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Abstract

The necessity to increase performances in terms of lifetime and security in

mechanical components or structures is the motivation for intense research in

fatigue. Applications range from aeronautics to medical devices. With the

development of new materials, there is no longer a fatigue limit in the classical

sense, where it was accepted that the fatigue limit is the stress level such that there

is no fracture up to 1E7 cycles. The recent development of ultrasonic testing

machines where frequencies can go as high as 20 kHz or over enabled tests to be

extended to ranges larger than 1E9 in just a few days. This area of studies is now

known as Very High Cycle Fatigue (VHCF).

On the other hand, most of the existing test equipment in the market for both

classical and VHCF are uniaxial test machines. However, critical components used

in Engineering applications are usually subjected to complex multi-axial loading

conditions.

In this paper, it is presented the methodology to redesigning existing cruciform test

specimens that can be used to create an in-plane biaxial state of stress when used in

‘uniaxial’ VHCF ultrasonic testing machines (in this case, the term ‘uniaxial’ is
used not because of the state of stress created at the centre of the specimen, but

because of the direction at which the load is applied). The methodology is

explained in such a way that it can be expanded to other existing designs, namely
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cruciform designs, that are not yet used in VHCF. Also, although the approach is

presented in simple and logical terms, it may not be that obvious for those who

have a more focused approach on fatigue rather than on modal analysis. It is

expected that by contributing to bridging the gap between the sciences of modal

analysis and fatigue, this research will help and encourage others exploiting new

capabilities in VHCF.

Keywords: Materials science, Engineering, Mechanical engineering

1. Introduction

The emergence of new technologies, manufacturing processes and materials,

together with the necessity to increase the lifetime and safety of mechanical

systems, led to the need to increase the fatigue life range of mechanical

components (Anes et al., 2011). Thus, fatigue data beyond the specific cycles is

necessary to design mechanical components that will be subjected to extended

lifetimes in comparison to the past (Freitas et al., 2011).

With the development of new materials, such as high strength aluminium alloys

with a different microstructure from steels, materials no longer have a fatigue limit

in the classical sense, where it was accepted that the fatigue limit is the stress level

such that there is no fracture up to 1E7 (Freitas et al., 2011). This limit, often

referred to ‘infinite’ fatigue life, has already been dismissed by, for example,

(Bathias, 1999) and (Pyttel et al., 2011). This led to conclude the necessity to

improve the S-N diagrams

and eliminate the endurance limit (Bathias, 1999; Frederick, 1965). Actually, new

testing equipment allowed for the extension of the concept of fatigue up to 1E9

cycles and even more (Lage et al., 2014).

In classical fatigue testing, the machines’ low operating frequencies require

unfeasible lengths of time for the completion of tests up to 1E9 cycles. For

example, typical rotating bending machines operate at frequencies up to 30 Hz,

servo-hydraulic machines work at frequencies up to 50 Hz and resonant fatigue

machines work at around 150 Hz. This means that, in order to achieve 1E9 cycles,

conventional testing may require a machine to be operating between 3 months to 1

year; that is, without interruptions.

The recent development of ultrasonic testing machines where frequencies can go as

high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in a

reasonable amount of time. This area of studies is now known as gigacycle or Very

High Cycle Fatigue (VHCF). With a machine operating at 20 kHz the length of

time required to reach 1E9 cycles could be reduced, in theory, to as little as 14 h, if

no interruptions had to be made.
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On the other hand, most of the existing test equipment in the market for both

classical and VHCF are uniaxial test machines (Cláudio et al., 2014a), in the sense

that the state of stress created is unidirectional. However, critical components used

by the aerospace, automotive, energy, naval, medical and other industries are

usually subjected to complex multi-axial loading conditions (Montalvão et al.,

2014; Reis et al., 2014). The market already offers two types of machines for

biaxial fatigue testing: combined axial-torsion and combined in-plane axial-axial

(which includes tension-tension, tension-compression or compression-compres-

sion). The first method uses thin-walled cylinder specimens (tubes), whereas the

second one employs cruciform specimens (Cláudio et al., 2014a).

The combined axial-torsion test is commonly used to assess the fatigue life of

shafts and similar components. However, besides allowing for only a few stress

states to be simulated, it requires the material to come in the form of circular tubes,

being difficult to be applied to rolled sheet and composite materials (Cláudio et al.,

2014a). Nevertheless, recently, Costa et al. (2017) presented a new specimen and

horn design for combined tension and torsion ultrasonic fatigue testing in the

VHCF regime. Results show that it is possible to carry out multiaxial (axial/torsion

loading) fatigue tests at very high frequencies.

The combined biaxial in-plane fatigue machines require that the centre of the

specimen does not move during the test, which means that the four actuators must

be precisely synchronised (Baptista et al., 2014; Cláudio et al., 2014a).

Furthermore, the almost only available in-plane biaxial machines available so far

in the market use servo-hydraulic actuators. Thus, these machines are not good

candidates to be used in VHCF, due to time constraints.

In this paper, it is proposed an original approach to biaxial fatigue testing in the

VHCF regime. Having as starting point the same principles used in the design of

the VHCF machines as in, for example, Bathias et al. (2002), Bathias (2006),

Freitas et al. (2011), Lage et al. (2012) or Lage et al. (2014), it will be shown that,

at least when using cruciform specimens for in-plane axial-axial (biaxial) testing,

only the specimen needs to be redesigned and no changes are required to the

machine (for example, Costa et al. (2017) redesigns both the specimen and the horn

for combined axial-torsion). The redesign of these specimens can be achieved by

the application of a simple scale factor which, as will be shown, is inversely

proportional to the change in the natural frequencies. Therefore, and in principle,

any existing specimen that is already designed for in-plane axial-axial (biaxial)

fatigue testing, such as typical cruciform specimens, could be scaled down (or up)

so that its natural frequencies are adjusted to meet the requirements of VHCF

ultrasonic test machines like the ones mentioned above. The method to redesign the

specimens is presented using Finite Element Analysis (FEA) and uses, as case

study, the cruciform specimens from Baptista et al. (2014). The final design is
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presented so that researchers with access to experimental testing facilities can

perform experimental testing and continue research in this area.

2. Background

The basic principle behind VHCF testing machines as the ones discussed in, for

example Bathias et al. (2002), Bathias (2006), Freitas et al. (2011), Lage et al.

(2012) or Lage et al. (2014), is based on the resonance phenomenon. In the system

shown in Fig. 1, a piezoelectric actuator introduces a pure axial harmonic vibration

at 20 ± 0.5 kHz. This vibration is transmitted and amplified through a system

composed by a booster (where the whole assembly is supported) and a horn, down

to the specimen. These four parts form the resonant system of the testing machine.

The principle of operation of the vibration system is based on free vibration

resulting in a minimum of contact force between the elements in the system. Each

element in the resonant system is manufactured to have the same axial fundamental

frequency and vibrate in phase opposition at the contact points. Therefore, one

important aspect to have into consideration is that the test specimen must be

designed to have a certain mode shape tuned to the operating frequency of the

machine, in this case 20 ± 0.5 kHz (19.5 ∼ 20.5 kHz).

3. Design

3.1. Cruciform test specimen type and Uncalibrated Design (UD)

There have been attempts to design test specimens to create an in-plane state of

biaxial stress. Typically, specimens are cruciform, as are the designs from, for

example, Makris et al. (2010), Bellett et al. (2011) or Shlyannikov et al. (2014).

The design from Bellett et al. (2011) has the particularity that it can be used in

conventional uniaxial test machines, as it is the shape of an ‘hourglass’ with two

‘tear-shaped’ holes above and below the centreline of the specimen to generate a

biaxial stress state at the centre. While this design represents a breakthrough and

intelligent approach to creating a biaxial state of stress that can be used in the most

conventional of the testing equipment available, it has some limitations when it

comes to VHCF, as it does not allow non-proportional stresses (e.g., an in-plane

biaxial state of stress where stresses have a phase shift of 180°, i.e., they are out-of-

phase).

This paper will use as case study the cruciform shape shown in Fig. 2, although it is

expected that the concepts can be easily transferred to other existing designs,

namely cruciform designs. This shape is based on the optimised geometry

proposed by Baptista et al. (2014) and Baptista et al. (2015). Specimens with a

reduced thickness at the centre are used to increase the stress at the centre, so that

the chances that cracks will initiate and propagate at this location increase. Also,

these areas are designed to produce an uniform stress distribution at the centre
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(Baptista et al., 2014; Makris et al., 2010). These specimens were developed for

fatigue crack initiation studies, therefore feature a corner elliptical fillet between

the specimen arms, in order to further reduce the stress concentration and to obtain

a higher stress level at the specimen’s centre (Baptista et al., 2016a).

The dimensions in Fig. 2 are determined from a set of equations available in

Baptista et al. (2014), except the M2 thread that was added in the design of the

[(Fig._1)TD$FIG]

Fig. 1. VHCF testing machine resonant system components with biaxial specimen being tested (based

on the machine from Lage et al. (2014)).
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current paper being presented to fix the specimen to the Horn of a VHCF fatigue

testing machine like the one in Fig. 1. These authors recommend the use of an

optimal geometry as a function of available standard sheet thicknesses, and used

fixed values of L (200 mm) and w (30 mm) to constrain the optimisation problem.

Baptista et al. (2014) consider that the arms’ thickness varies between 1 and 10

mm. In this paper, the largest thickness of 10 mm was chosen as starting point. The

reason for this choice was not totally arbitrary, as the higher the thickness is, the

higher is the bending stiffness, reducing the number of bending and torsional mode

shapes before the axial mode shape we are looking for. However, in principle, any

other assumption for the thickness could have been made, as long as one value is

chosen. With this value in mind, the dimensions in Fig. 2 can be determined from

equations (1) to (6) (Baptista et al., 2014):

RM tð Þ ¼ �0:0379t4 þ 0:8223t3 � 5:5749t2 þ 12:555t þ 53:84 (1)

Rm tð Þ ¼ �0:0236t3 þ 0:3501t2 � 0:5036t þ 22:185 (2)

dd tð Þ ¼ �0:021t4 þ 0:4668t3 � 3:248t2 þ 7:9452t þ 46:224 (3)

D tð Þ ¼ 0:0342t3 � 0:7936t2 þ 6:0398t þ 4:5526; 4≤ t≤ 10mm (4)

θ tð Þ ¼ �0:7621t3 þ 15:484t2 � 92:774t þ 211:78; 4≤ t≤ 10mm (5)

tt tð Þ ¼ 0:15t; t≥ 8 mm (6)

The results above are the optimal dimensions of a specimen that is not yet

calibrated to be used in the VHCF regime, i.e., of a specimen that does not

necessarily have a 20 ± 0.5 kHz axial natural frequency. Therefore, the design of

the specimen with these dimensions will be called UD − Uncalibrated Design.

[(Fig._2)TD$FIG]

Fig. 2. Cruciform test specimen’ shape.
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3.2. Relationship between the natural frequencies and the
dimensional scale factor

Let us assume that we want to determine the transverse natural frequencies of a

beam with rectangular cross section. In this case, the angular natural frequencies

can be determined from equation (7) (and most fundamental textbooks on vibration

analysis will show it):

ωn ¼ kn
L

� �2
ffiffiffiffiffiffi
EI
�A

s
(7)

where E is the Young’s modulus of the material, ρ is its density, I is the second

moment of area, A is the cross-sectional area of the L length beam and kn is a

constant that depends on the mode number and boundary conditions. Considering,

in this example, that the beam’s cross section is rectangular, then the second

moment of area I and area A can be written using equation (8):

I ¼ 1
12
bh3;A ¼ bh (8)

where b and h are the width and height (thickness) of the beam’s cross section,

respectively.

Therefore, for a matter of convenience of this demonstration and after some

mathematical manipulation, equation (7) can be re-written in the form of equation

(9):

ωn ¼ h
L2

ffiffiffiffiffiffiffiffi
Ek4n
12�

s
(9)

Now let us assume that we want to determine how much will the natural

frequencies change when we scale down or up the beam by a factor s, i.e., b′ = s ·

b, h′ = s · h and L′ = s · L. In this case, the new natural frequency can be

determined from equation (10):

ω
0
n ¼

h′

L′2

ffiffiffiffiffiffiffiffi
Ek4n
12�

s
¼ sh

s2L2

ffiffiffiffiffiffiffiffi
Ek4n
12�

s
¼ 1

s
h
L2

ffiffiffiffiffiffiffiffi
Ek4n
12�

s
(10)

or, in more simple terms, from equation (11):

ω
0
n ¼

1
s
ωn (11)

This result, equation (11), is very important in the design of specimens for VHCF.

In practice, what it says is that if we scale up all the dimensions of an existing

design by a scale factor of s, the natural frequencies will be scaled down in the

same proportion. Since we want to have one of the axial mode shapes of the

Calibrated Design (CD) cruciform specimen tuned at a certain natural frequency
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(in this case, 20 ± 0.5 kHz), we only need to determine the dimensional scale factor

based on the natural frequency of the existing Uncalibrated Design (UD) earlier

determined. In other words, and considering that the frequency is now in Hz for

better convenience, the dimensional scale factor can be simply determined from

equation (12) as:

s ¼ f UD

f CD
(12)

where fCD = 20 kHz.

4. Methodology

The determination of the UD axial mode shapes’ frequencies was done using Finite
Element Analysis (FEA), considering a free-free configuration. Full details on the

computational simulation setup (mesh, convergence analysis, etc.) are described in

Wren (2017).

Wren (2017) used a COSMOS-based solver to perform two types of dynamic

simulations: modal analysis and frequency response. The former was used to

determine the frequencies of the T-T (in-phase) and C-T (out-of-phase) mode

shapes. The latter was used to determine the relationship between the axial

displacement at the specimens’ arms’ ends and the stress at their centres. This

relationship is essential for the proof of concept, since these are the principles of

operation of the machine from Lage et al. (2014), where the stress at the middle is

determined from the measured displacement at the tip of the specimen through a

LASER sensor.

The mesh was composed by 2nd order tetrahedral solid elements, with a global size

of 2 mm and a size of 0.5 mm at the centre of the specimen. The specimen was

modelled with the approximation that it is free-free suspended. This hypothesis is

based on the fact that in the setup shown in Fig. 1, Booster, Horn and specimen are

all resonating at their 1st axial mode shape, with a node in the middle and two anti-

nodes at their ends.

In order to verify this hypothesis, Wren (2017) performed a simulation on the

uniaxial test-specimen designed by Lage et al. (2014), also assuming free-free

boundary conditions. The male thread from the uniaxial specimen, being an insert,

was considered to be part of the horn so that it could be safely removed from the

simulation. This analysis proved the initial assumption that the specimen could be

modelled under free-free boundary conditions, at least if the 1st axial mode shape

is the only one of interest. Furthermore, Wren (2017) performed a frequency

response analysis to determine the relationship between the displacement at the tip

of the uniaxial specimen and the stress at its centre. The results were compared to

the analytical equations from Lage et al. (2014) and the FEA simulation validated
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(for the uniaxial test specimen). This gave insight on the FEA parameters to use for

the biaxial case.

In the absence of analytical equations that relate the stress at the centre of the

specimen and the displacement at the tip for the cruciform specimens, verification

of the FEA model for the biaxial case was done by means of convergence and mesh

independence analysis, as recommended in many textbooks, such as the ones from

Zahavi (1992) or Rades ̧ (2006). Once there was convergence and since models

were validated for the uniaxial case, it is reasonable to assume that the FEA models

for the cruciform specimens, which were based on the uniaxial one, are as equally

valid. The frequency response FEA simulations considered a harmonic axial

excitation at one end of the specimen, with amplitudes of 0.05 N, 0.1 N and 0.2 N.

The amplitudes of the force required are very low, as expected, because the system

will be resonating. These values strongly depend on damping, which was modelled

to be a modal damping factor with an arbitrary value of 10−5. This value is at the

lower end of the damping factors measured in a same series alloy by (Colakoglu

and Jerina, 2003). However, this choice does not affect the relationship between

stress and displacement, which is what we are aiming at obtaining.

The material considered in the analysis is a 6082-T651 Aluminium alloy, a

medium strength alloy with excellent corrosion resistance used in a diverse range

of Engineering applications, including highly stressed structures that are subjected

to in-plane biaxial or multiaxial loadings (Aalco, 2016; Karolczuk et al., 2015).

The mechanical properties considered were a 72 GPa Young’s modulus, a 0.33

Poisson’s ratio and a 2700 kg/m3 density (Makeitfrom, 2017).

5. Results

5.1. Determination of the UD and CD axial mode shapes’
frequencies

The first two axial mode shapes of the UD specimen are shown in Fig. 3, where the

scale factors presented were determined from equation (12). The resulting

dimensions for the CD specimens are obtained from the application of the scale

factors and are shown in Table 1.

One important observation from Fig. 3 is that these cruciform specimens will have

two axial mode shapes (although only one is at 20 ± 0.5 kHz at any one time).

Mode C-T corresponds to a situation where the axes are out-of-phase, i.e., when

one of the axis is under traction and the other axis is under compression. In this

case, the in-plane stresses are fully reversed. Mode T-T corresponds to a situation

where both axes are in-phase, i.e., they both are either under traction or under

compression simultaneously.
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Because these specimens are symmetric, they are designed to be tested under fully

reversed cyclic loading (R = − 1) in both directions, as in other VHCF test

methods (Lage et al., 2014).

Therefore, this paper also opens the possibility of expanding the study of in-plane

biaxial fatigue with different phase loadings, as recently presented by Baptista

et al. (2016b), to VHCF. The main difference, nonetheless, is that it is the

specimen’s design itself that influences the stress at the centre of the specimen

[(Fig._3)TD$FIG]

Fig. 3. Cruciform test specimen UD’s first two axial mode shapes: C-T and T-T (deformation is

exaggerated for better understanding). (a) C-T (out-of-phase) calibrated design. (b) T-T (in-phase)

calibrated design.

Table 1. Dimensions and estimated mode frequencies of the CD specimens after

scaling.

Uncalibrated Design
UD

Calibrated Design
CD (C-T)

Calibrated Design
CD (T-T)

s 1 0.4577 0.5533

L(mm) 200 91.5 110.7

w(mm) 30 13.7 16.6

t(mm) 10 4.58 5.53

RM(mm) 65.2 29.8 36.1

Rm(mm) 28.9 13.2 16.0

dd (mm) 57.7 26.4 31.9

D(mm) 19.7 9.02 10.9

tt(mm) 1.50 0.687 0.830

θ (°) 70.6 70.6 70.6

f(Hz) 9,151 Hz (C-T)
11,066 Hz (T-T)

19,999 Hz 20,000 Hz
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rather than the way the loads are applied. In the case of the VHCF machine from

Lage et al. (2014), the load is applied at a single coordinate (where the M2 thread is

located in Fig. 2) in a single direction, as the underpinning principles are those

used in SIMO (single-input-multiple-output) forced vibration and modal analysis.

It is important to mention that the M2 threaded hole (shown in Fig. 2 and used to

fix the specimen to the horn through an M2 to M6 adaptor) has not been considered

in the analysis. Firstly, this threaded hole can only be opened after the specimens

are produced with the dimensions in Table 1, i.e., this is the only feature in the

design that cannot be affected by the scale factor. Secondly, since a M2 to M6

threaded insert will have to be used to attach the specimen to the machine, the hole

will be ‘removed’ from the specimen. Therefore, any changes in the CD

frequencies are expected to be negligible, or at least not as determinant as other

issues that will have to be considered during manufacturing.

5.2. Determination of the stresses at the centre of the cruciform
test specimen

A correlation between the displacement of the specimen at one free end and the

stress at the centre is needed to be determined if one is using a machine as the one

depicted in Fig. 1. In such a machine, the displacement is measured in the axial

direction with a LASER sensor at a free end of the specimen. The stress at the

centre is then calculated from a correlation with the displacement at one arm’s end
that can be determined either analytically, numerically or experimentally.

The complexity of the geometry of this specimen suggests that the determination of

analytical equations correlating the axial displacement with the stress at the centre

can be a challenging task on its own account. To the authors knowledge, these have

not been determined yet for the cruciform test specimens’ design being used as a

case study. Therefore, in the present work, FEA was used to find the relationship

between the displacement at the tip and the stress at the centre, as detailed in

Section 4.

Results are shown in Table 2, Fig. 4 and Fig. 5, where it can be seen that there is a

linear relationship between the displacement at the tip and the stress at the centre.

This is expected since the material model is linear. Once the model is calibrated,

for example, from experimental tests using strain gauges or digital image

correlation (DIC), these relationships can be used to determine different stress

states at the centre of the specimen from imposed displacements. It is important,

nonetheless, to have in mind that differences exist between the states of stress in

the central part of cruciform specimens used for static tests and fatigue tests

(Andrusca et al., 2014; Kuwabara et al., 1998; Leotoing and Guines, 2015; Van

Petegem et al., 2016), which means that this calibration process may pose some

challenges that need to be considered.
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Specimen design C-T produces higher levels of von Mises stress than T-T for the

same deformation. This is not a surprise, as its overall dimensions are smaller,

namely at the centre of the specimen where the stresses are expected to be higher.

The von Mises stress distribution in specimen C-T for the 0.1 N load case is

illustrated, as an example, in Fig. 6. It can be observed how the stress level is

almost constant on the specimen centre, while the stress at the arms is always at a

significantly smaller level, even with the presence of a non-proportional stress with

a phase shift of 180° (characteristic of case C-T). This is well in agreement with the

intent from Baptista et al. (2014), which means that their design is suitable for

VHCF, apart from a difference in the scale factor that must be determined

somehow, for example following the procedure described in this paper.

The assumption that the specimens’ design could be based on any initial thickness,

namely one starting at 10 mm for the UD, proved to be feasible for this study. One

important aspect to note is that the order of magnitudes of the displacements and

stresses in Table 2 and Fig. 4 are consistent with the ones from Lage et al. (2014),

which means that, once these specimens are manufactured, they can be tested in

Table 2. Relationship between the displacement at the arms’ tips and the von

Mises Stress at the centre.

T-T Design C-T Design

F Nð Þ d μmð Þ σ MPað Þ d μmð Þ σ MPað Þ

0 0 0 0 0

0.05 5.66 24.8 8.94 66.2

0.1 11.3 49.6 17.9 132.5

0.2 22.7 99.3 35.8 264.9

[(Fig._4)TD$FIG]

Fig. 4. Graphical representation of the relationship between the displacement at the arms’ tips and the

von Mises Stress at the centre. (a) T-T (in-phase) calibrated design. (b) C-T (out-of-phase) calibrated

design.
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VHCF machines such as the one from Lage et al. (2014). In this particular

machine, a Branson DC222 transducer is used, which delivers a 20 μm peak-to-

peak maximum displacement (Lage et al., 2012). The setup shown earlier in Fig. 1

shows a Booster and a tapered Horn, both designed to amplify the signals on a ratio

of 2:1. This means that, at the end of the Horn, we can expect a maximum of 80 μm
peak-to-peak displacement output as the driving excitation function of the

specimen. If we now consider that the specimen is an underdamped system

vibrating at steady-state and at resonance, both the amplification factor and

transmissibility will be greater than 1. In other words, it is clear that we can get the

displacement values shown in Table 2 and Fig. 4 from this machine with the

[(Fig._5)TD$FIG]

Fig. 5. Frequency response spectra of the von Mises Stress at the centre of the specimen and the axial

displacement at the arm’s tip. (a) T-T (in-phase) calibrated design. (b) C-T (out-of-phase) calibrated

design.

[(Fig._6)TD$FIG]

Fig. 6. Von Mises Stress distribution in the C-T Calibrated Design geometry for a 0.1 N axial harmonic

excitation.
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designs presented in this paper. Regarding the stress amplitudes, this will depend

on the material chosen. For Aluminium, the obtained stress levels are high enough

and compatible with typical fatigue crack initiation/propagation shown in Al alloys

in the VHCF regime (Höppel et al., 2011).

6. Conclusions

A numerical methodology to redesign existing cruciform test specimens so that

they can be used in VHCF test machines was presented. These specimens are

designed in such a way that, when attached through one end to the horn of the

piezoelectric actuator, an in-plane biaxial state of stress is created at the centre of

the specimen. It is expected that the methodology presented in this paper will be

easily applied to other existing designs, namely cruciform designs or even new

designs, that have not yet been considered in VHCF. This paper opens that

possibility.

By contributing to bridging the gap between the sciences of modal analysis and

fatigue, this work will help and encourage other researchers exploiting new

capabilities in VHCF. Firstly, the way natural frequencies change with the

application of a dimensional scale factor, although simple to demonstrate as shown

in this paper, may not be so obvious for researchers who do not deal with modal

analysis on a day-to-day basis. Secondly, the fact that the application of a load at a

single coordinate (and in a single direction) can produce a biaxial state of stress (or

even others) at a determined location of the specimen, may not also be so obvious,

unless, and again, there is a background underpinned by modal analysis. There are

many examples of biaxial specimens that were designed in the past, but all of them

have something in common: they are designed so that at least 2 load pairs are

applied in perpendicular directions (Abu-Farha et al., 2009; Baptista et al., 2015;

Baptista et al., 2014; Bellett et al., 2011; Cláudio et al., 2014b; Kuwabara et al.,

1998; Lebedev and Muzyka, 1998; Mönch and Galster, 1963; Shlyannikov et al.,

2014; Smits et al., 2006). In VHCF this is no longer a key requirement, as it is

shown in this paper: in principle, any design can be adapted to be used in an

ultrasonic VHCF testing machine.

There are, however, many aspects that still require further research. Firstly, the

manufacturing of the specimens may be a challenging one, as it is required that

they have either the C-T (out-of-phase) or T-T (in-phase) mode shapes within a 20

± 0.5 kHz natural frequency. This is not the only issue with manufacturing: how

one can guarantee that the stress in one direction is the same as the stress in the

other direction is just another challenge. Furthermore, how one can guarantee that

two specimens, when manufactured and tested under the same conditions, actually

develop the same stresses at the centre (for the same deformation), is another

challenge. Another aspect that was not addressed in this paper is how neighbouring
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mode shapes influence the stress level at the centre of the specimen. It was

considered that, since the other mode shapes are ‘sufficiently’ spaced from the

axial-axial mode shape, then their influence is negligible, which is an assumption

that is made in many other methods used in Modal Analysis (Ewins, 1984; Maia

and eSilva, 1997). This means that there still is plenty of research work to be done

with respect to the development of vibrating cruciform specimens to be used in

VHCF, so that manufacturing conditions and experimental uncertainty are

improved.

On the other hand, once specimens are manufactured, they must be calibrated. This

can be done, for example, with a strain gauge rosette conveniently placed at the

centre of the specimen. Another option (possibly a better option as long as the

equipment is available) includes the use of Digital Image Correlation, which can be

used in applications up to 100 kHz (Siebert and Crompton, 2013) or even more,

and with resolutions around 1 micron and 0.01% strain according to some suppliers

today (Dynamics, 2017). It would also be helpful if equations could be developed

to predict the relationship between the expected stress at the centre and the axial

displacement at the arm’s tip, although this may be a complex task as it will depend

on the specimens’ shape.

Finally, how different initial thicknesses affect the performance of the resulting

specimens in VHCF is something that should be studied in order to understand if

there is one design that is more suitable for VHCF than others.
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