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Abstract 1 

Decreased head stability has been reported in older women during locomotor transitions such 2 

as the initiation of gait. The aim of the study was to investigate the neuro- mechanical 3 

mechanisms underpinning head stabilisation in young and older women during gait initiation. 4 

Eleven young (23.1±1.1yrs) and 12 older (73.9±2.4yrs) women initiated walking at 5 

comfortable speed while focussing on a fixed visual target at eye level. A 6 

stereophotogrammetric system was used to assess variability of angular displacement and 7 

RMS acceleration of the pelvis, trunk and head, and dynamic stability in the anteroposterior 8 

and mediolateral directions. Latency of muscle activation of the sternocleidomastoid, and 9 

upper and lower trunk muscles were determined by surface electromyography. Older 10 

displayed higher variability of head angular displacement, and a decreased ability to attenuate 11 

accelerations from trunk to head, compared to young in the anteroposterior but not 12 

mediolateral direction. Moreover, older displayed a delayed onset of sternocleidomastoid 13 

activation than young. In conclusion, the age-related decrease in head stability could be 14 

attributed to an impaired ability to attenuate accelerations from trunk to head along with 15 

delayed onset of neck muscles activation. 16 
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Introduction 28 

Stabilisation of the head in space is fundamental to optimise inputs from the visual, 29 

vestibular, and somatosensory systems and, therefore, to maintain whole body balance during 30 

locomotion (Kavanagh et al, 2005; Pozzo et al, 1990). Decreased head stability has been 31 

reported in older individuals during different types of locomotion, including steady-state 32 

walking (Cromwell et al, 2001) and locomotor transitions such as gait initiation (Laudani et 33 

al, 2006). Transitory locomotor tasks, in particular, involve complex interactions between 34 

neural and mechanical factors which may challenge whole-body balance to a greater extent 35 

than unconstrained walking (Nagano et al, 2013). This challange may help to explain why the 36 

number of falls in older individuals are frequent during locomotor transitions such as gait 37 

initiation and termination (Winter, 1995). 38 

In young individuals, head stabilisation is ensured during steady-state walking by 39 

cyclically controlling the upper body accelerations caused by the lower body movement, 40 

through coordinated movements of the trunk (Kavanagh et al, 2006). In older individuals, 41 

however, control of acceleration from the lower to the upper body during steady-state 42 

walking has been shown to be less effective than in young individuals (Mazzà et al, 2008). As 43 

walking is initiated from a standing position, steady-state velocity is achieved within the first 44 

step (Breniere and Do, 1986); due to the transient nature of gait initiation, therefore, higher 45 

upper body accelerations are likely to be seen compared to steady-state walking. 46 

Subsequently, this could challenge the control of upper body acceleration and therefore head 47 

stabilisation in older individuals. To the best of the authors’ knowledge, however, there are 48 

no studies focusing on the control of upper body accelerations during the transitory task of 49 

gait initiation in young and older individuals.  50 

From a neuromuscular point of view, electromyography (EMG) studies have 51 

highlighted the importance of trunk paraspinal muscle activation in actively attenuating 52 
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postural perturbations from the lower body during locomotor tasks (Anders et al, 2007; de 53 

Sèze et al, 2008). A ‘top down’ anticipatory control of erector spinae muscles, which 54 

stabilises the upper trunk first and subsequently the lower trunk, has been reported in young 55 

individuals during gait (Winter et al, 1993; Prince et al, 1994). In line with that, Ceccato et al, 56 

(2009) have reported a metachronal activation of erector spinae muscle occurring during the 57 

preparation of the first step for gait initiation. To date, most of the studies on older 58 

individuals have revealed characteristic age-related changes of muscle recruitment in the 59 

lower limb during gait initiation. For instance, older individuals have been shown to initiate 60 

walking with greater co-contraction of the lower leg muscles  (Khanmohammadi et al, 2015a) 61 

and a delayed activation of the tibialis anterior muscle compared to young individuals 62 

(Khanmohammadi et al, 2015b). It is not known, however, whether older individuals would 63 

effectively recruit the trunk muscles and/or adopt an anticipatory control in order to actively 64 

aid stabilisation of the head during the transitory phase of gait initiation. 65 

The aim of the present study, therefore, was to investigate the neuro-mechanical 66 

mechanisms underpinning head stabilisation in young and older individuals during gait 67 

initiation. In particular, we aimed to examine control of upper body accelerations and muscle 68 

activation patterns of the trunk and neck, which represent two of the main neuro-mechanical 69 

strategies underpinning head stability. Additionally, we investigated the control of dynamic 70 

balance in young and older participants by evaluating whether the conditions for dynamical 71 

stability were met within each age group. It was hypothesised that older women would a) 72 

demonstrate reduced ability to attenuate acceleration from lower to upper parts of the upper 73 

body, b) have impaired muscle activation pattern of the trunk and neck and c) have reduced 74 

dynamic stability, compared to the younger women.  75 

 76 
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Methods 77 

PARTICIPANTS 78 

Eleven healthy young (age: 23.1 ± 1.1 years, height: 1.64 ± 0.71 m, body mass: 57.5 ± 79 

6.7 kg) and 12 healthy older (age: 73.9 ± 2.4 years, height: 1.63 ± 0.45 m, body mass: 66.2 ± 80 

10.2 kg) females volunteered to participate in the study. Women were the focus of the study 81 

as it has been reported that their dynamic stability declines to a greater extent than males 82 

(Wolfson et al, 1994) and tend to fall more often (Schultz, Ashton-Miller, & Alexander, 83 

1997). Older participants were considered ‘medically stable’ to participate in the study, 84 

according to exclusion criteria for older people in exercise studies (Greig et al. 1994). No 85 

participants had any history of neurological disorders that would affect their balance or gait 86 

ability, and were able to complete the task without the use of bifocal or multifocal spectacles. 87 

Written informed consent was provided by all participants and ethical approval was given by 88 

the institution’s ethics committee. 89 

 90 

EXPERIMENTAL PROTOCOL AND EQUIPMENT 91 

Participants wore their everyday flat shoes. Instructions were to stand as still as 92 

possible with their feet in a comfortable position at shoulder width apart, and with the arms 93 

alongside the trunk. Participants were verbally instructed to start walking on their own accord 94 

from a single force platform (Bertec Corp, Worthington, OH) and to continue to walk 95 

forwards in a straight line for at least three steps at their comfortable walking speed. In 96 

addition, they were instructed to focus on a fixed visual target, which was set at eye level for 97 

each participant and located five metres ahead of the starting position. The position, size and 98 

distance of the visual target were decided following pilot testing, which allowed us to design 99 

a target which could be comfortably seen by the participants. The right leg was used as the 100 
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starting (swing) leg for all trials. Starting feet position at shoulder width apart was marked on 101 

the force platform and participants repositioned themselves in that position for each trial. In 102 

total five trials were completed and analysed. 103 

A seven camera motion analysis system (VICON, Oxford Metrics, London, England) 104 

was used to record and reconstruct the 3D position of 35 reflective markers placed on body 105 

landmarks, following the Davis protocol (Davis et al, 1991) with a sampling rate of 100 Hz. 106 

The VICON whole body plug-in-gait model was used to define a local anatomical reference 107 

frame for the pelvis (markers on the left and right anterior and posterior superior iliac spines), 108 

trunk (markers located at the clavicle and sternum level as well as at C7 and at T10), and 109 

head (four markers, placed on the left and right side of the front and back of the head) and 110 

then calculating the relevant kinematic data. The force platform was used to track COP 111 

motion with a sampling frequency of 1000 Hz. 112 

Temporal aspects of gait initiation were determined relative to COP onset. The onset 113 

of COP displacement was automatically estimated as the time point at which the AP 114 

component of the ground reaction force overcame the threshold defined as 3 standard 115 

deviations of its peak-to-peak value during static posture AP force. Gait initiation was 116 

performed as a whole movement and divided into two phases: 1) preparatory phase, which 117 

lasted from the onset of COP motion to the instant of toe off of the swing limb 2): execution 118 

phase, which lasted from toe off of the swing limb to the instant of toe off of the stance leg. 119 

Temporal events of gait initiation were obtained from both position and velocity curves 120 

derived from markers placed on the calcaneus and fifth metatarsal bones (Mickelborough et 121 

al, 2000). These events corresponded to the instants of heel off, toe off and heel contact of the 122 

swing limb. Angular displacement and the motion of the upper body segments (pelvis, trunk, 123 

and head) were measured in the AP and ML direction. Additionally, whole body COM was 124 
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recorded as a weighted sum of all body segments using the whole plug-in-gait model in the 125 

AP and ML direction. 126 

Muscle activity was determined by surface EMG recordings (BTS Bioengineering, 127 

Italy). EMG signals were collected bilaterally using bipolar disposable electrodes (1 cm disc-128 

electrodes, 2 cm inter-electrode distance) from the: sternocleidomastoid (SCM), and erector 129 

spinae (ES) at the level of T9 and L3, with a sampling frequency of 1000 Hz. Electrode sites 130 

were prepared by gently abrading the skin to ensure good contact. For the SCM, electrodes 131 

were positioned at 1/3 of the distance from the sternal notch to the mastoid process at the 132 

distal end overlying the muscle belly (Falla et al, 2004); and for the ES, electrodes were 133 

placed 2 cm lateral of the spinal process at T9 and L3. 134 

 135 

DATA ANALYSIS 136 

Variability of angular displacement  137 

Angular displacement of the pelvis, trunk, and head was filtered using a second-order 138 

low-pass Butterworth filter with a cut-off frequency of 5 Hz and re-scaled to the first value of 139 

the preparatory phase. To quantify variability of the pelvis, trunk, and head motion during 140 

gait initiation, the average standard deviation (AvgSD) was calculated using the following 141 

equation: 142 

𝐴𝑣𝑔𝑆𝐷 =  √
∑ 𝑥2

100
 

𝑥 = Angular displacement of the segment. 143 

This measure has previously been used to assess the stability of individual body 144 

segments, with decreased variability indicating increased segment stability (Laudani et al, 145 
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2006). To further quantify the variance of angular displacement waveforms of the pelvis, 146 

trunk, and head in the AP and ML direction, principal component analysis (PCA) was applied 147 

to each data set (young and older) computed by a customised Matlab 7.5 script (Mathworks, 148 

Inc, USA). The objective of using PCA was to transform the waveform data to reduce the 149 

number of variables but retain most of the original variability in the data (Kirkwood et al., 150 

2011). The first principal component (PC) accounts for the highest variability in the data, 151 

with subsequent PCs accounting for the remaining variability. For this analysis, a 90% trace 152 

variability threshold was used to determine the number of PCs required to retain the most 153 

common patterns of angular displacement within each age group. Angular displacement 154 

traces used for the PCA were time normalised by interpolation into 100 data points for each 155 

phase, corresponding to 1% intervals (preparatory phase: 1-100%, execution phase: 101-156 

200%). 157 

 158 

Attenuation of upper body accelerations 159 

Acceleration of the pelvis, trunk and head segments was calculated by double 160 

derivative of the 3D position of the origin of each upper body segment reference frame in the 161 

AP, ML and cranio-caudal (CC) direction. It was computed by a customised Matlab 7.5 script 162 

(Mathworks, Inc, USA) and filtered using a second-order low-pass Butterworth filter with a 163 

cut- off frequency of 5Hz. The magnitude of acceleration of each segment was calculated 164 

using the root mean square (RMS) in the AP, ML and CC direction. RMS acceleration values 165 

are known to be influenced by gait velocity (Kavanagh and Menz, 2008), thus AP and ML  166 

RMS acceleration were normalized by CC acceleration RMS as proposed by Iosa et al, 167 

(2012). The ability to attenuate accelerations through the upper body segments was quantified 168 

using the attenuation coefficient expressed as a percentage. The attenuation coefficient 169 
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describes the ability to reduce accelerations from inferior to superior segments, with reduced 170 

linear acceleration from inferior to superior parts of the upper body used as an indicator of 171 

upper body stability (Summa et al, 2016). The attenuation coefficients were calculated using 172 

RMS values of each segment as follows (for both AP and ML direction): 173 

Cxy = (1 −
RMS𝑥

RMS𝑦
) ∗ 100 

𝑥 = inferior segment   y = superior segment 174 

each coefficient representing the attenuation from a lower to an upper body level. CPH 175 

representing the attenuation from the pelvis to the head, CPT representing the attenuation from 176 

the pelvis to the trunk, and CTH representing the attenuation from the trunk to the head. A 177 

positive coefficient value indicated a reduced acceleration whilst a negative coefficient value 178 

indicated a greater acceleration between the two specified segments. 179 

 180 

Activation patterns of the trunk and neck muscles 181 

Raw EMG signals were first high-pass filtered at 20 Hz to remove movement 182 

artefacts, then full-wave rectified and filtered using a second-order high-pass Butterworth 183 

filter with a cut-off frequency of 50 Hz using a custom Matlab script. The onset of muscular 184 

activity was visually estimated by the same experimenter for all calculations, which has been 185 

shown to be reliable to achieve muscle onset (Micera et al, 2001), and was expressed as a 186 

percentage from COP onset to the end of the preparatory phase.  187 

 188 

Dynamic stability during gait initiation 189 

Margin of stability, using the extrapolated centre of mass (exCOM) introduced by Hof 190 

et al (2005), was used to quantify dynamic stability in the AP and ML direction. The exCOM 191 
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concept extends the classical condition for static equilibrium of an inverted pendulum by 192 

adding a linear function of the velocity of the COM to COM position. This method describes 193 

how close an inverted pendulum is to falling, given the position and velocity of its COM, and 194 

the position of the margins of its base of support (BOS). For the calculation of the margin of 195 

stability, the positions of the COM and BOS need to be known. COM was recorded as a 196 

weighted sum of all body segments using the whole plug-in-gait model while BOS was 197 

calculated from the distance between the position of the swing heel marker at heel-contact 198 

and the position of the stance heel marker at toe off represented the step length and width, 199 

and was representative AP and ML BOS respectively. MOS was taken at heel contact of the 200 

swing limb, as it has previously been shown that foot strike was systematically made with the 201 

heel (Caderby et al., 2014). 202 

 203 

The position of the 𝑒𝑥𝐶𝑂𝑀 was then calculated as follows: 204 

 205 

𝑒𝑥𝐶𝑂𝑀 = 𝑥𝐶𝑂𝑀 +  
𝑥′𝐶𝑂𝑀

√
𝑔
𝑙

 

With 𝑥𝐶𝑂𝑀 and 𝑥′𝐶𝑂𝑀 representing the COM position and velocity respectively, 𝑔 206 

= 9.81m
.
s

-1
, the gravitational acceleration, and 𝑙 corresponding to the limb length, taken from 207 

anthropometric measurements prior to data collection (inverted pendulum eigenfrequency). 208 

The MOS corresponded to the difference between the AP and ML BOS and the AP and ML 209 

position of the ‘extrapolated COM’ (𝑒𝑥𝐶𝑂𝑀) at heel contact and defined as BOS - 𝑒𝑥𝐶𝑂𝑀. 210 

The lower the MOS value, the closer the 𝑒𝑥𝐶𝑂𝑀 is to the BOS, indicating reduced dynamic 211 

stability. 212 

 213 
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Statistical analysis 214 

Normality of data was examined and confirmed for all variables using the Shapiro-215 

Wilk test. A series of independent samples t tests were used to test for difference between 216 

young and older groups for the AvgSD of angular displacement of each upper body segment, 217 

RMS of acceleration at each upper body segment and attenuation of such acceleration and 218 

MOS values, with Bonferroni correction for multiple comparisons applied. Finally, for the 219 

onset of muscular activity and relative amplitude of muscle activity of the preparatory phase. 220 

Statistical significance was assessed with an alpha level of 0.05. All data are presented as 221 

mean ± SD unless otherwise stated. All statistical analyses were carried out using IBM SPSS 222 

v19 (SPSS, Chicago, ILL).  223 

 224 

Results 225 

Variability of angular displacement  226 

During the preparatory phase, older had a significantly higher AvgSD of AP angular 227 

displacement of the head compared to young (3.7 ± 0.84° and 1.5 ± 0.56°, respectively; p = 228 

0.004), with no differences in AvgSD of AP angular displacement of the pelvis and trunk 229 

between groups. During the execution phase, there were no differences in AvgSD of AP 230 

angular displacement of the pelvis, trunk or head between groups (Figure 1). During both the 231 

preparatory phase and execution phase, there were no differences in AvgSD of ML angular 232 

displacement of the pelvis, trunk or head between groups (Figure 1). 233 

 234 

INSERT FIGURE 1 HERE 235 

 236 
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PCA of angular displacement is presented in Figure 2 and 3 in the AP and ML 237 

direction respectively. In the AP direction, both groups demonstrated a similar amount of 238 

variability of pelvis angular displacement as two PCs explained over 90% of the movement 239 

pattern variance in both groups. Both groups demonstrated low variability of trunk angular 240 

displacement, as only one PC was needed to explain over 90% of the movement pattern 241 

variance. Young showed low variability of angular head displacement as only one PC was 242 

needed to explain over 90% of variance. Older however, demonstrated high variability in 243 

head angular displacement indicated by the requirement of three PCs to explain over 90% of 244 

variance (Figure 2). 245 

In the ML direction, young displayed low variability of pelvis angular displacement 246 

as one PC was needed to explain over 90% of variance. Older displayed higher variability, 247 

requiring two PCs to explain over 90% of variance. Both groups demonstrated similar 248 

variability of trunk angular displacement. Both groups displayed high variability of head 249 

movement as both required three PCs to explain over 90% of the movement pattern variance.  250 

 251 

INSERT FIGURE 2 HERE 252 

 253 

INSERT FIGURE 3 HERE 254 

 255 

Attenuation of upper body accelerations 256 

During the preparatory and execution phase, young displayed significantly greater AP 257 

RMS acceleration for the pelvis, trunk and head compared to older (p < 0.05) (Figure 4A and 258 

B). During the preparatory phase, AP CTH was significantly lower in older compared to 259 
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young (-1.9 ± 20.2% versus 10.1 ± 21.6%, [p = 0.02], respectively (Figure 4C)). During the 260 

execution phase, there were no significant differences in acceleration attenuation between 261 

groups (Figure 4D).  262 

During the preparatory and execution phases, there was no difference in ML RMS 263 

acceleration for the pelvis, trunk or head between age groups (Figure 5A and B). During the 264 

preparatory phase, ML accelerations were attenuated for both groups, with the exception of 265 

older not able to attenuate CPT, however there were no significant differences between groups 266 

(Figure 5C). During the execution phase, both groups did not attenuate ML accelerations, 267 

however there were no significant differences between groups (Figure 5D).  268 

 269 

INSERT FIGURE 4 HERE 270 

 271 

INSERT FIGURE 5 HERE 272 

 273 

Muscle activity 274 

Older displayed a significantly delayed muscle activity onset of the SCM compared to 275 

young (p < 0.05) (Table 1). There were no differences in muscle activity onset time for the 276 

ES (T9) or ES (L3) between groups. (Table 1). 277 

 278 

 279 

INSERT TABLE 1 HERE 280 

 281 

Dynamic stability 282 
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There was no difference between groups for AP MOS, however older displayed a 283 

significantly lower ML MOS compared to young (p = 0.035). 284 

 285 

INSERT FIGURE 6 HERE 286 

 287 

Discussion 288 

The purpose of the study was to examine any age-related change in the neuro-289 

mechanical strategies underpinning head stabilisation and dynamic stability during gait 290 

initiation. Older displayed lower AP acceleration of the upper body segments compared to 291 

younger and were less able to attenuate AP accelerations between trunk and head compared 292 

to young. Older revealed delayed anticipatory activation of the SCM compared to young. 293 

Finally, older demonstrated reduced ML dynamic stability, while there was no difference 294 

between age groups for AP dynamic stability. Older participants showed greater variability of 295 

head angular displacement in AP direction compared to young participants during both the 296 

preparatory and execution phase of gait initiation, which is in agreement with a previous 297 

study by Laudani et al (2006).  298 

In the present study, young displayed greater AP RMS acceleration at each upper 299 

body segment compared to older, indicating older may adopt a more cautious strategy in 300 

order to move from a standing posture to forward walking (Menz et al., 2003). No difference 301 

between groups existed for ML acceleration attenuation, and similar to previous studies 302 

(Kavanagh et al, 2005; Mazzà et al, 2008), both groups found it difficult to attenuate ML 303 

accelerations during the execution phase.  304 
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Our data are in accordance with previous gait studies demonstrating higher AP RMS 305 

of upper body segments in young compared to older during walking (Mazzà et al, 2008) and 306 

gait termination (Rum et al, 2017). Despite young producing higher AP RMS acceleration of 307 

each upper body segment, young were able to attenuate such accelerations from the lower to 308 

the upper parts of the upper body segments to a greater extent compared to older. In 309 

particular, whilst young were able to attenuate accelerations from trunk to head, aiding 310 

protection of the head, older could not, suggesting acceleration did not decrease from the 311 

trunk to the head. The inefficiency in attenuating these accelerations may be attributed to 312 

deleterious age-related changes to passive structures of the spinal column or to sequential 313 

activation of the axial musculature (Doherty, 2003).  314 

From a passive point of view, the age-related reduction in acceleration attenuation can 315 

be associated with the so called “en bloc” movement, related to the documented rigidity of 316 

the head-trunk system during gait initiation (Laudani et al, 2006). From a neuromuscular 317 

point of view, head stabilisation during dynamic tasks has been thought to be planned early in 318 

the central nervous system (CNS), aiming to attenuate postural perturbations of the lower 319 

limbs (Pozzo et al., 1990). For example, Ceccato et al, observed a ‘top down’ approach to 320 

anticipatory control of the paraspinal muscles (C7 – L3), stabilising the head first, and 321 

subsequently lower parts of the upper body during gait initiation. In line with that, the present 322 

study reports that the SCM was activated earlier than the trunk muscles in both young and 323 

older individuals, suggesting mechanisms of head stabilisation may rely on feed-forward 324 

commands from the CNS, a likely mechanism employed to maintain stability of the visual 325 

field and offer protection to the head. This mechanism, however, may be impaired in older as 326 

they demonstrated a delayed onset of the SCM, which could explicate the decreased head 327 

stability and the inability to attenuate accelerations from the trunk to the head in the 328 

preparatory phase.  329 
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Instability during walking in older populations is commonly considered in the ML 330 

plane, while loss of ML stability can have a profound effect on walking function (Maki, 331 

1997). Interestingly, differences in upper body stabilisation between young and older were 332 

only observed in the AP direction during the present investigation. Even though differences 333 

in upper body stabilisation were apparent between age groups, there were no differences in 334 

AP MOS between groups. A possible explanation is that upper body differences were not 335 

considerable enough to alter AP dynamic stability. AP MOS has previously been described as 336 

similar between young and older females during steady state walking (McCrum et al, 2016). 337 

Despite no differences between groups in the ML direction of upper body variability or 338 

attenuation of acceleration, older demonstrated significantly reduced MOS, indicating 339 

reduced ML dynamic stability. This may have implication for fall risk as dynamic stability 340 

can be an indicator of fall risk (Lockhart and Liu, 2008; Toebes et al., 2012). Caderby et al 341 

(2014) observed that young were able to maintain ML dynamic stability during gait initiation, 342 

while ML dynamic stability in older during gait initiation warrants further research to 343 

generate an understanding of why ML dynamic stability declines during gait initiation in 344 

older females.  345 

 346 

Conclusion 347 

This study demonstrated that the ability to stabilise head movements in the AP 348 

direction during gait initiation is compromised in older women. Decreased head stability in 349 

older women was attributed to an impaired ability to attenuate accelerations from the trunk to 350 

the head along with delayed activation of the neck flexor muscles.  On the other hand, there 351 

was a discrepancy between head stabilisation and dynamic stability in the AP and ML 352 

direction, meriting further investigation. 353 
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 449 

Table 1. The time of the onset of muscle activity given as a percentage of total duration of 450 

the preparatory phase of gait initiation. P value (p < 0.05) indicates significance between 451 

groups. 452 

 453 

 454 

 455 

  456 

 Young (n =11) Older (n = 6) P-value 

SCM  

  Onset (%) 

   

 

20.5 ± 13.2  

 

50.5 ± 15.4 

 

 

0.028 

 

Upper spine (T9) 

  Onset (%) 

  

 

 

42.2 ± 20.5 

 

63.3 ± 24.7 

 

 

0.182 

 

Lower spine (L3) 

  Onset (%) 

   

 

 

53.1 ± 25.6 

 

 

60.7 ± 22.5 

 

 

0.192 
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Legends 457 

 458 

Figure 1. Young and older mean ± SD of variability of the pelvis (top row), trunk (middle 459 
row) and head (bottom row) segment angular displacement during preparatory phase and 460 
execution phase in the anterior posterior direction (AP) and mediolateral direction (ML), 461 
evaluated by calculation of the average standard deviation (AvgSD). *indicates significance 462 
between groups. 463 

 464 

Figure 2. Principal component analysis on the data set of angular displacement of the pelvis, 465 

trunk, and head in the anteroposterior (AP) direction during the whole movement of gait 466 
initiation. Positive and negative values indicate flexion or extension, respectively (direction is 467 

indicated by the arrow to the left of the figures). The axes intersection (0) represents the COP 468 
onset, the first perforated line indicates the end of the preparatory phase while the second 469 
perforated line indicates the end of the execution phase. Each line represents one principal 470 
component and the percentage of variance accounted for is reported. 471 

 472 

Figure 3. Principal component analysis on the data set of angular displacement of the pelvis, 473 
trunk, and head in the mediolateral (ML) direction during the whole movement of gait 474 
initiation. Positive and negative values indicate abduction or adduction, respectively 475 

(direction is indicated by the arrow to the left of the figures). The axes intersection (0) 476 

represents the COP onset, the first perforated line indicates the end of the preparatory phase 477 
while the second perforated line indicates the end of the execution phase. Each line represents 478 
one principal component and the percentage of variance accounted for is reported. 479 

 480 

Figure 4. Mean ± SD of the acceleration root mean square (RMS) values at pelvis, trunk and 481 

head level (panel A & B) and coefficients of attenuation for pelvis-head (CPH), pelvis-trunk 482 

(CPT) and trunk-head (CTH) (panel C & D)for young and older during the preparatory phase 483 

and execution phase in the anteroposterior (AP) direction. *indicates significance between 484 

groups 485 

 486 

Figure 5. Mean ± SD of the acceleration root mean square (RMS) values at pelvis, trunk and 487 
head level (panel A & B)  and coefficients of attenuation for pelvis-head (CPH), pelvis-trunk 488 
(CPT) and trunk-head (CTH) (panel C & D) for young and older during the preparatory phase 489 
and execution phase in the  mediolateral (ML) direction. 490 

 491 

Figure 6 Margin of stability (MOS) at swing heel contact in the anteroposterior (AP) and 492 
mediolateral (ML) direction. * indicated significant difference between young and older. 493 
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