To appear in proceedings of the 14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2017)

Activity Recognition and Abnormal Behaviour
Detection with Recurrent Neural Networks

Damla Arifoglu and Abdelhamid Bouchachia
Department of Computing and Informatics, Bournemouth University, UK

September 20, 2017

Abstract

In this paper, we study the problem of activity recognition and abnor-
mal behaviour detection for elderly people with dementia. Very few stud-
ies have attempted to address this problem presumably because of the lack
of experimental data in the context of dementia care. In particular, the
paper investigates three variants of Recurrent Neural Networks (RNNs):
Vanilla RNNs (VRNN), Long Short Term RNNs (LSTM) and Gated Re-
current Unit RNNs (GRU). Here activity recognition is considered as a
sequence labelling problem, while abnormal behaviour is flagged based on
the deviation from normal patterns. To provide an adequate discussion
of the performance of RNNs in this context, we compare them against
the state-of-art methods such as Support Vector Machines (SVMs), Naive
Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov Mod-
els (HSMM) and Conditional Random Fields (CRFs). The results ob-
tained indicate that RNNs are competitive with those state-of-art meth-
ods. Moreover, the paper presents a methodology for generating synthetic
data reflecting on some behaviours of people with dementia given the dif-
ficulty of obtaining real-world data.

1 Introduction

Studies indicate that by year 2030, 19% of people will be aged 74 to 84 and
nearly half of people who are older than 84 will have dementia [27]. Elderly
people may suffer from the consequences of dementia, which is a condition that
causes problems with mobility, physical and mental abilities such as memory and
thinking [8]. It also may cause decrease in the ability of speaking, writing, dis-
tinguishing objects, performing motor activities and performing complex func-
tional tasks (paying bills, preparing a meal, shopping, managing medication,
etc.) [26]. An elderly person having such cognitive decline loses independence
in daily life and requires care and support from caregivers.

Cognitive diseases like dementia need to be detected at an early stage so
that early treatment will be possible. However, research shows that 75% of



dementia and early dementia cases go unnoticed [15] and many such cases are
only diagnosed when such impairment reaches moderate or advanced stage. The
detection of early signs of motion and cognitive impairment (MCI) via activity
recognition will be useful to track motion and cognitive capabilities of the elderly,
thus improving their life quality and financial saving. Unfortunately, currently
there are no dementia friendly smart homes addressing these people’s special
needs.

Most common types of dementia (Alzheimer, Parkinsons disease) can be
identified by behavioural changes like sleep disturbances, difficulty of walking
and inability to complete tasks. Such changes can provide key information about
memory, mobility and cognition of a person. For instance, an inhabitant suffer-
ing from Alzheimer may forget his lunch, take multiple lunches instead, wake
up in the middle of the night, go to the toilet frequently, or have dehydration
problems because of forgetting to drink daily amount of water.

Recent studies suggest that changes in complex daily life tasks can be in-
dicators of early decline [29]. The best markers of cognitive decline may not
necessarily be detected based on a person’s performance at any single point in
time, but rather by monitoring the trend over time and the variability of change
in a duration [29]. Thus, tracking an elderly person’s life over time in a spe-
cially designed smart home, doing in-home health assessment and detecting the
indicators of dementia at an early step would be beneficial.

The identification of early onsets of dementia using non-medical diagnosis
methods requires the development of new diagnostic tools. Although a few
promising methods have been experimentally validated [6, 23, 17, 16, 7], the
translation of the current knowledge into smart homes still requires more ded-
ication and work. Current assessment methods mostly rely on queries from
questionnaires or in-person examinations, which depend on recall of events or
brief snap-shots of function that may poorly represent a person’s typical state
of function. Moreover, these studies include some pre-defined tasks given to
the patients in order to do automatic assessment of cognitive decline by trained
experts.

The main motivation for our work is that cognitive decline can be observed
in daily activities and routines of an elderly. Real-time monitoring of activities
performed by elderly in a smart home would be beneficial for the early detection
of such decline. In this study, we firstly recognise activities by variants of RNNs,
namely VRNNs, LSTMs and GRUs and model the daily behaviour routines of a
person. Whenever a new sequence is introduced, any abnormality deviating from
these regular behaviours are detected and could be used for further investigation
by formal or informal carer.

Unfortunately, there exists no publicly available dataset on abnormal be-
haviour of people with dementia. Producing such a dataset require time and
adequate experimental environment. Thus we propose in this paper, a way to
artificially produce data on abnormal activities reflecting on typical behaviour
of elderly people with dementia. We believe that this an important contribution.

The rest of the paper is organised as follows. Section 2 provides a brief
overview of the related research to both activity recognition and abnormal be-



haviour detection. Section 3 presents the details of the proposed methodology
together with the datasets and models used. Section 4 describes the experi-
mental set-up and results of the experiments followed by a discussion. Finally,
Section 5 concludes the paper.

2 Literature Review

Activity recognition has been addressed using methods such as decision trees,
Bayesian methods (Naive Bayes and Bayesian Networks), k-Nearest Neighbours,
Neural Networks (Multilayer perceptron), SVMs, Fuzzy logic, Regression mod-
els, Markov models (Hidden Markov Models, Conditional Random Fields) and
classifier ensembles (Boosting and bagging) [18]. Recently, there has been grow-
ing interest in deep convolutional neural networks [30, 31, 20, 13], Deep Belief
Networks [4], Restricked Boltzman Machines (RBMs) [21, 12, 4, 9] and RNNs
[20, 13, 10]. Previous work shows that RNNs are useful, but leaves a lot of room
for improvement. It is worthwhile to stress that to the best of our knowledge,
this study is the first applying RNNs to detect abnormalities related to dementia
in the daily life routines of an elderly person.

In [21], RBMs are used for feature extraction and selection from sequential
data. In [20], the authors use a combination of deep convolutional networks and
LSTM to do multi-modal wearable activity recognition by showing that their
approach outperforms some of the previously reported results by up to 9% on
OPPORTUNITY dataset. In [1], the authors utilised convolutional networks
to classify activities using time-series data collected from smart phone sensors.
Experiments show that increasing the number of convolutional layers increases
the performance, but the complexity of the derived features decreases with every
additional layer. In [13], the authors explore deep, convolutional and recurrent
approaches across three representative datasets that contain movement data
captured with wearable sensors. Moreover, they describe how to train recurrent
approaches in this setting and introduce a novel regularisation approach, show-
ing better results over OPPORTUNITY, PAMAP2 and Daphnet Gait datasets.
In [9], results with RBM on CASAS dataset outperformed HMM and Naive
Bayes Classifier (NBC) in most of the cases. In [19], the authors use RNNs to
predict the future values (start time, duration) of the activities.

Most of the aforementioned studies use movement data such as OPPORTU-
NITY, SKODA [21, 30, 31, 20] or UCI HAR smart phone dataset, MIT home
dataset [1, 4], which are obtained through body worn sensors. Except the work
by Fang et al. [9, 10], none of these studies focus on daily activity datasets col-
lected by sensors placed at home. In this work, we investigate RNNs on daily
activities data obtained by van Kasteren [28] using various environment sensors
(see Sec. 3.1 for more details).

In-home automatic assessment of cognitive decline has been the subject of
some studies dedicated [5, 6, 22, 12]. For instance, in [5], machine learning ap-
proaches such as SVMs and Naive Bayes are used. In [12], Parkinson’s Disease
state assessment in home is explored by means of RBMs using data from body



worn sensors. In [22], the authors use Markov Logic Network, which is a proba-
bilistic logic that unifies statistical and symbolic reasoning to detect anomalies.
In [5], some instructions to perform some tasks (e.g., sweeping the kitchen,
dusting the floor, etc.) are given to the patients who then receive scores after
completing those tasks. These scores are calculated based on the time spent,
the frequency of the sensor triggered, etc. One disadvantage of this scenario is
that some pre-selected activities are performed and instructions are given to the
elderly who might not be able to cope with such tasks at all. Moreover, using
rule-based systems, an expert is needed to manually integrate resident-specific
rules to the system since every person has her/his own daily life routines. For
example waking up and drinking water in the middle of the night might be
normal for a person, while abnormal for some other person. However, our ap-
proach does not require any expert knowledge, since it learns what is normal
and abnormal from the training data automatically. Specifically, we aim in this
study to detect anomalies in the natural flow of daily living without giving any
instruction and considering not only some time interval, but everyday living
scenario. Continuous assessment of the person is more valid, since activities are
performed in the person’s own home setting.

3 Proposed Method

To assess RNNs in activity recognition and abnormal activity detection, we pro-
pose the following steps: Firstly, raw dataset is segmented into slices by using
a sliding window approach. The window size is 60 seconds time of sensor read-
ings as described in [28]. Secondly, sensor-based features are extracted from
these slices. These features are binary, change-point and last-fired representa-
tions which are used also in [28]. Thirdly, RNNs (Vanilla, GRU and LSTM)
are trained to recognise daily activities and encode daily-life behaviour routines.
Lastly, the trained model is used to detect anomalies deviating from the normal
daily-life sequences.

In the following we describe the dataset as well as the methodology used to
generate artificial dataset that reflects on the typical behaviour of a person with
dementia.

3.1 Dataset and Features

We used the popular dataset collected by Van Kasteren [28] from 3 households
which are denoted as dataset A, B and C. The data captures daily-life activities
such as sleeping, cooking, leaving home, etc. using sensors placed at the homes
in less than a month. Please see [28] for more details. We applied the same
sliding window approach as in [28] to extract the sensor reading chunks. We
also considered three feature representations: binary, change-point and last-fired
which are described as follows:

e Binary: This representation gives 1 when the sensor is triggered and 0
when that sensor is not triggered.



e Change-point: This representation gives information when a sensor changes
value. More specifically, it gives 1 when a sensor changes its current state
(either from state 1 to state 0 or vice versa) and a 0 when its value remains
the same.

e Last-fired: This representation indicates which sensor is fired last. The
sensor that changed state last continues to give 1 and changes to 0 when
another sensor changes state.

3.2 Generation of Abnormal Activities Related to Demen-
tia

Since we do not have any available dataset related to abnormal behaviour of
people with dementia, we artificially create some anomalies in the dataset. In
order to show the applicability of the proposed work to detect these anomalies,
we focus on two different kinds of anomalies that can be seen in daily-life rou-
tines of elderly people with dementia: 1) Forgetting or repeating activities 2)
Dehydration and disruption in sleep.

1. Forgetting and repeating activities: Elderly people suffering from de-
mentia may forget whether they performed a particular daily activity or
not, so they may repeat that activity multiple times or they may skip that
activity. For instance, an elderly person suffering from Alzheimer may for-
get to have lunch, take multiple lunches instead [24], to have dinner and
start to prepare it in the middle of the night. To reflect on this, we gener-
ate this kind of abnormal activities by manually inserting a specific set of
actions within the normal activity sequence. This will result in multiple
occurrences of that activity, which will occur in some inadequate time of
the day such as having dinner in the middle of the night. We inject the
instances of the following activities: brushing teeth, preparing dinner, eat-
ing, getting snack into the normal activity sequences to generate abnormal
activities related to the frequency.

2. Dehydration and disruption in sleep: Degeneration of the sleep-
waking cycle, sleep disorders and night time wandering are among the
most severe behavioural symptoms of dementia. For example, elderly
people may wake up many times in the night to use the toilet and go back
to sleep and may forget to take daily amount of water [24, 2]. We simulate
these anomalies by inserting some synthetic activities in the normal night-
time activity sequences of a person. More specifically, we inject getting
drink, going to toilet into the sleeping activity of normal daily activity
sequences. This will emulate the activities of getting drink and going to
the toilet frequently in the middle of the night.

We generate these abnormal activity instances on dataset A which has the
following 9 activities: Leave house, use toilet, take shower, brush teeth, go to
bed, prepare breakfast, prepare dinner, get snack, get drink. As a result, we have



multiple instances of those injected instances in order to simulate the anomalies
related to dementia. Here, please note that there is only one subject in the
dataset. We take the lifestyle in the training data as a norm and then synthesise
the abnormalities deviating from this norm and introduce these abnormalities in
the test data. These activities are totally normal on their own but they become
abnormal when they occur at a wrong time of the day and after or before a
specific activity. Hence, capturing these abnormalities within the context is
important. In all, we manually synthesise 135 abnormal activity slices.

3.3 Activity Recognition and Abnormal Behaviour Detec-
tion

We believe that the order of activities and their temporal and spatial information
is important to encode an elderly person’s daily life routines. This kind of
information can provide important cues to understand the daily patterns and
thus to detect any anomalies in those patterns. Sequence labelling methods such
as HMMs and RNNs can capture temporal and spatial relationship between
activities, which some generative methods like SVMs can not do. In this work,
we investigate the adequacy of RNNs to this task.

In order to recognise daily activities, training instances of the datasets and
their corresponding labels are fed into the RNNs. Then when a new test se-
quence is introduced, the trained model assigns labels to each activity instances
of that sequence. Each model gives a confidence value about the assigned la-
bel for the new sequence. Firstly, we calculate the mean of confidence values
of training instances that are assigned by the model. Then, when a new test
sequence is introduced if the model assigns it to a class label with a confidence
value which is bigger than the mean, the sequence is considered as a normal
activity, otherwise it is abnormal activity.

3.4 RNN Architectures

In the following we give a summary of the RNN architectures used in this work,
more specifically Vanilla RNNs, Long Short Term Memory RNNs, and Gated
Recurrent Unit RNNs. Then, we describe how they are used in the context of
daily activity recognition and abnormal activity detection tasks.

1. Vanilla Recurrent Neural Networks: In feed-forward neural network,
it is assumed that all inputs and outputs are independent of each other,
but RNNs have a recurrent hidden state whose activation at each time is
dependent on that of the previous time. This architecture is recurrent as
some of the connections within the network form a directed cycle, where
the current time-step ¢t considers the states of the network in the previ-
ous time-step t — 1. They share parameters for different time-steps which
enables them to be used in sequential data. RNNs are called recurrent
because they perform the same task for every element of a sequence, with
the output being dependent on the previous computations. Another way



to think about RNNs is that they have a memory which captures informa-
tion about what has been calculated so far. However, there is a drawback
of Vanilla RNNs, as shown by Bengio et al. [3], Vanilla RNNs are not
capable of capturing long term dependencies on sequences because of the
vanishing gradient problem. In theory, RNNs can make use of information
in arbitrarily long sequences, but in practice they are limited to looking
back only a few steps. Thus, the following two RNN architectures are
exploited to solve this problem.

2. Long Short Term Memory (LSTM) Recurrent Neural Networks:
LSTM cells are designed to counter the effect of diminishing gradients
when error derivatives are backpropagated through many layers through
time in recurrent networks [14]. Each LSTM unit keeps track of an internal
state that represents its memory. Over time the cells learn to output,
overwrite, or null their internal memory based on their current input and
the history of past internal states, leading to a system capable of retaining
information across hundreds of time-steps [14]. LSTM blocks have 3 gates
to control the flow of information into or out of their memory. For example,
an input gate controls the extent to which a new value flows into the
memory. A forget gate controls the extent to which a value remains in
memory while an output gate is used to compute the output activation of
the block (see Figure 1).
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Figure 1: Left: LSTM, Right: GRU. While LSTM can be described as the input
signals x; at time ¢, the output signals y;, the forget gate f;, and the input gate
i¢, the output gate o¢,; GRU, on the other hand, can be described in terms of
two internal variables, which retain the previous h and current h inner states
respectively.

3. Gated Recurrent Unit: Cho et al. [3] recently proposed GRU, which
is like LSTM but it has fewer parameters than LSTM, as GRUs lack an
output gate. In GRU, each hidden unit has two gates, which are called
update and reset gates (see Figure 1). GRU also controls the flow of
information to prevent vanishing gradient problem, but without having to
use a memory unit.



4 Experiments and Results

We used Keras Deep Learning library’s [11] and Theano’s [25] implementations
of the RNNs (GRU, LSTM, Vanilla RNN) in this study. Moreover for the
sake of comparison, we also used the One-class SVM from WEKA with default
parameters, Naive Bayes (NB), Hidden Markov Models (HMM), Hidden Semi-
Markov Models (HSMM) and Conditional Random Fields (CRF) which are
based on the implementation provided in [28].

We split the data (see Sec. 3.1) into a test and training set using the leave-
one-day-out cross-validation approach. One full day of sensor readings is used
for testing and the remaining days are used for training. Then we cycle over all
days and report the average performance.

We evaluate metrics proposed in [28]: precision, recall, F-measure and ac-
curacy. We calculate precision and recall for each class separately and then
take the average over all classes. Note that precision and recall measures are
used since these metrics give some idea about how well the models perform on
imbalanced datasets like the one in this study. On the other hand, the accu-
racy represents the percentage of correctly classified time slices, therefore more
frequently occurring classes have a larger weight in this measure.

To evaluate the performance of abnormal behaviour detection, we use the
following evaluation metrics: True Positive Rate (TPR) and False Positive Rate
(FPR). TPR is the percentage of correctly detected abnormal activities out of
total abnormal activities, FPR is the percentage of normal activities that are
detected falsely as abnormal activities by the algorithm (out of total number of
normal activities).

To run experiments on RNNs, we left out 10% of the training data for
validation and we used drop-out with a value of 0.2. We also set the batch size
to 10 instances and the epoch to 500 iterations. The internal architecture of
RNNs (2 layers consisting of 30 and 50 nodes respectively) and time step of the
sequences (25 activity slices) were empirically set.

Note that the results obtained by the models HMM, HSMM, CRF and NB
(see Tab. 1 - 3) are taken from the study by Kasteren et al. [28].

Table 1 refers to the results obtained on dataset A and shows that there
is no clear winner among the three different feature representations. Consid-
ering the accuracy, the results indicate that LSTM is the best method (with
the accuracy of 96.7%) when last-fired feature is used, while HMM performs
the worst. Using change-point feature, HMM outperforms all other methods.
Using binary feature on the other hand shows that CRF (accuracy of 89.8%)
is the best. Also all RNNs, NB and SVM do not perform well when adopt-
ing change-point feature. HMM and HSMM are not good when using binary
feature representation. In a nutshell, for the majority of the methods, except
HMM and HSMM, last-fired representation is the best one. In terms of recall
which reflects better on performance in the presence of imbalanced data, the
highest value is obtained by GRU (80.6%). This potentially indicate that RNNs
are good to detect relevant class instances. CRF, for instance, score higher on
precision, because the most frequent-class instances are favoured, but then it



Table 1: Activity recognition results on dataset A

Model Feature Precision Recall F-Measure  Accuracy
NB Binary 48.3£17.7 426+16.6 45.14+16.9 77.14+20.8
Change-point  52.7+17.5 43.24+18.0 47.1+17.2 5594188
Last-fired 67.3+£172 648+146 65.8+£155 953128

HMM Binary 37.9+£198 455+£19.5 41.0£19.5 59.1£28.7
Change-point  70.3+16.0 74.3+13.3 72.0+14.2 92.3+5.38
Last-fired 54.6 £17.0 69.5+12.7 60.8+149 89.5+84

HSMM Binary 39.5+£189 485+£19.5 43.2£19.1 59.5+29.0
Change-point  70.5+16.0 75.0+12.1 72.4+13.7 91.8+5.9
Last-fired 60.2+154 73.8+125 66.0+13.7 91.0+7.2

CRF Binary 59.2+183 56.1+17.3 572+173 89.8+8.5
Change-point  73.5+16.6 68.0+£16.0 70.4+159 91.4+5.6
Last-fired 66.2+15.8 65.8+14.0 659+146 964+2.4

Vanilla Binary 46.5+177 64.8+16.2 53.5+16.3 86.8+10.6
Change-point  46.3£19.5 63.8+164 53.2+17.9 61.4+16.4
Last-fired 61.9+19.1 743+£128 67.2+£164 955+3.4

LSTM Binary 50.8£184 63.9+£16.5 56.2+17.1 86.7+10.5
Change-point 46.8 £18.7 63.6+14 53.5+16.7 61.4+16.4
Last-fired 63.7£199 73.9+£168 68.1+£182 96.7+2.6
GRU Binary 473+18.7 69.1+£149 554+16.5 86.6+10.7
Change-point  42.9+19 65.0+153 51.0+£17.1 61.4+164
Last-fired 61.8+16.3 80.6+11.5 69.5+14.0 96.1+25
SVM Binary 45.6 £17.9 69.1£159 54.2+159 854+104
Change-point  40.3+19.1 634+14.6 48.6+£17.0 55.9+18.7
Last-fired 58.6 £16.2 77.2+14.0 66.3+149 96.1+24

Table 2: Activity recognition results on dataset B.

Model Feature Precision Recall F-Measure  Accuracy
NB Binary 33.6+£109 325+84 324+89 80.4+189
Change-point  40.9+7.2 389+57 395+£59 67.8+18.6
Last-fired 43.7£87 446+£72 433£48 86.2+13.8
HMM Binary 38.8+14.7 44.7+£134 40.7£124 63.2+£24.7
Change-point 48.2+17.2 63.1+14.1 53.6+16.5 81.0+14.2
Last-fired 385+£15.8 46.6+£19.5 41.8+£17.1 484+26.9

HSMM Binary 374+£169 446=+14.3 399£143 63.8+24.2
Change-point 49.8 £15.8 65.2+134 55.7+14.6 82.3+135
Last-fired 40.8+11.6 53.3+£109 458+11.2 67.1+£24.8

CRF Binary 35.7+£15.2 40.6+12.0 37.5+£13.7 78.0+£259
Change-point  48.3+83 51.5+85 49.7+79 92.9+6.2
Last-fired 469+ 125 478+12.1 46.6+129 89.2+13.9
Vanilla Binary 26.7+£13.5 46.9+£24.8 325+£17.9 65.2+34.7
Change-point 39.6+8  624+153 483+10.2 76.9+13.9
Last-fired 41.2+123 64.4+£178 49.7£136 87.9+13.1
LSTM Binary 29.1+£12.0 44.0£22.0 33.9+£16.2 63.5+32.7
Change-point  40.0£11.2 59.0+16.4 47.5+129 76.8+14.2
Last-fired 40.8 £10.7 60.1+16.3 4824123 87.24+13.2

GRU Binary 28.5+159 36.3+£17.2 31.4+£16.2 64.5+321
Change-point  37.7+£7.6 535+£92 449+£71 764+14.5
Last-fired 41.7+£13.2 569179 475+14.6 87.0+12.9

SVM Binary 39.6+£109 585+174 46.7+129 81.6+185
Change-point  32.3+6.5 53.6+£7.5 40.0+6.2 67.9+285
Last-fired 36.4+£54 546+104 435£6.6 86.2+14.9




Table 3: Activity recognition results on dataset C'

Model Feature Precision Recall F-Measure Accuracy
NB Binary 196 +£114 16.8+75 17.8+9.1  46.5+22.6
Change-point  39.9 £ 6.9 30.8£4.8 34.5+4.6 57.6 £15.4
Last-fired 405+74 46.4+148 423+6.8 87.04+12.2
HMM Binary 15.2+9.2 17.2+9.3 15.7+ 8.8 26.5 £22.7
Change-point 41.44+88 50.0+ 114 44.9+838 77.2+£14.6
Last-fired 40.7+9.7 53.7+£16.2 4594+11.2 83.9+13.9
HSMM Binary 156 +9.2 204+109 17.3+9.6 31.24+24.6
Change-point 43.8 £10.0 52.3+12.8 474+10.5 77.5+15.3
Last-fired 425+10.8 56.0+154 479+11.3 84.5+13.2
CRF Binary 17.8+£22.1 21.84+20.9 19.0+21.8 46.3+£25.5°
Change-point 36.7+18.0 39.6+ 174 38.0+£17.6 82.2+13.9
Last-fired 37.7+171 40.4+16.0 389+16.5 89.7+84

Vanilla Binary 154+53 43.1+181 222+73 50.2+224
Change-point  31.3+7.1 5494113 395+83 72.2413.0
Last-fired 383+16.3 59.6+15.1 458+14.8 86.7+12.5

LSTM Binary 16.8+6.2 34.8+125 221+74 453+21.2
Change-point  31.0+5.1  53.3+£6.5 389450 72.0+13.0
Last-fired 41.3+17.2 573+£159 475+16.1 874+124

GRU Binary 18.7+83 332+127 239+9.6 46.7+234
Change-point  31.2+83 47.+£109 31.2+85 71.6+12.6
Last-fired 40.4£16.5 52.7+16.4 454+16.9 86.6+12.3

SVM Binary 19.44+£9.0 352+127 240+9.2 37.4+£19.0
Change-point  25.6+6.2 51.4+9.5 34.0+7.2 57.8 £15.5
Last-fired 37.0£79 55.5+11.6 44.1£85 87.5+12.1

is not so good at when it comes to the infrequent classes. Overall, there is a
clear hint that that recurrent architectures perform better than HM, NB and
HSMM for most of the cases, while CRF is slightly better than these recurrent
architectures on dataset A.

Table 2 refers to the results obtained on dataset B and shows that SVM is
the best method when adopting binary representation achieving the accuracy of
81.6%. On the other hand, CRF is the best when using the change-point feature
and last-fired representations with accuracy 92.9% and 89.2% respectively. It
can be noted that HMM is not as good as the other methods achieving in the best
case only 81.0% with the change-point representation. The closest successful
model to CRF is Vanilla RNN and again overall RNNs deliver high recall rates
compared to the other methods. Change-point and last-fired representations
give the highest recall results except for CRF.

Table 3 reports the results on dataset C' showing that CRF performs best
for change-point and binary representations obtaining 82.2% and 89.7% respec-
tively. Overall, none of the methods performs well when adopting binary rep-
resentation. The results are slightly better with change-point but clearly better
when applying the last-fired representation. RNNs again give the highest recall
values for all representations. Overall, the results show that RNNs perform
better than HMM, NB and HSMM in all cases, while CRF is slightly better
than RNNs. But in terms of recall, these later outperform all methods for all

10



feature representations. The reason behind this is that RNNs perform better for
imbalanced data compared to CRF. RNNs variants generally perform equally
well.

For abnormal activity detection, we considered LSTM only and compared
against NB, HSMM, HMM, SVM and CRF. TPR and FPR accuracy percentages
are correspondingly; 40.40% and 43.50% for NB, 58.36% and 96.20% for HMM,
68.85% and 32.2% for HSMM, 66.22% and 40.50% for CRF, 72.11% and 44.0%
for One-class SVM and 91.43% and 40.96% for LSTM. We used only last-fired
feature in this experiment. The results indicate that LSTM is the best to prune
false negatives compared to the other methods. Methods like NB, One-class
SVM which do not capture the data order performs the worst. The models
ignore the frequency of the activity, but apply the temporal and contextual
information to make a decision. Results show that LSTM is capable of encoding
the order of activities. Hence, when an activity is introduced in a different
context or in a different order, LSTM can detect such anomalies.

Our current approach may fail to detect abnormalities, when there is grad-
ual deterioration regarding the health of an elderly. We are planning to deal
with this issue in the future while collecting real-world data in which gradual
deterioration can be observed.

5 Conclusion

In this paper, we showed that RNNs perform well on the problem of activity
recognition. They are also able to cope quite well with imbalanced data as
well as anomaly detection which is very important in the context of dementia.
Compared to a number of traditional and popular techniques used for activity
recognition such as SVM, NB, HMM and HSMM, they perform much better,
while remained very competitive with CRF. Furthermore, the empirical exper-
iments showed that the three variants of RNNs generally perform equally well,
but LSTM seems to be slightly better across all datasets used in this study.
Moreover, in terms of representation, there is no clear preference, but last-fired
feature seems to be better, at least on the datasets A and C, compared to the
change-point and binary representations. Overall the study allowed to confirm
that RNNs are very appropriate for activity recognition and abnormal activity
detection. In our future investigations, we will extend RNNs to deep neural
networks. We will also aim at collecting a dataset from a smart home dedicated
to elderly people with dementia to further study behaviour anomalies related
to dementia.
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