpolated by the
following formula:

ηt = (1− t)η0 + tη1 , (6)

Chien et al. also introduce a scaling function ρ : [0, 1]→ (0, 1] such that ρ(0) =
ρ(1) = 1, in order to check the geometric distortion bounds for each time t and
scale η accordingly by preserving the bounds. We then obtain:

f tz̄ =
ρ(t)ηt

f tz
. (7)

Together, equations 5 and 7 give us the formulae to compute f tz and f tz̄,
which, integrated, allow us to obtain the interpolated mappings.

3.4 The algorithm

Now that we have introduced the three techniques, we explain how we have
combined them to simulate the depth between the character’s different body
parts. Let us start from the shape interpolation.

Our aim with the 2D shape interpolation is to transform the mesh of each
body part of the character, in order to simulate the change of perspective when
the user turns around the character. As each body parts, from different points
of view, includes a portion that is not visible from some other points, it is clear
that BDH alone is not suitable for the shape interpolation, in this case. This can
be seen in figure 4, which represents the same body part but from two different
perspectives. The blue parts of the image (a) cannot be seen from (b), and the
blue part in (b) cannot be seen from (a).

We divide the surface of the body part into two sections. The joint part –
jp – is the section that appears in both the source and target surfaces. The rest
is the margin. We call appearing margin – am – the one in the target mesh,

(a)6 (b)6

Fig. 4. The same body part from two different perspectives. The red section of these
two body parts is the joint part. The blue parts are the margins.

while disappearing margin – dm – the one in the source. We highlight, however,
that the difference between appearing and disappearing margin is based only
on the walking direction of the user. Thus, they are not fixed as appearing or
disappearing. The user is required to manually identify the joint part and the
margin part of the mesh. Figure 4 shows an example of these sections.

Fig. 5. The character from the top. The arrow is the viewing direction of the character.
The red lines mark the points in which the perspective of the character changes. The
dashed lines indicate the threshold for the interpolation.

As long as the user does not move significantly around the character, the
shape interpolation is not applied. We establish eight different perspectives

6 Copyright ©, Magic Mall, Cloth Cat Animation

around the character. When the user surpasses a certain threshold, the perspec-
tive changes, and the interpolation is employed to change the appearance of each
body part. Figure 5 shows the different perspectives angles and the thresholds.

The interpolation is applied only if the user is between the two threshold. We
define the interpolation as it, where t ∈ [0, 1], t = 0 at the starting threshold and
t = 1 at the ending threshold. Depending on the position of the user, a certain
it is computed and shown.

Let us call a the angle between the character viewing direction and the vector
from the character’s position and the user’s position, t is simply computed from
a and the two thresholds:

t :=
a− t1
t2 − t1

, (8)

where t1 and t2 are the angles of the first and second thresholds respectively.

(a)6 (b)6

Fig. 6. An example of the interpolation of the margins at t = 0.5. The two different
perspectives are those in figure 4. While the central part is the result of the deforma-
tion of the BDH interpolation, an intermediate state between the origin and target
transformations, the other two sections, marked by the red and blue boxes, are the
margins. As in this example we are considering t = 0.5, those sections are cut by half.

Each it is a composition of two distinct operations. The BDH shape inter-
polation is applied to the joint part of the shape, and it will be shown the
interpolation t for it. For what concerns the margins, let us consider the plane P
on which lay the mesh of each body part. We already mentioned that the mesh

is split in two different parts: the joint part and the margin. Let us indicate the
width of the margin as mwidth. For an interpolation it, we cut the plane P along
the y-axis at x = mwidth · t. If the margin is an appearing margin, the vertices
on the closest part of the margin to the joint part will be added to the mesh.
Instead, if it is a disappearing margin, the vertices on the farthest part of the
margin to the joint part will be removed from the mesh. Whether these two parts
are on the left or right part of the margin, it depends on the walking direction of
the user. The algorithm 1 summarizes this procedure, which is shown in figure
6.

(a)6 (b)6 (c)6 (d)6

(e)6 (f)6 (g)6 (h)6

Fig. 7. An example of the interpolation process. In figures (a) and (b), the red sections
are the joint parts, while the blue ones are the margins. In figures (c) and (d) is shown
the interpolation at t = 0.65. It must be noticed that the deformation is on the mesh,
not on the texture, that is just applied on it. In the second row, in the pictures (e),
(f), (g), (h), it is shown the deformation process on the meshes.

The parallax scrolling works on a higher level. In fact, while the interpolation
operates distinctly for each body part, and only if the user is between two thresh-
olds, the parallax scrolling constantly moves all the body parts of the character.
To each body part, as the user moves in the scene, is applied the translation in
the equation 2.

As the character is a 2D figure, it lies on a 2D plane. The transformations
applied by both the parallax scrolling and the shape interpolation do not add a

Algorithm 1 Body part interpolation

1: procedure InterpolateBodyPart(bodypart, angle)
2: t← (angle− t1)/(t2 − t1)
3: bodypartjp ← BDH(bodypart, t)
4: split margin at xcut ← mwidth·t
5: if margin is am then . in case of an appearing margin
6: add to mesh vertices in closest part of the margin to jp
7: else . in case of a disappearing margin
8: remove from mesh vertices in farthest part of the margin to jp
9: end if

10: add vertices to mesh from the area bodypartam · t
11: remove vertices from mesh from the area bodypartdm · t
12: end procedure

third dimension to the mesh’s vertices. Thus, the billboarding is just applied to
the character’s plane, and not individually to each component.

Algorithm 2 User’s movement handler

1: procedure OnUserMovement
2: ~u := vector between character’s position and user’s position
3: ~v := character’s viewing direction
4: angle← arccos(~u · ~v)
5: for all bodypart ∈ character do
6: if t1 ≤ angle ≤ t2 then
7: InterpolateBodyPart(bodypart, angle)
8: end if
9: bodypartposition+ = (usertranslation · λ)/ζ

10: end for
11: rotate the character’s plane around its central position towards the camera
12: end procedure

The whole procedure is performed every time the user moves, although the
interpolation is executed only if the user is in particular positions, specifically
between two thresholds. The algorithm 2 outlines the entire operation.

4 Results

In this section we discuss the experimental results we obtained while testing the
proposed system with a 2D animation pipeline.

Figure 1 (a) and (b), as well figure 8, show how the different body parts
move at the same time of the user, because of the parallax scrolling. The boy in
figure 1 has the right arm and leg, as well as the eye and the mouth, in a front
layer, hence the λ in the equation 2 is positive. The left arm and leg, instead,
has a negative λ, as they are in the hindermost part of the character. In the

end, the λ value for the torso and the head is 0. In the example in figure 1 the
user is moving around the character in a counterclockwise sense – thus from the
left to the right – therefore the body parts with positive λ are moving from the
right to the left, in the opposite direction, while the ones in the rear side move
in the same direction as the user. Moreover, as the forearm is closer to the user
compared to the upper arm, it has a greater λ, therefore, it is moved more on
the left.

Figure 7 shows instead an example of the interpolation of a body part between
two different perspectives. In the figures (a), the source, and (b), the target, are
shown the body parts from which the interpolation is computed. These two
images represent the same body part, but from two different perspectives. In the
two figures are also highlighted the joint part, in red, and the margins, in blue.
In the figure (c), the shared part is interpolated using BDH shape interpolation,
and the two margin are added to the body part. In the figure, the appearing
margin is surrounded by the red box, while the disappearing margin by blue
box. The dashed line marks the section of the margins that will be removed.
In this particular example, t = 0.65. Figure (d) represents the final result of
the computation. It can be noticed that there is some residue in the appearing
margin, to the left of the dashed line. That is because that section of the hair is
part of the joint section, thus it is not removed.

In the end, figure 8 a complete transaction of the camera from the front-right
perspective to the front one. It can be noticed in figure (b), in particular on the
torso and the head, the interpolation of the two states. It can be also noticed
the parallax scrolling on the arms and the legs.

Our tool is implemented as a Unity3D native plug-in. This allowed us to use
Nvidia’s CUDA to parallelize on the GPU as many operations as possible, in
particular the interpolation.

5 Conclusion

In this paper we presented an original tool for repurposing 2D characters and
animations for a 3D VR environment. This method relies on three different tech-
nologies, the billboarding, the parallax scrolling and the 2D shape interpolation,
which are combined together as illustrated by algorithm 2. This novel approach
to content creation for VR represent a valid alternative to classic 3D characters,
by offering a more economic and faster way to produce products for the platform.

Although the system produces good results, we are aware of few limitations
that affects it. For instance, at the moment the identification of the joint part
and the margins of each body part must be manually set by the user. Moreover,
as the system is focused on the repurposing of 2D characters, the other objects
in the scene are 3D. There are two ways to handle the interaction of the 2D
character with the scenery. The first solution is to extend the system to make it
work with every kind of objects; the second one is to use the 3D surroundings
and to study a way to make them interact with the 2D character in a plausible

(a)6 (b)6 (c)6

Fig. 8. A complete example of our system. Figure (a) shows the character from the
front-right perspective, while in figure (b), it is in the middle of the transaction between
that state and the front. Lastly, figure (c) shows the character from the front.

way. Ultimately, it would be interesting to make a comparison with other 2D
mesh interpolation methods.

References

1. Akenine-Moller, T., Haines, E.: Real-Time Rendering. A. K. Peters, Ltd., 2nd edn.
(2002)

2. Alexa, M.: Recent advances in mesh morphing. In: Computer graphics forum.
vol. 21, pp. 173–198. Wiley Online Library (2002)

3. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In:
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. pp. 157–164. ACM Press/Addison-Wesley Publishing Co. (2000)

4. Asbury, K., Cook, L., Howard, M., Katzenber, J., Soria, M.: Spirit: Stallion of the
cimarron. DreamWorks Pictures (2002)

5. Aubel, A., Boulic, R., Thalmann, D.: Real-time display of virtual humans: levels
of details and impostors. IEEE Transactions on Circuits and Systems for Video
Technology 10(2), 207–217 (2000)

6. Balkan, A., Dura, J., Eden, A., Monnone, B., Palmer, J.D., Tarbell, J., Yard, T.:
Parallax scrolling. In: Flash 3D Cheats Most Wanted, pp. 121–164. Springer (2003)

7. Barbieri, S., Garau, N., Hu, W., Xiao, Z., Yang, X.: Enhancing character posing by
a sketch-based interaction. In: ACM SIGGRAPH 2016 Posters. p. 56. ACM (2016)

8. Baxter, W., Barla, P., Anjyo, K.i.: Rigid shape interpolation using normal equa-
tions. In: Proceedings of the 6th international symposium on Non-photorealistic
animation and rendering. pp. 59–64. ACM (2008)

9. Bird, B., Abbate, A., McAnuff, D.: The iron giant. Warner Bros. Feature Animation
(1999)

10. Blow, J.: Braid (2008), http://braid-game.com/

11. Chen, R., Weber, O., Keren, D., Ben-Chen, M.: Planar shape interpolation with
bounded distortion. ACM Transactions on Graphics (TOG) 32(4), 108 (2013)

12. Chien, E., Chen, R., Weber, O.: Bounded distortion harmonic shape interpolation.
ACM Transactions on Graphics (TOG) 35(4), 105 (2016)

13. Choi, J., Szymczak, A.: On coherent rotation angles for as-rigid-as-possible shape
interpolation. Tech. rep., Georgia Institute of Technology (2003)

14. Clements, R., Musker, J., Conli, R.: The treasure planet. Buena Vista Pictures
(2002)

15. Cooper, D.: 2d/3d hybrid character animation on spirit. In: ACM SIGGRAPH
2002 conference abstracts and applications. pp. 133–133. ACM (2002)

16. Davis, J., Agrawala, M., Chuang, E., Popović, Z., Salesin, D.: A sketching in-
terface for articulated figure animation. In: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. pp. 320–328. Euro-
graphics Association (2003)

17. Fox, T.: Undertale (2015), http://undertale.com/
18. Guay, M., Cani, M.P., Ronfard, R.: The line of action: an intuitive interface for

expressive character posing. ACM Transactions on Graphics (TOG) 32(6), 205
(2013)

19. Hahn, F., Mutzel, F., Coros, S., Thomaszewski, B., Nitti, M., Gross, M., Sum-
ner, R.W.: Sketch abstractions for character posing. In: Proceedings of the 14th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. pp. 185–
191. ACM (2015)

20. Jain, E., Sheikh, Y., Hodgins, J.: Leveraging the talent of hand animators
to create three-dimensional animation. In: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. pp. 93–102. ACM
(2009)

21. Jain, E., Sheikh, Y., Mahler, M., Hodgins, J.: Augmenting hand animation with
three-dimensional secondary motion. In: Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. pp. 93–102. Euro-
graphics Association (2010)

22. Konno, H., Miyamoto, S.: Mario kart 64. Nintendo (1996)
23. Lipkin, N.: Examining indie’s independence: The meaning of” indie” games, the

politics of production, and mainstream cooptation. Loading... 7(11) (2012)
24. Mao, C., Qin, S., Wright, D.: A sketch-based gesture interface for rough 3d stick

figure animation. Eurographics (2005)
25. O’Hailey, T.: Hybrid animation: integrating 2D and 3D assets. Taylor & Francis

(2010)
26. Poranne, R., Lipman, Y.: Provably good planar mappings. ACM Transactions on

Graphics (TOG) 33(4), 76 (2014)
27. Schaufler, G.: Dynamically generated impostors. In: GI Workshop Modeling-

Virtual Worlds-Distributed Graphics. pp. 129–136 (1995)
28. Scherba, T.: Virtual reality is about to go mainstream, but a lack of content

threatens to hold it back. https://techcrunch.com/2016/04/03/virtual-
reality-is-about-to-go-mainstream-but-a-lack-of-content-threatens-

to-hold-it-back/ (2016)
29. Sỳkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., Collins, S.: Adding depth to

cartoons using sparse depth (in) equalities. In: Computer Graphics Forum. vol. 29,
pp. 615–623. Wiley Online Library (2010)

30. Tecchia, F., Chrysanthou, Y.: Real-time rendering of densely populated urban
environments. In: Rendering Techniques 2000, pp. 83–88. Springer (2000)

31. Weber, O., Ben-Chen, M., Gotsman, C.: Complex barycentric coordinates with
applications to planar shape deformation. In: Computer Graphics Forum. vol. 28,
pp. 587–597. Wiley Online Library (2009)

32. Weber, O., Gotsman, C.: Controllable conformal maps for shape deformation and
interpolation. In: ACM Transactions on Graphics (TOG). vol. 29, p. 78. ACM
(2010)

33. Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. Graphical
models 68(3), 268–281 (2006)

34. Yang, Y., Wang, X., Chen, J.X.: Rendering avatars in virtual reality: integrating a
3d model with 2d images. Computing in Science & Engineering 4(1), 86–91 (2002)

35. Zemeckis, R., Marshall, F., Watts, R.: Who framed roger rabbit. Buena Vista
Pictures (1988)

