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As this work relies an existing model from another field, for completeness,
we give the main details on its derivation in this document.

1 Collision Threshold Derivation

We use the collision thresholds originally derived and validated by Ashgriz and
Poo [1990]. These were developed to offer physically-accurate, energy-based
prediction of the outcome type of a droplet collision based on the colliding state
of the pair of droplets. We consider the collision between the pair of spherical
droplets i, j with positions xi,xj velocities ui,uj and radii ri > rj .

1.1 Stretching Separation

Stretching separation is considered to arise for collisions in which the stretching
kinetic energy in the collision is greater than the surface energy of the ligament
that forms between the colliding droplets.

Assuming that the collision is such that only a portion of the droplet masses
come into contact, we define the volume of interaction of droplet i as φiVi, for
Vi the volume of the sphere of radius ri, centre xi, cut by the planes parallel to
uij and tangential to edge of the other droplet sphere, j (Fig. 4 - main paper),
and similarly for droplet j.

In Ashgriz and Poo [1990], the following equations for φi, φj are given:

φi =

{
1− (2−τ)2(1+τ)

4 , if h > ri.
τ2(3−τ)

4 , otherwise.
(1)

φj =

{
1− (2δ−τ)2(δ+τ)

4δ3 , if h > rj .
τ2(3δ−τ)

4δ3 , otherwise.
(2)

where h = (1 − X)(r1 + r2) and τ = (1 − X)(1 + δ). In the main paper, we
note that these equations are not valid for the case of a fully overlapped smaller
droplet h > 2rj (where we should have φj = 1) and instead suggest calculating
these with geometric equations for segments and caps in these cases.
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Now, assuming that the remaining non-interacting portions of the droplets
continue along their initial trajectory, we calculate the kinetic stretching energy
in the entire collision as:

Estretch = non-interacting KE + interacting KE

=
1

2
ρ[(Vi − Vi,I)||Ui||2 + (Vj − Vj,I)||Uj ||2] +

1

2
ρ[Vi,I(UiX)2 + Vj,I(ujX)2]

=
1

2
ρ[(1− φi)Vi||Ui||2 + (1− φj)Vj ||Uj ||2] +

1

2
ρX2[Vi,I ||Ui||2 + Vj,I ||Uj ||2]

=
1

2
ρ||Uij ||2Vi

(
δ3

(1 + δ3)2

)
[(1 + δ3)− (1−X2)(φj + δ3φi)]

(3)

Note that the above equation, as described in Ashgriz and Poo [1990], veloc-
ity is formulated in mass-centre coordinates (corrected by Ko and Ryou [2005]),
so uses:

Ui =
−δ3uij
(1 + δ3)

(4)

Uj =
uij

(1 + δ3)
(5)

but that any use of the relative velocity Uij remains equal to the usual form,

Uij =
(1+δ3)uij

1+δ3 = uij .
The surface energy that opposes this stretching is that of the nominal liga-

ment created from the interacting volume, given by the surface energy associated
with a cylinder of height h and volume Vinteract = Vinteract,i + Vinteract,j :

Esurface = 2σ[πhVinteract ]
1
2

= 2σ[πh(Vinteract,i + Vinteract,j )]
1
2

= 2σ[πViriτ(φi + δ3φj)]
1
2

(6)

Then if Estretch > Esurface the collision results in stretching separation.
Considering the equality of the above equation and then rearranging allows

definition of a threshold on We as Westretch :

Westretch =
4(1 + δ3)2[3(1 + δ)(1−X)(δ3φj + φi)]

1
2

δ2[(1 + δ3)− (1−X2)(φj + δ3φi)]
(7)

such that the stretching separation threshold is surpassed if We > Westretch .

1.2 Reflexive Separation

For head-on collisions, we check for reflexive separation in a similar way to that
of stretching separation. This outcome is said to arise due to a combination
of the incident kinetic energies working in opposing directions, and the internal
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flows induced due to the difference between the colliding droplet surface energies
and the nominal coalesced droplet surface energy.

The kinetic energy term is that of the portions of the droplets which directly
oppose each other, given by:

Ecounter =
1

2
ρ(Vi,P ||Ui||2 + Vj,P ||Uj ||2) (8)

where the volume Vk,P is the volume of the prolate regions of the incident
droplets, defined in terms of X by:

Vi,P =
4

3
πr3i (1− ξ)2(1− ξ2)

1
2 (9)

Vj,P =
4

3
πr3i (δ − ξ)2(δ2 − ξ2)

1
2 (10)

where ξ = 1
2X(1 + δ). Then the excess surface energy is given by:

Eexcess = 4σπr2i [(1 + δ2)− (1 + δ)
2
3 ] (11)

Finally, the remaining portions of droplets try to stretch the combined mass,
which reduces the reflexive energy above and so we also include the following
stretching energy term:

Estretch =
1

2
ρ[(Vi − Vi,P )||Ui||2 + (Vj − Vj,P )||Uj ||2] (12)

The effective reflexive energy is therefore given by:

Ereflex = Ecounter + Eexcess −Estretch (13)

which can be rearranged to:

Ereflex = 4σπr2i

[
(1 + δ2)− (1 + δ3)

2
3 +

We

12δ(1 + δ3)2
(δ6ηi + ηj)

]
(14)

where
ηi = 2(1− ξ)2(1− ξ) 1

2 − 1 (15)

ηj = 2(δ − ξ)2(δ2 − ξ2)
1
2 − δ3 (16)

Reflexive separation is then said to occur when this energy exceeds 75% of
the surface energy of the nominal coalesced mass Esurface,k = 4σπ(r3i + r3j )

2
3 ,

i.e. when Ereflex > 0.75Esurface,k .
Using these formulations for Ereflex and Esurface,k taking the threshold of

the above inequality and rearranging for We gives:

Wereflex =
3[7(1 + δ3)

2
3 − 4(1 + δ2)]δ(1 + δ3)2

(δ6ηi + ηj)
(17)

and thus a collision with We > Wereflex will exhibit reflexive separation.
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