
1

Modelling Spreading Process Induced by Agent
Mobility in Complex Networks
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Abstract—Most conventional epidemic models assume contact-based contagion process. We depart from this assumption and study
epidemic spreading process in networks caused by agents acting as carrier of infection. These agents traverse from origins to
destinations following specific paths in a network and in the process, infecting the sites they travel across. We focus our work on the
Susceptible-Infected-Removed (SIR) epidemic model and use continuous-time Markov chain analysis to model the impact of such
agent mobility induced contagion mechanics by taking into account the state transitions of each node individually, as oppose to most
conventional epidemic approaches which usually consider the mean aggregated behavior of all nodes. Our approach makes one mean
field approximation to reduce complexity from exponential to polynomial. We study both network-wide properties such as epidemic
threshold as well as individual node vulnerability under such agent assisted infection spreading process. Furthermore, we provide a first
order approximation on the agents’ vulnerability since infection is bi-directional. We compare our analysis of spreading process induced
by agent mobility against contact-based epidemic model via a case study on London Underground network, the second busiest metro
system in Europe, with real dataset recording commuters’ activities in the system. We highlight the key differences in the spreading
patterns between the contact-based vs. agent assisted spreading models. Specifically, we show that our model predicts greater
spreading radius than conventional contact-based model due to agents’ movements. Another interesting finding is that, in contrast to
contact-based model where nodes located more centrally in a network are proportionally more prone to infection, our model shows no
such strict correlation as in our model, nodes may not be highly susceptible even located at the heart of the network and vice versa.

Index Terms—Epidemic, Complex networks, carrier agent, mobility.
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1 INTRODUCTION

S PREADING phenomena occur in various networks, in-
cluding networks that are naturally formed (e.g., hub

protein, brain structure, etc.) and human engineered ones
(e.g., communication networks, power/utility grids, trans-
portation systems, etc.). Diseases spread through popula-
tions via different pathogens [1] [2] or proteins [3] as well
as digital diseases infecting various devices in the form
of computer virus, spyware and malware [4] [5]. In (on-
line) social networks, gossips, news and rumors propagate
from one friend to another. For instance, viral marketing
has recently been used to propagate information from one
“friend” to another in social media [6]. Failures in man-
made critical infrastructures are also found to cascade from
one network to another due to increased inter-dependency
between the originally isolated networks [7] [8] [9]. These
spreading phenomena, and many others, can either be de-
sirable (e.g., alerts/warnings, news, information etc.) which
may be promoted or harmful (e.g., virus, diseases, riots,
etc.) which should be contained1. Such phenomena have
been the subject of study in diverse fields such as biology,
sociology, physics, computer science, etc. In most of these
studies, contagion process are assumed to be relying on
contacts between nodes (possibly in different modes – e.g.,
physical meetings, electronic communications, etc.). The dif-
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1. For the rest of this paper, we will use the word “information” as the
generic term referring to any object that is being disseminated in the
network (e.g., tweets in online social network, multimedia content in
the Internet, malware in computer networks, contagious diseases in a
population, etc.).

fusion pattern is usually omni-directional. The spreading of
information is then solely dependent on who meets with who.
This then can be accounted by identifying the neighbours of
each individual in the network which is equivalent to node
degree. While classic results (e.g., [4] [10]) mostly associate
a “contagion” process with the structural properties of the
network (i.e., the first and second moments of the network
degree distribution), new models have shown that epidemic
behaviour is more accurately determined by the spectral
properties of the network [11] [12] [13], thus bringing spec-
tral graph theory into the analysis.

In this work, we focus on simple spreading processes2

which do not require multiple and/or different instances
of exposure before a state transition takes place (e.g., a
healthy node becoming infected). Specifically, we are inter-
ested in understanding simple contagion process following
the Susceptible-Infected-Removed (SIR)3 epidemic model [15]
that is induced by carrier agents that move along certain
prescribed paths within the network. One example of this
class of diffusion phenomena is on rail [16] and air [17]
transportation systems where human beings (and in some
cases, pets) become the carrier agents transporting the
contagion. In fact, it has already been found that human
mobility follows highly regular routine patterns (e.g., route
between home and workplace) [18] [19]. The advent of
smartphones also open a whole new range of avenues for
computer viruses and malware to spread. Infected user

2. As oppose to complex spreading processes [14] such as technology
adoption, influence spreading, etc.

3. The R state in the SIR model is also often referred to as the
“recovered” state. For the purpose of this paper, we treat them as the
same state.
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devices move along the paths the owners are traveling.
The virus/malware then actively attempt to replicate itself
to nearby devices through wireless communication tech-
nologies such as Wi-Fi or Bluetooth. For instance, Cabir4

and CommWarrior5 are two worms discovered in mid-2000
that replicate themselves to other devices via Bluetooth.
Recent studies such as [20] and [21] have predicted serious
threat to mobile communications especially within a public
transportation network. In the emerging information-centric
networking (ICN) paradigm [22], information or content is
being cached in routers equipped with cache stores along
the paths they traverse [23] [24]. Computer viruses and
malware may also spread via piggybacking email chains. An
infected nodes may later become immune or simply choose
not to further disseminate the information gained from the
agents.

In this paper, we advance the current contact-based
epidemic modelling approach by considering a different
infection spreading process that is carried by infectious
agents. We explicitly model the role played by such agents
on the spreading dynamics. Following such considerations,
the susceptible nodes in the network will possess different
probability of getting infected as the amount of interactions
in the network system governs that infection potential. A
node having higher volume of infectious agents destined
to or traversing it will have higher chances of contracting
the infection. The node degrees will no longer have direct
influence to the contagion process since the mere existence
of a link between two nodes does not automatically results
in infection; only when interactions happen between the two
nodes (which is made possible by the presence of the link)
will cause infection to be passed.

Our main contributions are as follows. We contribute to
the theoretical development of epidemic theory and model
the spreading dynamics caused by infectious agents travers-
ing the network (i.e., agent mobility) using graph theoretic
approach. Our model break from the conventional assump-
tion of the contact-based infection process and account for
the prescribed routes the agents take between two network
nodes. In our model, a node may still be susceptible to
infection even when all its immediate neighbors are unin-
fected. Spreading is now dictated by the amount of activity
and mobility pattern of the agents. Our approach takes the
analytical framework studied in [12] [25] as the starting
point. In our model, we create an infection characterization
matrix that allows us to draw insights into the behavior
of the epidemic. We find the epidemic threshold of such
contagion process as well as the upper and lower bounds of
this threshold for a given infection characterization matrix.
Several interesting conclusions are drawn. Unlike contact-
based epidemic, spreading due to agents’ mobility affects
more nodes across the network. Moreover, another finding
relates to the location of nodes in the network whereby
nodes that lie near the edges of the network are not nec-
essarily less susceptible to infection. This is in direct con-
trast with (weighted) contact-based epidemic models which
consistently predict high infection probabilities for “central”
nodes such as hubs with high number of neighbors.

4. https://www.f-secure.com/v-descs/cabir.shtml
5. https://www.f-secure.com/v-descs/commwarrior.shtml

TABLE 1
Notations

Symbol Descriptions
A Adjacency matrix representing the topology
V The set of nodes (or vertices) in the network
E The set of links (or edges) in the network
N Number of nodes in the network
L Number of links in the network
β Infection probability
µ Remove/recovering rate

sn(t) Probability of node n in the healthy state
in(t) Probability of node n in the infected state
rn(t) Probability of node n in the removed state
ρ(t) Fraction of infected nodes in the network at time t
Qn Infinitesimal generator of node n’s continuous

Markov chain
qi,j;n The (i, j) element of Qn

τc Epidemic threshold
λn,m Number of agents originated from vm

and destined to vn
Λ Matrix encoding the agent traffic, λn,m, for all node pairs

Pn,m The set of all nodes involved in the path between
vm and vn inclusive.

1x Indicator function; Equals 1 when x = true
and 0 otherwise.

C Infection characterization matrix
p Probability of a link connects a pair of nodes

(for generating random graphs)
w The number of links to attach at each iteration

(for generating scale-free graphs)
γ1 Largest eigenvalue of matrix C

The rest of the paper is organized as follows. In Sec-
tion 2, we review the fundamentals of epidemic models
and the related work to modelling epidemics, leading to
our specific epidemic spreading model. We detail the ex-
act spreading mechanics that we consider in this work in
Section 3. Based on the specified spreading mechanics, we
develop the modelling framework next in Section 4 that is of
polynomial complexity and provide Monte-carlo simulation
results to validate our model. We then discuss in Section
5 the spreading process induced by agents traversing the
network from three perspectives, namely from the point
of view of the network, individual nodes and the agents
respectively. Following this, we present in Section 6 our
analysis of a case study on a hypothetical epidemic spread
via commuters (as the agents) traveling in the London Un-
derground network system and highlight the main findings
of our model compared against conventional contact-based
epidemic contagion process. Finally, we conclude our study
in Section 7. Table 1 summarizes the notations used in this
paper.

2 BACKGROUND, BASICS AND RELATED WORK

In recent years, epidemic theory has found applications in
various different fields, covering virus/disease spreading
(both biological and digital ones) (e.g., [1] [5]) and corre-
sponding immunization strategies (e.g., [26] [27] [28] [29]),
information dissemination in (online) social networks (e.g.,
[30]), communication protocol design (e.g., [31] [32] [33]) and
cascading failure prediction/protection (e.g., [34]) as well as
in more general contexts, analysis on stability of spreading
processes over time-varying networks (e.g., [35]) and iden-
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tification of influential seeds/spreaders in networks (e.g.,
[36]).

Initial theoretical treatment on epidemic can be traced
back to Bernoulli’s work on smallpox in 1760 [37]. Early
epidemic models are deterministic which are especially
suitable for predicting epidemic for large populations [10].
Epidemic spreading is inherently a random process and
thus, stochastic models were later proposed with [15] being
one of the earliest. The research in the literature focused
on theoretically expressing the process of how a susceptible
individual contract the epidemic via contacts with infected
ones. One well-known initial effort is to invoke the so-
called homogeneous mixing assumption [15] whereby all
individuals in the population are assumed to have equal
probability of meeting each other.

Epidemic theory has now been considered as part of
network science [38]. Conventional epidemic models are
usually described via a set of ordinary differential equations
(ODEs) whereby infection is passed between individuals by
contact – an individual “meeting” another. Commonly, the
population is first segregated into groups based on the state
of the individuals. Each individual can and must assume
one of the possible distinct states (or stages) of the epidemic.
Some common possible states are susceptible (S), infectious
(I), removed (R), exposed (E), alert (A), etc.

Since we are considering SIR epidemic model here, each
individual in the network must assume one and only one of
the following states at any time:

• Susceptible (S) – Individuals who are free from but
prone to infection.

• Infected (I) – Individuals who are infected. They are
also assumed to be infectious.

• Removed or Recovered (R) – Individuals who are
immune from infection. They are also assumed to be
not infectious.

Then, a state transition rate (usually a constant) that is
independent of the contacts amongst individuals is defined.
The transition rate can then be written as dX(t)/dt =
−αX(t) where X(t) generically represents a group of in-
dividuals being in a possible state X at time t and α is the
constant inverse of the average period an individual spent
in this group or the per capita transition rate. Under the
homogeneous mixing assumption, the infection rate then
simply depends on the size of the susceptible and infected
groups, usually given by αS(t)I(t). With this assumption,
the heterogeneities of individuals are neglected. Following
such complete random mixing context, the (now classic)
homogeneous ODE for an SIR model can be written as
follows [15]:

ds

dt
= −βsi (1)

di

dt
= βsi− µi (2)

dr

dt
= µi (3)

where β represents the infection transmission rate, µ is the
removal/recovery rate and finally, s, i and r denote the
fraction of population in susceptible, infected and removed
state respectively.

However, real world phenomena are mostly filled with
heterogeneities. Appreciating this feature, the role of het-
erogeneities have then been considered. For instance, [1]
considered age, genetic and social heterogeneities in the host
population for sexually transmitted diseases. Heterogeneity
with respect to network structures were also considered
in [39] [40] [41] [42]. Individual nodes are segregated into
classes of equivalence. Nodes with the same number of
immediate neighbors (node degrees) are considered to be in
the same class and are assumed to be statistically equivalent.
Often, the well-known configuration model [43] is used to
illustrate the accuracy of the proposed model since with
this model, specific degree distribution can be specified by
giving the normalized probabilities that a random node has
certain degree.

Several pair-wise approximation models were proposed
to model epidemic spread with better accuracy at the ex-
pense of being more mathematically involved than previous
models employing mean-field approximations [44] (Chap-
ter 7.8). In [45], a basic pair-wise approximation model
is proposed; assuming uniform contact distribution and
ignoring clustering effect of individuals. The pair-wise ap-
proximation approach was further developed with network
heterogeneities taken into account in [46] [47]. Furthermore,
in [48], the authors described a pair-approximation math-
ematical model for worm propagation that considered the
network features such as degree distribution and clustering
coefficient. This approach, however, come with the cost of
higher computational complexity (i.e., the model requires
consideration of

(
N
2

)
number of pairs).

These above works in the literature usually employ some
approximations techniques to reduce computational com-
plexity since the complexity to compute the exact solution of
the epidemic spread grows exponentially with the number
of nodes in the network [12]. The authors in [12] further
developed an N -intertwined modelling approach that re-
duces the complexity of the exact solution for SIS epidemic
spreading from exponential to polynomial. This approach
is extended to model the SIR epidemic in [49]. Our work
presented here diverges from the contact-based assumption
used in these earlier works. We consider infection being
carried by an infected agent moving from one node to
another along certain path6.

The abovementioned works form a solid foundation to
the modelling of epidemic and allow us to gain significant
understanding into the characteristics of epidemic dynam-
ics. As elucidated in Section 1, in many real world scenarios,
pure contact-based contagion assumption may not be suffi-
cient as in our considered case here where infection may
be carried across certain path due to agents’ movements.
In this direction, a closely related class of epidemic models
is the one that considers spread of infection by individual
movements between distinct sub-populations or locations
[44]. Among the different spatial models, the concept of
metapopulation is one of the most versatile and used in the
literature. For instance, contact-based epidemic dynamics
was studied in metapopulation models in [50] by assuming

6. Readers may find it helpful to map the distinction between contact-
based vs. mobility-based contagion viewpoints with Lagrangian vs.
Eulerian viewpoints in the classical field theory
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individuals having random Markovian movements in the
subpopulation without memory of their origin, in [51] by
assuming bi-directional mobility of individuals between
their unique base location and a small subset of frequently
visited locations and in [52] by considering recurrent mobil-
ity patterns. The spreading behaviour based on store-and-
forward paradigm (as used in delay-tolerant networks ) falls
under such models where infection is still assumed to be
contact-based but with added considerations of node move-
ments. Furthermore, the role of agents in spreading infection
is considered in [53] whereby the number of individuals
traveling between subpopulations required for macroscopic
infection spread is analyzed. The effect of short- and long-
range traveling patterns on spatial infection spreading was
investigated in [54] while the effect of restricted mobility
(i.e., travel restrictions) in controlling infection spreading
was studied in [55]. In our work, we do not assume random
/ recurrent / restricted mobility pattern as above. Instead,
we encode the infectious agents’ traveling paths in an
infection characterization matrix. In view of the need for
large-scale simulations in epidemic studies, a comparison
between two popular methodologies (i.e., stochastic agent-
based models and structured metapopulation models) were
made in [59], showing good simulation agreement between
the two modeling approaches. In the area of communication
networks, [56] modelled epidemic dynamics by considering
data packets as the infection agents traveling between ran-
dom source-destination pairs. Taking [56] as the modelling
basis, [57] and [58] have studied the question on how to
control epidemic spreading by link removals and via dif-
ferent routing schemes respectively. These works assumed
stochastic interactions between node pairs. We depart from
such assumption and model explicitly the interactions. In
our work, we differ methodologically by employing graph
theoretic approach instead to model the contagion process,
taking into account exogenous individual arrivals with each
individual traveling across a path.

3 SPREADING MECHANICS VIA CARRIER AGENTS

In this section, we describe the spreading mechanics facil-
itated by carrier agents’ mobility. Specifically, we consider
an agent in the network can assume one of the two states
at any one time (i.e., either susceptible or infected). Once
infected, the agent stays being infected until it reaches its
destination. As such, the agents follow the SI epidemic
model. To simplify our model, we assume Poisson agent
arrival process with no routing delay.

We use Fig. 1 to illustrate the role of agents in spreading
infection. When there is no influence of agents (Fig. 1(a)),
susceptible and removed individuals will not change their
state. However, an infected individual may change to the
removed state with a removal rate, µ. This transition is
assumed to be a Poisson process independent of the agent
traffic. As per convention in the literature, and without loss
of generality, we use µ = 1.0 for the rest of the paper.

An agent is infected and stays infectious if it originates
from an infected node (Fig. 1(b)). Conversely, if originated
from a susceptible or removed node, the agent assumes
the susceptible state. An infected agent infects a susceptible
node with transmission rate β. In our model, an agent may
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Fig. 1. (Color online) Illustration of possible ways for a state transition to
take place. (a) No agent carrying infection will not cause new infections.
Susceptible and removed nodes do not change state. Infected nodes
may become immuned and thus assume the removed state. (b) Agents
originated from an infected node are also infected. Infected agent are
infectious. (c) Infected node can infect agents traversing it. (d) Immuned
nodes do not change the state of the agent and vice versa, agents do
not change the state of immuned nodes.

infect multiple nodes along the path in one transmission.
A susceptible agent is infected once it reaches any infected
node (Fig. 1(c)). As such, the longer the path, the higher the
probability the agent traversing this path will be infected. Fi-
nally, removed and susceptible nodes do not change agents’
state (Fig. 1(d)).

4 MODEL DEVELOPMENT

We consider an underlying undirected network, G(V,E)
with V = v1, ..., vN nodes and E = e1, ..., eL links where
N = |V | and L = |E|. G can be represented by A, the
N ×N symmetric adjacency matrix, with an,m = 1 if there
exists a link between node n and m and 0 otherwise. In this
work, one may think of the nodes as individuals, devices or
locations depending on the considered scenario while links
as the channel allowing direct access between two nodes.

For simplicity, we use the term agents as the universal
infectious entity that passes the infection by traversing dif-
ferent nodes via the connecting links. We model the spread-
ing process that is based on the paths of agent flows. The
“infection” can be transmitted by different kinds of agents
depending on the specific application context (e.g., content
chunk in the case of in-network caching, software patch
in the case of computer virus immunization, tweets in the
context of gossip spreading in online social networks, etc.).
The exact mechanics of the infection process are described
in Section 3.

Let sn(t), in(t) and rn(t) denote the probability of node
n being in the healthy, infected and removed state at time,
t, respectively. Following the fact that each node must be in
one of the three states at any time t, then
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Fig. 2. Each node in the network can be in either one of the three states
(i.e., S, I, R) at one time. The combinations of all possible states is 3N .

sn(t) + in(t) + rn(t) = 1 (4)

and
dsn(t)

dt
+
din(t)

dt
+
drn(t)

dt
= 0. (5)

Now, if we directly apply Markov theory to the entire
network, then the complexity of the solution is exponential
(i.e., O(3N )) since we need to consider all the possible
combinations of states for each and every node and in this
case, the infinitesimal generator of the system, Q(t), has the
dimension of 3N × 3N .

Instead, we approach the problem by considering each
node individually (see Fig. 2) and applying Markov theory
to obtain N copies of infinitesimal generator Qn(t) of the
three-state continuous Markov chain for each node sepa-
rately as follows:

Qn(t) =

−(q1,2;n + q1,3;n) q1,2;n q1,3;n
q2,1;n −(q2,1;n + q2,3;n) q2,3;n
q3,1;n q3,2;n −(q3,1;n + q3,2;n)



=

−q1,2;n q1,2;n 0
0 −q2,3;n q2,3;n
0 0 0

 (6)

The remove rate is a Poisson process and is not de-
pendent on agents’ activity within the network. Hence,
q2,3;n = µ. In contrast, q1,2;n is dependent on the states
of other nodes within the network which are further de-
pendent on the agents traversing the nodes. To account
for this dependency, q1,2;n must be conditioned with all
possible combinations of states for all nodes, resulting back
to the exact Markov chain solution which, unfortunately, is
of exponential complexity.

We now proceed following the approach adopted in [12]
[60] by applying a mean field approximation to the random
variable, q1,2;n and use its expected rate instead (see Fig.
3). This removes its random nature as well as reduce the
complexity of the solution to polynomial O(N).

The effective infinitesimal generator can now be written
as:

Qn(t) =

−E[q1,2;n] E[q1,2;n] 0
0 −µ µ
0 0 0

 (7)

Fig. 3. Applying the mean field approximation reduces analysis com-
plexity of exact solution from exponential O(3N ) to polynomial O(N).

From Eq. 7, E[q1,2;n] models the effective infection rate
of vn. In classic contact-based epidemic models, this is basi-
cally a function of the infection rate, β and the states of vn’s
neighbours which in turn relates to the adjacency matrix, A.
Node vn is not immediately susceptible to infection until at
least one of its neighbours is infected. In our case, this is not
true since the infection no longer depends on neighbours’
states but rather the state of the agents traversing the node.
As such, we need to model the probability of agents crossing
or destined to the node of interest are carrying infection.

Let the expected volume of agents originated from vm
and destined to vn be λn,m;∀n,m ∈ V ;n 6= m. As such, we
have the following:

∀n ∈ V : λn,n = 0. (8)

In matrix form, Λ has the trace, tr(Λ) =
∑N

n=1 λn,n = 0
(i.e., no self-traffic). In real world scenario, the matrix Λ is
sometimes known as the traffic matrix [61] that denotes the
amount of expected traffic between node pairs. It can often
be estimated/predicted [62] or historical data may be used
(e.g., statistics collected over time such as the case with our
case study in Section 6).

Since we consider a connected network, there exists at
least one path between any node pair. Further, we assume
there exists agents traveling between all node pairs and all
agents travelling between two nodes follow the same paths
at all times. We then have a total of N(N −1) distinct paths.
Using the above information, we construct the infection
characterization matrix, C = (cn,m), which is an irreducible
non-negative square matrix. The element cn,m represents
the total agents flowing through or destined to node vn
originated from node vm and can be written as follows:

cn,m =

N∑
k=1

λk,m1n∈Pk,m
(9)

where the indicator function is defined as:

1n∈Pk,m
:=

{
1; if n ∈ Pk,m,

0; if n /∈ Pk,m.
(10)

where Pk,m is the set of all nodes involved in the path
between nodes vm and vk (source and destination nodes
inclusive). The membership of the set Pk,m depends on the
specific application scenario. For instance, for communica-
tion networks, this is determined by the routing protocol
employed by the network operator whereas for transporta-
tion scenarios, this is dependent on the planned flight/train
routes. For an illustrative example on deriving matrix C
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based on the network topology (i.e., A) and agent mobility
(described via Λ and Pn,m).

Using Eq. 9, we can write the following:

E[q1,2;n] = β

N∑
m=1

im(t)cn,m (11)

Applying the Markov differential equation (see [63]
(10.11) on p. 208), we obtain the following system of non-
linear differential equations,

dsn(t)

dt
= −sn(t)β

N∑
m=1

im(t)cn,m (12)

din(t)

dt
= sn(t)β

N∑
m=1

im(t)cn,m − µin(t) (13)

drn(t)

dt
= µin(t) (14)

The epidemic process is governed by the set of dif-
ferential Eqs. 12, 13 and 14. Specifically, from Eq. 13, we
see two opposite processes: when node n is healthy with
probability sn(t), it is being infected by total infectious
agents traversing or destined to it,

∑N
m=1 im(t)cn,m, with

rate β and when node n is infected with probability in(t), it
is removed at rate µ.

This system of equations written in its matrix form is as
follows:

dS(t)

dt
= −S(t)βCI(t) (15)

dI(t)

dt
= S(t)βCI(t)− µI(t) (16)

dR(t)

dt
= µI(t) (17)

where S(t) = [s1(t) s2(t) . . . sN (t)]T ,
I(t) = [i1(t) i2(t) . . . iN (t)]T and R(t) =
[r1(t) r2(t) . . . rN (t)]T .

We can now solve the above system of differential equa-
tions to obtain the instantaneous evolution of the population
for the three distinct states. Furthermore, using Eqs. 4 and 5,
we can reduce the problem from solving 3×N simultaneous
differential equations to 2×N equations.

We show the agreement of our analytical framework
against results from Monte-Carlo simulations for both pure
random graphs such as Erdős-Rényi (ER) graph model [64],
which has binomial degree distribution, and for scale-free
(SF) graphs [65], which have power-law degree distribution
as the literature has shown evidence that the two types
of graph models exhibit different epidemic behaviours. As
mentioned before, our approach takes individual node into
account separately and as such, for validation purposes, we
do not have to rely on network topologies generated with
specific degree distributions such as using the configuration
model [43].

For our simulations, we generate a sample set of graphs
for each graph model above. For ER graphs, for a given N ,
a link randomly connects a pair of nodes with probability
p independent of other links. Unless otherwise specified,
we use p = 2 × pc = 2 × ln(N)/N which is two times

the sharp threshold for connectedness to ensure graphs are
fully connected while at the same time having sufficiently
low link density (= L/

(
N
2

)
) to avoid highly meshed topol-

ogy. This is because the spreading patterns of our model
will converge to that of contact-based model since in a
fully meshed network, nodes can reach each other directly
without intermediate nodes, resulting in a situation where
the agents’ traveling pathways coincide with contacts (i.e.,
everyone is just one hop away from each other). Generation
of SF graphs follows the preferential attachment process
described in [65] where the probability of a new node
attaches to a given node is proportional to the total node
degree. The number of links to attach at each step, w is set
to 2 as default.

For each graph, without loss of generality, we pre-
compute the paths for each and every node pair using
Djikstra’s algorithm, assuming non-weighted links. At time,
t = 0, 10% of nodes in the network are randomly chosen to
be the infected while the rest are assumed to be susceptible
nodes. We then generate λN agents at each time step. Each
agent is given a random origin and destination nodes and
the agent moves along the pre-computed paths of the origin-
destination node pair. The infection and node removal pro-
cesses follows the mechanics described in Section 3.

We show in Figures 4 and 5 one representative result
each for the instantaneous evolution of the infected, suscep-
tible and removed fractions of population for N = 100 for
random and scale-free graphs respectively.

Finally, we can also compute the prevalence of the epi-
demic (i.e., the fraction of infected nodes) at time t in the
network using the following:

ρ(t) =
1

N

N∑
n=1

in(t). (18)

We note that at steady-state, din(t)
dt |t→∞ = 0 and in∞ =

limt→∞ in(t) = 0. Naturally, it follows that as t→∞, ρ = 0

and
∑N

n sn +
∑N

n rn = N .
Using the tuple {β, µ, λ} = {0.5, 1.0, 2.0} as the default

setting, we show in Figure 6 for ER graphs and Fig. 7 for SF
graphs that our model always predict the size of epidemic
within the 99% confidence interval of the simulated results
across topologies of different sizes. Further, we present in
Fig. 8 and Fig. 9 the fraction of population infected over the
lifetime of the epidemic. From these figures (also with 99%
confidence interval), similar agreements between our model
and simulation results can be observed when we vary the
multiple of pc = {2, 3, 4, 5, 6} parameter for ER graphs and
w = {2, 3, 4, 5, 6} parameter for SF graphs. All confidence
intervals were computed based on 100 simulation runs.

5 VULNERABILITIES FROM DIFFERENT PERSPEC-
TIVES

In this section, we analyze the effect of epidemic spread
by agents from three different perspectives. Specifically, we
discuss (1) how vulnerable the network as a whole to our
agent mobility-based epidemic, (2) vulnerability of individ-
ual nodes in the network and (3) agent’s susceptibility to
infection when traversing the network.
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Fig. 4. (Color online) Instantaneous evolution of the population for a
random graph of size N = 100 with λ = 1 for all nodes. Lines with
markers are results from our model while solid, dashed and dotted lines
without markers are results from Monte-Carlo simulations.
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Fig. 5. (Color online) Instantaneous evolution of the population for a
scale-free graph of size N = 100 with λ = 1 for all nodes. Lines with
markers are results from our model while solid, dashed and dotted lines
without markers are results from Monte-Carlo simulations.

5.1 Network as a whole
We derive some steady-state properties of our model for
the network viewed as a whole system. We begin with
the trivial observation that all agent mobility-based SIR
epidemic will converge to an infection free state since an
individual will only be infected for a finite time period after
which it is no longer susceptible to re-infection. Without
re-infection process, the number of individual susceptible
to infection monotonically decreases while the number of
individual gaining immunity monotonically increases and
finally, results in the death of the epidemic, regardless of the
amount and state of the agents within the network.

Often the most important question asked regarding an
epidemic is whether there will be an outbreak (i.e., will it
spread or die off rapidly). A common quantity used in the
literature to answer this question is the so-called epidemic
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Fig. 6. (Color online) Epidemic size (i.e., fraction of population who
eventually contracted the infection) for a set of sample ER topologies
with N = {100, 200, 300, 400, 500} and p = 2× pc.
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Fig. 7. (Color online) Epidemic size (i.e., fraction of population who
eventually contracted the infection) for a set of sample SF topologies
with N = {100, 200, 300, 400, 500} and w = 2.

threshold, τc, which defines the point of transition between
an epidemic and a non-epidemic regime. If the effective
spreading rate of the epidemic is below this threshold, then
the epidemic will die off and vice versa. However, unlike
the SI or SIS models7, the SIR model will always die off (i.e.,
zero infection at the end since infected nodes will eventually
become immune). We follow the definition given in [66]
where the SIR epidemic threshold is defined as the point
that separates between the network having a finite fraction
of the population being infected and the network having
infinitesimally small number of infected individuals in the
limit of very large N .

7. In the SI model, there is no such transition point since all nodes
will eventually be infected. In the SIS model, a node may be re-infected
and thus, the network may converge to a steady-state such that the
epidemic prevails over long period.
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Fig. 8. (Color online) Epidemic size (i.e., fraction of population who
eventually contracted the infection) for a set of sample ER topologies
with N = 100 and multiple of pc = {2, 3, 4, 5, 6}.
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Fig. 9. (Color online) Epidemic size (i.e., fraction of population who
eventually contracted the infection) for a set of sample SF topologies
with N = 100 and w = {2, 3, 4, 5, 6}.

Theorem 1 (Epidemic Threshold). Given a network system
characterized by matrix, C and the corresponding largest eigen-
value being γ1, then the epidemic threshold, τc is as follows:

τc =
1

γ1
(19)

where γ1 is the largest eigenvalue of C .

Proof. Consider, at time t = 0, the initial infected fraction
of population is very small (i.e., limN→∞ sn(0) ≈ 1;∀n ∈
V ) and none of the individuals in the network is immuned
(rn(0) = 0;∀n ∈ V ). At such conditions, we can linearize
Eq. 13 around the infection-free equilibrium as follows:

din(t)

dt
= β

N∑
m=1

im(t)cn,m − µin(t) (20)

=

N∑
m=1

(βcn,m − µδn,m)im(t) (21)

where the Kronecker delta, δn,m = 1 when n = m.
Equivalently, we can re-write the equation in matrix

form as follows:
dI(t)

dt
= βHI(t) (22)

where H is the N ×N matrix

H = C − µ

β
1. (23)

where 1 is the identity matrix.
By using the principle of linear stability for systems

of ODEs, we can observe that matrix H (see Eq. 23), by
construction, has the same spectrum as C but shifted to the
left by µ/β. Thus, the largest eigenvalue of H , σ1 can be
written as follows:

σ1 = γ1 −
µ

β
(24)

where γ1 is the largest eigenvalue of C as we adopt the
convention γ1 > |γ2| ≥ γ2| ≥ · · · ≥ |γN | where | · | denotes
the absolute value if the eigenvalue is real or modulus if it
is complex.

The epidemic threshold is given by σ1 = 0 and from Eq.
24, we can then state that the epidemic threshold as:

τc =
β

µ
=

1

γ1
. (25)

Therefore, whether there is an outbreak of epidemic is
determined by γ1 whereby the epidemic is easier to spread
when γ1 is large. This is logical since we get higher γ1 when
cn,m assumes larger values (see Theorem 2 in [25]) which
means there is higher volume of agents traversing nodes
(and thus, passing on the contagion) within the network.

While C is almost surely non-symmetric, it remains by
definition to be a non-negative square matrix. Using this
property, we can then state the following.

Theorem 2 (Upper and lower bounds of τc). Given an agent
mobility induced epidemic characterized by matrix C , its epidemic
threshold has the following upper and lower bounds:

1

max
1≤n≤N

bn(C)
≤ τc ≤

1

min
1≤n≤N

bn(C)
(26)

where bn(C) is the n-th average 2-row sum of C and defined as
below:

bn(C) =

∑N
k=1(cn,k

∑N
m=1 ck,m)∑N

m=1 cn,m
(27)

Proof. We use the result from [68] which refined Frobenius’s
well-known lemma on largest eigenvalue and stated that the
largest eigenvalue of an N × N non-negative matrix to be
bounded to the following:

min
1≤n≤N

bn(C) ≤ γ1 ≤ max
1≤n≤N

bn(C). (28)
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Using Eq. 28 above in combination of Eq. 19, we then get
Eq. 26.

From Theorem 2, we see that τc is upper and lower
bounded by the nodes traversed by the highest and lowest
weighted average number of agents in the network respec-
tively. As such, we can also say that the more uniformly
distributed the agent traffic is amongst the network nodes,
the tighter the bounds are, which makes intuitive physical
sense.

A special case is when all nodes are traversed by equal
number of agents, resulting in a symmetric hollow matrix
C (i.e., cn,n = 0;∀n ∈ N ) with all off diagonal elements
(i.e., cn,m;n 6= m) equal in value. Under such conditions,
we observe C’s largest eigenvalue, γ1 = (N − 1)cn,m while
the rest of the eigenvalues are −cn,m (i.e., with multiplicity
N − 1 ). In this case, the epidemic threshold is simply as
follows:

τc =
1

(N − 1)cn,m
;∀n,m ∈ N : n 6= m (29)

except for N = 1, when τc = 1/c1,1 which is ∞ due to the
assumption that there is no self traffic (i.e., in this case, no
agents). Trivially, the sum of all eigenvalues for this case is
zero (i.e.,

∑N
n γn =

∑N
n cn,n = 0).

5.2 Individual Node Vulnerability
In the previous section, we obtained the epidemic threshold
being inversely proportional to the largest eigenvalue of
C via eigen decomposition of matrix C (see Theorem 1).
Another useful product of this decomposition relates to the
principal eigenvector of matrix C .

Definition 1 (Node vulnerability). The vulnerability of node
n is proportional to (z1)n where (z1)n be the n-th element of the
principal eigenvector corresponding to the largest eigenvalue of
matrix C , γ1.

As prior mentioned, we consider undirected connected
G(V,E). Thus, there is a path between all node pairs.
Assuming positive interactions between nodes (i.e., λk,n >
0;∀k 6= n), matrix C is irreducible. As such, in our case,
the Perron-Frobenius theorem asserts that the eigenvector
corresponding to the largest eigenvalue can be chosen to
have strictly positive components.

By eigen decomposition of matrix C , we get the follow-
ing:

γ1(z1)n =

N∑
m=1

cn,m(z1)m (30)

By observing Eq. 30, we see that (z1)n is proportional to
the row sum of C which in turn reflects the total number
of agents traversing or destined to node n. Analogous to
the concept of eigenvector centrality [69], we can see that
in its canonical form, matrix C also allow us to identify the
nodes that are most vulnerable to the epidemic spread, i.e.,
nodes with highest (z1)n being the ones most prone to being
infected.

This gives us a very useful tool. Using the principal
eigenvector ofC , we can now “harmonize” the vulnerability
of all the nodes in the network (i.e., all nodes equally

susceptible to being infected) by exploiting the fact that γ′

must be an eigenvalue of C if the row sum of C equals γ′. To
achieve this, we simply need to distribute the agent traffic
across all nodes uniformly. The solution will be dependent
on A as well as how much control one has over the traveling
agents.

5.3 Agents’ Vulnerability
In our model, we have bi-directional infection. An agent
may infect a node and vice versa, an infectious node can
also infect an agent. In some scenarios (e.g., transportation),
the agents are actual human beings. As such, it is of interest
to understand how prone the agents are in the system to
infection when traversing within the network. Specifically,
we are interested in the following question: What is the
likelihood for an agent originated from a node, vm destined
to node, vn (in this case, a node is a site; e.g., airport, train
station, etc.) catching an infection within its journey?

LetXn,m(t) be the final state of an agent of interest, gn,m.
traveling from vm to vn. For our model, Xn,m(t) = {S, I},
i.e., an agent can only be either susceptible or infected at any
one time.

Solving the system of equations of our model (i.e., Eqs.
12, 13 and 14), we can obtain the infected probability of
each node individually (i.e., in(t)). Using this result from
our model, we can now compute the probability of gn,m be
in the infected state as

Pr[Xn,m(t) = I] = 1−
N∏

k=1

(
1− ik(t)1k∈Pn,m

)
(31)

In other words, given the traveling route of any agent
(i.e., Pn,m), we can use Eq. 31 to predict the probability of
the agent getting infected by the end of its journey.

Furthermore, based on Eq. 31, the expected number of
agents travelling from vn to vm that gets infected is simply
λn,mPr[Xn,m(t) = I]. Using this, the total agents getting
infection in the network can be computed as follows:

N∑
n=1;n 6=m

N∑
m=1;m 6=n

λn,mPr[Xn,m(t) = I] (32)

Equation 32 can be considered as the first-order esti-
mation since in our method, we have assumed no agent
traveling delays (see Section 3) to reduce the analysis com-
plexity. Summing Eq. 32 over the time since outbreak until
the death of the epidemic will give us the estimation of
total agent population being infected in the entire epidemic.
Usually, the number of agents in a system is very large
compared to the number of nodes of the network. As such,
it is usually intractable to model the state transition of each
agent individually. For instance, in our case study, the agents
recorded is approximately 3 billions which is about 107

order of magnitude greater than the number of nodes (see
Section 6.1).

6 CASE STUDY

In the following, we compare our agent mobility-based SIR
epidemic model with conventional contact-based epidemic
via a hypothetical infection spreading in the London Un-
derground network with the commuters being the agents
carrying the infection.
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(a) Station Locations (b) Unweighted Contact-based (c) Weighted Contact-based (Weekday)

(d) Weighted Contact-based (Weekend) (e) Agent Mobility-based (Weekday) (f) Agent Mobility-based (Weekend)

Fig. 10. (Color online) Comparison of contact-based and agent mobility-based epidemic spreading in the London Underground network system:
(a) Geographical locations of London Underground tube stations, (b) Epidemic spreading based on conventional contact-based SIR model, (c)
Weighted contact-based SIR model based on weekday data, (d) Weighted contact-based SIR model based on weekend data, (e) Epidemic
spreading caused by agents travelling in the network system based on weekday data and (f) Epidemic spreading caused by agents travelling
in the network system based on weekend data. The size of the red circles are proportional to how prone the stations are to being infected.

6.1 Dataset

For this case study, we use a dataset provided by Trans-
port for London (TfL)8 which recorded annual number of
commuters entering and exiting individual London Un-
derground stations9 from 2007 to 2014. The dataset also
separately record the entries for weekdays and weekends.
We complement the dataset with the London Underground
map. We show the geographical locations of all considered
Underground stations in Fig. 10(a) based on their longitude
and latitude data. Hereafter, we represent the London net-
work by the adjacency matrix, Atube. For our purpose, we
use the latest data of the year 2014 with a total of 2.8956
billion observations. We note that qualitatively, the yearly
activity is rather similar per station. We restrict ourselves to
consider only Underground stations – i.e., tram, overground
and Dockland Light Railway (DLR) and train stations are
excluded. We have thus a total of Ntube = 265 stations.
Figure 11 shows the degree distribution of the London Un-
derground network in which we see many stations acting as
bridge nodes (i.e., with degree = 2) sharing similar features
as radial power grid networks (see for example [9]). The
London Underground network is also divided into 9 zones
where the station density is highest in Zone 1 (i.e., in the city
center) as well as 11 different tube lines.

In addition, we note that the exact paths the com-
muters took after entering the Underground network are not
recorded. As such, we assume that the commuters are ratio-
nal (i.e., they take the shortest available path to reach their
destinations). We also further assume that the commuters

8. https://tfl.gov.uk/
9. London Underground is also commonly known as the “tube”. We

use both terms interchangeably.
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Fig. 11. Degree distribution of London Underground tube stations in the
dataset showing majority of stations have low connectivity.

do not make errors when traveling which is obviously
a simplifying assumption since this excludes those often
occur incidents when commuters (especially tourists) that
changed tube at the wrong platform or mistakenly took the
tube in the opposite direction, etc.

6.2 Analysis and Observations
Using the above complemented dataset, we compute and
show in Fig. 10 both the epidemic spreading based on
conventional contact-based SIR model and based on our
model in which infection is spread via carrier agents trav-
eling in the network system. Fig. 10(a) shows the actual
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geographical locations of the London Underground tube
stations which are distributed across the figure. Fig. 10(b)
shows contact-based SIR model computed using the method
presented in [12] (indicated with “Unweighted”). Further-
more, we also consider a version of weighted contact-based
SIR model where each link from a station is weighted
by the commuter volume based on the dataset. These
are illustrated in Fig. 10(c) and (d) for commuter traffic
data on weekday and weekend respectively. Finally and
correspondingly, we compute and show the spread using
our agent mobility-based model for both weekday and
weekend data in Fig. 10(e) and (f). We use red circles to
indicate the vulnerability of the Underground stations: the
greater the radius, the more vulnerable the node is. The
first observation when comparing Fig. 10(b)–(d) and 10(e)–
(f) is that our model predicts a wider spatial spread of the
epidemic towards the outskirt of the city while the contact-
based epidemic shows infection highly concentrated in the
city center with peripheral stations almost immune to the
infection.

We then focus our attention to the city center (i.e., mostly
Underground stations within Zone 1). From Fig. 12, it is
clear that, for contact-based epidemic, underground stations
located within the city center are predicted to be highly sus-
ceptible to infection. Unweighted contact-based epidemic
model only takes into account the topology of the network
and hence, stations are deemed to be more vulnerable by
virtue of being in the center of the network. Meanwhile, by
additionally taking into account the activity level each tube
station, weighted contact-based SIR model further reflects
in its prediction the impact of station’s activity on the vul-
nerability of the station’s immediate neighbours but not the
entire route of the commuters’ journeys. In contrast, for our
agent mobility-based epidemic model, we see many central
stations in Zone 1 are less susceptible to being contracted
with infection (see Fig. 13). From the figures (highlighted
by the dashed circle and oval in Fig. 12 and Fig. 13 respec-
tively), we also see that the contact-based spreading is omni-
directional while in our case, the spreading follows the tube
lines (i.e., agents’ travel routes).

Next, we illustrate in Fig. 14 that unweighted contact-
based epidemic model shows linear correlation between
distance of station location from city center and their vul-
nerability, i.e., stations located nearer to central London are
proportionally more vulnerable to infection. Such is not the
case for our model where the susceptibility of stations in a
tube line is not only dependent on their geographical loca-
tions but also the number of agents travelling across them.
As such, we observe from the figure many tube stations in
Zone 1 are actually not highly prone to infection while some
stations outside of Zone 1 have high susceptibility (see Fig.
10(e)–(f)).

We further show the predicted vulnerability of two main
tube lines, i.e., the Northern line (see Fig. 15) which connects
north and south London (i.e., vertically across the London
city) and the Central line (see Fig. 16) which runs across west
and east London (i.e., horizontally across the London city).
Both tube lines go through the city center. From the figures,
we see that contact-based model’s predictions exhibit clear
bias against stations located in central London (stations in
Zone 1 of the network are almost always more prone to

(a) Unweighted Contact-based

(b) Weighted Contact-based (Weekday)

(c) Weighted Contact-based (Weekend)

Fig. 12. (Color Online) Weighted and unweighted contact-based epi-
demic spreading within and around Zone 1 of the London Tube network.

infection). By considering the commuters’ mobility within
the network, our model shows otherwise – e.g., from Fig. 15,
stations 14-18 in the Northern line are not highly susceptible
to infection despite being located in Zone 1. Our model
shows that station susceptibility is not solely based on
locations, resulting in multiple spikes – e.g., Fig. 16 shows
some Central line stations in Zone 3 are also being highly
vulnerable.

Finally, we highlight the inflexibility and insensitivity
of contact-based epidemic model with Table 2. First of all,
while all the most vulnerable stations are located within
Zone 1 of the London Underground network, we see the
Stratford station which is located in Zone 3 being ranked as
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(a) Agent mobility-based (Weekday)

(b) Agent mobility-based (Weekend)

Fig. 13. (Color Online) Agent mobility-based model is sensitive to the
infection carriers’ travelling paths and stations may not be prone to
infection even when geographically located at the center of the city.

one of the most susceptible tube station by our model. This
station is directly linked to Stratford International train sta-
tion that services the southeastern high-speed line. Second,
our model identified that London Waterloo being one of the
busiest tube stations in the network is highly susceptible to
infection. Third, due to the fact that the Waterloo and City
line is closed on Sundays, the activities at the Bank station is
significantly reduced over the weekend. This is reflected by
our model. The above are not captured in the contact-based
model.

TABLE 2
Top 10 most vulnerable London Underground stations ranked in

descending order based on contact-based model (Column 1) and
agent mobility-based model (Column 2 and 3).10

Contact-based Mobility-based Mobility-based
(Weekday) (Weekend)

Oxford Circus (6) Waterloo (5) Waterloo (5)
Green Park (6) Bank (5) Liverpool Street (5)

Piccadilly Circus (4) Green Park (6) King’s Cross (7)
Bond Street (4) Liverpool Street (5) Oxford Circus (6)

Tottenham Court Road (4) King’s Cross (7) Green Park (6)
Leicester Square (4) Oxford Circus (6) Stratford (3)

Baker Street (7) Baker Street (7) Westminster (4)
Westminster (4) Stratford (3) Baker Street (7)

Charing Cross (3) Westminster (4) Euston (4)
Regent’s Park (2) Euston (4) South Kensington (3)

10. Bracketed values indicate the node degrees.

(a) Contact-based

(b) Agent mobility-based

Fig. 14. (Color Online) For unweighted contact-based epidemic model,
the vulnerability of stations along a tube line gradually increases when
moving towards the city center. On the other hand, our model shows that
the vulnerability of stations along a tube line is not linear and dependent
on the level of activities at each station. A tube station at the city center
may not necessarily the most vulnerable site for infection.

Northern line underground stations from south to north
London

Fig. 15. (Color Online) Comparing station vulnerability along the North-
ern line tube stations from south to north London: (top) Unweighted
contact-based model and (bottom) agent mobility-based model.

7 CONCLUSIONS

Various spreading phenomena in real world spanning
across natural ensembles and human engineered networks
rely on agents within the system to act as the physical
transport medium of infection. Such phenomena is the
subject of this paper where we model epidemic spreading
caused by infectious agents. Our modelling methodology is
general in nature and is applicable to different context and
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Central line underground stations from west to east
London
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Fig. 16. (Color Online) Comparing station vulnerability along the Central
line tube stations from south to north London: (top) Unweighted contact-
based model and (bottom) agent mobility-based model.

network types since our interest here is not to solve specific
problem but to illustrate the analysis of diffusion processes
caused by mobile agents within the system. Our analytical
framework consider explicitly individual node within the
network rather than the network as a whole. An artefact
of this approach is that our solution reduces the complex-
ity from exponential of the exact solution to polynomial
complexity. In our approach, we define a characterization
matrix, C , which contains the information regarding the
number and the mobility pattern of the agents in the system.
We derive the epidemic threshold to be the reciprocal of
matrix C’s largest eigenvalue. Furthermore, by considering
each node individually, our approach provides us infection
susceptibility information on the nodal-level and allows
direct inference of level of vulnerability of each node in
the network. This facilitates immunization or protection
schemes to be deployed in the system (depending on the
controllability of the agents as well as the possibility to alter
network structure (via topology change effecting adjacency
matrixA and consequently, matrixC)). For instance, this can
be an islanding operation in a power grid which sections
off parts of a grid and redirecting the power flow from al-
ternative primary sub-station(s) to avoid cascading failures.
Furthermore, we also take the viewpoint from the agents’
perspective and derived the first order approximation of
agents’ vulnerability. We first show agreements of predic-
tions based on our model against Monte Carlo simulations.
Then, we investigated and compared the spreading process
effected by contacts and by agent mobility with a realistic
case study using dataset recording the activity of London
Underground commuters, one of the busiest metro system
in the world. We found that due to the mobility of agents,
the spreading radius of an epidemic is larger than that
predicted for contact-based epidemic models. We also found
that with our model, node susceptibility no longer directly
depends on its location in the network. While in contact-
based epidemics, node proneness to infection is directly
proportional to its location relative to the center of the net-
work, our model does not exhibit such correlation. Instead,
the vulnerability of the node is dependent on the agents’

mobility pattern (i.e., edge nodes may be highly susceptible
to infection if high number of agents traverse across or
destine to them). These dynamics due to agents’ activities
are not captured by conventional contact-based epidemic
models.
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[41] M. Boguñá, R. Pastor-Satorras and A. Vespignani, “Epidemic
spreading in complex networks with degree correlations,” 18th

Conference on Statistical Mechanics, 2003.
[42] Y. Moreno, R. Pastor-Satorras and A. Vespignani, “Epidemic out-

breaks in complex heterogeneous networks,” Eur. Phys. J. B. no. 26,
pp. 521-529, 2002.

[43] M. E. J. Newman, “The spread of epidemic disease on networks,”
Physics Review E 66, 016128, 2002.

[44] M. J. Keeling and P. Rohani, “Modeling infectious diseases in
humans and animals,” Princeton University Press, 2008.

[45] M. Keeling, D. Rand and A. Morris, “Correlation models for
childhood epidemics,” Proc. Roy. Soc. Lond. B 264 1149–1156, 1997.

[46] M. J. Keeling, “The effects of local spatial structure on epidemio-
logical invasions,” Proc. Roy. Soc. Lond. B 266 859–867 1999.

[47] K. T. D. Eames and M. J. Keeling, “Modeling dynamic and network
heterogeneities in the spread of sexually transmitted diseases,”
Proc. Natl. Acad. Sci. U.S.A. 99 13330–13335 2002.

[48] Z. Nikoloski, N. Deo and L. Kucera, “Correlation model of worm
propagation on scale-free networks,” Complexus Network Modelling,
vol. 3, pp. 169-182, 2006.

[49] M. Youssef and C. Scoglio, “An individual-based approach to SIR
epidemics in contact networks,” Journal of Theoretical Biology, vol.
283, no. 1, pp. 136-144, 2011.

[50] V. Colizza and A. Vespignani, “Invasion threshold in hetero-
geneous metapopulation networks,” Physical Review Letters, 99,
148701, 2007.

[51] V. Belik, T. Geisel and D. Brockmann, “Natural human mobility
patterns and spatial spread of infectious diseases,” Physical Review
X, 1, 011001 (2011).

[52] D. Balcan and A. Vespignani, “Phase transitions in contagion
processes mediated by recurrent mobility patterns,” Nature Physics
7.7, 581-586 (2011).

[53] V. Colizza and A. Vespignani, “Epidemic modeling in metapop-
ulation systems with heterogeneous coupling pattern: Theory and
simulations”, Journal of Theoretical Biology 251, pp. 450-467, 2008.

[54] D. Balcan, et al., “Multiscale mobility networks and the spatial
spreading of infectious diseases,” Proc. National Academy of Sci-
ences (PNAS), vol. 106, no. 51, 21484-21489, 2009.

[55] P. Bajardi, et al., “Human mobility networks, travel restrictions,
and the global spread of 2009 H1N1 pandemic,” PLoS One vol. 6,
no. 1, e16591, 2011.

[56] S. Meloni, A. Arenas and Y. Moreno, “Traffic-driven epi-
demic spreading in finite-size scale-free networks,” Proc. National
Academy of Sciences (PNAS), vol. 106, no. 40, 16897-16902.

[57] H.-X. Yang, Z.-X. Wu and B.-H. Wang, “Suppressing traffic-driven
epidemic spreading by edge-removal strategies,” Physical Review
E 87, 064801, 2013.

[58] H.-X. Yang and Z.-X. Wu, “Suppressing traffic-driven epidemic
spreading by use of the efficient routing protocol,” Journal
of Statistical Mechanics: Theory and Experiment, no. 3, 1742-
5468/14/P03018.

[59] M. Ajelli, et al.“Comparing large-scale computational approaches
to epidemic modeling: Agent-based versus structured metapopula-
tion models,” BMC Infectious Diseases, 10:190, 2010.

[60] F. Darabi Sahneh, C. Scoglio and P. Van Mieghem, “Generalized
epidemic mean-field model for spreading processes over multi-
layer complex networks,” IEEE/ACM Transactions on Networking,
vol. 21, no. 5, pp. 1609-1620, Oct. 2013.

[61] P. Tune and M. Roughan, “Internet traffic matrices: A primer,”
Recent Advances in Networking, Vol. 1. ACM SIGCOMM, pp. 108-
163, August 2013.

[62] Cisco White Paper, “Building accurate traffic matrices
with demand deduction,” http://www.cisco.com/c/en/us/
products/collateral/routers/wan-automation-engine/white
paper c11-728552.pdf, 2013. Last accessed: 11-November-2015.

[63] P. Van Mieghem, “Performance analysis of Complex networks and
systems,” Cambridge, Cambridge University Press, 2014.

[64] P. Erdős and A. Rényi, “On random graphs I,” Publicationes
Mathematicae no. 6, pp. 290-297, 1959.

[65] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.
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