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ABSTRACT
It has now become critical and important to understanding the

nature of cyber-a�acks and their impact on the physical operation

of emerging smart electricity grids. Modeling and simulation pro-

vide a cost-e�ective means to develop frameworks and algorithms

that address cyber-physical security challenges facing the smart

grid. Existing simulation tools support either the communication

network or the power system, but not both together. �us, it is

di�cult to explore the e�ects of cyber-physical a�acks on power

system dynamics and operations. In order to bridge this gap, a

cyber-physical co-simulator is required.

In this paper, we present a novel integrated cyber-physical secu-

rity co-simulator tool capable of cyber-physical security assess-

ment (CPSA), which simulates the communication network and the

power system together. �e tool identi�es future vulnerable states

and bad measurements and guides the operator at the control center

on taking appropriate action to minimize disruption of the physical

power system operation due to cyber-a�ack. �e developed tool

can be used in understanding of power system monitoring, analyz-

ing the nature of cyber-a�acks, detecting bad measurement data,

bad command, disabled devices and understand their impact on the

operation of the power system.
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1 INTRODUCTION
A reliable, trustworthy, and secure smart grid requires continuous,

e�cient, real-time monitoring and cyber-physical security assess-

ment for increased situational awareness. It should also have the

ability to detect various types of cyber-physical a�acks and be able

to quantify, characterize, and mitigate the impact of such a�acks

[12]. In recent years, there has been an increase in the number of
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cyber-a�acks on the smart grid, with these a�acks having severe

consequences, such as blackouts and loss of con�dential informa-

tion in certain instances [2]. Cyber-a�acks can a�ect the normal

operation of power system applications, such as demand response,

voltage control, device control over wide area network, etc. It can

also a�ect the decision making capability of an Independent Sys-

tem Operator (ISO) or Regional Transmission Organization (RTO)’s

Energy Management System (EMS), which can lead to cascading

failures and instability in the grid. Compromised con�dential power

system information can trigger inappropriate actions by the opera-

tors. Ultimately, cyber-physical a�acks can results in permanent

physical damage to power devices in the �eld.

1.1 Context and Motivation
�e power system is cyber-controlled through a combination of

communications networks, embedded systems, computing resources

and so�ware applications. It is therefore important to understand

the interdependencies between the cyber-elements used for control,

and the operation of the power grid [11]. Di�erent a�ack situa-

tions need to be monitored and analyzed as they take place in the

underlying communication network. Malicious a�acks or system

misbehavior on the power or communication network system may

compromise power system data and may disrupt control devices

and apparatus [19].

Cyber-physical a�acks typically compromise the cyber layer by

incapacitating communications devices and/or making communica-

tions resources unavailable [21]. �is can cause disruptions in the

topology of the network, communication and controlling devices

in the network and �eld, and communication performance (such

as link baud rate, propagation time or delay, maximum number of

packets that can be sent without major collision or packet dropping,

and maximum allowable size of each packet). However, the e�ect of

these a�acks transcends the cyber layer, as cyber-physical a�acks

can incapacitate actual power system devices. Cyber-a�acks on the

smart grid range from traditional cyber-a�acks, such as man-in-the-

middle [24], denial-of-service [23], replay [22] and impersonation

[3] to a�acks that are cyber-physcial in nature and more speci�c

to the smart grid, such as bad data injection, malicious command

injection, and coordinated denial-of-service on Remote Terminal

Units (RTUs).

�e current state and overall health of the power system can also

be a�ected by a�acks over the communication network, such as de-

lay a�acks, synchronous �ood a�acks, distributed denial-of-service

a�acks on devices. During these a�acks, the power system may

undergo various state transitions and eventually become insecure.

�e modern smart grid is controlled using several latest wired and

wireless communication technologies, such as WiMAX and LTE,

to ensure the availability of information in an e�cient manner, as

well as to monitor critical components of the entire power system,

such as , such as power equipment located in remote substations. In
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order to analyze the interdependencies of cyber and physical power

infrastructure, a cyber-physical security assessment co-simulator

must be developed.

1.2 Scope and Challenges
Existing simulators on themarket independently simulate either the

power system or the communications network [18]. For example,

PowerWorld [15] is a dedicated power systems simulator that sim-

ulates power systems dynamics and operations but assumes ideal

communication conditions in the communications layer. NS2/3

on the other hand are dedicated communication network simu-

lators that simulates communication network dynamics, but is

incapable of simulating power systems devices [10]. An integrated

cyber-physical co-simulator must be able to model and simulate the

power system as well as the communication system simultaneously

in addition to providing functionalities for assessing cyber-physical

security. �e co-simulator is able to perform an assessment on

future vulnerable states, evolution of system states, and provide

situational awareness in the presence of di�erent cyber-a�acks [13].

Accurate modeling and simulation of the dynamic behavior of the

smart grid is quite challenging since the grid is a large and complex

system comprised of thousands of sensors and power devices, such

as generators, and transformers, etc., tied together by transmission

and distribution lines. In addition, the smart grid communications

network generally comprises thousands of communication nodes,

several communication routers, and communication and authenti-

cation servers. Hence, it is quite di�cult to model and characterize

the dynamic behavior and inter-dependencies between the com-

munication and the power systems. Moreover, the co-simulator

tool must also include mechanisms to detect inaccurate behavior

of the cyber-physical system. Outlined below are the challenges

associated with modeling the detection of malicious behavior and

the incorrect operation in a cyber-physical system such as the smart

grid:

(1) Existing simulators address di�erent scenarios of either the

communication system or the power system, but not both

system simultaneously taken together as a cyber-physical

system.

(2) It is hard to extend the functionality of the existing simula-

tors as most of them either do not support such an interface

or are not scalable.

(3) Existing simulation tools are not capable to detect misbe-

havior of the cyber-physical systems and their impacts.

1.3 Objective and Contributions
Our main objective in this work is to develop a fast real-time simu-

lator for the cyber-physical smart grid that can provide:

(a) A cyber-aware state estimator considering system-level

communication.

(b) Security assessment of steady-state cyber-a�ack impact.

(c) Overall system simulation for cyber-security assessment.

We develop a “Cyber-Physical Security Assessment (CPSA)” co-

simulator that performs real-time simulation. �e approaches used

in the co-simulator are able to detect the misbehavior and anomalies

in the cyber-physical electric power system. �is simulation tool

can be utilized by operators at the control center for CPSA-related

decision-making. We also develop a predictive global state estimator

at the system level that enables very fast modeling and simulation

at timescales relevant to modern and emerging power systems. �e

co-simulator tool provides system level simulation to understand

the impact of cyber-a�ack on the power system.

1.4 Paper Organization
�e rest of the paper is organized as follows. Section 2 presents

the existing relevant literature on co-simulation and cyber-a�acks’

impact. Section 3 presents the proposed system architecture along

with functional requirements and various modules of the proposed

co-simulator. Section 4 describes the overall design and implementa-

tion strategy with suitable technological platform to implement the

co-simulator. �erea�er, Section 5 discusses various applications

of the developed co-simulator in the smart grid. Finally, Section 6

presents the conclusion of this work.

2 RELATEDWORK
�is section presents literature work related to the co-simulator

and cyber-a�ack analysis.

�e area of smart grid cyber-physical co-simulators and testbeds

have not been fully explored. In this direction, Davis et al. [8]

presented a survey of cyber ranges and categorize these ranges as:

(i) modeling and simulation, where models of each component exist,

(ii) ad-hoc or overlay where tests are run on production network

hardware with some level of test isolation provided by a so�ware

overlay, and (iii) emulation, which maps a desired experimental

network topology and so�ware con�guration onto a physical in-

frastructure. Gluhak et al. [5] provided a survey on testbeds for

experimental Internet-of-�ings (IoT) research. �ese testbeds have

a di�erent scope than what is presented in [8] in the sense that they

focus on speci�c networking technologies, such as wireless sensor

networks. Leblanc et al. [10] provided a snapshot of di�erent tools

and testbeds for simulating and modeling cyber-a�acks as well as

defensive responses to those.

Researchers have also identi�ed di�erent categories of a�acks as

well as their defense strategies. In this direction, Chen et al. [3] dis-

cussed di�erent categories of a�acks: vulnerability, data injection

and intentional a�acks, and analyzed network robustness. Tran et

al. [22] proposed a detection scheme for replay a�acks in the smart

grid. Yang et al. [24] discussed Address Resolution Protocol (ARP)

spoof-based Man-in-the-Middle (MITM) a�acks. Wei et al. [23]

performed a study on modeling Denial-of-Service (DoS)-resilient

communication routing in the smart grid. Liu et al. [13] presented a

framework that models a class of cyber-physical switching vulnera-

bilities. Etigowni et al. [4] presented a cyber-physical access control

solution by using information �ow analysis based on mathematical

models of the physical grid to generate policies enforced through

veri�able logic. Sgouras et al. [19] made an a�empt to assess the

impact of cyber a�acks on AdvancedMetering Infrastructure (AMI),

especially considering DoS and Distributed DoS (DDoS) a�acks.

Researchers have developed security models and testbed setups

to simulate the behavior of cyber-a�acks. In this direction, Hahn

et al. [6] introduced a security model to represent privilege states

and evaluated viable a�ack paths. Liu et al. [12] analyzed the

impacts of a line outage a�ack, DoS a�ack and MITM a�ack on the

2
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Figure 1: Overview of a cyber-physical power system that
consists of eight substations (SS) connected to a control cen-
ter (CC) over the wireless network and is monitored by a
global state estimator.

physical power grid using an integrated cyber-power modeling and

simulation testbed. �is testbed was developed using devices, NS3,

and DeterLab with hardware components. However, the scalability

of their so�ware is not discussed and the simulation was performed

on the IEEE 14-bus test system.

�e above mentioned solutions have limitations, which could be

further improved. In [3], [24], [19], [25], [6] and [4], the impact of

a�acks on the power systemwas not studied, whereas the scheme in

[22] does not consider the source of the cyber-a�acks as being from

the communication network, rather directly injected into the power

system.�e simulation work in [23] only included a 3-generator

system, which is too small to fully understand the impact of these

a�acks on real power systems. �e communication network is not

considered when quantifying the cyber-physical system impact in

[13] and [20].

In order to accurately evaluate the current security of the power

system, a cyber-physical security assessment of the joint communi-

cation and power system is required, rather than simply examining

the cyber security concerns in purely the communication network

or the impact of physical events on the power system. However,

research in this area has not been fully explored. We tackle the

issue of monitoring the entire cyber-physical system by using a

cyber-physical co-simulator.

3 PROPOSED SYSTEM ARCHITECTURE
In this section, we present the overall system architecture for a

novel CPSA co-simulator that overcomes the research challenges

mentioned in the “Introduction” section and provides security as-

sessment, a�ack impact, and situational awareness of the cyber-

physical electricity power system.

3.1 CPSA Co-Simulator Functional
Requirements

In this section, we present CPSA functional requirements that rep-

resent the overall actions performed by the CPSA co-simulator. We

summarize these features as follows. �e CPSA can:

(1) Detect real-time cyber security situations.

(2) Provide visualization and control capabilities to the opera-

tors and EMS administrator.

(3) Detect plausible contingencies that can occur in the system

as a result of cyber-a�ack.

(4) Enhance the security and resilience of the power system

by suggesting appropriate CPSA-driven operator actions.

(5) Generate historical logs and a trust metric(s) for di�erent

components and identify weak elements, which helps op-

erators to respond quickly when a similar situation occurs

at repeated locations.

(6) Apply user-generated rules for what is considered the nor-

mal operating range.

(7) Identify and assesses the current health of the cyber-physical

system by performing cyber-physical contingency analy-

sis.

(8) Enables hashing/encryption of operator-initiated commands

and/or critical measurements.

3.2 CPSA System Module
In this section, we describe various sub-modules of the CPSA sys-

tem. Figure 1 presents an overview of the considered cyber-physical

power system consisting of eight substations connected to a control

center over the wireless network. An Intrusion Detection System

(IDS) has been mirrored at the connected port of each substation as

well as at the control center. �e sub-modules of the CPSA system

are as follows:

(1) Data Management Module: �is module stores all the

measurement values, legitimate as well as rogue values,

received in text �les (extracted from the DNP3 packets). It

stores rogue values with a �ag “up” in order to distinguish

them from legitimate data values. �is module extracts

measurement values from each packet or �le, and passes

them to the next module, known as the logic module. We

assume that this module can use bu�er storage available

at the control center for storing the packets. We presume

that the IDS can provide measurement values to the control

center in a csv �le using a converter.

(2) Setup Module: �is module speci�es the user de�ned

rules, such as acceptable operational limits. It also pro-

vides a component-criticality metric, which clearly de�nes

di�erent components of the cyber-physical system with

their severe criticality of loss.

(3) Logic Module: �e logic modules veri�es the boundary

limits of each measurement value. If the module identi�es

bad measurement values, it separates out those values, and

sets �ag “up” for those values, but still passes those bad

values in order to assess their e�ect on the power system

under the bad measurement injection a�ack scenario to

verify how much these values would impact the current

state of the system.

3
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Figure 2: Overall CPSA system module.

(4) Cyber-Physical System Input Modules: �is module

is comprised of the enterprise communication network

model as well as the EMS power system model for the

existing cyber-physical electricity system.

(a) Enterprise Communication Network Model: It

provides input to the co-simulator regarding various

communication components. �is includes the com-

munication network topology, number of connected

devices in the network, baud rate, packet size, Maxi-

mum Transmission Unit (MTU) size, and propagation

delay over the communication channel.

(b) EMS Power System Model: It provides power sys-
tem input to the co-simulator, which includes the

power system topology, di�erent parameters (with

the actual value as well as acceptance ranges) for dif-

ferent components, such as transmission lines, buses,

generators, loads, shunts, and transformers, and the

con�guration of the power system at the time of data

acquisition.

(5) Cyber-Physical SystemApplicationModule: �ismod-

ule is the main functional and application driven module.

It runs every few (4-5) minutes to check the current health

of the system. All cyber-physical operations of the CPS

module will be performed by the application module. �is

module generates a component trust metric based on the

system behavior observed by its sub-modules. Basically,

a trust metric re�ects the frequency of the cyber-a�ack

a�empts on di�erent components of the communication as

well as the power system. Based on the analysis and obser-

vations of this module, instructions for appropriate actions

are forwarded to the security assessmentmodule (discussed

in the next subsection) along with the component trust

metric. �is module consists of two sub-modules:

(a) Communication-AwareManagementModule: It
is responsible for managing di�erent components of

the communication system along with the statistics of

cyber-a�ack impact. Normal operations performed by

this module include frequent pings to di�erent com-

munication devices to verify whether they are active

and up, maintaining log records of the communica-

tions at the control center, RTUs, and intermediate

devices, such as routers. We describe this module in

detail as follows:

(i) Communications between Di�erent Com-
ponents: In order to make the simulation real-

time, communications between the control cen-

ter and RTUs through routers are provided, where

the sender can send multiple messages with

speci�ed MTU size at one time and the receiver

responds with an acknowledge for each mes-

sage along with the action that needs to be

performed. �e communication system also

4
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includes a propagation delay and the delay at

components for computations.

(ii) LogRecords ofCommunicationComponents:
�ecommunication systemmaintains log records

at the control center, at all RTUs and at routers.

�e logs include messages sent and received

by the sender and the receiver, enqueue and

dequeue timing of each packet at each router

along with sender and receiver information, and

the route followed by each message from the

source.

(iii) Evaluate SystemBehaviorwithCyber-Attacks
Scenarios: �e communication system is sim-

ulated in the presence of di�erent cyber-a�acks

scenarios so that the overall impact and the be-

havior of the cyber-physical system can be ob-

served. Some of these a�acks include man-in-

the-middle a�ack, denial-of-service (disabled)

a�ack, and delay at devices, such as routers and

RTUs. Each such a�ack a�ects the communi-

cation system components and as a results the

system behaves di�erently than in normal op-

erations.

(iv) Evaluate System Behavior with Future De-
mands Scenarios: Based on future forecasts,

such as the predicted load pro�le and generation

dispatch (say for example, the next 30 minutes),

future states of the cyber-physical system are

observed. �is enables the co-simulator to run

and evaluate system states faster than real-time.

A�er each co-simulator run of 2 minutes for 30

iterations, the system states for the next 30 min-

utes can be accurately predicted and analyzed.

(b) Power-Aware Management Module: �is module

analyzes the current state of the power system by

comparing legitimate andmalicious or suspiciousmea-

surement values to evaluate their impact on the over-

all CPS security. It then simulates the what-if sce-

narios using contingency analysis. It also veri�es

whether the suspicious measurements should be for-

warded to other applications, if the system is still se-

cure. �is module contains enhanced versions of three

core power system functions typically performed by

the EMS: global state estimation, power �ow, and con-

tingency analysis.

(i) Global State Estimation: �e global state esti-

mator uses measurements from all of the RTUs

to perform observability analysis. If the entire

system or a part of the system is found to be

unobservable, then the worst case scenario is

assumed for the unobservable portion(s). �ere-

a�er, the measurements (both legitimate as well

as malicious) are sent to the global state estima-

tor for the observable part of the system, which

assigns di�erent weights to them based on their

legitimacy, identi�es the most likely state of the

system, and then it a�empts to detect and iden-

tify bad measurements. Finally, the processed

measurements are sent on to the power �ow

function.

(ii) Power Flow: �eprocessedmeasurements from

the global state estimator are used to determine

the actual state of the system. �ese results

serve as the pre-contingency scenario for the

subsequent contingency analysis.

(iii) ContingencyAnalysis: A list of cyber-physical

contingencies is generated. �en, several di�er-

ent simulation scenarios are performed to deter-

mine the potential impact of each contingency

on the power system. �e worst contingencies

(above a user-de�ned threshold) are identi�ed

and �agged for the power system operator.

(6) Security Assessment Module: �is module is speci�-

cally designed for operators to analyze the CPS system

behavior based on the di�erent observations provided by

other modules. �is module evaluates a trust metric to �g-

ure out the critical components of the cyber-physical sys-

tem, and also performs log-based analysis to verify secure

operation. It can investigate if �nds unexpected behavior

in any communication or power system component. Fi-

nally, the operator concludes with decision-based analysis

and takes suitable actions in order to maintain the secure

and stable operation of the power system.

4 DESIGNING AND IMPLEMENTING THE
CPSA CO-SIMULATOR

Simulation is an e�ective way of working with very large problems

that would otherwise require involvement of a large number of

active users and resources, which is di�cult to coordinate and

build in a large-scale research environment for the purpose of

investigation. Our CPSA co-simulator implements the power and

the communication systems using PowerWorld and Java (with APIs).

�e interface between the power system and the communication

system is governed byMATLAB (Java⇔MATLAB⇔ PowerWorld).

�ere is an active connection for the interface between Java and

MATLAB, which further calls MATLAB-PowerWorld interface.

(1) Connection for the Interface between Java-MATLAB:
We use special Java APIs, such as GridSim, Matlabcontrol,

and Java Agent DEvelopment Framework (JADE) for this

work. We provide a brief description of these APIs below:

(a) GridSim: �e GridSim toolkit allows modeling and

simulation of entities in parallel and distributed com-

puting systems. It provides a comprehensive facil-

ity for creating di�erent classes of heterogeneous re-

sources for solving compute and data intensive appli-

cations. �e processing nodes within a resource can

be heterogeneous in terms of processing capability,

con�guration, and availability [16].

(b) Matlabcontrol: Matlabcontrol is a Java API that en-

ables calling MATLAB from Java [9]. It provides the

ability to evaluate a variable (eval), a function (feval),

5
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and allows get and set variables from Java to MAT-

LAB.

(c) JADE: JADE is used to provide an interface between

the communication network (in Java) and the power

system (in PowerWorld) through an interface using

MATLAB. JADE is an open source middleware and a

Java-based framework that facilitates the creation of

agent based simulations by providing basic functional-

ities, such as agent and behavior classes that can easily

be extended [7]. Although many other multi-agent

frameworks are available, JADE is the most commonly

used for power system applications.

(2) Connection for the Interface between MATLAB-
PowerWorld:
(a) MATLAB: MATLAB is a powerful so�ware that pro-

vides a programming environment to perform com-

plex numerical computations and data analysis [14].

We use MATLAB as an interface between Java and

PowerWorld.

(b) PowerWorld: PowerWorld is a popular simulation

tool used to analyze power systems [15]. Using this

tool, we can perform power �ow analysis on a system

with up to 100,000 buses. It also provides an interface

to perform other analysis, such as transient stability,

optimal power �ow, voltage stability, and contingency

analysis. We use SimAuto as a COM object to control

the simulator from MATLAB and Java.

MATLAB-PowerWorld Interface: �rough this inter-

face, PowerWorld can be requested to run instructions

such as the following:

(a) Open, save and close a case (network).

(b) List the devices of each type (buses, branches, genera-

tors, loads, etc.) present in the case.

(c) Get the parameters (status, MW and MVAR rating,

nominal voltage, etc.) of di�erent elements or all ele-

ments of a given type.

(d) Change the parameters of an element or all elements

of a given type.

(e) Run a power �ow using a speci�c algorithm, such as

Newton-Raphson.

JADE-PowerWorld Interface: JADE cannot directly in-

terface with PowerWorld. It must be done through MAT-

LAB. �ere is no Java documentation available to directly

connect Java with PowerWorld as a COM object. A Trans-

mission Control Protocol (TCP) connection is established

to enable communication between JADE and MATLAB. A

TCP/IP connection enables running all so�ware on a single

computer or using a remote computer for running MAT-

LAB and PowerWorld. �e connection between MATLAB

and PowerWorld is established with a COM object through

SimAuto. Single agent in JADE handles all communications

with MATLAB using InterfaceAgent. On initialization, a

TCP connection is established between InterfaceAgent and

MATLAB, and is open throughout the entire simulation

duration. JADE agent sends a message with desired action

information to InterfaceAgent using the standard Message

Transport Protocol (MTP). InterfaceAgent processes the

Figure 3: Topology for the communication network.

content of the message and sends it to MATLAB through

TCP. MATLAB receives the message, processes respec-

tive parameters, and requests PowerWorld to run the ap-

propriate instructions. A�er executing the instructions,

PowerWorld returns the result to MATLAB through the

COM interface. MATLAB then reprocesses the answer and

sends it through TCP back to InterfaceAgent. Finally, In-

terfaceAgent processes the answer it received and sends

the �nal answer to the agent that issues the initial request

[17].

(3) �eCommunication-AwareManagementModule: �e

communications module is implemented using Java with

GridSim. In GridSim, all components communicate with

each other using message passing operations de�ned by

SimJava. We adopt a star topology with two intermediate

routers for routing information/messages from the control

center to the RTUs. �e Communications network simula-

tions are modeled on GridSim core elements namely grid

resources, such as network links. We can specify the baud

rate for the di�erent links between the control centers and

the RTUs. Routing tables stored in each router are used to

route power system information from the control center

to the RTUs and back. Figure 3 shows the topology of the

communications network in our system model.

(4) �e Power-Aware Management Module: �is module

provides the functionalities for global state estimation,

power �ow, and contingency analysis.

(a) Global State Estimation: Currently the state esti-

mator has been implemented in MATLAB and tested

on several small power systems. �e purpose of state

estimation is to identify the most likely state (bus

voltage magnitudes and angles) of the power system

using raw measurements coming from RTUs in the

�eld. �e formulation of the state estimation problem

is as follows:

Let z represent a set of power system measurements.

�en,

z = h(x) + e,

6
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Figure 4: Algorithm �owchart for DC contingency analysis.

where x is the estimated state vector (bus voltages and

angles), h() is the vector of functions relating the state
variables to the error-free measurements, and e is a

vector of Gaussian measurement errors with mean

of zero and variance σ 2. �e Weighted Least Sqaure

(WLS) estimator minimizes the objective function:

J (x) = [z − h(x)]T R−1 [z − h(x)].

where R is a diagonal matrix of the measurement error

variances. To obtain the minimum x , we take the

partial derivative of the objective function and obtain

д(x (k )) = −H (x (k ))
T
R−1 (z − h(xk ))

Here, x (k ) is the state vector at iteration k . H is the

measurement Jacobian and the partial derivative of h.
By applying the Gauss-Newton method [1], we obtain

the Normal Equations

[G(x (k ))] 4x (k+1) = −д(x (k )),

where the gain matrix G is the derivative of д and is

equal to

G(x (k )) = H (x (k ))T R−1 H (x (k)).

�en the state x is solved iteratively until a conver-

gence tolerance is reached.

(b) Power Flow: Currently power �ow results are ob-

tained through PowerWorld via MATLAB. �e pur-

pose of power �ow is to determine the system state

based on bus injections. �ese results serve as the

base scenario for subsequent contingency analysis.

(c) ContingencyAnalysis: Currently aDC contingency

analysis sub-module has been implemented in MAT-

LAB and tested on several small power systems for a

list of automatically generated physical contingencies.

�e purpose of contingency analysis is to evaluate

the impact of possible physical contingencies on the

power system in terms of line thermal overload. See

Figure 4 for the �owchart of the DC contingency anal-

ysis algorithm, where AC, DC, PTDF, LODF and CA

are acronyms for alternating current, direct current,

power transfer distribution factors, line outage distri-

bution factors and contingency analysis, respectively.

�e CPSA GUI in Figure 5 presents a scenario of a polling request

initialed by the CC. �e CC sends the command “Send Measure-

ment Values” to the RTUs with di�erent se�ing preferences, and

the RTUs respond with the current measurement values of various

components. Similarly, the CPSA GUI in Figure 6 presents a sce-

nario where the CC sends one or more commands to the respective

RTU with di�erent se�ing preferences, and the respective RTU

updates the changes for the respective power system component.

Figure 5: A polling request initialed by the CC and RTUs
reply with the current measurement values.
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Figure 6: Actions performed by the CC by sending one/more
commands to the respective RTU.

Figure 7: Maintaining log records of the communication net-
work statistics.

Figure 7 presents an overview of the log records for the communica-

tion network statistics at the CC, the RTUs, and the routers. Figure

8 presents an overview of the power system measurement values

for the co-simulator in a speci�c format in �les received from the

RTUs, current state and values of the power system components,

and a�er running power �ow and contingency analysis.

5 APPLICATIONS OF THE DEVELOPED
CO-SIMULATOR

�e co-simulator was made scalable by design. It can handle a small

power system case with a few tens of buses to a large system with

Figure 8: Maintaining power systemmeasurement values in
a speci�c format receiving from the RTUs.

ten thousand buses. �e simulator is capable of monitoring the

real-time system behavior as well as the impact of cyber-a�acks on

the power system. In general, this tool is relevant to the following

power system applications:

5.1 Power System Monitoring
�e developed tool provides the operator with an interface to mon-

itor real-time behavior of the power system. �e tool also gener-

ates system residuals and Aggregate MW Contingency Overload

(AMWCO) matrices in order to evaluate the security and health of

the power system. �e tool can support dynamic power system

topology having power components ranged from several hundreds

to a thousand. We consider a 24-substation power system with 42

buses, 62 transmission lines, 8 generators, 27 loads, 6 transform-

ers, and 9 shunt capacitor banks. A visual representation of this

case is shown in Figure 9, where the blue do�ed lines indicate the

communication channels and solid orange lines indicate the power

lines.

5.2 Cyber-Attack Impact Evaluation
Recent cyber-a�acks targeting power systems around the world

have increased the concern over the security of the grid as well as

the privacy of the information (data and commands) transmi�ed

over the grid’s communication network. Currently, an operator

at the control center can monitor power system statistics and line

outages of di�erent substations. However, the operator has no

knowledge of the security of the communication network. �e ad-

versary can perform cyber-a�acks over the communication network

to alter the transmi�ed measurement data or the critical command,

and in most cases the operator will unable to detect the a�acks.

�erefore, we need smarter tools and techniques to detect cyber

and physical a�acks over the communication network as well as

on the power system. �e tool presented in the paper continuously

pings the communication devices deployed in the network and

8
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Figure 9: Visual representation of our 42-bus case.

Figure 10: Evaluating power systemhealth under normal op-
eration vs. under attack scenaio.

monitor them by modeling an identical topology in so�ware. �e

tool is capable of identifying the situations under a�acks, and is

also able to understand the worst-case impact of cyber-a�acks on

the power system as shown in Figure 10.

5.3 Detecting and Ensuring Measurement Data
Under Limit

During data acquisition, the control center sends a poll request

to the substation RTU. As a response, the RTU transmits its mea-

surement data in a series of DNP3 packets to the control center.

An adversary located between the substation RTU and the control

center can compromise the transmi�ed information of the packets,

a scenario of which is presented in Figure 11 where the measure-

ments of a speci�c bus (with a�ached generators and loads) are

altered under an a�ack. As a result, the power system may become

insecure. In a real world scenario, the utilities either protect their

communication networks using Virtual Private Network (VPN) or

simply do not include any protection due to the large deployment

cost. Even in the presence of a VPN network, the adversary can

modify the measurement values or the commands just before the

starting points of the VPN at the substation. �e developed tool can

be easily extended and used to simulate a secure scheme applied to

the data transmi�ed over the insecure network.

5.4 Detecting and Ensuring Transmission of
Accurate and Authentic Command Delivery

�e operator at the control center is responsible for making deci-

sions based on the operating conditions of the power system. �e

operator sends control commands to di�erent power components

at the substation as part of its routine and emergency operations.

An adversary can a�ect the power system dynamics by modifying

the malicious yet valid commands over an insecure network. If the

9
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Figure 11: Bad measurement attack scenaio.

adversary has access to the control center, it can also send a mali-

cious command to execute an inappropriate action in the present

scenario to the substation device. �ese actions can include open-

ing a circuit breaker, shedding load, etc. A scenario of malicious

command injection is shown in Figure 12 where the IDS alerts the

system about a bad command and the co-simulator simulates the

command before executing on the real power system. A scheme

supporting accurate and authentic command delivery can be sim-

ulated and implemented using our tool. A module at the control

center generates a fresh command and sends the command to the

respective control node with fresh information. A module at the

substation RTU is immediately activated a�er receiving a command

from the control center, which could verify whether the received

command is legitimate or malicious.

5.5 Detecting a Disabled RTU Attack or
Communication Delay at a Substation RTU

Assume one or more RTUs are subject to a DoS a�ack, under which

an a�acker delays the communication at each RTU or even blocks

the communication entirely between the CC and the RTU. Hence,

measurements for one or more substations are unavailable for state

estimation. If only one RTU is lost due to a DoS a�ack, the EMS

state estimator may still have global observability using CPSA, since

it may have su�cient measurements in other parts of the system to

Figure 12: Bad command attack scenaio.

infer the behavior of the substation under a�ack. However, there

are cases where a disabled RTU will result in loss of observability

for some system states. Also, if several substation RTUs are under

DoS a�acks, the state estimator will lose observability into at least

a portion of, if not the entire system. In this situation, it is di�cult

to provide any input to other downstream EMS functions, such as

power �ow, contingency analysis, and optimal power �ow. �e

operator at the control center can see these e�ects using the CPSA

co-simulator visualizations, as shown in Figure 9. �e CPSA is able

to detect such an a�ack and guide operators to take immediate

action in order to mitigate the impact of such an a�ack on the

power system.

5.6 A Training Resource for Operators
�e developed tool is an important and useful resource for training

control center sta�, especially power system operators. Be�er train-

ing on cyber-physical security will provide them with an enriched

experience and improve their understanding of the power system’s

behavior in the presence of potential cyber-a�acks. It will also

enable the operator to further develop their decision making skills.

6 CONCLUSION
In this paper, we presented and described a novel integrated cyber-

physical security co-simulator, CPSA, which can assess the impact

of the cyber-a�acks on the power system. We proposed a system

architecture covering the functional requirements and system mod-

ules of the developed co-simulator, and described the dependencies

and implementation of the co-simulator using Java, MATLAB and

PowerWorld. �e developed co-simulator supports the transmis-

sion of measurement data through polling request and response,

triggering a control command to a power component deployed at

a substation, and updating power system values: voltage, active

power, reactive power, and angle. At the end, we also described

various power system security applications that can utilize the

developed co-simulator.
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