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Abstract  

This project examined the representation of odours in working memory. There is a 

paucity of research examining specific olfactory working memory ability, and there are 

equivocal findings concerning the availability of an internal representation to 

consciousness and the extent and influence of verbal coding. This thesis first describes 

the creation of a comprehensive database of odour normative data, which contributes to 

the future control and manipulation of olfactory stimuli in experimental research. 

Individual differences were assessed across these odour ratings, and four dimensions 

identified as suitable for future stimulus control. Olfactory working memory was then 

examined using the n-back task with verbalisable and hard-to-verbalise odours. A 

working memory advantage for verbalisable odours was replicated (Jönsson et al., 

2011), but this advantage was unrelated to the adoption of a verbal rehearsal strategy. 

Instead, effects from a concurrent rotation task provided tentative evidence for an 

attentional refreshing process. Controlled working memory processes were shown to be 

reduced for low verbalisability odours, though there was no evidence in a remember-

know task for a switch to more automatic processes (i.e. familiarity). However, in an 

individual-differences analysis of multi-modal n-back performance, only low 

verbalisable odours were unrelated to verbal and visual working memory. The n-back 

working memory findings may therefore reflect a perceptual memory that is unavailable 

to consciousness, and an important role of semantic information in the generation of an 

internal representation that can be manipulated in working memory. Finally, this thesis 

provided a first examination of item-specific proactive interference effects in a memory 

task, which showed absent proactive interference effects for low verbalisability odours 

and which supports mediation of an olfactory representation through odour 

verbalisability. It was suggested that a ‘fuzzy’ representation for low verbalisability 

odours results in a weak link between an item and a conflicting familiarity signal.  
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Chapter 1: Introduction 

1 Chapter Summary 

The ability to remember olfactory information has been largely ignored in general 

models of memory, with a focus instead on the verbal and visual domain. However, 

remembering odours is essential for functions that include food detection and 

identification, hazard avoidance, and social communication (Stevenson, 2010). This 

memory is typically discussed in terms of the Proustian phenomenon, where an odour 

will evoke a distinctive and detailed memory (Chu & Downes, 2000; Herz & Cupchik, 

1995). However, there are also requirements for ‘pure’ odour memory, where a memory 

for an odour is required without association to an experience. For example, a smell 

might be discriminated in a same/different task (Jehl, Royet, & Holley, 1995; Rabin, 

1988), or recognised as having been experienced previously (e.g. Jehl, Royet, & Holley, 

1997; Zucco, 2003). Of particular interest in this thesis is the ability to temporarily 

retain and manipulate olfactory information within working memory, where there is a 

paucity of work. Several every-day tasks, including comparing odour intensities, the 

freshness of foods, or simply distinguishing between two different smells, all 

presumably require some temporary olfactory representation that must be maintained in 

a memory store (White, 2012). Furthermore, attention to the components of odours is 

necessary to establish whether the mixture is tainted by some contaminant (Dacremont 

& Valentin, 2004; Thomas-Danguin et al., 2014).  

This introduction considers whether unique features of olfactory memory can be 

accommodated within established models of working memory. It begins by discussing 

evidence for the representation of odours as a perceptually-based memory trace, and the 
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influence of other-modality representational codes. It is important to establish the extent 

to which an olfactory memory task actually reflects olfactory memory or, instead, 

memory for a re-coded version of the stimulus (e.g. verbal labels). This is followed by 

an introduction to an object-centred account of odour perception under the olfactory-

centred unitary model (Wilson & Stevenson, 2006), which ties olfactory perception to 

activated odour objects in long-term memory. The historical and current 

conceptualisations of odour memory are then discussed in terms of the unique features 

olfactory memory displays compared to other modalities. That is, whether memory for 

odours should be considered qualitatively distinct to memory for other modalities is 

discussed, with reference to forgetting functions, serial position effects, and the ability 

to consciously access stored olfactory representations (e.g. Stevenson, 2009; Zucco, 

2003).  Research is then discussed that examines olfactory working memory, with 

consideration of modular and unitary models of working memory. Proposals for an 

independent ‘olfactory buffer’, analogous to verbal and visuo-spatial working memory 

slave systems, are also discussed (e.g. Andrade & Donaldson, 2007).  

1.1 Odour Representations 

1.1.1 Perceptual and verbal representations of olfactory stimuli 

Prior to discussing models of memory, it is important first to consider how odours may 

be represented within memory. Similar to other non-verbal stimuli (Melcher & 

Schooler, 1996; Pickering, 2001; Schooler & Engstler-Schooler, 1990), the extent of 

identification, naming, and verbal re-coding is clearly an important consideration in 

discussions of olfactory memory ability, though findings are equivocal over whether 

verbal processes form an essential part of olfactory memory (e.g. Jönsson, Møller, & 

Olsson, 2011; Murphy, Cain, Gilmore, & Skinner, 1991; White, Hornung, Kurtz, 

Treisman, & Sheehe, 1998; Wilson & Stevenson, 2006). Whilst removing all influence 
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of semantic information and/or verbal labelling from explicit olfactory memory is likely 

impossible (White, Møller, Köster, Eichenbaum, & Linster, 2015), the use of dual tasks 

(Andrade & Donaldson, 2007), and manipulation of familiarity and verbalisability (e.g. 

Jönsson et al., 2011; Møller, Wulff, & Köster, 2004), have been used to elucidate the 

processes involved and to assess whether a perceptually-dominated memory for odours 

is possible. 

Above-chance recognition ability has been shown for unnameable, unidentified, or 

unfamiliar odours (e.g. Cleary, Konkel, Nomi, & McCabe, 2010; Jönsson et al., 2011; 

Kärnekull, Jönsson, Willander, Sikström, & Larsson, 2015; Miles & Hodder, 2005; 

Møller et al., 2004; M. J. Olsson, Lundgren, Soares, & Johansson, 2009; Yeshurun, 

Dudai, & Sobel, 2008; Zelano, Montag, Khan, & Sobel, 2009). Memory performance 

for unidentified odours (i.e. a label given that was not a match to the veridical name, nor 

a close miss) was well above chance in Olsson et al. (2009), and odours difficult to 

verbalise have shown above chance performance in the n-back task (Jönsson et al., 

2011). In Møller et al., (2004), explicit recognition ability was shown for unfamiliar 

odours. In this study, superior performance for younger (compared to older) adults was 

attributed to differences in working memory ability rather than an increase in the use of 

verbal labelling (indeed, one might expect vocabulary to increase with age, and 

therefore if labelling improved memory one might predict superior odour memory in 

older groups). Furthermore, in a free recall task (in which participants were required to 

recall the names of odours presented at encoding), response confusions for odours are 

far greater for perceptually similar odours (e.g. lemon and orange), than for perceptually 

dissimilar odours where their verbal labels are phonologically similar (e.g. lemon and 

melon) (White et al., 1998). Together, these findings are evidence for a perceptual code 



Chapter 1. Introduction 4 

in the encoding of an odour, which can support a perceptually-based odour memory that 

is not reliant upon semantic or verbal mediation. 

It has been suggested that recognition memory may be possible when an odour is 

identified in the perceptual sense (e.g. matched to a stored odour engram, see below), 

but unidentified semantically (Stevenson & Mahmut, 2013b). For example, recognition 

without identification (RWI) describes the phenomenon of discriminating target items 

from lures despite being unable to identify the test item (e.g. Cleary, 2002; Peynircioǧlu, 

1990). This is demonstrated by having participants study a list of stimuli, and at test 

presenting the stimuli with features occluded (e.g. as word fragments with letters 

removed, Peynircioǧlu, 1990). They are then required to identify the word and rate 

whether it was presented in the prior list. It is these ratings that support recognition 

ability without identification. For words, this is explained by the use of perceptual 

information such as abstract orthographic information, or phonological information, 

which gives rise to the feeling of familiarity to enable recognition (Cleary, 2002). The 

presence of RWI has also been shown for picture fragments (Langley, Cleary, Kostic, & 

Woods, 2008), auditory word fragments (Cleary, Winfield, & Kostic, 2007), and odours 

(Cleary et al., 2010). In Cleary et al. (2010), participants were presented with odours 

and names at study, and at test were required to name the target and lure odours and rate 

the likelihood that each item was presented previously. Like other modalities, 

recognition was shown in the absence of identification. Importantly however, when only 

the odour name was presented at study the recognition ratings from presentation of an 

odour did not discriminate targets and lures without identification. This suggests that 

odour RWI is a perceptually-driven phenomenon, because it is necessary that the 

perceptual experience of an odour is experienced at encoding. It should also be noted 

that demonstrations of olfactory RWI in a typical recognition paradigm may be under-
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reported, due to the reluctance of participants to respond ‘old’ to an item when unable to 

report the identity of the odour (R. A. Frank, Rybalsky, Brearton, & Mannea, 2011). 

Other evidence for olfactory perceptual memory has come from studies of implicit 

memory. Degel, Piper, and Köster (2001) examined implicit memory for odours by 

incidentally presenting odours within different rooms and then later asking participants 

to provide a judgment  of ‘fit’ for various odours when shown pictures of different 

rooms. They showed implicit episodic memory for odours and the contexts (rooms) in 

which they were perceived (by previous odour-room pairings receiving a higher ‘fit’ 

rating), and even demonstrated proactive and retroactive interference effects when 

multiple odour-room pairings were experienced (Köster, Degel, & Piper, 2002). 

Importantly, Köster et al. reported that the effects were removed when the odours were 

identified, suggesting that these memories were formed implicitly without conscious 

identification/labelling of the odour. Based upon this observation, Köster et al. argue 

that such implicit memory tasks are a more ecologically valid assessment of odour 

memory, with identification or recollection of odours less important than change-

detection and hazard avoidance in olfactory perception (Köster, 2005). The implicit 

memory work of Köster and colleagues therefore demonstrates that olfactory memories 

can be formed without verbal identification/elaboration. 

In summary, the literature supports an olfactory memory that is not uniquely attributable 

to the recoding of information as a verbal or semantic code, or which requires 

identification for memory to be successful. Instead, the results support a memory ability 

that is, to some extent, reliant upon the perceptual representation of an odour (e.g. White 

et al., 1998). However, olfaction is not uniquely underpinned by perceptual code; there 

is a strong influence of familiarity, semantic information, and labelling, which must be 

considered in any model of olfactory memory. 
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1.1.2 Additive or facilitative effects of verbal labelling 

Wilson and Stevenson (2006) categorise verbal influences on olfactory processing by 

their effects on both perceptual and non-perceptual processing. That is, being presented 

with a choice of names for an odour, or maintaining a name between study and test, may 

result in activation of the stored representation assigned to that odorant to be enhanced 

(see below for an object-centred account of olfactory processing; Cessna & Frank, 

2013; De Wijk & Cain, 1994b; R. A. Frank et al., 2011; Wilson & Stevenson, 2006). 

This results in perceptual benefits (e.g. discriminability, Rabin, 1988) because the 

increased activation allows the direct activation of an appropriate odour object. 

Alternatively, non-perceptual benefits may occur by providing additional codes through 

which an odour can be represented in memory (Andrade & Donaldson, 2007; Annett & 

Leslie, 1996; Paivio, 1990; Stevenson & Mahmut, 2013a). That is, additional codes may 

switch the way an odour is represented into something more easily encoded and 

retrieved (Herz & Engen, 1996), or result in a dual memory trace (Paivio, 1990). 

To examine the role of labelling in olfactory memory, some studies have sought to 

encourage labelling and to examine subsequent memory performance. Such an approach 

has produced mixed findings. For example, some olfactory memory research has shown 

no facilitative effect from effortful verbal labelling (Engen & Ross, 1973; Lawless & 

Cain, 1975; Zucco, 2003), nor effects from verbal interference tasks undertaken during 

the retention interval (Engen, Kuisma, & Eimas, 1973; Zucco, 2003). This apparent 

independence from verbal elaboration is described in Zucco (2003) as evidence against 

a consciously accessible representation of odours, because such a representation is 

impervious to interference from other information, and also to facilitation from 

additional encoding (Zucco, 2003). However, other studies have shown impaired 

olfactory memory when performing concurrent verbal tasks (Annett & Leslie, 1996; 
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Murphy et al., 1991), and a large number of studies have shown improved olfactory 

memory under circumstances where verbal elaboration is possible (R. A. Frank et al., 

2011; Jehl et al., 1995, 1997; Jönsson et al., 2011; Kärnekull et al., 2015; Lyman & 

McDaniel, 1986, 1990). This advantage is particularly apparent for familiar odours that 

are easily or consistently named (R. A. Frank et al., 2011; Kärnekull et al., 2015; M. J. 

Olsson et al., 2009), and indeed identifying an odour will produce similar recognition 

levels and recollective experiences to verbal stimuli (M. J. Olsson et al., 2009). Odour 

familiarity is not however necessary for facilitative effects of verbal labelling to be 

observed, as a recognition advantage has also been shown for unfamiliar odours when 

subjects are given or generate their own verbal label at encoding, an effect observed 

across both short (20 minutes) and long (24 hours) delays (Jehl et al., 1997). These 

separate but likely related effects of familiarity and ease of naming, coupled with 

evidence of a detrimental effect from a concurrent verbal task during encoding, suggests 

an influence of semantic information in odour memory. 

The above evidence indicates that mapping an odour percept to semantic information is 

advantageous for recognition memory. Similar to memory for other stimulus types, a 

general elaborative network model (Anderson, 1983), or dual-coding model (Paivio, 

1990), may explain an advantage from verbal labelling. Both models suggest that 

multiple encoding processes will aid recognition; elaboration by providing multiple 

retrieval paths that increase the likelihood olfactory information is retrieved (Anderson, 

1983; Bradshaw & Anderson, 1982), and dual-coding through functionally distinct 

traces in verbal and non-verbal systems which contain referential links that allow one 

code to activate another (Paivio, 1990). In dual-code theory, these verbal and non-verbal 

codes are proposed to be statistically independent, and additive in their facilitative 
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effects on memory (Paivio, 1991). That is, each code may differ in terms of memory 

ability, but the inclusion of the other will improve performance. 

A dual-coding proposal is similar to the proposed separation of information from verbal 

and visuo-spatial systems in working memory, and their interaction as a bound 

representation in the episodic buffer (Baddeley, 1996, 2000; see Section 1.4.1). 

However, odour recognition memory improvements occur with both verbal and pictorial 

elaboration (Lyman & McDaniel, 1986, 1990), and can be impaired by concurrent 

verbal and visual tasks (cf. Andrade & Donaldson, 2007; Annett, Cook, & Leslie, 1995; 

Annett & Leslie, 1996). Whilst it should be noted that the findings in Lyman and 

McDaniel (1986, 1990) have been criticised due to inferences made from the reduction 

of false alarms rather than from changes in explicit recognition (Zucco, 2003), the 

results support a dual-code interpretation beyond simply employing secondary verbal 

code (Herz, 2000). Specifically, an advantage from visual imagery supports the presence 

of multiple traces, rather than being confined to a simple distinction between verbal and 

non-verbal memory (Annett & Leslie, 1996; Lyman & McDaniel, 1986). In summary, a 

memory advantage from learned associations to odours appears to be due to creation of 

a multi-modal dual-trace, and not the specific inclusion of verbal labelling per se.  

An alternative consideration to dual-code theory has proposed that verbal coding will 

supersede an olfactory representation when semantic information becomes available 

(for example, when remembering familiar odours, or when provided with a name) (Herz 

& Eich, 1995; Herz & Engen, 1996). This is comparable to other modalities, for 

example, where recognition memory for word fragments that are identified benefit from 

encoding tasks that focus on meaning (Cleary, 2002). When fragments are not 

identified, no benefit occurs and recognition is suggested to rely on the use of abstract 

visual information. A similar process may occur for odours, where identification 
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changes the way items are represented in memory (Cleary et al., 2010; Zelano et al., 

2009). Some supporting evidence for an encoding switch for odours comes from 

priming effects, where an odour and its name presented as a prime will produce the 

same speed improvement in a subsequent odour-name matching task as a name-only 

prime (Schab & Crowder, 1995). This suggests that facilitative priming effects from 

odour presentation are due to the availability of a verbal code. In short, proponents of an 

encoding switch suggest odours are recoded into verbal representations, and thus the 

memory may cease to be a representation of the odour percept but instead reflect verbal 

memory for that odour label (White et al., 2015).  

However, several findings are difficult to accommodate within an encoding switch 

explanation. Andrade and Donaldson (2007) showed memory for common odorants 

(which presumably were identifiable to some extent, though this was not reported) was 

not impaired by a concurrent verbal task, and suggests verbal processes are not an 

intrinsic part of olfactory memory. Furthermore, as mentioned previously, there is strong 

evidence for perceptual confusions when odours are perceptually (compared to when 

phonologically) similar (White et al., 1998). Importantly, this task required naming 

responses, suggesting a strong perceptual representation in olfactory memory even 

when verbal labels are required at test. The findings of White et al. therefore suggest 

that the perceptual representation has primacy over the verbal label.  

It is therefore prosaic to argue that olfactory information can be stored in memory with 

a dual code (Lyman & McDaniel, 1986; Yeshurun et al., 2008; Zelano et al., 2009), but 

this secondary code may not be specific to verbal labelling (Annett & Leslie, 1996). 

This is consistent with a proposal in Baddeley (2012) that odours may be processed 

within the episodic buffer, suggesting a working memory that acts upon bound 

representations of olfactory and other modality information. However, behavioural and 
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neuroimaging data remains equivocal on whether this dual representation occurs in all 

instances of olfactory short-term memory, or whether odours can be represented by 

solely perceptual representations (See Section 1.4.1 for discussion of an independent 

olfactory buffer; Andrade & Donaldson, 2007; Yeshurun et al., 2008; Zelano et al., 

2009). A model of olfactory perception and memory has been presented however, 

discussed in Section 1.1.3, that attempts to consolidate these findings (Wilson & 

Stevenson, 2006). 

1.1.3 An object-recognition approach to olfactory perception 

The olfactory-centred unitary model (Stevenson & Boakes, 2003; Wilson & Stevenson, 

2006) describes olfactory perception in terms of object recognition, where odours can 

be perceived from within a complex olfactory environment as a unitary whole 

(Stevenson & Wilson, 2007). The model suggests perception of a distinct odour object 

is the result of activation of a stored olfactory representation in long-term memory, and 

is therefore reliant on prior perceptual experience with the odour. This activated 

representation is also linked in a two-way relationship with semantic information, where 

top-down knowledge can facilitate activation of the stored olfactory representation, and 

semantic information can be activated following presentation of an odour and co-opted 

for use in memory (Stevenson & Boakes, 2003).  

This section first describes the proposed physiology of olfactory perception that leads to 

the selection of a distinct odour object. Perception of an odorant begins when volatile 

chemicals bind to a distinct combination of receptors in the olfactory epithelium (Buck, 

2004), and this pattern of activation projects to the glomerular layer of the olfactory 

bulb before being conveyed to regions that constitute the primary olfactory cortex 

(including the piriform cortex, Gottfried, 2010). This activation pattern is based on the 

spatial orientation of receptors activated, and temporal information related to the speed 
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with which chemical components interact with the receptors (Buck, 2000). However, 

odours that are both the target of perception, and present in the background, will bind to 

these receptors equally. Thus a unique activation pattern upon presentation of every 

smell will be generated, and will make identification impossible. Consequently, there is 

a requirement for the odour to be separated from background odours (i.e. figure-ground 

separation) to allow perception of a discrete odour object (Gottfried, 2010; Stevenson & 

Boakes, 2003; Stevenson & Wilson, 2007; Wilson & Stevenson, 2006).  

The olfactory-centred unitary model is an integrated model of odour perception and 

memory because mnemonic processes are proposed to drive the ability to perceive this 

distinct odour object (Stevenson & Boakes, 2003; White, 2009; Wilson & Stevenson, 

2006). Two key processes are described: habituation and pattern matching. That is, 

habituation of background odours at the level of the odour receptors and olfactory bulb 

neurons allows the piriform cortex to analyse only pattern features related to the odour 

object (M. E. Frank, Goyert, & Hettinger, 2010; Stevenson & Wilson, 2007; Wilson & 

Stevenson, 2003a). This is demonstrated in piriform activations from a target odour 

following adaptation to stable background odours that matches activations when the 

target is presented without the background odours (Kadohisa & Wilson, 2006).  

The second proposed process describes the matching of this input pattern to stored 

perceptual object templates (engrams, Stevenson & Boakes, 2003). Pattern-matching is 

possible because an odour that has been experienced previously will have an odour 

template contained within an object store (Stevenson & Wilson, 2007; Wilson & 

Stevenson, 2006). When the odour is experienced again there is a close match between 

its input pattern and this stored template, which will be activated strongly amongst a 

small number of other similar olfactory templates (Stevenson & Mahmut, 2013a). The 

strong activation of a limited number of similar templates, combined with inhibition of 



Chapter 1. Introduction 12 

other templates due to this activation strength, results in perception of a discrete odour 

that is separable from the background and other odorants, and gives rise to the 

perception of the odour’s quality (Stevenson & Boakes, 2003; Stevenson & Mahmut, 

2013a; Wilson & Stevenson, 2006). In contrast, a novel or unfamiliar odour will not 

have an exact match in this store, and consequently will activate many stored templates 

to a much lesser extent. Novel and unfamiliar odours therefore produce a vague 

perceptual experience, and an unstable percept once the stimulus is removed (Stevenson 

& Mahmut, 2013a). This novel odour is also less discriminable from other unfamiliar 

odours because it is redolent of many odour representations (Mingo & Stevenson, 

2007). 

Association of semantic information to an odour template can be effortful, and 

strengthened through repetition (De Wijk & Cain, 1994a; Rabin, 1988), though an 

association between odour and other information at encoding may also occur 

incidentally (e.g. Degel et al., 2001). When experiencing an odour, the activation 

strength of the odour template will increase the likelihood that this associated link to 

episodic or semantic knowledge is excited (Stevenson & Boakes, 2003), resulting in 

identification of the stimulus, generation of a name, and other contextual information. It 

should be noted however that olfactory identification is typically very poor, and 

participants overestimate their ability to name odours (Jönsson & Olsson, 2003; 

Jönsson, Tchekhova, Lönner, & Olsson, 2005). The reason for this is debated 

(Stevenson & Mahmut, 2013b). Naming may be difficult because of the ‘fuzzy’ 

activation that occurs as the result of multiple template activations within the object 

store (Jönsson & Olsson, 2012), meaning that unless an odour is identified (the correct 

odour template is activated), the correct name cannot be retrieved. This is supported in 

demonstrations of ‘tip-of-the-tongue’ states, which shows a strong feeling-of-knowing 
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in the absence of a name, but unlike other modalities is accompanied by very little 

semantic information (Jönsson & Olsson, 2003; Jönsson et al., 2005). That is, the 

semantic information is not available because the odour object has not been identified. 

In comparison, Stevenson and Mahmut (2013b) suggest an odour may be identified 

perceptually, but naming is poor due to a weak link between semantic and perceptual 

systems. This is perhaps because there is rarely a requirement for an interaction between 

the two systems (because an odorous object can usually be seen, and hedonic 

information may be processed separately, Stevenson & Mahmut, 2013b). 

Naming ability can be drastically improved by allowing the selection of a name from a 

multiple choice list (e.g. Cain, 1979; De Wijk & Cain, 1994b; R. A. Frank et al., 2011). 

Providing a choice of names serves to cue the correct response, and is suggested to 

lower the threshold for activating the appropriate odour template (R. A. Frank et al., 

2011). This not only facilitates identification (Stevenson & Boakes, 2003; Wilson & 

Stevenson, 2006), but also make odours more discriminable (Rabin, 1988), and appear 

more intense (Distel & Hudson, 2001). This account can also explain the facilitative 

role of verbal labelling in olfactory memory (e.g. Lyman & McDaniel, 1986). For 

example, it is possible for verbal codes to independently support olfactory recognition 

by providing an additional code by which olfactory information can be maintained 

(Herz, 2000; Stevenson & Mahmut, 2013a). The facilitation can therefore occur because 

retrieval of a verbal code effectively mimics the effect of cued identification of the 

odour, lowering the threshold of activation for that odour engram when it is re-

presented. Alternatively, odours that are consistently identified will consistently activate 

associated semantic information that includes its verbal label, and later presentation of 

the same olfactory stimulus will activate the same object, and with it, the remembered 

verbal label (R. A. Frank et al., 2011). This could mean that only the verbal label needs 
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to be maintained over the retention interval, though such an explanation is inconsistent 

with the evidence against an encoding switch, discussed in Section 1.1.1 (e.g. Andrade 

& Donaldson, 2007). In summary, this model suggests therefore that how an odour is 

represented may vary depending on the ability of an odour to be identified perceptually, 

and the subsequent ability to activate semantic information related to that odour. 

The above model has subsequently been elaborated to explain odour memory. Wilson 

and Stevenson (2006) suggest that odour memory is a direct consequence of olfactory 

perception. That is, recognition memory is proposed to occur as a consequence of 

residual activation of the stored odour templates, which facilitates the reactivation of the 

representation when the odour re-occurs (Stevenson & Boakes, 2003; Stevenson & 

Mahmut, 2013a; Wilson & Stevenson, 2006). This is proposed as a unitary system, so 

does not differentiate between short and long term memory (but see White, 2009, and 

Section 1.2.1 for a discussion). Furthermore, whilst this activation allows performance 

in short-term recognition memory tasks, proponents of this model suggest the activation 

of an odour engram does not reflect a conscious representation (Stevenson, 2009; 

Stevenson & Mahmut, 2013a). This may reflect similar processes to those described in 

RWI (Cleary, 2010), where odours can be recognised in some familiarity-based system 

without identification.  

However, the above model, describing memory driven by unconscious access to stored 

perceptual representations, has been criticised by its inability to explain findings where 

directed attention is used to aid odour detection and identification (White, 2009, 2012). 

A general attentional model of olfactory processing has been proposed (e.g. see White, 

2012, and Section 1.2.4 below), though a requirement of this model is the ability to 

process odours in working memory. The allocation of attention for olfactory imagery or 

rehearsal in working memory may not be possible, however, if there is an inability to 
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access a conscious representation of perceptual olfactory representations (see Section 

1.2.3 and 1.2.4). The next section considers these issues, and other demonstrations of 

olfactory memory that are not analogous to other-modality systems, with the eventual 

purpose of considering how odours may be accommodated within a working memory 

system.  

1.2 Unique features of olfactory memory 

Section 1.1.1 presented putative evidence for memory of an olfactory perceptual code, 

and evidence that whilst this representation can be facilitated by verbal processes it is 

not intrinsically dependent on them. Employment of a perceptual representation in 

olfactory memory task (rather than relying upon verbal recoding) indicates the existence 

of an odour specific buffer. Further support for the existence of such an olfactory store 

would be evidenced by qualitative differences in olfactory memory relative to other 

stimulus modalities. To this end, this section considers how olfactory memory is 

comparable to memory for other modalities. That is, despite some similarities to visual 

and verbal memory, there are clearly unique characteristics of olfactory memory that 

support the existence of a separable system, different to verbal or visual memory (see 

Herz & Engen, 1996). 

1.2.1 Forgetting functions: the existence of a dissociation between STM and LTM 

A dramatic early claim was that olfactory memory was not separated into STM and 

LTM components (Engen et al., 1973; Lawless & Engen, 1977). A key finding 

underpinning this claim is poor initial recognition ability for odours, coupled with a flat 

forgetting curve across both short intervals up to 30 seconds (Engen et al., 1973; F. N. 

Jones, Roberts, & Holman, 1978) and long intervals between one day and twelve 

months (Engen & Ross, 1973; Lawless & Cain, 1975). This finding contradicts the 

canonical logarithmic forgetting curve reported for verbal (Ebbinghaus, 1885; Murre, 
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Dros, Gais, Born, & Dey, 2015) and visual (Roger N. Shepard, 1967) stimuli. The 

apparent absence of temporal effects on the forgetting of olfactory memories contradicts 

the traditional distinction of a highly accurate yet fragile STM and a less accurate but 

more stable LTM (e.g. Atkinson & Shiffrin, 1968) and suggests that olfactory memory 

may be qualitatively different to other modalities. 

However, rather than interpret the flat forgetting function as evidence for an absence of 

olfactory STM, an alternative explanation for this apparent lack of ‘decay’ concerns 

how odours are represented in memory. Odour representations were characterised as a 

distinct unitary event with little attribute redundancy (Engen, 1982; Herz & Engen, 

1996). That is, for odours, unlike other stimuli, there are a lack of other hierarchical 

features which form that item (Collins & Loftus, 1975). Consider, for example, visual 

objects which may be characterised by multiple features that include shape, colour, size, 

and location (Allen, Hitch, Mate, & Baddeley, 2012); odours, in contrast, comprise a 

single feature. This lack of additional features that comprise the odour representation is 

proposed to make the initial level of recognition poor (Engen et al., 1973), but also 

results in minimal retroactive interference through a reduced number of features that can 

overlap across odours (Lawless & Engen, 1977; Schab, 1991; Zucco, 2003).  

Despite these initial differences, more recent studies have reported similar forgetting 

curves for named odours, unidentified odours, and verbal stimuli (M. J. Olsson et al., 

2009), albeit from different initial recognition levels (see also, Kärnekull et al., 2015, 

for similar forgetting functions to that of faces, and Köster et al., 2002, for similar cross-

modal forgetting effects with implicit odour memory). Moreover, there exists indirect, 

yet compelling, evidence for odours being susceptible to retroactive interference shown 

via the negative effects of a same modality suffix (Miles & Hodder, 2005; Miles & 

Jenkins, 2000) and same modality secondary task (Andrade & Donaldson, 2007; Walk 
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& Johns, 1984). Consequently, it appears odour memory may be susceptible to 

interference from other olfactory stimuli in a way that is analogous to the retroactive 

interference observed in verbal and visual memory (see Chapter 5 for more detailed 

examination of interference in olfactory memory).  

The existence of olfactory STM is proposed due to the sequential nature of most 

olfactory memory tasks, such as the ability to distinguish the smell of one odour from 

another. These discriminability tasks presumably require the temporary maintenance of 

the removed stimulus until it is ready to be compared to the newly presented item 

(White, 2009, 2012). However, though influential modular accounts of memory suggest 

a dissociation between STM and LTM (e.g. Baddeley & Hitch, 1974), temporary 

storage may instead be explained as a consequence of residual activation of 

representations in long-term memory (Cowan, 1999; Wilson & Stevenson 2006). White 

(1998, 2009) considered in two reviews whether a STM-LTM distinction is appropriate 

for olfactory memory, with specific consideration of the olfactory-centred unitary 

model. White (1998, 2009) examined three areas of evidence for STM-LTM 

dissociation; (1) capacity differences, (2) coding differences, and (3) 

neuropsychological evidence. These areas of evidence for STM-LTM dissociation are 

considered in detail below. 

In respect to capacity differences for STM and LTM, short-term memory for odours is 

affected by the set size (i.e. the number of to-be-remembered items) (Engen et al., 1973; 

F. N. Jones et al., 1978), and the effect of set size is comparable to that reported for 

verbal stimuli (Murdock, 1961). Furthermore, concurrent task findings support a 

limited-capacity buffer consistent with a modular working memory system (Andrade & 

Donaldson, 2007). That is, Andrade and Donaldson showed a disruptive effect of a 

secondary olfactory task on odour memory performance, suggesting a limited capacity 
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for processing olfactory information in a short-term memory task. In comparison, Zucco 

(2003) showed no detrimental effect of a task performed in a longer retention period (10 

minutes), requiring participants to rate olfactory, acoustic, or visual stimuli. This 

suggests a functional difference between olfactory STM and LTM. However, Stevenson 

(2009) argues that perceptual similarity between the task items can explain the above 

effects of set size and concurrent olfactory processing. In the object-centred unitary 

model of olfaction, this would result in greater overlapping activations of stored 

representations, and detrimental performance from additional odours in the task as a 

result (Wilson & Stevenson, 2006). An additional source of evidence for olfactory short-

term memory is the strong recency effects observed in serial memory (A. J. Johnson & 

Miles, 2007; Miles & Hodder, 2005; Reed, 2000; White & Treisman, 1997), though it 

should be noted that findings of extended recency (e.g. A. J. Johnson & Miles, 2007; cf. 

White & Treisman, 1997) might instead be interpreted within the olfactory centred 

unitary model as a reduction in the likelihood that olfactory features would overlap (see 

Section 1.2.2 for further discussion of differences across serial position functions). 

In respect to coding differences for STM and LTM, it is suggested that short-term 

coding is modality-specific whereas long-term memory is supported by a more general 

semantic code (Baddeley, 1996). Like capacity differences, support for this distinction 

can be found with modality-specific interference in a short-term memory task (Andrade 

& Donaldson, 2007). Specifically, Andrade and Donaldson (2007) found that 

performance on a yes/no recognition olfactory task was disrupted to a greater extent by 

a secondary yes/no olfactory recognition task undertaken during the retention interval, 

compared to the effects of a secondary verbal or visual task. Furthermore, in an 

examination of olfactory LTM, Zucco (2003) observed no disruption to odour memory 

from an olfactory interference task, which may suggest long-term memory for odours is 
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not represented in a modality-specific code (though they instead interpret this finding as 

evidence against a conscious representation in memory, see Section 1.2.3). It should 

also be noted that not all studies have shown coding differences. For example, both 

perceptual and phonological coding has been observed for olfactory short-term memory 

(White et al., 1998), and both perceptual and semantic coding has been observed in 

olfactory long-term memory (Cain, De Wijk, Lulejian, Schiet, & See, 1998).  

In respect to neuropsychological evidence, classical evidence for a STM-LTM 

dissociation has been shown with hippocampal lesion amnesics who exhibited intact 

memory at retention intervals of 5-minutes but deficits at lengthened intervals of 1-hour 

(Levy, Hopkins, & Squire, 2004; cf Dade, Zatorre, & Jones-Gotman, 2002, who 

reported an impairment to olfactory recognition that was unaffected by retention 

interval). Furthermore, short term odour recognition has been shown to be impaired in 

epileptic patients (Carroll, Richardson, & Thompson, 1993), though in this study the 

extent to which long-term olfactory memory remained intact was not examined. 

Evidence from H.M. (an amnesic patient with a deficit in consolidation to long-term 

memory, Eichenbaum, Morton, Potter, & Corkin, 1983) is often cited as one half of a 

double-dissociation for a STM-LTM distinction (Milner, Corkin, & Teuber, 1968), and 

in a battery of tests of olfactory functioning H.M. showed a deficit in odour quality 

discrimination (Eichenbaum et al. 1983). This suggests odour discrimination is 

dependent on intact representations in long-term memory, and may be evidence against 

a functionally separate olfactory STM (although alternatively, it is possible that the 

olfactory pathways for odour discrimination were damaged in addition to long-term 

memory, White, 1998). 

In summary, White (2009) argued in favour of the olfactory-centred unitary model, 

suggesting that whilst short-term memory for odours is similar to other modalities, it 
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(and other modalities) may not necessarily exist as architecturally separate systems 

(Cowan, 1999; Stevenson & Mahmut, 2013a; White, 2009, 2012; Wilson & Stevenson, 

2006). Indeed, more generally, the dissociation of STM and LTM remains controversial 

in the memory literature (e.g. Bhatarah, Ward, & Tan, 2006; Bjork & Whitten, 1974; 

Tan & Ward, 2000). However, the evidence described here is far from conclusive 

against such dissociation, and other modalities have shown more convincing evidence 

for a distinction between the two types of memory. These apparent differences between 

olfaction and other modalities provide evidence against a general unitary process across 

modalities (see a detailed discussion of unitary and modular systems in Section 1.4). 

1.2.2 Serial position effects 

Serial position effects refer to the differences in memory performance as a function of 

the position of items in the original sequence. That is, whether relative to other items in 

a list, memory is superior at certain positions in the lists (first, last etc.). The extent to 

which olfactory memory differs to other modalities can be assessed by comparing the 

serial position functions cross-modally (although in cross-modal comparisons one 

should be cognizant that methodological differences can alter the shape of the serial 

position function, Ward, Avons, & Melling, 2005). The patterns of recognition memory 

for odours, assessed through 2-alternative forced choice (2AFC) recognition, typically 

produce functions consistent with other stimulus types (A. J. Johnson & Miles, 2007; 

Miles & Hodder, 2005; cf. Reed, 2000). However, whilst primacy effects may indicate 

the rehearsal of information early in a list (Rundus, 1971; Tan & Ward, 2000, although 

see Tan & Ward 2007, for critique of a rehearsal account of primacy), these have been 

absent for olfactory versions of order memory tasks that are typically characterised by 

primacy (A. J. Johnson, Cauchi, & Miles, 2013; A. J. Johnson & Miles, 2009). Indeed, 

when primacy has been observed for odour sequence memory, this has been attributed 
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to verbal labelling of the odours (Annett & Lorimer, 1995; Miles & Jenkins, 2000; 

Reed, 2000). However, it is worth emphasising that Ward et al. (2005) show that the 

traditionally reported cross-modal differences (between visual and verbal memory) can 

be explained by task rather than stimulus differences. At present, there exist insufficient 

studies that compare the serial position functions for olfactory and visual/verbal 

memory when both stimulus types are applied to the same task demands. Initial studies 

(A. J. Johnson & Miles, 2007, 2009) have produced conflicting findings suggesting that 

olfactory memory may be similar to other stimulus types in respect to item but not order 

memory. However, more comprehensive work in this area is needed.  

1.2.3 Imagining an odour 

Mental imagery is proposed to directly engage perceptual pathways to recreate the 

experience of an item, in the absence of a presented stimulus (Farah, 1988; Kosslyn & 

Thompson, 2003; cf. Pylyshyn, 2003). Imagery is closely related to working memory 

(Tong, 2013), and consequently to directed attention, consciousness, and the ability to 

actively rehearse or refresh olfactory information in memory (M. R. Johnson, Mitchell, 

Raye, D’Esposito, & Johnson, 2007; Stevenson, 2009). The re-creation of an olfactory 

perceptual experience would therefore support an ability to access an internal 

representation that is analogous to processes in visual memory (Kosslyn, Ganis, & 

Thompson, 2001), but findings in this area are equivocal (e.g. Crowder & Schab, 1995; 

Rinck, Rouby, & Bensafi, 2009; Royet, Delon-Martin, & Plailly, 2013; Stevenson, 

2009; Tomiczek & Stevenson, 2009). However, although investigations of olfactory 

working memory are limited (see White, 2012, for a discussion of olfactory working 

memory, and Section 1.3 in this thesis), evidence for such an ability (e.g. Dade, Zatorre, 

Evans, & Jones-Gotman, 2001; Jönsson et al., 2011; Zelano et al., 2009) suggests some 

capability to both image and consciously access an internal representation of odours. 
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This section explores the nature of olfactory imagery, and examines how such an ability 

might differ to that seen for other modalities. 

It is clear that the ability to imagine an odour is poor in comparison to visual, auditory, 

or even haptic stimuli (Herz, 1996, cited in Herz, 2000; Stevenson & Case, 2005). For 

example, odour images are self-reported as less vivid and more difficult to produce than 

other modalities (Ashton & White, 1980). Indeed, some research suggests such an 

ability may not be possible at all (Crowder & Schab, 1995; Herz, 2000). For example, a 

mental image is proposed to re-create the perceptual experience of an odour, so paired-

associative memory would be expected to show similar performance regardless of 

whether cues at learning and test were the actual stimulus or a prompt to imagine the 

stimulus. Herz (2000) showed this was not the case, as cued recall was impaired when 

the cue switched from an imagine format at study to the actual odour at test, compared 

to when both study and test were imagine cues. The presence of switch effects for 

olfactory memory was interpreted as an inability of imagery to reproduce the perceptual 

experience of an odour. However, it should be noted that there was no alternative 

modality presented in this task with which to compare these effects of cue-switching.  

In contrast, several avenues of research have supported an olfactory imagery ability (for 

reviews see Rinck et al., 2009; Stevenson, 2009; Stevenson & Case, 2005). Olfactory 

hallucinations, for example, have been reported in the absence of a sensory stimulus, 

and is evidence for an ability to recreate the perceptual experience of an odour 

(Stevenson & Case, 2005). Furthermore, like other modalities, participants imagining 

the experience of an odour will activate overlapping brain regions with those when 

actually experiencing an odour (Bensafi, Sobel, & Khan, 2007; Djordjevic, Zatorre, 

Petrides, Boyle, & Jones-Gotman, 2005; see Kosslyn et al., 2001 for a discussion of the 

neural basis of imagery for other modalities). Similarly, activation related to odour 
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processing in the inferior frontal gyrus occurs in anticipation of olfactory task demands, 

and continues in the short-term memory period beyond removal of the stimulus (Rolls, 

Grabenhorst, & Margot, 2008).  

Tomiczek and Stevenson (2009) demonstrated generation of an odour image through 

facilitative effects of odour imagery priming in an odour-name association task, though  

these imagery effects were dependent on the ability of participants to name odours in an 

earlier task. In three experiments, the authors assessed the effect of olfactory imagery 

priming for participants classified as good or bad ‘namers’. A key finding was an 

interaction where d’ scores were selectively improved in the odour imagery priming 

condition (compared to visual imagery priming and a control condition), and this effect 

only occurred for the good ‘namer’ group. Importantly, the null effect of visual imagery 

priming suggests this facilitation was not a semantic effect, as a similar advantage to the 

olfactory condition would be expected. Instead, the authors suggest the good ‘namers’ 

have strong odour-name associations, which are reciprocally activated when attempting 

to imagine an odour. That is, only where an odour-name association is strong will an 

attempt to imagine an odour produce imagery priming effects. The strong odour-name 

association is proposed to reciprocally allow the activation of an odour image, and is 

similar to other demonstrations of a perceptual odour imagery which have shown 

improved ability after a learned link between odour and its name (Stevenson, Case, & 

Mahmut, 2007; Sugiyama, Ayabe-Kanamura, & Kikuchi, 2006).  

Together, these findings are suggested to support imagery that includes a sensorial-type 

representation (Kosslyn, 2003). For example, in their review Rinck et al. (2009) 

describes this imagery as the consequence of an activated long-term representation 

(engaged by sniffing when attempting to image the odour), which is subsequently used 

to generate the sensorial representation. However, it has been argued that these findings 
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can be accommodated as a capacity for odour imagery which is not available to 

consciousness (Stevenson, 2009; Stevenson & Attuquayefio, 2013). For example, 

Tomiczek and Stevenson (2009) propose that their findings supporting sensorial odour 

imagery may not be specific to a particular odour. Instead, they suggest that generic 

activation of olfactory neural networks (as a result of activating all extant odour-name 

associations) produces the priming effect without conscious imagery of a specific odour. 

It should also be noted, however, that such an interpretation contrasts the findings in 

Djordjevic et al., (2005), where an odour detection advantage was shown when the 

odour image and olfactory stimulus were matched, compared to when participants 

detected a different odour to the one they were required to image. 

Internal representations that are unavailable to consciousness are also considered within 

the olfactory-centred unitary model described in Section 1.1.3, which suggests that 

demonstrations of olfactory memory is simply the result of residual activation and 

decay processes (Wilson & Stevenson, 2006). To be clear, it is suggested that olfaction 

can demonstrate phenomenal consciousness where there is experience of an olfactory 

sensation, but conscious access to these contents (through attention, or working 

memory) may not be possible (Stevenson, 2009). Consequently Stevenson (2009) 

suggests the effects of priming, hallucinations, and overlapping neural activations may 

be supported by unconscious imagery, but access to this internal representation for 

active maintenance or other tasks may not be possible.  

However, it should be noted that there are other accounts of consciousness that suggest 

dissociation between phenomenal and access consciousness is not appropriate. 

Specifically, they suggest consciousness should instead be considered as a hierarchy of 

access to featural and semantic information (Kouider, de Gardelle, Sackur, & Dupoux, 

2010). This alternative model describes levels on a hierarchy that are accessed 
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independently, and thus allows a graded form of access consciousness. Graded access to 

consciousness may explain individual differences in olfactory imagery, and indeed a 

continuous scale of olfactory imagery ability has been proposed based on participant 

expertise (Arshamian & Larsson, 2014). Olfactory imagery is more vivid in olfactory 

experts than non-experts (Gilbert, Crouch, & Kemp, 1998), and expertise is associated 

with imagery that is consciously accessible (Plailly, Delon-Martin, & Royet, 2012; 

Royet et al., 2013; Stevenson & Attuquayefio, 2013). Olfactory imagery capacity is 

drastically affected by individual differences (Arshamian & Larsson, 2014), and may be 

related to semantic knowledge (Stevenson et al., 2007; Tomiczek & Stevenson, 2009) or 

perceptual experience (Delon-Martin, Plailly, Fonlupt, Veyrac, & Royet, 2013; Plailly et 

al., 2012). In Delon-Martin et al. (2013), for example, structural reorganisation of 

olfactory brain regions related to imagery was observed for those with extensive 

olfactory experience (perfumers). However, expertise is not necessarily essential in 

imagery. For example, other findings have shown an advantage for self-reported 

olfactory imagers in a same-different memory task was unrelated to the ability to 

identify odours (Köster et al., 2014). Taken together, there is some support for an ability 

to consciously access a perceptually-based olfactory representation, though expertise 

may be necessary for imagery and related working memory functions to occur that are 

analogous to other modalities.  

1.2.4 Olfactory attention 

Related to olfactory consciousness and working memory for odours is the role of 

attention in olfactory processing (White, 2012). For non-olfactory sensory systems, a 

close relationship between attention and working memory has been proposed 

(Lückmann, Jacobs, & Sack, 2014; Shinn-Cunningham, 2008). In particular, attentional 

focus is used to determine what enters memory (e.g. Broadbent, 1958), and maintenance 
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of information in working memory can shift selective attention to those items (Awh, 

Jonides, & Reuter-Lorenz, 1998; Downing, 2000). Whether olfactory processing shares 

this two-way relationship, and might therefore be accommodated within a general 

model of attention (e.g. Chun, Golomb, & Turk-Browne, 2011; Knudsen, 2007), is 

equivocal. Other sensory systems will route information via the thalamus before 

projecting onto the cortex (see Guillery & Sherman, 2002). This region is thought to 

play an important role in directing selective attention (De Bourbon-Teles et al., 2014; 

Portas et al., 1998), and the route proposed to be responsible for the conscious 

perception of a stimulus (Pinault, 2004). However, olfactory processing also includes a 

direct route to the cortex that does not interact with the thalamus, which could indicate a 

unique relationship with selective attention and consciousness (Ongür & Price, 2000). 

Chun (2011) describes two forms of attention, where external attention refers to the 

application of attention to sensory information, and internal attention refers to processes 

acting upon internally generated representations. Some aspects of olfactory external 

attention are unique. For example, Mahmut and Stevenson (2015) showed that an odour 

that has been habituated will not return to consciousness if an attempt is made to re-

attend to that odour. That is, a person might habituate to the cooking smells within their 

house, and will be unable to consciously re-access this odour until the stimulus is 

removed and re-presented some time later (e.g. by leaving the room and coming back). 

In contrast, a repeated sound such as a ticking clock can be habituated, but easily re-

attended if necessary (Mahmut & Stevenson, 2015).  

The process of sniffing itself has a functional role in the allocation of external attention 

(e.g. Verhagen, Wesson, Netoff, White, & Wachowiak, 2007). For example, whilst 

olfactory attention does not allow spatial shifts of attention in the same way that visual 

attention can be used to select items from across the visual field, there is some ability to 
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localise a monorhinally-activated nostril using an active sniffing process (Frasnelli, 

Charbonneau, Collignon, & Lepore, 2009). Olfactory attention to a particular temporal 

window can also be used to detect changes in the olfactory environment, and is 

mediated by the speed of a sniffing process (Mainland & Sobel, 2006; Verhagen et al., 

2007). Furthermore, although it may not be possible to independently attend to multiple 

odours within a mixture (Jinks & Laing, 1999), participants have demonstrated an 

ability to direct attention to detect an odour quality in advance of its presentation (e.g. 

Gottfried & Dolan, 2003). That is, if a participant is looking at a picture of a fruit, the 

detection of that fruit’s odour is faster than if looking at a picture of an unrelated item. 

This attentional priming is possible for both olfactory and visual information, reflecting 

similar processes across both domains (Gottfried & Dolan, 2003; Keller, 2011).  

Post-perceptual processing, or internal attention, is related to rehearsal and refreshing of 

internal representations (Awh et al., 1998; Baddeley, 1986; Raye, Johnson, Mitchell, 

Greene, & Johnson, 2007), and in visual and verbal literature is also thought to be 

linked to the capacity for conscious imagery (Baddeley & Andrade, 2000). However, in 

olfaction the research on this is limited, and as previously discussed, the findings are 

equivocal on whether olfactory short-term memory includes the access to consciousness 

required for short-term maintenance processes (Stevenson, 2009; White, 2012; Zucco, 

2003). Therefore, the next sections discuss the proposed capability for working memory 

in olfaction, with consideration of executive control, focussed attention, and 

maintenance. Examining these processes is important for understanding the position of 

olfactory memory ability in extant models of memory. 

1.3 Olfactory working memory  

Working memory describes the system used for temporary storage and manipulation of 

information, and which provides access to a stored representation required for goal-
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oriented behaviour (Baddeley & Hitch, 1974; Oberauer, 2009). This conceptualisation 

of working memory has been demonstrated through procedures requiring participants to 

maintain information whilst simultaneously performing processing tasks, such as the 

class of tests known as complex span (Daneman & Carpenter, 1980). Further tasks have 

also been developed, such as the n-back procedure, which are used to assess short-term 

maintenance of items whilst continually updating the items being rehearsed (e.g. 

Nystrom et al., 2000). However, these measures of working memory differ in their task 

requirements and in the possible executive functions involved (Redick & Lindsey, 2013; 

Schmiedek, Hildebrandt, Lövdén, Lindenberger, & Wilhelm, 2009; Wilhelm, 

Hildebrandt, & Oberauer, 2013; See Chapter 3 for a full discussion). Despite 

differences, however, measurements of working memory capacity have shown a strong 

link between working memory and higher-order abilities including language 

comprehension, problem solving, planning, reasoning, and intelligence (Conway, Kane, 

& Engle, 2003; Cowan, 2010; Oberauer, 2009; Süß, Oberauer, Wittman, Wilhelm, & 

Schulze, 2002).  

This Introduction has presented evidence for a form of short-term memory that allows 

the temporary maintenance of olfactory stimuli (White, 1998, 2009), though whether 

this should be considered as a separate mechanism to long-term olfactory memory 

remains debatable (White, 2009; Wilson & Stevenson, 2006). Attempts to fit olfaction 

into a general attentional model (Knudsen, 2007; White, 2012) stipulate that not only is 

the short-term retention of odours necessary, however, but also that the information 

must be manipulated in line with the definition of working memory (Baddeley & Hitch, 

1974; Cowan, 1999; Oberauer, 2009). To be clear, this means that odours must not only 

be remembered over short periods of time, but that they can be actively held on-line 

whilst goal-oriented functions are performed. The processes responsible for 
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coordinating goal-oriented behaviour are known as executive functions, and are 

prominent components in models that describe cognitive control (Baddeley, 2012; 

Baddeley & Hitch, 1974; Cowan, 1999; Oberauer, 2009). Though specific 

interpretations differ, the executive processes are typically related to the control of 

attention and coordination of cognitive resources (Logie, 2011). Consequently, if 

olfactory working memory is similar to memory for other stimulus types, stored 

olfactory information must be available to the executive processes described in such 

models. For example, mental processes should be able to act upon stored odour 

representations to update them with new information (e.g. the n-back task), or features 

such as quality or intensity held on-line for multiple comparisons (e.g. discriminability 

tasks, or the triangle test described below).   

Tentative support for olfactory working memory comes from odour detection within an 

odour-taste mixture (White, 2012). Using a triangle test and a 2-out-of-5 test, 

participants were required to identify the presence of benzaldehyde in a strawberry 

flavoured drink (that is, an odour-flavour mix) (Dacremont & Valentin, 2004). The 

triangle test involved single presentations (i.e. no re-tasting was allowed) of three 

strawberry drinks where a contaminated ‘odd one out’ must be identified. The 2 out of 5 

task represented a more challenging version, where multiple comparisons were required 

to distinguish from 5 identical odours the two contaminated samples. The tasks are 

proposed to reflect manipulation in working memory because they require maintenance 

of previously stored odours (and tastes), and retrieval of each item for comparison to the 

item being evaluated. Importantly, participants with greater odour memory spans 

showed greater discrimination ability in these tasks, which is suggested to reflect greater 

working memory resources available for discriminating these odours (Dacremont & 

Valentin, 2004; White, 2012). 
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Stronger support for olfactory working memory capabilities is shown using the n-back 

task. This is described as a maintenance + manipulation task (Ragland et al., 2002), 

because it requires a rehearsal window to be constantly updated as new stimuli are 

presented (See Chapter 3 for a full discussion of the n-back task and strategies 

involved). Above-chance performance in the n-back task therefore support the ability to 

apply, amongst others, an updating executive function to the maintained set in working 

memory (Dade, Zatorre, Evans, & Jones-Gotman, 2001; Jönsson et al., 2011). Dade et 

al. (2001) demonstrated similar prefrontal activations (dorsolateral, ventrolateral, and 

frontal polar cortices) during both olfactory and facial stimuli n-back tasks, indicating 

similar engagement of working memory processes regardless of stimulus modality. 

However, the study is criticised for its use of familiar odours, meaning it is unclear the 

effects verbal labelling may have had on the working memory resources employed 

(Jönsson et al., 2011). To be clear, if participants are relying upon verbal labels for the 

odours, performance is instead demonstrable of verbal rather than olfactory working 

memory. This was addressed in Jönsson et al. (2011), who showed above-chance 

performance in the n-back task for odours that were difficult to verbally label, thus 

supporting working memory updating for odours in the absence of verbal recoding 

(though performance was improved with odorant verbalisability). 

In summary, there is above-chance performance in an olfactory task that requires 

manipulation of the representations though continual updating (Dade et al., 2001; 

Jönsson et al., 2011), and an ability to focus attention on stored odour representations in 

order to make comparisons for effective stimulus identification (Dacremont & Valentin, 

2004). Together, this (albeit limited) evidence lends support for olfactory working 

memory, though some questions remain regarding the importance of verbal processing 

for effective application of working memory processes.  
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1.3.1 Maintenance of information: Rehearsal and Refreshing 

A question in olfaction is how this information might be held active in memory over a 

delay. For other modalities, maintenance of information is proposed to arise from 

rehearsal (one or more items cycled in a loop multiple times) or refreshing (an instance 

of reflective attention) (Cowan, 1992; M. K. Johnson et al., 2005). Refreshing is a basic 

executive process whereby a recently-activated representation is re-attended in order to 

maintain its memory trace in an active state (Barrouillet, Bernardin, & Camos, 2004; M. 

K. Johnson, 1992). 

Verbal information is strongly associated with the use of rehearsal (that is, the overt or 

covert articulation of phonological codes) to maintain information (Baddeley, Lewis, & 

Vallar, 1984), and is supported through impairments to memory as a result of word 

length (Baddeley, Thomson, & Buchanan, 1975) or similarity (Baddeley, 1966). 

However, maintenance of information can also benefit from attentional refreshing, 

which unlike verbal rehearsal is not specific to phonological codes (Camos, Mora, & 

Oberauer, 2011). Refreshing may be performed in addition, and separately, to 

articulatory rehearsal (Camos, Lagner, & Barrouillet, 2009; Hudjetz & Oberauer, 2007). 

This refreshing process is proposed to be a general-purpose attentional-maintenance 

mechanism, which can be supplemented by a specialised phonological rehearsal process 

when this information is available (Camos et al., 2009). The two processes differ both 

temporally and in the amount of items retained, where rehearsal allows retention of 

multiple items over several seconds, whilst refreshing increases the activation of a 

memory trace only momentarily (Raye et al., 2007). In Raye et al., (2002), greater 

activations in the left dorsolateral prefrontal cortex were observed when requiring 

participants to think back to a presented item when cued (refreshing), compared to when 

a target is re-presented visually to be vocalised (rehearsal), and to other cued tasks such 
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as to think ‘dot’ when presented with a dot, or to think a particular direction when 

presented the appropriate.  

The use of rehearsal or refreshing for non-verbal information is less clear, however. 

Though an analogous system of rehearsal has been proposed for visuo-spatial 

information (e.g. Logie, 1995) which may be separate to refreshing (see Raye et al., 

2007 for a discussion), it is unclear how the two may differ. Indeed, most explanations 

of non-verbal maintenance now simply describe refreshing, which has been proposed as 

a potential maintenance mechanism for information including pictures, textures, and 

words, and also for maintaining bound representations in the episodic buffer (Baddeley, 

2012; M. K. Johnson et al., 2005; M. R. Johnson, McCarthy, Muller, Brudner, & 

Johnson, 2015). Evidence also supports that this refreshing process improves the 

accessibility of representations in working memory (Souza, Rerko, & Oberauer, 2015). 

Consequently, refreshing may be an appropriate executive function for processing in 

working memory when an articulatory rehearsal mechanism is not available.  

Importantly, refreshing is described as both a maintenance and manipulation process. 

An example of this might be allowing a representation to be strengthened relative to 

others in a sequence (M. Johnson et al., 2005). Consequently, refreshing is suggested as 

an important process in the n-back task where items in a maintenance window must be 

recollected in their correct serial position (M. K. Johnson, Raye, Mitchell, Greene, & 

Anderson, 2003; M. R. Johnson et al., 2015; Raye, Johnson, Mitchell, Reeder, & 

Greene, 2002). Using refreshing, matching a target to the nth item can be made possible 

by increased activation strength of that item relative the other items in the rehearsal 

window (see Juvina & Taatgen, 2007 for an outline of n-back control strategies). 

Activation in the left PFC during the n-back task has been associated with refreshing, 
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and activation in the right PFC has been associated with target matching (Cohen et al., 

1997).  

If some form of active maintenance process is possible for olfactory representations, it 

is presumably the latter non-verbal refreshing process that is responsible. However, the 

possible contribution of verbal information to the representation of olfactory 

information (e.g. Jönsson et al., 2011) means a rehearsal process should also be 

considered in the performance of olfactory working memory tasks. It should be noted 

that evidence for olfactory n-back updating (Dade et al., 2001; Jönsson et al., 2011) also 

suggests that rehearsal or refreshing of olfactory information is possible, though it is 

debated in Sections 1.2.3 whether an internal olfactory representation is available to 

consciousness (see Djordjevic et al., 2005; Plailly et al., 2012; Stevenson, 2009; 

Tomiczek & Stevenson, 2009). Neuroimaging evidence supports a relationship between 

refreshing and imagery, where selective regions associated to the modality being 

refreshed are activated (in addition to activation in the dorsolateral prefrontal cortex 

which is associated to the domain-general top-down allocation of attention, Curtis & 

D’Esposito, 2003; M. R. Johnson et al., 2007). That is, the modality-specific activations 

reflect regions typically activated in the presence of an actual stimulus, and suggest the 

activation of an internal representation, or image, of the stimulus during refreshing 

(Ranganath & D’Esposito, 2005). 

Though there is limited research specifically concerning rehearsal in the olfactory 

modality, the unique characteristics of olfactory memory present conflicting evidence 

on whether rehearsal or refreshing strategies can be employed. For example, the 

inclusion of a same-modality item between learning and test will typically interfere with 

maintenance of items, but in olfaction an effect of retroactive interference is not always 

observed (Lawless & Engen, 1977; Schab, 1991; Zucco, 2003). Absent retroactive 
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interference is evidence against a rehearsal or refreshing process, as it suggests that 

additional items are not interfering with maintenance of the target memoranda 

(Stevenson, 2009). Indeed, Stevenson (2009) argue that the instances where retroactive 

interference has been observed in olfactory memory may be attributed to perceptual 

similarity (discussed in Section 1.2.1, e.g. Andrade & Donaldson, 2007; Walk & Johns, 

1984). Furthermore, as discussed in Section 1.2.2, primacy effects may be related to 

rehearsal of items early in a list (cf. Tan & Ward, 2007), and have been absent in serial 

position tasks that typically demonstrate primacy for other modalities (A. J. Johnson et 

al., 2013; A. J. Johnson & Miles, 2009; cf. Reed, 2000).  

In summary, the evidence for a refreshing process in olfactory memory is equivocal, and 

is likely dependent on the ability to form a consciously accessible internal image (see 

Sections 1.2.3 and 1.2.4). Arguments against refreshing are evidenced by the absence of 

retroactive interference (Zucco, 2003), and the lack of a primacy function in serial 

memory (e.g. A. J. Johnson & Miles, 2009), though other research has shown both 

features in olfactory memory (e.g. Andrade & Donaldson, 2007; Reed, 2000). Above, 

the ability for external and internal attention to odours, and evidence for the use of 

odours in an n-back task (Jönsson et al., 2011), supports a working memory ability that 

can process olfactory information. In Section 1.4, such an ability is discussed with 

consideration of models of working memory and executive functioning. 

1.3.2 Executive functions 

An important issue identified in this Introduction is whether controlled working 

memory resources can act upon a stored olfactory representation in memory. That is, 

whilst recognition memory of a perceptually represented odour is supported (Andrade & 

Donaldson, 2007; Møller et al., 2004; White et al., 1998; Zelano et al., 2009), the 

allocation of attention to this representation, and whether mental operations can be 
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performed on them, has received far less scrutiny. In working memory, these operations 

are called executive processes, and are proposed to be the modality independent 

application of attention required to complete a task (e.g. Baddeley & Hitch, 1974; 

Miyake et al., 2000). To be clear, although there is debate over whether executive 

functions themselves should be fractionated, they are typically unrelated to the 

modularity debate offered in Section 1.4. This section gives a brief outline of the nature 

of executive functioning, and the processes that may be engaged during demonstrations 

of olfactory working memory capacity. 

Executive functioning has received considerable debate in the literature, with particular 

contention over whether it should be considered not as a single executive resource for 

controlled attention, but as a fractured system that consists of multiple functions. Low 

correlations between tasks that ostensibly measure distinct executive functions support 

fractionation of the executive (Lehto, 1996), though this may be attributable to the task-

purity problem where different (non-executive) processing requirements mask the 

presence of a common executive ability (Miyake et al., 2000; Miyake & Shah, 1999). 

However, influential in this area is the identification of three executive function latent 

variables, of updating, inhibition of prepotent responses, and task-set shifting (Miyake 

et al., 2000). The updating process involves maintenance of items and replacement of no 

longer relevant representations in declarative working memory, and is likely an 

important process in working memory tasks such as the n-back procedure (Oberauer, 

2009). Inhibition refers to the deliberate suppression of prepotent responses such as 

those generated in the stroop task, whereas task-set shifting concerns the ability to 

switch between multiple tasks, operations, and mental sets (Miyake et al., 2000; 

Oberauer, 2009). Analysis of latent variables provides strong support for separate 

processes, as it minimises the task-purity issue by extracting the common variance in 
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each individual task (Miyake et al., 2000). Furthermore, assessing how these latent 

variables predict higher-order cognition may support distinctive executive functions. 

For example, updating tasks have been shown to be closely related to measures of 

intelligence, whilst the other two functions have shown a much weaker relationship 

(Friedman et al., 2006). 

The constructs described in a fractured executive were moderately correlated, however, 

and it has been argued that this is because they contain a common mechanism (Engle, 

Tuholski, Laughlin, & Conway, 1999; Friedman et al., 2008; Jurado & Rosselli, 2007; 

Mccabe, Roediger III, Mcdaniel, Balota, & Hambrick, 2010; Wilhelm et al., 2013). 

Typically these arguments retain the dissociable components of executive functioning 

(e.g. Miyake et al., 2000), but suggest there is a general attentional function involved 

that is not related to general intelligence or perceptual speed (Banich, 2009; Friedman et 

al., 2008; Garon, Bryson, & Smith, 2008). Furthermore, Mccabe et al. (2010) showed an 

underlying component in constructs representing both executive function tasks and 

working memory tasks, which they called executive attention. This cognitive ability is 

proposed to reflect focused attention, which is necessary during goal-oriented activity, 

and is present in tasks that ostensibly tap into executive functions and also in tests of 

working memory capacity (Mccabe et al., 2010). Alternatively, Oberauer (2009) 

suggests the primary process in working memory is a specific binding process. That is, 

in a working memory task, an item is bound to its context, and it is this bound 

representation that can be retrieved and updated. They propose this as the reason why 

updating tasks are strongly related to working memory capacity, because they measure 

the ability to quickly retrieve and update these bindings (Oberauer, Süß, Schulze, 

Wilhelm, & Wittmann, 2000). 
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In summary, models of executive function generally support its fractionation into 

specific functions such as those described in Miyake et al. (2000). However, there is 

some discussion over whether tasks that appear to measure these functions, and also 

tests of working memory capacity such as complex span, should be considered in terms 

of their use of high-level attentional mechanism (e.g. Mccabe et al., 2010). Clearly 

important in these functions is the ability to focus attention on the stimuli and task-

goals, and inhibit attention where necessary (Jurado & Rosselli, 2007). Regardless, the 

separation of updating, inhibition of prepotent responses, and task-set shifting, is clearly 

a useful taxonomy for understanding the role of attention in different tasks. The present 

thesis therefore not only explores temporary storage of olfactory information, but 

assesses olfactory working memory using an n-back task, a procedure proposed to 

require an updating process (Wilhelm et al., 2013). 

1.4 Models of working memory 

This section considers competing theories surrounding the structure of working 

memory. These are typically categorized as modular accounts, where independent 

modules exist with specific functions with their own limited capacity, and unitary 

accounts, which propose a single system specialised for processing activated 

information from long-term memory. An in-depth assessment of evidence for the 

multicomponent working memory framework (Baddeley, 2000; Baddeley & Hitch, 

1974) is presented, and the procedures used for demonstrating separation of each 

process are evaluated. Furthermore, evidence for a distinct olfactory module in this 

framework is discussed. In Section 1.4.2, the embedded-processes unitary model is 

described (Cowan, 1999), and is discussed with consideration of the olfactory-centred 

unitary model. 
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1.4.1 Modular accounts 

Some theorists propose the underlying mechanisms of memory to be modular, where 

multiple systems operate independently from each other. The most well-known, though 

by no means the only, modular account of working memory is the multicomponent 

working memory framework. This outlines a limited capacity system that makes use of 

multiple storage and processing resources that act in concert (Baddeley, 1986; Baddeley 

& Hitch, 1974). This includes modality-specific systems for storage of information; 

specifically, the phonological loop for verbal storage and the visuo-spatial sketchpad for 

storing visual and spatial information (Baddeley, 1986; Baddeley & Hitch, 1974; Logie, 

1995). These slave systems are considered distinct from domain-general control and 

allocation of attentional resources, which is regulated by a central executive (Baddeley, 

1986). That is, a central executive is proposed to focus and divide attention when 

necessary, is able to switch attention between tasks, and can interface with long-term 

memory (Baddeley, 2012).  

Utilisation of these modality-specific stores is not mutually exclusive; both stores can 

be employed to maintain the same item. For example, when viewing a visual image, an 

individual may store a verbal description of that image in addition to the iconic 

representation (Logie, Della Sala, Wynn, Baddeley, & Sala, 2000). Consequently, a third 

slave system, the episodic buffer, has been incorporated into the model to allow working 

memory resources to act upon bound multidimensional representations (Baddeley, 2000, 

2012). Though originally proposed to require attentional focus (Baddeley, 2000), the 

process of binding information from within a slave system is now thought to be 

relatively automatic with the buffer itself acting as a passive store (Baddeley, Allen, & 

Hitch, 2011). However, binding of verbal and visual features is disrupted when a 

concurrent task is performed, suggesting differences in attentional requirements when 
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the bound item contains information from across slave systems (Allen et al., 2012; 

Elsley & Parmentier, 2009). Stored items within the episodic buffer may represent 

multiple forms of binding; for example, temporary bindings are required in order to 

perform several working memory tasks, whereas durable bindings may occur when new 

information is attached to a context in long-term memory (Baddeley, 2012). 

Furthermore, the buffer is assumed to provide access to conscious awareness, though 

whether this means people are not aware of content of other subsystems until it is 

passed to the buffer is unclear (Baddeley, 2012). Finally, Baddeley (2012) speculates 

that the episodic buffer is a suitable location for refreshing-based rehearsal of stimulus 

types other than verbal and visuo-spatial stimuli, and that, for example, smell and taste 

information may be fed into this buffer from their own subsystems. 

The multicomponent model proposes two independent sub-systems for processing 

phonological and visuo-spatial information (Baddeley, 1986; Baddeley & Hitch, 1974; 

Logie, 1995). Processing verbal information within the phonological loop relies on 

storage within a phonological store, and constant refreshing of memoranda using vocal 

or subvocal rehearsal (Baddeley et al., 1984). Storage as a phonological code is 

supported by poorer memory performance for phonologically similar items (i.e. the 

phonological similarity effect (PSE); Conrad, 1964; Salamé & Baddeley, 1986), and the 

process of rehearsal evidenced by reduced span for items that take longer to articulate 

(i.e. the world length effect (WLE); Baddeley et al., 1975; Mueller, Seymour, Kieras, & 

Meyer, 2003). Whilst auditory-verbal stimuli have direct access to the phonological 

store, visual-verbal stimuli require phonological recoding within the phonological loop. 

Support for this is found with abolition of both the WLE (Baddeley et al., 1975), and 

PSE (Larsen & Baddeley, 2003; cf. Longoni, Richardson, & Aiello, 1993 for verbal 

auditory information; Saito, Logie, Morita, & Law, 2008) for visual-verbal (but not 
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auditory verbal) stimuli following concurrent articulation (CA). This detrimental effect 

of irrelevant articulation, during a procedure that is thought to occupy the articulatory 

loop, provides strong evidence for the use of a sub-vocal phonological rehearsal 

process.  

The use of CA is an example of dual-tasking, and provides compelling evidence for 

independent verbal and visuo-spatial systems. To be clear, strong evidence for 

modularity is found when concurrent different modality memory tasks produce little 

deficit to performance, compared to a large performance drop when these tasks operate 

the same modality (Baddeley, 1986; Baddeley & Hitch, 1974). Since this paradigm is 

considered compelling evidence for modality-specific slave systems, and is later 

considered in the context of evidence for an olfactory buffer (Andrade & Donaldson, 

2007), evidence from dual-tasking studies is considered in detail below. In early studies, 

Baddeley and colleagues applied CA (what they called articulatory suppression) to a 

free recall task by having participants speak a repeated word throughout the task, which 

was shown to dramatically decrease accuracy (e.g. J. T E Richardson & Baddeley, 

1975). Whilst CA provides an example of interference with an articulatory rehearsal 

process, other secondary tasks may be performed where the modality and level of 

interference is adjusted. For example, Meiser and Klauer (1999) performed an in-depth 

analysis of dual-task effects on sequence memory for multiple modalities. Across 6 

experiments, secondary tasks required concurrent articulation or tapping, designed to 

differentiate between same-modality (i.e. slave-system interference) and cross-modality 

(i.e. executive function interference) effects. Furthermore, these tasks were performed 

during either encoding or retention, and engaged lower loads on central executive 

resources as solid-state (vocally repeat a single letter or tap a single button), or high 

loads as changing-state (repeat an alphabetical sequence of letters or tap in a clockwise 
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direction) tasks. Together, the manipulations allowed assessment of tasks that differ 

across executive resources, performed across differing stages of a working memory 

task, and upon the same or different modalities. They demonstrated support for the 

multicomponent working memory framework by showing a dissociation of concurrent 

task effects performed in the retention interval, where CA impaired verbal sequence 

memory more than spatial sequence memory, and tapping impaired spatial more than 

verbal sequence memory. In addition, greater interference from the high-load changing-

state concurrent tasks was observed only during the encoding stages, which suggests an 

important role of executive resources when encoding item or serial position 

information. 

Similarly, other dual-task studies have used complex secondary tasks to load memory or 

executive resources. Cocchini et al. (2002) had participants perform either a digit 

sequence or pattern memory task, during the retention interval this was paired with 

either the alternative memory task, a perceptuomotor tracking task (Experiment 1), or 

CA (Experiment 2). Their findings in both experiments showed almost absent 

interference when memory tasks occupied different domains, and this was taken as 

support for processing independence of digit and pattern information. The tracking task 

did not impair digit memory, and only minimally affected pattern memory. Furthermore, 

there was substantial interference from CA on only the digit memory task, and this was 

interpreted as evidence for rehearsal in the phonological loop. Together, the results 

support a multicomponent model interpretation where domain-specific slave systems 

are utilised in working memory.  

The above evidence demonstrates that interference is typically far greater if two tasks 

are performed from within the same domain, compared to when tasks are performed 

from separate modalities (Cocchini et al., 2002; Meiser & Klauer, 1999). Cross-modal 
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interference however, though often much smaller than the interference from within-

modality dual tasks, is non-trivial in several experimental studies that claim a double 

dissociation (Jones, Farrand, Stuart, & Morris, 1995; discussion in Morey, Morey, van 

der Reijden, & Holweg, 2013). This effect may be explained within a multicomponent 

framework as occurring due to the general cost on the domain-general central executive 

from performing two tasks simultaneously (Logie, 2011), or by the recoding of items in 

another modality (Paivio, 1990). However, asymmetric cross-modal interference has 

also been found, where verbal working memory is more robust to interference from 

visuospatial tasks than visuospatial working memory is to interference from verbal tasks 

(C. C. Morey et al., 2013). Morey and colleagues suggest these findings may be better 

explained by a domain-general storage and attention processes, such as those suggested 

by Cowan et al. (2005) or Oberauer (2009), but with additional verbal-specific 

processes to account for the resilience of verbal memory to interference. That is, some 

verbal-specific store or rehearsal mechanism may need to be accommodated within 

these models, or a specialised process that supports verbalisation which is not available 

for visualisation (C. C. Morey et al., 2013). 

Dual-task studies have informed other aspects of working memory; for example, 

interference is also observed when both tasks contain an order component regardless of 

the modality of these tasks (Depoorter & Vandierendonck, 2009; Vandierendonck, 

2016). Interference for two different modality order memory tasks would not be 

expected if the encoding of order information takes place within modality specific 

subsystems. In contrast, these findings instead suggest a modality-independent system 

for serial recall. Vandierendonck (2016) consider this finding incompatible with a 

multicomponent model, unless the model is adapted to allow an item-position binding to 

be maintained in the episodic buffer, or the central executive. However, support for 
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modality-specific serial memory components is shown by sequence memory for 

visually presented verbal material exhibiting both phonological similarity effects 

(indicating storage of order information as phonological codes), and visual similarity 

effects (indicating the additional use of visual codes) (Saito et al., 2008; see also 

Guérard & Tremblay, 2008 for double dissociation interference effects in serial order 

memory). Effects from both types of similarity for the same materials suggest an 

independent contribution of visual codes in the retention of these verbal sequences, and 

this is also supported by an effect of concurrent articulation in abolishing the PSE only 

(Saito et al., 2008). Saito et al. (2008) conclude that domain specificity is necessary in 

models of order memory because there is a clear ability to retain serial order with 

visual-verbal stimuli despite suppression of phonological codes. However, it should be 

noted that an amodal mechanism for processing serial order could also explain these 

findings, by modality-specific item memory and a modality-nonspecific memory for 

order. Indeed, the use of these visual codes in order memory relies on similar principles 

to the use of phonological codes. This is observed from the similar effects of visual 

similarity and phonological similarity on sequence memory (Saito et al., 2008), and also 

from similar serial-position functions in visual memory even when phonological coding 

is discouraged (Avons, 1998; Hurlstone, Hitch, & Baddeley, 2014; A. J. Johnson & 

Miles, 2009; Logie, Saito, Morita, Varma, & Norris, 2016).  

In summary, dual-task studies may load the limited resources available in working 

memory, and are useful for studying the separation of cognitive processes. Though 

double-dissociations are compelling evidence for modular systems in working memory, 

cross-modal interference effects suggests a secondary task may simply load upon the 

executive resources available and this should be considered in any dual-task 

interpretation (e.g. C. C. Morey et al., 2013). Relatedly, loading executive resources has 
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been proposed to disrupt cross-modal binding processes (Allen et al., 2012; Elsley & 

Parmentier, 2009), which should be considered when assessing the influence of 

secondary tasks on working memory task performance. 

Neuropsychological evidence provides a further source of evidence to assess modularity 

in working memory. Vallar and Baddeley (1984) provided early evidence for selective 

impairment to phonological working memory. Patient PV suffered a left-hemisphere 

stroke, after which she showed impairments in immediate memory when stimuli were 

presented in the auditory modality, and did not show a phonological similarity effect 

when items were presented visually. Importantly, these effects occurred despite no 

articulatory problems, suggesting the impairments were localised to the phonological 

store. In addition, Hanley, Young, and Pearson (1991) presented a case study of ELD, 

who had suffered a right-hemisphere aneurysm. The pattern of impairments were 

localised to visuo-spatial memory (Brooks Matrix and Corsi Blocks), whilst verbal 

sequence memory was intact. Together, these findings support a double dissociation 

where the phonological and visuo-spatial slave systems can be selectively impaired (see 

Baddeley, 2007 for a further discussion of neuropsychological evidence). 

How olfactory information may be accommodated within the above modular 

conceptualisation of memory is currently unclear, though is speculated by Baddeley 

(2012) to be processed within the episodic buffer. However, Baddeley does not rule out 

input from an olfactory slave system, and research has supported such an olfactory-

specific subsystem in working memory (Andrade & Donaldson, 2007; Zelano et al., 

2009). An independent olfactory subsystem may provide a suitable location for the 

pattern-matching process described in Stevenson and Boakes (2003), and explain the 

qualitative differences historically observed for olfactory memory (e.g. Engen et al., 

1973). Furthermore, like other modalities, information initially processed within the 
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olfactory buffer can interact with phonological information, visuo-spatial information, 

and long-term semantic memory (Baddeley, 2000). Bound representations that include 

perceptual and semantic features, stored in the episodic buffer, may by consistent with 

the features described in the object-processing account of olfactory memory (Wilson & 

Stevenson, 2006), or accounts that suggest a dual-representation for all odours (Lyman 

& McDaniel, 1986; Yeshurun et al., 2008).  

Andrade and Donaldson (2007) examined evidence for the inclusion of an independent 

olfactory working memory subsystem within the multicomponent working memory 

framework (Baddeley & Hitch, 1974). They employed the classical method used for 

supporting modularity, a dual-task paradigm, and found that in Experiment 1, a primary 

verbal task was not affected by a secondary olfactory task (and to the same extent as a 

secondary visual task). This was used as evidence against the proposition that olfactory 

memory simply reflected rehearsal of verbal labels for the odours; as this would have 

necessitated utilisation of the phonological store for both the verbal and olfactory tasks. 

However, despite such a prediction, interference was not found. Furthermore, in 

Experiment 2, a primary olfactory recognition task was impaired to a greater extent by a 

concurrent olfactory task than a concurrent verbal or visual task. To be clear, if 

remembering odours was a de facto verbal task, a secondary olfactory task should be as 

detrimental to primary olfactory task as a secondary verbal task. This was not the case. 

Taken together, the findings support an olfactory memory subsystem which makes use 

of specialised, independent resources in working memory. That is, they suggest that 

verbal processing is not an intrinsic part of olfactory memory, despite facilitative effects 

of verbal labelling (Andrade & Donaldson, 2007). 

Support for this independent system has also been observed in neuroimaging research. 

In a delayed-match-to-sample working memory task, sustained activity in the inferior 
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frontal gyrus was demonstrated during memory for nameable odours (consistent with 

information rehearsal within the phonological loop) (Zelano et al., 2009). In contrast, 

when using hard-to-name odours, the same working memory task resulted in activation 

within the piriform cortex. This activation pattern indicates a dedicated mechanism for 

olfactory processing, which can be utilised in the absence of verbal identification for 

odours. Such dissociable neurological activations also suggest that nameable and hard-

to-name odours might be processed in qualitatively different ways. However, there was, 

importantly, both residual activation in the piriform cortex for nameable odours, and 

residual activation in the inferior frontal cortex for hard-to-name odours that was greater 

than the activations observed for the same task using auditory stimuli. This suggest that 

differential brain activation may be weighted based upon the extent to which an odour is 

verbalisable. However, whilst Zelano et al. (2009) argue that both working memory 

stores (verbal and olfactory) are utilised to some extent in maintaining an odour image, 

they suggest that the minimal use of verbal processing for an unnamed odour reflects a 

general categorisation label (e.g. “nice” / “nasty” etc.). Zelano et al. (2009) also note 

other findings where activation in the olfactory cortex will increase following 

presentation of the name of an odour (González et al., 2006), and also from a visually-

presented object that is related to a smell (Gottfried & Dolan, 2003). This cross-modal 

effect is similar to the ability to form a visual image from a verbally described object, or 

a phonological representation from a visually presented word, which they suggest is 

evidence for an olfactory flacon (buffer) that is comparable to the phonological loop and 

visuospatial sketchpad. 

A dual-representation of perceptual and verbal information during short-term memory 

for odours, even when hard-to-name, is also proposed by Yeshurun and colleagues. 

Early olfactory processing is proposed to be ipsilateral in nature, meaning activations at 
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the level of olfactory receptors and the olfactory bulb do not cross hemispheres (e.g. 

Lascano, Hummel, Lacroix, Landis, & Michel, 2010). Using this knowledge, they 

presented a model of olfactory working memory, based on behavioural effects using 

monorhinal presentation of nameable and hard-to-name odours, and a same-

nostril/different-nostril manipulation across target and probe presentation (Yeshurun et 

al., 2008) To be clear, any performance changes when target and probe were presented 

across nostrils (compared to both presented to the same nostril) can be used to assess the 

level of perceptual processing used for performing the task. Indeed, the authors 

observed a nameable odour recognition advantage that was enhanced when target and 

probe were presented to different nostrils, and this pattern of results was used to falsify 

a perceptual-only or verbal-only representation. Specifically, Yeshurun et al. rejected 

several possible representations in memory for nameable and unnameable odours, (1) a 

low-level perceptual-only representation, (2) a high-level perceptual-only 

representation, (3) a verbal representation generated for only nameable odours, or (4) a 

verbal-only representation for all odours. These propositions are discussed in more 

detail below. 

A low-level perceptual-only representation suggests comparisons occur in the olfactory 

bulb (involved in the early stages of establishing an olfactory pattern, Gottfried, 2010), 

which would predict improved recognition performance when target and probe were 

presented to the same nostril. This is because there is minimal exchange between the 

two bulbs, so matching the representations of target and probe at this level across 

nostrils would be impaired. In comparison, a high-level perceptual-only representation 

suggests processing in the piriform cortex (linked to hard-to-name odour processing in 

Zelano et al., 2009, and a possible location for the odour-object store in Wilson & 

Stevenson, 2006). However, perceptual-only processing in the piriform cortex would 
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predict nameable and hard-to-name odours to be represented in one of two ways. First, 

the perceptual representation may be similar for both category of odour, and would 

predict similar performance when target and probe were presented across-nostrils. 

Alternatively, the perceptual representation may be more accessible for nameable 

odours, and would predict better nameable-odour performance when target and probe 

were presented to the same nostril. That a nameable advantage was observed, but this 

was only across nostrils, rules out a perceptual-only representation based on the logic 

above. Instead, some influence of verbal processing appears to be involved in a 

representation to explain the advantage for nameable odours. A role of verbal processes 

for only nameable odours was rejected, however. This is because given that odour 

processing is (primarily) ipsilateral, one might predict a left nostril advantage if these 

nameable odours are represented verbally, due to the left hemisphere’s role in language. 

Again, this result was not found. Furthermore, a verbal-only representation was also 

rejected because of a lack of a general left-nostril processing advantage.  

The authors therefore suggest the data fit a model where verbal and perceptual 

processes are utilised in a dual-representation for all odours. That is, there is clearly 

some use of a pure perceptual representation in working memory, and this might reflect 

the presence of an independent olfactory buffer. However, there is also an interaction 

with verbal information that may provide an additional cue for retrieval (Yeshurun et al. 

2008). These findings may also, however, be accommodated within the olfactory-

centred unitary model, where hard-to-name odours are suggested to rely on a low-level 

pattern matching system and broad verbal labels are prone to errors. In contrast, named 

odours use the same perceptual pattern that is linked strongly to a centrally-mediated 

representation reflecting an identified odour object (see R. A. Frank et al., 2011; Wilson 

& Stevenson, 2006).  
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In summary, the evidence discussed indicates the existence of an independent olfactory 

memory system within a modular framework that supports recognition memory, but 

naming will provide an additional means to facilitate the olfactory representation 

(Andrade & Donaldson, 2007; Stevenson & Mahmut, 2013a). Though there is evidence 

against a default influence of verbal coding (Andrade & Donaldson, 2007), other 

findings suggest that verbal information may be utilised to varying levels for all 

odorants (Yeshurun et al., 2008; Zelano et al., 2009).  

1.4.2 Unitary accounts 

Alternative to modular accounts are models that take an amodal and unitary approach to 

memory. The embedded-processes model (Cowan, 1999) is unitary to such extent that 

processes of short-term and working memory are the result of activated long-term 

memory representations (e.g. Cowan, 1999). Working memory is proposed to engage 

items that fall under a focus of attention embedded within a field of activated memory 

which includes sensory, phonological, and semantic features from across all modalities 

(Cowan, 2010). Rather than separating modalities into independent structures in 

working memory (e.g. Baddeley & Hitch, 1974), processing of verbal information, for 

example, can therefore simply be considered as just one of several forms of activated 

memory (Cowan, 2008).  

The field of activated representations from long-term memory are proposed to reflect 

temporarily accessible items (i.e. short-term memory), which may or may not be 

available to consciousness (Cowan, 2010). Consequently, items placed in the focus of 

attention are subject to processes typically described as working memory, which is a 

capacity limited process but can be improved by combining items to form chunks 

(Cowan, 2001). These items can be refreshed to maintain their activation, will be 

processed to a greater depth than other items, and will be kept in mind to assist in 
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working memory task (Cowan, 2010). It should also be noted that variations to this 

model exist. For example, Oberauer (2009) suggests a similar model, but described the 

multiple items in Cowan’s focus of attention instead as a lower level of activation, and 

added a single-item focus of attention for processing in working memory.  

The olfactory-centred unitary model described in Section 1.1.3 offers a detailed account 

of the perceptual processes that can lead to a perceptual representation of an odour in 

memory. In their model, Wilson and Stevenson (2006) suggest that the perceptual 

representation of an odour can be activated similarly to how other modalities in 

Cowan’s embedded processes model are activated (Cowan, 1999). That is, the 

activation of a stored olfactory representation during odour perception is remembered 

by its residual activation in long-term memory (Wilson & Stevenson, 2006). However, 

these olfactory representations are proposed to be unavailable to consciousness 

(Stevenson, 2009). That is, these items may be inaccessible to the focus of attention that 

engages items for processing in working memory, particularly if semantic information is 

unavailable (Tomiczek & Stevenson, 2009; cf. Jönsson et al. 2011). 

1.5 Summary 

The above discussion outlines the equivocal findings related to olfactory working 

memory and conscious imagery. Despite the relative paucity of evidence there is some 

support for the ability to represent odours in short term memory (see White et al., 2015). 

Whether short-term memory for odours is similar to memory for other modalities is, as 

yet, unclear. For example, odours may be recognised through residual activation of 

odour engrams that are not available to consciousness (Stevenson, 2009; Wilson & 

Stevenson, 2006). Whilst evidence does suggest consciously accessing an olfactory 

representation is difficult, there is support for such an ability (Arshamian & Larsson, 

2014; Arshamian, Olofsson, Jönsson, & Larsson, 2008; Tomiczek & Stevenson, 2009). 
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An attempt to fit olfaction into a general attentional model is reasonably well-supported 

by short-term memory evidence (White, 2012), in particular supporting the application 

of internal attention for rehearsal and working memory (Dade et al., 2001; Jönsson et 

al., 2011; Yeshurun et al., 2008; Zelano et al., 2009). The extent to which this is 

underpinned by verbal representations remains under debate, but there is some support 

for a perceptual representation in memory (White et al., 1998; Yeshurun et al., 2008) 

despite a proposed role of verbal information in most tasks involving explicit odour 

memory (Yeshurun et al., 2008; Zelano et al., 2009).  
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Chapter 2: Odorant normative data for use in olfactory memory experiments: 

Dimension selection and analysis of individual differences 

2 Chapter Summary 

The first aim of this thesis was to obtain a large normative database of commercially 

available odour stimuli. These normative data were assessed for their utility in the 

control and manipulation of odour stimulus characteristics. For example, the 

introduction to this thesis describes an important role of odour knowledge on olfactory 

perception and memory. It is important, however, to consider the variance from 

individual differences that may reduce the effectiveness of stimulus control based on 

normative information. The study below outlines the process of collecting these data, 

and its subsequent validation as suitable for use in stimulus control. 

This chapter reports normative ratings for 200 food and non-food odours. One hundred 

participants rated odours across measures of verbalisability, perceived descriptive 

ability, context availability, pleasantness, irritability, intensity, familiarity, frequency, 

age of acquisition, and complexity. Analysis of the agreement between raters revealed 

that four dimensions, those of familiarity, intensity, pleasantness, and irritability, have 

the strongest utility as normative data. The ratings for the remaining dimensions 

exhibited reduced discriminability across the odour set and should therefore be used 

with caution. Indeed, these dimensions showed a larger difference between individuals 

in the ratings of the odours. Familiarity was shown to be related to pleasantness, and a 

non-linear relationship between pleasantness and intensity was observed which reflects 

greater intensity for odours that elicit a strong hedonic response. The suitability of these 
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data for use in future olfactory study is considered, and effective implementation of the 

data for controlling stimuli is discussed.  
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2.1 Creation of a normative database 

2.1.1 Introduction 

Cross-modal comparison between olfactory memory and memory for other sensory 

modalities has produced mixed findings. Some studies have reported a pattern of 

memory consistent with other stimulus types (e.g. A. J. Johnson & Miles, 2007; Miles & 

Hodder, 2005; White & Treisman, 1997), whereas others have reported qualitatively 

different trends for olfactory stimuli (e.g. A. J. Johnson et al., 2013; A. J. Johnson & 

Miles, 2009; Reed, 2000). One possible interpretation of the latter finding is that 

olfactory memory differs qualitatively to that for other stimulus types and potentially 

resides within a separate olfactory-specific memory store (Andrade & Donaldson, 2007; 

Zelano et al., 2009). 

An alternative explanation for the above disparity may relate to the criteria employed 

for odour selection. The characteristics of an odour can be an important determinant of 

memory performance, both quantitatively and qualitatively. Importantly, short of an a 

priori assessment of name-ability, there is limited control on the psychological 

characteristics of the odours. These odour characteristics may be of importance in 

determining cross-modal serial position function congruence, since the psychological 

distinctiveness of items (a somewhat ill-defined construct that can be influenced by 

perceptual familiarity) is argued to affect both the primacy and recency components of 

the serial position curve (Hay, Smyth, Hitch, & Horton, 2007).  

One method by which the perceptual experience of odours can be assessed is from 

ratings of the odours across various dimensions. Judgments of this nature are typically 

obtained via subjective ratings pre-test (Yeshurun et al., 2008), during encoding 

(Larsson, Nilsson, Olofsson, & Nordin, 2004), or after the experiment through post-hoc 

data collection (M. J. Olsson et al., 2009). Indeed, there is some merit to collecting data 
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this way, the most notable being mitigation of individual differences. For example, 

individual naming ability can allow tailored selection of odorants for use in subsequent 

memory and discrimination tasks (Rabin, 1988; Rabin & Cain, 1984). However, issues 

arise when tasks require novel presentation, and speeded encoding or recognition. In 

addition, these methods of odour stimuli categorization are often inconsistent, utilizing 

different scales and tasks, and resulting in these data rarely being used beyond the 

confines of the study in which they were collected. To this extent, the data are study-

dependent. It is, therefore, desirable to have a reliable catalogue of odours and 

normative data which will facilitate the use of odours in olfactory memory research. 

Accordingly, the present study attempts to provide data norms for a large set of 

commercially available odours, analogous to that produced for words (Coltheart, 1981), 

faces (Ebner, Riediger, & Lindenberger, 2010), and objects (Yoon et al., 2004). 

Normative data in the verbal processing literature allows strict control of the 

orthographic, phonological, and psychological characteristics of words. An odour data 

analogue will thereby enable researchers to both strictly control for, and manipulate, 

levels of psychological difference. 

There is some limited precedence for the use of normative data for olfactory stimuli. 

The University of Pennsylvania Smell Identification Test (UPSIT; Richard L. Doty, 

Shaman, Kimmelman, & Dann, 1984) is a clinical test of olfactory ability and uses 40 

microencapsulated ‘scratch and sniff’ odorants within a standardized test of olfactory 

function. The creation of this test includes normative data for familiarity, pleasantness, 

intensity, and irritability, and has been used extensively in olfactory research (Nguyen, 

Ober, & Shenaut, 2012). However, the UPSIT is a test of olfactory dysfunction, where 

normal olfactory function would see naming of these highly familiar odours at, or near, 

ceiling. Employment of such a stimulus-set would provide limited variability in terms of 
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familiarity and, potentially, encourage a memory strategy utilizing verbal labels. An 

alternative is to use odorants from the MONEX-40 (Freiherr et al., 2012), a test 

designed to detect differences in olfactory identification abilities in a normal population. 

However, the normative ratings from this study again focus only on familiarity, 

intensity, and pleasantness, and are limited to a relatively small set of 40 odorants. 

Perhaps the closest attempt to a normative database for olfactory recognition tasks was 

reported by Sulmont et al. (2002). In this study, odours were rated in terms of 

familiarity, perceived complexity, and pleasantness by 24 French-speaking participants. 

Verbal identification was tested by selecting the name from a 68-item forced-choice list. 

These ratings were used to generate two familiar and two unfamiliar recognition sets of 

18 odours. Interestingly, some perceptual overlap between dimensions was found with a 

significant positive correlation between pleasantness ratings and familiarity (R² = .53), a 

negative correlation between complexity and familiarity (R² = .65), and a positive 

correlation between notes (a different dimension of complexity) and familiarity (R² = 

.30).  

Further to the primary aim of providing a database of olfactory normative data, the 

present study aims to advance the use of normative databases in olfactory memory 

research in two ways. First, whether subjective perceptual ratings of odours are suitable 

for use in a normative database is considered. Individual differences are undoubtedly 

present in the perception of odours (Kaeppler & Mueller, 2013), and are perhaps more 

influential than for perception of verbal or object stimuli because of strong top-down 

influences on odour perception (Wilson & Stevenson, 2006). If these individual 

differences exceed the differences obtained across the corpus of stimuli, it would 

suggest that tailoring odours to participants based on their ratings (Rabin, 1988) is a 

more effective method for stimulus control. Second, the relationships between the 
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dimensions within this database are considered. As discussed in detail below, perceptual 

measures of olfactory stimuli are rarely independent, and the relationships between 

these dimensions should be considered when selecting stimuli for further tests. 

2.1.1.1 Selection of perceptual dimensions for study 

The present study involved the collection of normative data across a large set of 

commercially available odours (food and non-food odours are used since A N Gilbert & 

Greenberg, 1992 suggest that using food-related odours only may limit generalizability). 

A large number of measures were selected based upon past work with odours and 

different modality normative databases. Scales and questions were presented without 

accompanying interpretation guidance. That is, participants were free to interpret each 

measure as they wished. The justification for these measures is outlined below. 

Verbalisability. The first dimension concerns the extent to which odours can be named. 

Typically, variations in odorant nameability have seen important effects on recognition 

(R. A. Frank et al., 2011; cf. Zucco, 2003), and dissociated neural activations for odours 

that can or cannot be named are suggested to reflect a dedicated mechanism for 

processing hard-to-name odours (Zelano et al., 2009). However, the name for an odour 

is an arbitrary construct which can include the source of the odour, a manufacturer 

name, or even a similar odour source it resembles. In addition, identification (and thus 

naming) of even familiar odours is often very poor (Lawless & Engen, 1977). As such, 

correct identification (the ‘veridical label’) is likely not important when considering the 

effect naming has on recognition, and its use for categorization may lead to an 

overestimation of the amount of ‘un-nameable’ odours. Rather, any odour that has an 

identifying verbal label attached to it should be considered as utilizing verbal codes (and 

could conceivably be represented as a verbal, rather than olfactory, code), whilst only 

very broad categories, such as a basic hedonic label, should be classed as non-
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verbalisable (Jönsson et al., 2011). In the present task participants are required to attach 

any verbal label to each odour, which is then scored according to the specificity of this 

label. However, a caveat to using the quality of labelling as a verbalisability measure is 

that consistency of labelling is not considered. That is, the naming of odours may only 

be important in memory experiments if the names attributed to the stimuli are 

consistently reproduced (Frank et al., 2011; Cornell Kärnekull et al., 2015). Despite this, 

a clear effect of this assessment of labelling quality has been observed on working 

memory performance (Jönsson et al., 2011) and thus appears to provide a reasonable 

measure of the role of verbal labelling in memory.  

Describe-ability. Participants are also required to rate each odour’s describe-ability (on 

a 7-point scale). Participants typically exhibit over-confidence in their ability to 

correctly name odours despite poor naming performance (Jönsson & Olsson, 2003). 

Discrepancies between participants’ perceived and actual ability might reflect the 

difficulties in accessing the name of an odour; a feeling of knowing termed the ‘tip of 

the nose’ phenomenon (Lawless and Engen, 1977). However, the verbalisability score 

used in the present study is clearly a much more liberal criterion than odour naming 

ability. Since there is no ‘wrong’ verbal label, ability to label the odour is perhaps likely 

to reflect the participants’ awareness of an odour’s description (which would 

presumably include labels). Thus, with this method a strong relationship might be 

expected between perceived descriptive ability and actual ability to generate verbal 

labels. 

Context availability. The third dimension is context availability. This measure is closely 

related to concreteness (Altarriba, Bauer, & Benvenuto, 1999), and refers to whether the 

odour can be easily associated to the context or circumstances with which the odour 

might appear. Whilst one might label this dimension imageability (i.e. the ability of the 
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stimuli to evoke a mental image, John T. E. Richardson, 1975), such a label is avoided 

to prevent conflation with perceptual imageability (i.e. imagining the perceptual 

experience of an odour, see Stevenson et al., 2007). 

The measure of context availability requires a 7-point rating of the ability to imagine the 

odour source. For example, the odour ‘lemon’ may evoke an image of a lemon, or the 

odour ‘chlorine’ may evoke an image of a swimming pool. For the latter, the odour (or 

in this case the context in which the odour is experienced) may be clearly imageable 

despite a poor ability to identify a source. It is possible, however, that this rating might 

again simply reflect the verbalisability of the odour, since an image is likely to result 

from the word that is associated with the odour. 

Pleasantness. The hedonic rating of an odour features in many studies of odour 

perception and memory (Dalton, Maute, Oshida, Hikichi, & Izumi, 2008; Richard L. 

Doty, Shaman, Applebaum, et al., 1984; Nguyen et al., 2012; Sulmont et al., 2002). 

These studies show that pleasant/unpleasant odours result in activations in dissociated 

brain regions (Rolls, Kringelbach, & De Araujo, 2003), and are a particularly pertinent 

factor in odour perception by non-experts (Yoshida, 1964). Hedonic determination is 

considered a key function in olfaction and is even suggested to represent the primary 

method of discrimination between odours (Schiffman, 1974). Importantly for odour 

recognition tasks, less pleasant odours have produced better overall recognition 

(Nguyen et al., 2012), indicating an important role of the dimension in how odours are 

represented in memory. This finding also makes it important to match pleasantness of 

odours when inspecting the effects of other dimensions on recognition. In the present 

study, participants are required to rate pleasantness on a 7-point scale.  
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Intensity. The fifth dimension, intensity, is also measured on a 7-point scale. Although 

perceived intensity of an odour is related to the concentration of the odorant (Berglund, 

Berglund, Ekman, & Engen, 1971; Cain, 1969), it is also suggested to depend on 

experience-dependent factors (Ayabe-Kanamura et al., 1998; Distel et al., 1999). 

Specifically, the proposed degree of independence between intensity and pleasantness 

has varied from being entirely separate (Bensafi, 2002), to being related (Distel et al., 

1999), or identical (Henion, 1971) constructs. Some studies have attempted to mitigate 

cross-condition differences in odour intensity by manipulating substance quantity 

(Stevenson et al., 2007) or via dilution (Sulmont et al., 2002). However, the odour 

intensity in the present experiment was allowed to vary between each odour, allowing 

investigation into its relationship with other factors across a broad range of intensities.  

Irritability. The sixth dimension, and one potentially related to both intensity and 

pleasantness is the perceived irritability. An irritability measure is included in the 

normative data for odours in the UPSIT, and this measure would be expected to show a 

clear negative correlation with pleasantness as an additional reflection of a hedonic 

response. Irritability and pleasantness have shown differing effects on memory, where a 

recognition advantage for highly irritable odours is observed in older adults only 

(Larsson et al., 2009). Additionally, irritability has been used as an independently rated 

dimension when controlling high and low familiarity odour sets in memory tasks (Savic 

& Berglund, 2000). Whilst studies that do test irritability fail to clearly define this 

dimension, such a rating scale is likely interpreted as the physiological reaction to the 

odour. The findings by Larsson et al. (2009) indicate that a 7-point rating scale (very 

soothing/very irritating) will reveal a dimension that is independent of both pleasantness 

and intensity ratings.  
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Familiarity. The seventh measured dimension is familiarity. Odour familiarity is 

commonly a self-rated measure, though for verbal stimuli Brown and Watson (1987) 

suggest that subjective familiarity ratings are not a good substitute for objective 

frequency measures. This is because other factors such as frequency and age of 

acquisition ratings were found to contribute to judgments of familiarity (Brown and 

Watson, 1987). Despite this, such ratings of familiarity have been shown to be relatively 

stable when measured across different participants and time periods. For instance, 

ratings of familiarity from the UPSIT (Doty et al., 1984b) were utilized almost thirty 

years later in an odour memory study from Nguyen et al. (2012), and shown to correlate 

with new participant ratings (r = .46, p = .004). Similarly, Köster, Degel, & Piper (2002) 

compared familiarity scores provided for 12 odours with an earlier study (Degel et al., 

2001) and found no significant differences in familiarity ratings. 

Frequency. Familiarity is a complex construct which may be influenced by other 

dimensions. For example, word frequency is considered one of the most important 

variables in word processing (Brysbaert, Warriner, & Kuperman, 2014) and can be 

measured both objectively, via written or spoken appearances, and subjectively, via 

ratings of how often a particular word is experienced (Balota, Cortese, Sergent-

Marshall, Spieler, & Yap, 2004). The eighth dimension included is therefore of odorant 

frequency. Whilst an objective frequency measure for odours might, theoretically, be 

possible, subjective self-ratings are a more practical method of assessment. Such a 

rating scale is demonstrated with verbal stimuli to be a valid, and at times better, 

predictor of recognition performance than corpus frequency (Balota et al., 2004). 

Previous work by Sulmont et al. (2002) suggests that frequency and familiarity may be 

closely related (R2 > .85, p < .001). The present study will examine this through a 7-

point rating scale. 
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Age of acquisition. A further construct that may influence familiarity (and the ninth 

measure in this study) is age of acquisition. Such a scale has not been studied previously 

for odours. It has, however, been shown to predict familiarity ratings and processing 

speed (Brown & Watson, 1987) for verbal stimuli. Age of acquisition for words is 

ideally mapped objectively by testing children on their naming ability, but has often 

been substituted for adult estimates of the age at which they first learnt the word. 

Morrison et al. (1997) suggest that these estimates can be a reliable and valid alternative 

measure if ratings (for example, because the sample are children) are unavailable. These 

age of acquisition ratings will allow a first examination of odour age of acquisition and 

explore the relationship with familiarity ratings. Participants will simply state the age at 

which they first experienced the odour. Instances where participants believe an odour to 

be novel will be coded as the current age of that participant. 

Perceived complexity. The tenth and final dimension assessed in the present study is 

perceived complexity. Perceived complexity will be measured subjectively, since 

analysis of the chemical complexity of odours have shown no relationship to their 

perceived complexity (Jellinek & Köster, 1979). Subjective complexity ratings were 

shown to be reliable in a follow-up experiment, and as such are suggested to provide a 

meaningful measure in non-experts (Jellinek & Köster, 1983). One might expect that 

ratings of an odour’s complexity would relate to the perceivable odours that combine to 

make it; however, Sulmont et al. (2002) suggest there may be separable dimensions of 

complexity ratings and the perceived odour notes in an odour. They propose that 

perceived complexity is related to familiarity of the item, with complexity ratings 

reflecting the extent the stimuli can be interpreted as a meaningful unit. That is, a 

familiar odour will be rated as more simple. This is supported by a clear negative 

correlation of complexity with familiarity ratings. Alternatively, Jellinek and Köster 
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(1983) have previously shown no relationship between complexity and familiarity, but 

used a measure of ‘odour components’ rather than a simple-complex rating scale. This 

question is presumably similar to the odour note question in Sulmont et al. (2002). It 

may be that an independent finding regarding ‘odour notes’ comes from the ambiguity 

of this question for naïve participants. As such, complexity ratings in the present study 

focus on a scale of rated simplicity/complexity, on a 7-point Likert scale. 

2.1.1.2 Predictions 

In utilizing a large number of odours in this normative study, the aim was to obtain a 

wide range of scores across the dimensions. Across these dimensions, some interrelation 

is expected. Previous work (Sulmont et al., 2002) reported positive correlations between 

pleasantness and familiarity and a negative correlation between complexity and 

familiarity. Intuitively, one might expect correlations between measures of verbalization 

and prior exposure (e.g. familiarity, frequency, and age of acquisition); with the 

necessity for labels developing if one regularly encounters the stimuli. It is also prosaic 

to predict a negative correlation between pleasantness and irritability. This is the first 

study to try and assess age of acquisition (i.e. first exposure) for odours. However, if age 

of acquisition effects emulate that of verbal stimuli (see Morrison et al., 1997), one 

might expect age of acquisition to correlate negatively with familiarity, frequency, and 

context availability (i.e. the earlier that one is first exposed to the odour, the higher the 

ratings of familiarity, frequency, and imageability). Intensity is also expected to relate to 

pleasantness ratings, either as an increase in intensity as odours are rated unpleasant 

(Sezille, Fournel, Rouby, Rinck, & Bensafi, 2014), or perhaps an increase in intensity as 

pleasantness deviates from neutral (hedonic strength, Distel et al., 1999). 
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2.1.2 Materials and methods 

2.1.2.1 Participants 

One-hundred and three non-smoker students (18 male and 85 female, mean age = 19.4, 

age range = 18-34) were recruited via Bournemouth University’s online experiment 

management system, and participated for course credits. Participants who self-reported 

olfactory impairments (for example, symptoms of cold) were excluded, as were 

participants aged older than 40 years. Age-based exclusion was due to the proposition 

that olfactory identification abilities peak between the third and fifth decade (Richard L. 

Doty, Shaman, Applebaum, et al., 1984; see also Wood & Harkins, 1987 for age-related 

differences in the recognition of odours). Three female participants withdrew from the 

study after the first session, leaving usable data from one hundred participants. This 

study was carried out with approval from the Bournemouth University ethics panel. All 

participants gave written informed consent in accordance with the Declaration of 

Helsinki. 

2.1.2.2 Design 

A correlational design was used. The odours were grouped into 4 batches (A-D) of 50 

odours (each containing 25 food and 25 non-food odours). Participants rated two of the 

four batches (that is, 100 odours) across two 60-minute sessions separated by a 

minimum of 24-hours. The presentation order of these batches was counterbalanced 

such that the testing orders A-B, B-A, C-D, and D-C were balanced across participants 

2.1.2.3 Odorants 

Two-hundred commercially available odorants (100 food-related and 100 non-food-

related: see Appendix A for a complete list) were prepared by Dale Air Ltd. 

(www.daleair.com). These were stored within small test-tubes containing approximately 
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5ml of a liquid odorant soaked into a small piece of gauze. Due to contamination, 

odorant 17 (cabbage) was removed after 29 participant ratings. It remains included in 

the final database, but use of ratings for this odorant should be considered with caution.   

2.1.2.4 Procedure 

Testing was undertaken in a well-ventilated and quiet laboratory. Participants were 

tested in groups varying in size from 2-8. In the test phase, odours were presented on 

test-tube trays containing a block of five odours, with each odour arbitrarily numbered 

from one to two-hundred. Within each testing session participants received 10 blocks of 

5-odours, meaning participants smelled 50 odours in each of the two sessions. The 

composition of each 5-odour block was selected at random from the odour set within 

each batch. Participants were instructed to evaluate those odours in any order.  

Evaluation required participants to open the test tube lid and smell the odour (birhinally) 

for approximately 3 seconds in order to answer each question. Between odours, 

participants took a break of approximately 20 seconds, and between odour blocks a 

break of 1 minute was implemented where participants would take a drink of water. 

Responses were recorded within a booklet wherein each odour was assessed across the 

10 dimensions. Ratings were measured on a 7-point Likert scale, labelled at each end, 

and at the neutral centre point. Each dimension (identified from the literature discussed 

above) was presented in the same order for each odour and participant. Participants 

were asked: ‘How familiar is this odour (not at all familiar/very familiar)’, ‘how intense 

is this odour (very weak/very intense)’, ‘how pleasant is this odour (very 

unpleasant/very pleasant)’, ‘how complex is this odour (very simple/complex)’, ‘how 

irritating is this odour (very soothing/very irritating)’, ‘how frequently is this odour 

experienced (not at all frequently/very frequently)’, ‘how easy is it to describe this 

odour (very difficult/very easy)’, and ‘how easy is it to imagine where you’d experience 
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this odour (very difficult/very easy)’. In addition, two questions were open-ended. The 

first required a numerical age of acquisition response to ‘at what age did you first 

experience this odour?’, and the second a verbal written response to ‘can you attach any 

labels to this odour?' Participants were instructed to rate independently and in silence, 

and, if uncertain, participants were asked to guess. 

2.1.3 Results and discussion 

2.1.3.1 Scoring protocol 

The first eight questions were coded on scales of 1-7 (familiarity, intensity, 

pleasantness, complexity, irritability, frequency, perceived describe-ability, and context 

availability). 

In reporting age of acquisition, participants were encouraged to estimate the age at 

which an odour was first encountered, and provide a single age. When participants 

reported an age range as their answer, the median value of that range was recorded.  A 

small number of participants provided a qualitative (rather than quantitative) age of 

acquisition response (for example, “childhood”). In this instance the age of acquisition 

score was not used. 

The scoring of odour labels (verbalization) followed a modified version of the method 

described by Jönsson et al. (2011). These labels were coded on a 4-point scale (0-3). No 

response or a very basic affective judgment received a score of 0.  Broad categorizations 

or generic labels (for example; cleaner, food, sweet) received a score of 1. More specific 

categorizations referring to specific groups (floral, perfume, sweets) received a score of 

2, and any specific noun label received a score of 3. Scoring was performed 

independently by two researchers, with the median score taken as the final 
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verbalisability value. Weighted Cohen’s κ determined a good (Altman, 1991) level of 

agreement between raters, κw = .61 (95% CI, .59 to .62), p < .0005.  

Responses were averaged across participants to give a normative score in every odorant 

for each dimension. The full normative ratings for the 200 odours can be found in 

Appendix A. 

2.1.3.2 Normative data reliability 

In order for the normative data to be transferable to other samples in future studies, it is 

important to demonstrate that the variance in the ratings is attributable to the odours 

rather than individual differences in perception of the odours. Should the variance 

across participants match or exceed the variance between odours, it would suggest that 

tailoring odours according to individual participant ratings would be more suitable 

(Rabin, 1988). 

In order to test this proposition each dimension was looked at individually, using an 

analytical method described by Uebersax (2015). The agreement of scores for each 

odour across participants (individual differences) was examined as a measure of 

variability. That is, for each dimension, an individual’s rating of each odour was 

correlated with the average rating for that odour (a measure of ‘consistency across 

participants’). The higher the correlational coefficient, the greater the agreement 

between raters. Conversely, the lower the correlational coefficient, the greater the 

individual differences between raters. To assess the discriminability between odours, 

each individual’s rating of an odour was correlated with their average rating across all 

odours for that dimension. A high correlation coefficient (a measure of ‘consistency 

across odours’) indicates little variation in the scores given for that dimension by each 

participant across odours. That is, participants respond similarly for that dimension 
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across odours, indicating that the dimension is weak in discriminating between the 

odours. For the normative data in each dimension to be considered suitable the effect 

size for odour score agreement should significantly exceed that of rater score 

agreement. That is, ratings for an odour on each dimension should have a stronger 

relationship with the mean rating for that odour compared to the relationship to the 

mean rating across odours. A series of t-tests were conducted to test this proposition, 

comparing the strength of effect size for the odour (consistency across participants) and 

the level of discriminability (consistency across odours) for each of the dimensions, and 

is shown in Table 1. As can be seen from the table, the effect sizes for these 

relationships differ across dimensions, so require some further consideration. 

For ratings of familiarity, pleasantness, irritability, and intensity, the association of 

participants’ responses to the mean response for an odour was significantly greater than 

the association of responses to the mean response for each participant. That is, 

responses for a particular odour were more closely associated to the normative score for 

that odour than they were to each participant’s average response on that dimension. This 

suggests that those four dimensions are capable of discriminating between odours above 

any general response bias/strategy applied to that dimension.  For complexity and age of 

acquisition, participants’ ratings were more strongly related with the average rating for 

that dimension. This suggests a lack of sensitivity for complexity and age of acquisition. 

This finding may be due to several reasons. Participants may have shown little 

variability in how they respond for each odour, resulting in each response showing a 

strong relationship with the mean. For example, if they are unable to conceptualize 

‘complexity’ and ‘age of acquisition’ they may adopt a default response for the question 

resulting in limited variability. Alternatively, a low association of ratings to each odour 

mean indicates a large effect of individual differences. Indeed, Table 1 shows that age of 
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acquisition and complexity exhibited the lowest consistency across participants, 

indicating greater individual differences. These individual differences could occur 

through genuine variation in the ages at which an odour is first experienced or in the 

perceived complexity of odours, though may also arise from participant difficulties in 

interpreting and applying the particular question to the stimuli. Furthermore, ratings for 

frequency, context availability, and describeability, in addition to the labelling scores, 

showed no significant differences between the consistency across participants and 

consistency across odours. Consequently, these dimensions may exhibit reduced 

discriminatory power within a normative database. 



 

Table 1  

Mean (SD) r coefficients of rater agreement with each odour’s mean score, and rating agreement with each rater’s mean score. 

  Dimension 

 Fam. Int. Pleas. Comp. Irr. Freq. Desc. CA AoA Verb 

Consistency across 

participants 

.484 
(.09) 

.484 
(.10) 

.611 
(.10) 

.263 
(.14) 

.563 
(.11) 

.422 
(.11) 

.421 
(.11) 

.427 
(.10) 

.373 
(.11) 

.411 
(.14) 

Consistency across 

odours 

.422 
(.12) 

.406 
(.12) 

.312 
(.14) 

.408 
(.12) 

.408 
(.13) 

.434 
(.12) 

.417 
(.12) 

.433 
(.12) 

.512 
(.13) 

.435 
(.13) 

t value 4.69* 5.56* 21.69* -9.03* 10.37* -0.16 0.26 -0.42 -9.32* -1.48 

* Comparisons significant to p < .001. 
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2.1.3.3 Relationships between dimensions 

The linear correlation coefficient (r) was calculated for each dimension pairing, and 

displayed as a correlation matrix in Table 2. Almost all correlations were significant, 

with the exception of the intensity dimension with familiarity, frequency, describe-

ability, context availability, and age-of-acquisition dimensions.  

Some of the dimensional correlations warrant additional comment. As noted in the 

introduction to this chapter, this is the first study to attempt to assess the effect of age of 

acquisition in olfactory processing. Consistent, with the verbal domain (Morrison et al., 

1997), age of acquisition displays strong negative correlations with familiarity, 

frequency, and context availability. As expected, a strong negative correlation between 

age of acquisition and labelling was also reported, suggesting early exposure provides 

increased opportunities in which to develop a label for that odour. Indeed, inter-

correlation was observed for several dimensions relating to knowledge and previous 

experience with the odorant. The strong relationship is present between these 

dimensions despite evidence that individual differences may exceed the variation 

observed across odours. Consequently, it is possible that these ratings may still have 

utility in a normative database, aiding researchers in odour selection before further 

tailoring of stimuli according to participant data.  

Of particular interest are the four dimensions identified as particularly suitable for use in 

a normative database; familiarity, pleasantness, irritability, and intensity. First, the 

strong negative correlation (r = -.98) observed between irritability and pleasantness 

suggests collinearity, so further discussion focuses on only pleasantness scores. A 

predicted positive correlation between familiarity and pleasantness (Sulmont et al., 

2002) was observed, and supports a classical mere-exposure effect (Zajonc, 1968). Also 

predicted was a linear negative relationship between intensity and pleasantness (Sezille 
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et al., 2014), or a non-linear relationship where intensity increases with both 

pleasantness and unpleasantness (Distel et al., 1999). In the present data, though a linear 

model was significant, F(1, 198) = 75.23, p < .001, R2 = .28, a quadratic curve better fit 

the data, F(2, 197) = 88.16, p < .001, R2   = .47 (Figure 1A). When pleasantness data 

were recoded as a measure of hedonic strength (with neutral responses scored as 0, 

increasing to 3 as they deviate above or below neutral), a linear model was accepted as 

the best fit, F(1, 198) = 181.20, p < .001, R2 = .48 (Figure 1B). That is, intensity ratings 

are linearly related to the strength of a hedonic response. A strong relationship between 

hedonic strength and intensity supports ideas that the two may reflect similar 

dimensions of odour judgment (Henion, 1971).   

However, a non-significant relationship between intensity and familiarity (Figure 1C) is 

an interesting result that is not consistent with the findings in Distel et al. (1999). They 

suggested that not only might an increased familiarity with a stimulus affect judgments 

of pleasantness (a relationship seen in these data, Figure 1D), but also that intense 

odours may be more easily recognized and thus more likely to be judged as familiar. 

The observed pattern of relationships between familiarity, pleasantness, and intensity 

instead suggest that familiarity and intensity contribute independently to pleasantness 

scores. 



 

Table 2  

Correlation matrix (r) of averaged scores across participants for each odour. 

  Q1. Q2. Q3. Q4. Q5. Q6. Q7. Q8. Q9. Q10. 

Q1.      Familiarity — 

         Q2.      Intensity .05 — 

        Q3.      Pleasantness .73* -.53* — 

       Q4.      Complexity -.40* .64* -.63* — 

      Q5.      Irritability -.68* .61* -.98* .66* — 

     Q6.      Frequency .92* -.08 .77* -.50* -.73* — 

    Q7.      Describeability .94* .09 .67* -.42* -.62* .92* — 

   Q8.      Context Availability .95* .09 .66* -.40* -.61* .93* .97* — 

  Q9.      Age of Acquisition -.91* .03 -.72* .45* .69* -.88* -.89* -.90* — 

 Q10.    Verbalisability Score .88* .15* .54* -.28* -.50* .82* .88* .90* -.86* — 

* Significant correlations at the 0.05 level. 
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Figure 1. Relationship of (A) pleasantness with intensity, (B) hedonic strength with 

intensity, (C) intensity with familiarity, and (D) familiarity with pleasantness. 

2.1.4 Discussion 

The present study provides a large-scale normative dataset, containing ratings from 10 

dimensions for 200 commercially available odours (see Appendix A). To date, this is the 

largest such study examining psychological dimensions for olfactory stimuli. These 

ratings are available in Appendix A and provide the necessary information for 

researchers to control dimensions in subsequent studies (indeed, these data are used in 

this thesis for controlling olfactory stimuli). Additionally, these normative data are the 

first to assess the effects of age of acquisition on olfactory processing. Whilst similar 

relationships with age of acquisition are shown with words (i.e. there is a strong 
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negative correlation between age of acquisition and familiarity, Morrison et al., 1997), 

age of acquisition was shown to be strongly influenced by individual differences and the 

dimension did not adequately differentiate between odours. As a result, the increased 

unsystematic variance in the age of acquisition norm values means they should be used 

with caution. Moreover, it is interesting to note that age of acquisition also exhibits 

strong negative correlations with frequency, describeability, context availability, and 

labelling score. Consequently, attempts to use the norms to isolate any effects of age of 

acquisition may be confounded by these inter-relations. 

Normative data are suggested to provide two important benefits. The first benefit 

concerns experimental control. Since memory for odours has been shown to be affected 

by factors such as familiarity (e.g. Yeshurun et al., 2008) and pleasantness (Nguyen et 

al., 2012) it is argued that this may be of utility to control for such issues, analogously to 

that done with verbal memory. For example, if one were comparing memory for odours 

across two conditions (e.g. under conditions of quiet and concurrent articulation), 

matching the odours using these dimensions would eliminate a possible confound in 

that comparison. More specifically, studies examining serial position effects for odours 

report both differences across studies and potential qualitative differences with the 

functions reported for other stimulus types (Reed, 2000; Miles and Hodder, 2005; 

Johnson and Miles, 2007; 2009; Johnson et al., 2013). It is possible that these 

differences may be the effects of irregularities in the selection of stimuli; indeed, Hay et 

al. (2007) suggest that the psychological distinctiveness of stimuli can affect the shape 

of serial position curves. This study provides a database from which researchers can 

systematically examine whether such serial position effect differences can be explained 

by characteristics of the odours. However, it should be noted that the data highlights 

some caveats in the selection of these dimensions since only the normative ratings for 
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familiarity, pleasantness, irritability, and intensity exhibit convincing discriminatory 

power. If researchers intend to investigate the effects of the remaining dimensions, it 

may be advisable to follow the approach undertaken by Rabin (1988), i.e. tailoring 

odours to individual ratings.    

The second benefit of this normative dataset is that it provides a framework from which 

other researchers can examine the effects of psychological dimensions on olfactory 

memory. Researchers can use these data to explore whether dimensions that affect 

verbal memory similarly affect olfactory memory (as these odours are commercially 

available). One might expect that manipulating the familiarity of the stimulus set using 

these data would be of most interest in order to compare perceptual memory and the 

potential facilitative effects of verbal-perceptual dual-coding (Yeshurun et al., 2008). 

That intensity was allowed to vary arguably reduces the usefulness of the normative 

data to the specific stimulus set used. It is possible that the relationship of intensity with 

pleasantness, and to some extent with irritability and complexity, may confound the 

scores obtained for these dimensions. This is not considered a particular limitation, as 

the aim of the present study was to provide these data for a stimulus set that is readily-

available and which does not require researchers to manually match odorant intensities 

to n-butanol. Selecting odorants for future research from the database can include 

matching odorants on intensity, whilst still allowing dimensions of interest to be 

manipulated. Furthermore, although several odours are artificially produced to reflect 

non-tangible objects (e.g. ‘sports locker room’), many of the odours are labelled from 

real-life objects. There is therefore opportunity for future research to expand the utility 

of these data by comparing other odour sources with the normative scores presented 

here.  
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The normative data may be, to some extent, limited by the sample. The majority of 

participants were female (85%) and, in general, when sex differences are found in 

respect to olfaction females exhibit superiority (see Richard L. Doty & Cameron, 2009 

for review; although this trend can be complicated by menstrual cycle; e.g. Doty, 

Snyder, Huggins, & Lowry, 1981; Purdon, Klein, & Flor-Henry, 2001). Of particular 

relevance to these normative data is the finding that females exhibit superior 

identification of odours (Larsson et al., 2004). Indeed, Öberg, Larsson and Bäckman 

(2002) have shown that when naming ability is controlled, sex differences are removed 

(see also Larsson, Lövdén, & Nilsson, 2003). That females are superior at naming 

odours may result in an inflation of the verbalisability score for the odours. Similarly, 

the use of university students in the sample may also have led to an overstatement of the 

name-ability of the odours. This is because educational level has been found to be a 

reliable predictor of odour identification (Moberg et al., 2014). Whilst this sample may 

have resulted, quantitatively, in a general inflation of ratings (particularly with respect to 

odour naming), there is no a priori reason to suggest that perception of these odours 

may have changed qualitatively with more males or a less educated sample. 

Consequently, it is argued that the relative differences between the odours remains and 

the data retains its utility in differentiating odours. Notwithstanding, it is possible that 

these norms, particularly for food-based odours, may be limited cross-culturally. Gilbert 

and Greenberg (1992) question the universality of food-related odours since “what 

smells like food to persons of one culture may not smell edible to those of another” 

(p.327). Different experiences with odours across cultures, both qualitatively and 

quantitatively, may fundamentally change conceptualization of those items. As a result, 

these norms may not translate to other cultures; although this is an empirically testable 

question that warrants further examination.  
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One might argue, however, that restricting the sample to a British-born student 

population functions to limit individual differences in the ratings of the odours, e.g. less 

culture-based variance in the preference for food-based odours (Kaeppler & Mueller, 

2013). Notwithstanding this limitation in sample variance, some dimensions are 

identified that are less suitable for use in normative databases due to high levels of 

individual difference and/or a lack of sensitivity in discriminating between odours. For 

these dimensions a participant’s average response across odours is more predictive of 

the rating than the average rating for that odour. This suggests dimension insensitivity. 

For these dimensions there was either a high level of variability between participants, or 

participants were conservative in the spread of scores they gave each odour. 

Interestingly, it is the dimensions that are most commonly considered in olfactory 

research that demonstrated most suitability for use in normative databases (those of 

familiarity, intensity, and pleasantness/irritability). However, the scales that did not meet 

the criterion of agreement should not be discounted. For example, the verbalisability 

scale was designed based on previous n-back research (Jönsson et al., 2011), and has 

shown working memory differences for odours selected based on this score. Further, 

correlations demonstrated between normative scores across dimensions, particularly 

those that have previously demonstrated relationships, support the validity of these 

scores. Therefore, rather than claiming that some dimensions lack utility, the data 

suggest that for some dimensions, individual differences/response biases may create 

more unsystematic variance in the normative values. 

In summary, the normative data presented here may be utilized in future research to 

control odours for differences in olfactory perception. The dimensions should, however, 

be used with consideration of individual differences, particularly if testing a dissimilar 

population to that tested here. The ratings presented here do not offer a replacement for 
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tailoring odours to participants (Rabin, 1988), but should be used where prior exposure 

of odours to participants is not desirable, or used to guide selection of odorants which 

can be later supplemented by post-hoc rating and categorization.  
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Chapter 3: Investigating olfactory working memory using the n-back task 

3 Chapter Summary 

A series of studies which replicate and extend the n-back experiment in Jönsson et al. 

(2011) are described. The aim was to investigate the relative contributions of verbal and 

perceptual coding to olfactory working memory (as measured by n-back performance) 

and discriminability. The facilitative effect of verbal labelling on odour working 

memory was examined across two testing sequences, revealing a working memory 

advantage for verbalisable odours in only the second sequence (Experiment 1). This was 

attributed to verbal learning that improved discriminability, accentuated use of a verbal 

rehearsal strategy, or both. The use of a rehearsal strategy was explored in Experiment 2 

using a dual-tasking procedure, where it was attempted to limit the use of verbal or 

visual codes during n-back maintenance. There was evidence against (using Bayes 

Factors) a general working memory deficit, or attenuation of the high verbalisability 

advantage, during concurrent articulation. This contradicted the proposition that verbal 

rehearsal of odour labels underpinned the n-back advantage for these odours.  

Experiment 3 applied the remember-know paradigm to examine the role of familiarity 

(an automatic strength signal) and recollection (controlled retrieval of contextual 

information) in olfactory n-back performance. This revealed a quantitative improvement 

in recollection for high verbalisability odours, and no difference in responses using 

familiarity-based processes. This finding suggests that the memory advantage for highly 

verbalisable odours is related to more recollection of the odorants. Finally, Experiment 4 

sought to examine the role of familiarity on odour discriminability, by experimentally 

inducing perceptual familiarity to assess the subsequent effect on n-back performance. 
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An unexpected pattern of results was observed where familiarisation decreased general 

n-back performance; this is discussed in relation to strategy adjustments due to conflict 

between item familiarity and serial-position recollection. 
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Investigating olfactory working memory using the n-back task 

3.0 Chapter Introduction 

The traditional conceptualisation of working memory defines the ability to temporarily 

store, rehearse, and manipulate information (Baddeley & Hitch, 1974). Whilst a number 

of studies have sought to examine aspects of olfactory short-term memory (e.g. Andrade 

& Donaldson, 2007; Jehl, Royet, & Holley, 1997; A. J. Johnson, Cauchi, & Miles, 2013; 

A. J. Johnson & Miles, 2007, 2009; Miles & Hodder, 2005; Miles & Jenkins, 2000; 

Walk & Johns, 1984; White, Hornung, Kurtz, Treisman, & Sheehe, 1998; Zelano, 

Montag, Khan, & Sobel, 2009), there exists a stark paucity of work examining olfactory 

working memory (OWM) in line with this definition. Indeed, as discussed in Chapter 1, 

it is unclear to what extent memory for odours includes a conscious representation 

(Stevenson, 2009; Zucco, 2003) that may be manipulated or refreshed in working 

memory (Raye et al., 2007).  

Both Dade et al. (2001) and Jönsson et al. (2011) employed a 2-back task, requiring 

maintenance and manipulation of a presented sequence of odours, in order to examine 

OWM. In their study, Dade et al. (2001) compared 2-back performance for faces and 

odours and reported similar performance levels for the two stimulus types (≈90%). In 

addition, similar activations in the dorsolateral and ventrolateral frontal cortex for both 

faces and odours suggested working memory operations that were independent of 

stimulus modality. However, as noted by Jönsson et al. (2011), the selected odours used 

by Dade et al. were highly familiar and, as a consequence, OWM performance may 

have been supported via verbal recoding and rehearsal of such labels. Following 

recoding, working memory performance may therefore have reflected verbal, rather 

than olfactory, representations. Indeed, there is evidence to suggest that the nameability 

of an odour affects memory performance (as well as the affective experience, De 
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Araujo, Rolls, Velazco, Margot, & Cayeux, 2005).  This is shown quantitatively (Jehl et 

al., 1997; Lyman & McDaniel, 1986, 1990; Valentin, Dacremont, & Cayeux, 2011; 

Yeshurun et al., 2008) but also qualitatively in respect to patterns of neural activity 

(Zelano et al., 2009) and susceptibility to proactive interference (see Chapter 5). 

Jönsson et al. (2011) addressed the issue of verbalisability in OWM by comparing 2-

back performance for odours that had been categorised as high or low verbalisability. 

Whilst they observed superior n-back performance for the high verbalisable odours, 

performance for the low verbalisable odours remained above chance. This supports the  

notion that the perceptual code for an odour can be retained and updated within working 

memory (see also White et al., 1998 for evidence of olfactory perceptual 

representations). However, individual item analysis of n-back performance (A’) was 

strongly predicted (R2 = 0.95) by the verbalisation score for each odorant, even in the 

hard-to-verbalise group. Consequently, there is support for a strong influence of verbal 

codes on olfactory n-back performance. 

Notwithstanding above chance perceptual memory, Jönsson et al. demonstrate that 

odour verbalisation can improve task performance through increased discriminability, 

though the variance across odours was not fully explained by this discriminability 

advantage (see also Mingo & Stevenson, 2007; Stevenson, 2012, for effects of 

familiarity on discriminability). Indeed, whilst increased discriminability may provide 

one explanation as to why performance is superior for verbalisable odours, other 

explanations concerns the utilisation of perceptual-verbal dual-coding (Paivio, 1990; 

Stevenson & Wilson, 2007; Yeshurun et al., 2008; See Chapter 1 for a detailed 

discussion of the relationship between verbal and perceptual processing), or the access 

of a perceptual representation to consciousness facilitated by semantic information 

(Tomiczek & Stevenson, 2009). 
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3.0.1 The n-back procedure 

The n-back task is popular in cognitive neuroscience due to the simple way in which 

task difficulty can be manipulated without changing the presentation style of stimuli or 

nature of participant responses (Dong, Reder, Yao, Liu, & Chen, 2015; Jaeggi, 

Buschkuehl, Perrig, & Meier, 2010). Participants are presented with a continuous 

sequence of stimuli, and a decision must be made whether the currently presented item 

matches the item n trials previously on a predetermined criterion. This criterion is 

typically the matching of item identity between probe and n-back item, but can also 

require matching the spatial location of items regardless of identity (Owen, McMillan, 

Laird, & Bullmore, 2005). A target, requiring a positive response, is a trial that matches 

that nth item back on this determined criterion. As n increases, the proposed load on 

working memory systems also increases, evidenced by an increase in reaction time and 

decrease in accuracy (Jonides et al., 1997; B McElree, 2001). Importantly, the nature of 

the n-back task is described as a maintenance plus manipulation task when n > 1 

(Ragland et al., 2002), due to the need to update stored information as the trials 

progress. 

Non-target items are called lures1, and are typically taken from the same pool of stimuli 

as target items. That is, the stimulus used as a lure item may be used later in the 

experiment as a target, or vice versa. Importantly, the task allows an assessment of 

                                                 
1 It should be noted that in this thesis ‘lure’ refers to all non-targets, rather than just non-targets 

that are close to a potential target position (as used by Kane et al., 2007; Schmiedek, Li, & 

Lindenberger, 2009). When discussing these alternative lure items, the term ‘recent-lures’ is 

used.  
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olfactory working memory as it does not necessarily require explicit identification or 

naming of the stimuli (Jönsson et al., 2011). In contrast, a complex span procedure 

utilises a recall-based method for assessing working memory capacity (Daneman & 

Carpenter, 1980; Turner & Engle, 1989). This category of task is a commonly used 

measure of working memory capacity that involves presentation of a to-be-remembered 

sequence of items with a secondary distractor task completed during the inter-stimulus-

interval. However, the recall aspect means application to olfactory stimuli would simply 

test memory for odour labels (e.g. see Annett & Lorimer, 1995, and the procedure 

outlined by Miles & Jenkins, 2000). Consequently, the n-back procedure is suitable for 

measuring a participant’s ability to manipulate and store olfactory information in 

working memory, provided appropriate steps are taken to assess the use of executive 

control.  

3.0.2 What does the n-back task measure? 

The n-back procedure has received some criticism over its validity as a working 

memory measure. Though the n-back task has face validity as a working memory task, 

it has shown little correlation with complex span (Jaeggi, Buschkuehl, et al., 2010; 

Redick & Lindsey, 2013; Simmons, 2000), a task often considered the gold-standard for 

measuring working memory capacity (Shelton, Elliott, Matthews, Hill, & Gouvier, 

2010). Complex span tasks are a commonly used measure of working memory ability 

due to their strong predictive ability for tests of higher-order cognition, such as fluid 

intelligence measured through reasoning tasks (Barrouillet & Lecas, 1999; Conway, 

Cowan, Bunting, Therriault, & Minkoff, 2002; Conway et al., 2003; Kyllonen & 

Christal, 1990; Nash Unsworth & Engle, 2007). This lack of concurrent validity is 

therefore problematic for models that suggest both n-back and complex span measure 

the same working memory construct (see Kane, Conway, Miura, & Colflesh, 2007). 
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Paradoxically however, despite the apparent disparity between complex span and n-back 

measures, a relationship between n-back performance and fluid intelligence has also 

been observed (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Kane et al., 2007; 

Schmiedek, Lövdén, & Lindenberger, 2014). Whether this predictive ability of both 

complex span and n-back performance on higher-order cognition supports a shared 

mechanism across the tasks, or independent contributions to intelligence, is somewhat 

equivocal.  

Kane et al. (2007) found both tasks predicted independent variance in measures of fluid 

intelligence, and a meta-analysis by Redick and Lindsay (2013) supports a view that the 

two tasks cannot be used interchangeably as working memory measures. They suggest 

that this discrepancy instead supports a multi-faceted working memory system that 

includes non-unitary executive functions such as shifting, updating, and inhibition 

(Miyake et al., 2000; Oberauer, 2009). Indeed, a key difference between complex span 

and n-back tasks, and a possible reason for a weak relationship between the two, is the 

reliance on retrieval through recall in the former and through recognition processes in 

the latter (Harbison, Atkins, & Dougherty, 2011; Jaeggi, Buschkuehl, et al., 2010; 

Oberauer, 2005; Redick & Lindsey, 2013; Shelton et al., 2010). Specifically, the 

recognition process required for the n-back task is influenced by both familiarity and 

recollection processes (Jaeggi, Buschkuehl, et al., 2010; Kane et al., 2007). A familiarity 

signal (for example, through elevated activation in LTM, Oberauer, 2009) is found in 

recently-presented items, which on its own may be sufficient for accepting target items 

(Harbison et al., 2011; Kane et al., 2007). However, it is the inclusion of ‘recent’ lures 

(i.e. lures that have previously appeared in positions n-1, n+1, or n+2) that produces a 

familiarity signal comparable to target items, and means this signal alone is not 

sufficient to distinguish the targets from non-targets. Participants are therefore required 
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to engage in a control process over a familiarity signal to determine the correct position 

of the stimulus (Harbison et al., 2011; Szmalec, Verbruggen, Vandierendonck, & 

Kemps, 2011).  

This process of control over familiarity may obscure the relationship between the n-

back task and recall-based working memory measures (Kane et al., 2007). This has been 

supported by implementing a recall modification to the n-back (Shelton, Metzger, & 

Elliott, 2007; Wilhelm et al., 2013), which has shown a stronger relationship with 

complex span performance (e.g. r = .32 with operation span and r = .41 with listening 

span, Shelton et al., 2010). In this procedure, participants are presented with multiple 

sequentially-presented lists of items that vary in length, and at the end of each list are 

instructed to report the 1, 2, or 3-back item. Recall performance of 2 and 3-back items is 

then used to index working memory ability. Consequently, the task tests maintenance 

and manipulation without requiring a process of matching a probe to the n-back 

position. 

Alternatively, the discrepancy between these working memory measures may be due to 

the design of the n-back procedures. Harbison et al. (2011) suggest n-back and complex 

span tasks show a weak relationship because in most demonstrations of the n-back task, 

approximately 50% of trial items appear as ‘non-recent’ lures. This means that a large 

proportion of an n-back score, based on an index of hits and false alarms, is made up of 

lure items where the participant need not attempt recollection. However, it should be 

noted that Kane et al. (2007) compared n-back scores based on only recent-lure 

performance with operation span, and found only weak correlations between the two. 

That is, for n-back lure items where control over familiarity-based responding was 

challenged, a weak relationship with complex span tasks remained. To be clear, though 

the reliance on item familiarity for these lure types may complicate the assessment of 
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the relationship between the n-back and complex span, the inclusion of these trials does 

not appear to be the primary reason for any disparity. 

Though there are clearly issues with treating n-back performance as working memory 

capacity analogous to that measured in complex span tasks, it is unclear whether they 

reflect unrelated constructs in working memory. Indeed, the differences across measures 

might simply reflect paradigm-specific variance which systematically reduces the 

observed relationships between the two tasks (Schmiedek, Hildebrandt, et al., 2009). 

This mismatch of memory-test methods, in addition to content-specific variance and 

measurement error, is proposed to be responsible for the low correlations between n-

back and other tasks. The underlying working memory constructs may be better 

examined by assessing the relationship between latent variables based on multiple 

versions of both n-back and complex span (Schmiedek et al., 2014). This method has 

consequently revealed near-perfect relationships between the two category of tasks 

(Schmiedek, Hildebrandt, et al., 2009; Schmiedek et al., 2014; Wilhelm et al., 2013). 

Whilst correlations between individual tasks did vary considerably, latent variables of 

complex span (from measures of reading span, counting span, and rotation span) and the 

n-back task (using numerical and spatial n-back) correlated substantially (e.g. r = .69, 

Schmiedek et al., 2014). Furthermore, these variables loaded highly onto a working 

memory factor, which in turn was predictive of reasoning ability. The authors suggest a 

better measure of working memory can be achieved by using multiple heterogeneous 

tasks such as the complex span and n-back to produce a latent working memory factor. 

The shared explained variance from complex span and n-back tasks indicate a crucial 

component of working memory capacity utilised in both procedures, and in measures of 

reasoning ability for which both tasks have predictive utility. Controlled attention, 

proposed as a domain-general process for maintaining and manipulating working 
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memory items (Cowan, 1999; Engle et al., 1999), may be the source of this shared 

variance. Transfer effects from training in the n-back procedure to performance in 

reasoning tests is proposed to occur because attentional control is essential for both 

tasks (Jaeggi, Studer-Luethi, et al., 2010; Jaeggi et al., 2008). Similarly, attentional 

control is also considered essential for complex span tasks, as information about the 

stimulus must be accessible whilst attention shifts to the processing task (Engle & Kane, 

2004; Kane et al., 2004). Alternatively, the common source of variance between 

complex span and n-back tasks may be the ability to create, maintain, and update 

bindings (Oberauer, 2005, 2009; Wilhelm et al., 2013). That is, the n-back task requires 

constant creation and updating of bindings between an item and its context, whilst 

complex span tasks have similar binding requirements where the item must be bound to 

its serial position (Wilhelm et al., 2013). In Wilhelm et al., a binding factor accounted 

for 100% of an updating factor’s variance that included the n-back task, and 90% of 

complex span variance. 

In summary, when variance from retrieval differences in the n-back and complex span 

task is accounted for, there is a strong relationship between the two tasks that suggests 

they share a common working memory function (Schmiedek et al., 2014; Wilhelm et al., 

2013). Consequently, the n-back task appears to be a valid measure of working memory, 

though the influence of familiarity-based recognition on n-back performance should be 

considered when designing this working memory measure (e.g. Kane et al., 2007). 

3.0.3 Strategy adoption in the n-back task 

The n-back procedure is a complex task that may require (1) maintenance of the 

previous n items in memory, (2) updating of new items for active maintenance, (3) 

creation of bindings between each stimulus and its temporal context, and (4) resolving 

interference from non-relevant trials (Chatham et al., 2011; Cohen et al., 1997; 
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Oberauer, 2005). However, strategy adoption in the task can vary between participants 

or task demands (Botvinick, Braver, Barch, Carter, & Cohen, 2001), and the strategy 

used can mediate the working memory resources engaged (Juvina & Taatgen, 2007). 

The Dual Mechanism of Control framework (Braver, 2012) describes a proactive 

control process that involves activating the target n-back item in advance, ready for 

comparison to the anticipated stimulus. That is, for each trial the ‘correct’ n-back item is 

dynamically prepared prior to presentation of the item to which a response must be 

made. Specifically, participants activate the nth back item in memory prior to the trial to 

decide if the forthcoming item is a ‘hit’. In comparison, reactive control initiates 

attentive mechanisms upon presentation of the stimulus, after which competing 

responses are activated and the correct response must be selected. Specifically, 

following presentation of the item, participants attempt to retrieve the nth back item in 

memory to establish if a correct match exists. 

Several models have been produced that attempt to explain the precise processes 

involved in effective n-back task performance (e.g. Chatham et al., 2011; Gosmann & 

Eliasmith, 2015; Juvina & Taatgen, 2007; Szmalec et al., 2011). A common component 

in such models is an active rehearsal strategy, where a rehearsal window of size n is 

maintained (Harbison et al., 2011; Juvina & Taatgen, 2007; Szmalec et al., 2011). These 

rehearsal strategies involve updating, where new items are added to the rehearsal 

window and the now-irrelevant items removed (see also Wilhelm et al., 2013). 

However, rehearsal strategies may themselves differ in whether proactive or reactive 

control processes are employed (Ralph, 2014).  

A proactive, static rehearsal process, is proposed in Chatham et al. (2011) where the n 

serial positions are held in memory separately to the n memory items. In this model, 

each item is allocated to a serial position, but only the task-relevant serial position is 
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under the focus of attention when a new item is presented. This new item is then 

compared to the item in that serial position, a response is made, and the new item then 

replaces the previous memory item in that same position. Importantly, the attentional 

focus then allocates the next serial position as task-relevant, and the same matching 

process is completed. Such a method is efficient because it does not require updating of 

the position of every item, and does not require any updating should the new item match 

the old (a target) (Ralph, 2014).  

In comparison, Juvina and Taatgen (2007) describe a rolling rehearsal strategy where 

items are rehearsed in the phonological loop to increase their activation strengths. At 

each trial, new items are appended to the list whilst the first item is removed. That is, 

when an item falls out of the maintenance window this item becomes irrelevant, and this 

highly activated item must be removed and inhibited to prevent its reappearance in the 

rehearsal list. However, interference may still arise from this removed item due to the 

limited capacity of a suppression mechanism (Harbison et al., 2011; Jonides & Nee, 

2006; Juvina & Taatgen, 2007; Szmalec et al., 2011). This strategy reflects a reactive 

control process, where all the items in the rehearsal window are retrieved in response to 

a new stimulus, and the strongest activation in this list is then selected and compared to 

the presented item (Ralph, 2014).  

Though the above strategies may differ in their use of proactive or reactive control, they 

are similar in their requirement for active maintenance of the stimulus. Importantly, it 

should also be noted that such maintenance is not necessarily specific to rehearsal 

within the phonological loop, as rehearsal may instead be attributed to a multi-modal 

refreshing mechanism (Cohen et al., 1997; M. R. Johnson et al., 2015). Indeed, there is 

evidence that suppressing an articulatory rehearsal process (e.g. via repetition of the 

word ‘the’) will cause participants to recruit additional, domain-specific, maintenance 
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resources (Chein & Fiez, 2010; Gruber & Cramon, 2003). Consequently, these control 

mechanisms may accommodate n-back performance for non-verbal stimuli such as 

fractals, abstract shapes (Nystrom et al., 2000; Ragland et al., 2002), faces (Dade et al., 

2001), and olfactory stimuli (Dade et al., 2001; Jönsson et al., 2011).  

Further distinction between n-back strategies considers the use of control. That is, 

whilst rehearsal strategies reflect high control, other strategies modelled for the task 

propose low control processes that allow effective performance without rehearsal of the 

memoranda (e.g. Juvina & Taatgen, 2007; B McElree, 2001). For example, a slow, 

reactive search process has been proposed to aid recovery of order information in 

circumstances where the n-back item is not maintained in focal attention (McElree, 

2001). In this model, the most recent item is retrieved, which cues the next in the 

sequence, and so on until a match to the probe item is found. Alternatively, Juvina and 

Taatgen (2007) propose a low control strategy that compares a temporal-based 

estimation of a target item’s encoding (a ‘time-tag’) to the approximate age of a target 

item (see also Nijboer, Borst, van Rijn, & Taatgen, 2016). To be clear, rather than 

actively maintaining the n items in memory, participants rely upon residual memory 

traces of the items to judge whether the current item matches the activation level 

expected of a target (i.e. a temporal familiarity judgement). 

A variable task demand that may affect the employment of a particular n-back strategy 

is the prevalence of recent lures (Ralph, 2014). In his thesis, Ralph (2014) assessed 

whether the ratio of targets to lures influences the control strategies adopted in the n-

back task, hypothesising that a lure-heavy sequence will increase the use of proactive 

control (i.e. engaging attention to the stored target item prior to presentation of the 

probe item). In direct contrast to the prediction, fewer target trials in a sequence resulted 

in a decrease in the use of a proactive control method. In explanation, he proposes the 



Chapter 3. Olfactory n-back tasks 94 

effort involved in keeping targets active is not worth the reward of getting relatively few 

trials correct when the number of targets is low. Consequently, his findings provide 

evidence that participants are able to extract information about the nature of the task, 

and to make adjustments to their control strategy accordingly (Ralph, 2014). 

It is also possible that participants may make a strategic decision to make n-back 

judgments based only on familiarity (Juvina & Taatgen, 2007). Above-chance 

performance during the n-back task is possible if a strategy is adopted to accept probes 

when a familiarity-strength criterion is exceeded, and this method is likely the primary 

process used to reject non-recent lure items (Harbison et al., 2011). However, the 

inclusion of recent lures mean familiarity cannot be used to accurately identify a target 

item, and a cognitive control process must be adopted to discriminate these lures from 

targets to prevent inflated false alarm rates (Juvina & Taatgen, 2007; Szmalec et al., 

2011). It appears that participants will typically opt for control strategies (i.e. a strategy 

that attempts to explicitly compare the probe item to information linked to the n-back 

serial position) to maximise accuracy (see McElree, 2001), though sequences with a low 

number of recent lure items can increase reliance on familiarity (Harbison et al., 2011). 

This strategy may also occur if there are failures in recollection that prevent a 

judgement of the probe’s position (Juvina & Taatgen, 2007). Recollection-based 

decisions must be made to ensure a target or recent-lure decision is correct, and it is this 

process that is proposed to engage cognitive control processes (Juvina & Taatgen, 2007; 

Smith & Jonides, 1999). 

How cognitive control strategies in the n-back task may be applied to an olfactory n-

back task is unclear. Verbal recoding would allow the use of proactive or reactive high-

control rehearsal strategy (Chatham et al., 2011; Juvina & Taatgen, 2007), and could 

explain a relationship between odour verbalisability and n-back performance (Jönsson et 
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al., 2011). However, the dissociation of verbal and olfactory short-term memory 

indicates that a purely verbal rehearsal process may not be appropriate (Andrade & 

Donaldson, 2007). A high-control strategy may instead be applied to an olfactory 

representation through a refreshing process (e.g. M. R. Johnson et al., 2015). This 

refreshing process involves directing attention to one of several active representations 

(M. R. Johnson et al., 2015; Raye et al., 2007), and is proposed to drive non-verbal 

rehearsal (Baddeley, 2012). However, olfactory imagery has been proposed unique in its 

inability to give rise to a conscious olfactory representation (Stevenson & Attuquayefio, 

2013; Zucco, 2003), meaning such rehearsal-based strategies may not be possible. If 

this is the case, the strategy might be mediated by whether an odour is identified or 

named. For hard-to-name odours, this may involve the adoption of a low-control 

strategy, which involves a reactive memory search, or a familiarity-based temporal 

estimation (Juvina & Taatgen, 2007; B McElree, 2001). Alternatively, failure to 

recollect these low verbalisability odours may result in the adoption of a familiarity that 

does not include any control process (i.e. acceptance of an item if a familiarity strength 

signal exceeds a fixed criterion, Juvina & Taatgen, 2007). 

3.0.4 Olfactory learning and the role of familiarity 

As noted above, the characteristics of the odours may be important in the type of 

strategy adopted in the olfactory n-back, and, consistent with past work (Jönsson et al., 

2011), the present study categorises odours according to a measure of verbalisability 

scores. However, familiarity scores correlate strongly with verbalisation scores (r = .84, 

see Chapter 2). High odour familiarity is related to processes of perceptual learning, 

which can shape future perception of items (Goldstone, 1998). Consequently, it is 

important to consider the effects of both normative familiarity and experimental 

familiarity on working memory performance in the n-back task.  
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Perceptual learning is an integral part of the object recognition account of olfactory 

processing (Stevenson & Boakes, 2003; Wilson & Stevenson, 2006). That is, olfactory 

perception is proposed to involve matching an input pattern from receptor activation to 

previous encodings contained within an object store (Stevenson & Wilson, 2007). A 

novel or unfamiliar odour will activate many stored objects and result in a vague 

representation, whilst representations of familiar odours are more stable due to strong 

activation of only a few stored encodings (Stevenson & Mahmut, 2013). Consequently, 

two unfamiliar odours will be less discriminable from one another and judged to have 

more similarities than two familiar odours, due to both of them being redolent of many 

other odours (Mingo & Stevenson, 2007; Stevenson, 2012). 

The importance of odour perceptual learning on perception has been shown in both 

experimental and naturalistic settings. In naturalistic studies, general olfactory 

perceptual experience can mediate discriminability of odours (Stevenson & Boakes, 

2003). For example, wine experts and regular wine drinkers have both shown increased 

discriminability of odours compared to non-experts. This finding indicates an advantage 

from increased exposure can occur through perceptual learning, and that because 

experts and regular drinkers saw similar improvements the effect does not appear to be 

due to increased knowledge of the stimuli (Melcher & Schooler, 1996). 

Experimental manipulation of familiarity through repeated exposures can also improve 

discriminability of odours (Li, Luxenberg, Parrish, & Gottfried, 2006; Rabin, 1988; 

Stevenson, 2001; Wilson & Stevenson, 2003b), and improve both short and long-term 

memory (Jehl et al., 1995, c.f. 1997; Nguyen et al., 2012; Valentin et al., 2011). 

Importantly, these improvements in recognition performance have occurred when 

odours were previously unfamiliar and the task did not include instructions to label the 

odours (Jehl et al., 1995). Though this supports effects of perceptually-based 
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familiarisation, it should be noted that improvements in Jehl et al. (1995) were only 

observed on the proportion of false alarm rates. Furthermore, in a follow-up study of 

long and short term odour memory, Jehl, Royet, and Holley (1997) found no effect of 

familiarisation on recognition memory unless accompanied with learned verbal labels. 

Indeed, the experimental familiarisation condition even saw a disruptive effect on long-

term recognition memory, which they attribute to confusion in the chronology of the 

pre-exposure and testing stages. More recently, Nguyen, Ober, and Shenaut (2012) 

showed an improvement in recognition performance (d’) when targets were experienced 

in multiple encoding trials. A trend was also observed for this improvement to be greater 

for less familiar odours, though the interaction was non-significant. They suggest 

multiple exposures can improve recognition performance by increasing the 

distinctiveness of items at encoding.  

Though there is some support for a perceptual learning effect that can influence the 

representation of odours in memory, these effects may be confounded or complemented 

by verbal memory (Stevenson, 2001; Stevenson & Boakes, 2003). Working memory 

capacity is typically defined in terms of the number of chunks that can be maintained 

(Cowan, 2001), and that these chunks are organised by learned information in long-term 

memory (e.g. Hulme, Maughan, & Brown, 1991; Thorn, Gathercole, & Frankish, 2002). 

Consequently, increased knowledge of the processed stimuli can improve working 

memory capacity by facilitating the formation of these chunks (Jackson & Raymond, 

2008). Indeed, novel visual stimuli with no verbal or semantic associations may result in 

a capacity of only one item (H. Olsson & Poom, 2005). Furthermore, whilst Melcher 

and Schooler (1996) suggest an expert discriminability advantage that is due to 

exposure alone, comparisons of olfactory short-term memory in wine-tasters to trained 

panellists and non-experts has shown an expert advantage that is better attributed to an 



Chapter 3. Olfactory n-back tasks 98 

ability to verbalise the odorants (Valentin et al., 2011). These semantic memory effects 

are proposed to occur as a consequence of effortful association of labels to the odorants 

(Stevenson, 2001), and odour labelling is likely to occur in an explicit working memory 

task such as the n-back (Jönsson et al., 2011). Consequently, verbal learning may be 

responsible for any discriminability and working memory advantages for familiar 

odours, or may improve odour discrimination over and above the effects of mere 

exposure alone (Rabin, 1988; Stevenson & Boakes, 2003).  

3.1 Experiment 1: Olfactory n-back partial replication 

3.1.1 Introduction 

Experiment 1 is a partial replication of Jönsson et al. (2011). The purpose of this 

replication is threefold. First, above chance olfactory n-back performance has only been 

shown in two previous studies (Dade et al., 2001; Jönsson et al., 2011), so the 

experiment seeks to replicate this finding with a different set of odours. Second, this 

experiment can validate recent normative data from Chapter 2, by demonstrating the 

same facilitative effect for highly verbalisable odours as that reported by Jönsson et al. 

(2011). Indeed, the findings in Chapter 2 indicate that verbalisability of odours is an 

unsuitable dimension with which to control odours, due to high levels of individual 

differences. However, not only has a similar measure been used successfully in other 

research (Jönsson et al., 2011), but the verbalisability scores in Chapter 2 correlated 

strongly with other dimensions deemed suitable for use in olfactory memory 

experiments. Although this is not tested, one might speculate that verbalisability for low 

and high extremes of the verbalisability dimension are less susceptible to individual 

differences, and consequently the use of these odours enable an effective manipulation 

of odour verbalisability in the present tasks. Third, an additional testing sequence is 

introduced to investigate discriminability changes due to perceptual and verbal learning 
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throughout the task (Jönsson et al., 2011, employed a single testing sequence). That is, 

does performance improve for low verbalisability odours as a result of repeated 

exposure to those odours?  

The present experiments use an index of recognition ability derived from signal 

detection theory, and additionally reports independent analyses of hits and false alarms. 

This is necessary to provide insight into specific changes in the ability to reject lures 

and accept targets, in addition to shifts in response bias. For example, the findings in 

Lyman and McDaniel (1986) have been criticised due to the facilitation from labelling 

on recognition performance occurring through a reduction in false alarms rather than an 

increase in target recognition. However, signal detection is preferred over hit rates 

because nameability of an odour has been proposed to affect response strategy, with an 

item that is not identified judged as ‘new’ more frequently (R. A. Frank et al., 2011). 

This may be because the information about an odour that is not named is very limited 

(Jönsson & Olsson, 2003), with participants therefore reluctant to respond old when 

they cannot report any information about the odorant.  

Three hypotheses are presented based upon previous evidence of a working memory 

advantage for verbalisable odours and considering the effect multiple exposures may 

have on n-back strategy. It is predicted that (1) odour working memory will be above 

chance for low verbalisability odours but (2) performance for high verbalisability 

odours will be significantly better (Jönsson et al., 2011). Across testing sequences, it is 

predicted that (3) greater improvement for low verbalisability odours from repeated 

presentations, through a process of perceptual learning and verbal learning (Nguyen et 

al., 2012; Stevenson, 2001; Stevenson & Mahmut, 2013a). 
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3.1.2 Method 

3.1.2.1 Participants  

Twenty participants (12 males and 8 females, mean age = 20.0, SD = 2.7) participated in 

exchange for course credit. Participants who self-reported olfactory impairments (e.g. 

symptoms of cold) and smoking (Katotomichelakis et al., 2007) were excluded, as were 

participants aged over 40 years (Doty et al., 1984). Ethical approval was obtained via 

the Bournemouth University Ethics Committee. 

3.1.2.2 Materials 

The odours were as described for Chapter 2. 

Twelve odours were randomly selected from the twenty highest and lowest 

verbalisability scores to form the low and high verbalisability odour sets used in the n-

back task (see Appendix B). The verbalisability judgment in Chapter 2 followed closely 

that of Jönsson et al. (2011) such that stimuli were scored from 0-3 according to the 

quality of the verbal labels provided, with a lower score indicating vague or absent 

verbalisability and a higher score reflecting use of a specific noun. Verbalisability for 

the two odour sets differed significantly, t(12) = 26.38, p < .0005, d = 15.23, BF10 > 

1,000 (Mhigh = 2.66, SDhigh = 0.11; Mlow = 1.12, SDlow = 0.09). An additional two odours 

were selected from the high and low verbalisability odorant samples. These were chosen 

to act as non-analysed buffer items (i.e. these are used at the start of the task and are not 

included in the analysis). 

As discussed in Chapter 2, a normative verbalisability score may not be the most 

suitable dimension on which to base odour selection, due to high variability across 

participants. However, familiarity scores deemed more suitable for odour selection 
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covaried with verbalisable ratings, such that the odour sets were also significantly 

different across familiarity scores, t(12) = 21.62, p < .001, d = 11.57, BF10 > 100. 

Eight line drawings, printed on individual A5 sheets of paper, were taken from 

Snodgrass and Vanderwart (1980) and used as a 2-back practice task at the start of the 

experiment.  

3.1.2.3 Design  

A continuous yes/no recognition task was employed on two testing sequences of 52 

odour trials, where each trial necessitated a judgment as to whether the present odour 

was the same or different to the odour presented two items previously (i.e. the 2-back 

task). The experiment employed a within-participants multifactorial (2x2) design. The 

first within-participants factor concerned whether the block of odour trials contained 

odours categorised as high or low on verbalisability. This was operationalised as a block 

of 26-trials employing high verbalisable odours and a block of 26-trials employing low 

verbalisable odours. There was no interval between blocks (i.e. it was presented as a 

continuous 52-trial sequence). The second within-participants factor concerned testing 

sequence. Participants undertook two 52-trial testing sequences, with each testing 

sequence containing a block of high and low verbalisable odour trials. These odours 

were the same items used in the first sequence. The presentation order of trials was 

predetermined before testing, and the order of blocks was counterbalanced via a Latin 

square design.  

Within each (high or low verbalisability) block, the six (high or low verbalisable) 

odorants appeared as a ‘target’ once (25% of trials), and three times as a ‘lure’ (75% of 

trials). Targets were odorants that had been presented two trials previously, and thus 

required a ‘yes’ response. Lures were odorants not matching the odour presented two 
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trials previously, and therefore required a ‘no’ response. Thus, a block comprised 24 

critical trials (and 2 buffer trials) with each odorant presented four times. The first two 

trials in a sequence would always be lures, so preceding each block were two additional 

buffer trials. For the high verbalisability block, ‘Pear’ was presented for these two trials, 

and for the low verbalisable block ‘Nag Champa’ was presented. These buffer odours 

were not repeated elsewhere in the sequence, and responses for the buffer trials were not 

entered into the analysis. Recent lures at positions n+1 and n-1 were allowed to occur, 

and randomly appeared in sequences. Differences in the target to recent lure ratio across 

participant trials were equated across verbalisability conditions using the 

counterbalancing methods described below. 

When determining the order of trials within blocks, the nature of the 2-back task 

required that six lures were tethered two positions before the six matching targets. To be 

clear, for that odour to be a target, it must first be employed as a lure two trials previous. 

The remaining 12 lures in each block were placed pseudo-randomly, with the caveat that 

their position did not result in itself or a previously positioned lure becoming an 

unintended target, nor result in a target becoming a lure. The predetermined trial orders 

were counterbalanced, such that a sequence of lures and targets was re-used for another 

participant with the alternative set of 6 odours.  

The number of correct target identifications (Hits), and incorrect identifications of a lure 

as a target (False Alarms, FA) were recorded and used to compute the proportion of Hits 

to FA via A’. The mismatched number of recent lures across participants made analysis 

of only these lure types for incidences of false alarms unsuitable. Instead, false alarms 

were calculated from all lure probes, at the cost of having slightly inflated correct 

rejection proportions and A’ scores. This measure of signal detection theory was 

selected due to the unequal trial numbers for lure and targets, and because it allows FA 
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rates to exceed Hits. A’ was calculated as 0.5 + ((Hits – FA) x (1 + Hits – FA)) / ((4 x 

Hits) x (1 – FA)) when Hits exceeded FA, and as 0.5 – ((FA – Hits) x (1 + FA – Hits)) / 

((4 x FA) x (1 – Hits)) when FA exceeded Hits (Stanislaw & Todorov, 1999). Unlike d’ 

where Hit rates of one or FA rates of zero result in an indefinite value, use of A’ allows 

these results to remain unadjusted.  

3.1.2.4 Procedure  

The experiment was conducted in a quiet, well-ventilated room with a fan to circulate 

fresh air. Participants sat opposite the experimenter, separated by a wooden screen with 

a central fixation cross to prevent visual inspection of the odorants. Prior to the 

olfactory task, participants performed an 8-item visual version of the 2-back task in 

order to familiarise themselves with the procedure.  

 

Figure 2. Schematic diagram of the 2-back task. Two buffer items precede the 24 test 

trials. 

The 2-back task (Figure 2) presents participants with a sequence of stimuli, where each 

item must be compared with the stimulus presented 2 trials previously, whilst 

simultaneously remembered for comparison in future trials. Participants completed two 

sequences of 52 trials, where each trial consisted of a single odour presented under the 

nose of the participant for 2 seconds. Participants were required to make a verbal ‘yes’ 

response if the currently presented item matched the odour presented two trials 

previously and a ‘no’ response if it did not. An 8-second inter-stimulus interval (ISI) 

separated odour presentations. In the interval between the two 52-odour sequences, 

lure target

lure

Buffer Odour 1Odour 2Odour 1Buffer
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participants were encouraged to drink water and given a 5-minute break. Total testing 

time (including breaks) took approximately half an hour. 

3.1.3 Results 

Data in this and subsequent experiments were analysed using traditional analysis of 

variance (ANOVA) and planned Bonferroni-corrected comparisons. However, in 

Chapter 3 and Chapter 4, Bayesian ANOVA with default priors were also performed 

using JASP (Love et al., 2015; R. D. Morey & Rouder, 2015; Rouder, Morey, 

Speckman, & Province, 2012). This is a model-based approach, where models 

containing main effects and interactions can be compared. To be clear, this process 

produces a Bayes Factor value that indicates the ratio of support for one model over 

another. Typically, the comparison will be between a particular model (for example, a 

model with both main effects) and the null model, producing a Bayes Factor indicating 

the level of support for this model. However, Bayes Factors are transitive, and the 

assessment of models additive, so a model with an interaction term added can also be 

compared to this main-effects model. This produces a Bayes Factor indicating the 

strength of evidence for an improvement to the model when the interaction term is 

included. A typical cut-off as providing substantial support for a model is for a 

likelihood given the data three times greater than the likelihood for the null (Jeffreys, 

1998). This equates to a Bayes Factor greater than 3 as substantial support for the 

alternative hypothesis, and below 1/3 as substantial support for the null. A score 

between 1/3 and 3 indicates insensitivity to either hypothesis. 

Bayes Factors are also calculated for paired comparisons, which using the same cut-offs 

above outlines the strength of evidence for or against an alternative hypothesis. For 

Chapter 3 and 4, these use a default Cauchi prior distribution (Rouder et al., 2012). 

These are presented with p values and t-test results where appropriate, in the format 
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BF10 when testing the alternative hypothesis against the null, and BF01 when testing the 

null hypothesis against the alternative hypothesis. That is, BF10 < 0.33 and BF01 > 3 

would indicate identical support for the null hypothesis. 

3.1.3.1 A’ sensitivity 

Figure 3(A) reports A’ for the high and low verbalisability groups, across testing 

sequences. An ANOVA was performed where the first factor was testing sequence (first 

and second) and the second factor was odorant verbalisability (low and high). The main 

effect of testing sequence was non-significant, F(1, 19) = 0.35, p = .560, ηp
2 = .02, 

indicating no overall change in recognition sensitivity over sequences. A significant 

main effect of verbalisability was found, F(1, 19) = 5.95, p = .025, ηp
2 = .24, with 

greater sensitivity for the high verbalisability odours (M = .84, SEM = .01) compared to 

low verbalisability odours (M = .79, SEM = .02). Importantly, the interaction between 

sequence number and verbalisability was significant, F(1, 19) = 8.32, p = .010, ηp
2 = 

.31. Bayesian ANOVA indicated strongest support for a model with main effects and an 

interaction between verbalisability and sequence (BF = 4.24 vs the null model), 

preferring this model over a main effects model by a factor of 8.08.  

Follow-on Bonferroni-corrected paired comparisons (α = .025) and Bayes Factor 

analysis revealed evidence against lower sensitivity for the low verbalisability odours 

(M = .81 SD = .10) compared to the high verbalisability odours (M = .80, SD = .09) in 

the first testing sequence, t(19) = .41,  p = .690, d = .12, BF10 = 0.25. However, the 

second sequence saw strong evidence for lower hits for low verbalisability odours (M = 

.77, SD = .16) compared to high verbalisability odours (M = .88, SD = .07), t(19) = -

3.58, p = .002, d = -.92, BF10 = 40.40. That is, an effect of greater sensitivity for highly 

verbalisable odours was present only in the second testing sequence. There was 

evidence for a difference across testing sequences for high verbalisability odours that is 
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suggested to be driving this interaction, where performance was better in the second 

testing phase compared to the first, t(19) = -2.92, p = .009, d = -.91, BF10 = 5.69. In 

comparison, there was anecdotal evidence against a difference between performance for 

the low verbalisable odours in both testing sequence, t(19) = 1.27, p = .220, d = .36, 

BF10 = 0.47.  

Using a single sample t-test, A’ sensitivity scores were also analysed against a chance 

score of 0.5. There was strong evidence for above chance performance for the low 

verbalisability odours in both the first, t(19) = 13.60, p < .001, d = 6.24, BF10 > 1,000, 

and second sequences, t(19) = 7.63, p < .001, d = 3.50, BF10 > 1,000. To be clear, this 

demonstrates that in both testing sequences, sensitivity was above chance for the low 

verbalisable odours. 

3.1.3.2 Hit rate analysis 

A 2 (sequence: first, second) x 2 (verbalisability: low, high) ANOVA was performed for 

hit rates, calculated from correct target recognition. Figure 3(B) shows these hit rates 

across odorant verbalisability and sequence number. The analysis revealed a non-

significant main effect of testing sequence, F(1, 19) = .49, p = .494, ηp
2 = .03. However, 

there was a significant main effect of odorant verbalisability, F(1, 19) = 5.94, p = .025, 

ηp
2 = .24, with greater hits for odours high on verbalisability (M = .67, SEM = .03) than 

low on verbalisability (M = .58, SEM = .04). This effect of verbalisability interacted 

across testing sequence, F(1, 19) = 5.15, p = .035, ηp
2 = .21. However, Bayes Factors 

were insensitive to any preference for a main effects model or interaction model over 

the null. 

Analysis of the interaction using Bonferroni-corrected paired comparisons (α = .025) 

and Bayes Factors revealed evidence against greater hits for verbalisable odours 
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compared to low verbalisability odours in the first testing sequence, t(19) = -.38, p = 

.705, d = .10, BF10 = 0.32, but evidence for greater hits for verbalisable odours (M = .72, 

SD = .18) compared low verbalisability odours (M = .57, SD = .26) in the second testing 

phase, t(19) = -3.21, p = .005, d = .67, BF10 = 19.73. In summary, the findings replicate 

those shown for A’ sensitivity, where a target recognition advantage was present for high 

verbalisability odours in the second sequence.  

3.1.3.3 False alarm rate analysis 

Figure 3(C) shows the false alarm rate for low and high verbalisability odours across 

testing sequences. The analysis revealed a non-significant main effect of sequence, F(1, 

19) = 1.22, p = .283, ηp
2 = .06, and differ from the results observed for hits and A’ with 

also a non-significant main effect of verbalisability, F(1, 19) = .50, p = .487, ηp
2 = .03. 

There was however, an interaction between testing sequence and verbalisability, F(1, 

19) = 5.98, p = .024, ηp
2 = .24. Indeed, an interaction-only model was preferred to the 

null by a (BF = 7.11 vs. a null model). 

Bonferroni-corrected paired comparisons (α = .025) and Bayes Factors revealed 

evidence against greater false alarms for low verbalisability odours in sequence 1, t(19) 

= -1.99, p = .061, d = -.46, BF10 = 0.09, but evidence for greater false alarms in the 

second sequence for low verbalisability odours (M = .17, SD = .10) compared to 

verbalisable odours (M = .11, SD = .09), t(19) = 2.14, p = .046, d = .58, BF10 = 2.90. In 

summary, the findings showed a significant interaction similar to those observed for hits 

and A’, but without a main effect of verbalisability. In summary, these data provide 

some evidence for lower false alarms for verbalisable odours in the second testing 

sequence. 
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Figure 3. (A) A’ sensitivity, (B) false alarm rates, and (C) hit rates, for low and high 

verbalisability odours, across testing sequences. Error bars denote 1 standard error of 

the mean. 

3.1.4 Discussion 

Experiment 1 examined the extent to which olfactory working memory performance is 

affected by the verbalisability of the odours. Similar to the findings of Jönsson et al. 

(2011), superior n-back sensitivity is reported for odours classified as exhibiting high 

verbalisability, whilst still showing above chance performance for odours classified as 

exhibiting low verbalisability (p < .005, BF10 > 1,000, for low verbalisability A’ in a 
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one-sample t-test against the chance score of 0.5). This replication of Jönsson et al. 

(2011) provides further validation for the normative ratings reported in Chapter 2 in 

respect to ratings of verbalisability (see also Chapter 5 for differential effects of 

verbalisability on proactive interference).  

The present findings differ to Jönsson et al. (2011), however, in reporting differences 

between high and low verbalisable odours in the second sequence only. The working 

hypothesis for this experiment was that differences between high and low verbalisable 

odours may attenuate in the second sequence due to a refinement/development of 

functional labels for the low verbalisable odours following repeated exposure. In 

contrast, the benefit for the high verbalisable odours only emerged in the second 

sequence. This trend was mostly consistent across A’, hit rates, and false alarms. 

The gradual development of verbalisability effects is perplexing; whilst, differentiation 

between odorants is shown to improve through repeated or prolonged exposure (e.g. Li 

et al., 2006; Rabin, 1988), these effects should not be confined to a specific increase in 

discriminability for high verbalisability odours only. It is possible an asymmetry from 

the effect of multiple exposures occurred due to an inability to effectively perform the 

task with low verbalisability odours. However, performance for these odorants was 

above chance, and no participants reported an inability to smell any odorant. This 

interaction across testing sequences therefore raises some questions over the use of 

verbal codes, mere exposure effects, and the development of strategies throughout the n-

back task. It is possible, for example, that verbalisable odours have these labels refined 

throughout the task, resulting in improved n-back performance. 

An odour representation in memory has been proposed to include both perceptual and 

verbal information, though the relative weight of these information types may vary as a 
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function of being identified, or through the quality of available verbal information (e.g. 

Yeshurun et al., 2008; Zelano et al., 2009). A possible explanation is that initial poor 

quality verbal labels applied to the verbalisable odours were refined following multiple 

exposures (see Stevenson, 2001), or that some strategy shift occurred across testing 

sequence that favoured the high verbalisability odours. Indeed, the importance of label 

consistency has been stressed for the facilitative effect of verbal labelling in olfactory 

memory (R. A. Frank et al., 2011; Kärnekull et al., 2015), and labelling consistency is 

likely to increase with familiarity (R. A. Frank et al., 2011). Furthermore, there was a 

trend towards poorer performance for low verbalisability odours in the second sequence, 

which would be predicted if a verbal strategy was across the trials and applied to odours 

with a poor-quality label. Consequently, verbal learning can potentially explain the 

improvement for these odours as a result of an improved ability to categorise and label 

the stimuli. 

3.1.4.1 Discriminability improvements  

This section considers whether the advantage for high verbalisability odours in the 

second sequence was due to perceptual or verbal learning. Although the manipulation of 

odours was across a verbalisability dimension, the relationship between odour 

verbalisability scores and familiarity is high, such that verbalisable odours had high 

normative familiarity. However, high normative familiarity would predict a 

discriminability advantage for odours in the first testing sequence (Wilson & Stevenson, 

2006), and this was not observed. Furthermore, olfactory perceptual learning would not 

predict a specific increase in discriminability for only high verbalisability odours. 

Indeed, the object recognition model of olfaction describes rapid perceptual learning 

that would predict either generalised improvements for both odour sets (Li et al., 2006; 

Rabin, 1988; Stevenson, 2001), or lower perceptual learning in the high verbalisability 
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odour set because of these items’ already-high normative familiarity (Goldstone, 1998; 

Nguyen et al., 2012; Stevenson, 2001; Stevenson & Mahmut, 2013a). Consequently, the 

findings indicate that the working memory advantage for high verbalisability odours 

was not due to perceptual learning of odours, either through previous pre-experimental 

normative familiarity or from experimental exposure-based familiarity. 

An alternative consideration is the effect on odour discriminability from verbal learning 

(Stevenson, 2001; Stevenson & Boakes, 2003). That is, effortful association of verbal 

labels to the olfactory stimulus can improve item discriminability (Rabin, 1988; 

Stevenson, 2001), where retrieval of a label facilitates the matching process between 

perceptual input and stored representation (Wilson & Stevenson, 2006). Furthermore, 

label consistency has been stressed for the facilitative effect of labelling in olfactory 

memory (R. A. Frank et al., 2011; Kärnekull et al., 2015), and labelling consistency is 

likely to increase with familiarity (R. A. Frank et al., 2011). However, odour 

verbalisability, like familiarity, is a normative property of the stimuli that would predict 

better n-back performance due to a discriminability advantage in the first testing 

sequence (Jönsson et al., 2011; Lyman & McDaniel, 1986). The absence of such an 

advantage in the first sequence may be explained by poor quality verbal labels, which 

were then refined over multiple exposures to the odour (Stevenson, 2001). 

Consequently, a consistently applied, high quality label may enable a strong, stable 

representation in memory by nature of a strongly activated odour object.  

Some aspects of the methodology further support a role of verbal learning. Although 

participants were aware of the number of trials they would perform, they were given no 

indication of the number of odorants used, nor had they smelled any of the test odorants 

before the task had begun. The first sequence is therefore characterised by the 

participant’s lack of knowledge about the number of odorants and of the similarities 
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between them. Consequently, the specificity of verbal label required to make an 

accurate distinction between each stimulus was unknown in the initial testing sequence. 

These findings are not consistent with Experiment 1 of Jönsson et al. (2011, p. 1026), 

where participants performed a mixed-blocks version of the n-back task with no prior 

exposure to odours other than a ‘few’ practice trials. In that experiment, Jönsson et al.  

showed a verbalisability advantage in their first and only sequence, and it seems 

unlikely that refinement of verbal labels would have occurred. However, in Experiment 

2 of their study (which most closely matches the present procedure and adopts a 

blocked-verbalisability design), participants performed a discriminability task before 

completion of the n-back procedure. This amounted to 6 presentations of each odour 

before the n-back task was completed, and thus provided the verbal learning 

opportunities required to match the finding observed in this experiment.  

3.1.4.2 N-back strategy shifts 

A possible explanation for these data is therefore that high verbalisability odour n-back 

performance improved as participants refined and made more consistent the initial label 

attributed to each odour. It is important to note, however, that in Jönsson et al.’s (2011) 

assessment of discriminability for high and low verbalisable odours they concluded that 

discriminability advantages alone cannot explain the advantage observed. That is, 

participants first performed a discriminability test where each task odorant was paired in 

comparison trials with it and all other odours within the set. An A’ score was calculated 

from the discriminability test and was directly compared to A’ performance in the n-

back procedure. The working memory advantage for high verbalisability odours was 

greater in magnitude than the differences in item discriminability, indicating an 

advantage for verbalisable odours in working memory that goes beyond discriminability 
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(though Jönsson et al. accept that there may be problems with equating the differences 

across the two measures).  

Consequently, although odour discriminability is a limiting factor in olfactory n-back 

performance, the use of verbal labels within an olfactory representation may also reflect 

performance differences based on underlying mnemonic strategies. First, however, 

whether the present findings might be accommodated within a high-control verbal 

rehearsal strategy is discussed (e.g. Chatham et al., 2011; Juvina & Taatgen, 2007). That 

is, the proposed role of verbal codes in odour working memory may support the use of a 

rehearsal strategy to update item information during the n-back task (e.g. based on the 

similar processes proposed for remembering named odours and verbal information, 

Olsson, Lundgren, Soares, & Johansson, 2009). In Jönsson et al. (2011), they suggested 

that low verbalisability odorants elicit at least some spontaneous verbal association. The 

present study’s initial assessment of verbalisability, where a score of zero included 

hedonic responses (e.g. ‘disgusting’), would presumably also allow a weak level of 

verbal coding. This weak label may have provided the appropriate code for a rehearsal 

strategy, and be sufficient for above chance recognition performance. Indeed, the quality 

of verbal label for an odour may be directly related to the ability to effectively rehearse 

that odour, leading to the advantage for the high verbalisability odours.  

However, whilst these findings indicate that verbal labels were refined over time, this 

only occurred for verbalisable odours. This indicates some difference in the way low 

verbalisability odours are represented. Indeed, there is evidence for some shift in the 

representation of olfactory information based on whether odours are identified (e.g. 

Zelano et al., 2009), or when odours are not identified that a perceptually-based 

recognition may occur, known as recognition without identification (Cleary et al., 

2010).  
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If these low verbalisable odours are represented by a perceptual code, attentional 

refreshing  (M. R. Johnson et al., 2015; Raye et al., 2007) may be used to allow a high-

control rehearsal strategy without the need for verbal recoding (Juvina & Taatgen, 

2007). However, it is also possible that the nature of these perceptually represented 

odours make such strategies unsuitable (Stevenson, 2009), and these odours might 

instead be dealt with using an alternative n-back strategy. That is, the availability of 

verbal information, and resultant changes in the way odours are represented in memory, 

may affect the way in which the rehearsal window is maintained and the method for 

making a comparison between nth and trial item (Juvina & Taatgen, 2007).  

A plausible strategy for low verbalisability odorants is as a low-control ‘time tag’ 

strategy (Juvina & Taatgen, 2007). To be clear, this strategy compares the activation 

strength (familiarity) of a probe item to a stored estimate of activity for a target item. 

Adoption of this strategy for odours can explain the poorer working memory 

performance for these low verbalisability odours, as the strategy is proposed to be a 

noisy method of estimating target appearances (Juvina & Taatgen, 2007). A familiarity 

signal is a relatively automatic source of information for recognition (Loaiza, Rhodes, 

Camos, & McCabe, 2015), though some controlled processing is required for the 

comparison of this signal to the estimate of target signal strength. However, a 

familiarity-based strategy may alternatively accept an item if the strength signal falls 

above a certain criterion. This strategy therefore differs to the time-tag strategy in the 

amount of control applied to interpret this familiarity signal. This strategy can be 

sufficient for demonstrating above-chance performance for the low verbalisability 

odours, as a decision to reject most lures, and to accept targets, can be made based on a 

familiarity signal alone. However, the inclusion of close lures, where its previous 

presentation falls close to the n-back position, means participants are more likely to 
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make false alarms if relying on a familiarity-based strategy (Kane et al., 2007). Whilst 

the present findings did show poorer A’ sensitivity scores for low verbalisability odours 

that were due in part to greater false alarms, a reliance on a familiarity criterion alone 

would predict a corresponding increase in hits due to acceptance of any recently 

presented item, and this was not observed. 

In summary, Experiment 1 has shown that working memory ability for odours is 

improved when odours are classified as highly verbalisable, compared to those odours 

classified as hard-to-verbalise. This working memory advantage for highly verbalisable 

odours occurs only after experiencing the odours in an initial n-back task, indicating 

learning related to the odour representations following exposure, perhaps through 

refinement of a verbal code. Importantly, there was little improvement across sequences 

for low verbalisability odorants. This may reflect a differing reliance on olfactory and 

verbal codes between the two odour sets, rather than a linear improvement due to the 

quality of verbal code used for each odour.  

3.2 Experiment 2: Assessment of maintenance strategies with dual tasking  

3.2.1 Introduction 

Experiment 1 replicated the superior n-back performance for nameable odours reported 

by Jönsson et al. (2011). One might prosaically interpret this finding as an employment 

of verbal labelling for the odours thereby enabling the employment of a high control n-

back strategy incorporating rehearsal (e.g. Harbison et al., 2011; Juvina & Taatgen, 

2007; Szmalec et al., 2011). Moreover, given that the difference between nameable and 

non-nameable odours was only found in the second sequence of odours, it suggests that 

the labels assigned to the verbalisable odours and/or verbal rehearsal strategy may 

become more refined over repeated exposures.  



Chapter 3. Olfactory n-back tasks 116 

Experiment 2 tests the assumption that the n-back benefit for verbalisable odours 

derives from verbal labelling/rehearsal through the employment of a dual-tasking 

procedure, specifically a secondary verbal task. This experiment applies a dual-task 

paradigm to examine the strategies used in an olfactory n-back procedure. In a dual-task 

procedure, tasks that are thought to occupy the same or different processes are 

performed concurrently. A multicomponent working memory framework predicts 

interference from a secondary task if both tasks occupy the same sub-component, and 

little or no interference if the tasks occupy different systems (Baddeley, 1986; Logie, 

2011). Concurrent articulation (CA) is a commonly used secondary task for suppressing 

the articulatory rehearsal process (e.g. Cocchini et al., 2002). The method has been 

shown to remove the word length effect (Baddeley et al., 1975) and phonological 

similarity effect (Saito et al., 2008) for visually presented words, suggesting that the 

conversion of stimuli into phonological representations is disrupted. 

Concurrent secondary tasks have been used previously in olfactory research to examine 

the processes used to maintain olfactory information in memory. In a study examining 

the claim that olfactory recall and recognition is supported by a dual code, Annett and 

Leslie (1996) used secondary tasks designed to suppress verbal, visual, or both verbal 

and visual encodings. Participants were presented with 15 odours in an acquisition task, 

followed by an immediate recall or recognition task. During stimulus encoding, 

participants were required to verbally repeat digits as they were heard through 

headphones, track a character on-screen through complex mazes, or perform both tasks 

simultaneously. They found the combined task impaired performance more than both 

single tasks and the two single tasks impaired performance equally. They suggested a 

modification to the dual-coding account where multiple, independent, non-verbal 

systems exist to support a memory trace. However, these interference effects from 
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multiple modalities may instead be related to task difficulty, and the taxing of executive 

resources. Indeed, it should be noted that a general executive resource/difficulty 

explanation means that one cannot falsify an amodal explanation using dual-tasking.  In 

addition, it is also possible that effects of visuospatial interference occur due to verbal 

recoding of the visual task, which in turn may suppress a verbal memory trace (Annett 

& Leslie, 1996).  

More recently, dual-tasking procedures have shown that a secondary verbal task may 

exhibit a limited effect on odour memory. Andrade and Donaldson (2007) investigated 

the effect of concurrent verbal, visual, and olfactory short term memory tasks on a 

primary verbal short term memory task (Experiment 1), and the effects of concurrent 

verbal, visual, and olfactory short term memory tasks on a primary olfactory memory 

task (Experiment 2). In Experiment 1, a verbal memory task was interfered by a 

secondary verbal task, whilst smaller interference effects attributed to a general resource 

load were observed for secondary olfactory and visual tasks. In Experiment 2, they 

demonstrated interference from a concurrent olfactory memory task on a primary 

olfactory task, and no effects from either verbal or visual secondary tasks. These 

findings are consistent with an independent memory system for olfactory stimuli that is 

not dependent on verbal coding. However, Andrade and Donaldson (2007) did not 

preclude a facilitative contribution of verbal labelling in certain olfactory tasks, stating 

that such labels can improve memory by providing an additional memory trace (Paivio, 

1990). Furthermore, the extent to which this finding can be extrapolated to the n-back is 

questionable. First, the task demands of the n-back procedure may differ to that of a 

standard recognition task, and this may affect the requirement for verbal recoding. 

Second, it is not known to what extent the odours employed in Andrade and Donaldson 

(2007) were nameable. Specifically, whilst the corpus of 12 commercially available 
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aromatherapy odours used by Andrade and Donaldson (2007) may have been familiar, it 

is unknown to what extent they could be verbalised (though one might expect 

verbalisability to be generally high). If these odours were hard-to-name at the outset, it 

would be unsurprising that recognition was unaffected by a manipulation that disrupts 

naming/verbal rehearsal (although see Miles & Hodder, 2005, for a main effect of CA 

on odour recognition). 

Though the present experiment is the first to apply CA to an olfactory n-back procedure, 

distractor stimuli have been applied successfully in n-back inter-trial intervals with non-

olfactory stimuli (Vuontela, Rämä, Raninen, Aronen, & Carlson, 1999). Participants 

performed 1- and 2-back tasks with location or colour memoranda, and were shown task 

irrelevant distractors consisting of different locations or colour stimuli in the trial 

intervals. Whilst only spatial distractors impaired spatial n-back performance, colour 

distractors only impaired visual n-back when verbal recoding was blocked by 

concurrent articulation. That is, concurrent articulation was effective in removing the 

verbal rehearsal of the n-back colours, meaning interference from the same visual 

modality was possible. This demonstrates that verbal strategies can be affected by CA 

during the n-back inter-stimulus-interval, thereby validating the manipulation in 

Experiment 2. 

Also considered in Experiment 2 is that most n-back strategies involve several 

executive functions, including updating of items for maintenance, binding of items to 

serial position, and resolution of proactive interference (e.g. Chatham et al., 2011). 

Whilst the active maintenance of stimuli within modality-specific slave systems 

(Baddeley, 1986; Baddeley & Hitch, 1974) can be tested using dual-task procedures 

(e.g. Cocchini et al., 2002; Duff & Logie, 2001), the role of executive resources can also 

be examined by using tasks that are thought to occupy processes not engaged in the 
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primary task’s slave system. This was the approach in Simmons (2000), using more 

complex concurrent tasks than those used in Vuontela et al. (1999). Working memory 

tasks performed in the interval between 1 and 3-back trials included rhyme judgement, 

mental rotation, and random key presses. These tasks were proposed to load upon the 

phonological loop, visuo-spatial sketchpad, and central executive, respectively. 

Consequently, Simmons’ hypothesis was that only verbal and key press tasks would 

impair verbal 3-back performance. However, they instead found little impairment from 

random key presses, whilst both rhyme judgement and mental rotation tasks had a 

disruptive effect. That is, the concurrent mental rotation task, thought to be associated 

with visuo-spatial memory, impaired verbal n-back performance. These findings may be 

explained by the increased use of executive resources during the mental rotation task 

(see Logie & Salway, 1990), though the pattern of interference may also fit a unitary 

resource model and explained by increasing task difficulty (Simmons, 2000). The 

present study therefore includes a concurrent rotation task to assess the effect of load on 

general resources in the olfactory n-back task, as a comparison to CA and control 

conditions. 

Experiment 2 directly tests the extent to which the working memory benefit for high 

verbalisability odours is due to verbal labelling and/or rehearsal of those odours using 

CA, and the engagement of executive resources using concurrent mental rotation. The 

olfactory n-back methodology of Experiment 1 is replicated and includes concurrent 

secondary tasks in the inter-trial interval. The representation of unfamiliar, hard-to 

verbalise odours is proposed to rely on the olfactory perceptual code in working 

memory (e.g. Zelano et al., 2009), whereas a verbalisable odorant may make use of the 

additional label through some form of a dual representation (Paivio, 1990; Stevenson & 

Wilson, 2007; Yeshurun et al., 2008). By including CA during the inter-trial interval (a 
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manipulation shown to disrupt verbal rehearsal in a visual n-back task, Vuontela et al., 

1999), it attempts to disrupt the rehearsal of those labels and therefore should impair 

performance to a greater extent for the high verbalisable odours compared to the low. 

An additional aim in Experiment 2 is to replicate the unexpected finding from 

Experiment 1 that the advantage for high verbalisable odours is found only in the 

second sequence. If this effect is replicated, CA is predicted to be disruptive to the 

recognition of high verbalisability odours in the second sequence only. Finally, a 

secondary mental rotation task is predicted to employ executive resources (Simmons, 

2000), and, as a consequence, it is predicted to exhibit a detrimental effect across the 

task and not interact with the verbalisability of the odours. 

3.2.2 Method 

3.2.2.1 Participants 

Seventy-two participants (mean age = 19.82, SD = 2.93, 61 females, 11 males) 

participated in exchange for course credit. The same exclusion criteria as described for 

Experiment 1 were applied. None had participated in Experiment 1. 

3.2.2.2 Materials 

The olfactory stimuli were as described for Experiment 1. 

The mental rotation task consisted of 104 unique images, showing horizontally 

presented pairs of three-dimensional objects in the style of Shepard and Metzler (1971) 

and obtained from Ganis and Kievit (2015). The left item formed the baseline object 

with which the right item, the target, was to be compared. Twenty-six unique baseline 

objects were used, and varied between 8 and 11 blocks long. The 52 congruent object 

conditions presented the target item identical to the baseline, rotated clockwise on a 

vertical axis 100, and rotated 150 degrees. The incongruent conditions used the same 
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rotations of an object similar to the baseline object, but with a key difference such as a 

single arm direction pointing in the opposite direction (see Figure 4). Images were 

800x427px and displayed in the centre of a 22-inch 60Hz monitor using stimulus 

presentation software OpenSesame (Mathôt, Schreij, & Theeuwes, 2012). 

3.2.2.3 Design 

The experiment employed a mixed multifactorial (2x2x3) design. The first within-

participants condition was testing sequence (first and second), the second within-

participants condition was odour verbalisability (high and low), and the between-

participants condition was concurrent task (concurrent articulation, mental rotation, and 

no task). 

In the mental rotation task, the congruent and incongruent trials were balanced in each 

26-trial testing block, and the level of rotation and block length of the objects was 

evenly distributed. Presentation of each image was randomised within these testing 

blocks. 

3.2.3 Procedure 

Written consent was gained from all participants. The n-back procedure followed that 

described for Experiment 1, and the task took approximately 30 minutes for all 

participants. Prior to testing, participants performed an 8-trial picture version of the n-

back task to demonstrate understanding of the procedure. In a quiet, well-ventilated 

room, participants then performed the olfactory 2-back task, separated from the 

experimenter and odorants by a wooden occlusion screen. Participants made their 2-

back decision using a 7-button Cedrus Response Box, pressing the left button for a ‘No’ 

response and the right button for a ‘yes’ response. Responses were recorded using 
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Superlab 5. The key manipulation introduced into Experiment 2 was the between-

participants inclusion of concurrent tasks (Figure 4).  

3.2.3.1 Concurrent articulation group  

Participants (n = 24) were required to repeatedly count (1, 2, 3, 4, 1, 2…) in the 8-

second interval between n-back odour presentations. That is, participants were presented 

with an odour and made a ‘yes’ or ‘no’ 2-back match response. They then immediately 

counted out loud at a rate of approximately 2 digits per second, until presentation of the 

next odour. 

3.2.3.2 Concurrent mental rotation task 

In the 8-second interval between odour presentations, participants (n = 24) performed a 

visual mental rotation task. The comparison task was presented after an n-back decision, 

and disappeared once a congruency decision was made. Participants made a ‘yes’ or 

‘no’ response based on whether the target object matched the baseline.  The congruent 

and incongruent trials were balanced in each 26-trial testing block, and the level of 

rotation and block length of the objects was evenly distributed. Presentation of each 

image was randomised within these testing blocks. 

3.2.3.3 Control group 

The control group (n = 24) performed the n-back task, and were not required to perform 

a secondary task in the interval between odours. 
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Figure 4. Schematic figure of the n-back procedure with dual-tasks. Participants were 

allocated to a group that, during the inter-trial interval, performed one of the following: 

counting task, mental rotation task, and no concurrent tasks.    

3.2.4 Results 

Figure 5(A-C) displays recognition sensitivity (A’), the proportion of hits, and the 

proportion of false alarms across the three concurrent task groups and collapsed across 

sequence number. The sequence variable was not shown in the figures because, as can 

be seen below, there was evidence against any main effect or interaction with sequence 

number. There is some variation across hits and false alarms that require addressing, 

however, so all three dependent variables are reported in this section.  

3.2.4.1 A’ sensitivity 

Figure 5(A) shows the mean hit rate across the three testing groups and two odour 

verbalisability conditions, collapsed across sequence number. A mixed 3-factor (2x2x3) 

ANOVA was conducted, where the first within-participants factor was testing sequence 

(first and second), the second within-participants factor was odorant verbalisability 

(high and low), and the between-participants factor was concurrent secondary task 

(quiet, concurrent articulation, and concurrent rotation). 

The analysis of A’ revealed a significant main effect of verbalisability on recognition 

sensitivity, F(1, 69) = 10.71, p = .002, ηp
2 = .13. Performance was poorer for low 

lure target

lure

Buffer Odour 1Odour 2Odour 1Buffer

"1, 2, 3, 4, 1, 2..." 
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verbalisability odours (M = 0.76, SEM = 0.01) than high (M = 0.80, SEM = 0.01). There 

was no significant change in this sensitivity between sequence 1 and sequence 2, F(1, 

69) = 0.33, p = .327, ηp
2 = .01, nor did performance significantly differ across groups 

performing different concurrent tasks, F(2, 69) = 0.91, p = .408, ηp
2 = .03.  

The predicted 2-way interaction between odorant verbalisability and concurrent task 

group was non-significant, F(2, 69) = 0.26, p = .769, ηp
2 = .01, as was the predicted 3-

way interaction between testing sequence, odorant verbalisability, and concurrent task 

group, F(1, 69) = 0.26, p = .771, ηp
2 < .01. There was also no significant interaction 

across sequence number as a function of concurrent task, that would have indicated 

practice effects dependent on the secondary task performed, F(2, 69) < 0.45, p = .637,  

ηp
2 = .01, and the interaction of odour verbalisability effects and sequence was non-

significant, F(1, 69) = 0.26, p = .613, ηp
2 < .01. Bayesian ANOVA indicated strongest 

support for a model with only a main effect of odour verbalisability (BF = 15.05 vs a 

null model), and that this model was strongly preferred over all interaction models. 
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Figure 5. The mean (A) A' sensitivity, (B) hit rates, and (C) false alarms, for low and 

high odorant verbalisability, across the three concurrent task groups. 

3.2.4.2 Hit rates 

Figure 5(B) shows the mean hit rate across the three testing groups and two odorant 

verbalisability conditions, collapsed across sequence number. The ANOVA for hit rates 

revealed a non-significant main effect across concurrent task groups, F(2, 69) = 1.35, p 

= .267, ηp
2 = .04. Furthermore, there was a non-significant main effect between low (M 

= .63, SEM = .02) and high verbalisability (M = .67, SEM = .02) odours, F(1, 69) = 
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3.11, p = .082, ηp
2 = .04, and a non-significant main effect of sequence, F(1, 69) = 0.53, 

p = .467, ηp
2 = .01.  

There was no interaction between sequence number and dual-task groups which might 

have indicated an effect of concurrent task on general exposure effects, F(2, 69) = 0.61, 

p = .545, ηp
2 = .02. Furthermore, there was a non- significant interaction between odour 

verbalisability and concurrent task group, (F(2, 69) = 0.34, p = .690, ηp
2 = .01), and in 

contrast with Experiment 1, the interaction between odour verbalisability and sequence 

number was also non-significant, F(1, 69) = 2.11, p = .151, ηp
2 = .03. Importantly, these 

lack of significant interaction effects were not masked by a three-way between odour 

verbalisability, sequence number, and concurrent task group (F(2, 69) = 0.40, p = .671, 

ηp
2 = .01). This suggests that the expected main effect of verbalisability, or the 

interaction of verbalisability across testing sequences, was not attenuated by concurrent 

articulation. Bayesian ANOVA revealed all models to be in favour of the null, though a 

verbalisability main effects model was insensitive (1.35 in favour of the null). Together, 

these findings support no effect of any manipulation on hit rates, aside from insensitive 

evidence against a main effect of verbalisability. 

3.2.4.3 False alarm rates 

Figure 5(C) shows the false alarm rates for low and high verbalisability odorants, across 

the three concurrent-task groups. Analysis revealed a significant main effect of 

concurrent-task group, F(2, 46) = 3.97, p = .023, ηp
2 = .10, indicating changes in the 

number of false alarms depending on the concurrent task that was performed. 

Comparisons between groups using Tukey post-hoc tests revealed significantly greater 

false alarms (p = .027) in the concurrent rotation task group (M = .26, SEM = .02) than 

the control group (M = .20, SEM = .02). A non-significant difference was observed (p = 

.093) between false alarms in the rotation task group and the concurrent articulation 
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group (M = .22, SEM = .02), and a non-significant difference was found between 

concurrent articulation and quiet groups (p = .850). A significant main effect of odour 

verbalisability was also observed, where responses to low verbalisability odours saw 

significantly greater false alarms (M = .25, SEM = .01) than high verbalisability odours 

(M = .20, SEM = .01), F(1, 69) = 18.14, p < .001, ηp
2 = .21. A non-significant main 

effect of sequence observed, F(1, 69) = 3.02, p = .087, ηp
2 = .04, and this did not 

interact with concurrent task group, F(2, 69) = 0.90, p = .413, ηp
2 = .03. Unlike 

Experiment 1 verbalisability did not interact with sequence number, F(1, 69) = 1.02, p = 

.316, ηp
2 = .02, Importantly, the predicted interactions between odour verbalisability and 

concurrent task group, (F(2, 69) = 1.42, p = .250, ηp
2 = .04), and between odour 

verbalisability, sequence number, and concurrent task group (F(2, 69) = 0.13, p = .882, 

ηp
2 < .01) were non-significant.  

Bayesian ANOVA revealed the best model to contain main effects of verbalisability and 

concurrent task group (1085.72 vs. the null model). This model got substantially worse 

by inclusion of all main effects, or the inclusion of any interaction terms. Together, these 

findings suggest evidence against any interaction with concurrent task group, and with 

sequence. 

3.2.5 Discussion 

Experiment 2 has further replicated the n-back advantage for verbalisable odours (see 

Experiment 1 and Jönsson et al., 2011). However, contrary to the prediction, CA did not 

attenuate the superior recognition for verbalisable odours. The proposal was that the 

advantage for verbalisable odours resulted from verbal labelling and rehearsal of those 

labels, and yet, supposed disruption of this process through CA did not reduce this 

verbalisability benefit. This suggests that for even these high verbalisability odours, it is 

not the use of a verbal rehearsal strategy that is responsible for the n-back performance. 
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Moreover, in contrast to Experiment 3.1, the advantage for verbalisable odours was 

found across sequences. Assessment of BF suggested the data were evidence against an 

interaction effect, indicating superior recall that did not emerge following refinement of 

verbal codes. 

The null effect of CA is consistent with some previous work on olfactory short-term 

memory, and provides some support for a proposed olfactory-specific storage buffer 

(e.g. Andrade & Donaldson, 2007; cf. Annett & Leslie, 1996). That is, maintenance of 

odours in working memory is not dependent on verbal rehearsal, and instead might be 

processed as some other, perceptually-based, code. A caveat of these interpretations, 

however, is that they are dependent on the assumption that concurrent counting is 

effective in impairing verbal rehearsal processes. Whilst there exists evidence 

supporting the elimination of verbal rehearsal during the n-back task following 

concurrent articulation (Vuontela et al., 1999), it has been argued elsewhere that 

concurrent articulation does not have a modality-specific effect on articulatory rehearsal 

(e.g. Jalbert, Neath, & Surprenant, 2011). Instead, concurrent articulation may have a 

general disruptive effect on working memory, corrupting modality-independent features 

by adding noise to the memory trace.  

Since CA did not remove the verbalisability advantage, one might argue that the benefit 

for those high verbalisable odours is derived not from verbalisability per se, but a 

correlate of that dimension. One candidate dimension is familiarity, for which Chapter 2 

reports a strong positive correlation with verbalisability (r = .88; close alignment 

between familiarity and verbalisability is also reported in Jönsson et al., 2011). 

Moreover, Jönsson et al. found that the more nameable/familiar odours were easier to 

discriminate (although discriminability was not able to completely account for the 

variance between high and low verbalisable odours). Rather than verbal rehearsal, it is 
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possible that the high nameable/familiarity odours are maintained using non-verbal 

rehearsal/refreshing processes (e.g. Raye et al., 2007). However, in A’ scores a 

concurrent mental rotation task also did not selectively impair high verbalisable odour 

performance, which would be expected if an executive refreshing process was being 

applied to these odours. Indeed, Bayesian evidence against an effect of concurrent 

rotation was preferred by a factor of 6.65. However, this finding was not replicated 

across all dependent variables, with a main effect of concurrent rotation observed on the 

ability to reject lure items (false alarms). Consequently, though there was no effect on 

overall recognition sensitivity, there was some effect of a concurrent task that loaded 

executive resources (Simmons, 2000) that means some maintenance process cannot be 

ruled out. Why this concurrent rotation task only increased false alarms is unclear, but is 

speculated to be due to limited control processes that allow the distinction between 

close-lures and targets (Kane et al. 2007).  

It should also be considered that although the n-back task is typically considered a task 

containing maintenance and manipulation (Ragland et al., 2002; Watter, Geffen, & 

Geffen, 2001), other proposed low control strategies may support retrieval of probe item 

and an estimate of its serial position without the need for rehearsal (Juvina & Taatgen, 

2007; B McElree, 2001). These strategies suggest participants do not maintain items 

during the retention interval, but instead an item that is determined to be familiar is then 

matched to a time estimate (Juvina & Taatgen, 2007), or retrieved in a serial search 

where one item cues retrieval of the next (B McElree, 2001). A reliance on these 

strategies for olfactory information would be consistent with previous suggestions that 

the rehearsal of olfactory information is difficult, or impossible (Stevenson, 2009). 

However, the (albeit weak) evidence for an effect of concurrent rotation in the retention 

interval suggests that some maintenance process is being performed.  
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It is generally agreed that the experimental familiarity of a probe item can contribute to 

an n-back decision (Harbison et al., 2011; Juvina & Taatgen, 2007; Ralph, 2014). 

Consequently, failure to recollect an item may lead to a decision based on this 

familiarity signal, whether as part of a control strategy to establish the age the probe’s 

presentation, or as a relatively automatic rejection based on a familiarity criterion 

(Juvina & Taatgen, 2007). Evidence for recognition-without-identification in odours 

(Cleary, 2010), and dissociated brain activations when odours can or cannot be named 

(Zelano et al. 2009) suggest differing strategies may be adopted for the two groups of 

odours in this task. For example, participants may be able to adopt a high-control 

working memory strategy for odours that are identified, because the availability of 

semantic information facilitates participant ability to generate an internal representation 

of an odour (Tomiczek & Stevenson, 2009). In contrast, recognition-without-

identification may occur for the low verbalisability odours, and result in the use of a 

low-control or purely familiarity-based strategy (Juvina & Taatgen, 2007). However, the 

general effect of concurrent rotation provides tentative evidence for the same strategy 

across odours, meaning the differences may instead be based on a quantitative increase 

in ability to perform the task.  

Alternatively, the performance advantage may be explained by the perceptual 

advantages familiarity to an odour provides. For example, familiar items are proposed 

to result in a stable and specific activation of a stored olfactory representation 

(Stevenson & Mahmut, 2013a; Wilson & Stevenson, 2006), which may result in 

discriminability improvements (e.g. Rabin, 1988), or require fewer working memory 

resources when performing the task (Reder, Liu, Keinath, & Popov, 2015). Experiments 

3 and 4 consider the explanations offered in more detail. Specifically, Experiment 3 

explores the use of recollection-based (high-control) or familiarity-based (low control) 
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strategies across odour verbalisability, whilst Experiment 4 attempts to induce 

familiarity to the odours through a preliminary familiarisation session, intended to 

improve odour discriminability.  
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3.3 Experiment 3: N-back recollection and familiarity processes 

3.3.1 Introduction 

Experiment 3.3 applies the remember/know paradigm to the olfactory n-back task to 

examine the contribution of automatic and controlled retrieval processes, and how these 

are used to underpin n-back judgments for high and low verbalisable odours. 

Description of the experiment is prefixed by a summary of the purported distinction in 

memory between recollection and familiarity. 

3.3.1.1 Recollection and familiarity in episodic memory 

There is good agreement in the memory literature that processes of recollection and 

familiarity both contribute to a recognition judgement (Wixted & Mickes, 2010; 

Yonelinas, 2002). A recollection process is typically described as retrieval of qualitative 

information (e.g. temporal or spatial source details, or elaboration at encoding) about a 

presented stimulus (Gardiner, Ramponi, & Richardson-Klavehn, 1998; Jacoby, 1991; 

Tulving, 1985; Yonelinas, 1999). In contrast, a recognition decision based on familiarity 

involves evaluation of a graded strength signal, similar to that described in signal 

detection theory (Yonelinas, 1999, 2002). That is, familiarity-based recognition is a 

quantitative assessment of prior experience based on whether a signal exceeds a 

response criterion (Yonelinas, 1999).  

The butcher-on-the-bus phenomenon describes the experience of seeing a highly 

familiar face and knowing that you recognise them, despite not remembering from 

exactly where (Mandler, 1980). It is this commonly reported occurrence, of high-

confidence recognition in the absence of recollection, that has prompted dual-process 

models which assume distinct and separable processes of familiarity and recollection 

(see Yonelinas, 2002, for a review). Multiple procedures have been developed that 

estimate these recollection and familiarity processes within a task, and experimental 
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manipulations applied to these procedures attempt to dissociate the two forms of 

recognition. A recollection process is considered an intentional use of memory, whilst 

familiarity a relatively automatic process (Jacoby, 1991). It is measures of recollection 

that have been shown to be affected by ageing (Koen & Yonelinas, 2016), divided 

attention (Dudukovic, Dubrow, & Wagner, 2009; Jacoby, 1991), and levels of 

processing (Gardiner, Java, & Richardson-Klavehn, 1996; Olsson et al., 2009). 

Furthermore, familiarity and recollection will differ in terms of processing speed (e.g. 

Yonelinas & Jacoby, 1994). For example, an item recognition task will be performed 

faster than a task that requires a judgement of the list from which an item was presented 

(Hintzman, Caulton, & Levitin, 1998; Yonelinas, 2002). In summary, there are 

dissociations shown that support a dual-process theory where familiarity and 

recollection are independent processes. 

Dissociated effects on recollection and familiarity do not, however, always converge 

when using different estimation methods (Prull, Dawes, Martin 3rd, Rosenberg, & 

Light, 2006), and the independence of procedures that purportedly measure recollection 

and familiarity have come under scrutiny (e.g. Heathcote, Raymond, & Dunn, 2006; 

Wixted & Mickes, 2010). Single-process memory-strength interpretations, in contrast, 

suggest estimates of recollection and familiarity are simply measurements of the amount 

of evidence available (Dunn, 2008), though such interpretations struggle to explain the 

butcher-on-the-bus phenomenon. That is, high confidence familiarity without 

recollection is not predicted in a continuous single-process model because such an effect 

(high familiarity without recollection) supports dissociated memory processes (Wixted 

& Mickes, 2010). Instead, recent models have taken the distinction between recollection 

and familiarity, but described an eventual recognition decision as an aggregated sum-of-

strength from the two distinct processes (Rotello, Macmillan, & Reeder, 2004; Wixted 
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& Mickes, 2010). Wixted and Mickes (2010) have proposed a continuous dual-process 

(CDP) model, which describes the combination of these processes that leads to a 

recognition decision. The important difference to dual-process models is that 

recollection is also placed on a strength scale, rather than an all-or-nothing threshold 

that overrides familiarity when it is achieved (e.g. Yonelinas, 1999). These models have 

important implications for the interpretation of recollection and familiarity estimation 

methods. 

Procedures for estimating recollection and familiarity include analysis of receiver-

operating characteristics (ROC), application of the remember-know response paradigm, 

and the process-dissociation procedure (PDP). This thesis focuses on the remember-

know paradigm (Tulving, 1985). This response method utilises an introspective 

judgement from participants as to their recollective experience. That is, participants 

must indicate whether an old decision was based on retrieval of explicit details about 

the item, or was based on familiarity to the item. Considered within a dual-process 

recognition model, recollection supports remember judgements, whilst familiarity 

without recollection supports know judgements (Evans & Wilding, 2012; Koen & 

Yonelinas, 2016; Yonelinas, 2002). In addition, some procedures allow an old 

judgement based on a guess, which may pick up responses that are made from 

inferences not directly related to memory for the item (Gardiner et al., 1998), or 

alternatively may be interpreted in a signal-detection model as the most lenient criterion 

for an old judgement (Green & Swets, 1974; Wixted & Mickes, 2010). 

The proportion of remember-know decisions in a task can be independently 

manipulated by changing task demands. For example, the role of familiarity in a task 

(know judgements) can be selectively increased by increasing perceptual fluency (e.g. 

through masked repetition priming, Rajaram, 1993). In comparison, deeper encoding is 
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associated with an increase in recollection (Gardiner et al., 1996; Yonelinas, Dobbins, 

Szymanski, Dhaliwal, & King, 1996), and a levels-of-processing effect has shown 

independent effects on remember judgements (Rajaram, 1993, 1998). In 1998, Rajaram 

examined whether remember judgements are related to the saliency or distinctiveness of 

the stimuli. Conceptual saliency was manipulated by adjusting the meaning of to-be-

remembered homographs at encoding. That is, participants were given a short phrase 

that established the dominant meaning (e.g. body part-CHEST) or non-dominant 

meaning (cabinet-CHEST). The dominant meanings were designated a priori from 

previous research demonstrating preferential access to these meanings (Forster & 

Bednall, 1976). In a second experiment, the perceptual distinctiveness of stimuli was 

manipulated to be orthographically distinctive (e.g. subpoena) or orthographically 

common (e.g. cookie). Rajaram demonstrated increased recollection from both 

conceptual saliency and psychological distinctiveness, whilst no effect was observed on 

familiarity-based responding. This shows that recollection of stimuli can be selectively 

influenced by manipulations of conceptual fluency and perceptual distinctiveness. 

The remember-know paradigm has been criticised, however, with concerns over 

whether judgements should be considered process-pure measures of recollection and 

familiarity. Proponents of a CDP interpretation of the remember-know task grades 

remember and know judgements along a strength scale, and this reflects the strength of 

evidence for an item’s previous occurrence (Dunn, 2008; Hirshman & Master, 1997; 

Wixted & Mickes, 2010). They propose that a remember response is given if the 

strength of evidence exceeds a strict criterion, and a know response given if the 

evidence falls below this level but surpasses a less stringent criterion that determines 

whether an item should be judged as new (Dunn, 2004). Compelling evidence for this 

interpretation is shown in the relationship between remember hit and false alarm rates. 
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Specifically, a strong positive relationship between the two (i.e. as remember hits 

increase, remember false alarms also increase) suggest that these remember responses 

are made based on the assignment of a remember criterion rather than a qualitatively 

different memory (Wixted & Mickes, 2010; Wixted & Stretch, 2004).  

Furthermore, evidence against independent remember-know responses can be observed 

through comparisons with alternative measures memory processes. For example, 

recollection can be estimated using receiver-operating characteristics (ROC), where the 

proportion of hits and false alarms are plotted as a curve according to a changing 

response criterion. The high confidence recognition associated with recollection means 

this type of memory can be estimated from the intercept of the curve and the asymmetry 

that occurs as this value increases (Yonelinas & Parks, 2007). The recollection 

component of an ROC curve can also be independently dissociated from a familiarity 

component, both by increasing reliance on recollection in a paired association task 

(Sauvage, Fortin, Owens, Yonelinas, & Eichenbaum, 2008), and increasing reliance on 

familiarity adding a response deadline to the task (Sauvage, Beer, & Eichenbaum, 

2010). Importantly, when ROC curves were compared with remember-know 

judgements, the convergence between the two measures improved when participants 

were warned they may be asked to justify their remember decision (Rotello, Macmillan, 

Reeder, & Wong, 2005). That is, remember responses were subject to bias when 

participants knew that had to be sure about the details their recollection, suggesting the 

decision to make a remember decision may be based on a continuous underlying 

process. 

The CDP model therefore suggests that though remember responses are associated with 

recollection and know responses with familiarity, these are not process-pure and will 

ordinarily reflect different degrees of memory strength. A know response is instead 
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dependent on whether the decision is based primarily on familiarity or recollection, not 

that the decision is made in the absence of recollection. Consequently, a know response 

may include some recollection (Wais, Mickes, & Wixted, 2008). This can explain the 

presence of strong item recognition receiving a know response (i.e. the butcher on the 

bus phenomenon, which would not receive a remember response despite high 

recognition strength), by nature of the relative combination of familiarity and 

recollection. 

Evans and Wilding (2012) assessed the dual-process and evidence-strength explanations 

for the remember-know procedure, and provided support for an independence 

explanation of response types. Magnetoencephalographic (MEG) indices were 

calculated from post-stimulus epochs at regions associated with recollection or 

familiarity (Bridson, Muthukumaraswamy, Singh, & Wilding, 2009), and compared 

between when participants responded remember, know, or new. Importantly, a dual-

process explanation (e.g. Yonelinas, 1999) would predict greater recollection indices for 

remember responses and greater familiarity indices for know responses. That is, 

although familiarity may be present in a remember response, there is no lower limit for 

the level of familiarity required. In comparison, a know response must exceed a fixed 

criterion of familiarity which will average greater than that present for remember 

responses. This was compared to an evidence strength explanation (e.g. Wixted & 

Mickes, 2010) which would predict, in general, greater familiarity and recollection 

indices for remember compared to know responses. Their results supported the dual-

process explanation, where recollection and familiarity MEG indices made independent 

contributions to remember and know judgements. 

In summary, the convergence of remember-know findings with ROC and PDP 

paradigms is generally high, and judgements are dissociated in accordance with theories 
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related to independent recollection and familiarity (e.g. Koen & Yonelinas, 2016). When 

applying this paradigm to recognition tasks it is appropriate to consider both dual-

process and continuous dual-process interpretations, though they both generally suggest 

that a remember response is related to increased recollection, and a know response is 

related to increased familiarity in the absence of recollection.  

3.3.1.2 Familiarity in Working Memory 

Working memory is typically described in models as the cognitive control of active 

representations (Baddeley & Hitch, 1974; Cowan, 2008). However, measures of 

working memory performance, like long-term memory tasks, may be similarly 

influenced by both controlled and automatic process (e.g. Hedden & Park, 2003; Loaiza 

et al., 2015; Schmiedek, Li, & Lindenberger, 2009). A strong influence of automatic 

familiarity processes may explain why the n-back task and other measures of working 

memory do not always correlate, because variance due to differences in working 

memory ability may be limited to a small number of trials or absent entirely (Redick & 

Lindsey, 2013; Schmiedek et al., 2014). Furthermore, working memory tasks are most 

closely related to fluid intelligence when they constrain strategies making use of item 

familiarity (Schmiedek, Hildebrandt, et al., 2009), or when performance is based on an 

independent estimation of recollection (Loaiza et al., 2015).  

Whilst there appear to be similar processes of recollection, familiarity, and their 

combination to form a memory decision, the sources of evidence in episodic memory 

and working memory may differ (Göthe & Oberauer, 2008). Recollection in episodic 

memory reflects retrieval from long-term memory, whereas recollection in working 

memory tasks reflects retrieval from working memory. In the n-back task, this means a 

controlled retrieval of the n-back item, and this information is then used to determine 

whether to accept or reject the item as a target. Recollection in the n-back task is 
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therefore associated with a successful updating and maintenance process, perhaps as the 

consequence of successful binding between probe item and its context (Oberauer, 2005). 

Furthermore, familiarity in working memory refers to the residual activation of 

representations (e.g. Cowan, 1999), compared to familiarity in long-term memory based 

on the ease with which items are reactivated (Göthe & Oberauer, 2008).  

In the n-back task, the role of familiarity differs further still, because after multiple trials 

all items will be familiar and so the decision is not simply whether an item is ‘old’. 

Schmiedek, Li, et al. (2009) and Oberauer (2005) describes familiarity in the n-back 

task to denote an automatic source of evidence about the extent the probe item matches 

activated representations in long-term memory, and this returns a strength signal which 

can be accepted or rejected based on a criterion. However, the inclusion of recently-

presented lures makes this familiarity-based strategy unreliable for target acceptance. 

Indeed, a reliance on familiarity-based responding in older participants is reflected in 

increased false alarms for recent-lure items (Schmiedek, Li, et al., 2009). However, 

although the n-back task clearly contains some automatic and controlled processes, 

particularly when rejecting non-recent lures, it was noted earlier that constraining n-

back performance to an index of only targets and recent lures does not improve the 

task’s relationship with other working memory measures (Kane et al., 2007). 

Alternatively, models of the n-back task have been described that offer a more nuanced 

strategy that makes use of this activation-strength signal (Juvina & Taatgen, 2007). That 

is, rather than simply accepting or rejecting an item based on the familiarity-strength, a 

low-control strategy suggests that participants will assess the temporal distance of the 

probe item by evaluating the activation strength of the item, and compare it to an 

expected activation strength of a target. Essentially, this is a controlled assessment of a 
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familiarity signal rather than the blanket acceptance of items that exceed a response 

criterion. 

The estimation methods discussed in terms of episodic memory have seen success 

applied to several measures of working memory capacity. The work of Loaiza et al. 

(2015), for example, has showed simultaneous recollection and familiarity processes in 

complex span tasks using the process dissociation procedure (PDP) (Jacoby, 1991). The 

recall test in complex span was manipulated to require either the previously presented 

items to be reported (inclusion trials), or to report the digits that were not previously 

presented (exclusion trials). Because recollection is required in exclusion trials, any 

intrusion errors are assumed to be due to familiarity in the absence of recollection. 

Consequently, a recollection estimate can be calculated by subtracting exclusion trial 

errors from inclusion trial performance. Familiarity estimates are then calculated by 

dividing exclusion errors by the inverse of the recollection estimate. Using this method, 

Loaiza et al. demonstrated not only that automatic and controlled processes contribute 

to performance in a working memory recall task, but also that the estimates can be 

dissociated by manipulating presentation times. That is, like episodic memory (e.g. 

Jacoby, 1998), recollection was increased with processing time, whilst familiarity was 

unaffected.  

Though there has been, to this researcher’s knowledge, no assessment of recollection 

and familiarity in olfactory working memory, several experiments have investigated the 

two processes in human and animal olfactory long-term memory. For example, ROC 

curves were plotted for rats during olfactory recognition tasks by adjusting the reward 

offered from selecting target odours or rejecting lure odours. This revealed ROC curves 

that were remarkably similar to those observed in humans (Fortin, Wright, & 

Eichenbaum, 2004; see White et al., 2015 for a full discussion of this series of 
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experiments). By adding an associative-memory component to the task (increasing 

recollection), or by manipulating the speed requirements for a response (increasing 

reliance on familiarity), they also demonstrated that these recollection and familiarity 

components of the ROC curve can be dissociated. 

In human olfactory memory, an additional concern is the influence of odour familiarity 

and identifiability. Larsson, Öberg, & Bäckman (2006) assessed recollective experience 

in olfactory memory across age, incidental and intentional learning, and odour 

familiarity. They demonstrated a three-way interaction, where the older adults gave 

proportions of remember, know, and guess responses that were unaffected by odour 

familiarity. In contrast, younger adults gave a far greater proportion of remember 

responses compared to know and guess, to familiar odours only. Furthermore, after 

controlling for odour naming, these differences were removed. Consequently, Larsson et 

al. suggest that greater recollection of familiar odours in younger-adults is the result of 

age-related deficits in activating semantic knowledge (and thus, deficits in naming).  In 

another study, Olsson et al. (2009) applied the remember-know paradigm in an olfactory 

episodic recognition task, and assessed dissociated effects of encoding depth and 

retention interval on familiarity and recollection. Recollection measured by remember 

responses was highest for words and identified odours compared to unidentified odours. 

Furthermore, these remember responses interacted with encoding depth, where 

remember responses were greater with deeper encoding for only identified odours and 

words. In contrast, recognition in the absence of recollection, measured by know 

responses, was stable across encoding and stimulus conditions. Consequently, they 

suggested that memory for identified odours more closely resembled memory for words 

than unidentified odours, and that mapping of an odour percept to semantic knowledge 

benefits ability to recollect the item. These findings may suggest that unidentified 
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odours are qualitatively different in respect to the utilisation of familiarity and 

recollection. However, Olsson et al. instead propose the conceptual salience 

interpretation from Rajaram (1998) as an explanation for their findings. That is, 

identified odours are more conceptually salient than their unidentified counterpart, 

which directly influences the ability of participants to recollect these odours. In 

summary, despite several possible interpretations, these studies show that the remember-

know paradigm in olfactory episodic memory ascribes an advantage to recollective 

experience when odours can be named.  

The application of the remember-know paradigm to the n-back procedure is, to the 

researcher’s knowledge, the first application of this metacognitive measure in this 

working memory task (but see Schmiedek, Li, et al., 2009 for analysis of familiarity in 

the n-back task using recent-lures). It should be noted that application of the remember-

know paradigm deviates from its typical employment in tests of recognition memory. In 

those tasks (Evans & Wilding, 2012; Koen & Yonelinas, 2016; Tulving, 1985; 

Yonelinas, 2002), a ‘yes’ response is made (old), and a remember judgment (R) 

provided when the participant recollects contextual details of the previous exposure. 

However, in the n-back task, an old recognition judgement alone is insufficient to 

perform the task, and therefore the ‘recognition’ judgment becomes ‘do I recognise this 

item as the odour presented two previous?’ In addition to identity information, an n-

back recollection (R) judgment requires positional recall, presumably as result of a 

successful binding between item and context (Oberauer, 2005). 

For a know response (K), participants are making a recognition judgment based upon 

familiarity. The typical interpretation of this response would be a decision regarding 

whether this strength signal exceeds a particular criterion. In the n-back task, K 

responses are expected to pick up responses made using this strategy. However, in 
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addition, a low-control strategy has been described which compares activation strength 

of an item to a strength estimate of a target item. These are also expected to be picked 

up by K responses, due to the lack of contextual details retrieved and the reliance on 

familiarity to make this decision.  

In addition, a G (guess) response is included in the present study for situations in which 

a correct response was made in the absence of any recollective experience or response 

strategy (Gardiner, Ramponi, & Richardson-Klavehn, 2002). However, it should be 

noted that such a response may instead be explained under the CDP model as a 

particularly weak memory (Wixted & Mickes, 2010).  

The present experiment will replicate the method of Experiment 1, with the additional 

requirement that participants will be instructed to provide a K (know), R (remember), 

and G (guess) judgement following any ‘yes’ responses. If, as suggested above, high 

verbalisability odours are more amenable to a control strategy wherein the test odour is 

recollected related to its serial position, one might predict a greater proportion of hits 

that receive a remember response when compared to the low odour group. In contrast, 

one might predict a greater reliance on know responses for the low verbalisable odours 

due to the employment of a familiarity-based strategy.  

3.3.2 Method 

3.3.2.1 Participants 

Twenty-four female Bournemouth University students (mean age = 20.21, SD = 3.19) 

participated in exchange for course credit. The same exclusion criteria as described for 

Experiments 1 and 2 were applied. None had participated in Experiments 1 or 2. Ethical 

approval was obtained from the Bournemouth University Ethics Committee. 
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3.3.2.2 Materials  

The olfactory stimuli were taken from the same corpus of odours described for 

Experiment 1. Twelve odours were selected based upon normative verbalisability scores 

reported in Chapter 2 (see Appendix B). Six odours were high verbalisability (M = 2.64, 

SD = 0.11) and six were low verbalisability (M = 1.34, SD = 0.26), and these differed 

significantly, t(10) = 11.54, p < .001, d = 6.66, BF10 > 100. Furthermore, the 

verbalisable odours were highly familiar, with a minimum normative score of 5.60, and 

the low verbalisable odours were unfamiliar, with a maximum normative score of 3.61. 

The familiarity ratings for the high verbalisability odours (M = 5.83, SD = 0.18) were 

significantly higher than the low verbalisability odours (M = 3.33, SD = 0.25), t(10) = 

19.87, p < .001, d = 11.47, BF10 > 100. Detailed assessment of odour familiarity is 

included as a possible alternative to verbalisability. This is premised on the findings in 

Experiment 2 that suggest the working memory advantage is not due to increased verbal 

rehearsal of the items. However, like the earlier experiments, verbalisability and 

familiarity scores correlate highly, so is a de-facto manipulation of both familiarity and 

verbalisability.  

Furthermore, to address a possible confound where differences in intensity between 

odorant sets could explain performance differences attempts were also made to more 

closely balance odours on normative intensity scores. A comparison of differences in 

intensity scores was non-significant, t(10) = 1.81, p = .101, d = 1.04, BF01 = 0.83, 

though the data were insensitive to differences. Finally, pleasantness ratings were lower 

for low verbalisable odours, t(10) = 7.71, p < .001, d = 4.45, BF10 > 100, though the 

hedonic strength scores across odour sets (a measure of each pleasantness rating’s 

deviation from a neutral midpoint) did not significantly differ, t(10) = 0.79, p = .449, d = 

0.46, BF01 = 1.76.  
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3.3.2.3 Design 

The design was similar to Experiment 1, but also included a metacognitive measure (K, 

R, and G) following a ‘yes’ response. Furthermore, the number of trials were reduced by 

adjusting the ratio of lures to targets, such that the twelve odorants appeared as a ‘target’ 

once (33% of trials) and twice as a ‘lure’ (66% of trials). The reduced number of trials 

served to limit olfactory fatigue effects, and the number of lures were reduced to limit a 

bias against responding to items as targets. Each sequence therefore totalled 36 items, 

and in contrast to the blocked design employed in Experiments 1 and 2, were presented 

as mixed blocks of low and high verbalisability odours. 

The mixed-block design was chosen for the present experiment because if a switch in 

strategy does indeed occur across odour verbalisability (either through a conscious 

decision to switch, or automatically as a consequence of failed recollection), 

participants would likely notice the sudden increase in know responses that correspond 

to the change in odour sets, and perhaps adjust their responses accordingly.   

3.3.2.4 Procedure 

The procedure was as described for Experiment 1, but following a ‘yes’ response 

participants were required to provide an additional metacognitive decision. Instructions 

for this response were a modification of that described by Rajaram (1993): an R 

response was required when participants explicitly recollected the odour and its 

occurrence in the correct n-back position; a K response was required when the ‘yes’ 

response was based on the level of familiarity associated to the item; and a G response 

was required when participants made a ‘yes’ decision that was based on some other 

reasoning, strategy, or if they were unsure why they had responded ‘yes’. Responses 

were made on a Cedrus Response Box and the input recorded using Superlab 4.5. 
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3.3.3 Results  

3.3.3.1 Working Memory Performance 

Figure 6(A-C) displays recognition sensitivity (A’), the proportion of hits, and the 

proportion of false alarms across the odour verbalisability groups. For these analyses, 

hit and false alarm guess responses were removed (see Olsson et al., 2009 for a similar 

application of this method; although it should be noted that including guess responses 

did not change the outcome from the analysis detailed below).  

Comparisons of A’ sensitivity between low (M = .79, SD = .16) and high (M = .88, SD = 

.08) verbalisability odours supported improved n-back performance for the high odour 

set, t(23) = 3.03, p = .006, d = .69, BF10 = 15.02. A comparison of hit rates for low (M = 

.58, SD = .23) and high (M = .74, SD = .16) verbalisability conditions also revealed 

significantly greater hits for verbalisable odours, t(23) = 3.71, p = .001, d = 0.85, BF10 = 

61.77. However, false alarm data (the proportion of incorrect responses to lures) 

revealed a non-significant difference, t(23) = 1.01, p = .323, d = 0.19, BF10 = 0.56, with 

anecdotal support for the null hypothesis. 
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Figure 6. Low and high verbalisability odour (A) A' sensitivity, (B) hit rates, and (C) 

false alarm rates. Error bars represent standard error of the mean. 

3.3.3.2 Metacognitive Responses  

The proportion of remember, know, and guess responses were calculated from the 

number of ‘yes’ responses given by each participant, separately for targets and lures. 

This is a relative calculation that gives the proportion of a response type without 

consideration to the number of responses given (see Larsson et al., 2006, for an example 

of this analysis applied to remember-know responses). An alternative analysis of 

recollective experience using absolute proportions based on the total number of trials 

within a condition revealed the same pattern of results (applied in Olsson et al., 2009), 

and are not reported. 

3.3.3.3 Hits 

The proportion of remember, know, and guess responses were calculated from the 

number of correct ‘yes’ responses in order to examine whether the proportion of 

response types differed as a function of odour verbalisability. Figure 7(A) shows the 

proportion of response types for these correct target responses. A 2-factor (2x3) 
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repeated-measures ANOVA was conducted where the first manipulation was odour 

verbalisability (low and high) and the second manipulation was metacognitive judgment 

(K, R, and G). The main effect of odour verbalisability was not assessed because the 

sum of P(HitK) + P(HitR) + P(HitG) = 1 for both low and high verbalisability sets. The 

main effect of response type was significant, F(2, 46) = 3.19, p = .050, ηp
2 = .12, as was 

the theoretically important interaction between odour verbalisability and metacognitive 

judgment, F(2, 46) = 6.51,  p = .003, ηp
2 = .22.  A Bayesian ANOVA indicated strong 

support for a model that included a response-type main effect and an interaction 

between verbalisability and response type (BF = 389.56 vs a null model). This model 

was preferred to a response type main effect model by a factor of 90.01. That is, there 

was strong evidence for an interaction between odour verbalisability and the type of 

response. 

In order to examine this interaction in more depth, differences between the proportion of 

responses for low and high verbalisability odours were compared independently for 

each response type. Paired t-tests supported a hypothesis of lower G responses for high 

verbalisability odours (M = .19, SD = .20) compared to low verbalisability odours (M = 

.39, SD = .22), t(23) = 5.19, p < .001, d = 0.96, BF10 > 1,000. In contrast, there was 

evidence against greater K responses for low verbalisability odours, t(23) = -0.40, p = 

.695, d = 0.11, BF10 = 0.16. Finally, a hypothesis of greater R responses for high 

verbalisability odours (M = .51, SD = .24) compared to low verbalisability odours (M = 

.33, SD = .25) was supported, t(23) = 2.50, p = .020, d = 0.71, BF10 = 5.42.  

3.3.3.4 False alarms 

The proportion of false alarms for each response type were analysed across odour 

verbalisability in a separate (2x3) ANOVA, and is shown in Figure 7(B). This revealed a 

main effect of response type, F(2, 46) = 3.69, p = .033, ηp
2 = .138, which did not 
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interact with odour verbalisability, F(2, 46) = 0.56, p = .577, ηp
2 = .024. The preferred 

model contained only a main effect of response type (BF = 18.14 vs. a null model), and 

was preferred over a model with an interaction by a BF of 21. However, Bonferroni-

adjusted pairwise comparisons collapsed across verbalisability conditions revealed non-

significant differences between K, R, and G false alarms. Analysis with Bayes Factors 

revealed evidence against a difference between K and R responses (BF01 = 4.14), but did 

reveal some evidence for a difference between G and R responses (BF10 = 4.00), and 

anecdotal support for a differences between G and K responses. 

 

Figure 7. Proportion of metacognitive response types for (A) hits and (B) false alarms 

across odour verbalisability. 

3.3.4 Discussion 

Experiment 3 has replicated the previous finding that n-back performance is superior for 

high verbalisability odours, and also replicates this verbalisability advantage in a mixed-

trial design (as used in Experiment 1 of Jönsson et al., 2011). The inclusion of 

know/remember/guess judgments revealed an interaction that suggests different 

contributions to a response across odour verbalisability. The proportion of remember 

hits reflects correct responses that were made with recollection of contextual details 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R K G

H
it

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R K G

Fa
ls

e
 A

la
rm

s

Low

High

B A 



Chapter 3. Olfactory n-back tasks 150 

from study, and was higher for verbalisable odours than low verbalisability odours. In 

contrast, there was no difference between the proportions of know responses between 

odour sets. That is, after making a correct ‘yes’ response, participants deemed a similar 

proportion of responses from both odour sets to have been based on item familiarity in 

the absence of recollection.  

As discussed in the Introduction to this experiment, recollection is indicative of 

controlled information processing in working memory (e.g. Loaiza et al., 2015). 

Consequently, a remember response not only reflects recognition of the presented item 

as old, but also suggests a controlled strategy that enables clear recollection of the 

item’s assignment to the n-back position (e.g. Chatham et al., 2011; Juvina & Taatgen, 

2007; Oberauer, 2005). The aim of a know response was to catch correct responses that 

were made based on familiarity in the absence of recollection. Whilst decisions based 

on a familiarity criterion can produce a relatively automatic contribution to recognition, 

prior models of n-back performance suggest that such a signal may also be assessed 

using a low-control time-tag strategy (e.g. Juvina & Taatgen, 2007). It should be noted 

that know responses do not distinguish the use of these strategies, as both make a 

judgement based on familiarity-signal. However, a reliance on a familiarity-based 

strategy would have been evidenced by a larger proportion of know hits and false 

alarms, which was not observed. Consequently, whilst these findings do not demonstrate 

the predicted shift towards a familiarity based strategy for low verbalisability odours, 

they do indicate a reduced reliance on recollection (Gardiner et al., 2002) that is 

consistent with olfactory long-term memory findings (Larsson et al., 2006; Olsson et al., 

2009).  

In terms of n-back strategies, what is also evident is that the proportionally greater 

recollection for high verbalisable odours is shifted to proportionally greater guess 
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responses for low verbalisability odours. This suggests a general reduction in response 

certainty even when responding correctly to low verbalisability odours (indeed, the 

proportion of guessed hits for low odours are double that of high odours suggesting a 

weaker memory trace, see Wixted & Mickes, 2010). Olsson et al. (2009) suggest that 

mapping an odour percept to semantic knowledge is advantageous for episodic 

recognition, evidenced by improvements in both memory and recollective experience. 

They propose that identification is responsible for the increase in recollection because 

these items are more conceptually salient (Rajaram, 1998). The present findings support 

a similar conclusion for working memory, where verbalisability of odours is linked to an 

increase in ability to recollect the odours. However, Olsson et al. also suggest that 

identified odours produce a verbal code that provides an additional cue to memory. 

Whilst it is unclear whether a familiar odour in the present experiment also includes the 

use of a verbal label as an additional retrieval cue, in Experiment 2 it was shown that 

such a cue was not rehearsed throughout the retention interval. 

The present study therefore shows that participants do not abandon a control strategy for 

low-verbalisability odours, but instead continue with the strategy in a less successful 

manner. However, it should be noted that such a conclusion is dependent on the ability 

of know responses to accurately reflect the use of a familiarity-based strategy. For 

example, it is possible that the task requirements were confusing for participants as it 

requires self-awareness of the information that was used to make a decision, and this 

decision is more complex than for a simple old/new distinction. Indeed, it is possible 

that the guess hits were greater for low verbalisability odours due to a high proportion 

of responses based on a strategy that participants were not able to categorise. A further 

possible criticism of the present study is the use of mixed verbalisability lists. Although 

the use of mixed-blocks was necessary to prevent participants realising from their 
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responses that a shift in odours had occurred, it is possible that the use of this design 

resulted in the perseverance of a strategy throughout the task. In comparison, the 

blocked design in experiments 1 and 2 may have facilitated switching due to clearly 

defined periods of verbalisable/non-verbalisable odours. Notwithstanding these 

potential issues, the findings have supported previous links between recollection and 

odour verbalisability in this area (e.g. Larsson et al., 2006; Olsson et al. 2009). 

Manipulations of task demands that affect recollection are typically associated with 

attentional resources that affect the encoding of stimuli (e.g. Jacoby, 1998). In an n-back 

working memory task however, Oberauer (2005) describes recollection as a reflection 

of the successful coordination of a binding/unbinding process (updating). A failure in 

this updating process may explain the lower recollection and subsequent increase in 

guessing when odours were difficult to verbalise. Indeed, the properties of high 

verbalisability odours include increased conceptual saliency (Olsson et al., 2009), which 

are proposed to support recollection by facilitating the binding process between odour 

item and its context at encoding (Oberauer, 2005).  

However, another influence on recollection described in Rajaram (1998) is the role of 

perceptual discriminability. Although Olsson et al. (2009) suggest this is similar 

between low and high familiarity odours, it is hypothesised here that odour familiarity 

can increase discriminability through perceptual learning (See Section 3.0.4), and this 

can also lead to a working memory advantage. That is, perceptual learning may increase 

perceptual distinctiveness of odours in addition to conceptual saliency, proposed 

through perceptual learning (Goldstone, 1988) or the ability of the olfactory system to 

match an input pattern to a stored representation (Rajaram, 1998; Wilson & Stevenson, 

2006). 
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In summary, Experiment 3 provides some evidence for a quantitative change in a 

participants’ ability to recollect odours as a function of whether odours are verbalisable, 

rather than a qualitative shift to a familiarity-based strategy. Specifically, recollection 

decreased for odours difficult to verbalise. Furthermore, it is suggested that the decline 

in recollection is due to issues in the maintenance and updating of bindings, due to low 

conceptual saliency or perceptual distinctiveness (Rajaram, 1998; Wilson & Stevenson, 

2006). However, as there is little evidence for verbal rehearsal in the olfactory n-back 

task (see null effects of CA in Experiment 2), it is possible that the 

saliency/distinctiveness of the high verbalisability odours is not due to the addition of 

labelling per se but a covariate of verbalisability (i.e. familiarity). Experiment 4 

examines the role this odour familiarity, to assess whether perceptual discriminability is 

responsible for the n-back advantages observed.  

3.4 Experiment 4: Perceptual discriminability in working memory 

3.4.1 Introduction 

In Experiment 2, a working memory advantage for high verbalisability odours was 

demonstrated that does not appear to be underpinned by an articulatory rehearsal 

process. Indeed, the n-back task may have been performed without rehearsal at all, and 

instead performed with some low-control familiarity-based strategy (see Juvina & 

Taatgen, 2007). In Experiment 3, it is suggested that the performance advantage is due 

to a quantitative increase in ability to recollect verbalisable odours and not a qualitative 

change in n-back strategy. Consequently, in this experiment the proposed advantage 

afforded to verbalisable items in working memory are investigated through the effects 

of perceptual familiarity on item discriminability.  

As discussed in Chapter 1, models of odour perception place particular importance on 

the ability to match a glomerular activation input to a stored object pattern (e.g. Wilson 



Chapter 3. Olfactory n-back tasks 154 

& Stevenson, 2003a). That is, smelling a familiar odour is suggested to activate a 

representation within an olfactory-specific object store that is stable, and less redolent of 

other odours, compared to novel or unfamiliar odours that will not activate an exact 

match (Li et al., 2006; Mingo & Stevenson, 2007; Stevenson & Mahmut, 2013a; Wilson 

& Stevenson, 2003a). This perceptual learning is independent to an advantage gained 

from labelling or semantic categorisation, and will improve recognition ability and 

discriminability from mere exposure to a stimulus (Jehl et al., 1995, cf. 1997; Rabin, 

1988; Stevenson & Wilson, 2007; Wilson & Stevenson, 2003b). A similar process is 

proposed for expertise effects on wine discriminability, where advantages are observed 

independently to learned semantic associations (Melcher & Schooler, 1996).  

It should, however, be noted that there exists contrasting evidence regarding the 

facilitative and detrimental effects of familiarity in memory performance for other (non-

olfactory) modality stimuli. Some research suggests that familiarity can exert negative 

effects on memory. For example, whilst recall and processing tasks do see an advantage 

from familiarity (as determined by frequency, see Diana & Reder, 2006), recognition 

memory typically shows the opposite effect where low familiarity of a word exhibits 

better performance (Yonelinas, 2002). The recognition advantage for low frequency 

words is produced specifically from greater hits and reduced false alarms compared to 

high frequency words (Gorman, 1961; Reder et al., 2000), and explained by confusion 

over the source of familiarity and recollection (e.g. Reder et al., 2000). That is, 

participants have problems differentiating experimental familiarity and normative 

familiarity, resulting in more old responses and thus more false alarms. In contrast, hit 

rates are reduced because a greater number of contextual links to the stimuli result in 

difficulty making a clear item recollection (Guttentag & Carroll, 1994).  
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Other studies have reported a facilitative effect of familiarity on memory, however, and 

for high frequency words this has been explained by fewer processing resources 

required at encoding (Diana & Reder, 2006; Reder et al., 2015). Diana and Reder 

postulated that before any retrieval advantage can occur for low frequency words (i.e. 

the lack of contextual confusions, or effect of only within-experiment familiarity), there 

must be a successful binding between the word and its context (see also Oberauer, 

2009). Consequently if the task is sufficiently taxing there will be the encoding 

advantage afforded for familiar words, but no retrieval advantage for the unfamiliar 

words because of the lack of this content-context binding.  

The rationale for the experiment is therefore premised on the proposal that familiar 

odours will require less working memory resources in the encoding and updating of 

item-context bindings in the n-back task (Oberauer, 2005; Reder et al., 2015). In their 

study, Reder et al. examined the proposal that less familiar items consume more 

working memory resources by experimentally controlling familiarity to previously 

unknown stimuli. Over 4 weeks, the authors manipulated the frequency with which 

Chinese characters appeared in visual search and paired association training sessions. N-

back performance was demonstrably greater for (experimentally-induced) high 

frequency characters over low, which they suggest supports their assertion that encoding 

familiar stimuli requires less working memory resources.  

In this experiment, whether odour familiarity is underpinning the performance 

advantage for the high verbalisable odours is investigated by experimentally increasing 

odour familiarity through a series of preliminary rating and discrimination tasks (see 

Jehl et al., 1995, 1997; Nguyen et al., 2012; Rabin, 1988; Reder et al., 2015). To be 

clear, Experiment 4 tests whether increased familiarity for normative unfamiliar odours 

can improve memory performance on the n-back task. It is predicted that prior exposure 



Chapter 3. Olfactory n-back tasks 156 

will increase n-back performance for these previously unfamiliar odours due to 

perceptual learning (Wilson & Stevenson, 2003a), and the subsequent working memory 

advantage afforded to familiar items (Reder et al., 2015). 

3.4.2 Method 

3.4.2.1 Participants 

Forty-eight Bournemouth University students (34 females, 14 males, mean age = 20.48, 

SD = 2.23), who had not previously participated in an olfactory n-back task, participated 

in the present study. The same exclusion criteria from earlier experiments were applied. 

Ethical approval was gained through the Bournemouth University ethical procedures. 

3.4.2.2 Materials 

Olfactory Stimuli. Although the primary aim of this experiment was to assess the effects 

of familiarisation on previously unfamiliar odours, the distinction between odour sets 

remained categorised on verbalisability. This was to prevent confusion with the 

between-participants manipulation (familiarisation), and to retain a clear comparison 

with earlier experiments in this chapter. However, low verbalisability sets should be 

considered as also low familiarity, and the high verbalisability set considered as high 

familiarity (see full comparisons below). 

The olfactory stimuli were taken from the corpus of odours described in Chapter 2. 

Eighteen odorants were selected for the task, with twelve odours (separated into two 

sets, see Appendix B) specified as low verbalisability. The remaining six odours were 

classed as high verbalisability from these data. The strength of evidence for differences 

across verbalisability and familiarity, and evidence against intensity, pleasantness, and 

hedonic strength differences, were calculated using Bayes Factors. There was strong 

evidence for a difference in verbalisability scores between the two low verbalisability 
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sets (M = 1.44, SD = 0.47) (M =2.60, SD = 0.11) and the high verbalisability odour set, 

t(16) = 5.92, p < .001, d = 2.96, BF10 = 682.41, and also for a difference in normative 

familiarity between low (M = 3.26, SD = 0.24) and high (M = 5.77, SD = 0.11) sets, 

t(16) = 24.17, p < .001, d = 12.08, BF10 > 1,000.  

Although there was evidence against no difference (i.e. evidence for a difference) 

between pleasantness in the two sets, t(16) = 9.04, p < .001, d = 4.52, BF01 < 0.01, the 

data provided anecdotal evidence against a difference in intensity, t(16) = 1.10, p = .286, 

d = .55, BF01 = 1.56, and hedonic strength, t(16) = 0.46, p = .649, d = .23, BF01 = 2.18.  

Familiarisation Tasks. Using a similar familiarisation method to that used for olfactory 

stimuli in Sinding et al. (2015), the Self-Assessment Manikin (SAM) was applied to 

determine an individual’s affective reaction to stimuli (Bradley & Lang, 1994). The 9- 

point pictorial rating scales seen in Figure 8 records how happy/unhappy (pleasure), 

excited/calm (arousal), and controlled/in-control (dominance) the stimulus makes the 

participant feel.  

 

Figure 8. The Self-Assessment Manikin (Bradley & Lang, 1994) 
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In addition, 7-point rating scales of familiarity (highly unfamiliar/highly familiar), 

intensity (no odour/very intense), notes (few odour notes/many odour notes), and 

complexity (very simple/very complex) were used. Questions were displayed on a 22 

inch monitor using open source stimulus presentation software OpenSesame (Mathôt et 

al., 2012) and responses were made on the keyboard number pad.  

N-back task. Responses in the n-back task were recorded using Superlab 5.0 and a 7-key 

Cedrus RB-730 response box. The leftmost key was used for a ‘no’ response, and the 

rightmost a ‘yes’ response. 

3.4.2.3 Design 

Experiment 3 employed a mixed multifactorial (2x2) design. The between-subjects 

factor concerned whether participants were familiarised to odorants for use in the n-

back task, during a preliminary session. The within-participants factor concerned the 

verbalisability of the test odours during the n-back task (low or high).  

Participants were randomly allocated to the familiarised or control group at the 

beginning of the preliminary session. In this session, all participants were exposed to six 

odorants with low normative verbalisability scores (Chapter 2). The familiarised group 

experienced these same six odorants as part of the low verbalisability condition during 

the subsequent n-back task (the testing session), whilst the control group experienced an 

alternative odour set. In addition, all participants experienced a high verbalisability 

odour set which was included in the n-back testing session only. The presentation of the 

two low verbalisability odour sets was counterbalanced such that half of the familiarised 

participants experienced low verbalisability set 1 twice, and half experienced set low 

verbalisability set 2 twice. Similarly, half of the control group experienced low 
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verbalisability set 1 in the preliminary session and low verbalisability set 2 in the testing 

session, and the other half experienced the opposite. 

The n-back task followed the same design in Experiment 3, with two testing sequences 

of 36 trials, but did not require an additional metacognitive judgement following a 

target/lure decision. A testing sequence therefore consisted of 18 low verbalisability 

trials and 18 high verbalisability trials, with low and high verbalisability odours 

presented together. That is, low and high verbalisability odour sets were mixed. This 

mixed design was applied primarily to prevent participants in the familiarised group 

realising that the sequence of 18 trials matched the odour set presented the day previous.   

The number of correct target identifications (Hits), and incorrect identifications of a lure 

as a target (False Alarms, FA) were analysed. In addition, an index of performance was 

analysed using A’.  

3.4.2.4 Procedure 

The experiment was conducted in a quiet, well-ventilated lab room at Bournemouth 

University. Participants were tested individually across two sessions, which were 

separated by a minimum of 20 hours and a maximum of 28 hours. That is, participants 

were tested in the day following the preliminary session, at approximately the same 

time as that first session. Written consent was gained before the start of the first session, 

and further verbal consent gained prior to the second session. 

Preliminary (Familiarisation) Session. The familiarisation sessions consisted of eight 

olfactory rating tasks, designed to give purpose to the process whilst keeping 

participants naïve to the real aim of the experiment. Participants were equipped with 

odourless vinyl gloves and sat in front of a tray of six test tubes appropriate to their 

group allocation. Instructions were presented on a monitor placed behind the odorants, 
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and directed participants to smell each odour each time they were directed to do so, and 

to make their judgements by pressing the corresponding number to their choice. In 

addition, participants were given paper instructions which included detailed guidance on 

the SAM rating scales, modified from Bradley and Lang (1994) (Appendix C). 

Importantly, participants were not required to remember the odorants they were 

evaluating, nor were they given any indication that the odours would be used in the 

future session. 

Participants made responses to a single question for each odorant, before repeating the 

process for a new question. The question order was randomised for each participant, and 

the odour order randomised within questions. In order to minimise adaptation, a 30-

second break was built into the program after each question.  

Following the odorant rating procedure, participants performed a discrimination task for 

pairs of odours from within their allocated odour set. Participants sat opposite the 

experimenter, separated by a wooden screen, and were instructed to make a verbal 

‘same’ decision for congruent pairs or a ‘different’ decision for incongruent pairs. These 

odour pairs were held for 2-seconds under the nose of the participant, with a 2-second 

inter-stimulus interval (ISI). Every combination of odours was presented in a random 

order, meaning each of the 6 odours was presented as a congruent pair once, and within 

an incongruent trial 5 times. The total number of incongruent pairs therefore totalled 15 

trials, and 21 comparisons. Total testing time, including breaks, was approximately 20 

minutes. 

Testing (n-back) Session. The n-back procedure followed that for Experiment 3, but did 

not require a remember-know judgement. Participants were given a 5-minute break 
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between sequences, and were encouraged to get some fresh air and have a drink of 

water. Total testing time (including breaks) took approximately half an hour. 

3.4.3 Results 

3.4.3.1 A’ sensitivity 

Figure 9(A) shows the A’ scores across familiarisation group and odour familiarity. A 

mixed 2-factor ANOVA was conducted (2x2), where the within subjects factor was 

odour verbalisability (low and high), and the between subjects factor was familiarisation 

group (familiarised and control groups). A significant main effect of odorant 

verbalisability was found, F(1, 46) = 13.84, p = .001, ηp
2 = .21, where high 

verbalisability odorants (M = .89, SEM = .01) saw greater recognition sensitivity than 

the low verbalisability odorants (M = .84, SEM = .01). The main effect of familiarisation 

group was non-significant, F(1, 46) = 3.37, p = .073, ηp
2 = .07, and importantly the 

interaction between odour verbalisability and familiarisation was non-significant, F(1, 

46) = 1.60, p = .212, ηp
2 = .03. The preferred model was one with both main effects 

(55.94 vs a null model), though this was preferred over a model with just a main effect 

of odour verbalisability by a factor of 1.20. Therefore, these data support a model with a 

main effect of verbalisability which is only anecdotally improved by the inclusion of a 

main effect of familiarisation. 

In summary, the data provides some evidence against the hypothesis that familiarisation 

to odorants will improve recognition sensitivity for those same odorants in a working 

memory task. Indeed, in contrast to the original prediction, there was a trend towards 

poorer sensitivity when the task included odours from the familiarisation process.  
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Figure 9. Working memory performance for low and high verbalisability odours as 

measured by (A) A' sensitivity, (B) hit rates, and (C) false alarms, across familiarisation 

groups. 

3.4.3.2 Hit rates 

The proportion of correct target recognition is shown in Figure 9(B), and was analysed 

with the same 2 x 2 mixed ANOVA. A main effect of odour verbalisability, F(1, 46) = 

36.65, p < .001, ηp
2 = .44, showed greater hits for low verbalisability odours (M = .68, 

SEM = .02) than high verbalisability odours (M = .82, SEM = .02). In addition, a main 

effect of familiarisation group was also significant, F(1, 46) = 6.95, p = .011, ηp
2 = .13, 
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and revealed lower overall hits for the familiarised group (M = .70, SEM = .03) over the 

non-familiarised group (M = .80, SEM = .03). Importantly, however, the interaction 

between the main effects was non-significant, F(1, 46) = 1.47, p = .232, ηp
2 = .03. A 

model containing both main effects was preferred (295,228.34 vs. the null model), 

which improved a verbalisability-only model by a factor 4.53, and was not improved by 

the addition of an interaction. Again, this provides evidence against an improvement in 

target recognition for odours that were familiarised, and instead supports a general 

decline in performance across the task when the low verbalisability odours had been 

presented in both sessions. 

3.4.3.3 False alarm rate 

Figure 9(C) displays the false alarm rates across familiarisation groups and 

verbalisability conditions. There was a non-significant main effect of odour 

verbalisability for false alarms, F(1, 46) = 0.36, p = .552, ηp
2 = .01, and a non-

significant main effect of familiarisation group, F(1, 46) < 0.01, p = .972, ηp
2 < .01. 

Furthermore, there was a non-significant interaction between odour verbalisability and 

familiarisation group, F(1, 46) = 1.13, p = .294, ηp
2 = .024. The null model was 

preferred to all other models by BF > 3, suggesting evidence against both main effects 

and an interaction. 

3.4.4 Discussion 

Experiment 4 familiarised participants to odours which were low on normative 

familiarity (categorised as low verbalisability) prior to the main memory study. Whilst 

the main effect of verbalisability was replicated (Experiments 1-3), this experiment 

showed no selective improvement in working memory performance for familiarised 

odours in the n-back task. To be clear, an interaction was predicted such that working 

memory performance would improve following familiarisation but only for the low 
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verbalisability odours with which participants were pre-exposed. This was not found. 

This contrasts previous findings that suggest the familiarity of a stimulus is linked to an 

encoding advantage (Diana & Reder, 2006), and the consumption of fewer working 

memory resources (Reder et al., 2015). Paradoxically, there was instead a general 

decline in working memory performance across the task, particularly in participant 

ability to accept a target item. That is, participants had more difficulty saying ‘yes’ to an 

odour that was a target if the task included odours from the prior session, and this 

difficulty was not localised to responses for only familiarised odorants. This unexpected 

pattern of results suggests some shift in responding due to the presence of familiarised 

items. One might suggest that the present results occurred due to two reasons; a 

disruptive effect of item familiarity, combined with the use of a mixed-block design for 

the two odour sets. However, to pre-empt the discussion below, any attempt to explain 

the disruptive effect of familiarisation is confounded by the superior n-back 

performance for the high verbalisable odours. 

First, why participants familiarised to the low verbalisability odours showed a decreased 

hit rate is considered. In the introduction to this experiment, reduced hit rates for 

familiar words were considered as a result of contextual confusions that affect retrieval 

of the items (Reder et al., 2000). Applied to the present findings, the familiarisation of 

odours may have increased the likelihood of contextual confusions when comparing 

probe odours to the n-back item. Such an effect may have occurred independently of 

any encoding/updating advantage for the high verbalisability odours (Oberauer, 2005; 

Rajaram, 1998; Reder et al. 2015), which can explain the consistent n-back advantage 

for these odours seen in both groups in the present experiment, and in Experiments 1-3. 

However, whilst the above explanation can accommodate a decline in hits for odours 

that were subject to the preliminary familiarisation session, it is noteworthy that the 
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disruptive effect of familiarisation was demonstrated as a main effect rather than an 

interaction. To be clear, one might predict that the effect should be detrimental to the 

specific odours to which familiarisation occurred; however, this was not the case as both 

the low and high verbalisable odours were affected.  

It is possible that increased conflict between familiarity (item activation) and 

recollection (contextual memory of the item’s appearance) resulted in some change in 

response strategy (e.g. Harbison et al., 2011; Juvina & Taatgen, 2007). That is, 

familiarised odours produce a familiarity signal that means lures cannot be rejected by 

familiarity alone, and a recollection process must therefore be applied to all odours to 

establish whether to respond to the item as a target. As a result, a conflict between 

familiarity and recollection that would normally occur from only recently-presented 

lures may have occurred for all familiarised lure items. Since targets are characterised 

by their recent presentation and thus strong experimental familiarity (Harbison et al., 

2011), one might argue that the inflated familiarity signal disrupted the acceptance of a 

target by being an unreliable indicator of an item’s recency. The general effect of 

familiarisation could therefore be attributed to the use of a mixed-block design. 

Specifically, unreliability of a familiarity signal is likely to have affected the response 

process adopted for all odours, regardless of whether the particular odour being tested 

was familiar due to task or pre-task familiarity. Since familiarity ceased to be an 

effective strategy, this may have created general confusion when responding to all 

odours in the mixed design.  

A shift in criterion was assessed as a consequence of the disruptive effect of familiarity, 

and the subsequent drop in hits (see Ralph, 2014 for a discussion of strategy adoption 

with changing task demands). To test this, bias measure B″ was calculated from hits and 

false alarm rates (Stanislaw & Todorov, 1999). This is a non-parametric assessment of 
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participant bias to respond either ‘yes’ or ‘no’ to items; a score of -1 reflects an extreme 

propensity to respond ‘yes’, a score of 1 reflects extreme bias to say ‘no’, and a score of 

0 signifies no bias). This score was compared across groups and conditions using a 2 

(familiarised or control group) x 2 (low or high odour verbalisability) ANOVA. This 

revealed a main effect of odour verbalisability where a stricter criterion was applied for 

low verbalisability odours compared to high verbalisability odours, F(1, 46) = 13.84, p 

< .001, ηp
2 = 0.23, but no significant main effect of familiarisation, F(1, 46) = 1.86, p = 

.180, ηp
2 = 0.04, and no significant interaction between this main effect and 

familiarisation group, F(1, 46) = 1.90, p = .174, ηp
2 = .04 (a main effect model of 

verbalisability only was preferred vs. a null model by a BF of 274.62, and did not 

improve with both main effects). In summary, general application of a stricter criterion 

does not appear to be responsible for the low hit rate in the familiarised group, nor was 

there any specific shift in criterion for only the familiarised odours. 

Although the exact processes involved are unclear, the key finding of this study is that 

there is a disruptive effect of experimental familiarisation on n-back performance. 

Importantly, that there was this disruptive effect should be considered independently of 

any advantage to working memory performance from the use of high verbalisability 

odours. Indeed, such findings may support the proposal in Experiment 3 that conceptual 

saliency is responsible for a working memory performance advantage (e.g. by enabling 

the successful binding between item and context, Oberauer, 2005; Rajaram, 1998). This 

is because the advantage for verbalisable odours in working memory is independent to 

any effects (in this case, disruption to performance) of perceptual experience through 

familiarisation.  

An alternative suggestion, however, may be that the familiarity gained from a 

familiarisation task is different to the normative familiarity observed for the high 
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verbalisability set. Although Wilson and Stevenson (2006) would argue that normative 

familiarity and familiarity across short intervals are the consequence of the same 

residual activation in memory, other proposals suggest that whilst familiarity in working 

memory arises from the continued activation of items during the task, familiarity in 

long-term memory arises from the degree of intra-item associations (Göthe & Oberauer, 

2008; Mandler, 1980). However, familiarisation from a task performed 24-hours prior to 

the working memory test seems more likely to reflect normative familiarity than within-

task familiarity. Instead, one might suggest the disruptive effect of pre-experimental 

familiarisation occurred due to the nature of the familiarisation task. That is, 

experiencing odours in an experimental setting contrasts the normative familiarity and 

semantic associations that would typically be gained from a real-world setting (e.g. 

Degel et al., 2001). 

In summary, the present study demonstrates an important role of item familiarity in 

working memory performance, though rather than facilitation through enhanced 

discriminability; this effect was disruptive to performance in the n-back task. It should 

be noted that the present study may not have included sufficient exposures for 

participants to gain the familiarisation advantage observed in typical familiarisation, or 

as noted above may not have replicated the typical experience of odour learning that 

occurs in non-laboratory settings (cf. Sinding et al., 2015 for a familiarisation effect on 

odour perceptual using a similar preliminary task). Future research should also assess 

the disruption of familiarisation under a blocked design, which one might suggest would 

still occur for familiarised odours, but is unlikely to impact performance for high 

familiarity odours that were not previously exposed. For completeness, a pre-exposure 

group to only high familiarity odours could also be included to determine whether this 

disruption can be invoked on odours with both high and low normative familiarities. 
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3.5 General Discussion 

The goal of the current chapter was to apply the normative data produced in Chapter 2 

to replicate the previous finding of a working memory advantage for odours that are 

verbalisable (Jönsson et al., 2011), and to explore this advantage in relation to strategies 

employed in the n-back task.  

The observed advantage in the n-back task for verbalisable odours found across 

Experiments 1-4 serves to validate the normative data collected in Chapter 2. The 

normative data were used to separate odour sets on verbalisability in all of the above 

experiments. The replication of a verbalisability advantage (Jönsson et al., 2011) 

supports conclusions that verbal labelling, or some covariate to verbal labelling ability, 

facilitates working memory performance in the n-back task. Although the interaction in 

Experiment 1 lent support to the proposal that verbal labels are generated and refined 

throughout the task, this effect was not replicated in future experiments. Furthermore, 

whilst the advantage for verbalisable odours was robust throughout each replication of 

the task as measured by A’ sensitivity, some variation across experiments were observed 

as to whether the effect was driven by a change in hit rate (Experiment 3 and 4), false 

alarms (Experiment 2), or both (Experiment 1).  

Demonstration of olfactory working memory in the n-back task (with above chance 

sensitivity for low verbalisability odours) demonstrates that an odour representation can 

be re-activated and compared to the presented stimulus. However,  n-back performance 

for both low and high verbalisability odours may be mediated by the ability to verbally 

re-code the items that subsequently allows rehearsal (Murphy et al., 1991). Furthermore, 

if verbal rehearsal is not occurring, it is debated whether such representations are 

consciously accessible and thus available to active maintenance and updating processes 

required in the n-back task (Arshamian & Larsson, 2014; Stevenson, 2009). Experiment 
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2 provides evidence that performance in the n-back task is not reliant on a verbal 

rehearsal process for odours either high or low on normative verbalisability. 

Specifically, reducing verbal rehearsal opportunities (through inter-trial CA) did not 

attenuate the memory advantage for the verbalisable odours, nor produce a general 

decline in performance. In addition, Experiment 2 showed some effect of concurrent 

rotation on false alarm rates, potentially suggesting that the retention interval was used 

to maintain stimuli through a refreshing process (Raye et al., 2007). These findings 

warrant further investigation to assess the executive resources utilised for maintaining 

and updating olfactory information in the task. The concurrent articulation findings 

however are consistent with suggestions that olfactory memory is not dependent on 

verbal working memory processes (Andrade & Donaldson, 2007). These findings 

expand upon previous results by demonstrating a lack of verbal rehearsal during a task 

that ostensibly has both maintenance and updating requirements.  

However, the n-back task, like other working memory tasks, can be influenced by 

automatic processes that assess the familiarity of items to make a task judgement 

(Loaiza et al. 2015). Indeed, an n-back decision may be made based on a familiarity 

signal and thus have  no requirement for rehearsal in working memory, either through 

acceptance or rejection based on a strength criterion or through a low-control process 

where familiarity is compared to a signal-strength estimate for a target item (Juvina & 

Taatgen, 2007). In Experiment 3, the reliance on familiarity-based judgements or 

controlled strategies (recollection-based judgements) for completing the n-back task 

were assessed across odour verbalisability. The remember-know paradigm revealed a 

reduction in item recollection for low verbalisability odours with no corresponding 

increase in familiarity-based responding. This suggests that the advantage for high 

verbalisability odours is related to more successful application of a control strategy, and 
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not a qualitative shift away from a control strategy towards either a low-control 

assessment of familiarity, or a criterion-based assessment of familiarity for low 

verbalisability odours. Instead, a large proportion of correct responses were the result of 

guess responses for low verbalisable odours. It was suggested that this is the result of 

reduced conceptual saliency, which affects the ability of participants to maintain and 

update bindings between the odour and its context in the task.  

Finally, in Experiment 4 it was assessed whether the observed working memory 

advantage for high verbalisable odours was mediated by perceptual familiarity to the 

odours; based on previous studies relating high familiarity to fewer cognitive resources 

at encoding (Reder et al., 2015) and increased discriminability (Wilson & Stevenson, 

2003a). Multiple presentations of odours in a preliminary task were applied to 

artificially induce item familiarity to previously unfamiliar odours. However, the 

experiment found no evidence to support the proposal that mere exposure can improve 

olfactory working memory, though the findings supported a disruptive effect of 

familiarisation, perhaps as a result of an unreliable familiarity signal. Consequently, 

although Experiment 4 did not reveal the expected findings related to perceptual 

familiarity, it does support proposals that item familiarity is important in an n-back task 

decision, and that the verbalisability advantage for odours occurs from something other 

than perceptual familiarity (e.g. conceptual saliency).  

In summary, this chapter has replicated a verbalisability advantage for odours in the n-

back task, but has presented evidence against this advantage being due to verbal 

rehearsal (Experiment 2), or perceptual familiarity (Experiment 4). The performance 

advantage instead appears to be due to an increase in the ability to maintain and update 

bindings between the odour and its context in working memory (Oberauer, 2005), 

though it should be noted that there was no evidence to support a shift in strategy 
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(Experiment 3). Indeed there was a general increase in false alarms in a concurrent 

rotation task that supports similar application of working memory resources in both 

verbalisability conditions (Experiment 2). 
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Chapter 4: An individual differences analysis of cross-modal n-back ability 

4 Chapter summary 

In this chapter an individual-differences methodology is applied, comparing individual 

performance in the olfactory n-back to other-modality n-back tasks. Specifically, the 

experiment examines the relationship between verbal, visual, verbalisable odour, and 

low verbalisability odour n-back performance. This approach is used to assess shared 

underlying processes across different tasks. Models of n-back performance describe a 

number of working memory processes that may be engaged in these tasks, including 

maintenance and updating of the n-back rehearsal window, and resolving interference 

from no-longer relevant items and from lure items with a strong familiarity signal 

(Chatham et al., 2011; Harbison et al., 2011; Juvina & Taatgen, 2007; Kane et al., 2007; 

Szmalec et al., 2011). 

Participants performed 2-back tasks with low verbalisability odours, verbalisable 

odours, and abstract shapes; and a 3-back task with letter stimuli. Furthermore, 

participants performed an olfactory discriminability task to examine perceptual 

differences across odour sets. An index of working memory capacity was calculated 

from hits and false alarms, producing an A’ score for each task per participant. A 

correlation matrix revealed moderate relationships between verbal, visual, and only 

verbalisable odour n-back performance. That is, low verbalisability odour performance 

was unrelated to the verbal and visual n-back tasks.  

The findings support a similar executive demand in verbalisable odour working memory 

to verbal and visual working memory. This is discussed in terms of available semantic 
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information, the additional coding of odours with verbal information (Paivio, 1990), and 

the conceptual salience gained when an odour is identified (Rajaram, 1998). Together, 

the findings have important implications regarding the ability to apply working memory 

resources to odours when available semantic information is low. It is suggested that 

internal attention to an olfactory representation is not available without the inclusion of 

this additional semantic information.  
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An individual differences analysis of cross-modal n-back ability 

4.0 Chapter Introduction 

4.0.1 Shared variance in measures of working memory capacity 

The use of control strategies in the n-back task, and how the procedure might relate to 

other measures of working memory capacity, is discussed in detail in Chapter 3. It is 

generally agreed that indices of working memory capacity denote some use of 

attentional control to maintain and manipulate stimulus information, resolve 

interference, and perform other executive tasks (Baddeley & Hitch, 1974; Engle & 

Kane, 2004; Oberauer, 2009). Consequently, individual differences research will 

typically show a correlation between multiple measures of working memory capacity, 

which supports the application of this executive/attentional system for fulfilling the task 

requirements (Engle & Kane, 2004; Schmiedek, Hildebrandt, et al., 2009; Wilhelm et 

al., 2013). This modality independent process is also supported in neuroimaging, where 

prefrontal activations are organised according to the task performed rather than the 

stimulus type used (e.g. Owen, 1997). 

However, whilst a verbal n-back task is used as a common measure of working memory 

capacity for neuroimaging research, the actual utility of this procedure as a 

measurement of working memory is complex and equivocal (see Chapter 3 for a full 

discussion). In a meta-analysis by Redick and Lindsey (2013), the n-back task was 

weakly correlated to complex span tasks, suggesting the two cannot be used inter-

changeably in research applications. In contrast, Schmiedek et al. (2014) produced 

latent factors from performance in three complex span tasks (reading span, counting 

span, and rotation span) and from n-back task performance (using a numerical and 

spatial n-back), and these two factors correlated substantially. Their reasoning for 

commonly-found poor correlations between complex span and n-back tasks were due to 
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paradigm-specific variance (e.g. the use of recall or recognition procedures), content-

specific variance (e.g. the requirement for rapid counting in the counting span task, 

compared to visuo-spatial processing the rotation span task), and measurement error 

(e.g. ceiling and floor effects). This finding supports a hierarchical model of working 

memory performance where both n-back and complex span tasks involve the same 

higher-order construct in working memory, though of relevance for the present study is 

the finding that it is unsuitable to assess cross-modal relationships using cross-task 

comparisons. This is because the multiple sources of variance that result in weak 

relationships between tasks will mask whether the different-modality tasks applied here 

reflect the application of similar working memory resources.  

Further support from Schmiedek et al. for the role of a higher-order working memory 

process that drives n-back performance is seen from the task’s strong relationship with 

fluid intelligence (measured by Raven’s Advances Progressive Matrices), which is 

proposed to occur because attentional control is essential for both skills (Carpenter, Just, 

& Shell, 1990; Jaeggi et al., 2008; Schmiedek, Hildebrandt, et al., 2009; cf. Wilhelm et 

al. 2013 for a binding explanation of working memory capacity). Indeed, transfer effects 

have been observed from training in the n-back task to measures of fluid intelligence, 

also attributed to the requirement in both tasks for control of attention (Jaeggi et al., 

2008).  

A general mechanism in the n-back task is supported by modality-independent brain 

regions implicated during the procedure. Owen, McMillan, Laird, and Bullmore (2005) 

assessed different-modality n-back tasks in a meta-analysis of functional neuroimaging 

studies. Included in the analysis were multiple verbal and non-verbal n-back tasks (e.g. 

shapes, faces, numbers, words, and fractals) that required either identity or spatial 

judgements. Their findings saw robust activation in the dorsolateral prefrontal cortex, 
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associated with strategic control of working memory processing (i.e. frontal lobe 

damage has been associated with the application of inefficient strategies in working 

memory, Owen, Morris, Sahakian, & Polkey, 1996); and the ventrolateral prefrontal 

cortex, implicated in the mapping of stimuli to responses upon presentation of targets or 

non-targets (Andersen and Buneo, 2003 cited in Owen et al., 2005). Their analysis noted 

these prefrontal activations in the olfactory n-back task performed in Dade et al. (2001), 

though it has been discussed previously and in Jönsson el al. (2011) that these findings 

may be explained by verbal processes in the stored odour representation rather than 

perceptual representations per se. However, whilst there appeared to be evidence for 

amodal activation during the n-back, there are also findings that support modality-

specific regions of activation in the n-back task. Owen et al. (2005) acknowledged 

hemispheric lateralisation in frontoparietal regions related to whether the stimuli was 

verbal or non-verbal. Furthermore, in an n-back imaging study Knops et al. (2006) 

showed activation in the horizontal intraparietal sulcus for numerical stimuli, that they 

attribute to processing of averbal semantics (i.e. assessment of magnitude). That is, it is 

proposed that information in a working memory task will not only be represented as a 

phonological code, but will benefit from additional processing of semantic information.  

The relationship between performance levels on different modality n-back tasks is 

another method by which generalised processing can be examined, and, in general, this 

method reveals strong different-modality task relationships. For example, numerical and 

spatial n-back procedures have shown a strong relationship (r = .66 across accuracy 

measures, Schmiedek et al. 2014), though other comparisons, between visuospatial and 

auditory 2-back tasks, have revealed weaker correlations (r = .35 across accuracy 

measures, Jaeggi et al. 2010). This is of interest to the present task because a 

relationship between olfactory n-back performance and n-back performance from other 
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modalities can elucidate the processes engaged in these tasks when performed with 

olfactory stimuli. This is because verbal and visual n-back tasks have previously shown 

a relationship not only with each other, but also to the ability to apply controlled 

working memory resources in latent variable studies (Schmiedek et al., 2014; Wilhelm 

et al., 2013). Specifically, this means that a relationship between olfactory n-back 

performance and performance in verbal and visual n-back tasks can be interpreted as a 

general application of controlled working memory processing. It should be noted, 

however, that analysis of individual differences across different-modality n-back tasks is 

naturally limited by the reliability of the measure itself (Jaeggi, Buschkuehl, et al., 

2010; Redick & Lindsey, 2013). Performance in the n-back task is most reliable when n 

> 1 (Friedman et al., 2008; Jaeggi, Buschkuehl, et al., 2010; Kane et al., 2007; Shelton, 

Elliott, Hill, Calamia, & Gouvier, 2009), though in Jaeggi et al. (2010) the split-half 

reliability of 2-back tasks varied between r = .26 and r = .85. This led the authors to 

conclude that the n-back task is not a suitable tool for measuring participant individual 

difference. To be clear, if within-participant variance is high throughout the task, then 

cross-modality comparisons have less validity due to uncertainty as to whether the 2-

back score is a true representation of ability. However, Redick and Lindsay (2013) 

suggest the opposite, concluding in their meta-analysis that the n-back task does 

produce acceptable reliabilities (r > .70) in several studies (e.g. Kane et al., 2007; 

Oberauer, 2005; Schmiedek, Hildebrandt, et al., 2009; N Unsworth & Spillers, 2010). 

This is also supported in Schmiedek et al. (2014), with reliability estimates of α = .92 

and α = .95 for number and spatial n-backs, respectively. Taken together, the findings 

suggest that reliability is not problematic for an individual-differences assessment of n-

back performance. 
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4.0.2 Semantic information in olfactory working memory 

The previous chapter showed performance in an olfactory 2-back task that was better 

when odours were verbalisable (see also Jönsson et al., 2011) and that this advantage 

was not due to the use of verbal rehearsal strategies to maintain these odours 

(Experiment 3.2). Whilst there is equivocal evidence regarding the ability of 

participants to consciously access a stored representation of olfactory information that 

would allow some rehearsal and updating strategy to be performed (e.g. Arshamian & 

Larsson, 2014; Stevenson, 2009), the dual-task findings in Chapter 3 lend some support 

for application of resources for maintaining odour representations, where false alarms 

increased with an inter-trial rotation task (although this was not reflected in hits or A’ 

sensitivity). This impairment did not interact with odour verbalisability, however, 

suggesting that any change to an odour representation with increased knowledge (e.g. 

verbalisation or identification; Yeshurun et al., 2008; Zelano et al., 2009) does not 

change the contribution of working memory processes for effective completion of the 

task (e.g. refreshing, Raye et al., 2007). In summary, these findings suggest that the 

working memory processes applied for maintaining odours are similar for both low and 

high verbalisability stimuli. 

In Experiment 3.3 it was shown that an advantage for verbalisable odours was due to 

increased recollection of these verbalisable odours. In working memory, the 

measurement of recollection reflects the application of controlled working memory 

resources (Baddeley, 2012; Barrett, Tugade, & Engle, 2004; Engle & Kane, 2004; 

Loaiza et al., 2015). For example, participants demonstrate a selective decrease in 

recollection estimates with faster presentation rates, and estimates of recollection are 

more sensitive to changes in fluid intelligence (Loaiza et al. 2015). The reduction in 

recollection therefore suggests a reduced ability to apply these resources to odour 
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representations when verbalisability is low. Together, these findings suggest a control 

strategy applied in the olfactory n-back task that maintains items in working memory, 

and updates the link between this item and its serial position as the task progresses. 

However, the recollection of item and its linked serial positions fails more often for 

odours that are difficult to verbalise.  

When semantic information is mapped to perceptual information its conceptual saliency 

is increased, and this is linked to greater recollection (Rajaram, 1998). This can explain 

the observed similarities between odour recollection in identified odour memory and 

verbal memory (M. J. Olsson et al., 2009). That is, Olsson et al. (2009) demonstrated 

similar episodic recognition performance and recollective experience between identified 

odours and verbal memory, whilst unidentified odour memory showed lower levels of 

both. In working memory, available semantic information may therefore mediate the 

ability to maintain odours online (Jönsson et al., 2011) and is perhaps responsible for 

equivocal findings related to consciously accessible odour imagery (Stevenson et al., 

2007; Tomiczek & Stevenson, 2009). 

Yeshurun et al. (2008) suggest that unidentified odours are recognised by their olfactory 

pattern and additional poor quality verbal information, whilst identified odours are 

recognised by their olfactory pattern and a centrally-mediated representation that 

includes strong semantic and verbal information (R. A. Frank et al., 2011; Stevenson, 

Boakes, & Wilson, 2000). Similarly, Zelano et al. (2009) describe activation in both the 

piriform cortex and prefrontal language areas when performing a short-term odour 

memory task, but these activations show a double dissociation when odours are 

identified or unidentified. That is, whilst the piriform cortex is favoured for unidentified 

odours, the prefrontal areas are favoured for identified odours. Together, these 

differences in representation may lead to a shift in the way odours are processed in 
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working memory. However, the findings in Chapter 3 are equivocal over whether the 

availability of semantic information results in a qualitative shift in the way odours are 

processed (that is, working memory resources used may change when semantic 

information is available). It is possible that the working memory processes are simply 

less reliable when a verbal memory trace is not available due to lower conceptual 

salience (Rajaram, 1998). 

4.1 Individual differences in multi-modal n-back performance 

This study applies an individual-differences approach to further examine whether 

available odour semantic information (through normative odour verbalisability) is 

related to the utilisation of controlled working memory resources. The experiment 

assesses the relationships between n-back performance using low verbalisability odours, 

high verbalisability odours, abstract shapes, and letter stimuli. Furthermore, individual 

differences in discriminability are also considered, as discriminability is a limiting 

factor in any measure of working memory performance (Jönsson et al., 2011).  

A relationship is expected between visual and verbal n-back performance due to 

previously observed similarities in working memory performance across these 

modalities (e.g. Schmiedek et al., 2014). However, the prediction regarding 

relationships with odour n-back tasks are less clear. If performance in these multiple n-

back tasks arises from a common working memory resource, the tasks should covary. 

The dual-task findings in Experiment 3.2 suggest that similar processes may be engaged 

for low verbalisability and verbalisable odours (though the evidence for this, and 

subsequent evidence from the remember-know task are equivocal on this), and would 

therefore predict this relationship between all n-back task modalities despite lower 

working memory performance for the low verbalisability odours. However, if the 

availability of semantic information mediates application of working memory control 
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processes, a relationship between verbalisable odour working memory and the verbal 

and visual tasks is predicted, but with no relationship to low verbalisability odour 

memory. Finally, it is predicted that performance on both low and high verbalisability 

discrimination tasks will be related to olfactory performance in both low and high 

verbalisability n-back tasks, due to the perceptual processing requirements proposed for 

all versions of the n-back task.  

4.1.1 Method 

4.1.1.1 Participants 

Fifty-six participants (44 females, 12 males, mean age = 23.91, SD = 6.64) were 

recruited from Bournemouth University as part of a course credit requirement. The 

same exclusion criteria from earlier chapters were applied. Ethical approval was gained 

for all aspects of the study through the Bournemouth University ethical procedures. 

4.1.1.2 Materials 

Olfactory stimuli. Fourteen olfactory stimuli were selected for use in this experiment 

(Table 3). Half of these were classified as low verbalisability, and half as high 

verbalisability, based on normative ratings in Chapter 2. Odour sets differed 

significantly on these verbalisability scores, t(12) = 12.96, p < .001, d = 6.93, BF10 > 

1,000, and on familiarity scores, t(12) = 22.22, p < .001, d = 11.88, BF10 > 1,000. 

Furthermore, the odour sets were balanced on ratings of intensity, and Bayes Factor 

analysis revealed support for no difference in intensity, t(12) = -0.19, p = .851, BF01 = 

2.21. Whilst pleasantness ratings did differ between the two sets, t(12) = 8.00, p < .001, 

d = 4.28, BF10 > 1,000, there was evidence for no difference in the hedonic strength 

across the two sets. This was calculated as the deviance from a neutral midpoint on the 

pleasantness rating scale (Chapter 2), t(12) = 0.67, p = .515, BF01 = 1.93. Responses 
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were collected using a Cedrus Response Box, and recorded using Superlab 5 (Cedrus, 

2015). 

Table 3  

Normative ratings and grouping of olfactory stimuli used in the low and high 

verbalisability odour n-back tasks. 

Odour Task Verb. Fam. Int. Pleas. Hed. Str. 

Lime* High 2.73 5.70 5.06 5.16 1.40 

Pear High 2.62 5.82 5.16 4.40 1.40 

Blackcurrant High 2.44 5.67 4.85 5.48 1.73 

Marzipan High 2.73 6.12 5.27 4.96 1.65 

Spearmint High 2.71 5.90 4.96 5.08 1.48 

Aniseed Balls High 2.61 5.88 5.40 3.98 1.50 

Sports Rub High 2.69 5.60 5.52 4.21 1.08 

Cheddar Cheese* Low 1.24 3.14 5.27 2.35 1.86 

Ginger Low 1.66 3.39 5.22 3.10 1.39 

Sea Shore Low 1.53 2.96 5.20 2.20 1.84 

Rum Barrel Low 1.26 3.10 5.18 2.68 1.56 

Carbolic Soap Low 1.05 3.61 5.10 3.12 1.33 

Patchouli Low 1.62 3.55 5.06 3.02 1.31 

Mouse Low 1.53 3.36 5.06 2.70 1.50 

* Buffer items not included in analysis 

 

 

Visual stimuli. Seven irregularly-shaped polygons (Chuah, Maybery, & Fox, 2004) 

designed to prevent verbal rehearsal strategies (Attneave, Arnoult, & Attneave, 1956; 

Smith et al., 1995) were used as 2-back stimuli. These were presented using 
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Opensesame (Mathôt et al., 2012) in the centre of a 22-inch 60hz monitor as black line 

drawings on a white background, within a black border square of 62px by 62px (See 

Figure 10).  

Verbal stimuli. Eight phonologically dissimilar consonants were selected (B, F, H, K, M, 

Q, R, X) (Kane et al., 2007), and displayed centrally on a 22-inch 60hz monitor in size 

21pt. monospaced font. Stimuli were randomly presented in lower or upper case to limit 

responses based on the visual features of the letters (although one might argue that f, k, 

and m are visually similar in lower and upper case forms), and stimulus presentation 

timings and trial responses (Figure 10) were controlled by OpenSesame. 

4.1.1.3 Design 

Olfactory 2-back task. A continuous yes/no recognition paradigm was employed on two 

26-item sequences, where each trial necessitated a judgement as to whether the item had 

been presented two items previous. The low and high verbalisability odours were 

presented in the same blocked design used in Experiments 3.1 and 3.2, and Jönsson et 

al. (2011, Experiment 2), meaning participants experienced 26 trials of one odour set 

followed by 26 trials of the other set. A unique low or high verbalisability odour, 

corresponding to the odour set being tested, was presented as a buffer item in the first 

two trials of each 2-back task, where a ‘no’ response was guaranteed. Each remaining 

odour appeared as a lure three times and as a target once. In addition, the presence of 

close-lures was increased compared to earlier experiments to more closely match the 

number of targets, with a task containing 5, or 6, n+1 and n-1 lures. This adjustment was 

important for two reasons. First, it discourages a reliance on a familiarity-based strategy 

simply because the payoff from using a recollection-based strategy was not worth the 

use of additional resources (Ralph, 2014). Furthermore, it allows analysis of responses 

based on only recent-lure and target decisions, meaning judgements that may be based 
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solely on a familiarity criterion (non-recent lures) are not included in the index of 

working memory ability. 

A blocked design allowed the two sets to be considered as independent memory tasks, 

minimising cross-contamination of items from the other odour set. That is, a criticism of 

Experiments 3.3 and 3.4 was that the odour presented in the n-1 position, if different 

across the dimension of interest to the 2-back item and probe, may have influenced the 

probe’s acceptance or rejection through some combination of familiarity-based 

responding and a process-of-elimination strategy.  

The orientation of targets and lures within tasks were identical for all participants, but 

were counterbalanced such that the half of the participants performed the low 

verbalisability task first, and the other half the high verbalisability task first. In addition, 

order of trials (targets and lures) was counterbalanced between the low and high 

verbalisability tasks. The former counterbalancing accounted for practice effects, 

whereas the latter for differences in trial order difficulty. That is, the slightly different 

number of close lures in a sequence may have affected the difficulty of the task, but this 

was balanced across tasks between participants. 

Visual 2-back task. The visual 2-back task consisted of 2 blocks of 26 items, in an 

identical trial sequence to the two olfactory sequences. Two identical buffer images 

preceded the 24 critical 2-back trials in each block, and did not occur again in either 

sequence. The presentation order of the two visual blocks was randomised across 

participants.  

Verbal 3-back task. Pilot work (data unavailable) suggested that a 2-back task with 

verbal stimuli was close to ceiling, meaning a 3-back task was instead selected for 

verbal stimuli. The task necessitated a judgement whether the currently presented item 
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matched the item presented three trials previous. Consequently, the first three items in a 

block sequence were guaranteed ‘no’ responses, after which the fourth trial was 

compared to the first, fifth to the second, etc. Participants completed 3 unique blocks of 

40 trials, and were given the opportunity for a break between each block. For each 

sequence, a letter appeared once as a target, and four times as a lure, totalling 8 targets 

and 32 lures in each block. Furthermore, a minimum of 7 n+1, n-1, and n-2 lures 

occurred within a sequence, and a maximum of 10. The trial order was pre-generated 

and the same for all participants. It should be noted that this task therefore differs 

substantially to the 2-back tasks, particularly in terms of general working memory load 

and the presence of recent-lure trials. 

 

Figure 10. Schematic diagram of verbal 3-back and visual 2-back tasks. 

Olfactory discriminability task. A paired discrimination task was employed where 

participants made a same/different judgement for two odours presented in succession. 

There were 42 possible non-match combinations, where an odour within a set was 

paired with every other odour in that set (i.e. a high verbalisability odour was only 

tested against other high verbalisability odours). There were 14 targets, with each odour 
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appearing a matched pair once. Due to the large number of discriminability comparisons 

(56), participants performed half of the possible comparisons. To be clear, each 

participant performed 28 trials containing 14 verbalisable and 14 low verbalisability 

discrimination trials, consisting of 7 targets and 21 lures. Participants were randomly 

allocated to the first or second combination of odour pairs, and the presentation order of 

these pairs was randomised for each participant.  

4.1.1.4 Procedure 

Written consent was gained from all participants. Testing took place in a well-ventilated 

laboratory at Bournemouth University, and participants completed three versions of the 

n-back task and an odorant discriminability test in a single session, lasting 

approximately 50 minutes. Participants performed the computer-based (verbal and 

visual) and olfactory n-back tasks in a partially-counterbalanced order. Specifically, 

participants could perform either the olfactory or computer-based tasks first, but would 

always complete the two computer-based tasks together (though these two tasks were 

themselves performed in a counterbalanced order). The odour discriminability task 

always followed the n-back procedures, performed after a 10 minute break from the end 

of whichever n-back task was performed last.  

Olfactory 2-back task. Participants sat opposite the experimenter, separated by a 

wooden screen. An 8-item visual stimuli practice task, identical to the practice trials in 

Chapter 3, was performed to familiarise participants with the task even if they had 

already completed the computer-based 2-back task. Odours were presented birhinally by 

the experimenter holding the odour under the nose of the participant for 2 seconds. An 

8-second ISI separated presentation of the odours, during which participants made a 

yes/no 2-back decision. Participants were given water to sip throughout the task, and a 

break between the low and high odour sets to prevent olfactory fatigue.  
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Computer-based tasks. Computer-based verbal and visual n-back tasks were performed 

with participants sat approximately 50cm in front of a computer monitor. The software 

presented instructions to participants about the task ahead, and directed whether the task 

demand was to perform 2-back or 3-back comparisons. Participants performed a 10-

item practice task for the modality they were about to be tested on, which the researcher 

monitored to ensure participants understood the requirements of the task. Participants 

were allowed to retake the practice trials until the researcher was satisfied with their 

understanding, though no participant required more than two completions of the 10-item 

sequence.  

The verbal 3-back task presented participants with a sequence of letters separated by a 

fixation cross. Letter stimuli were presented for 500ms, followed by a fixation cross for 

2000ms, based on similar timings from the 3-back task applied in Jaeggi et al. (2010). 

Judgements could be made during either the stimulus presentation or fixation, and were 

made using the 1 key (No match), and the 3 key (Match). Presentation of the next item 

was not dependent upon receiving a participant response, and a missed response was 

logged as incorrect.  

The visual 2-back task presented participants with a sequence of abstract polygons, each 

displayed for 2000ms, separated by a 2000ms fixation cross. The presentation time of 

the visual stimuli was slowed compared to the verbal stimuli because pilot data 

indicated a 500ms presentation was too fast for effective completion of the visual task. 

The response procedure followed that described for the verbal task, except participants 

were required to match the present trial with that seen two items previous.  
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4.1.2 Results 

A different approach to analysis was taken in the current study compared to the n-back 

tasks in Chapter 3. Specifically, greater control of close-lures in the current n-back task 

sequences allowed assessment of false alarms for only these challenging trial types. 

These lures are suggested to be more involved in controlled responding in working 

memory due to the need to resolve conflicting evidence between a within-experiment 

familiarity signal and recollection process (Harbison et al., 2011; cf. Kane et al., 2007 

for the use of close lures as an index of working memory ability that is poorly correlated 

to complex span). The measurement of only close-lure false alarms produces an A’ score 

that is not inflated by easy non-recent lure rejections, and provides a more sensitive 

assessment of differences in working memory ability at the expense of using a lower 

number of trials (Ralph, 2014).  

4.1.2.1 N-back ability 

A’ sensitivity. Above-chance performance was assessed using one sample t-tests against 

an A’ score of 0.5. All comparisons were significant (ps. < .001), and the data strongly 

supported above-chance performance, BF10 > 1,000.  

Figure 11 shows the mean A’ sensitivity score across the four n-back tasks. A’ scores 

were entered into a within-participants ANOVA across the four tasks, though it should 

be noted that such comparisons are problematic given the differences in methodology 

across modalities. The findings can, however, be used as a general indicator of how well 

participants were able to perform each task. A significant main effect of task modality 

was found, F(3, 165) = 10.58, p < .001, ηp
2 = .16 (and a main effects model preferred to 

the null model, BF10 > 1,000). This main effect was further analysed with paired 
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comparisons2 and Bayes Factor t-tests, and revealed support for better performance in 

the verbalisable odour task than the low verbalisability odour task (p = .005, BF10 = 

13.27). This replicates the verbalisable advantage reported in Experiments 3.1-3.4 using 

a more stringent calculation of A’ sensitivity. There was also support for a difference 

between visual 2-back and low verbalisability odour 2-back performance (p = .003, 

BF10 = 11.59), and between visual 2-back and verbal 3-back performance (p < .001, 

BF10 > 1,000), with better performance in the visual 2-back task. Verbalisable odour 

performance was also higher than the verbal 3-back performance, with strong evidence 

for a difference between the two scores (p < .001, BF10 = 753.98). Finally, there was 

evidence against a difference between verbalisable odour performance and visual 

performance (p = .657, BF10 = 0.16), and between low verbalisability odour and verbal 

3-back performance (p = .334, BF10 = 0.23). 

 

Figure 11. Mean A' sensitivity scores across the four different modality n-back tasks. 

                                                 
2 The p values reported in this section are uncorrected, but should be compared to α = .017.  
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Hit and close-lure false-alarm rate analysis. The differences in hit and false alarm rates 

were broadly similar to the A’ comparisons. That is, there was similar performance 

between verbalisable odour and visual n-back tasks, and better performance than the 

verbal 3-back task. This did, however, include higher hit rates in the low verbalisable 

odour n-back than in the verbal 3-back task, despite evidence for no difference between 

the two tasks in A’ scores (see Appendix D for a full write-up of these results). 

4.1.2.2 Odorant discriminability 

The discriminability of low verbalisability and verbalisable odours was assessed to 

explore the extent of the advantage odour verbalisability has on item discriminability. A’ 

was calculated from the proportion of hits (correct match responses) and false alarms 

(incorrect match responses), and compared using a paired t-test and Bayes Factor 

analysis. This revealed evidence against a difference between low and high verbalisable 

odour discriminability, t(55) = 0.96, p = .341, d = 0.19, BF10 = 0.23, despite the 

performance differences observed in the n-back task, above. Furthermore, A’ sensitivity 

was significantly above chance for low, t(55) = 66.11, p < .001, d = 8.84, BF10 > 1,000, 

and high verbalisability odours, t(55) = 42.15, p < .001, d = 5.63, BF10 > 1,000.  

4.1.2.3 Correlation matrix 

Table 4 shows a correlation matrix computed for A’ scores across tasks. First, the 

theoretically interesting comparisons between odorant discriminability and olfactory 

working memory ability showed a positive relationship between low verbalisability 

odour discriminability and both low verbalisability (r = .30, BF10 = 4.11) and 

verbalisable (r = .32, BF10 = 5.09) odour working memory. In contrast, there was 

evidence against a positive relationship between verbalisable odour discriminability and 

low (r = -.05, BF10 = 0.13) and high (r = -08, BF10 = 0.29) verbalisability odour working 

memory. This is a perplexing pattern of results which suggest a qualitative difference 
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between verbalisable odour discriminability and low verbalisable odour 

discriminability, but also from both n-back tasks regardless of odour verbalisability. 

Comparisons between n-back performance revealed anecdotal (BF < 3, Jeffreys, 1961) 

support for a moderate positive correlation between low and high verbalisability odour 

working memory, r = .27, p = .047, BF10 = 2.24. In contrast, there was anecdotal 

evidence against a positive correlation between low verbalisability odours and visual 

working memory, r = .14, p = .292, BF10 = 0.49, and verbal working memory, r = .19, p 

= .168, BF10 = 0.77. For verbalisable odour working memory, however, there was 

support for a moderate correlation with visual working memory, r = .30, p = .027, BF10 

= 3.52, and with verbal working memory, r = .30, p = .026, BF10 = 3.70. Finally, there 

was strong support for a moderate positive correlation between verbal and visual 

working memory, r = .49, p < .001, BF10 = 371.28. 
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Table 4  

Correlation matrix of A' scores for the four n-back tasks, and two tests of odour 

discriminability. 

 

1. 2. 3. 4. 5. 6. 

1. Low verbalisability odour 2-back — .27* .14 .19 .30* -.05 

2. Verbalisable odour 2-back 

 

— .30* .30* .32* .08 

3. Visual 2-back 

  

— .49** .07 .03 

4. Verbal 3-back 

   

— -.06 .09 

5. Low verb. odour discriminability     — -.05 

6. Verbalisable odour discriminability      — 

* p < .05       

** p < .001       

4.1.3 Discussion 

The aim of the present study was to inspect the relationships between performances 

across different-modality n-back tasks. Although this design does not allow assessment 

of the precise strategies involved, it does allow differences in the underlying processes 

engaged across different stimuli to be examined. That is, an individual differences 

design would predict a participant to show similar n-back performance (relative to other 

participant scores) across tasks if similar working memory processes are being engaged. 

In addition, this experiment addressed an important methodological issue arising from 

earlier n-back studies in the thesis. Namely, recent lures were controlled and only 

included in the calculation of A’. This control ensures that participants cannot perform 

the task above chance using a strategy based uniquely on familiarity (as recent lures are 

more familiar than targets). Despite this control, the present experiment replicates the 

verbalisable advantage reported across the Chapter 3 experiments. Furthermore, it is 
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important to note that n-back performance for low verbalisable odours remained above 

chance. This shows that n-back performance for low verbalisable odours was not 

supported uniquely by a reliance on familiarity. 

The results of the correlational analysis showed an expected relationship between the 

visual 2-back and verbal 3-back task which supports a general executive requirement 

when performing the n-back procedure (e.g. Schmiedek, Hildebrandt, et al., 2009; 

Schmiedek et al., 2014; Wilhelm et al., 2013). Although weaker than the visual-verbal 

relationship, there were also moderate correlations between the verbalisable odour 2-

back task and both verbal and visual tasks. This supports a shared mechanism for 

performing these n-back tasks, likely related to the application of controlled attention in 

working memory (Engle & Kane, 2004; Oberauer et al., 2000; Schmiedek, Hildebrandt, 

et al., 2009; Schmiedek et al., 2014; Wilhelm et al., 2013). Importantly, the low 

verbalisability odour 2-back task did not correlate with the verbal and visual n-back 

tasks, though there was (anecdotal) evidence for a relationship with the verbalisable 

odour n-back task. 

Taken together, the evidence supports a working memory ability for verbalisable odours 

which engages shared resources to those in verbal and visual working memory. Such a 

finding should be considered in the context of an odour representation that contains 

multiple memory traces (e.g. Baddeley, 2000; Paivio, 1990), and the equivocal findings 

related to olfactory imagery and rehearsal (Arshamian et al., 2008; A. J. Johnson & 

Miles, 2009; Stevenson, 2009; Stevenson et al., 2007). That is, the verbalisable odours 

may be characterised by their available semantic information, and it this information 

that enables working memory resources to access a stored representation in memory 

(Tomiczek & Stevenson, 2009). This is consistent with the episodic memory findings in 

Olsson et al. (2009) where identified odours showed similar recognition ability and 
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recollective experience to verbal stimuli. Like their findings, the data support that the 

mapping of semantic information to sensory stimulation produces odour memory with 

similar characteristics to verbal memory. Furthermore, like Olsson et al., the 

relationship between verbalisable odour working memory and the visual and verbal n-

back tasks can be explained by increased conceptual salience (Rajaram, 1998), which is 

expected to facilitate the ability to maintain and update bindings in working memory 

(Oberauer, 2005). 

The weak relationship between low verbalisability and verbalisable odour working 

memory suggests shared variance unrelated to the shared variance between verbalisable 

odour, verbal, and visual working memory. It is expected that such similarity, if not 

related to the application of working memory resources (and the lack of relationship 

between low verbalisability odours and the visual and verbal n-back tasks suggest that it 

is not), is instead related to individual differences in olfactory discrimination ability. 

However, why verbalisable odour discriminability was unrelated to the odour working 

memory tasks is unclear. Indeed, there was no evidence for a positive relationship 

between the two discriminability tasks, which is surprising because even if identified 

odours are processed differently to unidentified odours, there is still the need for 

olfactory perceptual processing (i.e. a pattern-matching process) before identification 

can occur (Stevenson & Wilson, 2007). Consequently, it suggests there may be different 

strategies applied in low and high verbalisable odour discrimination tasks, but that 

whatever strategy is applied in the verbalisable odour discrimination task is not related 

to the strategy adopted in the verbalisable odour n-back task. In addition, high 

performance in the discriminability task, which might suggest ceiling effects, do not 

appear to be problematic. This is because discriminability in the low verbalisability task 

(which did show a relationship with n-back tasks) was also high, and there was evidence 
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against a discriminability difference between the two. Further research is therefore 

required to explore why this qualitative difference occurs for performance in only the 

verbalisable odour discrimination task.  

It should also be noted that these discriminability findings contradict those in Jönsson et 

al. (2011), who showed better discriminability performance for their verbalisable 

odours. This cross-study disparity could be due to differences in the respective stimulus 

sets; however, despite this disparity in discriminability findings, the n-back findings 

replicate the previous experiments in Jönsson et al. (2011), and the earlier 

demonstrations of olfactory n-back performance in this thesis. Importantly, this 

verbalisability advantage has been demonstrated with a more sensitive assessment of the 

different trial types available in the n-back task, supporting above-chance performance 

that involves some control process to differentiate recently-present lures from targets 

(though as discussed in Chapter 3, strategies may still make use of a familiarity signal to 

make this decision, Juvina & Taatgen, 2007). 

The aim of an individual-differences assessment of only n-back performance was to 

remove paradigm-specific variance that would be present in comparisons with other 

tests of working memory capacity, such as complex span (Schmiedek et al., 2014). 

Although a relationship was found between verbal n-back, verbalisable odour n-back, 

and visual n-back performance memory, some non-trivial differences between tasks 

should be noted. First, whilst n > 1 is generally considered a task requiring maintenance 

+ manipulation (Ragland et al., 2002), the requirements for verbal stimuli was a 3-back 

comparison which not only adds difficulty, but may change the way targets and close-

lures interact. For example, a disruptive effect to targets from immediately preceding n-

1 lures occurs in a 3-back task, but not in a 2-back task (Kane et al., 2007). However, 

notwithstanding this methodological difference, relationships were found between the 
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verbal 3-back and both the 2-back tasks for verbalisable odours and visual stimuli. 

Second, speeded presentation of visual and verbal information was implemented to 

prevent performance levels at ceiling, but this could have limited the rehearsal processes 

that could be engaged in a slower n-back procedure. The olfactory n-back task in 

comparison, with its 8-second ISI, may have encouraged a slower control process for 

completion of the task (Ralph, 2014).  

Furthermore, the changing order of n-back tasks resulted in some participants 

performing the discriminability task immediately following the odour n-back task, in 

contrast to participants who performed the olfactory n-back task first, and received a 

larger break between olfactory-related tasks as a result. Although the closeness of 

olfactory tasks may have resulted in reduced discrimination ability for some 

participants, counterbalancing of task order should mitigate any particular bias 

emerging. In addition, there was a 10-minute break enforced after the end of the final n-

back task, designed to mitigate fatigue effects from these heavy olfactory requirements. 

In summary, the present study reports a relationship between n-back performance for 

verbalisable odour, verbal, and visual stimuli and is interpreted as support for 

application of controlled attentional processes for these stimulus types. In contrast, low 

verbalisability odours did not correlate with visual and verbal stimuli suggesting that 

such controlled attentional processes are not employed for low verbalisability odour 

working memory. The findings have important implications for the role of semantic 

information in olfactory memory, and the ability to engage internal attention to olfactory 

perceptual representations in memory. Specifically, the findings suggest that the ability 

to consciously access an internal representation of an olfactory experience may not be 

possible unless the representation is accompanied by semantic information.
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Chapter 5. Proactive Interference in Olfactory Working Memory  

5 Chapter summary 

Chapters 3 and 4 have demonstrated working memory ability in olfaction that may be 

qualitatively different when items are verbalised, or when semantic information is 

available. One candidate explanation for this difference concerns differences in conflict 

resolution between high and low verbalisable odours for previously presented odours. 

To examine this proposition, Chapter 5 examines item-specific olfactory proactive 

interference (PI) effects for high and low verbalisable odours, and undertakes 

comparisons with verbal and non-verbal visual stimuli. Proactive interference in 

olfaction has been proposed to be particularly strong (Lawless & Engen, 1977), and has 

been proposed as evidence for independent processing of olfactory information in 

working memory. 

Using a sequential recent probes task, no evidence for PI was found with hard-to-

verbalise odours (Experiment 1). However, verbalisable odours did exhibit PI effects 

(Experiment 2). These findings occurred despite above-chance performance and similar 

serial position functions across both tasks. Experiments 3 and 4 applied words and 

faces, respectively, to the modified procedure, and showed that methodological 

differences cannot explain the null finding in Experiment 1. The extent to which odours 

exhibit analogous PI effects to that of other modalities is therefore argued to be 

contingent on the characteristics of the odours employed. 
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5.0 Chapter Introduction 

Memory for a stimulus can be affected by stimuli that both precede (proactive 

interference: PI) and succeed (retroactive interference: RI) the to-be-remembered (TBR) 

stimulus. Whilst effects of interference on verbal stimuli are well established (Craig, 

Berman, Jonides, & Lustig, 2013; Jonides & Nee, 2006; Monsell, 1978; Postman & 

Underwood, 1973), the role of interference in olfactory memory is both under-

researched and contradictory.  Early work reporting a flat forgetting function for 

olfactory stimuli over extended retention intervals (Engen et al., 1973; Engen & Ross, 

1973; F. N. Jones et al., 1978; Lawless & Cain, 1975) was attributed to weak RI coupled 

with strong PI (Lawless & Engen, 1977). However, this differential weighting in the 

levels of RI and PI contradict the serial position functions typically reported for 

olfactory stimuli with odours. That is, strong PI should produce a serial position 

function with primacy and weak recency. Specifically, monotonically increasing PI 

throughout the sequence should impair memory for latter list items to a greater extent 

than early list items. In direct contradiction to that prediction, primacy is rarely 

observed for olfactory short-term memory tasks (A. J. Johnson et al., 2013; A. J. 

Johnson & Miles, 2007, 2009; Miles & Hodder, 2005 c.f. Miles & Jenkins, 2000; Reed, 

2000). Indeed, the presence of recency but not primacy (Johnson, Cauchi, & Miles, 

2013; Johnson & Miles, 2007; Miles & Hodder, 2005; c.f. Miles & Jenkins, 2000; Reed, 

2000), can be interpreted as evidence for RI, with RI monotonically decreasing 

throughout the sequence (it should be noted that support for RI in olfactory memory can 

also be found in Walk & Johns, 1984, and Köster, Degel, & Piper, 2002). Serial position 

data suggests that olfactory STM is not susceptible to PI and, the present set of 

experiments, therefore, seek to directly examine this proposition.   
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There is a paucity of studies examining PI in olfactory memory; with some support for 

PI found indirectly. For example, Valentin, Dacremont, and Cayeux (2011) showed 

recognition memory for odours declined as a function of experimental stage. Whilst this 

decline in performance may be interpreted as a build-up of PI, it is difficult to 

deconfound from the more general effects of olfactory fatigue (as reported by Reed, 

2000). Köster et al. (2002) examined PI effects more directly using an implicit memory 

procedure in which two different experimental rooms were paired with odours. At the 

end of the study, participants were required to rate the extent to which certain odours 

‘fit’ 12 different environmental contexts shown on a screen (of which 2 were the rooms 

used previously). They showed that the paired association for the second room-odour 

association can be disrupted (as indexed by a reduction in mean rating of ‘fit’) by 

memory for the initial room-odour association; a demonstration of proactive 

interference. 

The distinction between Valentin et al. (2011) and Köster et al. (2002) is important 

because it highlights that one can subdivide PI effects into item-nonspecific and item-

specific PI (Postle & Brush, 2004; Postle, Brush, & Nick, 2004). Non-specific PI can be 

conceptualised as a general build-up of interference following repeated exposure to a 

particular stimulus type and, thus, is difficult to differentiate from olfactory fatigue. In 

contrast, item-specific interference (e.g. Jonides & Nee, 2006; Monsell, 1978) concerns 

memory for a previously presented item (e.g. initial presentation of “lavender”) 

interfering with a subsequent memory for that item (e.g. later presentation of 

“lavender”). Item-specific PI may, therefore, be taken as a direct measure of PI and is 

the focus of the present set of experiments.  

The present study employs the recent-probes task (an established measure of item-

specific PI, see Jonides & Nee, 2006, for review). In this task, participants undertake a 
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series of trials, where each trial comprises a TBR memory set that typically numbers 4-

items, and is followed by a single yes/no recognition probe. This probe is taken either 

from the preceding memory set (positive probe), or from an earlier TBR memory set 

(negative probe). The important manipulation for this task concerns previous exposure 

to the negative probe (also referred to as the ‘lure’). Negative probes are divided into 

recent negative (RN) and non-recent negative (NRN). For the RN probes, the probe is 

taken from the memory set immediately preceding the current trial, whilst for the NRN 

probes, the probe is taken from the memory set presented 3 trials earlier. Thus, the key 

manipulation is the recency of the previous presentation of the negative probe. Item-

specific PI effects are evidenced by both lengthened reaction times and an increase in 

errors for the RN probes in comparison to the NRN probes (Monsell, 1978).  Both 

effects are typically interpreted via an increased need to resolve interference (Jonides, 

Smith, Marshuetz, Koeppe, & Reuter-Lorenz, 1998). That is, due to the strong memory 

for the RN probe, the individual experiences difficulty in determining whether that 

strong memory is a consequence of that item being included in the present trial, or being 

presented in a recent trial. This confusion regarding the origins of the RN probe is also 

reflected in metacognitive measures. Specifically, confidence ratings for correct 

rejections of the RN probe are typically lower than those for the NRN probe, and false 

alarms may reflect the presence of high-confidence intrusion errors (Jacoby, Wahlheim, 

Rhodes, Daniels, & Rogers, 2010; Wahlheim & Jacoby, 2011). 

Different explanations have been proposed to account for these RN probe PI effects. 

Familiarity-inhibition (Jonides, Badre, Curtis, Thompson-Schill, & Smith, 2002; 

Mecklinger, Weber, Gunter, & Engle, 2003) states that the RN probe provokes powerful 

familiarity and this is typically associated with a positive response. Therefore, a correct 

rejection of the probe necessitates inhibition of that familiarity signal. It is this conflict 
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between familiarity for the RN probe and memory for the TBR items in the present trial 

that causes errors and lengthened response times (Badre & Wagner, 2005). Similarly, 

context-retrieval models propose that the RN probe has less accuracy due to errors in 

the source memory for that item (Badre & Wagner, 2005). Put simply, the recency of the 

RN probe increases the likelihood that participants confuse the origins of the probe and 

believe that it was experienced in the present trial as opposed to the preceding trial.  

The present set of experiments examines recent probe PI effects for olfactory stimuli. To 

date, the extent to which the recent probe PI effect is found across different stimulus 

types is equivocal (Jonides & Nee, 2006). For example, behavioural recent probe PI 

effects have been found with abstract symbols, letters, spatial locations, and unfamiliar 

faces (Badre & Wagner, 2005; Leung & Zhang, 2004; Mecklinger et al., 2003; Postle et 

al., 2004; Prabhakaran & Thompson-Schill, 2011), but not for colours and some shapes 

(Postle et al., 2004). It is not clear why these differences occur, but one explanation 

concerns stimulus distinctiveness (Mecklinger et al., 2003). According to Mecklinger et 

al. (2003), when stimuli are more distinct the memory representation for the items are 

more defined (and less fuzzy), resulting in a stronger match/mapping between the RN 

probe and previous presentation of that item. This stronger match results in an increased 

PI effect for the RN probe. 

A stimulus characteristic pertinent for olfactory stimuli, that may mediate 

distinctiveness and consequently the recent probe PI effect, is verbalisability. 

Mecklinger et al. (2003) suggest stimuli that can be represented verbally are more 

distinct than non-verbal stimuli. This leads to the prediction that stronger PI effects 

should be observed for those olfactory stimuli that can be easily verbalised. However, 

previous studies have shown that manipulating levels of verbal facilitation does not 

affect the recent probe PI effect (Brandon, Jha, Trueswell, Barde, & Thompson-schill, 
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2003; Brandon, 2004, in Jonides & Nee, 2006). Indeed, inhibiting verbal labelling via a 

concurrent articulation condition has been shown to increase the effects of probe 

recency (Atkins, Berman, Reuter-Lorenz, Lewis, & Jonides, 2011). The Mecklinger et 

al. and Atkins et al. studies therefore provide competing predictions for the examination 

of olfactory PI effects and these competing predictions are directly tested in 

Experiments 1 and 2. According to the Mecklinger et al. (2003) account, one might 

predict stronger PI effects for verbalisable odours, compared to hard-to-verbalise 

odours, due to higher levels of distinctiveness when using verbal representations. In 

contrast, increased interference during articulatory suppression suggests that 

verbalisation may be a protective factor against recent probe PI effects (Atkins et al., 

2011), and therefore one might predict less PI for verbalisable odours.  

Experiment 1 directly tests short-term item-specific PI effects for olfactory memory 

using the recent probes task. Hard-to-verbalise odours are initially employed in order to 

investigate memory for olfactory percepts (rather than verbal labels of those percepts). 

Indeed, there is evidence that verbalisable and non- verbalisable odours may be 

represented differently in memory (e.g. Zelano, Montag, Khan, & Sobel, 2009), with the 

ability to verbalise odours shown to produce memory effects similar to that shown with 

words (Olsson, Lundgren, Soares, & Johansson, 2009). To be clear, since verbalisable 

odours may exhibit PI effects resulting from verbal rather than olfactory perceptions, 

Experiment 1 employs hard-to-verbalise odours. 

In the classical recent probes procedure described above (see Jonides & Nee, 2006), 

participants are simultaneously presented with an array of TBR items (typically four) 

and followed by a single test probe. However, since odours cannot easily be 

differentiated following simultaneous presentation, a modification of the recent probes 

task is described in which the TBR items are presented sequentially. In this procedure, 
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participants are presented with sequences of odours followed at test by a single yes/no 

recognition probe. The present study additionally includes an analysis of serial position 

for two reasons. First, this analysis provides another approach through which cross-

modal STM comparisons can be made. There is some debate as to whether odours 

produce qualitatively different serial position functions to that of other stimulus types 

(e.g. see Johnson & Miles, 2009; Reed, 2000) and this study assesses cross-modal 

differences in yes/no recognition functions. Second, immediate yes/no recognition has 

been shown to produce a specific serial position function for visual stimuli (Hay et al., 

2007; A. J. Johnson, Volp, & Miles, 2014; Kerr, Avons, & Ward, 1999); which in later 

studies using visual stimuli (Experiments 3 and 4) can be used to check whether the task 

has produced this canonical function.  Based upon these previous studies (Hay et al., 

2007; Johnson et al., 2014; Kerr et al., 1999), it is predicted that recognition for positive 

probes (i.e. odours that were presented in the preceding sequence) will produce serial 

position functions comprising recency but not primacy.  

It is, however, responses to the negative probes that are important in determining any 

recent probe PI effects. Error rates (false alarms) are therefore compared for the RN 

probe compared to the NRN probe, with PI evidenced by increased false alarms for the 

RN probe. In addition, response confidence resolution is reported for the test probes as a 

more subtle measure of PI. Confidence resolution is an item-level gamma correlational 

measure (Roediger III & DeSoto, 2014) showing the intuitive positive relationship 

between confidence and accuracy (Wahlheim & Jacoby, 2011). However, one might 

predict a reduction in the strength of this correlation when responding to a RN probe 

(Brewer & Sampaio, 2012; Roediger III & DeSoto, 2014; Wahlheim & Jacoby, 2011). 

Since the strength of familiarity for the RN test probe is of less utility in accurately 

determining if that item was included in the present TBR memory set, the strength of 
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the correlation between confidence and accuracy should decrease. Consequently, a 

recent probe PI effect for hard-to-verbalise olfactory stimuli would be evidenced by two 

outcomes. First, there should be an increased level of false alarms for the RN probe 

compared to the NRN probe. Second, there should be a reduced accuracy-confidence 

correlation for the RN probe compared to the NRN probe. 

As stated previously, if distinctiveness determines recent probe PI effects (Mecklinger et 

al., 2003) a lack of PI is predicted for the hard-to-verbalise odours. However, if limiting 

verbal coding accentuates the recent probe PI effect (see Atkins et al., 2011), a strong PI 

effect for the hard-to-verbalise odours is predicted. Indeed, since parallels have been 

suggested between the processing of faces and odours (Kärnekull et al., 2015) a drop in 

accuracy is predicted for the RN probe that is comparable to that found with faces 

(Brandon et al., 2003 reported a 15% drop in accuracy for face stimuli).  

5.1 Experiment 1: Recent-probes task with low verbalisability odours 

5.1.1 Method 

5.1.1.1 Participants 

Twenty-four Bournemouth University students (non-smokers, mean age = 25.08, SD = 

5.90, 11 females, 13 males) participated and received course credit or a £10 honorarium. 

Participants who self-reported olfactory impairments (e.g. symptoms of cold) were 

excluded. Additionally, participants aged older than 40 years were excluded (due to 

indications that olfactory-related abilities peak between the third and fifth decade, Doty 

et al., 1984). The study received ethical approval via the Bournemouth University 

research ethics procedure. 
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5.1.1.2 Materials 

Olfactory stimuli. The experimental stimuli comprised one-hundred and sixty food and 

non-food related odorants selected from a corpus of 200 odorants, prepared by Dale Air 

Ltd. (www.daleair.com). Each odorant comprised 5ml of an oil-based liquid, and was 

stored in an opaque test tube in order to mask the odorant’s colour. Twenty odours 

(Appendix E) were selected as the negative probe items; these odours were purposefully 

pre-selected as they were previously rated as difficult to verbalise These ratings were 

obtained from an earlier study that collected normative data for 200 odours (Chapter 2). 

The verbalisability rating used for stimulus selection was scored from 0-3 according to 

the quality of the verbal labels provided, with a lower score indicating vague or absent 

verbalisability. The 20 odours selected as negative probe items for the present study 

scored between 1.20 and 1.84 (M = 1.61, SD = 0.19), meaning that whilst some 

verbalisation may be possible, the labels tend to be vague or only refer to a broad 

category descriptor. 

5.1.1.3 Design 

A single yes/no recognition paradigm was employed to investigate the effect of PI on 

olfactory memory. Participants received 40 trials, where each comprised a sequence of 4 

odours followed by a single test-probe. In one half of the trials, the probe was an odour 

presented in the preceding sequence (positive probe) and in the other half of trials the 

probe was not presented in the preceding sequence (negative probe). In the 20 positive 

probe trials (P+), each of the four serial positions were tested on five different trials (i.e. 

the P+ tested each of the four serial positions an equal number of times). The to-be-

remembered sequence was unique, meaning that these items and the corresponding 

positive probes had not been experienced in any preceding trial. However, the principal 

independent variable concerned the 20 negative probes (P-): for 10 trials the probe was 
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taken from the trial sequence immediately preceding the present trial (the ‘recent 

negative’ probe: RN). For the remaining 10 trials the probe was taken from the trial 

sequence that occurred three trials prior to the present trial (the ‘non-recent negative’ 

probe: NRN). It is these negative probes that were the hard-to-verbalise odours 

described above. 

Three dependent variables were recorded. The yes/no response accuracy was recorded 

as the number of hits (correct positive probe recognition) and false- alarms (incorrect 

negative probe recognition). In addition, ratings were taken of the participant’s 

confidence that their response was correct, ranging from 1 (least confident) to 5 (most 

confident). 

5.1.1.4 Procedure 

Written consent was gained from all participants prior to testing. The memory tasks 

were performed in a well-ventilated laboratory. Participants sat opposite the 

experimenter, separated by an obfuscation screen. Throughout testing, participants were 

instructed to focus on a fixation cross located on this screen to minimise visual 

interference. Participants received four blocks of ten trials, with each block separated by 

a 5 minute resting period in which they were able to drink water. For each trial, a 

sequence of four odours was presented followed by a probe odour. Each odour was 

presented birhinally for 2-seconds during which participants were instructed to inhale 

deeply. A 2 second inter-stimulus interval (ISI) separated the presentation of each odour 

within the sequence, followed by a 5-second retention interval prior to presentation of 

the test probe. Participants were required to indicate verbally (yes/no) with respect to 

whether the probe odour had been present in the immediately preceding sequence. 

Participants additionally provided a verbal confidence rating from 1 (guess) to 5 
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(certain). Each trial was separated by 3 seconds and the completed task lasted 37 

minutes.  

Figure 12 provides a schematic of the trial structure and different types of trials. The 

composition of the sequences and the order of trial types were pseudo-randomised with 

the following restrictions: (1) In order to maximise the recency of the RN probe, the 

probe was always taken from the third or fourth serial position of the preceding trial. 

Consequently, the mean number of intervening items between original presentation of 

the odour and re-presentation of that odour as the RN probe was 5.5 (in addition, the 

RN could never follow a trial where that item was also used as the test probe in a 

positive probe trial). An example is seen in Figure 12 where the RN probe in trial 3 

(‘pear’) was the fourth item in the TBR sequence of trial 2. In this example, there were 

5 odours intervening between original presentation of ‘pear’ in trial 2 and use of ‘pear’ 

as the negative probe in trial 3. (2) The NRN probe was originally presented three trials 

prior to the current trial, and was taken from the third or fourth serial position of that 

trial. Consequently, the mean number of intervening items between original presentation 

of the odour and re-presentation as the NRN probe was 15.5. An example is seen in 

Figure 12 where the NRN probe in trial 4 (‘honey’) was the third item in the TBR 

sequence of trial 1. In this example, there were 16 odours intervening between original 

presentation of ‘honey’ in trial 1 and use of ‘honey’ as the negative probe in trial 4. (3) 

Presentation of the negative probe and its original presentation in a previous trial could 

not overlap blocks, since the 5-minute inter-block interval would affect temporal 

recency of the negative probe. As a result, a block of trials could not begin with a 

negative probe. 
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Figure 12. Schematic diagram of the recent probes task. The negative probe is taken 

from the immediately preceding trial in trial 3 (recent), and from three trials previously 

in trial 4 (non-recent). 

5.1.2 Results 

5.1.2.1 Recognition Sensitivity  

Signal detection theory was used to determine that correct task performance exceeded 

chance. Overall response sensitivity (d’) was computed using the proportion of hits (H) 

and false alarms (FA), d′ = Φ-1(H) – Φ-1(FA) (Stanislaw & Todorov, 1999). Perfect 

scores for hits and correct rejections were adjusted by subtracting 1/(2N), where N 

equals the number of possible hits or correct rejections (Macmillan & Kaplan, 1985). 

This correction is required because d’ is indeterminate for perfect hit or false alarm rates 

due to an infinite z-score (Stanislaw & Todorov, 1999). Consequently, one assumes the 

‘true’ hit or false alarm rate is somewhere between one error and a perfect score, settling 

on half a miss/false alarm. A one sample t-test revealed that the d’ recognition score (M 

= 0.85, SD = 0.46) was significantly above zero (i.e. zero = no sensitivity), t(23) = 9.07, 

p < .001, d = 3.78, meaning that participants were able to perform the task above 

chance. In order to assess the possibility of olfactory fatigue (and/or non-specific PI), a 

one-way analysis of variance (ANOVA) compared d’ across the four experimental 

blocks and revealed a non-significant difference, F(3, 69) = 0.53, p = .664, ηp
2 = .02. 

This indicates a lack of olfactory fatigue and/or non-specific PI. 
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5.1.2.2 Serial position analysis 

Figure 13(A) shows the serial position function for hits and reveals a recency 

advantage. A one-way within-participants ANOVA was conducted and revealed a main 

effect of serial position, F(3, 69) = 3.83, p = .013, ηp
2 = .14. Bonferroni-corrected 

pairwise comparisons (α = .017) revealed a significantly greater number of hits at 

position 4 compared to position 2. No other comparisons were significant. In contrast to 

the serial position effects reported for accuracy, confidence ratings did not exhibit a 

main effect of serial position, F(3, 63) = 1.13, p = .344, ηp
2 = .05, and are shown in 

Figure 13(B). 

 

Figure 13. Serial position functions for (A) hits, and (B) confidence judgements for hits, 

for olfactory stimuli used in Experiment 1. Error bars denote mean standard error. 

5.1.2.3 Proactive Interference 

Accuracy. Table 5 displays negative probe accuracy (correct rejections) for NRN and 

RN probe types. A paired t-test reveals a non-significant difference between NRN (M = 

.65. SD = .17) and RN (M = .64, SD = .16), t(23) = 0.09, p = .464, one-tailed, d = 0.02, 

95% CI [-.09, .10]. 
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To further examine whether one can accept the null hypothesis of no PI, Bayes Factor 

(B) are reported, calculated using the procedures outlined in Dienes (2014). This 

analysis differs to BF reported in earlier chapters of this thesis due to the use of a 

plausible prior, based on previous research in the field (compared to earlier studies 

which used a default Cauchi prior width). Proposed cut-offs for acceptance of a 

hypothesis (Jeffreys, 1961), and states a B above 3 as providing substantial support for 

the alternative hypothesis, and below 1/3 provides substantial support for the null. A B 

that falls between 1/3 and 3 deems the data insensitive as to whether the alternative or 

null hypothesis should be accepted (where 1 equals equivalent evidence for the null and 

alternative hypotheses). The notation in the present study therefore follows the format 

BH(0, X), which refers to the specific prior used to test each hypothesis. Here, ‘H’ 

indicates a half-normal prior distribution, ‘X’ the predicted SD of this half-normal 

distribution, and the ‘0’ signifies this comparison is against a null hypothesis of no 

difference.  

For the present experiment, the predicted SD was 15% of the NRN probe score, taken 

from the non-verbal (facial stimuli) recent-probes study in Brandon et al. (2003). The 

SE calculated from the data was corrected to adjust for a small sample size using the 

formula SE * (1 + 20/(df x df)) (Dienes, 2008). The B value falls within the ‘insensitive’ 

range, BH(0, 15%) = 0.46, but does indicate that the null hypothesis (no PI) was 2.19 times 

more likely than the alternative. 

Confidence resolution. The extent to which confidence judgments are predictive of a 

correct response for RN and NRN was analysed using confidence resolution. Item-level 

gamma correlations were calculated separately for RN and NRN probes whereby 

confidence rating (1-5) was correlated with accuracy (0 or 1) (see Table 5). The 

coefficients were then compared between the two probe types. A positive gamma 
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coefficient reflects effective ability of confidence ratings to discriminate between 

correct responses and intrusion errors (Jacoby et al., 2010; Wahlheim & Jacoby, 2011). 

A reduction in the positive coefficient, or a negative correlation, reflects the influence of 

intrusion errors where a participant gives a highly confident false alarm. When 

calculating item-level gamma in the present and future experiments, participant data 

was not analysed when the responses of a participants were either all correct or all 

incorrect; this is because it is not possible to calculate a correlation coefficient without 

variance in scores. Consistent with the accuracy analysis above, there was no difference 

between RN and NRN in respect to confidence resolution t(22) = 0.82, p = .211, one-

tailed, 95% CI [-.23, .54], d = 0.27. Furthermore, the Bayes Factor (using a predicted 

effect of 0.24 based on findings in Wahlheim & Jacoby, 2011) was insensitive, BH(0, 0.24) 

= 1.11, indicating a lack of evidence for or against the null and alternative hypotheses.  

Table 5  

The proportion of correct rejections, and the confidence judgement resolution, for low 

verbalisability olfactory negative probes. Standard error of the mean is presented in 

parentheses. 

  Non-Recent Negative Recent Negative 

Correct Rejections .65 (.04) .64 (.03) 

Confidence Resolution .20 (.12) .05 (.12) 

5.1.3 Discussion 

Experiment 1 used a sequential recent probe task to examine the existence of PI in hard-

to-verbalise odours. Recognition sensitivity (d’) was significantly above chance, 

demonstrating that participants were able to perform the task. Yes/no recognition 

performance for the 4-odour sequences revealed some evidence for recency but no 
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primacy; a function consistent with when visual stimuli are employed in this task 

(Johnson, Volp, & Miles, 2014; Kerr, Avons, & Ward, 1999). However, the main focus 

of Experiment 1 concerned analysis of the negative probes (lures) and an absence of 

recent probe PI for hard-to-verbalise odours. This finding is in contrast to the prediction 

that hard-to-verbalise stimuli exhibit accentuated PI (see Atkins et al., 2011) and 

historical claims of strong PI in olfactory memory (Lawless & Engen, 1977). This is 

also in direct contrast to recent probe PI effects found with verbal stimuli and unfamiliar 

faces (e.g. Brandon et al., 2003; Craig et al., 2013; Postle et al., 2004), but is consistent 

with the absence of the effect with colours and shapes (Postle et al., 2004). 

Importantly, whilst both the accuracy and confidence resolution analyses revealed a 

non-significant difference between the RN and NRN conditions, Bayes Factors showed 

these comparisons to be insensitive. To be clear, whilst the data clearly fails to support 

the existence of a difference between RN and NRN (i.e. a recent probe PI effect), the 

data do not provide unequivocal evidence for the null hypothesis (i.e. that RN and NRN 

are the same). Bayes factors revealed that for accuracy the null hypothesis was 2.19 

times more likely than the alternative hypothesis, and for confidence resolution, the data 

supported neither the null or alternative hypothesis (B = 1.11). This suggests that there 

is tentative (although not strong) evidence that there is no difference between RN and 

NRN in respect to accuracy. 

There are a number of explanations as to why PI may be absent in Experiment 1. First, 

it is possible that the memory task was unsuitable for olfactory stimuli, masking any PI 

effects. One would argue that this is unlikely because (1) performance was significantly 

above chance and (2) the conventional serial position function was observed for single 

yes/no recognition (e.g. Johnson et al., 2014; Kerr et al., 1999). 
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Second, the recent probe PI task typically presents the TBR memory set simultaneously 

at test (Jonides & Nee, 2006). Due to the constraints of olfactory perception, the 

memory set was presented sequentially at encoding in Experiment 1. It is possible that 

this methodological difference precludes PI for two possible reasons. First, in the 

present study there is a longer interval between initial presentation of the RN lure and 

its re-presentation as a test probe. Since the RN probe is less temporally recent, it may 

exhibit less interference. Second, with simultaneous presentation one could 

conceptualise the TBR items as a single item in memory, whereas for sequential 

presentation there are 4 discrete items presented. This would result in the RN probe in 

the present study being less recent in respect to the number of intervening items. The 

extent to which sequential presentation prevents the recent probe PI effect is addressed 

in Experiment 3. 

A third explanation for the absence of PI in Experiment 1 concerns the characteristics of 

the stimuli. The negative probe odours were purposely selected for their low 

verbalisability score (using normative ratings from Chapter 2). The purpose of this 

selection was to examine PI effects for olfactory memory rather than memory for the 

verbal recoding of olfactory stimuli. However, it should be noted that the normative data 

from Chapter 2 reveal a strong positive correlation between verbalisability and 

familiarity (r = .88). It therefore follows that the negative probe odours used here 

possessed low familiarity ratings. Since unfamiliar odours are described as ‘fuzzy’ 

percepts with overlapping features (Stevenson & Mahmut, 2013a; Wilson & Stevenson, 

2006), it is possible that this lack of stimulus distinctiveness may have prevented PI. As 

described earlier, Mecklinger et al. (2003) argues that for less distinct stimuli, the 

mapping in memory between the original presentation of the item and its re-presentation 

as the negative probe is less clear, and, as a result, the level of PI for that item is 
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reduced. This explanation is supported by Prabhakaran and Thompson-Schill (2011) 

who demonstrated stronger PI effects for RN probes when using famous face stimuli 

(i.e. more familiar) compared to unfamiliar faces (even after accounting for verbal 

labelling differences). 

5.2 Experiment 2: Recent-probes task with verbalisable odours 

Experiment 2 is designed to examine the extent to which the absence of the PI effect in 

Experiment1 is due to using hard-to-verbalise odours. Using verbalisable odours for the 

negative probes should increase stimulus distinctiveness and accentuate PI (Mecklinger 

et al., 2003). Indeed, there is reason to predict differences in memory between 

verbalisable and hard-to-verbalise odours, since prior work has shown not only that 

working memory accuracy levels are higher for verbalisable odours (e.g. Jönsson, 

Møller, & Olsson, 2011), but that different areas of the brain area activated for these 

different odour types (Zelano et al., 2009). In Experiment 2, increased use of verbal 

codes is expected for the odours; it is therefore predicted that recent probe PI effects 

will be more in line with those shown for verbal stimuli (e.g. Jonides & Nee, 2006). 

Specifically, for verbalisable odours item-specific proactive interference effects are 

predicted, such that (1) there are more false positives for the RN probe compared to the 

NRN probe, and (2) confidence resolution is reduced for the RN probe relative to NRN 

probe. 

5.2.1 Method 

5.2.1.1 Participants 

Twenty-four students from Bournemouth University (mean age = 24.96, SD = 6.37, 

females = 15, males = 9) participated in Experiment 2. As in Experiment 1, recruitment 

criteria required non-smokers under the age of 40 years. None had participated in 
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Experiment 1. The study received ethical approval via the Bournemouth University 

research ethics procedure. 

5.2.1.2 Materials 

The stimuli were as described for Experiment 1, with the crucial difference that 20 

odours rated high on verbalisability  were selected as the negative probe odours (see 

Appendix A). The verbalisability score for these odours was 0.78 SD above the mean 

for the stimulus set. Furthermore, as a manipulation check, an independent t-test 

revealed that verbalisability score for the negative probe odours used in Experiment 2 

was significantly higher than the negative probe odours used in Experiment 1, t(19) = 

13.37, p < .001, d = 4.23. In addition, the odours used for Experiments 1 and 2 also 

significantly differed on familiarity, t(38) = 6.17, p < .001, d = 1.95. 

Additional efforts were made to match the odours used as RN and NRN probes on 

intensity, pleasantness, and irritability normative data (Chapter 2). These comparisons 

revealed for no differences between groups (Table 6). 

 

Table 6  

Comparison of mean normative scores (Chapter 2) for olfactory stimuli in Experiment 1 

and 2 (p values are presented in parentheses). 

  Experiment 1 Experiment 2 t-test BN(0, 1) 

Verbalisability 1.61 2.34 -13.37 (< .001) - 

Familiarity 3.33 4.24 -6.48 (< .001) - 

Intensity 5.00 5.14 -0.55 (.585) 0.27 

Pleasantness 3.49 3.68 -0.54 (.601) 0.38 
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Irritability 4.22 4.00 0.70 (.491) 0.38 

 

5.2.1.3 Design 

The design followed that described for Experiment 1.  

5.2.1.4 Procedure 

The procedure followed that described for Experiment 1.  

5.2.2 Results 

The same analyses were conducted as described for Experiment 1. 

5.2.2.1 Recognition sensitivity 

A one sample t-test revealed that the d’ recognition score (M = 1.05, SD = 0.39) was 

significantly above zero (i.e. zero = no sensitivity), t(23) = 13.24, p < .001, d = 5.52, 

meaning that participants were able to perform the task above chance. A one-way 

analysis of variance (ANOVA) compared d’ across the four experimental blocks and 

revealed a non-significant difference, F(3, 69) = 0.53, p = .672, ηp
2 = .02. This, 

consistent with Experiment 1, indicates a lack of olfactory fatigue and/or non-specific 

PI. 

5.2.2.2 Serial position analysis 

Figure 14(A) shows the serial position function for hits and, consistent with the findings 

of Experiment 1, reveals a recency advantage. A one-way within-participants ANOVA 

was conducted and revealed a main effect of serial position, F(3, 69) = 7.08, p < .001, 

ηp
2 = .53. Bonferroni-corrected pairwise comparisons (α = .017) revealed a significantly 

greater number of hits at position 4 compared to positions 1 and 2. No other 

comparisons were significant. In contrast to the serial position effects reported for 
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accuracy, confidence ratings did not exhibit a main effect of serial position, F(3, 63) = 

0.67, p = .572, ηp
2 = .03, and is shown in Figure 14(B). 

 

Figure 14. Serial position functions for (A) hits, and (B) confidence judgements for hits, 

for olfactory stimuli used in Experiment 2. Error bars denote mean standard error. 

5.2.2.3 Proactive Interference 

Table 7 displays the mean accuracy and confidence resolution for the NRN and RN 

probes. A paired t-test reveals borderline statistically significant lower accuracy for the 

RN probes (M = .60, SD = .19), compared to NRN probes (M = .70, SD = .14), t(23) = 

2.037, p = .027, one-tailed, d = 0.85, 95% CI [.00, .18]. 

This effect is further supported by the Bayes factor which shows that the alternative 

hypothesis is 3.96 times greater than the likelihood of the null (BH(0, 15%) = 3.96). These 

findings indicate a PI effect for recognition accuracy.  

Consistent with the accuracy data, confidence resolution was significantly lower for RN 

probes (M = -.11, SD = .56), compared to that found with NRN probes (M = .33, SD = 

.33), t(21) = 3.63, p = .001, one-tailed, d = 0.95, 95% CI [0.19, 0.69], BH(0, 0.24) = 103.53. 

Taken together, this is strong evidence for a recent probe PI effect with verbalisable 

odours. 
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Table 7  

The proportion of correct rejections, and the confidence judgement resolution, for high 

verbalisability olfactory negative probes. Standard error of the mean is presented in 

parentheses. 

  Non-Recent Negative Recent Negative 

Correct Rejections .70 (.03) .60 (.05) 

Confidence Resolution .33 (.07) -.11 (.12) 

5.2.3 Discussion 

Experiment 2 reports recent probe PI effects for verbalisable odours both in respect to 

the correct rejection of negative probes and in respect to confidence resolution. That is, 

false alarms were greater for recent (RN) lures compared to NRN lures, and the positive 

relationship between confidence and accuracy seen for NRN lures was significantly 

lower, and negative, for RN lures. This is in stark contrast to Experiment 1, where, for 

hard-to-verbalise odours, evidence was weighted towards the null hypothesis of no PI 

effects. In discussing these findings one must firstly consider why hard-to-verbalise and 

verbalisable odours differ in PI, and secondly, explore how this speaks to recent probe 

PI effects with other stimulus types. 

First, it is intriguing that verbalisable and hard-to-verbalise odours exhibited different PI 

effects given similarities in performance across studies. That is, (1) participants 

performed in both studies above chance, (2) recognition sensitivity did not differ 

significantly between both tasks (t(46) = 1.63, p = .110, d = 0.47), though the data were 

insensitive to differences (BN(0, 0.3) = 1.18), and (3) the serial position functions for hits 

were qualitatively equivalent (recency but no primacy). As outlined earlier, it is possible 

that stimulus characteristic differences in respect to the distinctiveness of verbalisable 
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and hard-to-verbalise odours, underpinned the difference (Mecklinger et al., 2003). It 

should be noted that the hard-to-verbalise odours are also less familiar (Chapter 2), and 

representations for less familiar odours are argued to be less distinct with overlapping 

features (Stevenson & Mahmut, 2013a; Wilson & Stevenson, 2006). If the negative 

probe odours are less defined/distinct, it is possible that participants are less 

aware/confident that the current probe odour maps onto the representation for that same 

odour in the preceding trial (the RN probe) (an account outlined by Mecklinger et al., 

2003). The present findings may therefore not be attributed to stimulus verbalisability 

specifically, but from a reduction in stimulus distinctiveness from some combination of 

familiarity and verbalisability differences.  

Second, whilst the present findings fit with the Mecklinger et al. explanation, they are 

not necessarily consistent with recent probe PI effects found with other stimulus effects. 

For example, Atkins et al. (2011) showed greater PI effects during an articulatory 

suppression task, though they do suggest this is due to reduced distinctiveness of the 

episodic information rather than the verbalisability of the stimulus. However, Postle et 

al. (2004) reported no behavioural evidence for PI with shapes and colours; for which 

one might expect colours in particular to have easily accessible verbal labels. In 

addition, PI effects have been found with faces regardless of verbalisation (Brandon et 

al., 2003); a stimulus that is argued to be processed similarly to that of odours 

(Kärnekull et al., 2015). 

Any attempts at cross-modal comparisons with olfactory PI effects are, however, 

confounded by methodological differences. To reiterate, the recent probe PI procedure 

involves sequential presentation of the TBR memory set. In contrast, the classic version 

of the task involves simultaneous presentation of the memory set (see Craig et al., 2013; 

Jonides & Nee, 2006). It is therefore possible that differences in the encoding 
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experience of the memory set affects the magnitude of PI. To be clear, whilst 

Experiment 1 suggests that hard-to-verbalise odours differ from, for example, words 

(Jonides & Nee, 2006) and faces (Brandon et al., 2003), in not demonstrating a recent 

probe PI effect, it is possible that this apparent difference is underpinned by differences 

in method rather than stimulus. The sequential presentation method employed in 

Experiments 1 and 2 has two important implications. First, the time between initial 

odour presentation and the recent-negative probe item is greater than those typically 

seen in the recent-probes task (e.g. Badre & Wagner, 2005; Craig et al., 2013). Second, 

the relative isolation of the TBR items may have had some unknown effect on the item-

specific interference (though it should be noted that Monsell, 1978, did use sequential 

presentation of verbal stimuli in their seminal work). As a consequence, other stimulus 

types are applied to the sequential recent probe task in order to make meaningful 

comparisons with the olfactory PI findings reported in Experiments 1 and 2. 

5.3 Experiment 3: Recent-probes task with verbal stimuli 

Experiments 3 and 4 apply visual-verbal (words) and visual non-verbal (faces) stimuli 

to the sequential recent probes tasks used in Experiments 1 and 2. These stimulus types 

have been shown to exhibit recent probe PI effects when the memory set are presented 

simultaneously (Brandon et al., 2003; Craig et al., 2013; Postle et al., 2004). If these 

stimulus types also show PI for the sequential version of the task, it will demonstrate 

that hard-to-verbalise odours (Experiment 1) differ to other stimulus types in respect to 

the presence of PI. 
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Experiment 3 used words3 and based upon previous work showing PI effects with 

verbal stimuli (e.g. Jonides & Nee, 2006), PI was predicted to be evidenced by both 

higher false alarms and lower confidence resolution for the RN probe relative to the 

NRN probe. 

5.3.1 Method 

5.3.1.1 Participants 

Twenty-four students from Bournemouth University (mean age = 23.58, SD = 9.55, 

females = 20, males = 4) participated. None had participated in Experiments 1 or 2. The 

study received ethical approval via the Bournemouth University research ethics 

procedure. 

                                                 
3 Pilot testing using the presentation times employed in Experiments 1 and 2 (2 s exposure time 

and a 2 s ISI) revealed that direct methodological replication using verbal stimuli is 

unsuitable due to ceiling effects. Ceiling effects were also produced in two further pilots in 

which (1) presentation times for each stimulus item were reduced with ISIs increased 

(thereby maintaining the same temporal interval between re-presentations of the negative 

probe used in Experiments 1 and 2) and (2) reduced presentation times and ISIs, with 

increased inter-trial interval increased (again maintaining the same temporal interval 

between re-presentations of the negative probe used in Experiments 1 and 2). 

Consequently, presentation times, ISI, and time between trials in Experiment 3 were all 

proportionately reduced to increase task difficulty (i.e. presentation-interval ratios were 

identical to Experiments 1 and 2; however absolute timings were reduced).  This resulted 

in a reduction in the time elapsed between initial presentation and re-presentation as a 

negative probe (a mean of 3.45s between TBR item and RN probe in the present 

experiment, compared to a mean of 31s for Experiments 1 and 2), meaning the large 

temporal distance between items as a potential confound was not addressed in this 

experiment (to pre-empt, this issue is addressed in Experiment 4). However, the number of 

items between initial presentation of the item and re-presentation as the negative probe 

remained identical to that described for Experiments 1 and 2. 
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5.3.1.2 Materials 

Verbal stimuli were 656 high frequency, concrete nouns, selected from the N-Watch 

default vocabulary of 30,605 words (Davis, 2005). Mean word length was 6.4 letters 

(min = 6, max = 7), with 2 syllables. Minimum CELEX frequency (per million words) 

was 1.62 with a mean of 39.12 (SD = 88.06). These words were presented in the centre 

of a 22 inch monitor in size 18pt.  The open-source experimental presentation software 

OpenSesame  was used to present words and record responses.  

5.3.1.3 Design 

The design was as described for Experiments 1 and 2. 

5.3.1.4 Procedure 

The recent-probes procedure from Experiment 1 and 2 was adapted for verbal stimuli. 

Due to the brevity of the task, a total of 160 trials were presented to participants, with 

each trial comprising 4 TBR items followed by a single yes/no recognition probe.  

Testing took place at Bournemouth University in an individual laboratory booth. 

Participants gave written consent, and were instructed on the task procedure. A short (15 

trial) practice task preceded the testing phase in order to familiarise participants with the 

speeded presentation of items. Each TBR item was presented for 100ms, with a 100ms 

ISI presented as a fixation cross. A 250ms fixation interval separated the final TBR item 

and presentation of the recognition probe item. When this probe item appeared on the 

screen, participants were required to make a key press of ‘Z’ to make a negative 

response, and a ‘V’ key press for a positive response. Both decisions were made with 

the left hand. Immediately following the set membership decision, the probe was 

removed and ‘Confidence?’ appeared centrally on the monitor, prompting a numerical 

confidence rating of 1 (guessing) to 5 (certain) to be made with the right hand on the 
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number keypad. Participants were advised to make their responses to both decisions as 

quickly and accurately as possible. A 150ms fixation cross separated trials following 

both responses, and an enforced 30 second break was included every 25 trials. The 

testing lasted approximately 15 minutes. 

5.3.2 Results 

To enable direct comparison with Experiments 1 and 2, only the first 20 positive and 

negative probes (10 RN and 10 NRN) were analysed. 

5.3.2.1 Recognition sensitivity  

A one sample t-test revealed that the d’ recognition score (M = 2.35, SD = 0.71) was 

significantly above zero (i.e. zero = no sensitivity), t(23) = 16.26, p < .001, d = 6.78, 

meaning that participants were able to perform the task above chance. Item-nonspecific 

PI was analysed by splitting responses into 10-trial blocks (with the first 5 negative and 

positive probes allocated to block 1, etc.) and calculating d’. A one-way analysis of 

variance (ANOVA) compared d’ across the four experimental blocks and revealed a 

non-significant difference, F(3, 69) = 1.04, p = .380, ηp
2 = .04. This indicates a lack of 

task fatigue and/or non-specific PI. 

5.3.2.2 Serial position analysis 

Figure 15(A) shows the serial position function for hits and, consistent with the findings 

of Experiments 1 and 2, reveals recency but no primacy. A one-way within-participants 

ANOVA was conducted and revealed a main effect of serial position, F(3, 69) = 4.64, p 

= .005, ηp
2 = .17. Bonferroni-corrected pairwise comparisons (α = .017) revealed a 

significantly greater number of hits at position 4 compared to positions 1 and 2. No 

other comparisons were significant. As reported for Experiments 1 and 2, serial position 
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effects for confidence ratings were non-significant, F(3, 63) = 2.01, p = .121, ηp
2 = .08, 

shown in Figure 15(B).  

 

Figure 15. Serial position functions for (A) hits, and (B) confidence judgements for hits, 

for verbal stimuli used in Experiment 3. Error bars denote mean standard error. 

5.3.2.3 Proactive Interference 

Table 8 displays the mean accuracy and confidence resolution for the NRN and RN 

probes. A paired t-test reveals statistically significant lower accuracy for the RN probes 

(M = .84, SD = .13), compared to NRN probes (M = .90, SD = .12), t(23) = 2.89, p = 

.004, one-tailed, d = 0.54, 95% CI [.02, .11]. Bayes factor was again computed using a 

predicted drop of 10% for the RN probes; this is based upon verbal recent-probe 

findings (Craig et al., 2013; Jonides & Nee, 2006; Monsell, 1978). The Bayes factor 

provided strong support for the alternative hypothesis (BH(0, 7%) = 21.06). These findings 

indicate a strong PI effect for recognition accuracy.   

In contrast to the accuracy data, confidence resolution did not significantly differ 

between the RN (M = .14, SD = .57) and NRN probes, (M = -0.33, SD = 0.73), t(10) = 

1.76, p = .055, one-tailed, d = 0.72, 95% CI [-0.13, 1.07], BH(0, 0.7%) = 1.91.  
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Table 8  

The proportion of correct rejections, and the confidence judgement resolution, for 

verbal stimuli negative probes. Standard error of the mean is presented in parentheses. 

  Non-Recent Negative Recent Negative 

Correct Rejections .90 (.02) .84 (.03) 

Confidence Resolution .14 (.17) -.33 (.22) 

 

5.3.3 Discussion 

Experiment 3 provides strong support for recent probe PI effects for words using the 

sequential presentation method employed in Experiments 1 and 2. This strong effect 

was found in respect to accuracy. It is, however, also worth noting that PI effects were 

not found for words in respect to confidence resolution. This could be explained by low 

statistical power for this analysis. That is, calculating confidence resolution necessitates 

that the participant provides both correct and incorrect responses for the RN and NRN 

probes. However, since 13 participants provided perfect performance for the RN and/or 

the NRN probes, this prevented confidence resolution from being calculated for those 

participants. As a result, the statistics are based upon a sample of 9. Nevertheless, it 

should be noted that for the analysed data, the effect size was large (d = 0.72), providing 

some support for a PI effect with confidence resolution. 

The findings of Experiment 3, therefore, demonstrate that the apparent difference in 

susceptibility to PI for odours (Experiment 1) and verbal stimuli (Jonides & Nee, 2006) 

cannot be explained by the sequential presentation of the TBR items. The experiment 

has shown that the effect remains for verbal stimuli when the TBR items are presented 

sequentially rather than simultaneously. It is, however, of interest to note that whilst PI 
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was absent for Experiment 1 but observed for words in the present study, both hard-to-

verbalise odours and words exhibited qualitatively equivalent serial position functions 

(recency but no primacy: a function consistent with previous single yes/no recognition 

studies with verbal stimuli, Brian McElree & Dosher, 1989; Monsell, 1978). This shows 

some similarity in the memory functioning of hard-to-verbalise odours and words 

consistent with other recognition tasks (e.g. A. J. Johnson & Miles, 2007). 

Notwithstanding the use of sequential presentation in Experiments 1 and 3, there 

remains an important methodological difference between the two experiments. To avoid 

ceiling effects, the words were presented at a faster rate (100ms with a 100ms ISI) than 

the odours (2s with a 2s ISI). As a result, the average interval between initial 

presentation of an item and its re-presentation as the NRN or RN probe differed 

dramatically for words (NRN interval = 9.65s, RN interval = 3.45s) compared to odours 

(NRN interval = 79s, RN interval = 31s). If one assumes that PI reduces over time (an 

assumption on which the recent probe task is premised), then Experiment 1 is weighted 

against observing a PI effect for hard-to-verbalise odours relative to words in 

Experiment 3. Consequently, the difference between hard-to-verbalise odours and words 

in respect to PI may be due to presentation intervals rather than stimuli per se. 

5.4 Experiment 4: Recent-probes task with face stimuli 

Experiment 4 addresses the criticism that PI effects were not found for hard-to-verbalise 

odours (Experiment 1) due to long presentation intervals between initial presentation of 

the item and its re-presentation as the negative probe. This experiment employs faces as 

TBR stimuli for three reasons: (1) faces have previously exhibited a recent probe PI 

effect (Brandon et al., 2003), (2) pilot work revealed performance not to be at the 

ceiling when timings more closely reflected that used in Experiments 1 and 2, and (3) 
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faces are often considered a suitable comparison stimuli for odours due to possible 

holistic processing for both classes of stimuli (Kärnekull et al., 2015; Stevenson & 

Mahmut, 2013b). To ensure that the presentation intervals matched that described in 

Experiments 1 and 2, a 24s interval was introduced between each trial. As in the 

previous experiments, PI is examined by comparison between the RN and NRN probes 

in respect to both accuracy and confidence resolution. 

5.4.1 Method 

5.4.1.1 Participants 

Twenty-four students from Bournemouth University (mean age = 20.76, SD = 4.88, 

females = 22, males = 2) participated. None had participated in Experiments 1-3. The 

study received ethical approval via the Bournemouth University research ethics 

procedure. 

5.4.1.2 Materials 

One-hundred and sixty faces were randomly selected from the Glasgow Unfamiliar 

Face Database (Burton, White, & McNeill, 2010). All .jpg images were 350px x 473px, 

showed a front (full face) view with a neutral expression, and were cropped to remove 

any visible clothing. Stimuli were presented in the centre of a 22-inch 60Hz monitor and 

responses collected using OpenSesame (Mathôt et al., 2012). 

5.4.1.3 Design 

The same design was used as described for Experiments 1-3. 

5.4.1.4 Procedure 

Participants were tested individually in a laboratory booth at Bournemouth University. 

Participants were presented with on-screen instructions, and initiated the task by 

pressing the space bar. The trial started 1s after initiating the task, where four TBR items 
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were displayed sequentially for 250ms, with an ISI of 250ms. A retention interval of 

625ms separated the final TBR item and presentation of the recognition probe. The 

response format followed that described for Experiment 3. Following these responses, a 

24s delay (required to approximately match the total time of 29 seconds between initial 

presentation in the fourth serial position and RN probe, in Experiments 1 and 2) 

separated trials. Participants were warned 1 second before the beginning of the next trial 

by a change in the number of fixation dots in the centre of the screen. A total of 40 trials 

were performed, matching the 20 positive and 20 negative probes presented in 

Experiments 1 and 2. A 1-minute break separated each block of 10 trials. 

5.4.2 Results 

5.4.2.1 Recognition sensitivity  

A one sample t-test revealed that the d’ recognition score (M = 2.22, SD = 0.45) was 

significantly above zero (i.e. zero = no sensitivity), t(23) = 24.19, p < .001, d = 10.09. A 

one-way analysis of variance (ANOVA) compared d’ across the four experimental 

blocks and revealed a non-significant difference, F(3, 69) = 0.91, p = .441, ηp
2 = .04. 

This indicates a lack of task fatigue and/or item non-specific PI. 

5.4.2.2 Serial position analysis 

Figure 16(A) shows the serial position function for hits and, consistent with the findings 

of Experiments 1-3, reveals recency but no primacy. A one-way within-participants 

ANOVA was conducted and revealed a main effect of serial position, F(3, 69) = 3.37, p 

= .023, ηp
2 = .13. Bonferroni-corrected pairwise comparisons (α = .017) revealed a 

significantly greater number of hits at position 4 compared to position 2. No other 

comparisons were significant. Shown in Figure 16(B), confidence ratings also revealed 
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a significant main effect of serial position, F(3, 63) = 13.17, p < .001, ηp
2 = .36, with a 

strong recency effect evidence (position 4 > positions 1-3). 

 

Figure 16. Serial position functions for (A) hits, and (B) confidence judgements for hits, 

for facial stimuli used in Experiment 4. Error bars denote mean standard error. 

5.4.2.3 Proactive Interference 

Table 9 displays the mean accuracy and confidence resolution for the NRN and RN 

probes. A paired t-test reveals statistically significant lower accuracy for the RN probes 

(M = .70, SD = .16), compared to NRN probes (M = .80, SD = .16), t(23) = 3.09, p = 

.003, one-tailed, d = 0.63, 95% CI [.03, .16]. Bayes factor was again computed using a 

predicted drop of 15% for the RN probes (based on the recent probe PI effect reported 

for faces, Brandon et al., 2003). The Bayes factor provided strong support for the 

alternative hypothesis (BH(0, 15%) = 32.43). These findings indicate a strong PI effect for 

recognition accuracy. 

In contrast to the accuracy data, confidence resolution did not significantly differ 

between the RN (M = .03, SD = .42) and NRN probes, (M = 0.13, SD = 0.56), t(18) = 

0.67, p = .256, one-tailed, d = 0.22, 95% CI [-0.23, 0.44], BH(0, 0.24) = 0.92.  
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Table 9  

The proportion of correct rejections, and the confidence judgement resolution, for face 

stimuli negative probes. Standard error of the mean is presented in parentheses. 

  Non-Recent Negative Recent Negative 

Correct Rejections .80 (.03) .70 (.03) 

Confidence Resolution .13 (.13) .03 (.10) 

5.4.3 Discussion 

Experiment 4 provides a demonstration of recent probe PI with non-verbal visual 

stimuli (faces) using the sequential presentation method of the TBR items. This 

demonstrates that the recent probe PI effect found with faces (Brandon et al., 2003) is 

not reliant on simultaneous presentation at encoding. In addition, the PI effect was 

found despite lengthened intervals between presentation of an item and its re-

presentation as a negative probe. A 24s interval was introduced between the trials to 

ensure parity with Experiment 1 in respect to the timings of each trial. Following this 

manipulation one can conclude that, in contrast to faces, hard-to-verbalise odours 

exhibit no recent probe PI effect, and that this difference in neither a result of sequential 

presentation of the TBR items nor due to lengthened intervals between the re-

presentation of items. 

It should, however, be noted that PI was not reported for confidence resolution. Unlike 

Experiment 3, this non-significant effect does not appear to be due to reduced statistical 

power. Indeed, the effect size (d = 0.22) for the confidence interval resolution was 

notably smaller than Experiments 2 and 3 (d = 0.95 and 0.72, respectively). It is unclear 

why in Experiment 4, accuracy but not confidence resolution supports PI. 
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5.5 General Discussion 

This chapter has described four experiments which have examined cross-modal PI 

effects using the recent probes task. Evidence for PI was found with verbalisable odours 

(Experiment 2), words (Experiment 3), and faces (Experiment 4), but no PI for hard-to-

verbalise odours (Experiment 1). Such a finding may provide support against a domain-

general effect in the recent-probes task (Jonides & Nee, 2006; Leung & Zhang, 2004). 

In addition, the findings with words and faces extend the established recent probes 

effect (Brandon et al., 2003; Craig et al., 2013; Jonides & Nee, 2006) to a version of the 

task in which the TBR memory set is presented sequentially (Experiments 3 and 4).  

It is unclear why low verbalisability odours have not demonstrated recent probe PI 

effects. However, the contrasting PI findings of Experiments 1 (low verbalisability 

odours) and 2 (verbalisable odours) are consistent with other studies showing memory 

differences for verbalisable and hard-to-verbalise odours (e.g. Jönsson et al., 2011; 

Zelano et al., 2009). A prosaic explanation for the current data is that olfactory stimuli 

do not elicit item-specific PI effects, and that the PI effects in Experiment 2 are 

illustrative of verbal memory following (at least partial) verbal recoding of the odours. 

The different effects may therefore be due to stimulus characteristics that relate to the 

level of stimulus verbalisability, and perhaps related to whether a stored olfactory 

representation is consciously accessible in odour memory (see Chapters 3 and 4). 

However, the extent to which odours in the current study are verbalisable correlates 

strongly with familiarity (r = .88; Chapter 2). As noted earlier, it is possible that the 

reduced distinctiveness of these unfamiliar odours resulted in disrupted matching in 

memory between the original presentation of the item and its re-presentation as the 

negative probe (Mecklinger et al., 2003). This reduced matching ability would attenuate 

PI effects. 
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It should be noted that the present findings contradict that of Köster et al. (2002) who 

examined PI for odours using implicit memory. In their study, PI for the incidental 

associations between odours and rooms was only found when the odours were not 

identified. In contrast, the present study only reported PI for verbalisable odours. It is 

difficult to make such cross-study comparisons, but these findings may suggest that the 

verbalisability of the odour has different effects for explicit and implicit memory tasks. 

Moreover, it is suggested by Köster et al. that such explicit memory tasks may be 

unsuitable for odours since the experience and learning of odours in everyday life is 

epiphenomenal (i.e. the present odour is incidentally associated with the present 

experience). Consequently, when odours are tested explicitly it encourages participants 

to employ verbal coding, with the task becoming a de facto measure of verbal memory. 

However, one would argue that this issue with explicit odour memory tasks has been 

mitigated through the employment of hard-to-verbalise odours in Experiment 1 (odours 

previously identified as hard-to-verbalise in a large scale normative study, Chapter 2). 

Indeed, whilst it remains possible that participants attempt to employ rudimentary labels 

for these odours, the differences between Experiment 1 and 2 in respect to the presence 

of PI may suggest that: (1) hard-to-verbalise and verbalisable odours are affected 

differently by PI, and (2) verbalisable odours may well be represented in part by a 

verbal or semantic code.  

If one accepts that (non-verbal) olfactory stimuli are not susceptible to item-specific PI, 

it suggests qualitative differences between olfactory memory and other stimulus types. 

This difference is curious given similarities in the serial position functions produced 

across stimuli in the present study for single yes/no recognition (recency but not 

primacy, consistent with Hay, Smyth, Hitch, & Horton, 2007; Johnson et al., 2014; Kerr 

et al., 1999). However, beyond the present study, memory for olfactory stimuli has 



Chapter 5. Proactive Interference 235 

produced serial position functions that appear qualitatively different to other stimulus 

types (Johnson et al., 2013; Johnson & Miles, 2009; Reed, 2000). These qualitative 

differences for olfactory memory add credence to the proposal that olfactory stimuli are 

represented within a modality specific store (Andrade & Donaldson, 2007), but that 

verbal dual-coding of the stimuli can supplement the perceptual representation (Paivio, 

1990; Yeshurun, Dudai, & Sobel, 2008). 

The present study demonstrates that the characteristics of the olfactory stimuli can 

determine the reported memory effects (a claim also made for other stimulus types, e.g. 

Hay et al., 2007; Horton, Hay, & Smyth, 2008; Rajaram, 1998). This finding adds 

weight to the proposal in Chapter 2 that any attempts at investigating whether olfactory 

memory operates analogously to other stimulus types must consider the characteristics 

of the odours used in that study.  

5.6 Conclusion 

In summary, the present study demonstrates item-specific PI effects in verbal memory, 

visual (face) memory, and in memory for familiar (verbalisable) olfactory stimuli. 

However, these effects are not found with hard-to-verbalise odours. The study therefore 

adds weight to the proposition that differences exist in terms of how verbalisable and 

hard-to-verbalise odours are represented (Zelano et al., 2009) and suggest that making 

comparisons between olfactory memory and that of other stimulus types might be 

affected by the choice of odours; a control that requires further consideration in future 

work.  
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Chapter 6: General Discussion 

6 Chapter summary 

This chapter begins with a review of the thesis objectives, and is followed by a 

summary and discussion of the findings in relation to views of olfactory memory.  

6.1 Research aims 

The thesis had two main overarching aims. The first aim was to obtain normative data 

on a large set of odours. There are conflicting findings in the olfactory memory 

literature regarding qualitative differences between odour memory and other modalities, 

and it is possible that these differences have arisen from poor control over stimulus 

characteristics. The second aim of the thesis was to examine ability for a perceptually-

based olfactory working memory, comparable to working memory for verbal and visual 

stimuli. Using the normative data obtained, odours were manipulated on dimensions 

related to verbalisability in order to investigate representational changes, strategy 

adoption, and the application of controlled working memory resources. These aims are 

outlined in more detail below.  

6.1.1 Normative data: Individual differences in olfactory perceptual experience  

Individual differences are undoubtedly important when examining odour representations 

in memory (Kaeppler & Mueller, 2013), and is particularly relevant due to the proposed 

influence of prior experience and top-down processes on perception (Wilson & 

Stevenson, 2006). Studies of memory and perceptual processing in non-olfactory 

modalities have greatly benefitted from normative data that allow the control and 

manipulation of pertinent dimensions (e.g. Coltheart, 1981; Yoon et al., 2004). 
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However, in olfaction, the creation of such databases is typically limited to a small 

number of dimensions and odorants (Sulmont, Issanchou, & Koster, 2002), or to a 

limited category of odours (e.g. familiar odours, Doty, Shaman, Kimmelman, & Dann, 

1984). An aim of this thesis was therefore to create a large database of commercially 

available odours, and to assess the utility of these normative data for odour 

classification in memory experiments.  

6.1.2 Representation of odours in working memory 

Using the normative data, an aim of the study was to investigate how odours are 

represented in working memory. Jönsson et al. (2011) demonstrated a working memory 

advantage for verbalisable odours, but nevertheless reported above chance performance 

for hard-to-name odours. This finding suggests that although explicit olfactory memory 

is difficult to disentangle from verbal processes due to a tendency to label identified 

odours (Jönsson et al., 2011; White et al., 2015), odours can be represented perceptually 

in memory. Indeed, there is clear evidence for odour representations in memory that are 

not solely reliant on verbal or semantic information (Andrade & Donaldson, 2007; 

Jönsson et al., 2011; Møller et al., 2004; White et al., 1998). For example, olfactory 

short-term memory is unaffected by concurrent verbal tasks, supporting an ability to 

maintain odours without verbal mediation (Andrade & Donaldson, 2007; cf. Annett & 

Leslie, 1996). Furthermore, brain regions associated to verbal and olfactory processes 

display dissociated activation according to whether an odour is identified (Zelano et al., 

2009). This is proposed to support a perceptually-based representation in olfactory 

short-term memory, perhaps stored in a separate olfactory buffer.  

Notwithstanding evidence that supports an independent store for olfactory information, 

there is clearly some effect on odour memory when verbal or semantic information is 

available (e.g. Kärnekull, Jönsson, Willander, Sikström, & Larsson, 2015; Lyman & 
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McDaniel, 1986, 1990). However, evidence is equivocal regarding the importance of 

these additional verbal/semantic processes. One possible explanation is that a switch to 

a verbal-only representation occurs when verbal information is available (Herz & 

Engen, 1996), though this has been criticised (see White et al., 1998). Alternatively, 

there is evidence that verbal information forms at least some part of odour 

representations in memory (e.g. White et al., 1998; Yeshurun, Dudai, & Sobel, 2008; 

Zelano, Montag, Khan, & Sobel, 2009), and may suggest a perceptually-based odour 

memory that can be facilitated by an additional verbal dual-code (Paivio, 1990). It has 

also been suggested in the object-processing account of olfactory perception (Wilson & 

Stevenson, 2006) that odours are perceived and subsequently remembered by activating 

a stored, perceptually-based olfactory representation. Short-term memory, they suggest, 

is supported by residual activation of these stored odour patterns, but that this 

recognition memory may also be facilitated by activation of linked verbal or semantic 

information similar to the use of multiple memory traces described in dual-code theory 

(Paivio, 1990).  

An aim of the present studies was therefore to examine evidence for differences in how 

odours are represented in working memory when odours have varying levels of 

semantic or verbal information available. Increased availability of this information has 

previously shown improved working memory performance (Jönsson et al., 2011), but 

the underlying processes that drive this improvement is unclear. This thesis examined, 

amongst other explanations, whether this improvement was because of a strong verbal 

code allowing verbal rehearsal processes to be engaged. This aim was closely tied to the 

examination of processes engaged in olfactory working memory, described in the 

section below.  
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6.1.3 Verbal/semantic processing effects on working memory 

A key issue for working memory in the olfactory domain is that working memory is 

linked to the ability to rehearse items and to form an internal representation, or mental 

image (Stevenson, 2009; Tong, 2013). Indeed, working memory is defined by the ability 

to actively maintain and manipulate a stored representation (e.g. Baddeley & Hitch, 

1974), but there are suggestions that olfactory memory may not engage these processes 

in the same way as other modalities (Stevenson, 2009). Whilst there is evidence that 

olfactory imagery is possible (Bensafi et al., 2007; Djordjevic et al., 2005; Rolls et al., 

2008), this is thought to be strongly dependent on expertise (Arshamian & Larsson, 

2014; Delon-Martin et al., 2013; Plailly et al., 2012), and it has been argued that such 

imagery is not consciously accessible (Stevenson, 2009; Stevenson & Attuquayefio, 

2013; Zucco, 2003).  

An aim of this thesis was therefore to examine the engagement of controlled working 

memory resources on odour memories. The non-perceptual benefits from additional 

information in an odour representation may have distinct effects on processing in 

working memory. For example, as mentioned in Section 6.1.2, the working memory 

advantage for verbalisable odours may follow the adoption of a verbal rehearsal strategy 

to maintain and update odours in memory. For odours where verbal information was 

weak, or unavailable, this thesis explored whether other maintenance processes were 

engaged. For example, an attentional refreshing process was proposed for non-verbal 

stimuli to maintain and update information in working memory tasks (e.g. M. R. 

Johnson et al., 2015). However, such a strategy is dependent on a consciously accessible 

internal representation (see above).  
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6.1.4 Automatic processing in olfactory working memory 

A possible complication to understanding previous demonstrations of olfactory working 

memory capacity, particularly in the n-back task, is the contribution of both recollection 

(controlled retrieval of contextual information) and familiarity (a strength signal that 

may reflect automatic processes) (Loaiza, Rhodes, Camos, & McCabe, 2015; Oberauer, 

2005). Consequently, although above chance performance has been observed for odours 

using the n-back task (Dade et al. 2001; Jönsson et al. 2011), performance may be 

dependent on a processes that does not reflect the controlled retrieval of items and 

allocation of working memory resources (Juvina & Taatgen, 2007; Kane et al., 2007). 

To be clear, the previously observed above-chance working memory performance for 

low verbalisability odours (Jönsson et al., 2011) may not have been due to working 

memory processes (such as the rehearsal and updating of items and their bound serial 

positions, Oberauer, 2005), but a familiarity strength judgment. This thesis therefore 

explored the contribution of automatic processing on measurements of olfactory 

working memory. 

In Wilson and Stevenson (2006), odour recognition is proposed to be driven by residual 

activation of an odour object. This is effectively a familiarity-based process, where the 

activation strength of an item is compared to a criterion of activation to allow a decision 

of previous experience. This is also described as recognition without identification 

(Cleary, 2010), where a recognition judgement is made from the familiarisation of 

perceptual features of an odours that are reinstated upon presentation of the probe item. 

Finally, episodic memory research has shown that recollection in odour memory is 

similar to verbal memory when items are identified (M. J. Olsson et al., 2009). Olsson 

et al. suggested that this is due to the conceptual salience of the representation 

improving recollection ability (Rajaram, 1998, see also Hay et al. 2007 for an amodal 
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account of memory that describes the psychological distinctiveness of items). In 

working memory, effects of semantic information on recollection would therefore 

reflect the increased use of controlled working memory resources in the task (Loaiza et 

al., 2015). The present thesis examined the contribution of recollection and familiarity 

in olfactory working memory through employment of the remember-know procedure. 

Moreover, Chapter 3 explored whether the contribution of recollection and familiarity 

changes dependent on the characteristics of the odour. 

6.1.5 Proactive interference as a function of verbalisability 

The differences between odours low and high on verbalisability were also examined in 

the present thesis through their ability to elicit proactive interference. The n-back task is 

characterised by sequential presentation of stimuli, requiring a decision upon 

presentation of each item. Furthermore, the resolution of conflict between familiarity 

and recollection (i.e. a form of proactive interference) is an important part of any 

working memory strategy in this task (Kane et al., 2007). Consequently, changes in the 

effects of PI with differing odour representations may contribute to an explanation for 

differences in levels of working memory performance. Previous findings of a flat 

forgetting curve for odours have been attributed to strong proactive interference (PI) and 

weak or absent retroactive interference (Lawless & Engen, 1977). However, there has 

been little examination of PI for pure odour memory, compared to that explored for 

other modalities (but see, Köster, Degel, & Piper, 2002, for implicit memory; and see 

Valentin, Dacremont, & Cayeux, 2011, for non-specific PI). 

This thesis applied a recent-probes paradigm to low verbalisability odour memory in 

order to investigate item-specific PI (see Jonides & Nee, 2006), and to compare these 

item-specific PI effects to observations in other modalities. Specifically, PI effects for 
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low verbalisability odours were compared to experiments using high verbalisability 

odours, visual stimuli (faces), and verbal stimuli (words).  

6.2 Summary of findings and implications for theory 

6.2.1 Utility of normative data and the relationship between dimensions 

This thesis has provided normative data for a large number of commercially available 

odours that can be used in experimental studies, and satisfies a clear gap in the olfactory 

literature that can benefit future researchers. 

An important requirement for odour normative data was that the variance in ratings was 

attributed to differences between the odours, rather than variability due to individual 

differences. That is, the agreement of scores for a particular odour must be higher than 

the agreement of scores across all odours. Without such, any normative characteristics 

of the odours will be masked by individual differences. Assessment of these 

relationships revealed several differences across dimensions, suggesting that some 

dimensions may be more useful than others. Specifically, the familiarity, intensity, 

pleasantness, and irritability scores showed greater agreement across participants than 

variability across odours, suggesting normative scores based on these dimensions are 

suitable for controlling olfactory stimuli. In contrast, age of acquisition and complexity 

dimensions showed greater agreement between odours than the variability across 

participants, suggesting a greater effect of individual differences. 

It should also be noted that in the present data there were strong correlations between 

dimensions deemed suitable for use as normative data (e.g. familiarity), and dimensions 

that saw a large effect of individual differences (e.g. verbalisability). This suggests that 

manipulation of odours on a score such as verbalisability can still be useful for odour 

categorisation, as it is strongly related to the familiarity dimension that the analysis in 
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Chapter 2 has determined suitable for use. Indeed, when considered in the context of 

previous findings that have shown working memory performance differences based on a 

similar verbalisability score (e.g. Jönsson et al. 2011), and the findings in Chapters 3, 4, 

and 5 also showing memory differences based on these scores, there is support for use 

of this dimension in experimental control. 

These normative data were used for stimulus control across a number of experiments in 

this thesis. A robust working memory advantage was observed for verbalisable odours 

controlled on intensity and hedonic strength dimensions. It should be noted, however, 

that controlling stimuli whilst maintaining the difference across the dimension of 

interest is not simple due to the correlations observed between familiarity, intensity, and 

pleasantness. That is, although there was a non-significant relationship between 

familiarity and intensity, there was a positive relationship between familiarity and 

pleasantness, and a negative relationship between intensity and pleasantness, which 

meant there was inevitably some trade-off when selecting odour sets; odours 

manipulated on familiarity but controlled on intensity would typically also show 

differences in pleasantness ratings. However, this experimental issue was mitigated 

somewhat by controlling differences in hedonic strength, which was a variable 

calculated from the odour’s deviation in pleasantness from a neutral midpoint. This 

allowed low verbalisability sets to be more unpleasant than verbalisable sets, but the 

magnitude of the hedonic response to the odours was similar.  

Together, despite some methodological challenges in its implementation in memory 

experiments, this thesis has demonstrated effective control and manipulation of the 

normative data associated to odorant stimuli.  
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6.2.2 Olfactory working memory ability 

Chapters 3 and 4 have built on only two previous published studies that have examined 

olfactory working memory capabilities (Dade et al., 2001; Jönsson et al., 2011). 

Specifically, working memory is required for the manipulation (updating) of stored 

short-term representations of items and their position in a remembered sequence. Odour 

verbalisability improved n-back performance, replicating the finding in Jönsson et al. 

(2011) and further supporting suggestions that verbal information will facilitate odour 

memory (Jehl et al., 1997; Kärnekull et al., 2015; Lyman & McDaniel, 1986, 1990). 

Furthermore, like Jönsson et al., n-back performance for low verbalisability odours was 

above chance, supporting an updating process in odour memory that is not reliant on 

verbal information.  

The key contribution of these chapters, however, were that this verbalisability advantage 

was unaffected by concurrent articulation (CA). This has provided evidence against 

verbal recoding and the subsequent use of a verbal rehearsal strategy in a working 

memory task. However, there was some effect of concurrent rotation (manifesting in an 

increase in false alarms), which provided evidence that an attention-demanding 

maintenance process was being performed in the retention interval. Furthermore, the 

advantage for high verbalisable odours appeared to be independent of perceptual 

familiarity (though see Section 6.2.2.3 for a discussion of this finding), and instead was 

due to a reduction in the ability to apply a controlled working memory process when 

odours were difficult to verbally label. Finally, Chapter 4 provided evidence that 

working memory performance for low verbalisability odours was unrelated to 

performance in verbal, visual, and verbalisable odour n-back tasks. 
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6.2.2.1 Verbal representation in olfactory working memory 

A prosaic assumption for the n-back advantage for verbalisable odours is verbal 

recoding and subsequent application of a verbal rehearsal process for maintenance and 

updating. Indeed, models of n-back performance typically describe a rehearsal process 

for maintaining to-be-remembered items, which must be linked to their presentation 

order and updated as new items are presented (Chatham et al., 2011; Juvina & Taatgen, 

2007; Ralph, 2014; Szmalec et al., 2011).  

Whether this verbalisable advantage was due to the adoption of a verbal rehearsal 

strategy was explored in Experiment 3.2 using a dual-task procedure. Potential 

outcomes were that (1) CA would impair both low and high verbalisability odour 

performance, reflecting n-back performance that is based solely on rehearsal of labels 

that differ in quality, (2) that the verbalisable odours will be impaired by CA but leave 

the low verbalisability odours unaffected, reflecting a verbal rehearsal process for the 

verbalisable odours and some other non-verbal strategy for the low verbalisable odours, 

or (3) olfactory n-back performance will be unaffected by CA, reflecting an advantage 

for the verbalisable odours that is not due to verbal rehearsal. These data supported 

outcome (3), suggesting a verbal rehearsal strategy was not applied for maintenance and 

updating of odours during the n-back task. Whilst these findings should be considered 

with the caveat that a simple counting concurrent articulation task may not have been 

sufficient to impair a verbal rehearsal process (cf. Vuontela et al., 1999), it suggests that 

verbal rehearsal was not responsible for the observed verbalisable odour working 

memory advantage. Furthermore, the findings are proposed as evidence against a 

general reliance on verbal rehearsal for all odours in the task. 
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6.2.2.2 Non-verbal working memory processes 

The use of controlled working memory processes (e.g. a maintenance and updating 

mechanism) in the n-back task, and the influence of familiarity-based responding 

(decisions based on an item strength signal through recent exposure), was investigated 

in Experiments 3.2, 3.3 and 4.1. The dual-task procedure in Experiment 3.2 additionally 

applied a concurrent mental rotation task, designed to load attentional resources that 

may otherwise be engaged in some maintenance and updating mechanism. The data 

provides some support for the proposition that there was a working memory strategy 

engaged for both verbalisable and low verbalisable odours that required attentional 

control in the stimulus retention interval. The evidence for this was not particularly 

convincing, however, as the effect of concurrent rotation affected false alarms rates but 

was not replicated for hits or A’. Furthermore, the effect on false alarms occurred as a 

general effect on all odours rather than an interaction across odour sets, suggesting little 

difference in the application of attention across low and high verbalisability odours. 

However, the findings were presented as tentative evidence for an attention refreshing 

mechanism that can be used for maintenance and manipulation in the n-back task. This 

attentional refreshing process is described as directed attention to activated items in 

memory (e.g. the to-be-remembered window of length n during the n-back task), and is 

proposed as an alternative maintenance process for both verbal and non-verbal stimuli 

in working memory (Baddeley, 2012; Camos et al., 2011). 

The remember-know paradigm (Experiment 3.2) was amended to further assess the use 

of control strategies in the n-back task, and an individual-differences design 

(Experiment 4.1) was used to examine whether verbal and visual n-back performance 

(thought to be driven by controlled working memory resources) was related to low or 

high verbalisable odour n-back performance. The high proportion of recollection for 
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verbalisable odours in Experiment 3.3 supported engagement of a control process for 

these odours, and a decrease in only remember responses for low verbalisability stimuli 

was interpreted as a decrease in successful application of this control process.  

Recollection has been shown to increase with greater conceptual salience (Rajaram, 

1998), and has been used to explain episodic memory differences for odours (M. J. 

Olsson et al., 2009). The increase in controlled working memory processing for familiar 

odours is also proposed to be the result of this increased saliency, which is associated to 

an increased ability to bind the remembered item to its context (Oberauer, 2005). That 

is, the ability to represent an odour representation is improved by the availability of 

semantic information, and this improvement acts specifically on the ability to engage 

updating processes on this representation. Indeed, conceptual information is proposed to 

be necessary in the formation of a mental image (Kan, Barsalou, Olseth Solomon, 

Minor, & Thompson-Schill, 2003), and in olfaction may support the retrieval of a stored 

representation in long-term memory in order to create a conscious perceptual image 

(Kosslyn, 2003).  

This explanation was supported in Experiment 4.1, where n-back performance for low 

verbalisability odours was unrelated to verbal and visual n-back performance, whilst 

verbalisable odour n-back performance was related to both. Furthermore, there was only 

a weak positive correlation between the two odour tasks, and this was suggested to 

reflect individual differences in odour discriminability. Finally, there were no observed 

differences in discriminability across the familiar and unfamiliar odours sets, 

contradicting the proposition that the difference between high and low verbalisability 

odours simply reflected differences in perceptual discriminability (see below). Together 

with the evidence for a reduction in controlled processing in the remember-know task, 
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the findings further suggest that availability of semantic information may be necessary 

for effective application of a controlled working memory strategy for odour stimuli.  

6.2.2.3 Perceptual familiarity effects on olfactory n-back performance 

A strong relationship between verbalisability and familiarity was observed in Chapter 2, 

such that odours classified as easy to verbalise also show strong ratings of familiarity. It 

was therefore investigated, given the null effect of CA in Experiment 3.2, whether the 

working memory advantage for high verbalisability odours was a result of enhanced 

discriminability through perceptual learning. Perceptual familiarity effects (i.e. an 

advantage from ‘mere exposure’) has been observed in several long-term olfactory 

memory experiments, and is proposed to underlie the mnemonic basis of object-

processing accounts of olfactory perception (Stevenson & Wilson, 2007). This 

perceptual effect was assessed in Experiment 3.4 by attempting to induce familiarity in 

odours classified as low verbalisability. 

Perceptual familiarity of odours with low normative familiarity was experimentally 

increased by having participants perform a number of rating and discrimination tasks 

(see Sinding et al., 2015 for a similar application of this design). Whilst it was predicted 

that increased perceptual familiarity would increase working memory performance, the 

opposite effect was found. Indeed, it was not only the familiarised odours that saw 

poorer performance, but performance in general (including for odours that had high 

normative familiarity and had not been experienced in the previous task) that was lower 

in the group pre-exposed to odours. 

This study therefore failed to demonstrate a perceptual learning effect on olfactory 

working memory performance, and contrasts several findings that suggest such 

exposure is essential for odour discriminability (e.g. Rabin, 1988; Stevenson, 2001; 
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Case & Stevenson 2004). However, rather than contradicting these findings, the lack of 

perceptual learning could be explained by the following two reasons. First, the number 

of prior exposures may not have been sufficient. Indeed, Reder et al. (2015) presented 

stimuli across multiple sessions over several weeks, compared to the pre-exposure task 

here which included only 14 presentations in a single session. However, it should be 

noted that Sinding et al. (2015) presented odours to participants only 22 times, and the 

familiarisation sessions in Jehl et al. (1995) only presented each odour once in each of 

three sessions. Second, an increase in familiarity from the pre-exposure session may 

have affected the reliability of a familiarity signal. That is, the unreliability of such a 

signal meant participants were less likely to accept target items. In summary, the study 

supports an important contribution of a familiarity signal to n-back strategy and target 

judgements, but not the expected demonstration of perceptual learning through prior 

exposure (see also Jehl et al. 1997, for demonstration of response confusions in 

olfactory memory due to prior exposure). 

6.2.2.4 Familiarity-based processes in olfactory working memory 

If low verbalisability odours are characterised by an absence of controlled working 

memory resources, how is above-chance performance observed for these odours? It was 

suggested that working memory performance for low verbalisability odours was due to 

the contribution of some familiarity-based perceptual memory to an n-back decision. 

This process for recognising odours has been proposed in Wilson and Stevenson (2006), 

and has also been described as RWI (Cleary, 2002; Cleary et al., 2010). That is, 

recognition may be the consequence of residual activation from a perceptual 

representation, which is not consciously accessible, but can drive performance in 

memory tasks.  
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In the n-back task, perceptual-based recognition that employs a familiarity signal (i.e. 

residual activation) has been proposed to enable above-chance performance without 

requiring active rehearsal of stimuli (Juvina & Taatgen, 2007). Instead, the activation of 

memory traces is compared to an estimated ‘time-tag’ for a target, essentially allowing 

an n-back decision based on an educated assessment of familiarity. That is, the 

activation of the presented item is matched to the activation level that would be 

expected if this item was a target.  

The findings in the present study are, however, equivocal over the use of such a low-

control strategy for low verbalisable/unfamiliar odours. For example, Experiment 3.2 

suggests that a familiarity-based strategy is not used because the inclusion of a 

concurrent rotation task saw a general detrimental effect on task performance (although 

this was only shown with false alarms). This effect would not be expected if n-back 

decisions were made based on an assessment of familiarity at probe presentation, so was 

consequently proposed as tentative evidence for a rehearsal mechanism in the n-back 

retention interval (i.e. attentional refreshing) for both low and high verbalisability 

odours. Furthermore, though there was a reduction in controlled working memory 

processes for low verbalisability odours (as measured by a reduction in remember 

responses), there was no corresponding increase in strategies based on experimental 

familiarity (as measured by know responses). This suggests that there is not application 

of a low-control strategy (i.e. a strategy that compares experimental familiarity of 

unfamiliar odours to a plausible familiarity level for a target), but instead suggests the 

successful application of a control strategy is reduced for most unfamiliar odours (as 

indexed by an increase in ‘guess’ responses).  

However, there was no relationship in Experiment 4.1 between low verbalisability 

odours and the verbal and visual n-back tasks, indicating that the above-chance 
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performance is driven by something other than simply reduced ability to recollect the 

position of the odours. That is, a relationship would still be expected if the n-back 

strategy was relying on working memory resources, albeit in a more difficult task. 

Indeed, n-back performance in the verbal 3-back task was similar to the low 

verbalisable odour 2-back tasks, but was still related to both visual and high 

verbalisability 2-back tasks. This suggests that performance for low verbalisability 

odours is unrelated to general working memory ability (utilised for verbal stimuli, visual 

stimuli, and verbalisable odours), and perhaps indicates a qualitatively different n-back 

strategy for low verbalisable/unfamiliar odours. 

The proposed interpretation of the remember-know paradigm was a reduction in 

recollection without a corresponding reliance on familiarity-based processes for the low 

verbalisability odours. However, the findings in Chapter 4 contradict such an 

interpretation, as the lack of a relationship with established working memory measures 

suggest a qualitatively different strategy. A possible alternative explanation is discussed 

here, based on the dramatic increase in guess responses for low verbalisability odours. It 

is possible that participants did not show an increase in know responses for these low 

verbalisability odours because they struggled to distinguish such decisions from guess 

responses. Indeed, guess responses may have simply reflected a weak criterion of 

acceptance based on a familiarity-based strategy (see Gardiner et al., 1998 for a 

discussion of the use of guess reponses in the remember-know paradigm). Additional 

analysis of the remember-know findings by collapsing guess and know responses 

demonstrates a clear interaction, where responses shift to heavy familiarity-based (that 

is, a know/guess response) when odours were difficult to verbalise. Of course, such an 

interpretation should be treated with caution as a guess response was used as a catch-all 

for responses judged by the participants to have been made based on something other 
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than memory. This proposal warrants further investigation however, perhaps by 

assessing the ability of guess responses to discriminate targets and lures. That is, if 

guess responses are able to generate more hits than false alarms, it would suggest that 

guess responses are made based on some residual memory trace. 

Based on similar suggestions for a perceptually-based recognition process for 

unidentified odours (Cleary et al. 2010) that does not enable conscious imagery or 

rehearsal (Stevenson, 2009), it seems likely that a similar process has been observed for 

the low verbalisability odours in the present thesis. Recognition as a result of residual, 

perceptually-based, activation is able to drive above-chance performance in the n-back 

task. This is particularly the case if participants employed a low-control strategy of 

responding, where this activation was compared to a plausible level of familiarity for a 

target item.  

6.2.3 Absent proactive interference in olfactory memory 

Chapter 5 was the first study to date in which the recent probe PI procedure was applied 

to odours. In this study, low verbalisability odours did not show a recent-probes effect, 

typically used to demonstrate PI in other modalities. This is an interesting finding that 

contrasts previous evidence of strong proactive interference for odours (Lawless & 

Engen, 1977). In contrast, high verbalisability odours did show a PI effect, suggesting 

the verbalisable characteristic of odours produce proactive interference effects similar to 

other modalities. To rule out an absence of an effect due to methodological differences, 

in two further experiments the PI effect was demonstrated with verbal (word) stimuli, 

and faces. These findings provide a first assessment of item-specific PI effects in a 

short-term olfactory memory task, and further demonstrate that olfactory memory 

without accompanying semantic or verbal information may be qualitatively different to 
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other modalities. This section attempts to accommodate these findings with the n-back 

findings presented above. 

A familiarity-inhibition interpretation of the recent-probes effect was described in 

Chapter 5, where the strong familiarity that provokes a positive response conflicts with 

the memory of the TBR set. A weak link is proposed to exist between the low 

verbalisability odours and the familiarity signal present as a result of recent 

presentation. This weak link is thought to result from its low distinctiveness (or fuzzy 

representation, as described in Wilson & Stevenson 2006). Consequently, the conflicting 

‘yes’ signal associated to that item is weaker, and results in the absent PI effects.  

How then, might these findings converge with those demonstrated in the n-back task? 

The absent proactive interference would predict little effect of recent-lure familiarity on 

participant ability to correctly reject these items, if there is indeed a weak link between 

this conflicting ‘yes’ response and the probe item. This was not observed in Chapter 4, 

where greater close-lure false alarms were shown for the low verbalisability odours. 

Consequently, a weak item-to-familiarity link may be unrelated to performance 

differences in the n-back task, which are proposed due to application of differing 

working memory resources. Indeed, it should be noted that using a familiarity signal to 

make an n-back decision is a noisy method of making a judgement (Juvina & Taatgen, 

2007). It is therefore possible that the controlled retrieval process applied for 

verbalisable odours in the n-back task is susceptible to proactive interference effects, 

but the detriment to performance as a result of reliance on a familiarity-based process 

for low verbalisability odours masks this effect. Further research, perhaps with a more 

controlled manipulation of recent-lure items in the n-back tasks (see below), may 

elucidate the possible independent effects of PI and working memory processes on n-

back performance.  
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6.3 Accommodation within olfactory-specific or general models of working 

memory 

6.3.1 Olfactory-centred unitary model 

Several findings in this thesis are consistent with the specifications of a pattern-

matching process for odour perception and memory (Stevenson & Boakes, 2003; 

Stevenson & Mahmut, 2013; Stevenson & Wilson, 2007; Wilson & Stevenson, 2006). 

First, low verbalisability odours are proposed to be difficult to verbalise because the 

outcome of pattern matching results in weak activation of multiple stored engrams 

(Stevenson & Boakes, 2003). This ‘fuzzy’ percept for low verbalisability odours 

(Stevenson & Mahmut, 2013, p. 1428) may be responsible for the absent PI effects 

observed in Chapter 5. 

Second, the model proposes short-term memory for odours to be the result of residual 

activation of an odour engram following initial presentation of the odour, and that this 

activation is not available to consciousness. That is, the perceptual representation is 

suggested to be remembered by assessing its activation upon re-presentation of the same 

odour, in a process similar to recognition without identification (Cleary et al., 2010). 

Such a representation would not be available to maintenance or updating in an n-back 

working memory task, and for low verbalisability odours the evidence seems to support 

this. 

Second, Stevenson and colleagues suggest that naming and other available semantic 

information serve memory by providing an additional means with which the odour may 

be remembered. This thesis finds no evidence that a verbal rehearsal mechanism is used 

to maintain a verbal label for an odour. However, the evidence presented suggests that 

the availability of semantic information allows engagement of working memory 

resources (cf. the general effect of concurrent rotation in Experiment 3.2). A refreshing 
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mechanism is proposed for the maintenance of odours, which requires controlled 

attention applied to a stored representation. Furthermore, conceptual knowledge is 

suggested to be a necessary component for conscious access to this internal 

representation, or olfactory image, to occur (Kan et al., 2003; Tomiczek & Stevenson, 

2009). Consequently, contrary to the suggestion that olfactory imagery is not available 

to consciousness, an internal perceptual odour representation may be used for the 

purposes of maintenance, but appears to require conceptual knowledge to allow 

reactivation of the stored long-term representation (Kosslyn, 2003; Rinck et al., 2009).  

6.3.2 Modularity 

The multicomponent memory framework (e.g. Baddeley & Hitch, 1974; Baddeley, 

2000) describes specialised processes for maintenance and manipulation of information 

in working memory. The findings in this thesis have demonstrated unique characteristics 

of low verbalisability odour memory that are thought to reflect memory for a 

perceptually-based odour representation that can occur within an olfactory buffer (e.g. 

Andrade & Donaldson 2007; Zelano et al., 2009). Indeed, there are characteristics of 

this olfactory memory that suggest it may qualitatively differ to verbal and visuo-spatial 

subsystems.  

Previous inconsistent findings in respect to whether olfactory memory is qualitatively 

different to other stimulus types may be based on stimulus selection. That is, the 

characteristics of odours selected for research, particularly their identifiability, has been 

proposed to affect the way odours are represented in memory (Zelano et al., 2009). 

Zelano et al. suggest that unidentified odour memory reflects perceptual processing of 

odours in an independent olfactory buffer.  
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Chapter 5 has shown an absence of PI for low verbalisability odours, presumed to 

reflect olfactory memory based on a perceptual representation. Although the discussion 

above has focussed on amodal explanations that consider the saliency of odours and a 

possible poor link between an odour and its familiarity signal, such findings may also be 

accommodated within a modular working memory system that describes a subsystem 

qualitatively different to other memory systems. 

An important finding in this thesis, and one which has been demonstrated in some short-

term memory tasks (Andrade & Donaldson, 2007), is that olfactory working memory 

does not require a verbal rehearsal process for above chance performance to occur. This 

suggests a perceptual representation that can be applied in a working memory task that 

is analogous to other modalities, though it appears that there is an important role of 

semantic information to allow utilisation of working memory resources similar to those 

seen for other modality tasks. A perceptual representation with little conceptual salience 

may instead see reliance on a familiarity-based process that requires minimal, if any, 

working memory resources. Such a finding suggests any representation in an olfactory 

buffer interacts with long-term semantic information before executive functions can act 

upon the item in memory. 

An olfactory slave system could conceivably take on many of the properties described 

in Wilson and Stevenson (2006), such as a pattern-matching process, and 

communication with verbal information and long-term memory to establish an odour 

object. Indeed, as noted by Baddeley (2012) and Logie (2011), the processes in the 

multicomponent model of working memory are not too far removed from the unitary 

model described in Cowan (1999). That is, the focus of attention that activates 

representations in LTM can be considered similar to executive resources acting upon a 

representation within the episodic buffer. Such an interaction between slave systems and 
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stored semantic information would not be unique to olfaction, as it is also proposed in 

the multicomponent model for both visual and verbal working memory (see Baddeley, 

2012). Furthermore, the episodic buffer has been proposed as the system that enables 

access to consciousness. Considering the findings in the present thesis that proposed a 

link between semantic information and the ability to create an internal representation of 

an odour, working memory performance for verbalisable odours may reflect executive 

functions acting up representations in the episodic buffer.  

6.4 Limitations and further research 

A potential criticism of the application of the n-back procedures is the poor control of 

recent-lure items. Although the n-back tasks in Chapter 3 included close-lure trials, 

these were not consistent between participants, and were typically fewer than the 

number of targets. As described in Ralph (2014), the presence of these recent- and non-

recent lures may affect the strategy employed during the n-back task. That is, a low 

number of recent-lures might, after several trials where they establish the type of items 

being presented, might result in a participant deciding that the reward for a high-control 

strategy is too low, when a familiarity-based strategy can be used to get a high 

percentage of trials correct. However, the low number of trials in these olfactory tasks 

compared to verbal versions of the n-back task is likely to mean participants did not 

have enough time to effectively gauge the proportion of recent-lures to targets. 

Furthermore, at least for the high verbalisability odours, the remember-know findings 

suggest that recollection-based processes are being applied.  

The high number of non-recent lure items may have had another effect. Whilst there 

was no bias in the number of recent and non-recent lures across low and high odour 

verbalisability conditions, issues may arise from the use of non-recent lures when 

establishing the level of n-back performance. The inclusion of these lures (which can be 
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rejected on the basis of familiarity alone) in an index of n-back performance inflates this 

estimate of performance. This is because these rejections do not require the controlled 

processes prescribed in working memory. This is not problematic for the comparison of 

performance between low and high verbalisability odours because both tasks included 

the same number of these lures. However, when determining whether low-

verbalisability n-back performance was above chance, it is difficult to differentiate 

performance based on automatic processes. Above chance performance for the low 

verbalisable odours may therefore be due to performance on the non-recent lures (an 

issue that is also pertinent for Jönsson et al., 2011). Indeed, as demonstrated, the effect 

of these automatic processes is particularly important in n-back performance for low 

verbalisability odours. 

These issues were addressed to some extent in Experiment 4.1, where close-lures were 

controlled so that they were equal across participants and a similar number to the 

number of targets. Furthermore, these recent-lures were also used in the calculation of 

A’ sensitivity, allowing an accurate assessment of controlled working memory ability 

that was not inflated by non-recent lure rejections requiring no recollection. Importantly, 

performance remained above chance for low verbalisable odours despite the removal of 

non-recent lures from the analysis. However, it should be noted that if participants are 

employing a familiarity-based strategy using a single criterion for judging an n-back 

target, slightly above-chance performance would still be expected due to the use of 

recent-lures that are outside the n-back window. That is, a judgement of familiarity after 

setting a criterion at the n-back position is likely sensitive enough, at least some of the 

time, to discriminate between a target item and a recent-lure from n + 1 (i.e. the item is 

slightly less temporally familiar than the target). The findings presented above would 

therefore be well-served by a systematic assessment of recent-lure effects on working 
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memory performance, and in particular should consider the use of a working memory 

performance index based on targets and only n minus recent lures, as this would mean 

all close lures would fall above the response criterion. It may be necessary, then, to 

explore olfactory n-back performance with a more difficult 3-back task to allow a more 

varied manipulation of lure types in the task (although whether this would produce 

above chance performance is an empirically testable question). 

An additional debate concerns the stimulus choice in the present experiment. The 

olfactory stimuli used in this thesis have utility in olfactory memory experiments due to 

the normative data established in Chapter 2, and because they are commercially and 

easily available for researchers. However, greater control of the odours may be required 

in studies interested in the chemical complexity of odours, and studies that wish to 

control the intensity of a single odour would have difficulty doing so without 

knowledge of the solutions that make up these stimuli; information which is not 

available. Potential future research into this corpus of odour stimuli would benefit from 

a detailed assessment of odour similarities, perhaps presented as a matrix of similarity 

to all other odours. Such analysis of 200 odours would be a huge undertaking, however. 

In addition, a cross-cultural application of the method in Chapter 2 would serve to 

diversify the normative data, and allow odour sets to be tailored to participant individual 

differences and their likely prior experience without requiring assessment of the odours 

by the participant themselves. 

Despite the above discussion points regarding the olfactory stimuli used, future research 

into olfactory memory would benefit from the rigour/control applied to odours in the 

present experiment. For example, serial-recall has been used to support qualitative 

differences in olfactory memory (A. J. Johnson & Miles, 2009), though alternative 

explanations such as the SIMPLE model suggest differences may be dependent on the 



Chapter 6. General Discussion 261 

psychological distinctiveness of these stimuli (Hay et al., 2007). Such predictions are 

empirically testable by controlling dimensions using the present corpus of odours, and 

may serve to elucidate the serial-position functions observed between olfactory and 

other-modality stimuli.  

6.5 Summary and conclusion 

This thesis has examined the ability to represent odours in working memory, and 

explored qualitative differences in memory when odours differ in available semantic 

information (measured by verbalisability). It contributes to the study of olfactory 

memory by presenting a normative database for odour stimuli, and showing that whilst 

individual differences are an important consideration when selecting odours based upon 

a perceptual dimension, differences between participants are small enough to 

discriminate differences based on the features of an odour (Chapter 2). A working 

memory performance advantage was observed for verbalisable odours that replicates 

previous findings (Jönsson et al. 2011), but this was not due to perceptual learning or 

verbal rehearsal (Chapter 3). Indeed, odours low on verbalisability showed reduced 

application of controlled working memory processes (Chapter 3), and working memory 

performance was unrelated to other working memory tasks including verbal and visual 

stimuli (Chapter 4). Finally, low verbalisability odours showed no susceptibility to 

proactive interference in a recent-probes task, compared to high verbalisability odours, 

visual stimuli, and verbal stimuli (Chapter 5). 

 The working memory findings may be accommodated in an amended olfactory-centred 

unitary model (Wilson & Stevenson 2006), where a perceptually-represented odour is 

recognised by the residual activation of a stored olfactory pattern. The access of 

consciousness to this representation is unavailable (see Stevenson, 2009), meaning 

working memory processes such as maintenance and updating cannot be performed. 



Chapter 6. General Discussion 262 

However, when semantic information is available, a refreshing process (Baddeley, 2012; 

M. R. Johnson et al., 2015; Raye et al., 2007) is proposed to be available for the 

maintenance and updating requirements in an n-back task, achieved because the 

conceptual salience of these items allow conscious access to an internal representation 

to be achieved (Kan et al., 2003). 
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8 Appendices 

8.1 Appendix A: Normative data 

Odour Fam. Int. Pleas. Irr. Cont. Av. Hed. Str. Comp. AoA Freq. Desc. Verb. 

Almonds 5.34 4.60 5.12 2.80 4.28 1.36 4.20 9.03 3.74 4.16 2.27 

Aniseed Balls 5.88 5.40 3.98 3.54 5.28 1.50 4.08 10.02 4.22 5.04 2.61 

Apples Green 4.75 4.21 5.04 2.83 4.02 1.50 3.62 10.30 3.83 3.88 2.04 

Bacon 3.15 4.35 2.90 4.46 2.65 1.27 4.08 14.93 2.38 2.21 1.15 

Banana 5.40 4.76 5.32 2.94 4.54 1.56 3.88 9.89 4.18 4.48 2.18 

Barbecue 3.62 5.26 2.30 5.10 3.14 2.02 4.33 13.44 3.08 2.98 1.55 

Basil 4.06 4.43 4.12 3.37 3.35 1.22 4.38 12.66 3.39 2.96 1.64 

Beef 3.80 6.20 1.88 5.67 3.47 2.33 4.71 13.88 2.69 3.41 1.73 

Biscuit 4.17 4.13 3.48 3.98 3.50 1.31 4.09 12.17 3.33 3.25 1.80 

Blackberry 5.04 4.23 5.23 2.54 4.48 1.52 3.83 9.66 3.71 4.46 2.09 

Blackcurrant 5.67 4.85 5.48 2.52 5.13 1.73 3.91 7.12 4.62 4.67 2.44 

Blue Cheese 3.51 5.66 1.89 5.60 2.87 2.19 4.47 14.29 2.55 2.94 1.66 



  

Brandy 4.28 4.60 3.96 3.92 3.66 1.40 3.92 14.46 3.64 3.42 1.76 

Bubble Gum 5.53 5.04 5.41 2.49 5.04 1.61 4.19 8.73 4.27 4.86 2.34 

Butter Cream 5.02 4.71 4.35 3.56 4.08 1.23 3.71 10.91 3.40 3.79 2.04 

Buttered Popcorn 2.72 4.58 3.02 4.42 2.80 1.47 4.16 15.07 2.68 2.70 1.19 

Cabbage 3.00 6.24 1.31 6.34 2.69 2.76 4.10 15.32 2.31 2.48 1.21 

Candy Floss 3.43 4.04 3.65 4.00 2.82 1.04 3.88 14.11 2.90 2.54 1.38 

Caramel Toffee 4.16 3.58 4.28 3.32 3.46 1.24 3.49 11.84 3.18 3.30 1.53 

Cardamom 4.08 5.08 3.32 4.16 2.92 1.52 4.22 13.51 2.92 2.84 1.54 

Carrot 3.55 4.69 2.88 4.45 2.71 1.49 3.90 14.57 2.67 2.71 1.29 

Celery 3.26 4.70 2.80 4.86 2.96 1.60 4.24 13.78 2.78 2.80 1.59 

Cereal 4.17 4.90 3.29 4.53 3.96 1.37 3.73 11.40 3.31 3.45 2.03 

Cheddar Cheese 3.14 5.27 2.35 5.29 2.79 1.86 4.04 15.90 2.53 2.63 1.24 

Cherry 5.58 4.76 5.28 2.78 4.45 1.80 3.73 9.31 3.88 4.38 2.28 

Chewing Gum 5.85 5.02 5.11 3.04 5.11 1.53 3.75 8.80 4.81 4.70 2.64 

Chicken 3.40 4.48 2.85 4.58 2.81 1.69 3.91 13.74 2.96 2.67 1.34 

Chilli Pepper 3.00 4.14 3.22 4.29 2.69 0.98 4.25 15.71 2.54 2.55 1.31 



  

Chocolate 4.67 4.41 3.80 3.37 3.94 1.35 3.98 11.12 3.82 3.71 2.06 

Chocolate (Mint) 4.90 5.48 4.12 3.84 4.22 1.32 4.27 11.11 3.63 4.06 2.24 

Chocolate (Orange) 4.24 5.04 4.00 3.74 3.54 1.40 4.35 11.20 3.44 3.24 1.88 

Cinder Toffee 3.02 3.37 3.59 3.91 2.26 1.04 3.39 14.80 2.53 2.47 1.02 

Cinnamon 4.54 5.00 4.44 3.52 3.63 1.27 4.26 12.78 3.50 3.38 1.79 

Coco-mango 5.27 4.25 5.55 2.39 4.61 1.64 3.61 10.42 4.42 4.20 2.05 

Coconut 4.87 3.23 4.83 2.85 4.19 1.21 3.59 10.24 3.94 3.63 2.15 

Coffee 4.45 4.88 3.76 3.84 4.24 1.47 4.13 10.97 3.80 3.82 2.05 

Cola 5.21 5.04 5.02 3.02 4.29 1.35 4.02 10.05 3.89 3.81 2.14 

Cookie 3.94 3.94 4.33 3.45 3.12 1.14 4.19 14.28 2.94 2.88 1.35 

Cookies & Cream 4.30 4.92 3.80 3.98 3.80 1.28 4.24 12.70 3.56 3.64 1.94 

Coriander 3.87 4.76 3.98 3.87 2.96 1.11 3.98 12.73 2.98 2.89 1.51 

Cranberry 5.59 4.71 5.58 2.59 4.73 1.83 3.88 9.25 4.55 4.49 2.29 

Crusty Bread 3.84 3.76 3.57 3.76 3.00 1.00 3.69 12.68 3.58 3.24 1.38 

Cucumber & Lime 5.34 4.28 5.38 2.72 4.83 1.51 3.91 11.66 4.55 4.40 2.34 

Cumin 4.27 4.96 3.30 4.58 3.46 1.44 4.11 13.13 3.67 3.00 1.57 



  

Curry 4.81 5.29 3.79 4.02 3.77 1.29 4.28 11.70 3.73 3.40 2.13 

Fermented Fruit 4.18 5.24 3.62 4.14 3.58 1.38 4.49 14.16 3.20 3.42 1.77 

Fish 4.74 5.78 1.66 5.66 4.74 2.50 3.69 10.50 3.68 4.58 2.57 

Fruit Punch 5.45 4.18 5.29 2.49 5.06 1.53 3.77 9.46 4.63 4.63 2.45 

Fruity Sweets 5.02 4.40 5.04 2.83 4.38 1.38 3.91 10.65 4.40 4.02 1.91 

Garden Mint 5.84 5.08 5.30 2.32 5.60 1.66 3.77 8.08 5.24 5.22 2.62 

Antiseptic 3.48 4.00 3.30 4.19 3.35 1.13 4.17 13.04 3.13 3.08 1.41 

Baby powder 5.48 4.25 5.46 2.48 4.67 1.63 3.70 9.83 4.28 4.25 2.18 

Beauty Soap 4.98 4.12 4.71 2.96 4.71 1.33 3.88 9.05 4.18 4.31 2.21 

Black Pepper 4.88 5.04 4.24 3.66 4.00 1.28 4.18 10.97 3.84 3.68 1.77 

Boiler Room 3.04 5.86 2.42 5.42 2.60 1.94 4.73 14.96 2.38 2.51 1.22 

Brewery 3.79 3.94 3.81 3.58 3.15 1.10 3.62 13.47 3.23 3.08 1.69 

Burning Peat 3.81 5.38 2.79 4.77 3.54 1.54 4.47 12.99 2.96 3.11 1.67 

Burnt Wood 3.90 5.80 2.18 5.32 3.78 1.98 4.47 12.44 3.04 3.24 2.01 

Cannon 2.78 6.40 1.72 5.90 2.74 2.60 5.10 15.66 2.22 2.54 1.34 

Carbolic Soap 3.61 5.10 3.12 4.51 2.92 1.33 4.63 14.33 2.94 2.94 1.05 



  

Casbah 3.86 4.70 3.86 3.88 3.44 1.26 4.45 13.93 3.16 3.02 1.63 

Cedar 3.68 4.12 3.36 4.28 3.34 1.12 4.06 13.21 2.84 3.08 1.74 

Church Incense 4.08 4.20 3.64 3.94 3.38 1.12 4.12 13.10 3.22 3.06 1.62 

Cloisters 3.41 4.57 3.14 4.33 3.00 1.22 4.40 13.93 2.78 2.61 1.53 

Clove Oil 3.04 5.02 2.58 4.60 2.61 1.70 4.43 15.10 2.47 2.46 1.24 

Clover 4.13 4.02 4.54 3.14 3.41 1.02 4.00 13.28 3.26 3.16 1.63 

Club 3.12 4.49 3.20 4.04 2.78 1.29 4.33 14.38 2.65 2.49 1.34 

Coal Pit 3.49 6.49 1.67 5.96 2.33 2.33 5.08 16.29 2.14 2.49 1.26 

Coal Soot 4.27 5.58 2.46 4.88 3.69 1.88 4.45 12.19 3.44 3.48 2.17 

Cuban Cigar Smoke 3.37 4.52 3.47 4.04 2.59 1.35 4.60 15.13 2.61 2.61 1.05 

Dentist 3.66 5.30 2.88 4.82 3.16 1.68 4.69 13.83 3.00 2.90 1.48 

Earthy 4.76 4.88 3.80 3.76 3.76 1.20 4.55 11.68 3.52 3.22 1.78 

Eau de Cologne 4.92 4.92 4.43 3.45 3.78 1.08 4.33 11.59 3.94 3.65 1.91 

Eucalyptus 5.88 5.42 4.73 3.13 4.96 1.06 4.49 9.90 4.25 4.63 2.45 

Fabric Softener 4.90 4.27 4.67 3.02 4.29 1.29 3.75 10.60 4.18 4.20 2.11 

Farmyard 3.86 5.40 2.46 5.04 3.76 2.06 4.27 12.24 3.14 3.10 1.57 



  

Firework 3.71 5.77 2.32 5.40 2.81 2.06 4.85 14.73 2.56 2.79 1.59 

Football Pitch 4.52 5.00 3.90 3.75 3.81 1.19 4.19 12.17 3.67 3.38 1.85 

Forest 4.14 4.04 4.18 3.46 3.62 1.06 3.84 12.55 3.40 3.34 1.71 

Fox 4.30 4.62 3.76 3.84 3.50 1.08 4.04 12.32 3.18 2.94 1.75 

Frosty 4.00 3.62 4.49 3.55 3.70 1.30 3.98 13.93 3.60 3.49 1.77 

Gambia 4.58 4.13 4.21 3.13 3.60 1.08 3.79 11.34 3.38 3.25 1.83 

Garden Shed 4.04 4.56 3.81 3.98 3.46 1.10 4.23 12.81 3.17 3.06 1.59 

Ginseng 3.94 5.06 3.02 4.41 3.10 1.43 4.27 14.59 3.00 2.55 1.58 

Grass/Hay 4.98 4.89 4.04 3.72 4.09 1.02 4.17 11.18 3.83 3.55 2.01 

Havana Cigar 4.76 4.46 4.28 3.80 3.86 1.16 4.19 11.57 3.61 3.48 1.80 

Hawthorn 4.37 4.14 4.39 3.45 3.35 1.00 4.02 11.12 3.61 3.37 1.94 

Heather/Bracken 5.12 4.72 4.60 3.12 4.46 1.16 3.90 10.96 3.98 3.94 2.03 

Honeysuckle 3.98 3.77 4.00 3.45 3.42 1.17 3.87 12.93 3.54 3.25 1.68 

Hospital Modern Day 5.06 4.86 4.32 3.44 4.10 1.00 4.27 11.36 4.00 3.66 2.02 

Hot Stuff Male 4.62 4.26 4.76 3.00 4.06 1.36 3.94 12.81 3.90 3.86 1.75 

Hunter 3.73 3.85 4.13 3.52 3.42 0.92 3.81 13.79 3.48 3.27 1.45 



  

Lavender 4.84 4.73 4.67 3.25 4.51 1.16 4.08 10.84 3.78 4.20 2.28 

Leather 3.88 5.12 3.24 4.31 3.35 0.96 4.54 12.96 3.02 3.02 1.83 

Leather Cream 4.37 3.92 3.55 3.59 3.96 1.10 4.10 11.56 3.27 3.41 1.50 

Leather/Hide 3.60 4.28 3.55 4.00 3.13 1.09 4.35 14.14 2.85 2.89 1.46 

Leaves 4.80 4.98 4.02 3.71 4.27 1.20 3.94 11.33 3.90 3.84 2.04 

Lemon Cream 5.64 5.10 5.44 2.58 4.96 1.60 3.71 10.77 4.58 4.62 2.51 

Mahogany 3.27 4.55 2.82 4.67 2.50 1.47 4.02 14.85 2.72 2.23 1.18 

Man-o'-War 3.14 6.10 1.86 5.73 2.44 2.38 4.82 15.10 2.18 2.86 1.20 

Garlic 5.10 6.51 2.06 5.51 4.47 2.18 4.21 10.91 3.94 4.00 2.30 

Ginger 3.39 5.22 3.10 4.39 3.00 1.39 4.78 13.93 2.57 2.84 1.66 

Gingerbread 3.69 4.04 3.51 3.79 2.79 1.09 4.19 13.74 2.73 2.60 1.59 

Grapefruit 4.22 4.96 4.18 3.63 3.88 1.08 4.24 12.77 3.61 3.33 2.06 

Hazelnut 4.40 5.40 3.25 4.31 3.35 1.79 4.27 11.51 3.23 3.19 1.95 

Herring 4.02 4.64 2.88 4.46 3.76 1.68 3.90 11.50 3.22 3.32 1.99 

Honey 4.50 4.10 4.24 3.34 3.70 1.16 3.80 10.22 3.38 3.36 2.07 

Ice Cream 3.13 3.04 3.71 3.71 2.56 1.21 3.58 14.29 2.63 2.50 1.55 



  

Iced Lemon 5.71 4.71 5.63 2.40 4.69 1.96 4.21 8.05 4.15 4.47 2.34 

Irish Cream 4.63 4.31 4.02 3.58 3.92 1.10 4.25 14.62 3.50 3.56 2.10 

Jelly Beans 3.75 3.73 4.40 3.11 2.85 1.23 3.81 12.07 2.96 2.77 1.74 

Lemon, Eucalyptus & Mint 5.67 4.78 4.76 3.00 4.67 1.12 3.88 10.07 4.67 4.45 2.59 

Lime 5.70 5.06 5.16 2.98 5.18 1.40 3.80 8.28 4.38 4.88 2.73 

Liquorice 5.14 4.72 3.56 4.12 4.40 1.28 4.04 12.59 3.52 3.88 2.22 

Lychee 4.38 4.50 4.44 3.33 3.75 1.56 3.90 11.77 3.25 3.19 1.75 

Malted Barley 3.20 3.58 3.70 3.82 2.75 1.34 4.02 13.57 2.74 2.74 1.65 

Mango & Sweet Orange 5.02 4.33 5.12 2.80 4.29 1.49 3.92 9.17 3.96 4.13 2.28 

Mango Delight 4.40 4.42 3.90 3.53 3.70 1.70 3.92 12.60 3.20 3.62 1.83 

Marzipan 6.12 5.27 4.96 3.00 5.14 1.65 4.22 7.88 4.00 4.90 2.73 

Melon 5.37 4.55 5.39 2.92 3.96 1.67 4.35 11.50 3.71 3.90 2.20 

Mixed Spice 4.42 4.88 4.04 3.92 3.72 1.40 4.45 12.17 3.50 3.42 1.97 

Mulled Wine 5.08 3.94 5.14 2.68 3.94 1.46 3.84 11.12 4.26 3.74 2.01 

Onion 4.66 6.58 2.00 6.02 4.22 2.28 4.46 11.34 3.82 4.20 2.28 

Orange & Cinnamon 5.28 4.72 5.10 2.80 4.34 1.54 3.86 10.49 4.20 4.20 2.33 



  

Orange (Seville) 5.47 4.45 5.20 2.61 4.69 1.61 3.86 9.47 4.33 4.47 2.30 

Parma Violets 4.73 3.85 4.94 2.71 3.92 1.40 3.92 11.89 3.46 3.65 1.97 

Passion Fruit 4.69 4.20 4.82 3.00 4.14 1.55 4.04 10.93 3.71 3.55 1.99 

Peach Flesh 5.33 3.98 5.20 2.55 4.14 1.41 3.80 10.43 3.72 4.02 2.34 

Peach Schnapps 5.73 4.49 5.65 2.59 4.57 1.69 3.65 8.77 4.06 4.22 2.40 

Peanut 3.85 4.96 2.74 4.74 3.32 1.85 4.38 12.52 2.85 3.09 2.01 

Pear 5.82 5.16 4.40 3.56 5.06 1.40 4.14 9.59 4.38 4.68 2.62 

Pear Drops 5.66 5.00 4.74 3.08 4.56 1.58 4.12 8.89 4.02 4.16 2.28 

Peppermint 5.56 5.18 4.64 3.16 4.98 1.08 3.92 10.66 4.51 4.70 2.55 

Pineapple 4.69 4.35 4.53 3.24 3.96 1.31 4.10 10.43 3.65 3.69 2.36 

Potato 4.47 5.41 2.82 4.78 3.84 1.80 4.45 12.94 3.69 3.59 2.11 

Raspberry 3.88 3.90 4.12 3.40 2.86 1.32 4.18 13.28 2.86 2.86 1.80 

Rhubarb 4.22 4.80 3.92 3.98 3.08 1.56 4.18 12.60 3.00 2.92 1.72 

Rosemary 4.53 4.96 3.84 3.82 3.94 0.98 4.27 11.51 3.31 3.53 2.32 

Rum 4.30 5.64 2.90 4.94 3.50 1.54 4.52 14.28 2.98 3.28 1.70 

Sage 4.96 5.24 4.12 3.58 4.24 0.92 4.38 10.00 3.46 3.69 2.28 



  

Shea & Butter 5.43 4.76 4.90 2.96 4.69 1.22 3.84 9.45 4.69 4.45 2.16 

Spearmint 5.90 4.96 5.08 2.60 5.72 1.48 3.56 7.83 5.57 5.40 2.71 

Strawberry 5.37 4.24 5.37 2.45 4.69 1.82 3.76 10.64 4.06 4.41 2.22 

Sweet Sherry 4.58 5.46 3.16 4.62 3.88 1.48 4.54 12.63 2.98 3.50 2.03 

Tea Leaf 4.02 4.59 3.80 3.96 3.10 1.06 4.24 13.27 2.98 2.98 1.72 

Toffee Apple 4.10 4.60 4.04 3.78 2.96 1.12 4.22 13.24 3.33 3.10 1.63 

Vanilla 3.66 3.60 3.76 3.60 3.00 1.12 3.96 13.52 2.88 2.65 1.81 

Watermelon 5.34 4.54 5.52 2.50 4.48 1.80 3.76 9.50 4.08 4.36 2.24 

Whisky 3.61 5.02 2.59 4.71 3.08 1.65 4.54 13.83 2.84 2.86 1.76 

Tomato Plant 4.88 4.78 4.27 3.37 4.02 0.84 3.98 11.45 4.04 3.65 2.01 

Menthol 3.30 3.30 3.68 3.74 2.78 1.00 3.78 14.54 2.72 2.70 1.34 

Methane 3.57 5.71 1.71 5.65 3.22 2.29 4.49 13.80 2.55 3.13 1.72 

Mountain Heather 4.80 4.12 4.47 3.00 4.22 1.04 3.71 10.64 3.73 3.76 2.45 

Mouse 3.36 5.06 2.70 4.70 2.78 1.50 4.76 14.50 2.62 2.38 1.53 

Myrrh 3.71 4.31 3.86 3.88 3.22 0.80 4.12 12.85 3.08 2.92 1.63 

Nag Champa 3.10 3.41 3.73 3.78 2.35 0.77 4.08 16.08 2.57 2.29 1.28 



  

New Car 4.18 3.43 4.61 3.24 3.61 0.86 3.65 12.00 3.53 3.20 2.01 

Nutmeg 3.14 4.32 3.24 4.34 2.60 1.32 4.60 15.22 2.64 2.50 1.25 

Oak 3.37 4.51 2.90 4.47 2.78 1.43 4.33 13.61 2.90 2.65 1.76 

Old Drifter (Ship) 3.39 5.27 2.31 5.10 3.06 1.82 4.49 14.38 2.67 2.90 1.99 

Old Inn 3.18 4.12 2.86 4.32 2.50 1.50 4.18 14.41 2.34 2.42 1.46 

Old Smithy 4.60 4.72 3.98 3.65 3.94 1.06 4.24 11.02 3.54 3.28 1.99 

Out At Sea 4.65 4.67 3.67 3.90 3.33 1.08 4.10 11.07 3.50 3.29 1.99 

Ozone 3.92 4.38 3.68 3.82 3.46 1.28 4.35 11.35 3.34 3.12 1.75 

Patchouli 3.55 5.06 3.02 4.43 2.67 1.31 4.78 13.89 2.85 2.47 1.62 

Peat 3.31 3.27 3.94 3.63 2.78 0.76 3.76 14.76 2.73 2.38 1.63 

Pencils 3.02 3.86 3.33 3.94 2.73 1.04 3.98 14.78 2.61 2.57 1.45 

Pine/Heather/Peat 4.42 4.64 3.92 3.84 3.50 1.08 4.56 12.36 3.30 3.16 1.83 

Polish/Wax 3.94 4.24 4.20 3.51 3.35 1.18 4.18 12.55 3.16 3.20 1.89 

Practical Man 4.86 4.48 4.74 3.16 4.10 1.26 4.28 12.56 3.96 3.72 1.98 

Racing Car 3.38 6.32 1.88 5.42 2.90 2.40 4.62 14.18 2.53 2.66 1.45 

Rockpools 3.61 3.35 4.04 3.65 2.78 1.14 3.55 13.86 2.69 2.84 1.47 



  

Roselle 4.06 4.00 4.20 3.24 3.24 1.20 4.06 12.23 3.12 3.00 1.88 

Rum Barrel 3.10 5.18 2.68 4.66 2.54 1.56 4.66 15.65 2.46 2.50 1.26 

Sandalwood 2.73 2.96 3.73 3.69 2.27 0.69 3.83 14.90 2.50 2.13 1.17 

Sea Breeze 4.46 4.38 4.14 3.62 3.92 1.12 4.04 11.29 3.94 3.76 2.18 

Sea Mineral 5.20 4.39 4.53 3.33 4.41 1.18 4.06 10.90 4.06 3.79 2.23 

Sea Shore 2.96 5.20 2.20 5.10 2.29 1.84 4.81 15.86 2.27 2.08 1.53 

Smugglers 4.56 5.52 2.12 5.50 3.78 2.36 3.92 12.89 3.34 3.70 2.17 

Sports Changing Room 4.16 5.12 3.43 4.06 3.49 1.06 4.69 12.12 3.10 3.00 1.84 

Sports Rub 5.60 5.52 4.21 3.29 5.19 1.08 4.19 8.52 4.45 4.38 2.69 

Stars Dressing Room 4.38 4.06 4.49 3.30 3.89 1.17 4.04 11.33 3.53 3.43 1.95 

Sun tan lotion 5.16 4.22 5.00 2.80 4.64 1.52 4.10 8.92 4.42 3.90 2.22 

Tarmac 3.10 6.19 1.96 5.67 2.64 2.29 5.21 14.86 2.38 2.85 1.86 

Tea Tree Oil 5.20 5.14 3.67 3.80 4.04 1.18 4.47 10.72 3.65 3.86 2.20 

Tobacco Leaf 3.75 4.73 3.10 4.44 3.00 1.35 4.33 13.74 3.13 2.77 1.88 

Toothpaste 3.80 4.94 3.37 4.22 3.20 1.45 4.27 12.76 3.27 3.12 1.84 

Train Smoke 3.96 6.06 2.18 5.30 3.37 2.10 4.68 12.31 2.92 2.94 2.39 



  

 

 

Trophy Room 2.94 4.46 2.98 4.60 2.17 1.35 4.58 15.18 2.25 2.15 1.25 

Turpentine 4.33 4.59 3.65 3.69 3.45 0.96 4.24 12.41 3.39 3.13 1.78 

Tyres 4.00 5.80 2.18 5.10 3.71 1.86 5.06 12.61 2.86 3.08 1.99 

Victorian Street 2.98 5.59 1.86 5.49 2.39 2.31 4.57 14.92 2.31 2.27 1.62 

Washday 4.78 4.86 3.96 3.61 4.02 1.08 3.94 10.67 3.86 3.57 1.95 

Washing Up Liquid 5.65 4.71 5.33 2.65 4.80 1.75 3.78 9.64 4.46 4.35 2.45 

Wood Chip 2.94 3.96 3.80 3.98 2.42 1.16 4.12 14.60 2.66 2.28 1.18 

Woodsmoke 4.28 5.00 2.94 4.88 3.62 1.50 4.28 14.54 3.06 3.22 2.11 

Ylang, Jasmine & Myrrh 4.80 4.56 4.60 3.18 4.02 0.96 4.22 10.33 4.30 3.74 2.24 

Aftershave 4.96 4.24 4.74 3.02 4.34 1.06 4.04 12.19 4.22 3.78 2.31 

Soap Suds 4.90 4.14 4.37 3.22 4.63 1.10 3.53 9.60 4.29 4.10 2.54 

Rubber 4.12 5.80 2.22 5.39 3.90 1.86 4.98 12.06 3.17 3.16 2.15 



  

8.2 Appendix B: Table of normative data for odours used in Chapter 3. 

    Experiment           

Odour Group 1 & 2 3 4 Verbalisability Familiarity Intensity Pleasantness Hedonic Strength 

Cinder Toffee Low X 

 

X₁ 1.02 3.02 3.37 3.59 1.04 

Carbolic Soap Low X X X₂ 1.05 3.61 5.10 3.12 1.33 

Cuban Cigar Smoke Low X X X₁ 1.05 3.37 4.52 3.47 1.35 

Sandalwood Low X 

 

X₁ 1.17 2.73 2.96 3.73 0.69 

Wood Chip Low X 

 

X₂ 1.18 2.94 3.96 3.80 1.16 

Nutmeg Low X 

 

X₂ 1.25 3.14 4.32 3.24 1.32 

Trophy Room Low 

  

X₁ 1.25 2.94 4.46 2.98 1.35 

Rum Barrel Low 

 

X X₂ 1.26 3.10 5.18 2.68 1.56 

Nag Champa Low X* 

 

X₂ 1.28 3.10 3.41 3.73 0.77 

Old Inn Low 

  

X₁ 1.46 3.18 4.12 2.86 1.50 

Rockpools Low 

  

X₂ 1.47 3.61 3.35 4.04 1.14 

Mouse Low 

 

X 

 

1.53 3.36 5.06 2.70 1.50 



  

Sea Shore Low 

 

X 

 

1.53 2.96 5.20 2.20 1.84 

Patchouli Low 

 

X 

 

1.62 3.55 5.06 3.02 1.31 

Ginger Low 

  

X₁ 1.66 3.39 5.22 3.1 1.39 

Blackcurrant High 

  

X 2.44 5.67 4.85 5.48 1.73 

Eucalyptus High X X 

 

2.45 5.88 5.42 4.73 1.06 

Lemon Cream High 

  

X 2.51 5.64 5.10 5.44 1.60 

Aniseed Balls High 

  

X 2.61 5.88 5.40 3.98 1.50 

Garden Mint High X X 

 

2.62 5.84 5.08 5.30 1.66 

Pear High X* X X 2.62 5.82 5.16 4.40 1.40 

Sports Rub High X X 

 

2.69 5.60 5.52 4.21 1.08 

Spearmint High X 

 

X 2.71 5.90 4.96 5.08 1.48 

Lime High X X X 2.73 5.70 5.06 5.16 1.40 

Marzipan High X X 

 

2.73 6.12 5.27 4.96 1.65 

* Denotes the odour used as a buffer item in the first two trials of an n-back testing sequence. 
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8.3 Appendix C: The Self-Assessment Manikin (SAM) Scale Instructions 

This scale requires you to rate how each odour makes you feel whilst you are smelling 

it. There are no right or wrong answers, so simply respond as honestly as you can.  

The SAM scale has 3 sets of 5 pictures, with each set arranged in a continuum. You will 

use these figures to rate how each odour made you feel. The three kinds of feelings that 

the SAM shows is Happy vs. Unhappy, Excited vs. Calm, and Controlled vs. In-control. 

The left of the happy vs unhappy scale should be clicked if when smelling the odour 

you felt completely ‘happy, pleased, satisfied, contented, or hopeful’. The right of the 

scale should be clicked if you felt completely ‘unhappy, annoyed, unsatisfied, 

melancholic, despaired, bored’.  

The left side of the excited vs calm scale should be clicked if you felt stimulated, 

excited, frenzied, jittery, wide-awake, aroused. The right side should be clicked if you 

felt completely ‘relaxed, calm, sluggish, dull, sleepy, and unaroused’. 

The final scale is the feeling of being controlled or being in-control. The left side of the 

scale should be clicked if you have feelings characterised as completely ‘controlled, 

influenced, cared-for, awed, submissive, and guided’. The right side of scale reflects 

feeling completely ‘controlling, influential, in control, important, dominant, and 

autonomous’.  

Some of the odours may prompt emotional experiences; others may seem relatively 

neutral. Your rating of each odour should reflect your immediate personal experience, 

and no more. Please rate each one as you actually felt as you smelt it. 
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8.4 Appendix D: Additional analyses for Chapter 4 

Hit rate analysis. Analysis of hit rates revealed a similar pattern of results observed in 

the A’ score analysis. That is, there was evidence for a main effect of task type, F(3, 

165) = 14.89, p < .001, ηp
2 = .21 (model vs the null, BF10 > 1,000), and anecdotal 

evidence for better target responding for verbalisable odours than the low verbalisability 

odours (p = .038, BF10 = 2.26). There was, however, evidence for no difference between 

the visual 2-back task and verbalisable odours (p = .258, BF10 = 0.27), nor with low 

verbalisability odours (p = .333, BF10 = 0.23). Between the 2-back task hit rates and the 

verbal 3-back task there was evidence for difference across all comparisons. That is, hits 

were higher than the verbal task for the visual 2-back (p < .001, BF10 > 1,000), the 

verbalisable odour 2-back (p < .001, BF10 > 1,000), and, in contrast to the A’ findings, 

also in the low verbalisability odour 2-back (p < .001, BF10 = 106.54).  

Close-lure false alarm rate analysis. False alarms for only close-lure trials (n+1 and n-

1) were analysed as an index of working memory that is not influenced by familiarity-

based recognition (Harbison et al., 2011). The data supported a main effect of task, F(3, 

165) = 11.52, p < .001, ηp
2 = .17 (model vs the null, BF10 > 1,000). Paired comparisons 

revealed support for greater close-lure false alarms in low verbalisability odour memory 

than verbalisable odour memory (p = .005, BF10 = 21.17). There was also evidence for a 

difference between low verbalisability odour false alarms and visual memory false 

alarms (p < .001, BF10 > 1,000), with greater false alarms in the odour task. However, 

there was only anecdotal support for a difference between low verbalisability odour 

memory and verbal memory (p = .079, BF10 = 1.83). Furthermore, whilst there was 

evidence for a difference between verbal and visual memory (p = .007, BF10 = 527.91), 

with higher false alarms in the verbal task, there was evidence against a difference 

between verbalisable odour false alarms and verbal false alarms (p = .359, BF10 = 0.22), 
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and only anecdotal evidence between verbalisable odours and visual task false alarms (p 

= .018, BF10 = 2.18). 
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8.5 Appendix E. Odour normative data for stimuli used in Chapter 5. 

Odour Experiment Fam. Int. Pleas. Irr. Verb. 

Boiler Room 1 3.04 5.86 2.42 5.42 1.22 

Man-o'-War 1 3.14 6.10 1.86 5.73 1.20 

Racing Car 1 3.38 6.32 1.88 5.42 1.45 

Ginger 1 3.39 5.22 3.10 4.39 1.66 

Coal Pit 1 3.49 6.49 1.67 5.96 1.26 

Blue Cheese 1 3.51 5.66 1.89 5.60 1.66 

Farmyard 1 3.86 5.40 2.46 5.04 1.57 

Casbah 1 3.86 4.70 3.86 3.88 1.63 

Coriander 1 3.87 4.76 3.98 3.87 1.51 

Frosty 1 4.00 3.62 4.49 3.55 1.77 

Tea Leaf 1 4.02 4.59 3.80 3.96 1.72 

Basil 1 4.06 4.43 4.12 3.37 1.64 

Toffee Apple 1 4.10 4.60 4.04 3.78 1.63 

Clover 1 4.13 4.02 4.54 3.14 1.63 

Rhubarb 1 4.22 4.80 3.92 3.98 1.72 

Lychee 1 4.38 4.50 4.44 3.33 1.75 

Pine/Heather/Peat 1 4.42 4.64 3.92 3.84 1.83 

Cinnamon 1 4.54 5.00 4.44 3.52 1.79 

Hot Stuff Male 1 4.62 4.26 4.76 3.00 1.75 

Black Pepper 1 4.88 5.04 4.24 3.66 1.77 

Aniseed Balls 2 5.88 5.40 3.98 3.54 2.61 

Pear 2 5.82 5.16 4.40 3.56 2.62 

Pear Drops 2 5.66 5.00 4.74 3.08 2.28 

Fruit Punch 2 5.45 4.18 5.29 2.49 2.45 

Peach Flesh 2 5.33 3.98 5.20 2.55 2.34 



 343 

Tea Tree Oil 2 5.20 5.14 3.67 3.80 2.20 

Liquorice 2 5.14 4.72 3.56 4.12 2.22 

Garlic 2 5.10 6.51 2.06 5.51 2.30 

Mango & Sweet Orange 2 5.02 4.33 5.12 2.80 2.28 

Sage 2 4.96 5.24 4.12 3.58 2.28 

Chocolate (Mint) 2 4.90 5.48 4.12 3.84 2.24 

Soap Suds 2 4.90 4.14 4.37 3.22 2.54 

Fish 2 4.74 5.78 1.66 5.66 2.57 

Pineapple 2 4.69 4.35 4.53 3.24 2.36 

Onion 2 4.66 6.58 2.00 6.02 2.28 

Irish Cream 2 4.63 4.31 4.02 3.58 2.10 

Rosemary 2 4.53 4.96 3.84 3.82 2.32 

Coal Soot 2 4.27 5.58 2.46 4.88 2.17 

Rubber 2 4.12 5.80 2.22 5.39 2.15 

Train Smoke 2 3.96 6.06 2.18 5.30 2.39 

Fam = Familiarity, Int = Intensity, Pleas = Pleasantness, Irr = Irritability, Verb = Verbalisability 

 

 

 


