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Abstract—Nonnegative matrix factorization (NMF), a method
for finding parts-based representation of nonnegative data, has
shown remarkable competitiveness in data analysis. Given that
real-world datasets are often comprised of multiple features or
views which describe data from various perspectives, it is impor-
tant to exploit diversity from multiple views for comprehensive
and accurate data representations. Moreover, real-world datasets
often come with high-dimensional features, which demands the
efficiency of low-dimensional representation learning approaches.
To address these needs, we propose a Diverse Nonnegative Matrix
Factorization (DiNMF) approach. It enhances the diversity,
reduces the redundancy among multi-view representations with
a novel defined diversity term and enables the learning process in
linear execution time. We further propose a Locality Preserved
DINMF (LP-DiNMF) for more accurate learning, which ensures
diversity from multiple views while preserving the local geometry
structure of data in each view. Efficient iterative updating
algorithms are derived for both DiINMF and LP-DiNMF, along
with proofs of convergence. Experiments on synthetic and real-
world datasets have demonstrated the efficiency and accuracy
of the proposed methods against the state-of-the-art approaches,
proving the advantages of incorporating the proposed diversity
term into NMF.

Index Terms—Diversity representation, multi-view learning,
nonnegative matrix factorization

I. INTRODUCTION

INDING a suitable representation is a fundamental prob-
lem for many data analysis tasks [1], [2], [3], [4], [5], as
a good representation can often reveal the latent structure of
data hence facilitate processes such as clustering, classification
and recognition. Nonnegative matrix factorization (NMF) [6]
is a well-known technique for such representation of data. It is
widely studied and applied to real-world data, such as images
and texts, because it possesses parts-of-whole interpretations
and creates better practical performance.
Several variants of NMF have been proposed to seek for
more effective data representation in recent years. For exam-
ple, Kong et al.,[7] proposed a robust formulation of NMF
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(RNMF) to deal with large noises by Ly ; norm. Cai et al., [8]
proposed a graph regularized NMF (GNMF) to model the local
manifold structure by constructing an affinity graph. However,
the performance of GNMF is known to hinge heavily on the
choice of nearest neighbor graph and it is difficult and time
consuming to choose a suitable graph. To overcome this limi-
tation, Wang et. al., [9] proposed a multiple graph regularized
NMF (MultiGNMF) to approximate intrinsic manifold approx-
imation automatically. Similarly, a relational multi-manifold
co-clustering (RMC) approach [10] is proposed to maximally
approximate the true intrinsic manifolds of both the sample
and feature spaces simultaneously. Li et al., [11] proposed a
Locally Constrained A-optimal nonnegative projection method
which not only preserves the locally geometrical structure of
the data but also incorporates label information as constraints
to enhance the discriminating power. Later, Wang et al., [12]
proposed two GNMF-based methods to learn the graph that is
adaptive to the selected features and learned multiple kernels,
respectively. Under the assumption that data samples from
different domains have different distributions, but share same
feature and class label spaces, Wang et al., [13] proposed a
novel NMF-based approach for multiple-domain learning.

Recently, data collected from various sources or represented
by different feature extractors are available in many real-world
applications [14]. For example, one document may be trans-
lated into different languages; web pages can be represented
by different features based on both content and hyperlinks;
an image or video can be represented by different visual
descriptors, such as SIFT [15], HOG [16] and GIST [17];
research communities are formed according to research topics
as well as co-authorship links and so on. These heterogeneous
features that are represented by different perspectives of data
are referred as multiple views [18], [19].

With the increasing amount of multi-view data, approaches
employing NMF-based multi-view learning have attracted at-
tention. MultiNMF [20] formulated a joint multi-view NMF
learning process with the constraint that encourages repre-
sentation of each view towards a common consensus. Subse-
quently, several approaches [21], [22], [23], [24] were pro-
posed based on MultiNMF. Specifically, Zhang et al. [21]
developed a multi-manifold NMF (MMNMEF) by incorporating
the locally geometrical structure of data across multiple views.
It regards each view as one manifold and the intrinsic manifold
of a dataset as a mixture of the manifolds. Kalayeh et al. [22]
proposed a weighted extension of MultiNMF [20] for image
annotation, in which two weight matrices are introduced to
alleviate the issue of dataset imbalance in real applications.
Ou et al. [23] explored the local geometric structure for
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Fig. 1: Comparison of existing NMF-based Multi-view ap-
proaches and the proposed DINMF. A multi-view dataset X
contains two equally important views, i.e., X(!) and X2,
H® and H® are the corresponding learned representation
matrices. H* is the final representation. For all matrices, the
data vectors are column-wise and the features are row-wise.
The ground-truth is shown as group-1 in purple and group-
2 in green. By enforcing H") and H® to be close to H*,
the existing approaches learn the data representations of two
views jointly to capture the shared underlying common infor-
mation but cannot ensure their diversity. In contrast, DINMF
is based on a diversity term (DIVE), which captures diverse
information among data representations. This ensures that H*
not only contains common information captured by existing
approaches but also preserves some distinct information from
each view, thus more comprehensive and accurate.
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each view under the patch alignment framework and adopted
correntropy-induced metric to measure the reconstruction error
of each view to improve the robustness. Wang et al. [24]
extended MultiNMF to semi-supervised setting by ensuring
that data with same label have same representations and use a
single parameter to learn the weight of each view adaptively.

However, one of the main limitations of all these approaches
is that the learned data representations from multiple views
contain mutually redundant information and lack diverse infor-
mation. This is because, to a large extent, existing approaches
are all to exploit common information shared by multiple
views but neglect the diversity among views. The diversity
means that each view of the data contain s some distinct
information that other views do not have. Taking the diversity
into account, we can capture more information of data and

achieve more comprehensive and accurate learning, because
different views usually describe data from different aspects.
Some researches [25], [26], [27] have also shown that the
diversity is of importance to multi-view learning. Therefore, it
should be beneficial to integrate diversity properties of views
into NMF learning.

To achieve this goal, we propose a novel Diverse Nonneg-
ative Matrix Factorization (DiNMF) method. With a novel
regularization term, DiNMF encourages the representations
from multiple views to be diverse enough to capture com-
prehensive information, so that a diverse and more accurate
data representation is eventually achieved. As illustrated in
Figure 1, existing approaches (the upper figure) learn the
data representations jointly to capture the underlying common
structure shared by two views. They enforce the feature
distribution of H") and H® to be similar but fail to take
advantage of distinct information of each view. This may lead
to unsatisfactory results. It can be seen from the last columns
of HM and H® that the feature distributions are nearly same
and happen to be similar to columns in the group-1 (purple).
Through linear computations, the corresponding column of
H* will be categorized into a wrong group, i.e., group-1,
due to the similarity of feature distribution. On the contrary,
DiNMF is based on a novel diversity constraint, i.e., DIVE,
which enforces H(") and H®) to be as diverse as possible. As
a result, H* contains diverse information for comprehensive
learning, since H(®) captures some distinct information that
H® lacks. Moreover, the feature distributions of the two
groups are more distinct in-between and this is in line with
the ground truth, leading to more accurate learning.

The main contributions of our work are as follows:

1. DINMF not only ensures the diversity to exploit com-
prehensive information but also reduces mutually redundancy
across multiple representations for more accurate learning.
Furthermore, DINMF is also computationally linear thus has
good scalability to large-scale datasets.

2. We further develop Locality Preserved DiNMF (LP-
DiNMF) to preserve the locally geometrical structure of the
manifolds for multi-view setting, by taking into account the
manifold structures in data spaces. This leads to improved
clustering accuracy compared with DiNMF.

3. We derive novel and efficient algorithms for both DiINMF
and LP-DiNMF to optimize objective functions. The conver-
gence of both algorithms are proved.

4. Experiments on both synthetic and real-world datasets
from different domains demonstrate that the proposed methods
are not only faster but also achieve more accurate clustering
than other state-of-the-art methods.

II. DIVERSE NONNEGATIVE MATRIX FACTORIZATION
(DINMF)

In this section, we first briefly review the background of
NMF and introduce a straightforward approach to extend the
single-view NMF to multi-view setting. After that, we present
DiNMF and propose an efficient optimization algorithm for
solving the objective function.



A. Objective Function of Non-diverse NMF (NANMF)

Suppose X = [x1,X2,...,X,] € R™*" is the nonnegative
n data matrix where each column is a data vector and m is
the dimensionality of the feature space. NMF aims to find two
nonnegative matrix factors W and H whose product can well
approximate the original matrix:

X ~ WH. D

Here the H € R**™ can be considered as the new repre-
sentations of data in terms of the basis W € R™**, where k
demotes the desired reduced dimension.

The approximation is quantified by a cost function which
can be constructed by distance measures. A popular measure
is the square of the Euclidean distance (also known as the
Frobenius norm) between two matrices [28]. Thus, NMF aims
to minimize the following objective function:

X - WH|%, st. W,H>0 )

This standard NMF can be extended to multi-view setting
straightforwardly. Let X(*) € R™" %" be the feature matrix
corresponding to the vth view. Similarly, W) and H®)
are the corresponding basis matrix and representation matrix,
respectively. Given V heterogeneous features, we directly
integrate all these features together so the objective function
(2) becomes

\%4
> I1X
v=1

Obviously, this approach learns each data representation
independently and cannot ensure the diversity of different
views. To facilitate the subsequent discussion, we call this
approach Non-diverse Multi-view Nonnegative Matrix Factor-
ization (NANMF).

~WOHW|2, st WO HW >0 (3)

B. Objective Function of DINMF

A desirable multi-view NMF approach for data analysis
needs to satisfy two requirements. First, it should exploit
diverse information across multi-view data representations
for more comprehensive and accurate learning. Second, it is
scalable since the number of data n and dimension of features
m could be quite large. In the following, we describe how
DiNMF satisfies these two requirements.

Diversity requires that two data vectors be as orthogonal
to each other as possible, so that more comprehensive infor-
mation can be exploited. Let h{”) and h{™) be the ith data
representation vectors in two views, i.e, the v-th and w-th
views. To ensure the diversity between the two vectors, their
dot product should be 0, approximately. To achieve this, we
can minimize the following function [29]

1" o h{* o, 4)

where o designates the product, and ||- ||o is the [° norm which
indicates the number of non-zero elements. Due to the non-

convexity and discontinuity of {° norm, (4) can be relaxed by
using /! norm as follows,

(R

E]M” 5)
where | - | is the absolute value. Since the representations
obtained by NMF are non-negative, we can further reformulate
(5) as

b o ™|,

Z B - b (6)

By extending the calculation of single data vector in (6)
to m data vectors setting, we propose the following term to
guarantee the diversity among all n data vectors in two views,

Zzh (v) h(w

i=1 j=1 (7
— tr(HOH®),

DIVE(H") H

where tr(-) is the trace function. Therefore, minimizing (7)
will encourage H(*) and H(") to be orthogonal to each other.
In other words, the diversity of the representation matrices in
two views is guaranteed.

Given a dataset with more views, we incorporate the DIVE
into NdNMF to guarantee that data representations in any two
views be diverse. Then, the minimization objective function is

produced as follows:
v
S OIX® - WOHM|Z + o Y DIVEH®, H™) -
v=1 vFEW

st. 1<v,w<V,W® HY H® o >0,

where « is a trade-off parameter which controls the weight
of DIVE. A smooth regularization term |[H®)||% is added to
avoid over-fitting of a view, which leads to the overall objective
function as follows:

v
Z ||X(v) —wW®OH® ||%7

v=1

error

14
, : 9)
+a Y DIVEH® H™)+ 3> " [HW|3 (
vFW v=1
smoothness

diversity
st. 1<o,w<V, W HY H®" o 3>0.

Here [ is the weight factor of the smoothness term.

To solve the objective function (9), we develop an efficient
optimization algorithm to find the optimal solution of H(").
After that, we calculate the average value of H(*) in all views

for the final multi-view data representation H*, i.e., H* =
v e . .
Z”:%. Following are the details.

C. Solving the Optimization Problem (9)

Since the objective function (9) is not convex with both
variables W) and H®), it is infeasible to find the global



minimum. Instead, we propose an algorithm to find a local
minima by iteratively updating W(*) with H(*) fixed and then
updating H®) with W) fixed.

For each view, the computations of W (@) and H® are not

dependent on other views, so minimizing (9) gives us
v
X0 = WOHOE a3 tr(EOHDT) + g[HO
w=1;w#v
_ (X<v>x(v>T_2X<v>H<v> wO L wOHREOEO WO
+a Z rEHOE®Y £ gerEOHET),
w=1,w#v

(10)

Let 7]( and ) be the Lagrange multipliers for the constraint

ij
w!” > 0and h(v > 0, respectively, and n(*) = [n Z(; ], €W =

[5 )] then the Lagrange function L of (10) is

L= tr(X0xX®" 2X<v>H<v>TW(v>T

er(v)H(v)H(v) v) )+ a Z tr(HH( w) T )
w=1,w#v
+ AtrEOHOT) Lt OWO) 4 tr(eOH),
(1)

Setting the derivative of L to be 0 with respect to W(*) and
H®), we have

\%
E :2W(1))TX(1;)_ 2W(1))TW(1))H(1)) _ az H(w)_ QBH(’U)7

w=1,w#v

(12)
and
n =2W T x @) _ ow® W HEE), (13)

Following the Karush Kuhn-Tucker (KKT) condition [30]
@)™ = 0 and f (v) = 0, we get the equations for

ij Wij
wg;)) and h,E;).

1%
EW® X _ow @ WO H® —aY H™_25H™") R}

w=1,w#v
(14)
g OO p® —
(2X H - 2W\WH\YH )wij =0. (15)
ese equations lead to the following updating rules:
These equations lead to the following updating rul
B @) (W X)),
Y eWOTWOHM faYl L, B+ BHO),]
(16)
) o (XOH®T),
wf) o wlp) Ju__ (17)
(WOHOH®)

The procedure to solve (9) is summarized in the Algorithm
1.

D. Convergence of DINMF

In this section, we prove the convergence of the updating
rules (16) and (17). Algorithm 1 is guaranteed to converge to

Algorithm 1 The algorithm of DiNMF

Input:
Data for V views {X™1) X®)
Parameter o and S.
:for v=1t0V do
Normalizing X ()
Initializing W®) H(®)
end for
for v=1to V do
while not converging do
Fixing W), updating H®) by (16)
Fixing H®), updating W) by (17)
end while
10: end for
11: Calculate the average value of all data representations of
: * ZV: HY
each view by H* = =+=——.
Output:  The final representation matrix H*.

XV,
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a local minima by the following theorem:
Theorem 1. The objective function (9) is non-increasing
under the update rules (16) and (17).

To prove Theorem 1, we need to show that (10) for each
view is non-increasing under (16) and (17). Since the second
term and the third term of (10) are only related to H, we
have exactly the same update formula for W in DiNMF as in
[31]. Here, we only prove (10) is non-increasing under (16).
Following [31], we will apply an auxiliary function, which is
defined as follows:

Definition 1 A function G(h, ') is an auxiliary function
of the function J(h) if G(h,h') > J(h) and G(h,h) = J(h)
for any h, h'.

The auxiliary function helps because of the following lemma
(311,

Lemma 1. If G is an auxiliary function of the objective
function J, then J is non-increasing under the update rule

t+1 _ : t
AT = argmhlnG(h,h ). (18)

Now, we will show that the update for H (16) is exactly
same as the update (18) with a proper auxiliary function. We
rewrite (10) as follows:

- ||X(v) _ W(v)H(v)HQF

14
>~ DIVEH",H™) + g|H"|;

k=
K n
YD) SUTIRND 3p S
c k=1j5=1
(19)
Given an element hgg) in H®), we use Féz) to denote the
part of O; which is only relevant to hgl;)). It is easy to check
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/ 00,

Fo, = (ﬁ)ab :(fZW(”)TX(”) + 2W(U)Tw(v)H(v))ab
1%
+ (a Z H®™ +28H®),,,
w=1,w#v
(20)
Fjy = @WO W®),, + 261, @1

Since our update is essentially element wise, it is sufficient
to show that each Fy;, is non-increasing under the update rule
(16) We prove this by defining the auxiliary function regarding
A o as follows:

Lemma 2. The function

v v v t / v t v v t
G 1) = Fun(h") + Foy (B9 ) (0™ = h2)")
(W(v>Tw DHO) eV L, B 425H
ny

(22)
is an auxiliary function for F;, which is the part of O; and
only relevant to hg{)).

Proof. Since G(h"), h(*)) = F.(h)) is obvious, we
need only show that G(h("), h((;;)) ) > Eu(h). To do this,
we compare the Taylor series expansion of Fi(h(")):

t p t
Fup(h™) = Fap(hly) ) + Fop (W) = h{5)")
7" t
+ Foy(h®) = b))%,
Introducing (20) and (21) into (23) and comparing with t(22),
we can see that, instead of proving that G(h(“),hg}) ) >
Fop(R(™), it is equivalent to prove

(23)

(W(v)Tw(v)H(v)) b+ ﬁH

2> (WOTW®),, + 6Ly,

n’
(24)
Since we have
T K T t
(W(v) W(U)H(v) Z W(") W(v) hl(;j)
k=1 (25)
> (W(“ W(v )aah(v)
and N
HY =55 0L, > pn0)'T
pH,, =05 aj Liv = Bhgyy Ty, (26)

t
(24) holds and G(h™), ")) > F,(h(*).
We can now demonstrate the convergence of Theorem 1.
t
Proof of Theorem 1. Replacing G(h(”),hg;)) ) in (18)
by (22) results in the update rule

v t
Fuy (R

h U)H_l h(v h(“)t
ab b o\ () TW (o) T (v) 4 H®) 1 28H®)
( +0> 01 #v +24 Jab
T
! W™ X)),
"EWOTWOH® £ oV H® 4 25H)

@%

This is exactly the same as (16). Since (22) is an auxiliary
function for F;, Fyp is non-increasing under (16) according
to Lemma 1.

III. LoCALITY PRESERVED DINMF (LP-DINMF)

Recent research has shown that data are found to lie on
a nonlinear low dimensional manifold embedded in a high
dimensional ambient space [32], [33], [34]. However, the stan-
dard NMF fails to discover such intrinsic geometrical structure
of the data space [8]. To find a compact representation which
uncovers the hidden semantics and simultaneously respects
the intrinsic geometrical structure, we further extend DiNMF
to LP-DINMF so that local geometrical structure could be
captured in each view.

A. Objective Function of LP-DiNMF Method

Cai et al. [8] imposed graph regularization on NMF. The
method is based on the manifold assumption which means
that, if two data points x; and x; are close in the original

ab (h(v)_h(v)t)? feature space, the representations of these two data points

should be also close to each other. Mathematically, this can
be represented by the following form: |x; — x;|| — 0 =
|lh; — h;|| — 0. With multi-view setting, a locality preserved
term corresponding to the vth view is defined as:

I &,
52(‘%(1)

i,j=1

v v v v UT
Ih{” —h{”)2) = tr@EOLOHO),  (28)

where L") is the Lagrange matrix L(*) = D®) — A(®)
AW = (az(.;-))) is the weight matrix measuring the spatial
closeness of data points and D(*) is a diagonal matrix with

Z a(v) One of the most commonly used approaches
matnx A®™ on the graph is 0 — 1

to define the We1§ht
and 2% are one of the nearest neighbors

weighting [8] . If z,

to each other, a(]) = 1 otherwise a(]) = 0. Same as [21], we
adopt this approach for it is simple to implement and performs
well in practice. Combining this locality preserved regularizer
with the objective function of DiNMF (9) gives rise to our LP-
DiNMF, which minimizes the objective function as follows:

Vv

Z IX® = WEH® % 4+ o> DIVEH®™, H™)
= vEW

- ,82 [ +72tr HOLOH)

st 1 g v,w < V,W(”),H(”), H™ «,f8,v > 0.
(29)
Please note that if we set @ = 3, the objective function (29)

becomes simpler as

14 14 14
> OIX® — WOHM|L + o) DIVEE®, Y " H™)

v=1 v=1 w=1

v
+ Z tr(H(v)L(v)H(U)T>
v=1
st. 1<v,w<V,W® H® H® o ~>0.
(30)
The DIVE term in (30) not only works on multi-view setting,
but also on the single view. In detail, given different views
(v # w), DIVE enforces the diversity among them. For the
single view (v = w), DIVE plays an important role to avoid



over-fitting. This demonstrates the full compatibility of our
objective function.

B. Solving the Optimization Problem (30)

Note that comparing with (9), the last term of (30) is related
to H") only, so we provide the optimization solution for
updating H®) with W) fixed.

Since updating W) and H() in each view is independent,
(30) reduces to minimize the following formulation

14
IX® — WEH® | + oDIVEE®, Y~ H™)

w=1

3D
Ayt (HOLOHE T,

Let ¢{”) be the Lagrange multipliers for the constraint hE;) >

ij
v (v) : :
0 and ) = [gau |, the Lagrange function L for each view

can be written as
L=tr(XWX®T _oxOE® W
\4
+WmHmHmTWmﬁ+azyﬂHmeﬂ
w=1,w#v
+atr@EYHT) 4yt HOLOHOT) + (o WH®).

Requiring that the derivative of L with respect to H(*) equals
to 0 and using the Karush-Kuhn-Tucker (KKT) condition [30]

<p” h(” =0, we have

L0 @WOTXO) Loy HAW),
9T QWO TWEOH®) + aQ®) + 2yH®D®),;
where Q(U) _ 21‘221 4y H®) L oHO),

The whole procedure for solving (30) are summarized in
the Algorithm 2.

, (33)

Algorithm 2 The algorithm of LP-DiNMF

Input:
Data for V' views {X(1) X®)
Parameter o and S.
1: Calculate weighting matrix of each view, A ()
2: Calculate diagonal matrix and Lagrange matrix of each
view, D®) and L®), respectively
3: for v=1t0V do
4:  Normalizing X(*)
s:  Initializing W), H(®)
6:  while not converging do
7
8
9

XV,

Fixing W), updating H(*) by (33)
Fixing H®), updating W) by (17)
: end while
10: end for

11: Calculate the average value of all data representations of
ZV H(u)

v .
The final representatlon matrix H*.

each view by H* =
Qutput:

C. Convergence of LP-DINMF

The Algorithm 2 above is guaranteed to converge to a local
minima with the following theorem.

Theorem 2. The objective function in (30) is non-
increasing under the update rules in (33) and (17).

Same as DiNMF, we omit the proof of (17) here. To prove
(30) is non-increasing under (33), we first rewrite (31) as:

\4
~WWHY %+ ) DIVEH®Y, H™)
w=1,w#v

T
T HO) % + ytr(HOLOH® )

Ry R +az Zzhw)h(w)

w=1l,w#v k=1 j=1

=1
K n
+a Z Z h(“)h(u) + Z Z Z h(U)L(U)h(U).

k=1j=1 =1

0y = | X

K
( (1{)7

k=1

(34)

It is easy to check that

.00
Fan = Cogp o = (—2W X oW T WEOIH),
|4
+ (@) H® +20H" + 2yHWLM),,
w=1,w#v
. (35)
Fly = @W®TWO),, + 201, + 2L, (36)

Again, we prove each Fy; is non-increasing under the update
rule (33) based on an auxiliary function as following.

Lemma 3. Let Qab=H(/’é’)+2HS;), the function

v v v 4 v)t ) v)t
G(ht(zb)7h¢(zb) )= ab(hgb) )+ Fab(ht(zb) )R — h¢(1b> )
2(w(v) W(”)H(”))ab+OéQab+27(H(“)D(”))ab

+

t
o Oy
hab

(37)
is an auxiliary function for Fj; which is the part of O and
only relevant to h((;;))

Proof. In fact, we can see that Lemma 2 is a part of Lemma
3. Similar to the proof of Lemma 2, we 1ncor§>0rate 35)
and (36) to the Taylor series expansion of FaZ (23) and
compare it with (37). Since Lemma 2 has been proved with
(25) and (26), here we only need to show

2v(HOD®),, v
hab
Since we have
1 v t - v v t v
HODW) = by DG > hy) DY
et (39)

t
> 30 (DO — Wy, = L)

(37) holds and G(h™), A"} > Fp (™).

We can now demonstrate the convergence of Theorem 2.

¢
Proof of Theorem 2. Putting G(h(*), hl(;;) ) of (37) into



(18), we get
!/ v t
(v)t Fab(h’fzb) )
® WO TWEHO4+aQ+27yH®D M),
— p! @EW® T X® 4 2y HWAM),,
® EWOTWOH®+aQ+27H®D®),,

1
=

(40)
This is in line with (33). Since (37) is an auxiliary function
for F,p, F,p is non-increasing under (33).

IV. COMPLEXITY ANALYSIS FOR DINMF AND LP-DINMF

In DiINMF, for each data matrix X & Rm(v)xn, the
complexity of updating W) in (17) is O(m¥)nk). This is
same as that of NMF [31]. The cost of updating H(") in (16)
is O(m“nk + knV). Since usually V < m(?), assuming
the iterative update stops after ¢ iterations, consequently,
the overall computation of DiNMF is O(Zgzl(t(m(”)nk))).
Clearly, its complexity is linear with respect to the number
of data points (n) and it can scale well to large datasets. For
LP-DiNMF, the overall cost of updating W) and H(®) is
O(Z:}/:l(tm(“)nk + m(")n?) because it requires additional
O(m *)n?) to construct the nearest neighbor graph. The exper-
imental analysis for both complexity is given in the subsection
V-G.

V. EXPERIMENT

In this section, we carry out extensive experiments on
clustering to demonstrate the effectiveness of DiINMF and
LP-DiNMF in exploiting the underlying diverse information
across multiple views of data.

A. Description of Datasets

We conduct experiments on one synthetic and several real
world datasets, which are chosen from different domains,
including documents, images and networks. The descriptions
of these datasets are summarized in Table 1.

TABLE I: Descriptions of the datasets

Datasets Size | view | Cluster
Synthetic 5000 2 2
Reuters-1 600 3 6
Reuters
Reuters-2 18578 5 6
Digit 2000 2 10
Cornell 195 2 5
Texas 187 2
WebKB
Washington 230 2 5
Winsconsin 265 2
Caltech 101 Silhouettes 8641 2 101

e Synthetic: We first randomly generate basis matrices
{W@12_ of two views. The dimensions of two matrices
are 250 and 800, respectively. The representation matrices
{H®}2 | € R29%%00 are generated with the constraint

that the corresponding vectors of these two matrices are
orthonormal to each other. To ensure that the two data rep-
resentations not only contain respective distinct information
but also share common information, we sample 30% vectors
from one representation matrix by adding Gaussian noise with
N(0,1) and keep these corresponding vectors exactly same in
the second view. Thus, we have a dataset that consists of two
views, ie., XM and X@), where X = WOH  This
dataset is constructed to demonstrate the correctness of the
proposed diversity term and also for the computational speed
analysis.

e Reuters!: As in [20], we randomly sample 100 docu-
ments each for 6 clusters, and choose English, French and Ger-
man as three views to form a dataset. We call it Reuters-1.
Besides, to demonstrate the performance of the proposed
methods on large-scale dataset, we also use the original
dataset, called Reuters-2. It contains feature characteristics
of documents that are translated into five languages over
6 categories. In our experiments, we choose one language,
English (EN), as the original language source and take the
translated documents in the other four languages as the other
four sources.

e UCI Handwritten Digit? : The dataset is composed
of 2000 examples from O to 9 ten-digit classes. Each example
is represented by two kinds of features, pixel averages in 2 x 3
windows and Zernike moment.

e WebKB?: It is composed of web pages collected from
computer science department websites of four universities:
Cornell, Texas, Washington and Wisconsin. The webpages are
classified into 7 categories. Here, we choose four most popu-
lous categories (course, faculty, project, student) for clustering.
A webpage is made of two views: the text on it and the anchor
text on the hyperlinks pointing to it.

e Caltech 101 Silhouettes*: This dataset is based on
the Caltech 101 image annotations [35]. It centers and scales
each polygon outline of the primary object in the Caltech 101
and render it on a 16 x 16 pixel image-plane. The outline
is rendered as a filled, black polygon on a white background.
Since this dataset contains one type of feature only, following
[36], we extracted HOG [16] as the second view.

B. Methods to Compare

We compare the proposed approaches with several repre-
sentative multi-view clustering methods and their variations.

e Best Single View-NMF (BSV): We run each view
of datasets with NMF [31] and the best single view result is
reported.

e Best Single View-GNMF (BSVG): Similar to
BSYV, we run each view of datasets with GNMF [8] and report
the best single view results.

e Feature Concatenation (FeatConcate): It concate-
nates the features of all views and applies NMF to extract the
low dimensional subspace representation.

Uhttp://multilingreuters.iit.nrc.ca
Zhttp://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
“https://people.cs.umass.edu/ marlin/data.shtml
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e ColNMF [37]: It simultaneously factors data matrices
of multiple views to different basis matrices with the shared
consensus coefficient matrix.

e MultiNMF [20]: It searches for a compatible clustering
solutions across multiple views by minimizing the differences
between data representation matrices of each view and the
consensus matrix.

e MMNMEF [21]: It preserves the locally geometrical
structure of the manifolds for multi-view clustering with
regarding that the intrinsic manifold of the dataset is embedded
in a convex hull of all the views’ manifolds, and incorporates
such an intrinsic manifold and an intrinsic coefficient matrix
with a multi-manifold regularizer.

¢ RMKMC [38]: This multi-view k-means approach inte-
grates heterogeneous features of data and utilizes the common
cluster indicator to do clustering across multiple views. I3 ;-
norm is employed to improve the robustness.

e CoRegSPC [39]: This pairwise multi-view spectral
clustering method co-regularizes the clustering hypotheses to
enforce corresponding data points in each view to have the
same cluster membership.

¢ RMSC [40]: This is a multi-view spectral clustering
method based on low rank and sparse decomposition of the
transition matrix.

e NANMF: It conducts each view independently using
standard NMF [6], and then applies k-means on the combina-
tion of new representations of each view.

C. Settings

For each compared method, we set the parameters according
to original papers where the approaches were first proposed.
As BSVG, MMNMF and LP-DiNMF require construction of
the nearest neighbor graph, we set the number of nearest
neighbor equal to the number of classes of the data k, as
suggested in [21]. For DINMF and LP-DiNMF, we normalize
the data first and then initialize both W(*) and H®") for each
view in the range [0,1]. Similar to [41], [42], the regularization
parameters (o, S in (9) and «, v in (30)) are chosen from
{0.0001,0.001,0.01,0.1,1,10,100,1000}. To avoid randomness,
we run each method 10 times with different initializations
and report the average results and their standard deviations.
The clustering results are evaluated by three widely adopted
evaluation metrics, including accuracy (AC) [43], normalized
mutual information (NMI) [43] and Purity [44]. Each metric
favors different properties in clustering, and hence we report
results on these measures to perform a more comprehensive
evaluation. For all these metrics, the higher value indicates
better clustering quality.

D. Clustering Results

Table II demonstrates the average results and standard devi-
ations for each method on the datasets. Note that, the results of
CoRegSPC and RMSC on Reuters-2 are not available (N/A)
since they demand huge memory. In each row of the table,
the best result is highlighted in boldface and the second best
result in italic. It is clear to see that both DiNMF and LP-
DiNMF consistently outperform the other methods, sometimes

even very significantly, which demonstrates the advantage of
our approaches in terms of clustering performance. Compared
with NdNMF, DiNMF improves performances more than 5%
on all datasets in terms of AC, NMI and Purity, which proves
the effectiveness of the proposed diversity constraints. We
also notice that directly concatenating all the features (i.e.,
FeatConcate) is not an ideal approach since it always performs
worse than the best single view (BSV). Moreover, LP-DiNMF
performs better than DINMF on all the datasets. This indicates
that exploiting the geometric structures in data spaces indeed
can improve the cluster performance, also verifies the manifold
assumption and confirms the correctness of our approaches.

E. Analysis of Redundancy Rate

To verify that DIVE reduces the redundancy information
among multiple representations, we propose a redundancy rate
(RED) metric as follows:

n |4 v w
Ei:l Zv:l,v;ﬁw 0082<h£ >’ hg ))
V(V-1)n '

REDHW, ... HV)) =

(4D
It assesses the average sum of similarity of all n data vectors
in all pairs of views and ranges from 0 to 1, where 0 means
a completely complementary result, and 1 vice versa.

We compare the redundancy rate of the proposed approaches
against MultiNMF, MMNMF and NdNMF, which are all under
the framework of NMF and then take the same approach
to obtain the final multi-view representation matrix H*(=
ZY%HM) The results of comparison are reported in Table
1.

It can be seen that MultiNMF always gets the highest rate
followed by MMNMF and NdNMF, while it is less than 20%
for DINMF in all cases. This demonstrates the effectiveness of
the proposed DIVE that enforces the complementarity across
multiple views. However, LP-DiNMF does not always achieve
stable and low redundancy rate. For example, it gets the
lowest redundancy rate in Texas with 0.1222 compared with
other approaches, but a higher rate (0.1852) than DiNMF in
Winsconsin. This is because the representations of multiple
views in LP-DiNMF are co-regularized by both the manifold
structure and the diversity term. There is a tradeoff between the
two regularization terms. Thus, different from DiNMF which
is only regularized by the diversity term, LP-DiNMF is less
likely to get the lowest rate.

To have a visual perception of redundancy, we take the
Digit (2 views) and Reuters-1 (3 views) as examples and
demonstrate the redundancy rate of each data vector in details,
as shown in Figure 2. The horizontal axis represents the
number of data points and the vertical axis means the scaled
redundancy rate. For each approach, the scaled redundancy
rate is the percentage of its true redundancy rates over that of
all five approaches. Each method is represented by one color.
The wider area a color occupies, the more redundant informa-
tion an approach has. Figure 2 shows that DINMF (marked in
purple) occupies the narrowest area, while MultiNMF occupies
the widest area in both Digit and Reuters datasets. The results
of Figure 2 is inline with Table III, which proves that DiINMF



10

TABLE III: Comparison of redundancy rate

Methods Synthetic  Reuters-1 Digit  Cornell Texas Washington Winsconsin

MultiNMF 0.9986 0.9970  0.5826  0.8503  0.8472 0.8229 0.8521

MMNMF 0.5998 0.4800  0.4437 03440 0.4318 0.3598 0.3698

NdANMF 0.4637 0.2658 0.2755 0.2395 0.2077 0.2683 0.1122

DiNMF 0.1838 0.1087 0.1931 0.0651 0.1873 0.0609 0.0783

LP-DiNMF 0.3509 0.1266  0.2663  0.0894 0.1222 0.1013 0.1852
Reuters-1 Digit

[ LP-OinvF [ ONMF [ NonnE I v MuishMF

240 300 380
Number of data

L P-oinvE ([ oinvE [ NonvF I v I MuitNMF

400 600 800 1000 1200 1400 1600 1800 2000
Number of data

Fig. 2: Comparison of redundancy rate on Reuters-1 and Digit dataset

effectively exploits the diverse information across multiple
views.

Washington
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Fig. 3: The effect of parameter « and 5 in DINMF and « and
v in LP-DiNMEF. Different colors means different accuracies
and the color close to red indicates high accuracy.

FE. Parameter Study

We tested the effect of the parameters « and 5 of DiINMEF, as
well as « and 7 of LP-DiNMF. In DiNMF « and § affect the
diversity and smoothness, while in LP-DiNMF, « and ~ adjust
the effects of the diversity and graph regularization term. For
both methods, we picked the value of each parameter from
{0.0001, 0.001,0.01,0.1, 1,10, 100,1000}. Taking the Digit
and Washington as examples, we can find that DINMF in Fig-
ure 3(a) achieves more than 70% accuracy in Digit and 60% in
Washington for « and 5 in most cases, demonstrating that the
the performance of DiNMF is relatively robust to parameter
tuning. Figure 3(b) shows that LP-DiNMF is relatively stable
with varying «, but significantly affected by . This further
verified the importance of preserving manifold structure.

G. Study of Computational Speed

We have proven the convergence of our update rules and
analyzed the computational complexity of DINMF and LP-
DiINMF against MMNMEF in previous sections. Here our
experiments demonstrate their convergence curves in Figure
4 and computational time in Figure 5. All our experiments
are conducted on a PC with two octa-core Intel Xeon CPU
processors at 2.5 GHz and 256G bytes memory.

Because the results of different networks datasets (Cornell,
Texas, Washington and Winsconsin) have similar convergency,
here we just took one network (Cornell) as an example.
Figure 4 shows the convergence curve of the three methods
on Synthetic, Reuters, Digit and Cornell. For each figure, the
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horizontal axis is the number of iterations and the vertical axis
is the value of objective function. We can see that MMNMF
(Figure 4(a)) needs around 100 iterations for each dataset,
while DiINMF (Figure 4(b)) is the most efficient, since the
objective function values are non-increasing and drop sharply
within a small number of iterations (10 iterations) in all
cases. Although LP-DiNMF (Figure 4(c)) requires nearly 100
iterations for the Synthetic and Digit database, its objective
values drop faster than that of MMNMEF. This empirically
proves our convergence theory.

As discussed in section IV, DiINMF has linear time com-
plexity with the number of data points. Here, we verify
this claim on the Synthetic dataset. Figure 5 reports the
average running time of each iteration of three methods on
the Synthetic dataset. The default setting is 5000 data points,
2 clusters, and 2 views. During the experiment, we fix the
number of clusters and views but change the number of data.
Figure 5 (a) shows the running time of three methods in terms
of varying data points within {0.05,0.25,0.5,1,1.5,2} x 10%.
Clearly, DINMF is linear in execution time, and MMNMF
costs significantly more time than DiNMF and LP-DiNMF. To
better demonstrate DINMF’s linearity and good scalability to
large datasets, we increase the amount of data to a large scale,
ie, {0.2,0.5,1,2,3,4,5} x 10° and report corresponding
running time each in Figure 5 (b). Clearly, the results are in
line with the analysis in subsection IV.

VI. CONCLUSION

In this paper, we have advanced the frontier of NMF
by proposing a novel idea that explores diverse informa-
tion among multi-view representations. To achieve this, we
have proposed a Diverse Nonnegative Matrix Factorization
(DINMF) approach for more comprehensive and accurate
multi-view learning. With a novel diversity regularization term,
DiNMF explicitly enforces the orthogonality of different data
representations. Importantly, DINMF converges linearly and
scales well with large-scale data. Taking a step further, we
have extended DiNMF by incorporating manifold informa-
tion and proposed Locality Preserved DiNMF (LP-DiNMF)
method. Extensive experiments conducted on both synthetic
and benchmark datasets have demonstrated promising results
of our methods, which conform to our theoretical analysis.
For future work, we aim to study diversity in Nonnegative
Tensor Factorization, the nature generalization of NMF to
higher dimensions, with which a wider range of applications
can be expected.
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