
A Rule Based Decision Support System for Programming Language Selection

Meltem Yıldırım İmamoğlu

Department of Computer Engineering

University of Turkish Aeronautical Association

Ankara, Turkey

e-mail: meltem.imamoglu@ceng.thk.edu.tr

Deniz Çetinkaya

Department of Computing and Informatics

Bournemouth University

Poole, United Kingdom

e-mail: dcetinkaya@bournemouth.ac.uk

Abstract—One of the most important things in project

management is using the most suitable tools and methods in an

effective way for project success. The available tools for

software project management mainly focus on planning, time

management, team management, collaboration, and tracking

the development progress. However, there is a lack of

supporting mechanisms to guide managers and decision

makers for making technical decisions during the early stages.

In this paper, we propose a rule based decision support system

to guide decision makers and software engineers in

programming language selection. Firstly, the system provides a

mechanism to build and modify a knowledge base. After that,

the system provides guidance about programming language

selection before the coding stage according to the project

details. The proposed system is implemented with a rule-based

programming language.

Keywords-programming language selection; software

engineering; decision support systems; software analysis

I. INTRODUCTION

Information technology field is rapidly growing and
changing our daily and business lives. The available tools for
software project management such as team management
tools, collaborative software development environments,
issue trackers, time planning tools, etc. are supporting the
development process in a positive way and increasing the
project success.

However, there is a lack of supporting mechanisms to
guide decision makers for making technical decisions during
the early planning and analysis stages. For example, it is not
easy to answer the following questions: Which software
architecture should be chosen? Which software development
tools should be used? Which programming languages should
be selected? and so on. These decisions are generally given
according to the existing knowhow of the organization or the
capabilities of the development team if there is no specific
requirement from the customer side about them. In many
cases, expert opinion is needed to choose the most suitable
and useful options. Specifically, in programming language
selection, we try to balance productivity, efficiency, tool
support and available resources [1].

In this paper, we propose a rule based decision support
system to guide decision makers and software engineers in
programming language selection. The users of this system
can be technical decision makers, project managers,
administrative people, project evaluators, or software

engineers, etc. who has knowledge about the project details,
but may or may not have knowledge about programming
languages. The objective of this work is to provide a
mechanism to build and modify a knowledge base about
programming languages, as well as, to develop an expert
system that works with this knowledge base to provide
guidance for programming language selection according to
the project details.

The outline of the paper is as follows: Section 1 provides
the motivation and objective of this work. Section 2 presents
the related work, as well as background information about
software engineering and programming languages. Section 3
provides the details of our work, and proposes a rule based
expert system for programming language selection. Section 4
explains the prototype implementation of the system. Finally
Section 5 draws the conclusions and discusses the future
work.

II. RELATED WORK

A rule based decision support system uses rules to build
the knowledge base and to do the expert reasoning for
solving problems. When we started the literature survey for
this work, we were surprised with the limited number of
academic resources that presents decision support related
studies for programming language selection. Some of them
are published more than 20 years ago [2,3]. Although they
provide general guidelines that are applicable today, we need
new methods since there have been hundreds of new
programming languages since then where these languages all
have advantages and disadvantages.

Al Ahmar [4] presents the modeling and development of
a prototype expert system that helps software project
managers and software engineers in selecting the appropriate
software development methodology. The paper focuses on
the development methodologies and does not discuss about
programming languages. Lesani and Rouyendegh [5] present
a study that uses fuzzy analytic hierarchy process for the best
object-oriented programming language. They apply a limited
number of criteria and select from a small set of languages.

There are a couple of studies in the education domain
where the focus is which programming language should be
taught in the introductory courses [6,7]. Besides, there are
expert system proposals in other domains to support the
environment and tool selection process [8]. However, they
do not provide guidance for programming language selection
in software projects. There are also research studies which

2017 2nd International Conference on Knowledge Engineering and Applications

71978-1-5386-2148-6/17/$31.00 ©2017 IEEE

present comparison of programming languages in the
literature [9,10]. They are useful to build the knowledge
base, but they do not directly provide a decision support
mechanism.

As a result, to the best of our knowledge, there is not any
decision support system for programming language selection
in software development projects. Yet, the academic studies
are limited on this topic and people tend to use the popular
languages when there is no constraint for programming
language selection.

When we searched the gray literature, we saw that the
main concern is which programming language to learn as a
first language. Although some big software vendors
published reports on programming language selection for
projects, they are generally on the level of useful guidelines
[11,12]. In many cases, people follow the trend in software
development industry and it is generally stated that choosing
a programming language is a challenging task.

It was also interesting to see many top ten lists on the
Internet for programming languages without formal
categorization and any proper data underneath. Some of
these lists are prepared according to the open job positions in
the industry which is found valuable especially by the new
learners but indeed does not provide a professional guideline.

III. A DECISION SUPPORT SYSTEM FOR PROGRAMMING

LANGUAGE SELECTION

A programming language is a formal language for
writing computer programs or software which are
specifications defining a set of instructions that a computer
can interpret and produce various kinds of output. The early
computer programming languages were in use around early
1950s and today there are hundreds of programming
languages at different levels and for different purposes.

Each programming language has some basic building
blocks for the description of data and the instructions. These
building blocks are defined by the language definition as
syntax and semantics of the language. Choosing a
programming language to develop computer programs is
becoming more and more challenging due to the increasing
time and resource constraints in software projects as well as
due to the increasing number of available programming
languages.

The first thing to check while choosing a programming
language is if it is fit-for-purpose. For some specific tasks a
domain specific or a specialized programming language can
fit better while a general purpose programming language can
be more suitable for a standard desktop application. Then,
there are other criteria which affect the decision process such
as project duration, team skills, organizational constraints,
project budget, customer requirements, etc.

In this section, we propose a rule based decision support
system to guide decision makers in programming language
selection. We first provide a mechanism to build and modify
a knowledge base about programming languages. Then we
develop an expert system that works with this knowledge
base to provide guidance for programming language
selection according to the project details. In our system there
is a two stages reasoning. First user parameters are checked

and some conclusions are drawn and then these conclusions
and initial user parameters are used to find the total scores
for programming languages. Finally, the results are shown in
a sorted list. Fig. 1 shows the general overview of the
proposed system.

Figure 1. General overview of the proposed expert system.

First of all user defines the parameters according to the
project plan and the decisions made at the beginning of the
project. User parameters are variables such as project
duration, project domain, category, purpose, etc. which are
project specific information.

The programming languages knowledge base includes
properties and attributes for different programming
languages. Each property defines characteristics of a
programming language such as its name, category, first
appeared year, etc. Each attribute of a language provides
more details about the usage of the language such as
available tool support, available libraries, documentation
support, etc.

Level 1 and Level 2 rules provide a set of conditional
rules to derive useful conclusions and to get results to
provide project specific guidance based on the user
parameters and using the knowledge base. These rules apply
weighted relations between the parameters, properties and
attributes. If the attribute has a text value, it is checked with
if-then rules. If the attribute has a number value, which is in
a range of 1 to 10, then it is multiplied with the weight and
added to the result.

Table 1 shows a set of sample relations between the user
parameters and the language properties and attributes. Table
1 also shows the effect of the parameters on the use of the
properties or attributes during scoring as direct or indirect
effect. Direct effect means that the parameter is used directly
to derive results while indirect effect means that the
parameter is first used to derive a conclusion and then the
conclusion affects the result. The overall score for each
programming language within the suitable category is
calculated separately after executing all rules and the ones
with the highest scores are shown.

72

TABLE I. PARAMETERS’ RELATION WITH PROPERTIES AND ATTRIBUTES

Parameter name Parameter

effect

Weight Related property Related attribute

Category Direct 0.80 Category

Category Direct 0.80
Application

platform

Domain Direct 0.80 Applicable domains

Duration Indirect 0.30 Available libraries

Duration Indirect 0.30 Available IDEs

Language Direct 0.25 Language support

Number of team

members
Direct 0.30 Subcategory

Number of team

members
Indirect 0.30 Available projects

Budget Direct 0.20 Available free tools

Budget Direct 0.10
Documentation

support

Budget Direct 0.20
Available sample

projects

Budget Direct 0.20
Available free

libraries

IV. IMPLEMENTATION OF THE SYSTEM

A web based expert system for supporting software
engineers and software project managers during
programming language selection has been developed as a
proof of concept, namely PLExpert. The PLExpert system
uses CLIPS inference engine with the decisions performed in
a forward manner to define knowledge base and to execute
the rules. User interfaces are developed with PHP and
HTML5.

The user interface allows the user to interact with the
system for defining the parameters and getting the results.
Fig. 3 shows the web page where the user can define the
parameters such as category, domain, project duration, etc.

The user inputs that are required to run the expert system
are called as parameters in our study. The parameter template
is defined as follows:

(deftemplate parameter

 (slot paramname (default none))

 (slot value (default none)))

Parameters are transformed to CLIPS rules and

plexpert_parameters.bat file is generated. For example,
Category parameter can be chosen from different pre-defined
enumerated values which can be game, mobile, embedded,
mis, expert, scientific, etc. When the user chooses a project
category, the following rule is generated:

(assert (parameter

 (paramname prj-category) (value game)))

This is a well-defined task, and can be automatized
easily. In this way, users define the parameters without
knowing the details of CLIPS. Undefined user parameters
are not included during the execution.

Figure 2. User interface for getting the parameters.

73

The knowledge base includes the programming language
definitions with basic properties and extra attributes that can
be associated with the defined languages. The programming
language (PL) template and the attribute template are as
follows:

(deftemplate PL

 (slot langname)

 (slot category)

 (slot subcategory)

 (slot year))

(deftemplate attribute

 (slot attname)

 (slot language)

 (multislot value))

The knowledge base is developed by using three most

commonly used search engines, Google, Bing and Yahoo,
which covers around %90 of the market share. We first
searched the programming languages and identified 24
languages to be added in our knowledge base including Java,
C, C++, PHP, JSP, Lisp, Prolog, Python, etc. Then we added
attributes for each language, such as open source editors,
available libraries, tutorial support, etc. We arranged the
scores and weights according to the search results and by
using expert opinion.

The PLExpert system can be configured and scores and
weights can be changed easily. Besides, new languages can
be added for the future use of the system. Hence, our
objective was not providing the perfect knowledge base

during this study but developing a structured mechanism that
we can define the programming languages knowledge base.

Expert knowledge is represented in our system with
CLIPS rules. For example, the following rule is written to
express the expert knowledge “if project complexity is high,
then the programming languages which are first appeared
more than 15 years ago will have more chance to be
successful.”

(defrule selectRuleComplexity1

 (and (conclusion (name prj-complexity)

(score ?s))

 (PL (langname ?n) (category ?c)

(subcategory ?sc) (year ?y)))

 (test (> ?s 40))

 (test (< ?y 2002))

 =>

 (assert (result (language ?n) (score

5.0))))

We have around 10 rules for deriving conclusions and 20

rules for getting scores. A sample scoring function to derive
conclusion about project complexity is given below:

<prj-complexity> = (<prj-duration>/12 +

<prj-team>/5 + <prj-reliability-level>/2)*10

Fig. 3 shows the implementation environment with

CLIPS and Fig. 4 shows the overall implementation
structure.

Figure 3. Implementation environment with CLIPS.

74

Figure 4. User interfaces and the files in the PLExpert system.

Once we run the PLExpert, we get the results in CLIPS
as shown in Fig. 5. Then we present the results in an HTML
page with a table.

Figure 5. Execution results in CLIPS.

We have tested our system with sample project scenarios.
During the evaluation we tested both successful and
unsuccessful project cases. For example, we know that
MATLAB is not normally suitable for mobile application
development since it is for numerical computing. Or,
Objective-C is the best language for iOS platforms.
However, we need more tests with real life applications and
projects to use the proposed system in real life.

V. CONCLUSION

We have developed a rule based expert system for
selecting the most suitable programming language for
software projects. The proposed expert system is CLIPS-
based and the rules are written manually.

As a future work, we would like to auto generate the
rules with the help of model driven approaches. In this way,
we aim to provide a way to software developers for
calibrating the rules according to their specific needs.
Besides, we would like to extend our work with adding
programming tool and environment selection support.

During our tests we recognized that today’s applications are
often written with multiple compatible languages. Hence, we
will improve our system with multiple language suggestions.

REFERENCES

[1] D. Spinellis, “Choosing a programming language,” IEEE Software,
vol. 23(4), 2006, pp. 62-63. doi: 10.1109/MS.2006.97

[2] C.J. Burgess, “Software quality issues when choosing a programming
language,” WIT Transactions on Information and Communication
Technologies, vol. 14, 1995.

[3] J. Howatt, “A project-based approach to programming language
evaluation,” SIGPLAN Not., vol. 30(7), July 1995, pp. 37-40. doi:
10.1145/208639.208642

[4] M. A. Al Ahmar, “Rule based expert system for selecting software
development methodology,” Journal of Theoretical and Applied
Information Technology, vol. 19(2) , 2010, pp. 143-148.

[5] S. H. Lesani, and B. D. Rouyendegh (B. Erdebilli), “Object-oriented
programming language selection using fuzzy AHP method,”
Presented at the annual meeting of the ISAHP, 2014.

[6] K. R. Parker, J. T. Chao, T. A. Ottaway, J. Chang, “A formal
language selection process for introductory programming courses,”
Journal of Information Technology Education, vol. 5, 2006.

[7] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson, “A survey of literature on the teaching of
introductory programming,” In Working group reports on ITiCSE on
Innovation and technology in computer science education, 2007, pp.
204-223. doi: 10.1145/1345443.1345441

[8] N. Vargas Hernandez, G. Okudan Kremer, L.C. Schmidt, and P.R.
Acosta Herrera, “Development of an expert system to aid engineers in
the selection of design for environment methods and tools,” Expert
Systems with Applications, vol. 39(10), 2012, pp. 9543-9553.

[9] K. Aldrawiesh and A. Al-Ajlan, “Selecting the best object-oriented
programming language for developing distributed computing
systems,” Proc. of the International Conference on Computer
Engineering & Systems, Cairo, 2009, pp. 440-446. doi:
10.1109/ICCES.2009.5383225

[10] M. Fourment and M. R. Gillings, “A comparison of common
programming languages used in bioinformatics,” BMC
Bioinformatics, vol. 9(82), 2008. doi: 10.1186/1471-2105-9-82

[11] C. Britton, “Choosing a programming language,” Microsoft MSDN
library, available via https://msdn.microsoft.com/en-
us/library/cc168615.aspx, 2008.

[12] J. Reghunadh and N. Jain, “Selecting the optimal programming
language - Factors to consider,” IBM developerWorks, available via
https://www.ibm.com/developerworks/library/wa-optimal, 2011.

75

