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Abstract  

Development of novel low noise Switch-mode power supply designs for high 

fidelity audio power amplifiers  

Nasir 

Today, linear power supplies are widely used to provide the supply voltage rail to an 

audio amplifier and are considered bulky, inefficient and expensive due to the presence 

of various components. In particular, the typical requirements of linear designs call for 

physically large mains transformers, energy storage/filtering inductors and capacitors.  

This imposes a practical limit to the reduction of weight in audio power systems. In 

order to overcome these problems, Switch-mode Power Supplies (SMPS) incorporate 

high speed switching transistors that allow for much smaller power conversion and 

energy storage components to be employed. In addition the low power dissipation of the 

transistors in the saturated and off states results in higher efficiency, improved voltage 

regulation and excellent power factor ratings.  

The primary aim of this research was to develop and characterize a novel low 

noise switch mode power supply for an audio power amplifier. In this thesis, I proposed 

a novel balancing technique to optimize the design of SMPS that elevate the 

performance of converter and help to enhance the efficiency of power supply through 

high speed switching transistors. In fact, the proposed scheme mitigates the noise 

considerably in various converter topologies through different mechanisms. To validate 

the proposed idea, the technique is applied to different converters e.g; PFC boost 

converter, flyback converter and full-bridge converter. The performance of audio 

amplifier is evaluated using designed SMPS to compare with existing linear power 

supply. On the basis of experimental results, the decision has been made that the 

proposed balanced SMPS solution is as good as linear solution. Due to novelty and 

universality of balancing technique, it can provide a new path for researchers in this 

field to utilize the SMPS in all other audio devices by further enhancing its efficiency 

and reducing system noise.  
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1 CHAPTER 1      INTRODUCTION 

This thesis details a research project to develop novel low noise switch mode power 

supply designs for high fidelity audio power amplifiers. 

1.1 Overview 

The audio power amplifier is an electronic device which is used to amplify the audio 

signal in an audio system. The quality of an audio system is measured by the accuracy 

of reproduction of an audio signal. There are various methods to quantify the fidelity of 

audio systems based on the several measures such as frequency response, total harmonic 

distortion and noise (THD+N) (Self 2009). The frequency response measures the 

linearity (reproduction of audio signal without distortion) of an amplifier. It should be 

flat in the frequency range of human hearing (20Hz-20kHz) for a high end audio 

system. On the other hand, the THD is also an important factor to quantify the audio 

system because it measures the performance of an audio system which depends on 

accuracy of the reproduced audio signal. The THD+N should be less than the 0.1% for a 

high fidelity audio system (Duncan 1996). 

The high fidelity performance of an audio system is limited as a result of the noise 

generated by the power supply which interfers with and distorts the audio signal. 

Currently, the linear type of power supply achieves the lowest harmonic distortion in an 

audio output stage. However, it is bulky, inefficient and expensive due to the necessity 

of various components. In particular, a relatively large power transformer is utilized in 

these power supplies to meet the large variation in load current resulting from typically 

large dynamic variations in sound level. Furthermore, these power supplies operate at 

the power line frequency of 50/60Hz which requires other components such as energy 

storage/filtering inductors and smoothing capacitors which are physically large at these 

operating frequencies. This imposes a practical limit on the achievable reduction of 

weight in audio power systems and the large components are costly. In order to 

overcome these limitations, Switch-mode Power Supplies (SMPS) which are able to 

operate at higher operational frequencies have been introduced as the power source in 

many types of electronic system. SMPS incorporate high speed switching transistors 

that allow for much smaller power conversion and energy storage components to be 

employed. In addition the low power dissipation of the transistors in the saturated and 

off states results in higher efficiency, improved voltage regulation and excellent power 
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factor ratings. However, due to the higher switching frequency used in SMPS, the rate 

of change of voltage (dv/dt) and current (di/dt) across the switching power transistors 

causes significant Electromagnetic interference (EMI) emission (Nagrial and Hellany 

1999). Consequently unless extensive shielding is used, which is usually impractical in 

commercial products, the EMI noise interfers with the audio signal leading to distortion 

and a reduction in fidelity. Therefore, at the present time there exists a clear need for 

novel techniques to reduce the affect of EMI noise generated by a SMPS. Thus the 

principal aim of this research project is to investigate techniques for the design of low 

noise switch mode power supplies for audio power amplification.  

1.2 Aims and Objectives 

The primary aim of this research project is to investigate techniques for the design of 

low noise switch mode power supplies for audio power amplification. Whilst the use of 

SMPS in audio amplification is not novel in itself, the contribution will arise from 

design optimisation to achieve the lowest possible harmonic distortion (less than 0.1%) 

in the audio output stage (Duncan 1996). This will allow the Switch Mode Power 

Supplies to be used in the highest-fidelity audio systems such as those produced by the 

company collaborating with this research - Naim Audio. 

It is important to emphasise that EMI noise reduction in SMPS for an audio 

amplifier cannot simply be achieved through additional filtering. The reason is that the 

normal amplitude transients that occur in music audio signals result in variations in load 

impedance which usually makes filter design too complicated and/or impractical. 

Therefore improved SMPS designs must provide alternative solutions to the noise 

production problem.  

     The principal research aim gives rise to a number of key research objectives: 

 Propose a novel technique of internal EMI filter to cope with converter to 

mitigate noise internally. 

 Review and analyse current research in the field.  

 Develop a detailed understanding of the relevant background theory and 

knowledge of the international Electromagnetic Interference (EMI) 

regulatory requirements.  
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 Develop knowledge and skills in the methodical design and experimental 

evaluation of SMPS for audio power applications with emphasis on EMI 

noise reduction techniques.  

 Understand how to translate SMPS designs into optimal printed circuit 

board layouts so as to minimise radiated, conducted and parasitically 

coupled noise.  

 Understand and use appropriate experimental techniques to evaluate and 

characterise SMPS prototype designs. 

 To critically review the project, draw key conclusions and identify 

limitations and scope for future work. 

1.3 Outline of this thesis 

This chapter introduces of the research project and states the aims and objectives of 

proposed investigation.  

Chapter 2 Discusses the theoretical background relating to SMPS design, 

implementation and characterisation.  

Chapter 3 Presents a comprehensive literature review of research topics relevant to this 

project. 

Chapter 4 Describes the  methodology used to develop the novel low noise SMPS 

designs and performance evaluation through simulation and bench characterisation. 

Chapter 5 Presents the experimental results obtained from the performance evaluation 

of the new designs. 

Chapter 6 A discussion of the results, conclusions and suggestions for the future 

research work. 

References and appendices are presented at the end of this thesis. 
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2 CHAPTER 2      THEORETICAL BACKGROUND 

2.1 Introduction 

The basic block diagram of a SMPS is shown in figure 1. The initial stage is input 

rectification and filtering. Input voltage is typically rectified by a diode rectifier and 

then followed by a bulk storage capacitor. The fast power semiconductor switching 

devices such as power MOSFETs or BJTs are used to produce the high frequency 

square wave signal. This signal is then fed to the primary side of a high frequency 

transformer to isolate the source and load. In addition a suitable voltage magnitude can 

be obtained at the secondary side of transformer corresponding to the transformer turns 

ratio. This voltage is then rectified and filtered to obtain the output dc voltage. To obtain 

the regulated output voltage, the feedback circuit is designed to control the switching 

devices (Whittington et al. 1997).    

 

 

Figure 1 : Block Diagram of Switch mode Power Supply (Whittington et al. 1997) 

 

There exist several topologies of SMPS each developed to fulfill the power supply 

requirements in various applications. In this chapter these different SMPS topologies 

are evaluated in order to identify the most suitable generic design for the current 

research project.  

Topologies of SMPS can be classified into two major categories on the basis of 

isolation: 
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2.2 Non-Isolated SMPS 

Which is typically further classified into two sub-types  

2.2.1 Step-down (Buck) regulator  

In this type of converter, the average output voltage is lower than the input voltage. 

(Mohan 2011). The basic topology of this converter is shown in figure 2.    

In this topology the input voltage is switched at high frequency by placing the 

switch Q1 in series with the input voltage. During the steady state operation of the 

circuit, the operation can be divided into two timing intervals the ON time and the OFF 

time. During the ON time interval, the diode D1 is reverse biased and the circuit acts as 

a low pass LC filter. Also the input voltage is supplying the energy to the output 

through the inductor. The inductor is charged during this time interval. While, during 

the OFF time interval, the diode D1 is forward biased and the inductor acts as source to 

supply the power to the load  RL through the diode. 

 

 

Figure 2: Step-down Converter 

The equation to find the output voltage is given as  

 

VOUT  =  d . VIN                                                                                   (1)                             

d =
TON

TS
                                                                                               (2)                             
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d = duty cycle,            TON= ON Period,                   TS  = Switching Period 

Majid et al. (2012) analyzed the EMI noise of the buck converter and concluded 

that the size of EMI filter can be greatly reduced in the case of higher switching 

frequencies (range of MHz).  

2.2.2 Step-up(Boost) converter 

In this type of converter, the average output voltage is typically higher than the input 

voltage (Mohan et al. 2007). The basic topology of this converter is shown in figure 3.    

In this topology the input voltage is switched at high frequency by placing the 

switch in parallel with the input voltage. During the steady state operation, the circuit 

can be divided into two timing intervals the ON time and OFF time. During the ON 

time interval, the diode D1 is reverse biased and the supply voltage provides the power 

to the inductor. The inductor is charged during this time interval. While, during the OFF 

time interval, the diode D1 is forward biased and both (input voltage and inductor) 

supply the voltage to the output. 

 

Figure 3: Step-up Converter 

The equation to find the output voltage is given as  

VOUT =    
VIN

(1−d)
                                                                                    (3)                                                            

d =
TON

TS
                                                                                               (4)                             

Wang et al. (2007) analysed the EMI performance of the boost converter model. They 

proposed the general balance technique to minimize the common-mode noise. In this 

technique, two methods were introduced:  
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Reduction of CM noise due to the abrupt change of MOSFET source voltage 

In this method, the boost inductor is split into two parts to balance the parasitic 

capacitance of source/drain with the ground. As a result, the CM (common mode) noise 

is relatively reduced compared to the unbalanced converter (Wang et al. (2007). 

Reduction of CM noise due to output capacitor voltage  

There are two possible methods to reduce the CM noise due to output capacitor voltage.  

Reduce the parasitic capacitance between the load and ground 

Reduce the ESL (Equivalent series inductor) and ESR (Equivalent series resistor) 

of output capacitors. 

2.3 Isolated Converters 

The isolated converter can be classified into two types the asymmetrical and 

symmetrical converters as shown in figure 4. This classification is based on their 

magnetic cycle swing in the B-H plot as shown in figure 5. Asymmetrical converters are 

those in which the magnetic operating point of the transformer remains in the same 

quadrant. The other converters are known as symmetrical. 

 

 

Figure 4: Isolated Converters 
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Figure 5: B-H plot of magnetic (Sullivan 1995)  

2.3.1 Asymmetrical Converters 

2.3.1.1 Fly-back converter 

In a fly-back converter, the transformer is used for isolation to isolate the output voltage 

and the input voltage source. The basic topology of this converter is shown in figure 6.    

 

Figure 6: flyback converter 

 

When the switch Q1 is ON, the transformer stores the energy in the primary Lp 

inductance and the energy stored in transformer is transferred to the secondary output 

when the switch is OFF.    
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The equation to find the output voltage is given by  

VOUT =  
VIN .d

n.  (1−d)
                                                                                  (5)                             

d =
TON

TS
                                                                                               (6)                             

n = Np / Ns                                                                                                                          (7)                                             

         Np= Number of primary windings 

        Ns= Number of secondary windings 

Yang et.al (2013) analysed the transformer of an isolated converter to try and 

reduce the common mode EMI noise.  They identified the advantages and disadvantages 

of different methods of transformer shielding for mitigating of common mode EMI 

noise. They further proposed that the balance concept based on double shielding can be 

used to minimize common mode EMI. It was proved experimentally that this technique 

significantly reduced  EMI noise compared to other shielding techniques (Yang et.al 

2013).  

 

2.3.1.2 Forward converter 

In a forward converter, the transformer is used to isolate the output voltage and the 

input voltage source. The basic topology of this converter is shown in figure 7. 

When the switch is in the ON state, the input source energy transfers directly to 

the load RL through the diode D1 and inductor. Whilst, when the switch is OFF, the 

inductor provides the energy to the load through the diode D2. 
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Figure 7: forward converter 

 

The equation to find the output voltage is given as  

VOUT =  
VIN .d

n
                                                                                      (8)                                                                            

d =
TON

TS
                                                                                               (9)                             

n = Np / Ns                                                                                                          (10)    

        Np = Number of primary turns 

        Ns = Number of secondary turns 

                    

Yazdani et. al (2015) examined  the mitigation technique of conducted EMI noise in the 

forward converter and modified the forward converter to achieve a symmetric forward 

converter. They demonstrated that greater attenuation of EMI noise could be achieved at 

a higher operational frequency in the symmetrical converter as compared to a 

conventional converter. They also showed that using a coupled inductor in the 

symmetric converter helps to minimize the output voltage noise. 

2.3.2 Symmetrical Converters 

In these types of converters, an even number of switches are always used to exploit the 

transformer’s magnetic circuit in a better way as compared to asymmetrical converters. 
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The advantage of using the even number of switches is to run the transformer core with 

equal and opposite flux. 

2.3.2.1 Push/Pull converter 

In a Push/Pull converter, the transformer is used for isolation to isolate the output 

voltage and the input voltage source. Moreover, dot notation is commonly used in 

transformer schematic. The dot node of transformer have same instantanous polarity 

(both dot end are in phase). The basic topology of this converter is shown in figure 8.     

The input voltage is switched across the primary side of the transformer by 

switching the two switches Q1 and Q2 alternately for an equal time (Pressman et al. 

2009). As a result, a pulsating voltage is produced across the primary winding of the 

transformer. The transformer is used for isolation and also to step down the primary 

voltage to the required output level.  

During the ON interval (TON) of switch Q1, a positive voltage is applied across 

the dot end of transformer and the non-dot end is negative. As a result, the upper diode 

D6 acts as conducting (forward-biased) and lower diode D5 is not-conductive (reverse-

biased). The forward biased diode D6 provides the path to transfer the energy from the 

transformer secondary side to the output load and inductor. The switch Q1 is turned 

OFF at the end of the TON period and the next interval is the TOFF period. During the 

OFF time interval, Q1 and Q2 are OFF and this time is called a ‘dead time’. This dead 

time is necessary in order to avoid simultaneously conduction of both switches. During 

this dead time, the leakage energy stored in the transformer primary is dissipated 

through the body diode of the switch and the diode D5 also becomes forward-biased on 

the secondary side of the transformer. The diodes D5 and D6 are both conducting 

during the dead-time providing a path for the inductor current. The inductor current is 

split into two parts and passes through the secondary transformer windings (NS1 and 

NS2). Thus the voltage applied to the transformer’s secondary windings is equal and 

opposite. Consequently, the practical voltage across the secondary is zero and a constant 

flux density is produced across the transformer core. In the similar way, the Q2 switch 

works for the next half period of switching frequency.   
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Figure 8: Push-pull converter 

 

The equation to find the output voltage is given as  

VOUT =  
VIN .  2 .  d

n
                                                                                (11)                                                                

d =
TON

TS
                                                                                              (12)                                

n = Np / Ns                                                                                                          (13)      

 

        Np = Number of primary turns 

        Ns = Number of secondary turns                         

2.3.2.2 Half-bridge converter 

In a Half-bridge converter, the transformer is used for isolation to isolate the output 

voltage (Vout) and the input voltage source (Vin). The basic topology of this converter 

is shown in figure 9.    

As shown in the figure 9, one leg of bridge is constructed by transistors Q1 and 

Q2, while the other leg of a bridge is formed by capacitor C3 and C4 (Maniktala 2012). 

As a result this configuration is called half-bridge converter. 

The input voltage is switched across the primary of the transformer by switching 

the two switches Q1 and Q2 alternately for equal times. In a result, a pulsating voltage 
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is produced across the primary of transformer. The transformer is used for isolation and 

also to step down the primary voltage to the required output level. 

During steady state operation, the capacitors C3 and C4 used in half bridge 

converters are equal and charge to equal voltages of half the input voltage. During the 

time period TON, the upper switch Q1 is ON, which results in the transformer’s 

primary side (dot end) becoming positive and the other end of the primary connected to 

the intersection of capacitors (C3 and C4). Therefore the voltage across the 

transformer’s primary side winding is the half of VIN during TON period. The 

transformer’s primary side (dot end) is connected to the VIN positive and the other end 

is at half the potential of VIN. On the secondary side of transformer, the diode D3 

becomes forward biased and diode D4 becomes reverse biased. The diode D3 provides 

the path to transfer the transformer secondary energy NS1 to the load through the 

inductor. As a result, the voltage across the inductor L is equal to the difference of 

secondary voltage and output voltage. The switch Q1 is turned OFF at the end of the 

TON period and the next interval is TOFF period. During the OFF time interval, Q1 and 

Q2 are OFF and this time is called a dead time. This dead time is necessary in order to 

avoid simultaneous conduction of both switches (Q1 and Q2). 

 

Figure 9: half-bridge converter 

 

During the OFF time interval TOFF, the leakage energy stored in the transformer 

primary is dissipated through the body diode of the switch Q2 and the diode D4 also 

becomes forward-biased on the secondary side of transformer. The diodes D3 and D4 

are both conducting during dead-time and provide a path for the inductor current. The 

inductor current is split into two parts and passes through the secondary transformer 
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windings (NS1 and NS2). Thus the voltage applied to the transformer secondary 

windings is equal and opposite. Consequently, the voltage across the secondary is zero 

and constant flux density is produced across the transformer core. On the other hand, 

the voltage across the inductor L is equal to the output voltage in the reverse direction. 

Therefore, the inductor current decreases linearly during this time.  

For the next half cycle of time period, the switch Q2 turns ON, which results in 

the transformer primary’s side (dot end) connects to negative potential of input voltage 

and the other end of transformer primary connects to the intersection of capacitors (C3 

and C4). Therefore the voltage across the transformer primary is half of VIN in the 

reverse direction during the TON period. Q2 turns OFF after the TON period and next 

interval is TOFF. During the OFF time interval, Q1 and Q2 are OFF to avoid the 

simultaneously conduction of both switches. In similar way, the next cycle repeats to 

turn ON and OFF switches Q1 and Q2 alternately for the half of cycle.   

The equation to find the output voltage is given as  

VOUT =  
VIN .d

n
                                                                                     (14)                                                                  

d =
TON

TS
                                                                                              (15)                             

n = Np / Ns                                                                                                          (16)                                                                 

2.3.2.3 Full-bridge converter 

In a Full-bridge converter, the transformer is used for isolation to isolate the output 

voltage and the input voltage source. The basic topology of this converter is shown in 

figure 10.    

As shown in figure 10, the switches Q1 and Q4 form one leg of the bridge and 

switches Q3 and Q2 formed the other leg (Billings and Morey 2010). The common leg 

of both transistors Q1 and Q4 is connected to transformer’s primary dot end and Q2 and 

Q3 is connected to the other end. As a result, the applied voltage across primary is 

pulsating AC voltage. The transformer function is to provide the isolation between input 

and output voltages as well as step down the pulsating voltage up to the required output 

level.   

During the ON time interval, the switches Q1 Q2 turn ON, which results in the 

primary (dot end) to connect the positive potential of VIN and the other end to the 



 

 
15 

negative of VIN. On the secondary side of transformer, D3 becomes forward-biased and 

the diode D4 becomes reverse biased.  Also the diode D3 provides a path to transfer the 

transformer secondary energy NS1 to the load through the inductor. As a result, voltage 

across the inductor L is equal to the difference of secondary voltage and output voltage. 

The switches Q1 Q2 become turned OFF at the end of TON period and the next 

interval is TOFF period. During the TOFF period, all four switches (Q1 Q2 and Q3 Q4) 

are OFF and this time is called a dead time. This dead time is necessary in order to 

avoid simultaneously conduction of both the switches. 

During the OFF interval of switches (Q1 Q2), the leakage energy stored in the 

transformer primary is dissipated through the body diode of switch pair Q3 Q4 and the 

diode D4 also become forward-biased on the secondary side of transformer. The diodes 

D3 and D4 are both conducting during dead-time and provide a path to the inductor 

current. The inductor current is split into two parts and passes through the secondary 

transformer windings (NS1 and NS2). Thus the voltage applied to the transformer 

secondary windings is equal and opposite. Consequently, the practical voltage across 

the secondary side is zero and constant flux density is produced across the transformer 

core. On the other hand, the voltage across the inductor L is equal to the output voltage 

in the reverse direction. Therefore, inductor current decreases linearly during this time. 

For the next half time interval, switches Q3 Q4 turn ON, which results in the 

primary (dot end) to connect the negative potential of VIN and the other end to the 

positive of VIN. On the secondary side of transformer, D4 becomes forward-biased and 

the diode D3 becomes reverse biased. Also the diode D4 provides a path to transfer the 

transformer secondary energy NS2 to the load through the inductor. As a result, the 

voltage across the inductor L is equal to the difference of secondary voltage and output 

voltage. The switches Q3 Q4 become turned OFF at the end of TON period. In a similar 

way, the next cycle repeats to turn ON and OFF switches Q1 Q2 and Q3 Q4.   



 

 
16 

 

Figure 10:Full-bridge converter 

 

The equation to find the output voltage is given as  

VOUT =  
2.  VIN .  d

n
                                                                                (17)                                                                                          

d =
TON

TS
                                                                                              (18)                             

n = Np / Ns                                                                                                          (19)                             

 

2.4 Power factor correction 

In the initial stage of SMPS, the input circuit typically consists of a full-wave rectifier 

followed by a bulk capacitor as shown in figure 11. The peak voltage of input (Vin) sine 

wave is maintained by a bulk capacitor until the following peak appears to recharge it as 

shown in figure 12. During the peaks of input voltage waveform (shown in blue colour) 

, the current (shown in green colour) is drawn from the input and this current must 

possess sufficient energy to withstand the load until the following peak (as shown in 

figure 12). As a result, the power factor of a power supply is reduced and harmonic 

content becomes high. The regulatory bodies set a standard defined by EN61000-3-2 to 

impose the restriction on line current harmonic pollution. Therefore, it has become a 

standard practice to modify the power supply using a power factor correction (PFC) 

circuit. 
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Figure 11: Full-wave rectifier  

 

 

Figure 12: Waveform of full-wave rectifier 

 

The primary aim of a PFC circuit is to decrease the harmonic elements of mains current. 

PFC circuits can be categorized as active and passive circuits. This classification 

depends on components used in the circuit. In active PFC circuits, inductors and active 

switching devices are normally used and the output voltage is regulated for line 

variations. On the other hand, only passive components are used in passive PFC and 

output voltage has line variations as it is not regulated.   
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2.4.1 Passive PFC Converter 

In passive PFC circuits, the passive components with Diode Bridge are used to improve 

the power factor correction. There are many possible schemes to implement passive 

PFC circuits such as Passive PFC with Inductor on the DC Side or the AC Side (figure 

13). The advantages of passive PFC circuits are simple design, no high frequency EMI 

noise and reliability (Garcia et al. 2003). However, there is a practical limitation of 

these filters due to bulky size of passive components, absence of voltage regulation and 

line frequency noise (Suzuki et al. 1997).      

 

 

Figure 13: (a) Passive PFC with Inductor on the DC Side (b) Passive PFC with Inductor on the AC 

Side PFC 

2.4.2 Active PFC Converter 

The active PFC can be implemented by incorporating buck, boost or a buck-boost 

converter between the input filtering capacitor and diode bridge rectifier. It is operated 

by a control method in which switches are precisely controlled to shape the input 

current to follow input voltage. The switching frequencies of these circuits are much 

higher as compared to line frequency and the output voltage is also regulated to 

minimize the output ripple voltage. The output voltage is regulated in all types of active 

PFC circuit by setting it lower or higher depending on converter type used. In a buck 

converter, the output voltage is set to a lower value than the maximum amplitude of 

input voltage. While in a boost converter, the output voltage is set to a higher value as 
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compared to maximum value of input voltage. The output voltage can be set to a lower 

or a higher value in case of a buck-boost converter.  

These converters can be classified further into three types based on inductor 

current continuity and discontinuity. This classification includes continuous conduction 

mode (CCM) , discontinuous conduction mode (DCM) and critical conduction mode 

(CRM) (Chen and Chen 2015). In CCM, the current through the inductor during one 

switching cycle can never reach zero. While in DCM, the current through the inductor 

reaches zero for some time during each switching cycle interval. However, in critical 

mode, the conduction is in between continuous and discontinuous mode.   

2.4.2.1 Buck Converter based Active PFC 

In this topology, the input voltage is stepped down to the output voltage and the output 

voltage is regulated as shown in figure 14. It works only if the input voltage is higher as 

compared to the set regulated output voltage. During a time interval of t1 to t2, there is 

no input current flowing in a circuit as shown in figure 15. That causes distortion of the 

line input current near the zero crossing point of the input voltage. The input current is 

also discontinuous due to the high switching frequency switch that interrupts the line 

current in every switching period. As a result, the high frequency components 

accompanied in a line current would increase overall EMI noise in a circuit. 

 

Figure 14:Buck PFC Converter 
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Figure 15:Waveforms of Buck PFC Converter 

2.4.2.2 Boost Converter based Active PFC 

The boost converter topology is most common for PFC circuits. It operates in three 

modes - continuous conduction mode (CCM), discontinuous conduction mode (DCM) 

and transition mode control. The transition mode control is also known as critical 

conduction mode (CRM) which works at the limit between CCM and DCM by 

controlling the switching frequency with a controller. CCM boost converter and its 

related waveforms are shown in figure 16 and figure 17 (Lai and Chen 1993).  

In this topology, the input voltage is step up and the output voltage is regulated 

through controlling  the switching frequency of a converter. It operates throughout the 

line frequency cycle and also there is no crossover distortion for input current. As a 

result, the line current has no distortion near the zero crossing points of the input 

voltage. The input current follows the continuous conduction as an inductor is employed 
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in series with the input voltage and not disturbed by high frequency switching. 

Therefore, the input current is not affected with higher switching frequency components 

which results in lower EMI.  

 

Figure 16:Boost PFC converter (Lai and Chen 1993) 

 

 

Figure 17:Waveforms of Boost PFC converter (Lai and Chen 1993) 
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Figure 18: Waveforms of CCM and CRM Boost PFC converter (Lai and Chen 1993) 

 

In a boost PFC converter, the inductor current can be either in continuous or 

discontinuous mode depending on  the type of controller technique used as shown in 

figure 18. In comparison to CCM or CRM techniques, the DCM converter operates with 

fixed switching frequency and has inductor current in discontinuous mode. It also 

introduces large peak currents due to discontinuous mode over every cycle of switching 

period. Moreover, it generates larger EMI noise due to high frequency components 

incorporated within it. Therefore, it is not used commonly for PFC circuit. In CRM 

mode converter, a hysteresis control of variable frequency with zero current boundary is 

normally used. This controller has stable input current control and also reduces the 

losses of reverse recovery rectifier. In this mode, the ON-time remains constant while 

the OFF-time is changing according to set of input and output voltage regulation 

required. As a result, when input voltage is lowest, the switching frequency is highest 

and vice versa.     

The generation of conducted EMI noise in boost converter operating in DCM and 

CCM have been presented in the literature (Ji et al. 2015). In order to reduce the overall 

size of a converter, the integration of boost inductor and EMI filter have been proposed 
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and evaluated (Deng et al. 2014). The reported results showed the effectiveness of 

integration experimentally.  

2.4.2.3 Buck-Boost Converter based Active PFC 

 

Figure 19:Buck-boost PFC converter 

 

 

Figure 20:buck-boost PFC converter 
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In buck-boost converter (figure 19 and figure 20), the input voltage can be step up or 

step down according to the required output voltage. There is no crossover distortion for 

input current as the converter operates throughout the line frequency cycle as shown in 

figure 19.  As a result, no distortion in line current near zero voltage crossing points 

occurs. Also input current has discontinuity due to switching component switches in 

every cycle. Furthermore, a high-frequency component is added in the input current 

path of the converter that generates additional EMI noise.        

2.5 Power supply requirement for audio amplifier 

The power requirement of an audio amplifier is as follows: 

Dual rail supply voltage (V)         =   ± 48 V 

Max. Current (I)                           =    6A 

Max. Power (P)                            =    1152W 

 

The detailed specification of power supply is as follows 

INPUT: 

AC input voltage range                                      90VAC to 270VAC 

AC input frequency                                           50Hz to 60Hz 

 

OUTPUT: 

Normal DC output voltage                       ±48  V    

Tolerance DC Voltage                             ± 2% 

Maximum load current                           6A 

Maximum Output power                        1152W 

 

2.6 Summary 

The converter topologies can also be classified on the basis of the needed power 

requirements. Non-isolated converters are unsuitable for high voltage and high power 

application because of the lack of isolation between the input and output voltage. These 

converters have very limited use producing only a single output over a limited output 

range. Conversely, these constraints can be removed by addition of transformers as in 

isolated converters. In the isolated converter, the fly-back and forward converter are 
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practicable up to 150 watts of output power level. The limitations (output power) of 

these converters are due to factors, such as, utilization of the magnetic (transformer) 

core and maximum voltage stress across the switch during the OFF time interval. On the 

other hand, push-pull topology is not suitable for high input voltage application 

(190VAC-230VAC) due to high voltage stress across the switch (2×Vin) and 50% 

utilization of the transformer primary windings. The magnetic core is not utilized 

completely in this type of converter because full input voltage applied across the 

transformer winding is in one direction when any one switch is conducting. These 

reasons make it better suited for low-voltage applications and power ratings up to 

500W. The half-bridge converter is particularly suited for high voltage application as 

the maximum voltage stress of either switch is equal to the input voltage and fully 

utilizes the transformer primary windings. In this converter, the primary voltage of the 

transformer is equal to half of the input voltage VIN when either switch is ON which 

made this converter more suitable for power levels up to 500W. Moreover, the full-

bridge converter is particularly suited for high input voltage applications for reasons, 

such as, maximum voltage stress of either switch is equal to the input voltage and 

utilization of the high frequency transformer is complete.  In this converter, the primary 

voltage of transformer is equal to the input voltage VIN during either switch is ON 

which made this converter more suitable for power levels exceeding 500W. 

The PFC topology can be selected on the basis of minimum EMI noise generated 

within a converter. The passive PFC are not suitable due to bulky size of passive 

components, absence of voltage regulation, expensive components and line frequency 

noise. On the other hand, these constraints can be removed by an active PFC converter. 

In the active buck and buck-boost PFC converter, input current has discontinuity due to 

switching component switches in every cycle of switching period. As a result, the high 

frequency components accompanied within a converter. This reason made it unsuitable 

for low noise SMPS. Therefore, PFC boost converter is particularly suited for lower 

EMI noise converter application.   
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3 CHAPTER 3      LITERATURE REVIEW 

3.1 Introduction 

An essential requirement for electrical and electronic equipment is for the power supply 

to provide a reliable and regulated output to the load. The main issues that influence the 

design phase of a power supply are the power performance requirement, weight, 

reliability and cost (Brown 1994). These issues have in the most part been resolved with 

the development of high voltage power transistors, which have made it possible to 

replace the linear power supply with a high switching frequency switch-mode power 

supply (SMPS). The fast power semiconductor switching devices such as power 

MOSFETs or IGBTs are mostly used in SMPS and the switching frequency extends 

from tens to hundred of kilohertz. Due to the higher switching frequency used in SMPS, 

the change of dv/dt and di/dt across the power switches causes significant 

Electromagnetic interference (EMI) emission (Christopoulos 1992; Nagrial and 

Hellany1999). It is therefore generally necessary to limit the EMI emission and 

compliance with EMC standards. A number of research papers (Chung et al. 

1998;Shoyama et al. 2003; Wang et al. 2013; Bera et al. 1999; Britto et. al 2012; 

Cochrane et al. 2003; Omata et al., 2014; Xie et al. 2015; Zhou et al. 2016 ; Tamate et 

al. 2010; Hamill and Krein 1999; Wang et al. 1997) have been published to discuss the 

mitigation techniques of Electromagnetic Interference (EMI). In this chapter, a review 

has been made on several EMI mitigation techniques proposed in the literature for 

SMPS.  

 

There are several questions to assess in this chapter are as follows 

 Why it is important to minimise the EMI in SMPS for audio systems? 

 What techniques are available to reduce EMI in SMPS? 

 What are the most appropriate techniques to mitigate EMI for audio 

systems? 

 Are potential solutions constrained by the need for compliance with EMI 

regulatory requirements?  
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3.2 Electromagnetic Interference (EMI) 

Electromagnetic interference is defined as an electromagnetic disturbance that degrades 

or limits the performance of electronic and electrical equipment (Paul 2006). The major 

source of EMI emission in SMPS is due to the high switching frequency of power 

MOSFETs or IGBTs. There are two types of switching techniques used in SMPS to 

control the switches: hard switching and soft switching. In hard switching techniques, 

the change of high dv/dt and di/dt is the major cause of high switching losses as well as 

high EMI noise. Conversely, soft switching techniques minimize the switching losses 

due to the switch turn ON at zero voltage and the switch turn OFF at zero current with 

the help of resonant techniques. Several papers have been published to discuss the soft 

switching technique that results in substantial minimization of switching losses (Lin 

2016; Yazdani and Rahmani 2014; Abbasi et al. 2014; Hua and Lee 1991; Lee and 

Moon 2013). 

Brown (1994) classified the noise into two categories (i) radiated noise which can 

be coupled between components through the surrounding air and (ii) conducted noise 

which propagates through interconnecting wires and PCB tracks. The major source of 

radiated noise in SMPS is due to current flow through the conductor at high frequencies. 

According to Ampere’s law, an alternating current flowing through the conductor will 

generate an electromagnetic field around it and this law defines the generation of 

radiated noise in a SMPS. The control section for the power switches is also a source of 

radiated noise but is insignificant by comparison to the main converter section (Bausiere 

et al. 1993). On the other hand, the radiated emission from the converter side has 

enough energy to affect the proper functioning of the control section (Hellany and 

Nagrial 2001). Billings (1989) proposed that proper PCB track layout and wiring 

practices could improve the performance of SMPS by minimizing the propagation of 

radiated noise. 

Conducted EMI noise is further divided into two sub-categories (i) common mode 

interference (CM) and (ii) differential mode interference (DM). The generation and 

coupling mechanisms are different for both sub-types of interference. The common 

mode interference is typically caused by parasitic couplings (such as inductive and 

capacitive) occurring within the SMPS (Switch-mode Power Supply) and it flows 

through the ground wire and returns back via phase and neutral lines. The differential 

mode interference is mainly due to the switching action of the transistor and flows 

through the neutral line and returns back via phase line. Several articles have attempted 
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to explain the generation of EMI noise in different types of converter (Gonzalez et al. 

2003). The generation of EMI (Electromagnetic Interference) noise in the Step-up 

converter has been discussed by (Zhang et al. 1997; Wang et al. 2003; Crebier et al. 

1999; Pengju et al. 2012; Ji et al. 2015). On the other hand, Nave (1991) and Mitchell 

(1999) deal with buck converters, Ninomiya et al. (1987) and (Paramesh and von 

Jouanne 2001; Makda and Nymand 2014) deal with the forward converter, and 

(Ninomiya and Harada 1980; Karvonen and Thiringer 2011; Longtao et al. 2012; Patel 

2008) deal with offline flyback converters.  

 

 

Figure 21: Noise source and propagation path for converter 

 

The EMI noise measurement, sources and propagation coupling paths are shown 

in figure 21. It also uses a LISN (Line Impedance stabilization network) used for 

measurement of EMI noise using a spectrum analyser (De Beer et al. 2013). There are 

two ways to mitigate EMI noise in a converter either reduction at its source or along the 

propagation path. Various mechanisms are available to reduce the noise at source 

source. However, the simplest approach is to reduce the noise along the conduction path 

by incorporating an EMI filter. EMI noise reduction techniques are generally classified 

either as noise source mitigation scheme or noise propagation mitigation scheme. The 

noise source mitigation scheme can be subdivided into different schemes as discussed in 

next section. The noise propagation scheme can be also further sub-divided on the basis 

of methods used to mitigate it through a separate circuit located at the front-end of a 

converter or incorporated with in a converter. The former is known as external EMI 
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filter. While the later one is called as an internal EMI filter. The external EMI filter can 

be subdivided into active, passive and hybrid EMI filter. The internal EMI filter can be 

designed in a way that noise can circulate within a converter. 

3.3 EMI Noise source mitigation 

There are several benefits of employed noise source mitigation scheme within a 

converter such as reducing size, cost and better performance of SMPS. It minimizes 

noise interference between controller and noise sensitive components that helps to avoid 

malfunction of a converter. The various methods to mitigate noise at source point of a 

converter are as follows proper circuit design, appropriate PCB layout, selecting 

appropriate components, selecting switching frequency, switching control techniques, 

switching transition modification and interleaving converter. 

3.3.1 Proper circuit design 

The EMI noise generation can be controlled and minimized by an appropriate circuit 

design. It is therefore necessary to determine the mechanism of noise generation in a 

circuit. The main source of CM noise generation is occurrence of parasitic capacitance 

due to the switching components heat-sink being attached to ground (Sinclair et al. 

1993). However, the connection of a heat-sink with low noise node can mitigate EMI 

noise significantly as illustrated in figure 22. However, the heat-sink usually needs to be 

connected to ground to fulfil safety requirements. To solve this issue, Knurek (1988) 

proposed a novel method by introducing a shielding layer between insulators of a heat-

sink. The heat-sink is attached to ground and the shielding layer is connected to a quiet 

node (neutral line). The thermal performance of the heat-sink will be reduced due to the 

shielding layer used in this scheme. In some other cases, the noise produced by voltage 

switching can be reduced by relocating component in a circuit. The modified forward 

converter with rearrangement of its component is shown in figure 23. In the modified 

converter, the output filter inductor is moved to the negative rail of the output voltage 

that provides the transition of voltage (dv/dt) across diode equal to zero. In a similar 

way, the MOSFET can be rearranged to the upper position of primary side that provides 

constant voltage potential across the drain of MOSFET. This requires an additional 

component and complexity in a circuit to design the high-side driver for the MOSFET. 

Other researchers (Sinclair et al. 1993) have proposed methods to minimize current 

flowing in the parasitic capacitance by employing a heat-sink connected to ground 
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through an additional resistor.  This scheme leads to dissipation of the current in an 

additional resistor and as a consequence minimized CM noise flow to ground.  

 

 

Figure 22: Forward converter (a) connection of heat-sink with ground (b) connection of heat-sink 

with quite node (Sinclair et al. 1993) 

 

 

Figure 23: Forward converter (a) conventional method (b) modified with rearrangement of its 

components (Knurek 1988) 

3.3.2 Appropriate PCB Layout 

A number of research articles have been reported which discuss the EMI noise issues 

related to circuit layout and design schemes (Bhargava et al. 2011; Wu and Tse 1996; 

Fluke 1991; Pahlevaninezhad et al. 2014). They have proposed keeping leads of 

component as small as possible to minimize parasitic inductances of PCB. The lower 

parasitic inductance of a PCB will not only help to reduce ringing of voltage across 

switching devices but also results in lowering the amplitude of EMI noise. They 

discussed the effect of PCB layout on EMI noise in a converter. They suggested placing 
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of control circuit far away from noise source components would help to keep a distance 

between noise source (switching devices) and noise sensitive parts (control section) for 

prevention of disturbances within a converter. They also discussed issues related to 

sharing common ground in different parts of circuit. The noise generated due to one 

circuit may be coupled to other part of circuit through a common ground connection. 

The single-point grounding connections have been proposed to avoid noise coupling in 

different circuit modules of a converter.  Also proper PCB design can help to reduce the 

filter size for mitigation of noise up to desired level (to meet EMI standard). Zhaoming 

et al. (2000) proposed different tools for PCB layout to minimize EMI generation in a 

circuit.   

3.3.3 Selecting appropriate components 

As previously mentioned the major source for CM noise generation is the occurrence of 

parasitic capacitance between switching components and ground. These parasitic 

capacitances arise due to the ground coupled heat-sink attached to the switching 

devices. Knurek (1988) compared different types of insulators used for heat-sinking. He 

concluded that aluminium oxide insulators have six times less dielectric constant as 

compared to commonly used silicon rubber insulators. Also, he experimentally proven 

that conducted EMI noise can be improved up to 10dBuV in the case of aluminium 

oxide insulator. Diode reverse recovery current also affects the EMI noise performance 

of a converter. EMI noise can be reduced by incorporating a diode with reduced 

recovery current. The performance of different types of diode with minimum reverse 

recovery current has been evaluated in boost converter (Spiazzi et al. 2003). The 

experimental results proved that using a SiC (silicon carbide) diode can help to reduce 

high frequency EMI noise. A similar method has been proposed by Shekhawat et al. 

(2002). They demonstrated that introducing a soft recovery diode in a PFC boost 

converter reduces noise significantly in the high frequency range.                

3.3.4 Selecting switching frequency 

EMI noise also depends on the operating switching frequency of a converter. A 

converter operating at lower switching frequency has the advantage of reduced EMI 

noise. However the overall size of the converter increases due to the typical bulky 

passive components needed for lower frequency operation. Rossetto et al. (2000) 
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suggested that a switching frequency of 70kHz provides the first two harmonics below 

the lower limit of frequency range for conducted EMI scan. As a result, the passive EMI 

filter size can be reduced significantly. A PFC boost converter with low switching 

frequency of 100 Hz was reported to minimize conducted EMI noise (Rossetto et al. 

2000). In addition, a first-order filter was used to meet the requirement of EMI noise 

standards.  

3.3.5 Switching techniques  

Switching techniques play an important role on the behaviour of EMI noise. The main 

purpose of the switching technique is to control the flow of power and regulated output 

voltage. The most common technique used to control the switching MOSFET in a 

converter is called Pulse Width modulation (PWM). Normally a constant switching 

frequency is used with varied pulse width (duty cycle) to regulate the output voltage. 

However, the use of constant frequency increases the generation of spikes and 

associated harmonics. Therefore, a widely used scheme known as the spread spectrum 

technique has been implemented in SMPS to distribute spread EMI noise over a range 

of frequencies (Fardoun and Ismail 2009; Gonzalez et al.2007). These techniques use a 

variable switching frequency over the operational bandwidth to spread the noise. 

Comparison of fixed frequency (30-KHz) and variable switching frequency (30∼166 

kHz) has been evaluated in research paper by (Albach 1986). They concluded that 

conducted EMI noise of 18dBuV has been improved by implementing frequency 

modulation. A similar approach of frequency modulation has been proposed by Lin and 

Chen (1994) and Lin (1992). Furthermore, the EMI spectrum has been improved by 

approximately 10 dBuV using a frequency modulation method in a quasi-resonant dc-dc 

converter (Vilathgamuwa et al. 1999). They also proposed a method of frequency 

modulation to modulate switching frequency around an average value set by a control 

loop. Rossetto et al. (2000), presented a PFC boost converter with modulation of 

switching frequency at 100 Hz. In this approach the switching frequency of the 

modulation is set to a minimum value when the value of input current is highest. This 

scheme was shown to reduce EMI noise and to minimize switching losses. A 

comparison of different modulation techniques such as triangular, sinusoidal and 

exponential schemes with low and high switching frequencies has been implemented 

and presented by Balcells et al. (2005). They concluded that to accomplish a wide 

spread of the EMI noise spectrum, a greater deviation is required for low switching 
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frequencies compared to high switching frequencies. However, it was determined that 

periodic modulation techniques have potential to control more precisely the spread of 

EMI noise in a desired range of frequency bands when compared non-periodic 

modulation techniques. The noise at required frequencies can also be minimized with 

periodic modulation techniques. 

A comparison of EMI performance for different control schemes was presented 

by Mahdavi et al. (1996). These schemes are synchronous and asynchronous PWM, 

hysteresis control with fixed and varying band, and constant time-on methods. They 

concluded that the performance of fixed band hysteresis control is superior to other 

schemes. However, the selection of control parameters has not been discussed with 

respect of effectiveness of reduction of EMI noise. The chaotic operations of SMPS are 

also used to spread the EMI noise emission over the range of frequencies. There are two 

different methods to implement chaotic behaviour in a converter. (i) a separate chaos 

generator is implemented into the PWM control technique (Mukherjee et al. 2005; 

Aruna and Premalatha 2011). (ii) the chaotic operation with in  a power converter is 

designed (Li et al. 2008; Banerjee et al. 2002; Li et al. 2009). Furthermore, the chaos is 

implemented in Integrated circuit (IC) of PWM control based converter (Mukherjee et 

al. 2008). Different frequency modulation schemes  have been proposed in the literature 

to minimize EMI noise known as the frequency hopping scheme (Stone and Chambers 

1995), sigma delta modulation (Paramesh and Jouanne 2001), bi-frequency scheme 

(Zhang et al. 1994), and multi-step optimal converter (Quevedo and Goodwin 2004). 

These schemes have been implemented and experimentally proved that the level of 

conducted EMI noise is improved by up to 10 dBuV.            

A novel method of frequency modulation has been analysed and proposed in the 

literature known as random carrier-frequency (RCF) (Tse et al. 2000). In this scheme, 

the duty cycle is kept constant while the switching frequency is varied randomly. The 

comparison of standard and RCF modulation method is also presented with respect of 

spreading the EMI spectrum (Lin and Chen 1994). It has been proved experimentally 

that RCF modulation is more effective in spreading the noise over a spectrum of EMI 

frequency. Mihalic and Kos (2006) proposed another scheme to spread the EMI noise 

over range of frequencies known as Random PWM (RPWM). In this scheme, the 

frequency of the switching device is maintained constant while the pulse width is varied 

randomly but the average of pulse width is set to the desired duty cycle required for 

regulation of output voltage. It has also been proved that the noise spectrum at lower 
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frequency range remains constant in the RPWM technique (Nave 1989). This would 

result into the limitation of effectiveness in this scheme that it is only suitable for high-

frequency noise improvement. 

3.3.6 Switching transition modifications 

Voltage and current transition (dv/dt & di/dt) is a major cause of EMI noise generation 

in SMPS. EMI noise can be minimized by optimising the waveforms of the voltage 

across and/or current through switching devices. There are different techniques applied 

to shape the waveform of switching devices, such as, gate-drive modification, snubber, 

clamp circuits and soft-switching techniques.  

3.3.7 Gate-drive modification 

The slope of dv/dt and di/dt has an effect on conducted EMI noise. Lower transition 

rates of voltage and current waveforms result in minimizing EMI noise. However, this 

scheme only reduces high frequency noise content and low frequency noise content 

remains unchanged (Nave 1989). A simple approach has been implemented to decrease 

the slope of transition by increasing gate resistance of a switching MOSFET (Rashid 

2007; Rossetto et al. 2000). As a result, the switching losses would be increased in this 

scheme. Another method of controlling the voltage and current slopes separately for 

switching devices has been implemented to limit EMI noise (Consoli et al. 1996).  

3.3.8 Snubbers 

Snubbers are commonly used to dampen the oscillation of voltage spikes across 

switching devices. It also helps to soften the switching transition. This can be 

considered as a form of low-pass filter as it eliminates the high frequency content of the 

switching period (Whittington  et al. 1997). However, it increases power losses in a 

circuit and reduces the efficiency of converter. Therefore, these snubber circuits are not 

suitable for higher power converters due to increased complexity, cost and size. Low 

power dissipation snubbers with additional components have been proposed in the 

literature (Jinno et al. 2009). On the other hand, conduction losses and conducted EMI 

noise increases due to an additional component (Fujiwara and Nomura 1999). Snubbers 

can be implemented with active and passive components leading to classification of 
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active and passive circuits. There are additional voltage and current stresses present in 

lossless passive snubber circuits. In forward converters, the lossless active snubber has 

been improved by an addition of an inductor, capacitor and diodes (Jinno et al. 2009). 

Also the forward converter, a novel scheme has been introduced known as the 

regenerative snubber. In this technique, a regenerative circuit is used to reset 

transformer windings with the help of snubber circuits as shown in figure 24 

(Abramovitz et al. 2010). There are also other benefits of these lossless snubbers such 

as reduced voltage spikes of dv/dt, achieving Zero Voltage Switching (ZVS) for 

switching devices and transferring recovered energy back to the source and load. In 

addition, more components are required to design regenerative snubbers and extra 

windings produce voltage spikes across the diodes. 

 

 

Figure 24: A typical energy regenerative snubber (Abramovitz et al. 2010) 

3.3.9 Clamp circuits 

Active clamp circuits are also used for mitigation of voltage ringing across switching 

devices (Lee et al. 2006; Mao et al. 2005). Mao et al. (2005), describe a half-bridge 

converter employing an active clamp snubber circuit. However, in a conventional half-

bridge converter, the MOSFET body diode reverse recovery current produces an EMI 

noise at higher frequencies due to oscillations at turn OFF time. The proposed active-

clamp in figure 25 makes stops diode conduction which reduces conducted EMI noise.  

Moreover, the leakage inductance of the transformer’s stored energy is  transferred to 

the snubber capacitor during off-time, which eliminates ringing.  
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Figure 25: Active clamp for half bridge converter (Mao et al. 2005) 

3.3.10 Soft-switching technique 

 

Figure 26: Hard Switching waveforms  
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Figure 27: Soft Switching waveforms 

There are two types of switching techniques used in SMPS to control the switches: hard 

switching and soft switching. In hard switching techniques (as shown in figure 26), the 

change of high dv/dt and di/dt is the major cause of high switching losses as well as 

high EMI noise. Conversely, soft switching techniques minimize the switching losses 

due to the switch turn ON at zero voltage and the switch turn OFF at zero current with 

the help of resonant techniques (as shown in figure 27). 

Soft-switching techniques can also reduce dv/dt and di/dt in order to reduce EMI noise 

(Chung et al. 1998; Yoshida et al.2003; Yazdani and Farzanehfard 2012; Zhaoming et 

al. 2000). A review of different soft switching techniques have been presented in the 

literature (Ching and Chan 2008). The comparisons of soft and hard switching 

techniques have also been presented in Chung et al. (1998). These switching techniques 

have been applied to buck, boost and flyback converters experimentally and the results 

have demonstrated significant reduction of EMI noise. Berg and Ferreira (1998) showed 

experimentally that EMI noise can be improved by up to 10 dBuV for the case of the 

PFC boost converter. However, Zhang et al. (1996) argues that the noise spectrum of 

soft switching PFC does not show the same level of improvement as the hard switching 

PFC for the same power rating. This is attributed to extra noise arising from the 

auxiliary switch used in the soft switching technique. Furthermore, the layout of the 

auxiliary component can also affect conducted EMI noise in the soft-switched 

converter. Caldeira et al. (1993) present a comparison of conducted EMI noise in hard 
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and soft-switching converter designs. They conclude that properly considered snubbers 

for hard-switched converters can improve the spectrum of EMI noise to a level similar 

to that of the resonant converter. An optimization process for the quasi-resonant 

converter has been proposed and analysed by Joshi and Agarwal (1997). This 

optimization process improves the spectrum of conducted EMI noise by damping the 

voltage and current spikes.     

3.3.11 Interleaving 

Interleaving is another method to reduce EMI noise in SMPS (Zhang et al. 2013; Spano 

et al. 2014) which is best suited for high power converters. In this approach, parallel 

switching devices are connected in a way that the switching frequency remains constant 

and switching times are sequenced by phase shifting (Smolenski et al.  2014). In Wang 

et al. (2007) and Yang et al. (2010), the interleaved converter have been proposed and 

analysed. They proved experimentally that line ripple current can be minimized and 

conducted EMI noise reduced in the interleaved converter. The approach also helps to 

reduce the size of the magnetic component needed for filtering (Zumel et al. 2009; 

Barbosa 2002). It also reduces the ripple measured at the output capacitor, reduces 

component stress, and increases converter reliability (Jang and Jovanovic 2007; 

Sudhakarababu and Veerachary 2005). The overall costs of these converters does not 

increase considerably as they require lower rating current devices due to sharing of 

current in the interleaved components (Veerachary et al. 2003). The main drawbacks of 

these converters are larger size and extra components required in the design.   

3.4 Techniques to reduce EMI Noise propagation  

Conducted EMI noise mitigation applied along propagation paths can be divided into 

internal and external noise reduction techniques. The EMI filter section can also be 

subdivided into ‘internal EMI filter’ and ‘external EMI filter’ as discussed in the 

following section. 

3.4.1 Internal EMI filter 

The EMI noise in a SMPS can be minimized through use of an internal EMI filter with 

the help of providing noise current circulation paths within the converter itself. Several 

techniques have been proposed in the literature to circulate the noise current internally. 
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These can be classified into parasitic cancellation, compensation circuits and the 

balanced approach. 

3.4.1.1 Parasitic cancellation  

Parasitic components play an important role in providing a conduction path for CM 

noise within a converter. Thus the cancellation of parasitic elements would help to 

significantly reduce EMI noise in a SMPS. The main cause of parasitic elements is the 

presence of non-ideal behaviour of passive and active components in different 

frequency bands. An additional circuit is added to introduce a negative capacitance for 

cancellation of parasitic capacitance (Wang and Lee 2007). As a result, EMI noise is 

reduced significantly enhancing converter performance. Knurek (1988) also presented a 

method to reduce EMI emission by controlling the parasitic capacitance (primarily the 

heat sink and transformer winding capacitance) in SMPS. He presented several methods 

to control the parasitic capacitance associated with the heat sink, including use of a 

shielded insulator for the heat sink, moving the output filter choke to the negative lead 

and by addition of a snubber circuit. He showed experimentally that a significant 

reduction of EMI is possible through control of parasitic capacitance. Mee and Teune 

(2002) concluded that there are several methods to improve the EMC performance of 

SMPS, such as, minimizing loop areas in the layout, reducing the parasitic inductance 

and capacitance, and that input and output filters must have the low Equivalent Series 

Resistance (ESR). Other researchers have also proposed techniques to mitigate EMI 

noise through parasitic cancellation (Wang and Lee 2010; Wang et al. 2010; Fu et al. 

2013). 

3.4.1.2 Compensation circuits  

Compensation methods are also an effective way to mitigate EMI noise within a 

converter. These are usually used to mitigate CM noise by minimizing earth leakage 

current (Ogasawara and Akagi 1996; Julian et al. 1996). Normally, an additional circuit 

is added to generate a compensation voltage of equal magnitude and out of phase with 

the original noise. These schemes can be divided into two categories passive and active 

techniques. Passive compensation techniques are easier to design and also cheaper as 

compared to active cancellation schemes. On the other hand, active solutions are more 

flexible to implement. Ogasawara and Akagi (1996), Xin et al. (1999) and Xin et al. 

(2000) proposed passive compensation schemes for minimizing current due to earth 
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leakage. Active compensation networks have been proposed for mitigation of CM noise 

in different converters (Ogasawara et al. 1989; Zhang et al. 2007). In Zhang et al. 

(2007), digital active cancellation can be implemented by DSP to sense CM noise and 

mitigate it through generating compensation noise. These active schemes are effective 

in mitigating EMI noise for switching frequencies up to 10 MHz.  

Buck converter have been analysed with this technique and the simulation results 

shown that ripple current is substantially reduced in these converters (Kolar et al. 1997).  

3.4.1.3 Balance Approach 

Balance technique is the combination of parasitic cancellation and compensation 

network to confine CM noise within a converter. In this approach, the concept is to 

balance the impedances of noise source for mitigation of CM noise. This scheme 

proposes a simple and compact converter design as there is no need of external filter for 

noise reduction. A novel technique known as balanced switching conversion has been 

proposed in the literature to reduce the common mode conducted EMI noise (Shoyama 

et al. 2003; Wang and Lee 2007).  The main reason for common mode EMI noise in a 

conventional unbalanced converter is to rapidly change the drain voltage which affects 

the current flow through parasitic capacitance between drain/collector of an active 

switch and the converter ground rail. In order to solve this problem, Shoyama et al. 

(2003) modified the conventional converter as shown in figure 28. 

 

Figure 28: Balanced Boost Converter (Shoyama et al. 2003) 

 

In the balanced converter, the winding of an inductor is divided equally into two parts, 

as a result the drain and source voltages of MOSFET change complementarily. Also 
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CM current is confined within the converter and CM noise is considerably reduced 

overall. Wang et al. (2007) have analysed the EMI performance of the boost converter 

model. They proposed the general balance technique to minimize the common-mode 

noise. In this technique, two methods were introduced:  

Reduction of CM noise due to the abrupt change of MOSFET source voltage: 

In this method, the boost inductor is split into two parts to balance the parasitic 

capacitance of source/drain with the ground. As a result, the CM noise is relatively 

reduced compared to the unbalanced converter. 

Reduction of CM noise due to output capacitor voltage:  

There are two possible methods to mitigate the CM noise due to output capacitor 

voltage.  

 Reduce the parasitic capacitance between the load and ground 

 Reduce the ESL (Equivalent series inductor) and ESR (Equivalent series 

resistor) of output capacitors. 

Several other techniques have been proposed in the literature to reduce EMI noise 

internally and to enhance the efficiency of SMPS (Knurek 1988; Mee and Teune 2002; 

Bera et al. 1999). 

3.4.2 External EMI filter 

The principle approach to reduce the noise is to incorporate EMI low pass filters. The 

EMI filters are classified as passive, active or hybrid types depending on the technique 

employed. Passive filters use only passive components and are normally bulky. On the 

other hand, active filters use active electronic circuits and are normally not bulky as 

compared to passive filters (Hamza and Mei 2013). Often passive and active filters are 

combined to form hybrid EMI filters (Biela et al. 2009; Ali et al. 2012). Both types are 

discussed in the following sections. 

3.4.2.1 Passive EMI filter 

Passive EMI filter is commonly used for mitigation of EMI noise in SMPS. A number 

of research articles have been proposed technique for designing EMI filter (Raggl et al. 

2010; Hsieh et al. 2008; Kotny et al. 2014; Makda and Nymand 2014). Conversely, the 
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design of such a filter is challenging in power electronics because the noise sources and 

load impedances are not constant for this filter (Nave 1991). The filter topology 

commonly used as a passive filter is shown in figure 29.  

 

Figure 29: (a) EMI Passive filter (b) Common-mode filter (c) Differential-mode filter (Nave 1991) 

  

It is noticed from figure 29 that some elements of the filter affect common mode 

(CM) or differential mode (DM) noise only and some affect both CM and DM noise. A 

common mode choke (Lc) affects CM noise only but the leakage inductance Lm 

between the two windings affects the DM noise. The X-capacitors affect only DM 

noise. While the Y-capacitor suppresses both the DM noise and CM noise, practically 

the large value of X-capacitor minimizes the effect of Y-capacitor on DM noise. 

Similarly, Ld suppresses both CM noise and DM noise, practically the large value of Lc 

minimizes the effect of Ld on CM noise.  

Typically, these filters act as a low pass filter. In order to design a suitable passive filter, 

it is important to discern between DM noise and CM noise (Adirci et al. 2005). Guo et 

al. (2002) , Musznicki et al. 2008 and Caponet et al. (2001) have demonstrated a noise 

separator to isolate DM noise and CM noise. They proved that in order to design an 

effective EMI filter it is important to minimize the dominant component of the 

conducted noise. The next step is to measure the impedances of noise source for both 

DM and CM noises.  

There are several methods discussed in the literature to measure the impedances 

of noise source for common-mode and differential-mode noise, such as, the resonance 

method, the insertion loss method and the two probe method. In the resonance method, 
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the input of the SMPS has been terminated with the opposite reactive component 

compared to noise source reactance (Nave 1991). The right choice of the values of the 

component is found empirically. In this method, the parasitic effects of reactive 

components become significant due to the circuit operating at high frequency and the 

circuit topology to measure the noise source impedance is not valid. On the other hand, 

the insertion loss method also requires some prior conditions to be fulfilled in order to 

measure the noise source impedance (Zhang et al. 2000). These conditions (depending 

on the value of inserted component) are that the inserted component impedance must be 

significantly smaller or larger than the noise source impedance. A novel method known 

as the two probe approach to measure the noise source impedance of SMPS has been 

developed in order to overcome the problem faced by previous (See and Deng 2004; 

Tarateeraseth et al. 2010). In this method (two probe method), noise source impedance 

can be measured by using a signal generator, spectrum analyser, some coupling 

capacitors, injecting current probe and receiving current probe. First the impedances of 

noise source are measured then the filter component parameters can be designed 

according to impedance-mismatch criteria (Nave 1991). To further improve the 

performance of the EMI filter, Ye et al. (2004) suggested maximum and minimum 

values of impedances required in the design of a passsive EMI filter. They designed an 

EMI filter for SMPS and also presented the experimental results to demonstrate that this 

method is an effective and simple way to design an EMI filter.  

Passive EMI filters have components, such as, capacitors and inductors. These are 

not ideal components and the performances of these components depend on self-

parasitic and parasitic coupling between components. Equivalent series inductance 

(ESL) for capacitors and equivalent parallel capacitance (EPC) for inductors are a very 

important factor for their performances. The performances of passive EMI filters have 

been affected by parasitic components at high frequencies. Neugebauer and Perreault 

(2006) have proposed a novel method (using an extra transformer and a capacitor) to 

cancel the effect of parasitic capacitance of the filter inductor at high frequency and to 

improve high frequency performance. Wang (2005) and Wang et al. (2006) proposed a 

method to cancel the effect of equivalent series resistance (ESR) and equivalent series 

inductance (ESL) of the capacitors. They arranged the capacitors in a network with 

extra inductors and resistors. As a result, the network acts as a filter in which the 

capacitor behaves without parasitic equivalent series resistance (ESR) and equivalent 

series inductance (ESL) improving the filter performance. Leakage inductance of 
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coupled inductors has also been used to cancel the effect of equivalent series inductance 

(ESL) of a capacitor in a filter (Pierquet et al. 2006). Conversely, Wang et al. (2008) 

integrated different parasitic cancellation techniques into one EMI filter to suppress the 

effect of components parasitics on EMI filter performance. They proved experimentally 

that the performance of both DM noise and CM noise filters were improved by 

integrating the parasitic cancellation technique.  

The wide ranging variation in source and load impedances also affects the 

performance of an EMI filter and these filters are essentially non-dissipative. Several 

methods have been proposed to design the filter which can dissipate the unwanted 

signal (Ozenbaugh and Pullen 2011; Broyd´e 1988). But these filters have high power 

losses and are expensive compared to a non-dissipative filter (passive EMI filter).  

3.4.2.2 Active EMI Filter  

Active filters use active electronic components and are a possible alternative to bulky 

passive filters. AEF can be classified into two types, depending on the detection of 

disturbances at the source and/or at the receiver, such as, feed-back and feed-forward 

type. In feed-back AEF, the disturbance is sensed at the receiver and uses a control loop 

(feedback) to diminish the conducted EMI noise. On the other hand, feed-forward AEF, 

the disturbance is detected at the source and the noise is compensated by inserting an 

opposite polarity of equal amount of noise to reduce the noise level. 

 

Figure 30: Feed-back Active EMI Filters. (a) Current-sense voltage compensation (b) Current-

sense current compensation(c) Voltage-sense current compensation (d) Voltage-sense voltage 

compensation  (LaWhite and Schlecht 1986; Poon et al. 2000) 
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Figure 31: Feed-forward Active EMI Filters.(a) Current-sense current compensation (b) Voltage-

sense voltage compensation (Nasiri 2005) 

 

Feedback AEF can be configured into four topologies as shown in figure 30, 

depending on the basis of how the noise is detected and compensated. The noise can be 

sensed either by voltage or current across the inductor, similarly the compensation 

through the injection of either a shunt current or series voltage (LaWhite and Schlecht 

1986; Poon et al. 2000). According to this compensation method, the AEF can be 

classified into two types such as series-voltage compensation and shunt-current 

compensation. The series path effective impedance is increased by series-voltage 

compensation while the shunt path effective impedance is decreased by shunt-current 

compensation. Feed-forward AEF can be configured into two topologies as shown in 

figure 30 dependent on the basis of compensation and noise sensed. In general, 

feedback and feed-forward AEFs can be applied for mitigation of both CM and DM 

conducted EMI noise. 

Integration of both feedback and feed-forward AEF techniques have been 

presented in order to achieve the desired noise attenuation and to lessen the total 

dimension of the filter compared to passive  EMI filter(Chow and Perreault 2003;Nasiri 

2005). Hamill (1996) has also proposed the arrangement of both feed-back and feed-

forward active EMI filter to mitigate the noise to the desired level, easily. He has also 

explained the details of the components used to design for the active EMI filter.  

Hybrid EMI filtering is formed by the combination of passive and active EMI 

filters (Biela 2009). It can also improve the overall performance of noise reduction. In a 

hybrid EMI filter, the noise level is first reduced by a passive filter to the level that can 

be handled by the active EMI filter. Moreover, Ali et al. (2014) have proposed hybrid 

EMI filtering with the help of integrated PCB active filtering and passive EMI filtering. 
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It have been proved experimentally that EMI noise is reduce significantly at low and 

high frequency and also overall size has been reduced.   

3.5 Summary 

Electromagnetic Interference (EMI) can easily couple into the audio power amplifier 

supply rail and is manifest as harmonic distortion in the audio output thereby reducing 

reproduction fidelity. The principle approach to reducing noise is to incorporate active 

or passive (external) EMI filters. Also the other technique known as internal EMI filter 

is used to mitigate the noise internally and effectively reduce the size of filter. Ultra-low 

noise SMPS designs are possible for audio system as dynamic signal transient are not an 

issue in this case. To cope with these requirements, the principal aim of this research 

project is to develop and characterise novel low noise switch mode power supplies for 

audio power output products. However, the internal EMI filters is investigated to 

mitigate the EMI noise internally in SMPS. Further investigate the novel technique of 

internal EMI filter to cope with the converter to mitigate noise internally. Also external 

EMI filter is incorporate in order to compliance with EMI regulatory requirements.   
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4 CHAPTER 4  NOVEL SMPS DESIGN AND                                        

CHARACTERIZATION  

4.1 Introduction 

In this chapter, a novel balancing technique for PFC boost, flyback and full-bridge 

converter has been proposed in order to mitigate CM noise internally. In addition, 

different prototypes of SMPS have been discussed and evaluated. Moreover, the 

experimental setup used to analyse SMPS for audio amplifier has been presented.  

4.2 PFC Boost Converter 

In Switched Mode Power Supplies (SMPS), Power Factor Correction (PFC) Boost 

converters are often used to achieve an improved power factor rating. The main cause of 

Common mode (CM) noise generation of a boost converter is discussed in the following 

section. To analyse and develop a reliable CM noise model of a converter it is necessary 

to obtain a detailed understanding of the noise generation mechanism. 

4.2.1 CM noise generation and coupling path 

Normally heat sinks are attached to switching devices to protect these devices from 

thermal runway. These heat sinks are mostly connected to earth through insulating 

material for safety reasons. As a result, a small parasitic capacitance is typically 

introduced between the heat-sink and case of the MOSFET. Futhermore, dielectric 

behaviour is added into the circuit due to the insulating material used for electrical 

isolation between the heat-sink and ground. Although the parasitic capacitances are 

usually in the pico-farad range the high voltage transition (dv/dt) due to switching 

action causes substantial current flow through these capacitances increasing the CM 

noise. Therefore, these parasitic capacitances cannot simply ignore with in a converter. 

The parasitic capacitance between MOSFET drain and ground is denoted by Cq. While 

the parasitic capacitance between diode cathode and ground is represented by Cd.  
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Figure 32: Switching transition of MOSFET 

In figure 32, during switching transition from turn ON to OFF, the potential at node  Q 

(as shown in figure 33) changes from low to high. As a result, the parasitic capacitance 

is charging due to current flowing through it. Similarly, during switching transition 

from turn OFF to ON, the potential at node Q changes from high to low. That results in 

a discharging current flow out of the parasitic capacitance. Therefore, the above 

mentioned current of parasitic capacitance follows the path through these capacitances 

to ground and returns back via live and neutral lines. 

4.2.2 CM noise model of a converter 

Consider a boost PFC converter as shown in figure 33. The equivalent circuit of Line 

impedance stabalization network (LISN) is also indicated with a  coloured solid line. It 

is normally used to stabilize input impedance for measurement of conducted EMI noise.  

 

Figure 33: PFC Boost Converter 
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The parasitic model of high frequency components within a boost converter that  affect 

voltage and current in a circuit is shown in figure 34. In a CM noise model of a boost 

converter, LISN inductors and capacitors are ignored and resistors of 50 Ohm are 

denoted with R1 and R2. Moreover, for simplicity of the model, full-bridge diodes are 

replaced by a short circuit. However, a high frequency inductor model is indicated by 

EPC (equivalent parallel capacitance) and EPR (equivalent parallel resistance). EPC 

denotes the capacitance of winding occurring within a boost inductor and EPR 

represents the winding losses in the inductor. The input and output capacitors include 

ESR (equivalent series resistance) and ESL (equivalent series inductance). ESR and 

ESL indicate the existence of resistance and inductance in capacitor plates and leads. 

The output diode includes the junction capacitance parallel to diode represented with Cj. 

The node Q and D represent the parasitic capacitance of MOSFET and diode 

respectively.  

 

Figure 34: CM noise model of PFC Boost Converter 

4.2.3 CM noise flow in PFC boost converter 

During MOSFET turn ON 

Consider the case, when bridge diodes D1 and D4 are conducting in a boost 

converter (figure 35). The voltage at point Q reaches to zero and D5 become reverse 

biased during the MOSFET turn ON period. The parasitic capacitance of MOSFET Cq 

discharge through D1 and D4 to LISN resistors R1 and R2 respectively. However, the 

parasitic capacitance of diode Cd also follows the same path by passing through load 
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capacitor. Moreover, the CM noise propagation path during MOSFET turn ON is shown 

in figure 35. 

 

Figure 35: CM noise flow during MOSFET turn ON 

During MOSFET turn OFF 

The CM noise propagation path during MOSFET turn OFF is shown in figure 36. The 

voltage at point Q reaches to Vo and D5 becomes conducting during the switch off 

period. Therefore, the parasitic capacitance of MOSFET Cq charges up and CM noise 

flows to ground returning through LISN resistors R1 and R2. However, the parasitic 

capacitance of diode Cd also charges up and CM noise flows to ground and returns 

through LISN.    

 

Figure 36: CM noise flow during MOSFET turn OFF 
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In a boost converter, the switching MOSFET and diode are the dominant components 

contributing to CM noise. Therefore, a simplified CM noise model that focuses on these 

components can be used to evaluate converter noise generation. Moreover, the input 

MOSFET can be change by an equivalent source of voltage that has exactly equal 

magnitude of voltage as compared to the voltage across the MOSFET as shown in 

figure 37. 

 

Figure 37: Modified CM noise model of PFC Boost Converter 

4.2.4 Simplified CM noise flow in PFC boost converter 

During MOSFET turn ON 

Simplified model of PFC boost converter is shown in figure 38. The conducting bridge 

diodes are representing with short circuit in high frequency simplified model. The 

impedance of capacitor Xc=1/(ωL) is very low at high frequency and acts as a short 

circuit for high frequency current. Therefore, input and output capacitors can be 

replaced by a short circuit. The CM noise current can discharge parasitic capacitance of 

the MOSFET/diode pair through LISN resistors and return back through ground.  
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Figure 38: Simplified CM noise flow during MOSFET turn ON  

 

During MOSFET turn OFF 

The simplified model of PFC boost converter is shown in figure 39. Similarly, the input 

and output capacitors act as a short circuit for high frequency model on noise. CM noise 

current can flow to ground through parasitic capacitance of MOSFET/diode and return 

through LISN resistors.   

 

Figure 39: Simplified CM noise flow during MOSFET turn OFF  

4.2.5 Proposed Balance Technique 

CM noise is predominantly generated due to an imbalance of source and load 

impedances within a converter. It mainly arises as a result of switching transition of the 

MOSFET and parasitic capacitances Cq and Cd present in a circuit. Therefore, CM 
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noise generation is due to the switching action of MOSFET turn ON and OFF. In order 

to mitigate CM noise, a novel technique is proposed to balance the noise source and 

load impedance. The concept is to introduce an anti-noise source which has same 

magnitude and is 180° with the original noise source. This is achieved through addition 

of a coupled inductor with compensating winding Nc and compensating capacitor Cq’ 

which are added to generate a complimentary voltage at node Q’. The voltage at Q’ is 

180° out of phase as compared to the voltage at Q producing a current in the opposite 

direction to cancel out the noise current of Cq. Furthermore, in a conventional boost 

converter, the heat-sink of the rectification diode is attached to ground as illustrated in 

figure 33. However, in the proposed converter, the heat-sink of the rectification diode is 

attached to the neutral line as shown in figure 40. 

 

 

Figure 40: Balanced PFC Boost Converter 

Similarly, the parasitic model of high frequency components within balance the PFC 

boost converter that effect voltage and current in a circuit is shown in figure 41. The 

node Q and Q’ represent the parasitic capacitance of MOSFET and compensation 

capacitor respectively.  
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Figure 41: CM noise model of Balanced PFC Boost Converter 

4.2.6 CM noise flow in Proposed Balance Technique 

During MOSFET turn ON 

Consider the case, when bridge diodes D1 and D4  are conducting in a boost converter 

(figure 40). The voltage at point Q and Q’ are anti-voltage to each other due to dot 

position of coupled inductor. Therefore, voltage at node Q and Q’ are low and high 

respectively. The parasitic capacitance of MOSFET Cq discharges through coupled 

inductor and Cq’ (compensation capacitor) charges up through coupled inductor. As a 

result, CM noise of a converter can flow with in a converter and overall CM noise can 

compensated internally. CM noise flow path during MOSFET turn ON is shown in 

figure 42.     

 

Figure 42: CM noise flow during MOSFET turn ON  
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During MOSFET turn OFF 

 

Figure 43: CM noise flow during MOSFET turn OFF 

During MOSFET turn OFF, the voltage at point Q and Q’ are in anti-phase to each other 

due to the dot position of the coupled inductor. Consequently, the voltage at node Q and 

Q’ are high and low respectively. The parasitic capacitance of MOSFET Cq charges 

through coupled inductor and Cq’ (compensation capacitor) discharges through coupled 

inductor. As a result, CM noise of a converter can flow with in a converter and overall 

CM noise can balance internally. CM noise flow path during MOSFET turn OFF is 

shown in figure 43.      

 

Figure 44: Modified parasitic model of Balanced PFC Boost Converter 

 

The modified parasitic model of Balanced PFC boost converter is shown in figure 44. 

Similarly, the input MOSFET is replaced by an equivalent source of voltage that has an 

exactly equal magnitude of voltage as the voltage across the MOSFET. 
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4.2.7 Simplified CM noise model of balanced boost converter 

During MOSFET turn ON 

The conducting bridge diodes are represented with a short circuit in the high frequency 

simplified model. Similarly, input and output capacitors are replaced by a short circuit 

in a high frequency CM noise model. The CM noise current can discharge parasitic 

capacitance of MOSFET/diode through LISN resistors and return back through ground. 

However, CM noise current can charge through Cq’ and return back through LISN 

resistors. Therefore, overall CM noises through LISN resistors are cancelled out due to 

direction of CM noise flow in reverse direction due to coupled inductor and 

compensating capacitor. CM noise due to MOSFET turn ON is shown in figure 45. 

 

Figure 45: Simplified CM noise flow during MOSFET turn ON 

During MOSFET turn OFF 

The CM noise current can charge the parasitic capacitance of MOSFET/diode through 

LISN resistors and return back through ground. However, CM noise current can 

discharge through Cq’ and return back through LISN resistors. Therefore, overall CM 

noises through LISN resistors are cancelled out due to direction of CM noise flow in 

reverse direction due to coupled inductor and compensating capacitor. Simplified CM 

noise due to MOSFET turn OFF is shown in figure 46.  
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Figure 46: Simplified CM noise flow during MOSFET turn OFF 

 

4.3 Fly-back Converter 

4.3.1 CM noise generation and coupling path 

In this section, CM noise generation and coupling paths are considered in detail.  

Understanding of CM noise generation would allow detailed analysis and provide a 

basis for mitigating CM noise through understanding of its coupling mechanism. 

Consider a flyback converter as shown in figure 47. At the front end of a converter, 

normally LISN is used to stabilize the impedance for conducted EMI measurement.  

 

 

Figure 47: Flyback converter with its parasitic capacitances 
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Common mode (CM) Electromagnetic interference (EMI) noise in an isolated converter 

is typically caused by high switching transition (dv/dt) across switches. In the flyback 

converter, the sources of high dv/dt are MOSFET and diode. In figure 47, the parasitic 

capacitance between MOSFET drain and ground is denoted with Cq and the parasitic 

capacitance between Diode cathode and ground is represented with Cd.       

A transformer model is necessary to understand the coupling path of CM noise. 

Therefore, an equivalent model of a real transformer is shown in figure 48. It represents 

the parasitic element related to transformer windings. In a transformer model, Np and 

Ns denotes the number of windings for primary and secondary, Rp1 and Rs1 denotes 

the resistance of copper losses, Lp1 and Ls1 represent leakage inductances, Lm 

indicates inductance of magnetization for hysteresis losses, Rp2 figure out the resistance 

of eddy current losses, Cp and Cs indicates the parasitic capacitances of primary and 

secondary windings respectively and Cp1 to Cp4 represent capacitances of transformer 

windings between primary to secondary windings. On the other hand, parasitic 

capacitance between core and windings are represented with Ccw1 and Ccw2 and the 

parasitic capacitance between core and ground is indicated with Ccg. In  a CM noise 

model of transformer, not all of the parasitic capacitances Cp1-Cp4, Cp and Cs are 

contributing to CM noise. While there are some parasitic capacitances which can 

provide a path for CM noise to flow from primary to secondary side and affect the 

behavior of a converter operating at high frequency. The CM noise can flow through 

transformer windings to ground and return back to LISN. Therefore, it is necessary to 

develop a simplified transformer model including parasitic capacitances that contribute 

to CM noise. 

 

Figure 48: Equivalent model of transformer 
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In a simplified model, all resistances and inductors are neglected because they are 

not contributing to the CM noise flow path from the primary to secondary side of 

transformer. On the other hand, the capacitors (Cp) on primary and (Cs) on secondary 

side are also neglected. While the capacitors (Cp1-Cp4) between primary and secondary 

winding play an important role in CM noise path flow. Therefore, these capacitors 

(Cp1-Cp4) can be summed up and represent with inter-winding capacitance (Cps) as 

shown in figure 49. However, the parasitic capacitance between core and windings and 

between core and ground are negligible as compared to inter-winding capacitance Cps. 

Consequently, these capacitances Ccw1, Ccw2 and Ccg can be neglected in a simplified 

model.  

 

Figure 49: Simplified equivalent model of transformer 

CM noise normally flows through parasitic capacitance occurring within the SMPS 

(Switch-mode Power Supply). It follows the path through the ground wire and returns 

back via phase and neutral lines. There major paths for CM noise current flow in a 

flyback converter are inter-winding capacitance and the parasitic capacitance of 

MOSFETs and Diodes as shown in figure 50. The transformer inter-winding 

capacitance is denoted with Cps as shown in simplified transformer model. The 

parasitic capacitance of MOSFET and diode are denoted with Cq and Cd respectively. 

The noise source due to the MOSFET has two propagation paths such as through 

parasitic capacitance of MOSFET to ground and through inter-winding capacitance 

between transformer windings (primary and secondary windings) to ground. Both of 

types of  CM noise current flow to ground and return back to LISN. Conversely, the 

noise source due to the Diode has propagates through the parasitic capacitance of the 

diode to ground and returns back to LISN. The noise path due to MOSFET and diode 
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has shown in figure 50 respectively. Figure 50 also indicates that there are three current 

loops associated with the switching node.  

 

Figure 50: Flyback converter with its CM noise flow path 

 

4.3.2 CM noise model of a flyback converter 

To derive a model of CM noise, some assumptions are considered in a circuit 

comprising of a flyback converter and a LISN. In the LISN circuit, the inductor (50uH) 

and capacitor (0.1uF) can be representing with a short circuit and two resistors which 

act in parallel in the CM noise model. In addition, the input bridge diode and input 

capacitor can also be replaced by a short circuit. The replacement of the input capacitor 

by a short circuit is justified as at the frequency range used for EMI noise measurement 

the capacitor impedance is negligible. Furthermore, its ripple voltage can also be 

disregarded in comparison to the transition voltage of the MOSFET/Diode due to the 

fast switching rate. The primary side MOSFET and secondary side diode can be 

replaced with voltage source Vq and voltage source Vd respectively. For similar reasons 

the output capacitor C2 can also be replaced with a short circuit. With these 

simplifications applied the simpliofied CM noise model of the flyback converter is as 

shown in figure 51.  
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Figure 51: CM noise model of flyback converter 

4.3.3 Proposed Balance Technique 

The concept of the proposed balance technique is based on cancellation of CM noise 

sources in a converter. As discussed earlier in the literature review, CM noise can be 

mitigated through two techniques (i) the cancellation of noise sources and (ii) 

elimination of the noise propagation path. For the present study the focus was to nullify 

noise at its origin by introducing an anti-noise source equal in magnitude but opposite in 

direction. In an isolated converter, extra transformer windings can be used to produce 

anti-noise sources in a circuit. The design conditions needed for generation of anti-noise 

are: 

 Primary auxiliary and primary windings having an equal number of turns 

and opposite direction 

 Secondary auxiliary and secondary windings are equal number of turns and 

opposite in direction 

Np = Npa 

Ns = Nsa 

Np = Number of primary turns 

Npa = Number of primary auxiliary turns 

Ns = Number of secondary turns 

Nsa= Number of secondary auxiliary turns 
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In CM noise model of flyback converter, there are two major sources of noise 

generation as shown in figure 51 denoted with Vq and Vd. The noise paths due to Vq 

are through parasitic capacitance of the MOSFET and inter-winding capacitance of the 

transformer. On the other hand, the noise due to Vd is passed by the parasitic 

capacitance of diode. To balance the effect of these noise sources Vq and Vd, two anti-

noise sources were introduced these are denoted by Vq’ and Vd’ as shown in figure 52a. 

One end of the anti-noise winding Vq’ can be connected with two silent nodes on the 

primary side denoted with A and B as shown in figure 52b. While on the other end of 

the anti-noise source, a compensating capacitor is introduced that has a value equal to 

that of the MOSFET’s parasitic capacitance. The direction of anti-noise windings is in 

the opposite direction as compared to the primary winding. Moreover, the orientation of 

windings can be placed in three positions X,Y AND Z as shown in figure 52b. 

However, anti-noise source Vd’ can be connected with two silent nodes C and D in 

reverse direction as compared to secondary windings as shown in figure 52b. The 

compensation capacitor is attached on the other end of the anti-noise windings. The 

value of compensation capacitor is equal to the diode’s parasitic capacitance. Again, 

anti-noise winding Vd’ can also be placed in three positions X,Y and Z. Furthermore, 

the positive end of rectification diode D5 is connected to dotted end of secondary 

windings in conventional fly-back converter. In the proposed solution the negative end 

of rectification diode D5 is connected to the non-dotted end of secondary windings in 

proposed methodology as shown in figure 52b.   

The value of compensation capacitors are as follows: 

Ccomp1=Cq,  Ccomp2=Cd 

 

Figure 52: (a) Two anti-noise sources denoted as Vq’ and Vd’ (b) Proposed flyback converter 
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There are two major concerns in relation to producing an anti-noise source in a 

transformer winding is the right point of connection and orientation of windings. 

Point of connection: 

 Anti-noise winding Vq’ can be connected to node A and B respectively. 

 Anti-noise winding Vd’ can be connected to node C and D respectively. 

Orientation of winding: 

 Anti-noise winding Vq’ can be placed at position X, Y and Z. 

 Anti-noise winding Vd’ can be placed at position X, Y and Z. 

The two main issues such as point of connection and orientation have a major effect on 

producing anti-noise sources. The wrong point of connection and orientation cannot 

mitigate CM noise effectively. Therefore the effect of every point of connection and 

orientation should be necessary to evaluate in detail.  

There are four cases to be considered according to point of connection.  

Case 1: Anti-noise winding Vq’ is connected with node A 

The voltage at node A remains constant during MOSFET turn ON and OFF. 

Therefore, the primary and primary auxiliary windings have same voltage at one end of 

windings that is equal to Vin during complete switching transition as shown in figure 53 

 

 

Figure 53: Anti-noise winding Vq’ is connected with node A    
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Case 2: Anti-noise winding Vq’ is connected with node B 

The voltage at node B remains constant during MOSFET turn ON and OFF. While the 

primary and primary auxiliary windings have not same voltage during switching turn 

OFF period. On the other hand, primary auxiliary winding is not connected to primary 

winding during MOSFET turn OFF as shown in figure 54. 

 

 

Figure 54: Anti-noise winding Vq’ is connected with node B  

 

Case 3: Anti-noise winding Vd’ is connected with node C 

The voltage at point C is constant throughout the switching period of MOSFET. 

Therefore, secondary and secondary auxiliary winding has same potential at one node 

C. while on the other end of auxiliary secondary winding; anti-noise is generated to 

cancel out the noise due to Cd at node D.   

 

Case 4: Anti-noise winding Vd’ is connected with node D 

In this case, the node D is not quite due to diode connected at this point as shown in 

figure 55b. Therefore, the anti-noise winding can couple with noise at node D and not 

contribute to mitigate CM noise.  
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Figure 55: (a) Anti-noise winding Vd’ is connected with node C (b) Anti-noise winding Vd’ is 

connected with node D 

 

From above discussion, it is clear that anti-phase winding Vq’ and Vd’ should be 

connected to silent node A and C respectively. These two nodes A and C remain 

constant during throughout switching cycle of MOSFET.   

There are three cases to be considered according to orientation of primary 

auxiliary windings and secondary auxiliary windings.  

 

Case 1a: 

In first case, anti-noise winding Vq’ is connected to node A and it is placed at position 

X as shown in figure 56(a). In this configuration, primary windings act as a shielding 

between primary auxiliary and secondary windings. Therefore, auxiliary windings have 

no effect to cancel out CM noise through secondary windings. On the other hand, the 

noise at point Q due to Cq is canceled out with Cq’. However, the effect of Cps has not 

canceled out with auxiliary windings. CM noise due to Cq can flow through Cps to 

secondary windings and return to LISN.  

  

Case 1b: 

Anti-noise windings Vd’ is connected to node C and it is placed at position X as shown 

in figure 56(b). In this arrangement, secondary auxiliary and secondary windings have 

an effect on the primary winding to cancel out CM noise. The noise generated due to 
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node D can be cancelled out with noise generated due to D’. Moreover, parasitic 

capacitance between secondary auxiliary and primary winding denoted with Cas is 

equal to parasitic capacitance between primary and secondary winding Cps. Therefore, 

CM noise path due to node D is through Cd and Cps is cancel out with anti-noise 

generated due to D’ which pass through Ccomp2 and Cas.  

 

 

Figure 56: (a) Primary auxiliary windings at position X (b) Secondary auxiliary windings at 

position X 

 

Case 2a: 

Now consider the case when anti-noise winding Vq’ is connected to node A and 

orientation of winding is at position Y as shown in figure 57(a). In this winding 

arrangement, primary auxiliary winding act as a shielding winding between primary and 

secondary winding. CM noise due to Q node can be shielded due to primary auxiliary 

winding. However, CM noise due to Q’ can pass through Cas to secondary side and 

return back to LISN.  

 

Case 2b: 

In this arrangement, anti-noise winding Vd’ is connected to node C and orientation of 

winding is at position Y as shown in figure 57(b). Therefore, auxiliary windings act as a 

shielding winding between primary and secondary windings. Hence, CM noise 

generated by node Q can pass through Cpa and Ccomp2 to ground and return to LISN. 
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Figure 57:(a)Primary auxiliary windings at position Y(b) Secondary auxiliary windings at position 

Y 

 

Case 3a:  

In this case, anti-noise winding Vq’ is connected to node A and orientation of winding 

is at position Z as shown in figure 58(a). In this pattern, primary and primary auxiliary 

windings have effect on secondary winding to cancel out CM noise. The noise 

generated due to node Q can be cancelled out with noise generated due to Q’. The 

parasitic capacitance between primary and secondary winding denoted with Cps is equal 

to parasitic capacitance between secondary and primary auxiliary winding Cas. 

Therefore, CM noise due to node Q is pass through Cq and Cps is cancel out with anti-

noise generated due to Q’ which pass through Ccomp1 and Cas. 

  

Case 3b:  

In this arrangement, anti-noise winding Vd’ is connected to node C and orientation of 

winding is at position Z as shown in figure 58(b). In this arrangement, the secondary 

winding act as a shielding between primary and secondary auxiliary winding. Therefore, 

CM noise can flow from primary to secondary ground and return to LISN.   
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Figure 58: Primary auxiliary windings at position Z (b) Secondary auxiliary windings at position Z 

 

From the above discussion, it is clear that anti-noise winding Vq’ should be connected 

to node A and placed at position Z is the effective way to balance and cancel out CM 

noise on secondary windings. Similarly, anti-noise windings Vd’ should be connected to 

node C and placed at position X is effective way to balance and cancel out CM noise on 

primary windings. Therefore, the proposed balance circuit for flyback converter is 

shown in figure 59. 

 

 

Figure 59: CM noise balanced flyback converter 

4.3.4 CM noise sources and coupling path in balance converter 

The primary and secondary, primary and secondary auxiliary, secondary and primary 

auxiliary transformer inter-winding capacitances are denoted with Cps, Cpa and Csa 

respectively. However, the noise due to MOSFET has two propagation paths such as 
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through parasitic capacitance of MOSFET (Cq) to ground and through inter-winding 

capacitance between transformer windings (primary and secondary windings 

Cps).These noise sources can be balanced out due to anti-noise voltage produce at Q’ on 

primary auxiliary windings Npa. Therefore, overall CM noise due to node Q and Q’ can 

flow internally with in a converter as shown in figure 60 with yellow line. Similarly, 

overall CM noise due to node D and D’ can flow internally with in a converter as shown 

with blue lines in figure 60.   

 

Figure 60: Balanced flyback converter with its CM noise path flow  

4.3.5 CM noise model of balanced fly-back converter 

In proposed balance flyback converter, the nodes Q’ and D’ act as anti-noise sources 

due to anti-phase windings Npa and Nsa respectively. Moreover, the value of Ccomp1 

and Ccomp2 capacitors are equal to Cq and Cd respectively. In order to derive a CM 

noise model, similar assumptions are considered in circuit. In LISN circuit, the inductor 

(50uH) and capacitor (0.1uF) can be represented by a short circuit and two resistor 

acting in a parallel arrangement in the CM noise model. Moreover, the input bridge 

diode can also be considered as a short circuit. On the other hand, the input capacitor 

and output capacitor are also replaced with short circuits. Therefore, it can be ignored in 

the CM noise model. The primary side MOSFET and secondary side diode can be 

replaced with voltage source Vq and voltage source Vd respectively. With the help of 

above assumption, the final CM noise model of flyback converter is shown in figure 61. 

It represents simplified CM noise model of balanced flyback converter.  
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Figure 61: CM noise model of balanced flyback converter 

 

To fulfil the condition of CM noise to nullify overall in balance converter, the following 

conditions of voltage and current should be met as given in equation (1), (2) and (3) 

Vq’   =    - c Vq         where c is constant                      (1) 

Vd’   =    - c Vd         where c is constant                      (2) 

Ip + Ipa + Is + Isa = 0                                                    (3) 

Where     Ip   = Cm noise through primary windings 

               Ipa = Cm noise through primary auxiliary windings 

               Is   = Cm noise through secondary windings 

               Isa  = Cm noise through secondary auxiliary windings 

4.3.6 Transformer Winding Construction 

The design of the transformer winding for a conventional converter is shown in figure 

62. Np and Ns stand for the total number of primary and secondary windings 

respectively. Cps represents the inter-winding capacitance between primary and 

secondary coils. On the other hand, the proposed transformer construction is shown in 

figure 63, which includes Npa and Nsa compensating windings. Npa and Nsa 

characterize the total number of primary auxiliary and secondary auxiliary windings 
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respectively. Cpa and Csa are the inter-winding capacitances between primary and 

auxiliary windings and secondary and auxiliary windings respectively.    

 

Figure 62: Conventional Transformer winding construction 

 

 

Figure 63: Transformer winding construction with balancing technique 

4.3.7 Voltage noise distribution across transformer windings 

During MOSFET turn ON 

The voltage noise distribution across primary winding, Np, and primary auxilary 

winding, Npa, are shown in figure 64a. The voltage at nodes Q and Q’ are 0V and 2Vin 
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respectively. While the voltage at point A is constant at Vin (input voltage of 

converter). In figure 64b, the voltage noise distribution across secondary winding Ns is 

shown and it is clear from the figure that the voltage noise distribution across secondry 

winding is constant and equal to Vin. 

 

Figure 64: Voltage noise distribution during MOSFET turn ON (a) across primary and auxilary 

primary windings. (b) across secondry windings 

In figure 65a, the voltage at point D is {Vo + (Vin/N)} and the voltage at point D’ is 

{Vo – (Vin/N)}. While the voltage at point B is constant at Vo (output voltage of 

converter). In figure 65b, the voltage noise distribution across primary winding Np is 

shown and it is clear from the figure that the voltage noise distribution across primary 

winding is constant and equal to Vo.   

 

Figure 65: Voltage noise distribution during MOSFET turn ON (a) across secondary and auxilary 

secondary windings. (b) across primary windings 
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During MOSFET turn OFF 

The voltage noise distribution across primary winding Np and primary auxilary winding 

Npa are shown in figure 66a. The voltage at point Q is {Vin + (VO*N)} and the voltage 

at point Q’ is {Vin - (VO*N)}. While the voltage at point A is constant at Vin (input 

voltage of converter). In figure 66b, the voltage noise distribution across secondary 

winding Ns is shown and it is clear from this figure that the voltage noise distribution 

across the secondry winding is constant and equal to Vin.    

 

Figure 66: Voltage noise distribution during MOSFET turn OFF (a) across primary and auxilary 

primary windings. (b) across secondry windings 

 

In figure 67a, the voltage at point D is 0 and the voltage at point D’ is 2Vo. While the 

voltage at point B is constant at Vo (output voltage of converter). In figure 67b, the 

voltage noise distribution across primary winding Np is shown and it is evident that the 

voltage noise distribution across the primary winding is constant and equal to Vo.   
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Figure 67: Voltage noise distribution during MOSFET turn OFF (a) across secondary and auxilary 

secondary windings. (b) across primary windings 

From the above discussion, it is clear that the voltage noise distribution across primary 

and secondary windings are constant throughout the switching period of the converter. 

Therefore, the common mode noise across both windings should be reduced due to the 

compensating windings.  

4.4 Full-bridge Converter 

The basic CM noise model is important to identify and understand the noise generation 

and coupling mechanism. On the basis of noise model, a novel balancing scheme has 

been investigated to balance CM noise internally which reduces the overall CM noise of 

converter.  

 

Figure 68: Off-line full-bridge converter showing LISN 

 



 

 
75 

A full-bridge converter is shown in figure 68. The switches Q1 Q4 form one leg of the 

bridge and switches Q3 Q2 formed the other leg. The common leg of both transistors 

Q1 Q4 is connected to transformer’s primary dot end and Q3 Q4 is connected to the 

other end. As a result, applied voltage across primary is pulsating AC voltage. The 

transformer function is to provide the isolation between input and output voltages as 

well as step down the pulsating voltage up to the required output level.   

4.4.1 CM noise generation mechanism 

Ideally, Q1 Q4 are simultaneously ON and OFF respectively as shown in figure 69. 

However, a driving signal for diagonal power devices has to pass through different 

circuits before being received at the switches. These control circuits are normally 

composed of comparators, opto-coupler, different logic gates and driver circuit. Hence, 

they introduce a different transmission delay between each driving signal of diagonal 

switches as shown in fig. Consequently, the synchronicities of diagonal switches disturb 

and introduce a CM noise at these switching nodes. Moreover, PCB tracks for each 

driving signal have different path length and also disturb synchronization of driving 

signal. 

 

Figure 69: (a) Ideal switching period of Q1 and Q4 (b) Real switching period of Q1 and Q2 

 



 

 
76 

The full-bridge converter circuit diagram is shown in figure 70. The operation of circuit 

for both outputs on secondary side of converter is always remains the same and 

constant. For simplicity only one output circuit of secondary side is considered here. 

The parasitic capacitances of conventional full bridge converter are shown in figure 70. 

Cp1-Cp4, Cp5-Cp7 and C9-C12 are parasitic capacitance of MOSFET switches and 

Diodes. On the other hand, Cps1 and Cps2 are coupling capacitances of transformer 

windings. Cp1 and Cp3 are connected to a quiet node so they are not contributing in 

CM noise. Cp2 and Cp4 are subject to CM noise due to different switching delays 

between the switches. Cps1 and Cps2 are also contributing in CM noise flow between 

primary and secondary windings. Cp6 and Cp7 are balancing each other’s CM noise. 

Additionally, extra CM noise is added due to Cp5 in the circuit. Similarly, the parasitic 

capacitances of other output secondary circuit are shown in figure 70.     

 

 

Figure 70: Full-bridge converter with its parasitic capacitances 

4.4.2 Transformer Construction 

 Wire-wound transformer 

 Planar Transformer 
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4.4.3 Wire-wound transformer 

4.4.4 Transformer winding structures 

Next, I consider two different transforming winding structures such as conventional, 

and interleaving as shown in figure 71. Primary windings represent with yellow colour 

while secondary windings represent with blue colour. In conventional method, usually 

primary winding is wounded on bobbin first then secondary winding is adjacent to 

primary winding. On the other hand, interleaved technique windings are placed 

alternatively primary and secondary windings adjacent to each other.  

 

 

Figure 71: Different types of transformer construction 

4.4.5 Proposed Balancing Technique  

In this novel scheme, the basic idea is to introduce counter noise in the circuit using 

extra compensation windings and capacitors. The voltage introduced due to 

compensation windings and capacitors is anti-phase to nullify the noise current due to 

switching node. There are different compensation winding arrangements for different 

types of transformer configurations.                         
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Figure 72: Proposed full-bridge converter for conventional transformer winding structure 

 

In conventional transformer winding structure, primary and secondary windings are 

denoted with Np and Ns respectively. The coupling capacitors between primary and 

secondary windings are represented with Cps. On the other hand, the proposed full-

bridge converter for conventional transformer windings is shown in figure 72, which 

comprises of three additional windings and capacitors known as Na1, Na2, Na3 and 

Ccomp. These extra windings and capacitors have two advantages such as to balance 

the noise distribution across secondary windings and also generate the anti-phase noise 

to cancel out noise produced across primary winding parasitic capacitance of 

MOSFETs. Moreover, Ccomp is added on secondary side of converter in proposed 

scheme. The secondary side Ccomp at anode of diodes D8 and D7 produce anti-noise 

voltage to balance out of noise due to Cp5 parasitic capacitance of diode D5 and D6. 

Similarly, the proposed full-bridge converter for interleaved transformer windings is 

shown in figure 73, which comprises of two additional windings and capacitors known 

as Na1, Na2 and Ccomp.    
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Figure 73: Proposed full-bridge converter for interleaved transformer winding structure 

 

In next section, the detail of voltage noise distribution of transformer windings have 

been discussed with graphical representation of each case of diagonal switches turn ON 

and OFF.        

4.4.6 Voltage noise distribution across balance transformer windings 

In multi-layer transformer windings, the layers which are not adjacent to each other 

have fundamentally shielding effect between each other. In figure 74 (a), the windings L 

and R is tied together with quiet node such as VIN/2. If any noise is generated across 

winding L, it cannot be influenced any noise on A due to R acting as a shielding 

between L and A windings. The windings R and A has effect on each other due to 

switching noise on R winding. Therefore, in order to achieve the balance condition in 

transformer windings, the voltage noise across winding should remain constant on 

middle winding. 

4.4.7 Conventional transformer Construction 

In a conventional transformer, the arrangements of windings for proposed balance 

technique are shown in figure 74a. The additional compensation windings NA1, NA2 

and NA3 can be placed in order to generate the anti-noise across secondary windings. 
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These compensation windings are attached to quite noise node M. The NA1 and NA2 

are placed in middle of secondary windings NS1 and NS2. The third compensation 

windingNA3 are placed on top of NS2 with wound in reverse direction. The voltage 

noise on R and NA1 are anti-phase to each other in every condition of switching action. 

Similarly voltage noise on NA2 and NA3 are out of phase to each other during every 

cycle of switching transition. The voltage noise across two secondary winding NS1 and 

NS2 are always equal to zero.  

 

Case 1:  Q1 and Q4 turn ON 

Consider a first case in which two diagonal switches Q1 and Q4 turn ON to transfer 

power from primary to secondary windings. The voltage at dot end of primary winding 

is equal to VIN and voltage at non-dot end is equal to zero. Therefore, the voltage at 

node M is equal to VIN/2 and voltage at dot end of auxiliary winding NA1 is equal to 

VIN.  In figure 74 (b), the voltage noise distribution across secondary winding NS1 is 

equal to VIN/2. The compensating capacitor of NA1 is producing anti-noise voltage to 

compensate the noise of node R due to parasitic capacitor Cp4. The arrangement of 

windings NA2, B and NA3 also have same effect to cancel out noise on secondary 

winding NS2 

.     

(a)                                         (b)                                      

Figure 74: (a) Balance conventional transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q1 and Q4 turn ON 
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Case 2:  Q2 and Q3 turn ON 

The voltage noise distribution across secondary windings Ns1 and Ns2, are shown in fig 

75(b). The voltage at nodes NA1 and R are 0V and VIN respectively. While the voltage 

at point A is constant at VIN/2. Therefore, the voltage noise distribution across 

secondary winding Ns1 is shown and it is clear from the figure that the voltage noise 

distribution across secondry winding is constant. Similarly the winding arrangements of 

NA2, Ns2 and NA3 are creating the voltage at node NA3 and NA2 are equal to 0V and 

VIN respectively. Therefore, the voltage  noise distribution across secondary winding 

Ns2 is constant.        

 

(a)                                         (b)                                      

Figure 75: (a) Balance conventional transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q2 and Q3 turn ON 

 

Case 3: Q1, Q2, Q3 and Q4 OFF 

During dead time interval, the voltage at dot and non dot end of primary winding is 

equal to VIN/2. Also the voltage on all auxiliary winding NA1, NA2 and NA3 are equal 

to to VIN/2. Therfore, the voltage noise distribution across NS1 and NS2 are constant.  

4.4.8 Interleaved Transformer Construction 

The interleaving winding arrangement of balanced transformer includes two auxiliary 

windings NA1 and NA2 on top of second secondary windings to generate anti-noise 
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across NS2. The dot represents direction of windings in a clockwise direction start from 

here. In figure 76 (a), the windings L and R across secondary winding NS1 produce the 

noise voltage in opposite to each other. Therefore, the noise across secondary winding 

NS1 is zero due to anti-noise effect. Similarly, noise across secondary NS2 is nullified 

due to compensation winding NA1 and primary winding.    

Case 1: Q1 and Q4 turn ON 

During this time of interval, the power is transferred from primary to secondary 

windings. The half turns of primary winding placed across bobbin has voltage equal to 

VIN at dot end and VIN/2 at node M as shown in In figure 76 (b),. On the other hand, the 

voltage at non-dot end of other half primary winding is equal to zero. Therefore, the 

voltage noise distribution across secondary winding NS1 is equal to constant. The 

compensating winding NA1 and capacitor is placed across secondary winding to 

produce anti-noise voltage to balance the noise generated due to parasitic capacitance of 

MOSFETs. The voltage at dot end of auxiliary winding NA1 is equal to VIN and voltage 

at non dot end of primary winding is equal to zero. Overall, the voltage noise 

distribution across winding NS2 is equal to constant. In a nutshell, the arrangement of 

winding L,A,R and R,B,NA1 are creating the constant voltage noise distribution across 

windings NS1 and NS2.   

 

(a)                                         (b)                                      

 

Figure 76: (a) Balance Interleaved transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q1 and Q4 turn ON 
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Case 2:  Q2 and Q3 turn ON 

During this time interval, the dot end of primary attached to zero voltage while the non 

dot end of primary has voltage Vin. The arrangement of windings L, A and R producing 

the constant voltage noise distribution across seconday winding NS1. On the other 

hand, the dot end of auxiliary winding NA1 has zero voltage and other end is attached to 

VIN/2. The noise voltage distribution across winding NS2 is equal to constant due to R, 

B and NA1 arrangement of winding as shown in figure 77(b). 

 

 

(a)                                         (b)                                      

Figure 77: (a) Balance Interleaved transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q1 and Q4 turn ON 

 

Case 3: Q1, Q2, Q3 and Q4 OFF 

During this time interval, the voltage at dot and non dot end of primary winding is equal 

to VIN/2. Also the voltage on all auxiliary windings NA1 and NA2 are equal to VIN/2. 

Therfore, the voltage noise distribution across NS1 and NS2 are equal to constant. 

Based on the above discussion, it is clear that the voltage noise distribution across 

NS1 and NS2 are always equal and remain constant throughout the switching period of 

the converter. The voltage noise distribution of secondary windings is unaffected due to 

different switching transition periods. Therefore, the proposed winding arrangement for 

different transformer construction produces the anti-noise voltage across the secondary 

windings which, cancels out the noise produced in the primary windings. Thus the 
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secondary windings are sandwiched between two windings of opposite noise polarity 

and consequently the noise on secondary windings are cancelled. 

4.4.9 Planar Transformer 

Planar transformers have attracted significant attention in recent years due to their 

several inherent advantages, such as, the low profile achieved using spiral windings 

etched directly on to a printed circuit board (PCB), greatly simplifying construction. 

Moreover, these transformers can be manufactured with high precision, consistency and 

reliability. Typically these are constructed as a multi-layered structure.  In this section, 

the commonly used planar transformers in SMPS are considered. The previously 

discussed balancing technique approach for wire wound transformer can be applied also 

to planar transformer topologies.  

4.4.10 Planar Transformer winding structures 

In figure 78 two different transforming winding structures commonly used are shown 

and these are referred to as conventional and interleaving topologies.   

 

 

(a)                                                                   (b)                                      

 

Figure 78: Different types of transformer construction 
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4.4.11 Proposed Balancing Technique  

There are different compensation winding arrangements for different types of planar 

transformer configurations. The voltage noise distributions of transformer windings for 

each case are discussed in the following section. 

4.4.12 Voltage noise distribution across balance transformer windings 

In multi-layer transformer windings, the PCB layers which are not adjacent to 

each other provide a shielding effect. In figure 79 (a), the PCB windings layer L and R 

are tied together with a quiet node such as VIN/2. The noise generated across winding L 

has no influence on A due to R acting as a shielding between the L and A windings 

layer.  Conversely, the windings R and A has an effect on each other due to the 

switching noise the R winding. Therefore, in order to achieve the balanced condition in 

the transformer windings, the voltage noise across the middle winding should remain 

constant.  

4.4.13 Conventional Transformer Construction 

For a conventional transformer approach, the arrangements of windings for the 

proposed balance technique are as shown in figure 79a. The additional compensation 

PCB windings NA1, NA2 and NA3 can be placed in order to generate anti-noise across 

the secondary windings. Overall, the voltage noise across two secondary winding Ns1 

and Ns2 are always equal and constant.  

Case 1:  Q1 and Q4 turn ON 

The voltage noise distribution across secondary windings Ns1 and Ns2, are shown in 

figure 79(b). The voltage at node NA1 and R are Vin and 0V respectively. Hence the 

voltage across NS1 is equal and constant to Vin/2. In a nutshell, the arrangement of 

windings R, A and NA1 has produced a constant voltage across secondary winding 

NS1. Similarly, the arrangement of windings NA2, B and NA3 produce a constant 

voltage across secondary winding NS2 as also shown in the figure. Therefore, the 

overall effect on secondary windings NS1 and NS2 are equal and constant during this 

switching cycle.     
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(a)                                                                            (b)                                      

Figure 79: (a) Balance conventional transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q1 and Q4 turn ON 

 

Case 2:  Q2 and Q3 turn ON 

  

(a)                                                                (b)       

Figure 80: (a) Balance conventional transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q2 and Q3 turn ON 

 

The voltage noise distribution across secondary windings Ns1 and Ns2, are shown in 

figure 80(b). The voltage at node NA1 and R are 0V and Vin respectively. Therefore, 

the voltage across NS1 is equal and constant to Vin/2. Similarly, the voltage at node 

NA3 and NA2 are 0V and Vin respectively. Consequently, the overall effect on 

secondary windings NS1 and NS2 are equal and constant during this switching cycle.       
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Case 3: Q1, Q2, Q3 and Q4 OFF 

During this period, the voltage across primary winding is equal to VIN/2. Moreover, the 

voltage across PCB winding NA1, NA2 and NA3 are also equal to VIN/2. Therfore, the 

voltage across secondary windings NS1 and NS2 are constant through out this 

switching period.  

4.4.14 Interleaved Transformer Construction 

The interleaving winding arrangement for the balanced transformer includes two 

auxiliary windings NA1 and NA2 on top of second secondary windings to generate anti-

noise across NS2. The dot represents direction of windings in a clockwise direction. The 

voltage noise distribution during the switching cycle is discussed below. 

 

Case 1: Q1 and Q4 turn ON 

 

(a)                                                          (b)                                      

Figure 81: (a) Balance Interleaved transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q1 and Q4 turn ON 

 

The voltage noise distribution across secondary windings Ns1 and Ns2, are shown in 

figure 81(b). The voltage at node L and R are Vin and 0V respectively. Hence the 

voltage across NS1 is equal and constant to Vin/2. Thus the arrangement of windings R, 

A and L has produced a constant voltage across secondary winding NS1. Similarly, the 

arrangement of windings R, B and NA1 has produced a constant voltage across 
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secondary winding NS2. Therefore, the overall effect on secondary windings NS1 and 

NS2 are equal and constant during this switching cycle.     

 

Case 2:  Q2 and Q3 turn ON 

The voltage noise distribution across secondary windings Ns1 and Ns2, are shown in 

figure 82(b). The voltage at node L and R are 0V and Vin respectively. Therefore, the 

voltage across NS1 is equal and constant to Vin/2. Similarly, the voltage at node NA1 

and R are 0V and Vin respectively. Consequently, the overall effect on secondary 

windings NS1 and NS2 are equal and constant during this switching cycle.     

 

(a)                                                                             (b)                                      

Figure 82: (a) Balance Interleaved transformer winding structure, (b) Voltage noise distribution 

during MOSFETs Q2 and Q3 turn ON 

 

Case 3: Q1, Q2, Q3 and Q4 OFF 

During this period, the voltage across primary winding is equal to VIN/2. Moreover, the 

voltage across PCB winding NA1 and NA2 are also equal to VIN/2. Therfore, the 

voltage across secondary windings NS1 and NS2 are constant through out this 

switching period.  

From above discussion, it is clear that the voltage noise distribution across NS1 

and NS2 are always equal and remain constant throughout the switching period of 

converter. Therefore, the proposed winding arrangements for different transformer 
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construction produces the anti-noise voltage across secondary windings to cancel out 

noise generated due to original windings. In other words, I can say that the secondary 

windings are sandwiched between two windings of opposite noises. Therefore, the 

overall noises on secondary windings are cancelled out. 

4.5 ZVS full-bridge converter 

Full-bridge converters are commonly used for medium-to-high power applications due 

to its simple circuit configuration based on hard and soft switching techniques. Hard 

switching converters are normally turned on and off switches diagonally at same time. 

Due to overlap between voltage and current in switches causes losses and reduced 

efficiency of converter. To improve efficiency of converter, soft switching techniques 

are normally used. The soft-switching technique can be classified into two types such as 

ZVS (zero voltage switching) and zero-voltage and zero current switching (ZVZCS). 

ZVS is most popular technique due to fixed switching frequency and simplicity. In 

conventional ZVS method, the switches are turned on when voltage across these are 

nearly equal to zero. To achieve ZVS, the parasitic capacitors of the switches and 

leakage inductance of transformer are normally utilized to meet the condition of soft 

switching. This technique improved efficiency of converter and minimizing EMI noise. 

While on the other hand, there are some limitations of this technique such as narrow 

range of load handling capability to achieve zero voltage switching. In light load 

condition, they lose their ability to achieve zero voltage switching due to less energy 

stored in leakage inductance. 

The range of ZVS can be extended by increasing stored energy of inductance 

using high leakage inductance of transformer or adding series inductance. The effective 

duty cycle is comprised due to increasing inductance of transformer. The loss of 

effective duty cycle can be minimized by using saturable inductor in series to achieve 

ZVS. These methods of increasing the inductance for stored energy can significantly 

increases current through switches and conduction losses. A full range of ZVS can be 

achieved by help of passive auxiliary pole circuit that results in fixed circulating current 

and higher conduction losses. In a nutshell, conduction losses are higher in these types 

of ZVS techniques of increasing inductance of transformer through different ways such 

as series inductance, saturable inductor and passive auxiliary pole circuit.  

In this section, a novel technique is proposed to extend the range of ZVS over 

entire range of load. Moreover, the conduction losses also reduced significantly and the 
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stored energy in auxiliary circuit is dependent on load. The minimum energy is stored 

under full load condition and it gradually increases as load decreases. The proposed 

technique not only increases the range of ZVS but also improves efficiency of full-

bridge converter by reducing conduction losses. The experimental results obtained from 

proposed converter are also presented to confirm the proposed idea.  

4.5.1 Novel ZVS Full-bridge Converter 

 

Figure 83: Schematic of novel proposed ZVS full-bridge Converter 

The circuit diagram of proposed ZVS full-bridge converter is shown in figure 83. In 

proposed circuit, there are four main switches Q1 Q2 Q3 Q4 (also the parasitic 

capacitances and body diodes are including as well), Np/2 and Np/2 are primary 

windings of equal turns, Ns1_A, Ns2_A, Ns1_B and Ns2_B are secondary windings, 

D1-D8 are output rectifier diode, L1-L4 are output filter inductor, C5-C8 are output 

filter capacitors. Laux is an auxiliary inductor, Caux1 and Caux2 are voltage divider 

capacitors. The passive energy storage circuit consists of Laux, Caux1 and Caux2. The 

operation of circuit for both outputs on secondary side of converter is always remains 

same and constant. In discussion, I can consider only one output circuit of secondary 

side for simplicity.   

4.5.2 Operation Principle of Novel ZVS Full-bridge Converter 

The converter has several operating cycles to perform ZVS over entire range of cycle. 

The related equivalent circuits under different operating cycles are shown in Figure 84. 
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For analysis of circuit, several assumptions are made to simplify the analysis such as  

 Ideal components are considered and assume Vbus = Vin.  

 Inductor of output filter is large enough that it can be considered as a 

constant current source.  

 Caux 1 and Caux2 can act as a constant voltage source, 

(Vcaux1=Vcaux2=Vbus/2). 
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Figure 84: (a) Active circuit of mode A. (b) Active circuit of mode B. (c) Active circuit of mode C. 

(d) Active circuit of mode D  (e) Active circuit of mode E. (f) Active circuit of mode F. (g) Active 

circuit of mode G. (h) Active circuit of mode H. 

 

Mode A 

Before time t0, the power is transferred from input source Vin to the load. The 

MOSFET Q1 and Q4 are conducting to build the primary voltage across transformer. 

On the secondary side, the D5, D8, D9 and D12 are conducting to deliver the power to 

load. The voltage across auxiliary winding is equal to zero VLaux =0. Therefore, the 

current in auxiliary inductor freewheels and remains unchanged.  

 

Mode B 

At to, Q4 is turned OFF and Q1 still turn ON. The auxiliary circuit is providing current 

to charge up capacitor C4 and discharge up capacitor C3. On the secondary side, the 

diodes become reverse bias and are not conducting. Moreover, the rising voltage across 

C4 due to current providing by auxiliary circuit builds up to voltage equal to VIN. At the 
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end of this mode, the voltage across C4 charges up to input voltage VIN and the 

capacitor C3 discharges completely.  

 

Mode C  

This mode starts when C4 charges up to VIN and C3 completely discharges to zero 

voltage. Also Q1 remains turn ON in this mode and MOSFET Q3 turns ON at zero 

voltage across it. Therefore, the free wheel mode builds the constant voltage of VIN 

across primary windings of transformer and the auxiliary inductor is charging due to 

voltage across it. Moreover, the secondary diodes clamp the secondary voltage to output 

voltage.  

 

Mode D 

MOSFET Q3 still conducts in this mode as shown in figure 84(d). However, MOSFET 

Q1 turns OFF in this mode. The capacitor C2 is discharging from VIN and C1 is 

charging up to VIN. The auxiliary inductor draws a current during this mode which 

provides energy for discharging C2 and charging C1. The capacitor C1 charges up and 

C2 discharges fully at the end of this mode.        

 

Mode E  

In this mode, Q3 still conducts and Q2 turns ON at zero voltage across it. The primary 

current starts to flow in opposite direction to previous power transfer mode. The power 

is transferred from primary to secondary side load through Q3 and Q2. The output 

diodes D6, D7, D10 and D11 start conducts to deliver power to the load.  

 

Mode F  

In this mode, Q3 is turned OFF and Q2 still turn ON. The capacitor C3 is charging to 

VIN and capacitor C4 is discharging from VIN. The auxiliary circuit is drawing current to 

discharge C4 and charge up C3. On the secondary side, the diodes become reverse bias 

and are not conducting. Moreover, the voltage across C4 drops to zero due to current 

drawn by auxiliary circuit and C3 voltage builds up to VIN. At the end of this mode, the 
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voltage across C3 charges up to input voltage VIN and the capacitor C4 discharges 

completely.  

Mode G  

This mode starts when C4 discharges up to zero voltage and C3 charges up to VIN 

voltage. Also Q2 remains turn ON in this mode and MOSFET Q4 turns ON at zero 

voltage across it. Therefore, the free wheel mode builds the zero voltage across primary 

windings of transformer and the auxiliary inductor (VLaux) has negative voltage across 

it. The current in auxiliary winding flows in opposite direction as shown in figure 84(g). 

Moreover, the secondary diodes clamp the secondary voltage to output voltage.  

Mode H  

MOSFET Q4 still conducts in this mode as shown in figure 84(h).  However, MOSFET 

Q2 turns OFF in this mode. The capacitor C1 is discharging from VIN and C2 is 

charging up to VIN. The auxiliary inductor provides energy for discharging C1 and 

charging C2 in this mode. The capacitor C1 discharges and C2 charges fully at the end 

of this mode.        

4.6 Several Prototypes of Proposed Power Supply 

Several prototypes of SMPS have been designed and analysed in lab. The proposed CM 

noise balance scheme of flyback, PFC boost and full-bridge converter have also been 

implemented in prototypes of SMPS. The following prototypes of SMPS have been 

built in lab for audio amplifier. 

4.6.1 First Prototype of SMPS 

 

Figure 85: Block diagram of First Prototype of SMPS 
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First prototype of SMPS has been built in lab. The flyback converter is designed to 

power PWM controller for full-bridge converter. The hard-switched full-bridge 

converter is designed for power transfer stage from input to output of converter. 

Moreover, passive EMI filter is also designed for mitigation of conducted EMI noise in 

SMPS.  

4.6.2 Second Prototype of SMPS 

 

Figure 86: Block diagram of Second Prototype of SMPS 

 

Second prototype of SMPS has been built in lab. ZVS full-bridge converter topology 

has chosen to fulfil the power requirement of audio amplifier. However, flyback 

converter is designed to power PWM controller for ZVS-full-bridge converter. 

Moreover, novel ZVS full-bridge converter has been proposed and fabricated in lab. 

Conventional and novel ZVS full-bridge converter has been implemented in this 

prototype.  Furthermore, passive EMI filter is also designed for mitigation of conducted 

EMI noise in SMPS. 

Modified Version of Second Prototype of SMPS  

 

Figure 87: Block diagram of modified Second Prototype of SMPS 
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To improve the power factor of converter, PFC boost converter has been added in 

second prototype of SMPS. PFC boost converter topology has chosen to increase power 

factor of converter. However, flyback converter is designed to power PWM controller 

for ZVS-full-bridge converter.  

4.6.3 Third Prototype of SMPS 

 

Figure 88: Block diagram of Third Prototype of SMPS 

Third prototype of SMPS has been built in lab. In this prototype, balanced flyback and 

full-bridge converter have been implemented. Wire wound and planar transformer has 

been constructed for balanced full-bridge converter. The passive EMI filter and internal 

balancing proposed scheme have been employed to cope with EMI standard 

requirement. The size of EMI filter is considerably reduced due to novel balancing 

technique.  

 

Modified Version of Third Prototype of SMPS 

 

Figure 89: Block diagram of modified Third Prototype of SMPS 

 

To improve the power factor of converter, PFC boost converter has been added in third 

prototype of SMPS. PFC boost converter topology has chosen to increase power factor 
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of converter. Moreover, novel balancing technique for PFC boost converter has been 

proposed and fabricated in lab.   

   

4.7 Evaluate the Performance of Power Supply 

To verify the proposed methodology, experiments are performed in lab to validate the 

effectiveness of novel balancing technique. Several experiments are accomplished on 

prototype of built SMPS. Here is the list of several experimental setup used to analyse 

SMPS for audio amplifier.    

 Conducted EMI noise measurement 

 Output noise measurement 

 Audio power amplifier performance evaluation 

4.7.1 Conducted EMI noise measurement 

The mains power lines have an impedance varies extensively. The impedance varies 

according to different places like a remote and industrial area effect on impedance of 

system. The conducted EMI noise measurement of power supply varies widely due to 

not constant impedance of power supply. Therefore, standard impedance is required to 

measure noise of power supply. As a result, LISN (“Line Impedance Stabilizer 

Network”) is used to stable the impedance for measurement. The noise current from 

power supply generates noise voltages across resistors of LISN. These noise voltages 

can be fed to spectrum analyser. The analyser measures the harmonic content of 

frequencies present with in noise voltages of SMPS. The standardized setup for 

measuring conducted EMI noise is shown in figure 90. 
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Figure 90: Measurement setup for Conducted EMI noise 

4.7.2 Output noise measurement 

The measurement setup for output noise for SMPS is shown in figure 91. The 

oscilloscope is used to measure the noise of SMPS. The ac coupling of oscilloscope is 

chose to measure the noise from power supply. Both channels are used to measure noise 

of SMPS.  

 

 

Figure 91: Measurement setup for Output noise 

4.7.3 Audio power amplifier performance evaluation 

The performance of proposed novel low noise SMPS is evaluated on the basis of 

subjective and objective tests performed on the power amplifier. The subjective tests 

involved the blind audio listening tests. In a blind listening test, the listener was 

unaware of the power supply used to power the audio amplifier. Therefore, the 
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psychological influence was not affected the judgment of listener related to brand 

product. On the basis of subjective test, the decision has been made that SMPS solution 

is as good as or better than the linear solution. Also the performance of SMPS is 

analyzed on the basis of objective test such as THD+N, frequency response and audio 

dynamic range. The audio precision equipment is used to measure the above tests and 

compare these results with LPS. Dynamic range of audio amplifier is to be measured 

from the response of device with the audio variation. It is useful test to provide the 

performance of audio product under the wide variation in audio dynamic range. 

4.7.3.1 Subjective tests 

Blind audio listening test 

The blind audio listening test set up is shown in figure 92. SMPS and linear power 

supply are used to power the audio amplifier and load the speaker. The listeners do not 

have knowledge about the power supply running at a time. The listener provides the 

rating depend on sound quality of audio amplifier with different power supplies.  

 

 

Figure 92: Measurement setup for blind tests 

4.7.3.2 Objective tests 

 THD+N Vs Frequency 

 THD+N Vs Level 

 FFT Distortion Spectrum   
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THD+N Vs Frequency 

THD+N measure total harmonic distortion plus noise in a system. It includes all noise 

and other unwanted signal such as buzz, hum and harmonics of fundamental 

frequencies. It represents the value of THD+N at range of frequencies from 20Hz to 

20KHz.     

 

THD+N Vs Level 

It sweeps the level of input voltage and measures THD+N at different level of input 

voltage.  

 

FFT Distortion Spectrum   

This test is to see how clean the output is on an amp based on harmonics generated form 

a fundamental tone.  

 

Audio amplifier measurement setup for objective tests 

 

 

Figure 93: Measurement setup for objective tests 

The measurement setup for objective test of audio amplifier is shown in figure 93. The 

audio precision equipment is used for the evaluation of performance of an audio 

amplifier.   
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4.8 Summary 

In this chapter, a novel balancing technique is proposed to reduce the overall CM noise 

of PFC boost converter, fly-back converter and full-bridge converter. In this scheme, I 

introduced the anti-phase noise source with compensating winding and compensating 

capacitor to generate a complimentary voltage. The voltage produced due to additional 

winding and capacitor is 180° out of phase as compared to the original noise voltage. 

Therefore, the overall noise is cancelled out with the help of novel technique. In 

addition, a novel ZVS full-bridge converter is proposed to improve the range of zero 

voltage switching over the entire range of load.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
103 

5 CHAPTER 5       EXPERIMENTAL RESULTS AND 

DISCUSSION 

5.1 Introduction  

In this chapter, experimental results are discussed for proposed PFC boost converter, 

flyback converter and full-bridge converter. The performance of audio amplifier is 

analyzed using designed SMPS to compare with existing linear power supply. In the 

end, conclusion has been made to finalize the best prototype of SMPS which are 

comparable to linear power supply in accordance to audio performance of audio 

amplifier.  

5.2 PFC boost converter 

The experiments are carried out to validate the proposed methodology of PFC boost 

converter. In experiments, the PFC boost converter is supplied with input voltage of 

230Vac, input frequency of 50 Hz and switching frequency of 125KHz.  

5.2.1 Conducted EMI noise         

 The conventional and balanced PFC boost circuit is designed and built in lab. The heat-

sinks of MOSFET and Diode are attached to ground in conventional method. On the 

other hand, coupled inductor and compensation capacitor are added in balanced 

converter and heat-sink of diode is attached to neutral line. Then, the conducted EMI 

scan has been performed on these converters (conventional and balanced).       

 

Figure 94: Conducted EMI noise measurement of conventional PFC boost converter 
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Figure 95: Conducted EMI noise measurement of balanced PFC boost converter 

 

The EMI scans for conventional and balanced PFC boost converters are shown in figure 

94 and figure 95 respectively. It is clear from the results that the first, second, third peak 

of EMI noise are at 125KHz of 83dBuV, 250KHz of 82dBuV and 400KHz of 81dBuV, 

respectively for conventional method. On the other hand, in balanced converter the 

respective same frequency peaks appear for 69dBuV, 60 dBuV and 54 dBuV,  

respectively. So I can say that EMI noise is improved by almost 14dB by applying 

proposed balancing technique in boost converter. 

5.3 Flyback Converter 

To validate the proposed novel balancing technique, a flyback converter of 132 kHz 

switching frequency is built and tested. The input and output specifications of this 

converter are shown in table 1 below 

Table 1: Specification of Flyback converter 

 Specification Value 

1. Input Voltage 230V 

2. Input frequency 50Hz 

3. Output Voltage 12V 

4. Output Current 1A 

5. Output power 12W 
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5.3.1 Conducted EMI noise         

The results of conducted EMI noise measurements for the Flyback converter using the 

conventional transformer and new modified balanced transformer winding structure are 

shown in figure 96 and figure 97. It is predicted that the conducted EMI noise for 

balanced transformer winding is improved by almost 10 dB.  

The proposed technique used the extra windings in a transformer which not only 

reduce the EMI noise but also increase the performface of power supply. This would 

provide the benefits of improved EMI reduction in practical designs compatible with 

EMI specifications. 

 

 

Figure 96: Conducted EMI noise measurement of conventional flyback converter 

 

 

Figure 97: Conducted EMI noise measurement of balanced flyback converter  
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5.4 First Prototype of SMPS (Hard switching Full-bridge Converter) 

The switching frequency of full-bridge converter is 110 KHz with input and output 

specifications  provided in Table 2.  

Table 2: Specification of First prototype of SMPS 

 Specification Value 

1. Input Voltage 230V 

2. Input frequency 50Hz 

3. Output Voltage      +/-48V 

4. Output Current 6A 

5. Output power 1152W 

 

5.4.1 Conducted EMI noise  

A conducted EMI test scan from 150kHz to 30MHz is performed on a converter. The 

EMI scan for first prototype of SMPS (hard-switching converter) is shown in figure 98. 

 

Figure 98: Conducted EMI noise measurement of first prototype (Hard switching Full-bridge 

Converter) 

 

It is evident from the above result that the first peak of EMI noise is at 110kHz of 

82dBuV. and second and third peak of EMI noises appear at 220KHz and 330KHz of 

71dBuV and 76dBuV respectively. The conducted EMI noise of SMPS is above the 
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limit in the range of frequency from 200 kHz to 5 MHz. Therefore it crosses the limit 

set by international EMI standard (CISPR-22) and fails the EMI test.     

5.4.2 Output Noise 

 

Figure 99: Output noise of first prototype (Hard switching full-bridge converter) 

The output noise of first prototype of SMPS (hard-switching converter) is shown in 

figure 99. The maximum peak to peak level of output noise is 730mVp-p. 

5.5 Second Prototype of SMPS (ZVS Full-bridge Converter) 

The switching frequency of ZVS full-bridge converter is 100 KHz with input and output 

specifications given in Table 3.  

Table 3: Specification of Second prototype of SMPS 

 Specification Value 

1. Input Voltage 230V 

2. Input frequency 50Hz 

3. Output Voltage      +/-48V 

4. Output Current 6A 

5. Output power 1152W 
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5.5.1 Conducted EMI noise 

The EMI scan for second prototype of SMPS (ZVS converter) is shown in figure 100.  

 

Figure 100: Conducted EMI noise measurement of Second prototype (ZVS full-bridge Converter) 

It is clear from the result that the first peak of EMI noise is at 100KHz of 62dBuV. 

Moreover, the second and third peak of EMI noises are at 200KHz and 300KHz of 

64dBuV and 70dBuV respectively. Also, the conducted EMI noise of SMPS is above 

the limit in the range of frequency from 300 kHz to 5 MHz. Therefore it crosses the 

limit set by international EMI standard (CISPR-22) and fails the EMI test.     

5.5.2 Output Noise 

 

Figure 101: Output noise of ZVS Second prototype (ZVS full-bridge converter)  

 

The output noise of second prototype of SMPS (ZVS converter) is shown in figure 101. 

The maximum peak to peak level of output noise is 480mVp-p.  
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5.6 Third Prototype of SMPS (Balanced Full-bridge Converter) 

5.6.1 Wire Wound Transformer 

In order to validate the theory of balancing technique, full-bridge converter has been 

investigated by performing experimental tests on two different types of transformer 

construction. As discussed earlier about transformer with different winding 

arrangements known as conventional and interleaving are built and tested. The proposed 

balancing technique has been applied on these transformers constructions. The 

switching frequency of full-bridge converter is considered 110 KHz with input and 

output specifications are presented in Table 4.  

Table 4: Specification of Third prototype of SMPS with wire-wound Transformer 

 Specification Value 

1. Input Voltage 230V 

2. Input frequency 50Hz 

3. Output Voltage      +/-48V 

4. Output Current 6A 

5. Output power 1152W 

 

5.6.2 Conventional Transformer Winding 

5.6.2.1 Conducted EMI noise  

First EMI scan test is performed on conventional transformer winding structure and the 

second EMI scan is performed on corresponding proposed balanced transformer 

structure.  
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Figure 102: Conducted EMI noise measurement of full-bridge converter with conventional 

transformer 

 

 

Figure 103: Conducted EMI noise measurement of full-bridge converter with balanced 

conventional transformer 

 

In figure 102, the first peak of EMI noise is at 110KHz of 82dBuV. Moreover, the 

second and third peak of EMI noises are at 220KHz and 330KHz of 71dBuV and 

76dBuV respectively. On the other hand, the first peak of EMI noise in balanced 

conventional transformer winding is at 110KHz of 70dBuV shown in figure 103. 

Moreover, the second and third peak of EMI noises are at 220KHz and 330KHz of 

57dBuV and 56dBuV respectively. Overall, the EMI noise has improved by 12dB with 

incorporating balanced technique in conventional transformer. 
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5.6.2.2 Output Noise 

 

Figure 104: Output noise of full-bridge converter with conventional transformer 

 

 

Figure 105: Output noise of full-bridge converter with balanced conventional transformer 

 

The output noise of full-bridge converter with conventional transformer and balanced 

conventional transformer are shown in figure 104 and figure 105 respectively. The 

maximum peak to peak level of output noise with conventional transformer is 730mVp-

p. However, the maximum peak to peak level of output noise with balanced 

conventional transformer is 370mVp-p. Overall, the output noise has reduced 

significantly due to novel balancing technique.    
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5.6.3 Interleaved Transformer Winding 

5.6.3.1 Conducted EMI noise 

The EMI scan is performed on interleaved transformer winding and results of  

unbalanced and balanced winding arrangements are  compared for interleaved 

transformer. 

 

 

Figure 106: Conducted EMI noise measurement of full-bridge converter with interleaved 

transformer 

 

Figure 107: Conducted EMI noise measurement of full-bridge converter with balanced interleaved 

transformer  

 

In figure 106, the first peak of EMI noise is at 110KHz of 84dBuV. Moreover, the 

second and third peak of EMI noises are at 220KHz and 330KHz of 63dBuV and 

73dBuV respectively. On the other hand, the first peak of EMI noise in balanced 

interleaved transformer winding is at 110KHz of 70dBuV is shown in figure 107. 

Moreover, the second and third peak of EMI noises are at 220KHz and 330KHz of 
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53dBuV and 58dBuV respectively. Overall, the EMI noise has improved by 10dB with 

incorporating balanced technique in interleaved transformer. 

5.6.3.2 Output Noise 

 

Figure 108: Output noise of full-bridge converter with interleaved transformer 

 

 

Figure 109: Output noise of full-bridge converter with balanced interleaved transformer 

The output noise of full-bridge converter with interleaved transformer and balanced 

interleaved transformer are shown in figure 108 and figure 109 respectively. The 

maximum peak to peak level of output noise with interleaved transformer is 750mVp-p. 

However, the maximum peak to peak level of output noise with balanced interleaved 

transformer is 300mVp-p. Overall, the output noise has reduced significantly due to 

novel balancing technique.    
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5.6.4 Planar Transformer 

In order to validate the theory of balancing technique, full-bridge converter has been 

investigated by performing experimental tests on two different types of planar 

transformer construction. The switching frequency of full-bridge converter is 110 KHz 

with input and output specifications given in Table 5.  

Table 5: Specification of Third prototype of SMPS with Planar Transformer 

 Specification Value 

1. Input Voltage 230V 

2. Input frequency 50Hz 

3. Output Voltage      +/-48V 

4. Output Current 6A 

5. Output power 1152W 

5.6.5 Conventional planar Transformer Winding 

5.6.5.1 Conducted EMI noise 

The conducted EMI test scan is performed with conventional planar transformer 

windings and the corresponding balanced planar transformer windings structure.   

 

Figure 110: Conducted EMI noise measurement of full-bridge converter with conventional planar 

transformer 
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Figure 111: Conducted EMI noise measurement of full-bridge converter with balanced 

conventional planar transformer 

 

In figure 110, the first peak of EMI noise is at 110KHz of 83dBuV. Moreover, the 

second and third peak of EMI noises are at 220KHz and 330KHz of 68dBuV and 

73dBuV respectively. On the other hand, the first peak of EMI noise in balanced 

conventional planar transformer is at 110KHz of 77dBuV as shown in figure 111. 

Moreover, the second and third peak of EMI noises are at 220KHz and 330KHz of 

55dBuV and 57dBuV respectively. Overall, the EMI noise has improved by 13dB with 

incorporating balanced technique in conventional planar transformer. 

5.6.5.2 Output Noise 

 

 

Figure 112: Output noise of full-bridge converter with conventional planar transformer 
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The output noise of full-bridge converter with conventional planar transformer is shown 

in figure 112. The maximum peak to peak level of output noise is 800mVp-p.  

 

 

Figure 113: Output noise of full-bridge converter with balanced conventional planar transformer 

 

The output noise of full-bridge converter with balanced conventional planar transformer 

is shown in figure 113. The maximum peak to peak level of output noise is 310mVp-p. 

Overall, the output noise has reduced considerably due to balanced conventional planar 

transformer.   

5.6.6 Interleaved planar Transformer Winding 

5.6.6.1 Conducted EMI noise 

The EMI scan is performed on interleaved transformer windings and the corresponding 

balanced interleaved transformer windings. Moreover, the results of unbalanced and 

balanced winding arrangements for interleaved transformer structure are compared. 
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Figure 114: Conducted EMI noise measurement of full-bridge converter with interleaved 

transformer 

 

Figure 115: Conducted EMI noise measurement of full-bridge converter with balanced interleaved 

planar transformer  

In figure 114, the first peak of EMI noise is at 110KHz of 81dBuV. Moreover, the 

second and third peak of EMI noises are at 220KHz and 330KHz of 58dBuV and 

70dBuV respectively. On the other hand, the first peak of EMI noise in balanced 

interleaved planar transformer is at 110KHz of 61dBuV as shown in fig 115. Moreover, 

the second and third peak of EMI noises are at 220KHz and 330KHz of 49dBuV and 

54dBuV respectively. Overall, the EMI noise has improved by 9dB with incorporating 

balanced technique in interleaved planar transformer. 
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5.6.6.2 Output Noise 

 

Figure 116: Output noise of full-bridge converter with interleaved planar transformer 

 

The output noise of full-bridge converter with interleaved planar transformer is shown 

in figure 116. The maximum peak to peak level of output noise is 720mVp-p.  

 

 

Figure 117:Output noise of full-bridge converter with balanced interleaved planar transformer 

 

The output noise of full-bridge converter with balanced interleaved planar transformer 

is shown in figure 117. The maximum peak to peak level of output noise is 270mVp-p.  
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5.7 Existing Linear Power supply 

5.7.1 Conducted EMI noise  

The EMI scan is performed on existing Linear power supply by collaborating company 

(Naim Audio) 

 

Figure 118: Conducted EMI noise of linear power supply 

The results indicate that the conducted EMI noise of linear power supply is below the 

limit set by international EMI standard (CISPR-22) as shown in Figure 118.  

5.8 Evaluate the audio Performance of audio amplifier 

5.8.1 Objective Test 

The performance of SMPS is analyzed on the basis of objective tests such as THD+N 

Vs Freq, THD+N Vs Level and FFT. The audio precision equipment is used in the lab 

to measure the objective tests of an audio amplifier by providing power with  two 

different power supplies. 

5.8.1.1 First prototype of SMPS from other Supplier  

 Existing LPS (Linear Power Supply) used for an audio amplifier by 

collaborating company.  

 First prototype of SMPS (Switch-mode Power Supply) from other supplier 

(Connexelectronix). 
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THD+N Vs Frequency 

Plot the THD+N versus frequency of an audio amplifier. Sweep the frequency from 

20Hz to 20kHz.  

 

Figure 119: Variation of total harmonic distortion plus noise with frequency 

In the above plots, the THD+N for an audio amplifier are measured when it is powered 

with two different power supplies. 

 The  red line represents THD+N of an audio amplifier for LPS(Linear 

Power Supply) 

 The gray line represents THD+N of an audio amplifier for SMPS (Switch-

mode Power Supply) 

 

Summary 

I conclude from the experimental results that THD+N are higher in an audio amplifier 

when running with the SMPS as compared to LPS. 

 

THD+N Vs Level 

Plot THD+N versus level at 20Hz, 1kHz and 20kHz of an audio amplifier.  

 

THD+N versus level at 20Hz 
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Figure 120: Variation of total harmonic distortion plus noise with level 

THD+N versus level at 1 kHz 

 

Figure 121: Variation of total harmonic distortion plus noise with level 

THD+N versus level at 20 kHz 

 

Figure 122: Variation of total harmonic distortion plus noise with level 

In the above plots, the THD+N for an audio amplifier are measured using two different 

power supplies. 

 The red line represents THD+N of an audio amplifier for LPS(Linear Power 

Supply) 

 The gray line represents THD+N of an audio amplifier for SMPS (Switch-

mode Power Supply) 
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Summary 

From the above plots, it is concluded that the THD+N are higher in an audio amplifier 

when running with the SMPS as compared to LPS. 

 

FFT  

 

Figure 123: Level Vs Frequency 

 

 

Figure 124: Level Vs Frequency 

In the above plots, the FFT for an audio amplifier are  measured by providing powered 

with two different power supplies. 

 The red line represents FFT of an audio amplifier for LPS(Linear Power 

Supply) 

 The gray line represents FFT of an audio amplifier for SMPS (Switch-mode 

Power Supply) 
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Summary 

From the above plots, it is concluded that noise level are higher in an audio amplifier 

when running with the SMPS as compared to LPS. 

5.8.1.2 Second prototype of SMPS from other Supplier 

 Existing LPS (Linear Power Supply) used for an audio amplifier by 

collaborating company.  

 Second prototype of SMPS (Switch-mode Power Supply) from other 

supplier (A and T labs). 

THD+N Vs Frequency 

Plot the THD+N versus frequency of an audio amplifier. Sweep the frequency from 

20Hz to 20kHz.  

 

Figure 125: Variation of total harmonic distortion plus noise with frequency   

In the above plots, the THD+N for an audio amplifier are measured with two different 

power supplies. 

 The red line represents THD+N of an audio amplifier for LPS(Linear Power 

Supply) 

 The black line represents THD+N of an audio amplifier for SMPS (Switch-

mode Power Supply) 

Summary 

From the above plots, it is concluded that the THD+N are higher in an audio amplifier 

when running with the SMPS as compared to LPS. 
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THD+N Vs Level 

Plot THD+N versus level at 20Hz, 1kHz and 20kHz of an audio amplifier.  

THD+N versus level at 20Hz 

 

Figure 126: Variation of total harmonic distortion plus noise with level 

THD+N versus level at 1 kHz 

 

Figure 127: Variation of total harmonic distortion plus noise with level 

THD+N versus level at 20 kHz 

 

Figure 128: Variation of total harmonic distortion plus noise with level 

In the above plots, the THD+N for an audio amplifier are measured with two different 

power supplies. 
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 The red line represents THD+N of an audio amplifier for LPS(Linear Power 

Supply) 

 The black line represents THD+N of an audio amplifier for SMPS (Switch-

mode Power Supply) 

Summary 

From the above plots, it is concluded that the THD+N are higher in an audio amplifier 

when running with the SMPS as compared to LPS. 

 

FFT 

 

Figure 129: Level Vs Frequency 

 

Figure 130: Level Vs Frequency 

 

In the above plots, the THD+N for an audio amplifier are measured with two different 

power supplies. 

 The red line represents FFT of an audio amplifier for LPS(Linear Power 

Supply) 
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 The black line represents FFT of an audio amplifier for SMPS (Switch-

mode Power Supply) 

Summary 

From the above plots, it is concluded that noise level are higher in an audio amplifier 

when running with the SMPS as compared to LPS. 

5.8.1.3 Proposed Prototypes of SMPS 

 Existing LPS (Linear Power Supply) used for an audio amplifier by 

collaborating company (Naim audio).  

 First prototype of SMPS (Hard-switching Converter) 

 Second prototype of SMPS (ZVS-switching Converter) 

 Third prototype of SMPS (Balanced Converter) 

THD+N Vs Frequency 

Plot the THD+N versus frequency of an audio amplifier. Sweep the frequency from 

20Hz to 20kHz.  

 

Figure 131: Variation of total harmonic distortion plus noise with frequency   

In the above plots, the THD+N for an audio amplifier are measured with four different 

power supplies. 

 The red line represents THD+N of an audio amplifier for LPS(Linear Power 

Supply) 

 The blue line represents THD+N of an audio amplifier for hard switching 

SMPS. 

 The black line represents THD+N of an audio amplifier for ZVS-SMPS. 
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 The green line represents THD+N of an audio amplifier for Balanced 

SMPS. 

Summary 

From the above plots, it is concluded that the THD+N of an audio amplifier when 

running with the balanced converter are comparable to THD+N with LPS. However, the 

THD+N are higher in an audio amplifier when running with the hard switching and 

ZVS SMPS as compared to LPS. 

THD+N Vs Level 

Plot THD+N versus level at 20Hz, 1kHz and 20kHz of an audio amplifier.  

THD+N versus level at 20Hz 

 

Figure 132: Variation of total harmonic distortion plus noise with level 

THD+N versus level at 1 kHz 

 

Figure 133: Variation of total harmonic distortion plus noise with level 
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THD+N versus level at 20 kHz 

 

Figure 134: Variation of total harmonic distortion plus noise with level 

In the above plots, the THD+N for an audio amplifier are measured with four different 

power supplies. 

 The red line represents THD+N of an audio amplifier for LPS(Linear Power 

Supply) 

 The blue line represents THD+N of an audio amplifier for hard switching 

SMPS. 

 The black line represents THD+N of an audio amplifier for ZVS-SMPS. 

 The green line represents THD+N of an audio amplifier for Balanced 

SMPS. 

Summary 

From the above plots, it is concluded that the THD+N of an audio amplifier when 

running with the balanced converter are comparable to THD+N with LPS. However, the 

THD+N are higher in an audio amplifier when running with the hard switching and 

ZVS SMPS as compared to LPS. 
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FFT 

 

Figure 135: Level Vs Frequency 

 

Figure 136: Level Vs Frequency 

 

In the above plots, the THD+N for an audio amplifier are measured with two different 

power supplies. 

 The red line represents THD+N of an audio amplifier for LPS(Linear Power 

Supply) 

 The blue line represents THD+N of an audio amplifier for hard switching 

SMPS. 

 The black line represents THD+N of an audio amplifier for ZVS-SMPS. 

 The green line represents THD+N of an audio amplifier for Balanced 

SMPS. 

Summary 

I conclude from the results that the THD+N of an audio amplifier when running with 

the balanced converter are comparable to THD+N with LPS. However, the THD+N are 
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higher in an audio amplifier when running with the hard switching and ZVS SMPS as 

compared to LPS. 

5.8.2 Subjective test 

The performance of proposed novel low noise SMPS is evaluated on the basis of 

subjective tests performed on the power amplifier. The subjective tests involved the 

blind audio listening tests. In a blind listening test, the listener was unaware of the 

power supply used to power the audio amplifier. Therefore, the psychological influence 

was not affected the judgment of listener related to brand product. On the basis of 

subjective test, the decision is made that balanced SMPS solution is comparable to 

linear solution.  

5.9 Summary 

In this chapter, a proposed balanced technique for flyback, boost and full-bridge 

converter have been evaluated. The proposed schemes effectively reduce the conducted 

EMI noise in balanced converter as compared to conventional method. In addition, the 

novel design of low noise switch mode power supply satisfies the EMI standard set by 

International bodies (CISPR-22).   
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6 CHAPTER 6                               CONCLUSIONS 

6.1 Introduction 

The development of a novel low noise switch power supply for audio amplifiers is quite 

fascinating but a challenging task.  Recently, a lot of efforts have been already dedicated 

in this direction to overcome the underlying problems of electromagnetic interference in 

such devices but still there is need to find and develop an alternative solution that 

reduces the noise in SMPS to a substantial level to meet EMI standard of International 

bodies. In this thesis, I proposed different solutions based on balancing mechanism with 

experimental implementation to mitigate the noise of SMPS in different topologies. I 

thoroughly explore and understand the different mechanisms that contribute to 

generation of CM noise. In particularly, I investigate PFC boost converter, fly-back 

converter and full-bridge converters, as a basic topologies, to verify proposed idea and 

finally show that the proposed technique reduces the noise significantly in SMPS to 

meet EMI standard of International bodies (CISPR-22).  The development and 

characterization of a novel SMPS for audio amplifiers is successfully completed with 

expected results in this thesis. The proposed scheme based on balancing technique is 

quite effective and easily implementable in SMPS for audio amplifiers. The substantial 

reduction of noise in SMPS naturally enters research to next phase, which is 

commercialization of the product for audio applications. These findings are not 

important only for technological point of view but also it give deep insights to scientific 

community working in this research field.  

In this chapter, I summarized the proposed methodology of balancing technique and 

their overall effect on the performance of SMPS. The performance of proposed novel 

low noise SMPS is also evaluated on the basis of subjective and objective tests 

performed on the power amplifier. Moreover, the suggestions for future work are also 

presented.    

 

6.2 Summary  

6.2.1 Proposed Balance Technique for PFC boost converter 

A novel balancing technique is proposed to reduce overall CM noise of PFC boost 

converter. In this scheme, I introduced the anti-phase noise source by adding a coupled 
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inductor with compensating winding and compensating capacitor to generate a 

complimentary voltage. The voltage produced due to additional winding and capacitor 

is 180° out of phase as compared to the original noise voltage. Therefore, the overall 

noise is cancelled out with the help of novel technique. Furthermore, experimental 

measurements demonstrate that this technique mitigates the CM noise effectively 

through parasitic capacitance of MOSFET/Diode. It is also confirmed experimentally 

that the proposed method reduces the noise by nearly 14 dB for the case of a PFC boost 

converter when compared to the conventional technique.  

 

6.2.2 Proposed Balance Technique for Flyback converter 

A novel balancing technique is proposed to reduce the overall CM noise for fly-back 

converter. This technique mitigates the CM noise not only through parasitic capacitance 

of MOSFET/Diode but also through inter-winding capacitance by balancing the 

transformer winding. It is confirmed experimentally that the proposed method works 

efficiently to overcome the problem of EMI noise in isolated converters and reduces the 

noise by nearly 10 dB for the case of a flyback converter when compared to 

conventional technique. I intend to further refine the technique and investigate its 

application in a range of converter topologies. 

 

6.2.3 Proposed Balance Technique for Full-bridge converter 

A novel balancing technique for full-bridge converter is proposed to mitigate CM noise 

by using balanced transformer construction method. The proposed technique is 

employed not only on conventional transformer method but also applied to interleaved 

transformer construction. This technique mitigates CM noise by producing anti-noise 

voltage which is out of phase as compared to original noise in a converter. This 

technique mitigates CM noise through both propagation paths such as parasitic 

capacitance of MOSFETs/Diodes and transformer inter-winding capacitance. The 

experimental results predicts that proposed scheme is universal and can be applied to 

any transformer construction effectively to achieve the better performance of EMI noise 

and reduces the noise by nearly 12dB.  
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Furthermore, the balancing techniques for full-bridge converter are applied to 

different transformer construction such as wire-wound and planar transformer. 

Moreover, the proposed scheme for wire wound and planar transformer have been 

investigated for full-bridge converter. Also, different types of transformer such as 

conventional and interleaved transformer construction have been considered for 

proposed balanced technique. It effectively reduces conducted EMI noise and output 

noise in balanced transformer construction for wire wound and planar transformer. In 

addition, the novel design of low noise switch mode power supply satisfies the EMI 

standard set by International bodies (CISPR-22).   

6.2.4 Novel ZVS full-bridge Converter 

A novel ZVS full-bridge converter is proposed to improve the range of zero voltage 

switching over the entire range of load. The experimental results prove that ZVS can be 

achieved for both legs switching devices (leading and lagging MOSFET). It is also 

evident from proposed circuit that it is a simple and cost effective solution. It also 

improves the overall efficiency of converter over entire range of load. 

 

The performance of proposed novel low noise SMPS is evaluated on the basis of 

subjective and objective tests performed on the power amplifier. The subjective tests 

involved the blind audio listening tests. In a blind listening test, the listener was 

unaware of the power supply used to power the audio amplifier. Therefore, the 

psychological influence was not affected the judgment of listener related to brand 

product. Also the performance of SMPS is analyzed on the basis of objective test such 

as THD+N, frequency response and audio dynamic range. The audio precision 

equipment is used to measure the above tests and compare these results with LPS. On 

the basis of subjective and objective tests, the decision has been made that SMPS 

solution is as good as or better than the linear solution.   
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6.3 Future Work 

Apart from successful development of SMPS for audio amplifiers in this thesis, my 

proposed technique is generic in nature and provide rich possibilities to further 

implement this technique to other SMPS topologies. Some of possible future research 

directions to extend this work are given below 

 

6.3.1 Balancing technique for other hard switching topologies 

I have proposed balancing technique for PFC boost, fly-back and full-bridge converter. 

However, the other topologies such as buck, forward, half-bridge and push-pull 

converter will also need to be considered due to universality of balancing technique in 

future. Therefore, it helps to mitigate the noise of these converters and enhance the 

performance of power supply.    

6.3.2 Balancing technique for soft-switching topologies 

The balancing technique for different types of resonant converter can be useful for 

mitigation of EMI noise from these converters. These resonant converter types such as 

series resonant converter (SRC), parallel resonant converter (PRC) and series parallel 

resonant converter (SPRC). Furthermore Zero voltage switching (ZVS), zero current 

switching (ZCS) and zero voltage zero current switching (ZVZCS) topologies should 

also be considered for balancing technique.  
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Appendix B 

Circuit Schematic for SMPS 

 

 

 

 

Figure 1 (a): Circuit Schematic for First prototype of SMPS 
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Figure 1 (b): Circuit Schematic for First prototype of SMPS 
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Figure 1 (c): Circuit Schematic for First prototype of SMPS 
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Figure 1 (d): Circuit Schematic for First prototype of SMPS 
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Figure 2(a): Circuit Schematic for Second prototype of SMPS 
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Figure 2(b): Circuit Schematic for Second prototype of SMPS 
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Figure 2(c): Circuit Schematic for Second prototype of SMPS 
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Figure 2(d): Circuit Schematic for Second prototype of SMPS 
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Figure 3(a): Circuit Schematic for Third prototype of SMPS 
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Figure 3(b): Circuit Schematic for Third prototype of SMPS 
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Figure 3(c): Circuit Schematic for Third prototype of SMPS 
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Figure 3(d): Circuit Schematic for Third prototype of SMPS 
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Appendix C 

PCB Layout for SMPS 

 

 

Figure 4: PCB Layout for First prototype of SMPS 
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Figure 5: PCB Layout for Second prototype of SMPS 
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Figure 6: PCB Layout for Third prototype of SMPS 
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Figure 7: PCB Layout for Planar Transformer 
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