Whittington, P., 2017. The development of a SmartAbility Framework to enhance multimodal interaction for people with reduced physical ability. Doctoral Thesis (Doctoral). Bournemouth University.
Full text available as:
|
PDF
WHITTINGTON, Paul William_Ph.D._2017.pdf 17MB | |
Copyright to original material in this document is with the original owner(s). Access to this content through BURO is granted on condition that you use it only for research, scholarly or other non-commercial purposes. If you wish to use it for any other purposes, you must contact BU via BURO@bournemouth.ac.uk. Any third party copyright material in this document remains the property of its respective owner(s). BU grants no licence for further use of that third party material. |
Abstract
Assistive technologies are an evolving market due to the number of people worldwide who have conditions resulting in reduced physical ability (also known as disability). Various classification schemes exist to categorise disabilities, as well as government legislations to ensure equal opportunities within the community. However, there is a notable absence of a process to map physical conditions to technologies in order to improve Quality of Life for this user group. This research is characterised primarily under the Human Computer Interaction (HCI) domain, although aspects of Systems of Systems (SoS) and Assistive Technologies have been applied. The thesis focuses on examples of multimodal interactions leading to the development of a SmartAbility Framework that aims to assist people with reduced physical ability by utilising their abilities to suggest interaction mediums and technologies. The framework was developed through a predominantly Interpretivism methodology approach consisting of a variety of research methods including state- of-the-art literature reviews, requirements elicitation, feasibility trials and controlled usability evaluations to compare multimodal interactions. The developed framework was subsequently validated through the involvement of the intended user community and domain experts and supported by a concept demonstrator incorporating the SmartATRS case study. The aim and objectives of this research were achieved through the following key outputs and findings: - A comprehensive state-of-the-art literature review focussing on physical conditions and their classifications, HCI concepts relevant to multimodal interaction (Ergonomics of human-system interaction, Design For All and Universal Design), SoS definition and analysis techniques involving System of Interest (SoI), and currently-available products with potential uses as assistive technologies. - A two-phased requirements elicitation process applying surveys and semi-structured interviews to elicit the daily challenges for people with reduced physical ability, their interests in technology and the requirements for assistive technologies obtained through collaboration with a manufacturer. - Findings from feasibility trials involving monitoring brain activity using an electroencephalograph (EEG), tracking facial features through Tracking Learning Detection (TLD), applying iOS Switch Control to track head movements and investigating smartglasses. - Results of controlled usability evaluations comparing multimodal interactions with the technologies deemed to be feasible from the trials. The user community of people with reduced physical ability were involved during the process to maximise the usefulness of the data obtained. - An initial SmartDisability Framework developed from the results and observations ascertained through requirements elicitation, feasibility trials and controlled usability evaluations, which was validated through an approach of semi-structured interviews and a focus group. - An enhanced SmartAbility Framework to address the SmartDisability validation feedback by reducing the number of elements, using simplified and positive terminology and incorporating concepts from Quality Function Deployment (QFD). - A final consolidated version of the SmartAbility Framework that has been validated through semi-structured interviews with additional domain experts and addressed all key suggestions. The results demonstrated that it is possible to map technologies to people with physical conditions by considering the abilities that they can perform independently without external support and the exertion of significant physical effort. This led to a realisation that the term ‘disability’ has a negative connotation that can be avoided through the use of the phrase ‘reduced physical ability’. It is important to promote this rationale to the wider community, through exploitation of the framework. This requires a SmartAbility smartphone application to be developed that allows users to input their abilities in order for recommendations of interaction mediums and technologies to be provided.
Item Type: | Thesis (Doctoral) |
---|---|
Additional Information: | If you feel that this work infringes your copyright please contact the BURO Manager. |
Uncontrolled Keywords: | assistive technologies; accessibility; disability; framework; human computer interaction; multimodality; system of systems |
Group: | Faculty of Science & Technology |
ID Code: | 29895 |
Deposited By: | Symplectic RT2 |
Deposited On: | 20 Oct 2017 14:35 |
Last Modified: | 14 Mar 2022 14:07 |
Downloads
Downloads per month over past year
Repository Staff Only - |