

A Framework for Modelling and

Utilization of Users’ Feedback for

Software Systems Evolution

Nada Hany Hassan Sherief

A thesis submitted in partial fulfilment of the requirements of

Bournemouth University for the degree of Doctor of Philosophy

July 2017

Bournemouth University

Page | 2

Copyright

This copy of the thesis has been supplied on condition that

anyone who consults it is understood to recognise that its

copyright rests with its author and due acknowledgment must

always be made of the use of any material contained in, or

derived from, this thesis.

Page | 3

Abstract

Most software systems operate within a complex and variable context. This poses a

challenge for the requirements engineering of their software systems mainly to ensure those

requirements keep pace with the changing context. To cater for such volatility, users’

feedback about software, while it’s in use, is a powerful tool that enables the capturing and

communication of a richer and updated knowledge on how they view the software. Users

understand the software as a means to meet their requirements and needs, thus, giving

them a voice in the continuous evaluation of software would naturally fit this level of

abstraction. This contributes in identifying problems in the software, modifying existing

requirements or requesting new additional requirements leading to better users’ acceptance

of the software.

The traditional approach to users’ feedback, which is based on data mining and text

analysis, is often limited, partly due to the ad-hoc nature of users’ feedback and, also, the

methods used to acquire it, which are either overly relaxed, e.g. natural language and

forum-like that endure a lot of impression and ambiguity, or too restrictive, e.g. ranking. To

maximize the expressiveness of users’ feedback and still be able to efficiently analyse it,

this work proposes that feedback acquisition should be designed with that goal in mind.

Hence, the need to provide foundations to develop systematic methods for the structuring

and use of users’ feedback is advocated in this thesis.

Also, users’ evaluation feedback, while the software is in use, could be used to support

engineers in accomplishing evolution tasks and taking maintenance decisions. However,

there is no formalized specification that properly documents the users’ problems. Besides

that there is a lack of systemized methods of extracting the problems into formalized reliable

specifications. In traditional methods engineers end up with huge data reporting user

problems, which requires a great deal of effort and time to analyse and come with useful

conclusions.

This research contributes to that aim by creating novel classifications of users’ perspectives

on feedback types and their constituents and how they could be structured. Furthermore, a

formal systematic process for feedback acquisition and communication was developed to

help engineers accomplish their tasks and to further utilize the captured feedback in

extracting new/ changing requirements information. Finally, a socio-technical technical

architecture is developed to illustrate how the formed workflows, methods, and models

interrelate to realize the research aim.

Page | 4

Table of Contents

Copyright .. 2

Abstract .. 3

Acknowledgement .. 15

1. Introduction .. 16

1.1 Research Overview ... 16

1.2 Research Aim ... 19

1.3 Research Questions ... 19

1.4 Research Objectives ... 20

1.5 Report Structure ... 21

1.6 Research Publications .. 22

1.7 Declaration of co-authors contribution to the published work of this thesis 22

1.8 Summary .. 25

2. Literature Review .. 26

2.1 User Centred Approaches ... 27

2.2 User Involvement in Enterprises .. 27

2.3 Utilizing the Wisdom of the Crowd in Different Areas ... 29

2.3.1 Practices of Crowdsourcing within Enterprises.. 30

2.3.2 Crowdsourcing for Empirical Studies .. 32

2.3.3 Crowdsourcing for Software Evaluation .. 33

2.3.4 Crowdsourcing for Requirements Engineering .. 34

2.3.5 Crowdsourcing for Software Evolution .. 35

2.4 Users’ Feedback Acquisition Methods ... 37

2.5 Feedback Analysis and Requirements Extraction .. 38

2.6 Requirements Models and Requirements Documentation 41

2.6.1 Requirements Models and its Utilization ... 41

2.6.2 Requirements Documentation Challenges .. 43

2.7 Software Maintenance and Evolution .. 44

2.7.1 Fundamental Paradigms and Processes .. 45

2.7.2 Supporting Developers in Software Evolution Tasks ... 47

Page | 5

2.8 The Use of Ontologies in Requirements Engineering ... 48

2.9 Controlled Natural Languages ... 49

2.10 Recommender Systems .. 50

2.10.1 Content-based filtering Recommender Systems ... 50

2.10.2 Knowledge-Based Recommender Systems .. 50

2.10.3 Hybrid Recommender Systems .. 51

2.11 Summary .. 51

3. Research Methodology .. 52

3.1 The Three approaches to Research .. 52

3.1.1 Qualitative Research Approach .. 52

3.1.2 Quantitative Research Approach .. 53

3.1.3 Mixed Methods Research Approach ... 53

3.1.4 The Adopted Research Approach ... 54

3.2 The Research Design ... 55

3.2.1 Qualitative Research Designs .. 55

3.2.2 The Adopted Research Design ... 56

3.3 The Designated Research Methods .. 56

3.3.1 Thinking about Users and Design ... 57

3.3.2 Choosing and Combining Techniques .. 58

3.4 Thematic Analysis and Content Analysis ... 61

3.4.1 Thematic Analysis .. 62

3.4.2 Content Analysis .. 62

3.4.3 The Adopted Analysis Technique ... 63

3.4.4 Qualitative Research Analysis Tool .. 64

3.5 Ethics in the Research .. 64

3.6 Summary .. 65

4. Exploring Feedback Structure - User View Point .. 66

4.1 First Phase Study (Focus Groups) .. 66

4.2 Focus Groups Study Results ... 68

4.2.1 Initial Thematic Map ... 68

4.2.2 Environment Thematic Area ... 70

Page | 6

4.2.3 Structure Thematic Area... 71

4.2.4 Engagement Thematic Area ... 73

4.2.5 Involvement Thematic Area .. 76

4.3 Second Phase Study (Forums Analysis).. 78

4.4 Forums Analysis Study Results ... 82

4.4.1 Initial Template ... 82

4.4.2 Feedback Type Thematic Area ... 83

4.4.3 Level of Detail Thematic Area ... 94

4.4.4 Method Thematic Area ... 100

4.4.5 Measurement Thematic Area ... 102

4.5 Threats to validity .. 102

4.6 Summary .. 103

5. Exploring Feedback Utilization - Engineer View Point .. 104

5.1 Purpose of the study ... 104

5.2 Research Method.. 105

5.3 Software Company ... 105

5.4 Interview Process.. 106

5.4.1 Determine the purpose of the study and what information is required 106

5.4.2 Decide on the method of data collection and the audience for the interviews .. 108

5.4.3 Prepare the interview schedule, considering content, wording, format, and

structure ... 111

5.4.4 Test the interview with colleagues or potential interviewees and revise as

necessary ... 112

5.4.5 Conduct the interviews ... 113

5.4.6 Transcribe interviews ... 114

5.4.7 Analyse the transcripts ... 114

5.4.8 Write up, present and use the findings .. 114

5.5 Study Results ... 115

5.5.1 Types of Missing Information .. 115

5.5.2 Maintenance Phase Problems .. 123

5.6 Confirmatory Interviews ... 138

5.6.1 Purpose of the Confirmatory Interviews .. 138

Page | 7

5.6.2 Confirmatory Interviews’ Sessions and Participants .. 138

5.6.3 Confirmatory Interviews’ Questions .. 140

5.6.4 Confirmatory Interviews’ Results .. 141

5.7 Further Study Results ... 145

5.7.1 Validating Feedback Types’ Components ... 145

5.7.2 Utilization of the study Results towards the Next Steps 150

5.8 Threats to Validity ... 151

5.9 Summary .. 152

6. Designing a Method for Feedback Acquisition, Communication, and Requirements

Updating.. 153

6.1 Research Method.. 154

6.1.1 Participatory Design Method... 154

6.1.2 Purpose of the Study .. 155

6.1.3 Software Employed .. 155

6.1.4 Participants Recruited .. 156

6.2 Sessions’ Plan .. 156

6.2.1 Introductory Sessions ... 157

6.2.2 Design Sessions .. 167

6.3 Study Results ... 185

6.3.1 Feedback Acquisition and Communication Process Updates 185

6.3.2 Feedback Types Updates ... 197

6.3.3 Feature Model and Feature Specification Evolution process 206

6.4 Threats to Validity ... 212

6.5 Summary .. 212

7. Formalization of Feedback Structures and its Utilization 214

7.1 Introduction ... 214

7.2 The Ontology Development Process ... 216

7.3 The Ontology Design and Structure .. 218

7.3.1 Class Hierarchy .. 218

7.3.2 Object Properties ... 222

7.3.3 Class Rules .. 225

7.4 Explaining the Feature Specification Implementation ... 232

Page | 8

7.4.1 Sample Feedback Instances .. 233

7.4.2 A Feature Model Instance .. 236

7.4.3 SPARQL Queries for Extracting Information ... 238

7.5 Ontology Validation ... 241

7.5.1 Internal validity (validity of relations/structure) ... 242

7.5.2 External validity (scope of applicability)... 243

7.6 A Tool Mock-up for Updating Requirements Information .. 243

7.7 A Framework for Runtime Communication and Requirements Updating 247

7.8 Summary .. 250

8. Contributions, Conclusions, and Future Work .. 252

8.1 Contributions of this Research .. 252

8.2 Conclusions .. 255

8.3 Future Work .. 256

9. References .. 260

10. Appendices ... 272

10.1 Appendix 1: Sample Ethics Documents ... 272

10.1.1 Participant Information Sheet for PD Study ... 272

10.1.2 Participant Agreement Form for PD Study .. 274

10.2 Appendix 2: Focus Groups Questions ... 276

10.3 Appendix 3: Forums Analysis Intermediate Results ... 277

10.4 Appendix 4: Sample PD study Evidence .. 286

10.4.1 Toolbox Explanations ... 286

10.4.2 A Real Sample of Documents for a PD session .. 289

Page | 9

List of Figures

Figure 1. Thesis Chapters and Research Roadmap .. 24

Figure 2. Visual View of the Main Topics Covered in This Thesis’s Literature Review 27

Figure 3. Change Identification and Evolution Processes (Sommerville 2006) 46

Figure 4. The System Evolution Process (Sommerville 2006).. 46

Figure 5. The Mapping of the Research Objectives, the Research Process and the Adopted

Research Methodologies .. 61

Figure 6. The Focus Groups’ Study Initial Thematic Map .. 69

Figure 7. The Focus Groups’ Study Final Thematic Map (Sherief, Abdelmoez et al. 2015) 78

Figure 8. The Forums’ Analysis Study Initial Template .. 83

Figure 9. The Forums’ Analysis Study Final Thematic map (Sherief, Abdelmoez el al. 2014)

... 84

Figure 10. A Sample Feedback described by Code Snippet .. 101

Figure 11. A Sample Feedback described by Snapshot .. 101

Figure 12. Interviews’ Study Final Thematic Map for the Types of Missing Information 115

Figure 13. Interviews’ Study Final Thematic Map for Maintenance Problems 123

Figure 14. A simplified overall view of the change identification and evolution tasks process

... 158

Figure 15. Sample Feature Specification Document (Robbins 2004) 159

Figure 16. A Moodle Screen for Upload a Course's CSV file (Moodle 2016) 160

Figure 17. A Sample CSV file for Course Upload on Moodle ... 160

Figure 18. A Sample Upload Courses Results Screen on Moodle (amended from Moodle

2016) .. 161

Figure 19. The Topic Definition Template Designed for the Introductory Session Case Study

... 163

Figure 20. The Investigation Template Designed for the Introductory Session Case Study

... 164

Figure 21. The Investigation Elaboration Template Designed for the Introductory Session

Case Study ... 165

Figure 22. The Problem Correction Template Designed for the Introductory Session Case

Study .. 166

Figure 23. A Moodle Screen for Creating a Course from an Existing Template (Moodle

2016) .. 169

Figure 24. A Moodle Screen for Setting a Course Format (Moodle 2016) 169

Figure 25. The Modified Moodle Screen for Setting a Course Format (amended from Moodle

2016) .. 170

Figure 26. A Moodle Screen for Assigning Roles in Categories 171

Figure 27. A Moodle Screen for Context Types where a Role may be Assigned (Moodle

2016) .. 172

file:///D:/PhD/Final%20Thesis%20Documentation/Final%20Documentation%20and%20Presentation/Nada%20Hany%20Sherief%20-%20Finalized%20Thesis%20Documentation.docx%23_Toc497075834

Page | 10

Figure 28. A Moodle Screen for an Erroneous Outcome of Assigning Roles in a Category

(amended from Moodle 2016) ... 172

Figure 29. The Modified Moodle Screen for Assigning Roles in Categories. (Moodle 2016)

... 173

Figure 30. The Business Process Model for the scenarios used in the Design Sessions .. 174

Figure 31. A Feature model for “Adding a New Course” Module 175

Figure 32. A Feature model for “Course Settings” Module ... 175

Figure 33. A Feature model for “Course Categories” Module ... 175

Figure 34. A Feature model for “Category Enrollments” Module 176

Figure 35. A Feature model for “Assign Roles” Module ... 176

Figure 36. A Sample Feedback Template for the Feedback Type Topic Definition 178

Figure 37. A Toolbox for the Level of Detail: Depth with Examples. 179

Figure 38. The Initial Feedback Acquisition and Communication Method......................... 181

Figure 39. An Example for an Interrelated Feedback Thread ... 183

Figure 40. The Final Feedback Acquisition, Communication, and Requirements Updating

Method ... 195

Figure 41. The Proposal, Solution, and Mitigation Correction Internal Sub Tasks that Link

their Scenario Steps to Features. .. 196

Figure 42. An Architectural Design for Structured Feedback Modelling 199

Figure 43. A Level of Detail Toolbox showing disabled content 201

Figure 44. The Participatory Design’s Study Final Classification of Feedback Types 204

Figure 45. The Feature Specification and Feature Model Update Process 209

Figure 46. A New Feature Specification Document Structure (amended from Robbins 2004)

... 211

Figure 47. A Collapsed View of the Ontology Class Hierarchy. .. 218

Figure 48. A Detailed View for the Feedback Types Class. ... 219

Figure 49. A Detailed View for the Level of Detail Subclasses ... 220

Figure 50. A Detailed View for the Methods Class. .. 220

Figure 51. A Detailed View for the Feature Class .. 221

Figure 52. A Detailed View for the Feature Specification Section, and the Feature

Specification Section Item Classes. .. 222

Figure 53. A Detailed View for the Object Properties Hierarchy 223

Figure 54. The Rule Description for the Feedback Class ... 226

Figure 55. The Rule Description for the Topic Feedback Type .. 226

Figure 56. The Rule Description for the Addition Feedback Type 226

Figure 57. The Rule Description for the Problem Extension Feedback Type 226

Figure 58. The Rule Description for the Mitigation Trial Failure Feedback Type 227

Figure 59. The Rule Description for the Investigation Feedback Type 227

Figure 60. The Rule Description for the Investigation Elaboration Feedback Type 227

Figure 61. The Rule Description for the Feedback Elaboration Feedback Type 227

Page | 11

Figure 62. The Rule Description for the Mitigation (Proposal, Solution) Feedback Type... 228

Figure 63. The Rule Description for the Problem Correction Feedback Type 228

Figure 64. The Rule Description for the Mitigation Correction Feedback Type 228

Figure 65. The Rule Description for the Confirmation Feedback Type 228

Figure 66. The Rule Description for the Negative Verification Feedback Type 229

Figure 67. The Rule Description for the Negation Feedback Type 229

Figure 68. The Rule Description for the Scenario Level of Detail 230

Figure 69. The Rule Description for the Scenario Step Level of Detail 230

Figure 70. The Rule Description for the Feature Link Method .. 230

Figure 71. The Rule Description for the Feature Specification Class 230

Figure 72. The Rule Description for the Feature Specification Section Class 231

Figure 73. The Rule Description for the Feature Specification Description Section Sub-Class

... 231

Figure 74. The Rule Description for the Feature Specification Scenario Section Sub-Class

... 231

Figure 75. The Rule Description for the Feature Specification Feature Relation Section Sub-

Class .. 231

Figure 76. The Rule Description for the Feature Specification Section Item Class 232

Figure 77. The Rule Description for the Feature Specification Section Description Item Sub-

Class .. 232

Figure 78. The Rule Description for the Feature Specification Section Scenario Item Sub-

Class .. 232

Figure 79. The Rule Description for the Feature Specification Section Feature Relation Item

Sub-Class... 232

Figure 80. An illustration of a feedback thread on the ontology. 234

Figure 81. The Topic Feedback Type Used In Feedback_1 Showing the Levels of Detail

Used In Its Definition... 234

Figure 82. The Investigation Feedback Type Used in Response_5 to Feedback_1 Showing

the Levels of Detail Used in Its Definition. ... 234

Figure 83. The Investigation Elaboration Feedback Type Used In Response_6 to

Feedback_1 Showing the Levels Of Detail Used In Its Definition. 235

Figure 84. Investigation Elaborations Answer Showing its Link to a Specific Question in the

Investigation. .. 235

Figure 85. A Proposal Feedback Type and the Levels Of Detail Used to Describe it. 235

Figure 86. The Scenario Steps Level of Detail Used to Illustrate the Scenario Used in the

Proposal Feedback Type. ... 236

Figure 87. The Methods Used To Describe The Scenario Step and its Link to Another

Feature. .. 236

Figure 88. The Relation Used In the Feature Link Method to Link to an Existing Feature in

The Feature Model. .. 236

Page | 12

Figure 89. The Course’s Module Feature Model Instance.. 237

Figure 90. The Feature Model Instance for "Adding New Course" feature and its Sub-

features. ... 237

Figure 91. A Graph Representation of the Features’ Instances.. 238

Figure 92. A SPARQL Query for Extracting Description Section Items 239

Figure 93. The Query Results for the Description Section Items 239

Figure 94. The Investigations of the Elaborations available in the Query Results 239

Figure 95. A SPARQL Query for extracting Scenario Section Items................................. 240

Figure 96. The Query Results for the Scenario Section Items ... 240

Figure 97. A SPARQL Query for Extracting the Feature Relation Section Items 240

Figure 98. The Query Results for the Feature Relation Section Items 241

Figure 99. A Sample FSD Filled with the Feedback Instances Obtained from the Query

Results (amended from Robbins 2004). .. 241

Figure 100. A Mock-Up Screen for Extracting the Feature Specification’s Description

Section ... 244

Figure 101. A Mock-Up Screen for Updating and Previewing the Feature Specification’s

Description Section ... 245

Figure 102. A Mock-Up Screen for Extracting the Feature Specification’s Scenario Section

... 246

Figure 103. A Mock-Up Screen for Previewing the Feature Specification’s Scenario and

Related Features Section ... 247

Figure 104. A Sociotechnical Framework for Runtime Communication and Requirements

Updating ... 248

Figure 105. Intermediate Thematic Map 1 for Forums Analysis 279

Figure 106. Intermediate Thematic Map 2 for Forums Analysis 281

Figure 107. Intermediate Thematic Map 3 for Forums Analysis 282

Figure 108. Intermediate Thematic Map 4 for Forums Analysis 285

Figure 109. A Toolbox for the Types of Description Methods with Examples. 286

Figure 110. A Toolbox for Context Types with Examples. .. 287

Figure 111. A Toolbox for Attempto Controlled English with Examples. 288

Figure 112. A Real Sample of a Topic Definition Template provided by the End-user

Participant .. 289

Figure 113. A Real Sample of a Problem Correction Template provided by the Engineer

Participant .. 290

Figure 114. A Real Sample of the New Addition Template provided by the End-user

Participant .. 291

Figure 115. A Real Sample of the New Proposal Template provided by the Engineer

Participant .. 292

Figure 116. A Real Sample of the Verification Template (Used as Confirmation) provided by

the End-user Participant ... 293

file:///D:/PhD/Final%20Thesis%20Documentation/Final%20Documentation%20and%20Presentation/Nada%20Hany%20Sherief%20-%20Finalized%20Thesis%20Documentation.docx%23_Toc497075923
file:///D:/PhD/Final%20Thesis%20Documentation/Final%20Documentation%20and%20Presentation/Nada%20Hany%20Sherief%20-%20Finalized%20Thesis%20Documentation.docx%23_Toc497075924
file:///D:/PhD/Final%20Thesis%20Documentation/Final%20Documentation%20and%20Presentation/Nada%20Hany%20Sherief%20-%20Finalized%20Thesis%20Documentation.docx%23_Toc497075925
file:///D:/PhD/Final%20Thesis%20Documentation/Final%20Documentation%20and%20Presentation/Nada%20Hany%20Sherief%20-%20Finalized%20Thesis%20Documentation.docx%23_Toc497075926

Page | 13

Figure 117. A Real Sample of the Solution Template provided by the Engineer Participant

... 294

Figure 118. A Real Sample of the Verification Template (Used for final Confirmation)

provided by the End-user Participant .. 295

Figure 119. The Updated Feedback Acquisition and Communication Method.................. 296

Figure 120. The Feature Specification Template (amended from Robbins 2004) with

Participant’s updates .. 297

Page | 14

List of Tables

Table 1. Focus group session settings .. 67

Table 2. The Environment thematic Area .. 70

Table 3. The Structure thematic Area .. 72

Table 4. The Engagement thematic area .. 74

Table 5. The Involvement thematic area ... 76

Table 6. Targeted Forums data ... 80

Table 7. Interview Questions mapped to the themes explored in the study 107

Table 8. Interviewees' Roles and Experience .. 111

Table 9. Participant's Experience and Company Background .. 139

Table 10. Components before Modifications for Feedback Types: Topic Definition,

Investigation and Elaboration .. 146

Table 11. Feedback Types: Topic Definition, Investigation and Elaboration after

Modifications .. 146

Table 12. Components before Modifications for Feedback Type: Problem Correction 147

Table 13. Modifications for Feedback Type: Problem Correction 147

Table 14. Components before Modifications for Feedback Types: Solution, Problem

Extension and Mitigation Trial Failure ... 149

Table 15. Modifications for Feedback Types: Solution, Problem Extension, and Mitigation

Trial Failure. ... 149

Table 16. Components before Modifications for Feedback Type: Mitigation Correction 150

Table 17. Modifications for Feedback Type: Mitigation Correction. 150

Table 18. A Finalized List of Feedback Types and their Components 204

Table 19. The Allowed List of Feedback Types and Levels of Detail that can be used to fill

the FSD Sections.. 210

Table 20. A Summary of the Object Properties’ Domain and Range 223

Table 21. The “relatesToFeature” Sub-Properties List and its Correspondence to the

Feature Model Notation. ... 225

Page | 15

Acknowledgement

The Completion of this thesis would not have been possible without the presence and

assistance of many people.

First of all, no words would really express my sincere gratitude for my first supervisor, Dr.

Raian Ali, for the patient guidance, encouragement and advice he has provided throughout

my PhD work. I have been extremely lucky to have a supervisor who is so enthusiastic and

cared so much about my work. At many stages in the course of this research I benefited

from his advice, particularly when exploring new ideas and methods. His positive outlook

and confidence in my research inspired me and gave me confidence. His continuous careful

editing contributed enormously in enhancing my writing, analytical, and criticizing skills. I

would also like to thank my second supervisor Prof. Keith Phalp for his helpful feedback

during certain stages of this PhD, and my local supervisor Assoc. Prof. Walid Abdelmoez for

the support he provided during this PhD though his feedback and for helping me in the

participants’ recruitment of several of my PhD studies.

In addition, I’m thankful to the financial sponsor of my PhD, The Arab Academy for Science,

Technology and Maritime Transport (AASTMT), in Alexandria, Egypt. Special thanks to all

the management staff members of the College of Computing and Information Technology at

AASTMT especially Prof. Yasser EL Sonbaty and Prof. Ayman Adel for their help and

support, which have absolutely made this PhD feasible. I am also very thankful to my work

colleagues for making this journey a pleasant one through their friendship, collaboration,

and support.

All my gratefulness goes to my beloved husband, Muhammad Fakhry, who provided me

with all the means of support and encouragement to achieve my goals. I was continually

amazed by his passion about my research and by his valuable guidance as an engineer

working in the software industry.

Furthermore, I would like to thank my father Prof. Hany Sherief and my mother Dr. Tahany

Ahmed. All the support they have provided me over the years was the greatest gift anyone

has ever given me. They taught me the value of hard work and education. Without their

love, patience, support and understanding nothing would have been the way it is now. I

would also like to thank my brother Adham for being there when I need him; he is a great

supporter, good listener, great thinker and a true friend.

Last but not least, I would like to thank all the participants who took part in this thesis’s

studies for their effort, time and valuable input that helped me achieving the aim of this PhD.

Finally, I dedicate this PhD to my beloved son Tarek, whom I hope would achieve valuable

goals in his life and make me and his father proud.

Page | 16

1. Introduction

In this chapter the overall view of the research problem and motivation is introduced. The

research aims, questions, the objectives are explained, followed by a summarization for the

report structure, and a list of publications that resulted from this research.

1.1 Research Overview

The derivation of Requirements Engineering (RE) research decades ago was driven by

practitioners who noticed the urgent need for methodical RE in large software projects. Yet,

the environment in which RE is practiced has changed dramatically since then (Jarke,

Loucopoulos et al. 2011). This is due to several reasons happening at about the same time:

delivery platforms are changing (mobile, cloud, social); communication and collaboration

channels are being renovated (Web, mobile, social); the consumer world of technology is

driving innovation; and data is opening up and overflowing out of the growing apps,

devices, and sensors that organizations are deploying or are connecting to . Consequently,

the field’s focus and scope has moved from engineering of individual systems and

components towards the generation and adaptation of software intensive ecosystems. This

shift has created a strong need to understand more deeply issues that underlie current RE,

and reconsider RE practices and methods to meet the new challenges. Currently,

requirements management is still one of the most challenging fields in software

development (Jarke, Loucopoulos et al. 2011), has the most impact on project success, and

is a major issue for decision makers in enterprises.

Users’ involvement along the phases of the software development life cycle is a powerful

tool which enables engineers to capture and communicate a richer and updated knowledge

on how users view the software (Zin and Pa 2009). In the software development life cycle,

users are the main source of requirements and, thus, giving them a voice in the continuous

evaluation of software, while the software is in use, would naturally fit this level of

abstraction. That is, users’ evaluation feedback would mainly communicate their opinion on

the role of the system in meeting their requirements leading to better users’ acceptance of

the software. Their acceptance of the product is of high importance for market success.

Therefore, in this research users are not viewed as objects of study but more as active

agents within the software process, where user input (i.e. feedback) is a kind of reflection

input. User’s feedback while the software is in use moves away from traditional means,

towards more active engagement in taking autonomous or semi-autonomous adaptation

decisions or to support engineers on taking evolution and maintenance decisions.

The involvement of actual users as partners amplifies its potential and range of applications.

First, it provides an ability to evaluate software while users are using it in practice. They can

also characterize their evaluation by providing context description. Also, the ability to

Page | 17

maintain the evaluation knowledge up-to-date, as users’ continuously provide their real-time

feedback/judgment on the software. Furthermore, the users who will be using the system

and are the most aware of its requirements and their needs will act as the actual validators

of the system, which enhances the overall quality of the system. Such validation was done

but often focuses on a small number of selected users to give input and feedback in

requirements related activities and afterwards in user acceptance testing (Cleland-Huang,

Jarke et al. 2013). This approach is expensive, time consuming, and hardly manageable.

Moreover, having users to provide the input for guiding the evolution tasks and decisions

eliminates the factor of uncertainty and also helps in identifying new requirements.

Additionally, iteratively obtaining and processing the users’ feedback will help accelerate the

evolution tasks and/or maintenance process. This is particularly true for highly variable

systems with a large number of alternatives, where changing requirements is the actual

driver for their evolution (Souza, Lapouchnian et al. 2013).

Recently, more work has been directed towards inventing more systematic methods for

representing and obtaining user feedback and making best use of it during the actual use of

software. In (Knauss 2012) the author proposes a process for continuous and context-

aware user input that can be used further in community sharing and inform the developers

on how to fix problems and debug the system. In (Pagano and Brügge 2013) the authors

have conducted an empirical study on the users’ involvement for the purpose of software

evaluation and evolution and validate a set of hypotheses. In (Ali, Solis et al. 2012) and (Ali,

Solis et al. 2011) the crowd feedback was also advocated for shaping software adaptation

as users are powerful to capture and communicate certain information that cannot be

monitored by automated means and also cannot be fully specified by designers at design

time, yet are necessary to plan and enact adaptation.

Moreover, recent research has been focusing on the possibility of utilizing crowdsourcing in

requirements engineering (Hosseini, Phalp et al. 2014), (Snijders, Dalpiaz et al. 2014) to

cater for the dynamic contexts and diverse users. Crowdsourcing in requirements elicitation

has the ability to increase the quality and completeness of requirements elicitation.

Crowdsourcing gives the engineers access to a wide diversity of actual and potential users.

This would allow engineers, potentially, to gain a wider, and more up-to-date knowledge of

how users perceive the system role in meeting their requirements, and to understand how

that perception changes over time. Traditional elicitation and user centred approaches, e.g.

interviews, focus groups and user-centred design are too expensive to deal efficiently with

crowd-oriented applications due to: Limitations in predicting and simulating the actual

context of use especially for computing paradigms with inherent high variability and

dynamicity of their context such as Mobile Apps and Cloud Services; the unstructured and

varied ways in which users provide their feedback typically in a natural language. This lack

of rigor requires always a human facilitator to gather, interpret and aggregate what users

say. Thus, it would mean some bias and subjectivity. It would also mean a limited scalability

Page | 18

of the evaluation size; capturing the opinion of only an elite group of users which may not be

representative to the wider set of actual users. Furthermore, authors in (Sherief, Jiang et al.

2014) stated that the crowd can enrich and keep the timeliness of the engineers’ knowledge

about software evaluation via their iterative feedback while the software is in use. Although

this seems promising, crowdsourcing evaluation introduces a new range of challenges

mainly on how to organize the crowd and provide the right platforms to obtain and process

their input.

Despite of the speculated benefits of involving users, engineers need to analyse user

feedback in order to consider its relevance and possible impact, which involves a number of

challenges due to its quantity especially in large systems, quality, structure, and content.

Presently, the design and conduct of feedback acquisition are heavily dependent on

engineer’s creativity. Also, the literature is still limited in providing engineering approaches

and foundations to develop systematic approaches for the structuring and use of users’

feedback (Almaliki, Ncube et al. 2014, Almaliki, Ncube et al. 2015) and support engineers

with appropriate tools.

Also, requirements are gathered from, yet must still represent, a diverse group of users;

they are basically volatile in nature. These issues are exacerbated by the problem that users

still typically provide their feedback on the fulfilment of their requirements in a natural

language and in an ad-hoc manner, which introduces a great deal of imprecision and

ambiguity. To cope with such a lack of precision, a range of semi-automated techniques

have been suggested to handle such user data. This includes techniques such as text

mining and/or human facilitator (Galvis Carreño and Winbladh 2013). These techniques may

be used to gather, interpret, aggregate, and revise what users say, partly to mitigate for

such issues as bias and subjectivity in their textual responses. More effective results can be

reached if the feedback is written in a structured format. Structured feedback text would,

arguably, allow approaches, such as text processing, to provide more accurate results

within less time and with fewer human interventions. If text is structured the requirements

extraction process can be more systematic, eliminating complexity and ambiguity found in

natural language, and requiring less effort.

Reviewing the literature, this thesis could not identify systematic approaches for engineering

feedback acquisition, communication or requirements updating while the software is in use

(i.e. during the maintenance phase). This research focuses on to the development of a new

formalized and systematic approach for feedback acquisition and communication during the

maintenance phase. This includes devising mechanisms to structure such feedback in a

way that makes it easy for users to express and engineers to interpret (Sherief, Abdelmoez

et al. 2015). Also, it includes inventing new a new method that allows engineers and end-

users to communicate during the maintenance phase using structured feedback. Acquiring

and storing the communication threads of interrelated structured feedback would definitely

Page | 19

carry useful information that could enable the extraction of useful information for keeping

requirements information up-to-date. Also, it will help in evaluating the overall quality of the

system, and would help in performing evolution tasks accurately and making effective

decision based on updated information. Moreover, this research suggests benefiting from

the large feedback collection from users, by using recommendation and especially social

recommender systems that might be useful in pattern mining and decision-making based on

user feedbacks. It could be used to determine similarities between users, and accordingly

reuse feedbacks.

1.2 Research Aim

In the light of the above mentioned challenges and the lack of engineering approaches for

users’ feedback acquisition, communication, and requirements extraction and updating of

software systems during the maintenance phase, the research aims is twofold that is:

1) To study common feedback structures and their pillars so that acquisition and

communication methods which maximize quality without hindering users experience

can be provided;

2) Exploring how to extract new requirements to keep requirements models and

documentation up-to-date during the maintenance phase. This will lead to a more

effective management and richness of the users’ role as evaluators. Also, it

provides a systematic means for requirements engineers to capture and analyse

and prioritize feedbacks and thus requirements too.

1.3 Research Questions

Based on the aim of this thesis the following questions were derived:

1) From the perspective of both end-users and software engineers, what are the

engineering foundations and challenges for the empowerment and utilization of

users’ feedback in software systems?

2) What are the different types of feedback structures and the concepts that constitute

each type? What are the rules that govern their usage?

3) How to develop a feedback acquisition and communication method that utilizes

feedback to involve end-users as active collaborators and to inform the engineers’

maintenance tasks and decisions?

4) How can new requirements knowledge be extracted from the collected end-user

feedback to help requirements engineers in keeping requirements information up-to-

date?

Page | 20

1.4 Research Objectives

In order to answer the research questions, the following set of objectives has to be met in

this research:

Objective 1 - Background Search and Literature Review:

The first objective is to review the relevant work done in the literature in order to analyse

what peers have reached regarding the definition of users feedback, how it is analysed, and

utilized in different areas. Thus, the gaps can be identified and new methods proposed that

can move the research field forward. This objective is an ongoing task of analysis and

criticism to the relevant topics, which should be continuously maintained throughout the

research (see chapter 2).

Objective 2 - Developing a new classification of feedback components and types:

The second objective encompasses finding a definition for feedback, its types, and

identifying and defining the constituent for each type, and the details that users employ to

describe their feedback. That is to provide structured feedback that is more meaningful and

useful, while the software is in use. (see Chapter 4).

Objective 3 - Designing a novel method for feedback acquisition and communication:

The goal is threefold that is to: 1) provide a systematic means that enables end-users and

engineers to utilize feedback structures as a communication tool, and be able to validate the

acquired feedback and store it in a structured and interrelated manner; 2) align the process

with the software change management and evolution process that engineers utilize during

the maintenance phase and that is to embed the feedback acquisition as a core task and

driver for the evolution process to inform its tasks and decisions; 3) to integrate the process

with feature models that could provide further systematic assistance for the engineers in

impact analysis tasks and in extracting problems related to certain features, or determining

which features are more problematic (see chapter 5 and 6).

Objective 4 – Extending the feedback acquisition and communication method to

enable requirements extraction and updating:

The goal is to help keep the requirements information up-to-date. A novel process will be

designed to enforce and automate this task by embedding it in the designed acquisition and

communication process achieved from the previous objective, which will help produce

efficient and reliable results as they will be extracted from the communication threads that

took place between the engineers and end-users (see Chapter 6). Also, it will help in

increasing the engineers’ enthusiasm towards this tedious yet crucial task.

Page | 21

Objective 5 – Validation of the acceptance of the approach:

In this research, the proposed approach will be verified and validated by applying it in

practice with both end-users and engineers to 1) investigate the use of the novel feedback

types in practice and whether they are easy-to-use by end-users. 2) Also, to investigate

whether they are successful means in providing engineers with useful/ meaningful

information that could help them in accomplishing the evolution tasks and taking decisions

through the new proposed approach for feedback acquisition and communication. 3) And to

design with the engineers how the stored communication threads could inform the

requirements extraction and updating method (see Chapter 6).

Objective 6 - Formalizing the feedback structures and the developed methods

The goal is to have a method so simple that it can express any fact, and yet so structured

that computer applications can do useful things with it, which in this research case can build

a more formal feedback acquisition method that can systematically analyse and classify a

given feedback, validate and store feedback in the ontology knowledge base. Thus, an

ontology of feedback concepts will be built in order to reach a common definition of the

structure of feedback and the rules and relationships that govern its use. That could be used

to further query the stored feedback threads to extract requirements information that will

update the feature model and specification. Finally, a prototype will be designed and

introduced to help visualise how the ontology along with the proposed new approaches

could be applied in practice if a real tool existed (see chapter 7).

1.5 Report Structure

This report is structured as follows. Chapter 2 is a background search and literature review,

this chapter tries to address relevant areas and topics needed to identify the gaps, and

motivate our research. Next, chapter 3 is the explanation of the research methodology that

is followed in order to achieve the research aim and objectives. It provides full survey of the

different research approaches, research designs and analysis techniques and argues the

adopted research approach, research design, and research methods used in this research.

Then, chapter 4 explains the two-staged empirical study that was conducted from users’

perspective to derive the feedback types and their components. Afterwards, chapter 5

explains the interviews study with the software engineers provides a full explanation of the

recognized challenges that helped in deriving the need for the new processes explained in

objectives 3 and 4. After that, in chapter 6 the resulted design of the intended outcomes is

explained and an explanation of how it was designed and derived from practice with its

intended user is described. Then, in chapter 7 the formalization of the proposed approaches

is explained. First, a documentation of the Ontology: its purpose, the rules that define it and

its validation is explained. Second, the prototypes deigned for engineers are illustrated and

Page | 22

explained. After that, in chapter 8 a discussion, final conclusions and future work are

explained. The Structure and Roadmap is illustrated in Figure 1.

1.6 Research Publications

The preliminary results of the initial investigation that aimed at providing results on the

different aspects of the feedback design and conduct of feedback acquisition was published

at EASE’14 (acceptance rate: 24%).

 Sherief, N., Jiang, N., Hosseini, M., Phalp, K., & Ali, R. (2014, May). Crowdsourcing

software evaluation. In Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering (p. 19). ACM.

 Sherief, N. (2014, May). Software evaluation via users' feedback at runtime. In

Proceedings of the 18th International Conference on Evaluation and Assessment in

Software Engineering (p. 58). ACM.

Also, the detailed result of the empirical user study that was performed was published at

PoEM 2015 (acceptance rate: 25 %). It discusses the study findings on the structures of

users’ feedbacks and the contributions it introduces to the literature, and how it can be

utilized in the domain of modelling and facilitating user feedback acquisition.

 Sherief, N., Abdelmoez, W., Phalp, K. and Ali, R., 2015, November. Modelling users

feedback in crowd-based requirements engineering: An empirical study. In IFIP

Working Conference on The Practice of Enterprise Modelling (pp. 174-190).

Springer International Publishing.

 Sherief, N., 2015, November. Modelling and Facilitating User-Generated Feedback

for Enterprise Information Systems Evaluation. In PoEM (pp. 117-124).

1.7 Declaration of co-authors contribution to the published work

of this thesis

The author of this thesis is the first author of all the resulted publications from this thesis

work. The contribution of the first author was as follows:

 Formulating the idea and aim of each paper.

 Deciding upon the research approach and method to be adopted in each paper

(e.g. qualitative research approach and methods like: focus groups, interviews).

 Designing and implementing the empirical studies presented in each paper (e.g.

developing interview scripts, recruiting the participants, collecting the data…etc.).

 Analysing and interpreting the collected data and draw the conclusions (e.g.

qualitative thematic analysis).

Page | 23

 Reporting the findings and fully writing each paper.

The co-authors contributed to the published papers in terms of verifying and validating the

studies’ findings by comparing them against the actual responses from the participants.

They also provided direction and feedback on the structure and the overall articulation and

presentation of the papers’ message. In addition, they gave remarks on the methodology

and also checked the writing quality and suggested modifications on some parts of the text.

Furthermore, the co-authors enhanced the papers with the suitable terminologies especially

those related to the venue where the papers were published. Also, they suggested literature

work to be reviewed and criticised that would help relate the topic to different domains.

Page | 24

Figure 1. Thesis Chapters and Research Roadmap

Chapter 8: Contributions, Conclusions and Future Work

Contributions list
Explanation the result

framework
Possible future extensions

Chapter 7: Formalization of Feedback Structures and its Utilization

Ontology Design for models
Prototype for feature specification update

method

Chapter 6: Desiging a method for Feedback Acquisition, Communication and
Requirements Updating

New method for feedback acquisition and
communication (participatory design)

Extending the new method to enable
requirements updating (participatory

design)

Chpater 5: Exploring Feedback Utilization - Engineer View Point

Identifying the role of feedback in
accomplishing evolution tasks (Interviews)

Identifying the engineers' needs and
challenges (Interviews)

Chapter 4: Exploring Feedback Structure - User View Point

Key concepts for crowdsourced feedback
acquisition (focus groups)

Defining feedback, its constituents, and
usage (forums analysis)

Chpater 3: Research Methodology

Adopted Research
Approach

Adopted Research Design Adopted Research Methods

Chpater 2: Literature Review

Critical Analysis for Current Related Work Research Gaps Identified

Chapter 1: Introduction

Research Scope and
Context

Research Aim Research Objectives

Page | 25

1.8 Summary

This chapter gave an introduction to the context and domain of this thesis, discussed the

rational for this thesis. It also introduced the aim, research questions, objectives and scope

of this thesis. In addition, this chapter gave provided the list of publications that resulted

from this research and explained the authors and co-authors contributions in the

publications. In the next chapter, a review of the research topics and domains related to this

thesis work is presented.

Page | 26

2. Literature Review

In this chapter, a detailed literature review for related topics to this research is discussed.

General topics regarding how users are involved in traditional approaches and how

enterprises benefit from user involvement to communicate problems and enhance their

overall process were reviewed. This is covered in Section 2.1 and 2.2. Furthermore, the

utilization of the collective end-user feedback was studied, and this is to emphasize its

benefits in informing many tasks in the software development. This is covered in section 2.3.

More Specific Topics were reviewed from the literature that relates to potential solutions to

the problem domain of this thesis. This research intends to develop an engineering

approach to systematic feedback acquisition and communication and to develop and

engineering method for the semi-automation of requirements extraction and documentation

from feedback communication threads that take place between end-users and engineers at

the maintenance phase. Thus, this contributes to keeping requirements information up-to-

date.

Consequently, there is a crucial need to study and analyse the work that peers have

reached regarding the definition of users’ feedback, how it is acquired and communicated

that is discussed in section 2.4, analysed that is discussed in section 2.5, and utilized that is

discussed in a narrowed down scope in section 2.6. Thus, the gaps could be identified and

new methods that can move the research field forward could be proposed.

Moreover, fundamental paradigms that provide well established engineering processes for

practitioners and researchers regarding the software maintenance and evolution tasks were

also discussed to align with and build upon in this research. This is discussed in sections

2.7 and 2.8.

Finally, special purpose paradigms and platforms such as ontologies, controlled natural

languages and recommender systems were reviewed with the intension to benefit from

them in our proposed objectives, which are discussed in section 2.9, 2.10, and 2.11. Figure

2 below summarizes and illustrated the categorization of the main topics covered in this

thesis’s literature review.

Page | 27

Figure 2. Visual View of the Main Topics Covered in This Thesis’s Literature Review

2.1 User Centred Approaches

There are several established approaches where the role of users is central, such as: User

centred design (Karel Vredenburg, Ji-Ye Mao et al. 2002), User Experience (Law and

Schaik 2010), Agile methodology (Dybå and Dingsøyr 2008), and Usability Testing (Adikari

and McDonald 2006). These paradigms were reviewed, as the role of users is central. The

purpose was to examine what people in relevant domains do. All these techniques involve

users in the software development life cycle, by taking their requirements, and/or involving

them in the prototyping and testing. However, these techniques, although they can certainly

inform the design of crowdsourced online evaluation and evolution, are expensive and time

consuming when used for highly variable software designed to be used by a large crowd in

contexts unpredictable at design time.

Furthermore, this work on requirements evolution (Ernst, Borgida et al. 2014) and evaluation

from end-users feedback is a kind of end-user computing (Etezadi-Amoli and Farhoomand

1996) in the motivation to provide end users with the ability to change the system according

to their views to meet their needs. However, in contrast to end-user computing,

crowdsourced evaluation relies on users’ feedback as a way to evolve the system, or to

adapt the system by switching between configurations at runtime (i.e. while the software is

in use) according to the analysis of collective feedback, instead of relying on one user

feedback.

2.2 User Involvement in Enterprises

From this research perspective, enabling organizations to effectively communicate their

problems and changing/evolving requirements, user empowerment is central. Users act as

the primary judgement mechanism in software organizations, and an un-empowered user

cannot effectively be a part of creating or contributing to successful enterprise software

process improvement. Thus studying user involvement is necessary to identify how users

are involved, how their feedback is acquired, and the communication methods they use to

General Topics

•User Centered
Approaches

•User Involvement in
Enterprises

•Utilizing the Wisdom of
Crowds in Different
Areas

Potential Solutions

•Users Feedback
Acquisition Methods

•Feedback Analysis and
Requirments Extraction

•Requirements Models
and Documentation

Solution Supporting
Paradigms

•Software Maintenance
and Evolution

•Use of Ontologies in RE

•Controlled Natural
Languages

•Recommender Systems

Page | 28

interact with software companies.

Recently a broad study on the user involvement in information systems projects has been

published (Eichhorn and Tukel 2016). The authors document and summarize user

involvement by identifying studies that investigate user roles and activities, type of

communications used, and timing and level of their involvement.

Many user roles and categories have been identified in the research ranging from end-

users, user-representatives, to executive management. (Eichhorn and Tukel 2016) argue

that capturing a clear list with variety of user roles is necessary for successful user

involvement and requirements identification as discussed also in (Jiang, Klein et al. 2009).

However, user roles are not yet well understood and carry ambiguity and this affects their

proper integration in the development lifecycle.

Also, in the studies reviewed by (Eichhorn and Tukel 2016), mostly users were involved in

two main activities: requirements gathering, and quality assurance, while other discuss the

importance of involving users as an integral component in more detailed tasks along the

entire process of the software development life cycle. Similarly, in this research the

involvement of end-users in enterprises was explored to gain more insights about the

diverse set of inventive activities they can be involved in.

For example, the implementation of business intelligence (BI) systems is a complex task

requiring extensive efforts and resources to create and maintain them. (Yeoh and Koronios

2010), discuss the key success factors of implementing such systems. Their main

contribution is the theoretical understanding of user involvement as a key success factor in

implementing BI solutions, where they can continuously evaluate the information through

their feedbacks and therefore the system will be changed, optimized and developed

according to their input. (Barone, Yu et al. 2010) discuss a Business Intelligence Model that

aims to enable business users to extract business operations, strategies, and performance

indicators in a way that can be linked to enterprise data to provide them with query and

reasoning facilities. (Pourshahid, Amyot et al. 2009) suggest users involvement in

developing Business Process Management projects using an integrated and tool-supported

methodology to help users who are modelling business processes and validating them.

Their modelling approach involves using User Requirements notation that integrates goals

and usage scenarios, from which requirements can evolve. (Svee, Giannoulis et al. 2011)

explore whether and how consumer values impact business strategy and thus how this

impact echoes on the solutions that are developed to support business strategy execution.

They present how strategy maps can be augmented by consumer values. They link strategy

map goals to Holbrook’s consumer value typology then they extend the strategy maps and

balanced scorecards meta-model to include goals reflecting consumer values, which can be

used further as high level requirements for new solutions.

Page | 29

Moreover, (Eichhorn and Tukel 2016) discuss that communication is critical in large

software projects, were formal and informal methods are used to ensure project success.

Agile methodology improves information sharing and communication as discussed by

(Hoda, Noble et al. 2011). However, agile teams rely on gathering requirements information

continuously from user representatives in the form of user stories that could be converted to

actionable executable scenarios. This enhances the teams’ understanding about the

customer’s needs and ensures that the iterations are developed in a timely manner and

straight to the point, which is the main focus of agile methodologies. However, in case of the

lack of proper technical documentation, there will be difficulty in maintaining the software on

the long run, which could be time-consuming and requirements can easily grow to an

unmanageable size, causing inconsistency among information.

All the current work contributes to enriching the understanding of the importance of the role

of users in driving the enterprise business process and the different aspects that need to be

considered for running these processes. However, the reviewed work operates on the

management of requirements at a high level, to ensure goal satisfaction, and business

strategy implementation. Yet, there is still a need to develop more systematic methods for

feedback acquisition and communication that can manage effectively the collective

continuous users’ feedback to extract all possible kinds of meaningful information such as:

problems, awareness, or new/changing requirements, while providing flexibility and

openness for users to continuously express themselves while the software is in use rather

than just involving them at the early or final stages. Also, providing a means for structured

input of feedback for both end-users and engineers would enable the systematic analysis of

information that could lead to an automated means for extracting useful requirements

information and keeping it up-to-date, which is an important aspect for a more efficient and

accurate maintenance of the software.

2.3 Utilizing the Wisdom of the Crowd in Different Areas

Crowdsourcing is an emerging online paradigm for problem solving which involves a large

number of people often recruited on a voluntary basis. It harnesses the power of the crowd

for minimizing costs and, also, to solve problems which inherently require a large,

decentralized and diverse crowd.

The wisdom of the crowd supports the idea that decisions made collectively by a diverse

crowd could be better than the decisions made by a selective group of people who are not

necessarily representative enough (Surowiecki 2005).

“Crowdsourcing is an emerging business model where tasks are accomplished by the

general public” (Hosseini, Phalp et al. 2014). Crowdsourcing influences across all social and

business communications. It is changing the way businesses work, hire, research, make

Page | 30

and market. A Famous Example is Wikipedia. Instead of Wikipedia creating an

encyclopaedia on their own, hiring writers and editors, they gave a crowd the ability to

create the information on their own (Kittur and Kraut 2008).

Crowdsourcing’s biggest benefit is the ability to receive better quality results, since several

people offer their best ideas, skills, & support, as opposed to receiving the best entry from a

single provider (Brabham 2008). Results can be delivered much quicker than conventional

methods. Still, clear instructions are essential in crowdsourcing. Quality can be difficult to

evaluate if accurate expectations are not clearly stated.

The essence of crowdsourcing lies in empowering people by giving them a greater voice to

take more active role and collaborate in different tasks, which is the same drive for this

research. This thesis reviews several work done in crowdsourcing as we share common

interest in empowering end-users to take a more active role, which in this thesis is relying on

their collective judgement during the maintenance phase to provide feedback about how the

software meets their needs and expectations.

In this thesis, the potential of crowdsourcing for software evaluation is advocated. This is

especially true in the case of complex and highly variable software systems, which work in

diverse, even unpredictable, contexts. The crowd can enrich and keep the timeliness of the

developers’ knowledge about software evaluation via their iterative feedback.

In this section the work published in the literature regarding crowdsourcing as a method for

collecting participants’ (mostly end-users) feedback and utilizing it in different tasks is

analysed. The analysis of work in this section will range from general research that

addresses the possible different uses of crowdsourcing in enterprises, to the use of

crowdsourcing in specific tasks such as: conducting empirical studies, software evaluation,

requirements engineering problems, and finally its use in the latest emerging research

areas.

2.3.1 Practices of Crowdsourcing within Enterprises

First some of the work on Microblogging is reviewed, which is known as the act of providing

short messages (possibly feedback) to a website. For example, Twitter is considered a

microblogging site. As discussed in this section, microblogs offer a unique source of

information gathered from collective users’ input on a topic. This could be further analysed

to evaluate software systems or share expertise. Similarly, Crowdsourcing is used to

harness knowledge and skills of a group of people to solve a problem or contribute content.

So both topics are connected like: relying on the wisdom of the Twitter (microblog) crowds

as suggested by (Ghosh, Sharma et al. 2012).

The continuously growing technological developments in social networking platforms offer

Page | 31

capabilities to update information in real–time (e.g. in Facebook, and twitter). This has

allowed a user’s online presence to be transient and dynamic in nature. In this context,

micro-blogging has been widely employed by users as a useful means to capture and

circulate their thoughts and actions to a larger audience on a daily basis. Microblogs offer a

unique information source to analyse and understand context in real-time – i.e. benefits,

plans, and activities. The reason why this area is explored is to emphasise on the

importance of collective users’ feedback as a means to evaluate software systems to meet

their needs and expectations, and generate value to enterprises.

(Huh, Jones et al. 2007) explored the use of micro-blogs in a business community. They

provide a preliminary investigation, in which they have interviewed a number of bloggers to

investigate the effectiveness of blogging in communicating the user’s opinions, expertise

and questions within an enterprise. Meanwhile, the results emphasize the need to limit

corporate users’ disclosure to information input and indicate the growing importance of

personal brand building and privacy issues in today’s enterprises (Schöndienst, Krasnova et

al. 2011).

(Banerjee, Chakraborty et al. 2009) gather data from the free timeline of Twitter crossing ten

world-wide cities. They worked on this dataset to: 1) explore how users express interests in

real–time through micro–blogs; and 2) understand how text mining techniques can be

applied to interpret real-time context of a user based tweets.

Moreover, (Bougie, Starke et al. 2011) explore the possible use of micro-blogging by

software engineers. They used qualitative analysis approach to analyse threads on Twitter

and have found demonstrations of intelligible conversations taking place specifically on

Software Engineering topics. These cases included discussion of the current tasks

developers are working on, and in several cases, attempts to find solutions to related issues

they meet, Self-promotion, Complaints, and the Use of a Specific Tool for Work.

A recent study conducted by (Hosseini, Moore et al. 2015) to investigate the current use of

crowdsourcing in the practice of modern enterprises. The study discussed the current

practices of the WoC in 33 different UK enterprises by involving more than 60 senior

management participants. The study captured that WoC is applied in cases of:

 “When there is a lack of knowledge on certain subjects”: specifically in the concept

phase WoC could be used to help set the goals and objectives for a project where

there is a lack of knowledge at the managerial level or within the enterprise.

 When people in the enterprise are too involved in their business sometimes they fail

to analyse their own domain, as they “take many details for granted” and focus on

major issues. So using WoC could help providing a fresh external perspective.

 “When deciding on future development”: the WoC can be utilized to provide their

diverse visions which could help the enterprise in strategic planning decisions.

Page | 32

 “When constructive criticism is needed”, where managers stated that external

opinions could help give balance to their designs, as they can neutrally highlight the

weak points that may require improvements.

 “When feedback is needed to improve quality”: feedback from interested and

involved clients or ex-clients was considered important as it can help in

enhancement procedures and sustain quality.

Besides these benefits, the research discussed that managers also mentioned two main

drawbacks, which are: 1) it might allow for untrustworthy participants to take place in the

WoC process which might mislead or fail the business activities affecting the quality of the

product or service. This was also discussed in (Kittur and Kraut 2008); 2) the might be some

cultural issues among the crowd which might make their utilization less effective. Thus, less

valid outputs could be retrieved, as it does not come from a diverse crowd with different

skills, knowledge and backgrounds.

2.3.2 Crowdsourcing for Empirical Studies

In general, when designing an empirical study in software engineering, engaging the

necessary type of participants and appropriate number is always a challenge. Most of the

time, researchers are required to perform trade-offs to be able to perform the study (Kittur,

Chi et al. 2008). Otherwise, it will take much more time to select the most useful

participants, or trying to reach a high number of diverse participants to be able to generalize

results. As an alternative to such type of studies, the authors in (Stolee and Elbaum 2010)

suggest the use of crowdsourcing to address such a challenge. Moreover, they use

Amazon’s mechanical Turk as a tool that allows them to easily create, manage crowd-

sourced studies, perform prerequisite qualification tests for filtering participants, ensure

privacy, manage payments, and collect results. Yet Mechanical Turk has its learning

overheads, as the researcher should be aware of its capabilities and how to use the tool and

understand the underlying technologies such as XML, web services, and shell scripting.

These studies relate to our research in two aspects. First, it provides an alternative way of

performing empirical studies, which is part of our research objectives for developing a

framework for feedback acquisition and utilization. Second, it emphasises the role of end-

users in the feedback providing for evaluation process. Yet our research addresses the user

feedback formal structuring for deployed software evaluation, and developing systematic

methods for benefiting from crowd-sourced feedbacks which adds new scope and usage

even beyond what these papers propose.

Several researches have been held to use crowd-sourcing in the area of software usability

testing or interface evaluations, as it serves as an alternative approach to lab-experiments

that are expensive and time-consuming. For example, (Liu, Bias et al. 2012) used crowd-

sourcing in evaluating the usability of graduate school’s website. They used Mechanical

Page | 33

Turk as a platform for performing their tests, which easily helped them manage the test.

They discuss several advantages and disadvantages for crowd-sourced usability testing

have over a similar lab usability test. The advantages are: more participants’ involvement,

low cost, high speed, and various users’ backgrounds. While the disadvantages include:

lower quality feedback, less interactions, more spammers, less focused user groups.

Therefore, this research emphasizes that crowdsourcing could be a very good option in

software usability testing specially with development teams with short time and low budgets.

However it should be designed and used carefully as it imposes several challenges.

In another similar research, (Komarov, Reinecke et al. 2013) also suggest the use of

Amazon’s Mechanical Turk as a crowd-sourcing platform to evaluate the performance of

user interfaces. This study did not show any significant differences between lab evaluations

and crowd-sourcing. The following measures were used: the mean task completion times,

consistency of participant performance through the experiment, error rates, utilization as the

fraction of times when the user used the novel interaction mechanisms when one was

available, fraction of participants who were classified as extreme outliers. In this study no

significant differences between Turkers and lab participants was detected in any of the

measures. Yet, the use of Mechanical Turk platform for crowdsourcing showed better

results, especially when the main measures of interest are the task completion time, and

error rates.

Nevertheless, the above researches treat the crowdsourcing as a one unit, which is the

collection of feedback, without addressing its peculiarities. For example, the formal analyses

and tailoring of crowd-sourced feedback into the process of software testing and evaluation

process has not yet been addressed. It is also an ideal pool for collecting user experiences

that could be shared and collectively analysed to enhance future user experience.

This novel approach definitively shows lots of potential, but still a more thorough method

should be developed to address the different dimensions and challenges of such an

approach in its different configurations.

2.3.3 Crowdsourcing for Software Evaluation

Crowdsourcing harnesses the power of the crowd for minimizing costs and, also, to solve

problems which inherently require a large, decentralized and diverse crowd. In this paper

(Sherief, Jiang et al. 2014), the researchers advocate the potential of crowdsourcing for

software evaluation. This is especially true in the case of complex and highly variable

software systems, which work in diverse, even unpredictable, contexts.

Although this seems promising, crowdsourcing evaluation introduces a new range of

challenges mainly on how to organize the crowd and provide the right platforms to obtain

and process their input. This paper, which is part of this thesis work focuses on the activity

Page | 34

of acquiring evaluation feedback from the crowd, and utilizing it to inform the evolution tasks

that engineers perform, and also to help keep the requirements knowledge up to date during

the maintenance phase via their iterative feedback.

This paper proposed a systematic development of a crowdsourcing-based solution to

software evaluation. While the concept of crowdsourcing is shown to be promising

considering the increasing complexity and diversity of contexts for current systems, there is

still a lack of foundations on how to engineer it and ensure correctness and maximize

quality. This paper focused on the activity of interacting with users and getting their

feedback on software quality as one important step for a holistic approach for crowdsourced

software evaluation.

2.3.4 Crowdsourcing for Requirements Engineering

The software requirements are description of features and functionalities of the target

system. Requirements convey the stakeholders’ needs and expectations for the software

product or service. The process to gather the software requirements from client, analyse

and document them is known as requirement engineering. The goal of requirement

engineering (RE) is to develop and maintain sophisticated and descriptive ‘System

Requirements Specification’ document (Kotonya and Sommerville 1998).

Requirements Elicitation is the process of discovering, reviewing, documenting, and

understanding the user's needs and constraints for an intended software system by

communicating with customer, end-users, management users and others who are the key

stakeholders in the software system development (Kotonya and Sommerville 1998).

The longer the system's lifespan, the further it is subject to changes in the requirements that

result from changes in the needs, concerns and expectations of its stakeholders.

Crowdsourcing can support requirements elicitation, especially for systems used by a

variety of users and operating in a dynamic context and changing platforms where

requirements frequently evolve.

(Hosseini, Shahri et al. 2015) follow an empirical approach to study how to support the use

of crowdsourcing for requirements elicitation. Their work intended to investigate ways to

configure crowdsourcing to improve the quality of elicited requirements. Despite the

potential of the idea and the support they gathered from participants and experts, there is no

much literature in this area. Yet, their work introduced and discussed a set of risks

accompanied by adopting such approach, which makes the decision with adopting it and

configuring it in the correct way challenging. This is to help researchers and practitioners

adopt the idea and move the field forward.

Similarly, (Wang, Wang et al. 2014) used crowdsourcing to acquire requirements, but with

Page | 35

attention given to the problem of employing participants with specific narrow down domain

knowledge. They proposed a recruitment framework for software requirements acquisition

based on the Spatio-temporal availability of participants. Their theoretical analysis and

simulation experiments showed the feasibility of their proposed framework.

Further advances in this area of research recently came to applying the gamification

concept known as “the use of game design elements in non-gaming contexts” (Deterding,

Sicart et al. 2011) to crowdsourcing in order to inform and enrich the requirements

engineering discipline. Initially, (Snijders, Dalpiaz et al. 2015) introduced a requirements

elicitation tool named REfine that is a gamified online platform for requirements elicitation. A

case study showed its potential of the approach for improving RE in software production.

Gamification was introduced as a chance to increase the engagement of stakeholders in

requirements engineering by creating feedback loops that motivates the valuable

participation by rewarding effective participants, i.e., those that provide valued inputs

(requirements) for the system under design. Then, the related trend of crowdsourcing was

also employed by (Dalpiaz, Snijders et al. 2017) to support the broad and diverse

participation of stakeholders, by making RE a participatory activity where current and

potential users, developers, customers and analysts are involved.

2.3.5 Crowdsourcing for Software Evolution

Software evolution and maintenance are among the earliest areas that have benefited from

crowdsourcing. Traditional formal or automated verification methods may fail to support

large software systems. To help overcome this issue, a market-based software evolution

method was proposed by (Bacon, Chen et al. 2009). The goal of the method is not to ensure

the total ‘correctness’ of software system, but to inexpensively resolve bugs that users care

about most. The proposed mechanism lets users prioritize bug fixes, new enhancements, or

new features, and incentivizes the responders.

Other authors attempted to enrich the idea by performing empirical studies to capture the

different aspects of user involvement. In (Pagano and Brügge 2013), authors have

conducted an interesting empirical study on the user involvement for the purpose of

software evaluation and evolution. They came up with several hypotheses that contribute to

three different aspects of user involvement, which are: user involvement settings, user

involvement workflow, and user involvement requirements for tool support. Their study did

not pay much attention to the earlier stage where feedback acquisition activity takes, how

the collected feedback could be utilized as a communication means with developers, nor

how the feedback could inform the evolution tasks.

In a similar empirical study (Pagano and Maalej 2013) on user feedback in the AppStore,

the authors declare that the AppStores serve as a very interesting media for feedback to

both developers and end-users. Their empirical study provides results to the three aspects

Page | 36

they were investigating, which are: how and when users provide feedback, the feedback

content, and the impact of feedback on user community. These researches are still

unsystematic as they do not model feedback in a formal way to be understandable and

usable by both users and developers. Also they do not address methodical ways to analyse,

process and benefit from the collective judgements of users in software evaluation.

Furthermore, in the last decade there has been a lot of interest in the area of engineering

runtime self-adaptive systems (Salehie and Tahvildari 2009). By runtime it is meant while

the software is in use and therefore means while the software is evolving during the

maintenance phase. In spite of its importance, the role of users in supporting and tailoring

the adaptation process and decisions is still unclearly presented. The involvement of users

as partners with the adaptation process amplifies its potential and range of applications

(Cámara, Moreno et al. 2015) (Mistrik, Ali et al. 2016). It is more powerful for crowd-sourcing

users to act as collaborators and monitors for adaptive systems. (Ali, Solis et al. 2011)

argue that users’ perception is powerful to capture and communicate certain information that

cannot be captured by automated means and are necessary to plan and enact adaptation.

The ultimate goal of adaptation is to maintain and improve the role of software in meeting

users’ evolving requirements (Ali, Solis et al. 2012). This motivates scholars to develop

approaches for user requirements model-driven feedback structuring, as models can

present the prominent aspects of adaptation from user perspective, and when formalized

they enable the automated reasoning of software adaptation. Nevertheless it opens the door

to several research challenges.

Further work has been carried to identify main advantages, domain areas and the

challenges triggered by the mechanisms for acquiring user feedback to guide the adaptation

process (Almaliki, Faniyi et al. 2014). The authors conducted a two-phase expert survey on

the topic of Social Adaptation. Their results have concluded that there is a lack of models

and mechanisms for supporting this concept. Also, engineering approaches are highly

needed for Social Adaptation to empower collaborative users’ involvement in shaping

adaptation decisions and to systematically develop the feedback acquisition process and

interaction styles.

Additional work was done on for crowdsourced adaptation. For example, (Akiki, Bandara et

al. 2013) focused on utilising crowdsourcing for user interface adaptations. Their motivation

is based upon that there are complex software systems like enterprise systems that contain

many features which increases the visual complexity of the software. Since the end-users

only use a distinct small subset of the system features, the authors proposed an approach

based on model-driven user interface construction which enables the crowd to adapt the

interfaces via an online editing tool. A preliminary online user study pointed to promising

findings for usability, efficiency and effectiveness.

Page | 37

2.4 Users’ Feedback Acquisition Methods

Users’ feedback acquisition methods (if they exist at all) in software systems are not

systematic and rather ad hoc. No much literature is known about how the way software

engineers collect and work with users’ feedback.

(Maalej and Pagano 2011) propose a social engineering process that enable software

engineering teams to develop and maintain social software systems via continuous end-

user feedback. They combine activities that are already performed in existing engineering

processes (such as usability optimization, or prioritizing feature requests), yet in an isolated

way. However, their work lacks the ability to integrate directly into the software applications,

and also lacks an integrated systematic means for communication channels from the

software engineers to the end-users. The existence of such a channel can always keep end-

users aware of the actions and changes their given feedback caused on the system. This

can highly improve their satisfaction and trust in the software.

Apart from error reports, there is no commonly agreed practice on how to provide or gather

user feedback during software evolution. (Pagano and Brügge 2013) conducted an

empirical case study on five software development companies to explore the current

practice of users’ involvement via their feedback. Their study mainly focused on the stages

after feedback has been collected, and no much emphasis was made on the initial stage

where the feedback acquisition activity happens. Thus, there is a high need for tools and

approaches to support the process of collecting, structuring end-users’ feedback.

More work has been directed towards inventing more systematic methods for representing

and obtaining user feedback and making best use of it. In (Maalej, Happel et al. 2009), the

authors have made an attempt to introduce such an idea. They introduced a process for

continuous and context-aware user input that can be used further in community sharing, and

intelligently enhancing the system through collective judgements. However, they deal with

feedback from a very general perspective without looking into details that regard its quality.

Also, a systematic practice to gather users’ feedback is still missing in their work, which

affects the utilization of their methods to obtain useful and meaningful information that could

inform the software evaluation, and maintenance. Also in (Knauss 2012) the author

investigates existing requirements elicitation techniques, and suggests that the collective

judgements of stakeholders is beneficial to requirements elicitation and discusses their

potential for considering context.

A more recent study conducted by (Almaliki, Ncube et al. 2014) reported an empirical mixed

method study to explore and investigate users’ behaviour with regard to feedback

acquisition in software applications. Their results show that there is a need for systematic

approaches for supporting adaptive feedback acquisition that should fit and adapt to each

Page | 38

different user type, and should highly consider the factors that influence users’ behaviour

during the feedback acquisition process.

In a further study (Almaliki, Ncube et al. 2015) provide a clearer view and a deeper

comprehention of users’ different behaviours to feedback acquisition by demonstrating

seven personas of users’ behaviour to feedback acquisition. Again, this emphasizes the

need for an adaptive feedback acquisition to assist these various behaviours. Additionally,

their work gives a clear understanding to software engineers when devising an adaptive

feedback acquisition. This work was further extended (Almaliki and Ali 2016) to study the

cultural differences among users that also play a role in affecting their stimuluses to

feedback acquisition. The paper also supports the need to have a persuasive and culture-

aware feedback acquisition which opens the gate for further research in this area.

It could be concluded that the literature is still limited in providing engineering approaches to

developing systematic feedback acquisition and communication. This research focuses on

to the development of feedback modelling and elicitation framework. This includes devising

mechanisms to structure such feedback in a way that makes it easy for users to express

and engineers to interpret. This will allow the system to prioritize different problems reported

by users. Also, it will help in evaluating the overall quality of the system and in taking

evolution and maintenance decisions.

2.5 Feedback Analysis and Requirements Extraction

In this section the efforts made to extract requirements information from users’ feedback is

introduced. Various works has been done on how to elicit requirements from users’

feedbacks for the purpose of supporting software evolution. The main goal is to elicit

new/changed requirements from large sets of users’ feedback. The problem in extracting

such information is the large volume of data that has to be analysed, the time commitment

required to perform such task and the considerable human interventions that conveys a

great deal of bias/subjectivity. Therefore, researchers have been aiming at trying to use new

methods in order to alleviate part of the process.

Authors in (Galvis Carreño and Winbladh 2013) use the topic extraction mechanism to

process users’ comments. Their process includes tokenizing and removing noise from input

data (i.e. users’ feedbacks). Then, they extract the main topics mentioned in the feedback,

along with some sentences demonstrative to those topics using sentiment analysis. This

information has to be revised by requirements engineers who use it to plan for next software

versions. However, a main drawback is that using only sentiment analysis and topic

modelling does not provide associations between topics and attitudes which are crucial for

informing requirements engineers about requirements changes. The main goal of this work

was to automatically generate a report for requirements engineers with the list of

Page | 39

new/changed requirements. So they wanted to test if their approach saves time, is it

possible to extract the same information in less time and with less effort, and whether it is

better to use the generated report compared to the original list of manually extracted

comments.

Also in (Schneider 2011), authors propose deriving change requests and new requirements

from spontaneous feedback gained in real usage settings. To do so they have defined a

simple domain ontology consisting of generic broad types of feedbacks and associations.

They used clustering techniques to cluster feedback messages according to the entities

they refer to. Then they proposed applying existing formal techniques to feedback texts for

in-depth interpretations. They suggested using natural language parsing where stop words

are removed and keywords are searched, and heuristic filtering that can match the detected

keywords to domain ontology.

In (Seyff, Graf et al. 2010), the main focus of the research was to develop a mobile tool to

capture the users feedback whenever and wherever they want. The tool also gathers

contextual information to enrich requirements descriptions and to provide information about

the end-users environments. Finally, the tool captures the importance of the task to the

user. This research aims on providing an elicitation approach that can offer new

opportunities for users to support them in documenting their needs. Authors did not explore

how to support requirements engineers in analysing and transcribing end-users needs into

well-defined requirements.

In (Pagano 2011), the author proposes a framework for systematic analysis of continuous

user input, and the enabling techniques that can be used to support the process. The

techniques proposed in the framework are all existing techniques. First, the author suggests

analysing the gathered user input using text mining and information retrieval to identify

domain concepts. Then, these domain concepts are used to identify fundamental structure

of user input using clustering techniques and tagging. Afterwards, the data can be filtered

and prioritized to be presented to the requirements engineers with reduced amount of

redundant information using social network analysis and collaborative filtering techniques.

Other researchers are using mining of feedbacks, but for different areas other than software

evolution. The increasing ubiquity of the Internet has radically changed the way that

consumers shop for products. Consumer-generated product reviews (i.e. feedbacks) have

become a useful source of information for customers, who read the reviews and decide

whether to buy the product based on the information provided.

For example, in (Dave, Lawrence et al. 2003, Hu and Liu 2004, Liu, Hu et al. 2005), authors

are using several mining techniques for mining customer products reviews. It is a common

way that merchants selling products on the Web ask their customers to evaluate the

products and related services. This makes it difficult for a prospective customer to read

Page | 40

them in order to make a decision on whether to buy the product.

In (Hu and Liu 2004) authors aim to summarize all the customer reviews of a product. They

are only interested in the specific features of the product that customers have opinions on

and also whether the opinions are positive or negative (same aim in (Dave, Lawrence et al.

2003)). A number of techniques are presented to mine such features. The system first

downloads (or crawls) all the reviews, and puts them in the review database. The feature

extraction function, which is the focus of this paper, first extracts “hot” features that a lot of

people have expressed their opinions on in their reviews, and then finds those infrequent

ones. In order to do this, they use association rule mining to find all frequent item sets. They

also use Part-of-speech tagging (Authors in (Liu, Hu et al. 2005) also use POS tagging), is

the process of marking up a word in a text (corpus) as corresponding to a particular part of

speech, based on both its definition as well as its context, and is used as a pre-processing

step before applying association mining algorithm to discover frequent nouns and noun

phrases.

Similarly, in (Archak, Ghose et al. 2011), the authors use techniques that decompose the

reviews into segments that evaluate the individual characteristics of a product. Towards this

goal, they develop a novel hybrid technique combining text mining and econometrics that

models consumer product reviews as elements in a tensor product of feature and evaluation

spaces.

All these attempts to extract requirements from users’ feedback, are using existing

techniques to try to find meaningful information (i.e. requirements) hidden inside users’

texts. Since the text is written in natural language (i.e. unstructured) therefore it can carry

different meanings and interpretations. This lack of rigor requires always semi-automated

handling of data (i.e. includes techniques of text mining and/or human facilitator) to gather,

interpret, aggregate, and revise what users say, which may contain some bias and

subjectivity.

These efforts would have led to more effective results, if the feedback was written in a

structured format (Sherief, Abdelmoez et al. 2015). A structured feedback text would allow

such approaches using text processing techniques to provide more accurate results that

require less time and human interventions. If text is structured using syntax and semantics,

the requirements extraction process can be more systematic, eliminating complexity and

ambiguity found in natural language, and requiring remarkably less effort.

It is also worth mentioning that this research focuses on written information as this is the

main method for feedback acquisition and communication. However, there are other

methods for communication such as surveys, which is considered to be a restrictive

feedback tool, as it relies on a set of predefined questions with direct specific answers and

little space for end-users to elaborate and express themselves. Furthermore, software

http://en.wikipedia.org/wiki/Parts_of_speech
http://en.wikipedia.org/wiki/Parts_of_speech

Page | 41

engineers could gather requirements from end-users using voice methods (whether phone

calls, skype calls…). However, in order to properly utilize this method as a means for

requirements extraction and documentation, this content would need to be transcribed into

textual format to deal with, as it is unlikely to use audio records in software documentations.

2.6 Requirements Models and Requirements Documentation

This research also gives a particular focus on studying the requirements engineering

models which support variability. Models can represent the prominent aspects of the

software that when formally used enables automated reasoning to derive essential

information from the software employing them. Since this research is proposing a new

crowdsourced evaluation process, using these models to represent stakeholder’s goals,

software features, configurations, and relating users’ feedback to them would be easy to the

users. Also, this will provide systematic assistance to the engineers in interpreting and

extracting new requirements and problems.

2.6.1 Requirements Models and its Utilization

One mainstream technique is goal modelling (Yu 2009). Goal models fit the early stages of

the software development and explain the functionality a system to operate and why to

operate it. Goal models are very useful in specifying both functional and non-functional

requirements. Functional requirements are complete if they can be all mapped to goals, and

all goals are satisfied. Non-functional requirements can be specified as soft goals. Goal

models can be used to represent the impact of different solution approaches on soft goal

satisfaction. Goal models participate as a very important candidate model in our intended

engineering framework. This is because goal models help in clarifying requirements and

linking them to correct goals without missing any requirements. More importantly, they

enable requirements’ completeness to be measured, as requirements can be considered

complete if they fulfil all the goals in the goal model. Therefore, after users provide feedback

about the software features this could be linked to the system requirements to inform better

evaluation of the main system goals. This hierarchy will also help analysts and developers

to trace and plan how updated or new requirements will fit into the main system model.

Furthermore, a feature is defined as a “prominent or distinctive user-visible aspect, quality or

characteristic of a software system or systems” (Kang, Kim et al. 1998). The core of a

feature model is a feature graph. A feature graph represents variability in a very compact

and clear way, in that it presents the features in a tree of AND/OR nodes to identify the

common and variable parts within the domain. Feature Model is naturally understood by

users as it talks to them in their own terms, i.e. what they see in a system.

This makes it a good candidate for using it in the intended framework in order to help

Page | 42

customers in linking the feedback to a specific feature, which will help in: accurately

specifying the modification scope of the reported problem, or requested enhancement or

feature; also this would help engineers in performing the impact analysis tasks, which is one

of the most important tasks in the change management process that hinders the successful

change implementation; Furthermore, by introducing changes to the specified feature, this

would also help in keeping the requirements information up-to-date after the change is

accepted and closed, which would yield more accurate results along the maintenance phase

of the software.

Goal models can be utilized to represent the stakeholders’ goals. Also, it can be related to

the feature model where together they represent both the functional and non-functional

requirements of the system. By relating both models to the structured feedbacks, engineers

can propagate through the interconnections between them to determine different levels of

evaluation information. For example, by looking on the feedbacks and their related features

in the feature model they can identify most problematic features in the software according to

some simple metrics like the number of negative feedbacks referencing that feature. Or they

can look at it from a higher level to see which goals are violated keeping stakeholders

unsatisfied.

Business process modelling (Group 2006), often called process modelling is the analytical

representation or illustration of an organization’s business processes. It is widely viewed as

a critical component in successful business process management (BPM). It is used to map

out an organization’s current processes to create a baseline for process improvements and

to design future processes with those improvements incorporated. Process modelling often

uses Business Process Modelling Notation (BPMN), a standard method of illustrating

processes with flowchart-like diagrams that can be easily understood by both customers

and engineers. Even though Business Process Modelling relates to many aspects of

management (business, organisation, profit, projects, etc) its detailed technical nature and

process-emphasis link it closely with change management programs that are involved to

put any improved business processes into practice.

In the intended framework of this research, using both feature and business process models

to represent the small-grained features of the system is considered essential. The argument

is that linking features with the business process would provide further benefits. As by

identifying the affected business process this would improve the analysis task in the

evolution process, because it would provide information about how the business process will

be affected by the change and the impact of the change on the larger scale. Moreover, this

research claims that it would improve the customers-to-engineers and engineer-to-engineer

communication by informing all the affected parties by the introduced changes.

Furthermore, linking feedback to both business process and specific feature would help in

the similarity assessments when recommending possible actions from previous problems.

http://searchcio.techtarget.com/definition/business-process
http://searchcio.techtarget.com/definition/business-process-management
http://searchcio.techtarget.com/definition/Business-Process-Modeling-Notation
http://searchcio.techtarget.com/definition/Business-Process-Modeling-Notation
http://whatis.techtarget.com/definition/flowchart
http://www.businessballs.com/qualitymanagement.htm

Page | 43

These advantages improve the realization of objective 3, which aims at developing a new

method for feedback acquisition and communication that helps in informing the evolution

process tasks. Using feedback threads that are linked to requirements models in the

communication will help engineers in the accurate scope identification and impact analysis

during the evolution process. Also, linking feedbacks to feature models would inform the

realization of objective 4, because it would facilitate accurate requirements extraction, and

documentation updating. Furthermore, linking feedback to business process models would

add a new perspective in the documentation, which is how new requirements or changes

are linked to customer’s goals or how they could affect them.

2.6.2 Requirements Documentation Challenges

A Requirements Document (RD) is a formal contract between the software company and

the customer for a product. It describes in full detail all the features, and processes that

should be implemented. A RD is used through the entire cycle of the project to ensure that

the product meets the detailed specifications and that the project achieves the desired

results. However, keeping this documentation up-to-date especially during the maintenance

phase where changes occur regularly is still a challenging task.

The main task in requirements documentation is information collection. In the early stages of

the software development life cycle this is done through brainstorming and interviews with

various sources, including developers, customers, engineers and end-users. The collected

information should be documented in a clear and concise way, familiar to the business user,

to ensure successful product development and high-quality end-product. However, the

same task is not done in a clear systematic way during the late phases specifically during

the maintenance phase. This issue is due to the ad-hoc manner the communication is

handled with customers in this stage, which leads to lost information and lack of

consistency.

In a study done on 18 different organizations, (Kajko-Mattsson 2005) confirmed several

documentation problems during the maintenance phase. Examples are: Software systems

are not continuously documented at all granularity levels for example requirements

documentation need to carry information about features, use cases, goals, and technical

information; The majority of the organizations do not provide guidelines for how to document

their software systems, which is left for the engineer’s perspective, knowledge, experience

and skills to document what he think is necessary; Also, support for making decisions about

future changes is poor. Maintainers have vague insight into all the corrective modifications

made to the system and their history. Hence, they cannot effectively evaluate the quality of

their systems and the effectiveness of their development and maintenance methodologies.

Several further researches were reviewed, that identified that the key maintenance problem

is the lack of up-to-date documentation (de Souza, Anquetil et al. 2005). Their purpose was

Page | 44

to examine what types of information documentations are needed by software maintainers

that have already been considered in other studies. Examples were: hierarchical

architectures of the system, step-by-step instructions for users, requirements description

and design specifications for experts, business rules, and histories, tests, data model, class

model, business process description, user manual, and project minutes for XP projects.

(Forward and Lethbridge 2002) reached the same results by conducting a survey to capture

the documentations needs, usage, and other attributes. They conclude that documentation

is an important tool for communication and should always serve a purpose.

Furthermore, (Anquetil, Oliveira et al. 2005) present a re-documentation tool to partially

automate the documentation process during the maintenance phase. However, their

research treats the documentation as a reverse engineering process. This research focuses

on the documentation of functional (i.e. feature) specifications, and the updating of feature

models and their interdependencies. This is to provide full documentation of how the system

works in a way that could be understandable by end-users and beneficial for software

engineers, as it will be extracted from their feedback communication threads. Also, this

research suggests catering for the documentation task as an embedded sub-process within

the maintenance phase.

Finally, a more recent experiment was conducted by (Leotta, Ricca et al. 2013) on 21

bachelor student to highlight the importance and impact of accurate and up-to-date

documentation on maintenance and to identify the challenges that the engineers encounter

and hinders their ability and enthusiasm in documenting the changes accurately.

In this research the challenges discussed are main concerns that act as a driver for

developing a new embedded process that provide systematic means for extracting

requirements information during the maintenance phase and updating the requirements

documentation and models during the maintenance phase. As a starting point this could be

managed by linking every feedback provided by the end-user or software engineer to a

specific feature and process in the software system.

2.7 Software Maintenance and Evolution

In this section, the software maintenance and evolution paradigms are studied. That is to

define them, differentiate their purpose and work, and explain their need and utilization in

this thesis work. Moreover, the examination of the established work to support developers

performing evolution tasks was considered important, as this thesis work intends to aid

engineers and developers in performing maintenance tasks and decisions.

Page | 45

2.7.1 Fundamental Paradigms and Processes

Software maintenance refers to the software life cycle phase beginning when the first

delivery of the software is made, and ending when the software is taken to close-down. On

the other hand, software evolution refers to the step-wise incremental development of the

software during its lifetime. Evolution of the software system takes place both in the

development and maintenance phases through successive and concurrent changes. The

activity of maintaining these changes is called change management. Evolutionary software

development is a process in which the software is delivered incrementally (Bennett and

Rajlich 2000) (Rajlich 2014). During the maintenance phase, the continuous customers’

feedback through bug reports and change requests generates the requirements for

subsequent deliveries.

A very widely cited survey study in (Lientz, Swanson et al. 1978) (Lientz and Swanson

1981) , and repeated by others in different domains, exposed the very high segment of life-

cycle costs that were being expended on maintenance. The authors categorised

maintenance activities into four classes:

1) Adaptive - changes in the software environment

2) Perfective - new user requirements

3) Corrective - fixing errors

4) Preventive - prevent problems in the future.

These studies show that the incorporation of new user requirements is the core problem for

software evolution and maintenance. For this motive, this research emphasises the

importance of employing requirements’ models and linking it to customers’ feedback to

ensure traceability and that requirements information and dependencies are kept-up-to-

date, which are key factors for an enhanced and more accurate maintenance decisions (i.e.

Perfective Maintenance). Furthermore, this research stresses on the importance of

capturing contextual information as a main component in customers’ feedback, which helps

in adapting software to changes in the environment (i.e. Adaptive Maintenance). Moreover,

acquiring users’ feedback about the system helps in resolving the issues they encounter

(i.e. Corrective Maintenance). Also, linking feedback to features and business goals can

help engineers benefit from past experiences (by analysing feedbacks and their links to

models) and plan ahead (i.e. Preventive Maintenance). Thus, addressing these problems

through a systematic process will ensure the capturing, analysis and reusability of

information that can favour the four maintenance categories mentioned above.

System change requests are the key driver for system evolution in all organizations. These

change requests may involve bug fixes to existing requirements, enhancements, new

features, or feature proposals by engineers to their customers as a suggestion to improve

their work. As illustrated in Figure 3 below that the change identification and software

Page | 46

evolution process are cyclic and continuous throughout the lifespan of the system.

Figure 3. Change Identification and Evolution Processes (Sommerville 2006)

Furthermore, the evolution process in Figure 4 includes the fundamental change

management activities which are analysing the impact of a change, planning for the change,

change implementation, then system release and closure.

Figure 4. The System Evolution Process (Sommerville 2006)

This research focuses on the capturing and utilization of end-users feedback to inform the

maintenance and evolution tasks. Thus, studying these processes of change management

and evolution is crucial, as it would be beneficial to align the new process of feedback

acquisition, communication and requirements extraction and documentation resulting from

this research to well-established processes that practitioners and researchers are

accustomed to utilizing them in the projects they work on. This could help developing their

mind-sets and gaining their acceptance to easily adopt the new suggested methods for

handling and utilizing feedback.

Also in (Sommerville 2006), pointed that change management support tools should provide

some or all of the following facilities:

 A form editor that allows change proposal forms to be created and completed by

people making the change requests.

Page | 47

 A workflow system that allows the change management team to define who must

process the change request form and determine the order of processing. Also, this

system will automatically pass forms to the right people at the right time and inform

the relevant team members of the progress of the change.

 A change database that is used to manage all change proposals. Database Query

facilities allow the change management team to find specific change proposals.

 A change reporting system that generates management reports on the status of the

change requests that have been submitted.

This was studied in order to identify the expected key components of the proposed

engineering method and framework. Also, in order to help in mapping and evaluating the

benefits provided by the framework, by describing how the framework contributes to each of

these facilities.

2.7.2 Supporting Developers in Software Evolution Tasks

In this section a review of the work done in the literature in attempt to support developers in

their software evolution tasks has been made. In order to devise new mechanisms that

could help engineers on their evolution tasks, the tasks they do should be identified which

was discussed in section 2.7.1, and their needs and the questions they ask should be

investigated in order to recognize the gaps and attempt to produce desirable solutions.

Although fundamental processes and tools are available to guide and help programmers on

working on change and evolution tasks, and several studies have been conducted to

understand how programmers comprehend systems and requirements (Phalp, Adlem et al.

2011), little is known about the specific kinds of questions programmers ask when evolving

a code base.

To fill this gap (Sillito, Murphy et al. 2006) have conducted two qualitative studies of

programmers performing change tasks to medium to large sized programs. The developers’

experience ranged from newcomers to industrial experienced developers. The results they

came up with helps in gaining a deep understanding of the developers’ needs and scope

during the evolution tasks. However, their work investigates the developers need on the

code level. However, this research focus is on the requirements’ evolution and update,

which also affects the analysis and implementation of new changes.

Other attempts to guide developers in performing evolution tasks is (Zimmermann, Zeller et

al. 2005) work. The authors also work on the code level and employ the data mining

technique to version histories in order to guide programmers along future related changes.

This research shares same interests but using different set of information (i.e. feedback

threads), as by having stored historical feedback threads, it could be analysed to help the

engineers predict customers’ changing needs and plan ahead.

Page | 48

Still more attempts to support the developers on the code level were made by (Würsch,

Ghezzi et al. 2010). The authors suggest modelling the data using OWL ontology and use

knowledge processing technologies from the Semantic Web to query it. Thus they do not

only rely on predefined query. Instead, the querying capabilities of their framework are much

more flexible and extendible due to the use of ontology. This is has a great deal of similarity

with how this research intends to formalize the research finding and put them into practice.

This could be achieved by defining ontology for the structured feedback types and their

constituents and thus all feedback threads could be stored on the ontology knowledge base

for further querying to inform the engineers’ evolution tasks and decisions as suggested in

(Sherief, Abdelmoez et al. 2015).

2.8 The Use of Ontologies in Requirements Engineering

In recent years the development of ontologies, which is the explicit formal specifications of

the terms in the domain and relations among them have become common in many fields.

For example, the ontologies on the Web range from large taxonomies categorizing Web

sites, such as on Yahoo!, to the categorizations of products and their features, such as on

Amazon.com. Ontologies define a common vocabulary for researchers who need to share

information in a domain (Noy and McGuinness 2001). It includes machine-interpretable

definitions of basic concepts in the domain and relationships among them. In contrast to

other data formats and associated tools, such as XML and XQuery2 that operate on the

structure of the data, OWL enables treating of data based on its semantics. This allows the

simple extension of the data model while maintaining the functionality of existing tools.

The introduction of ontologies as a means to define the information and knowledge

semantics become more and more accepted in different domains. The nature of

requirements engineering includes gathering knowledge from various sources, which

includes many stakeholders with their own interests and points of view. Therefore, there are

many possible usages of ontologies in Requirements Engineering (RE).

(Happel and Seedorf 2006) present methods for using ontologies in the area of Software

Engineering with specific focus on analysis, design and implementation phases of the

software development life cycle. Each method was defined regarding the problem it

attempts to resolve. It is followed by a short description of the method and the assumed

advantages of ontologies. They state that ontologies seem to be well suited for

requirements management and traceability. Also, formal specification may be a prerequisite

to comprehend model-driven approaches in the design and implementation phase.

In (Castañeda, Ballejos et al. 2010) discuss the different challenges faced during the RE

process and the benefits of ontologies in addressing the identified challenges. They propose

an Ontology-based framework for supporting semantics based requirements engineering.

Page | 49

These proposals can be clearly divided into three application areas, which are: the

description of requirements specification documents, the formal representation of the

application domain knowledge, and the formal representation of requirements. Although the

paper moves the field forward by demonstrating the importance of implementing ontologies

in certain circumstances and RE activities, more work is still needed in order to produce a

more integrated framework, capable of tackling the classified challenges in an integrated

way, and of being generically applied all over the RE process and its activities.

(Siegemund, Thomas et al. 2011) identified weaknesses of RE methods and tools that can

be summarized as follows: 1) Requirement knowledge is not adequately covered.

Purposes, risks, problems and choices are not documented during RE and consequently,

are not available at later stages during software development; 2) Relationships between

requirements are ineffectively gathered and are frequently restricted to binary relations

between requirements; 3) Requirement problems (e.g. conflicts, unspecified information) are

detected too late or not all; 4) Completeness and consistency are not validated. They also

introduced the idea to use ontology for structuring the concepts, requirements and

relationships captured during requirements elicitation.

2.9 Controlled Natural Languages

In this research the need for structuring feedback and its benefits was argued. The structure

of feedback includes two perspectives. The first is identifying the elements that constitute

the feedback to enable its formalization and systematic use. To further formalize the

feedback, the second perspective that can be considered is the textual writing foundations

that could be utilized to provide well-written formal feedback.

This research suggests utilizing the collected feedback during the communication between

end-users and engineers in extracting information for keeping requirements specification up-

to-date. Thus, comprehension is indeed an important goal to consider for the accurate

documenting of requirements (Phalp, Adlem et al. 2011).

Controlled natural languages (Kuhn 2014) are rich subsets of natural languages (i.e.

Standard English), obtained by controlling the syntax and semantics in order to reduce or

remove ambiguity and complexity. Controlled languages fall into two major types: those that

improve clarity for human readers, and those that enable consistent automatic semantic

analysis of the language. In this research the utilization of Controlled Natural Language is

suggested to merge between these two types, because the language will restrict the user by

general rules such as keeping sentences short, only use the reserved keywords to define

textual blocks. But also, it will have a formal basis.

In order to construct an acquisition method in this research an already existing controlled

natural language may be adopted, namely Attempto Controlled English (ACE) (Fuchs,

http://en.wikipedia.org/wiki/Ambiguity

Page | 50

Kaljurand et al. 2006) that will act as our text writing foundation that users will use to write

their feedbacks more precisely. It is proposed for professionals who want to use formal

notations and formal methods, but may not be familiar with them. Though ACE appears

absolutely natural – it can be read and understood by any speaker of English – it is in fact

a formal language. ACE and its related tools have been used in the fields of software

specifications, theorem proving, text summaries, ontologies, rules, querying, medical

documentation and planning.

This language includes: the definition of the language Syntax Construction Rules which is

the set of rules and principles that control the structure of sentences in the language, and

the definition of the Interpretation Rules that deterministically interpret syntactically correct

sentences in users’ feedback.

2.10 Recommender Systems

This area (Adomavicius and Tuzhilin 2005) in the literature was reviewed, because in this

thesis it is argued that having structured and valid feedback is a very useful premise to

extract meaningful information about the feedback subject and its relationship to other

feedbacks. This work relies on users to give feedback which is going to be used for

maintenance, adaptation or evolution decisions. Recommender systems techniques can

help find similarities: 1) between features, 2) between feedbacks, and 3) between users. For

example, these techniques could be benefited from in reusing feedbacks that have verified

solutions and new problems entered by users. This can provide value for users by reusing

existing feedbacks to suggest verified mitigations that they can try in order to resolve their

issues.

2.10.1 Content-based filtering Recommender Systems

One approach when designing recommender systems is content-based filtering. In a

content-based recommender system, keywords are used to define the items; beside, a user

profile is built to specify the type of item this user likes. In particular, various candidate items

are compared with items previously rated by the user and the best-matching items are

recommended.

2.10.2 Knowledge-Based Recommender Systems

Knowledge-based recommender systems rely on explicit knowledge about the item

features, user preferences, and recommendation criteria (such as contexts). The advantage

of this approach over previous ones is the removal of cold-start problems. However, eliciting

and shaping the knowledgebase needs careful effort and study, which is subsided by the

acquisition method that will designed, which will enable structured and validated feedbacks

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Requirements_analysis
https://en.wikipedia.org/wiki/Requirements_analysis
https://en.wikipedia.org/wiki/Theorem_proving
https://en.wikipedia.org/wiki/Automatic_summarization
https://en.wikipedia.org/wiki/Ontologies
https://en.wikipedia.org/wiki/Health_informatics
https://en.wikipedia.org/wiki/Health_informatics
https://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Sentence_(linguistics)
http://en.wikipedia.org/wiki/Natural_language

Page | 51

to be modelled and stored in the knowledge base.

2.10.3 Hybrid Recommender Systems

Hybrid approach makes use of both collaborative filtering and content-based filtering in

order to achieve a better result. This implementation can be achieved by combining the

results from each filtering methods, or by mixing them into a single model. Several studies

have proven that a hybrid approach towards designing a recommender system can lead to

results that are more accurate. For example, Netflix, they make recommendations by

matching the watching and searching behaviours of similar users (i.e. collaborative filtering)

as well as by proposing movies that share characteristics with films that a user has well-

ranked (content-based filtering).

2.11 Summary

This chapter presented a review of the state of the art in relation to the user involvement in

different application areas specifically requirements and evolution tasks, the acquisition of

users’ feedback in software applications and potential approaches to impact the solution

space of this thesis. The next chapter explains the three approaches to research, and

explains in detail the reasons for choosing adopted research approach, design and

methods, and analysis techniques.

Page | 52

3. Research Methodology

The overall research procedure starts from choosing the research approach, research

designs, and specific research methods of data collection, analysis, and interpretation.

Therefore, in this chapter a discussion of the research design and methodology will be

made. Firstly, it is important that different views are analysed. Afterwards, the selected

methodology will be discussed. This is to provide the plan for the research, and to verify the

validity of the final results.

3.1 The Three approaches to Research

Research approaches are plans and the practices for research that cover the steps from

broad assumptions to detailed methods of data collection, analysis, and interpretation. This

plan involves several choices that need not be taken in the order to achieve the research

objectives, and answer the research questions. The selection of a research approach is also

influenced by the type of the research problem or the concerns focused on, the researchers’

personal skills, and the audience for the studies. In this section, the different approaches to

research are explained by defining each type, stating its main characteristics, and possible

disadvantages. Finally, the selection of a specific approach for this research is discussed.

3.1.1 Qualitative Research Approach

Qualitative Research is mainly exploratory research (Berg 2004). It is used to gain an

understanding of core reasons, opinions, and motivations about a research area or problem.

It provides insights into the problem and helps to develop ideas, conclusions or hypotheses

for potential quantitative research. Qualitative research is designed to uncover a target

audience’s range of behaviour and the perceptions that drive it with reference to specific

topics or issues. It uses in-depth studies of small groups of participants to guide and support

the construction of hypotheses. The results of qualitative research are descriptive rather

than predictive.

The main characteristics of qualitative research (Creswell 2013) are: 1) it aims to studying

real-world situations as they evolve unaffectedly; 2) the researcher is open to whatever

insights that arise (i.e., there is a lack of pre-set constraints on findings); 3) the researcher

avoids rigid designs that eliminate responding to opportunities to look for new paths of

findings as they arise; 4) cases for study (e.g., people, organizations, communities, cultures)

are selected because they offer useful insights of the topic of interest; and thus sampling is

aimed at insight about the topic, and not experimental generalization derived from a sample

and applied to a population;

Some possible weaknesses related to using qualitative methods to study research problems

Page | 53

in the social sciences include (Berg, 2004): 1) Moving away from the original objectives of

the study in response to the changing context under which the research is conducted; 2)

Arriving at different conclusions based on the same information depending on the personal

knowledge and characteristics of the researcher (researcher bias); 3) Data collection and

analysis is often time consuming and/or expensive; 4) Researcher Bias can enter in the data

collection and analysis; 5) Requires a high level of experience from the researcher to obtain

the aimed information from the participant.

3.1.2 Quantitative Research Approach

On the other hand, Quantitative Research (Creswell 2013) is used to quantify a problem

by generating numerical data or data that can be transformed into utilizable statistics. It is

used to quantify attitudes, opinions, behaviours, and other defined variables – and

generalizes results across a larger sample population or to explain a particular

phenomenon. Quantitative Research uses measurable data to formulate facts and uncover

patterns in research.

The main characteristics of quantitative research are (Kitchenham, Pfleeger et al. 2002): 1)

The data is usually gathered using structured research tools; 2) The results are based on

larger sample sizes that are representative of the population; 3) The researcher has a

clearly defined research question to which objective answers are sought after; 4) All aspects

of the study are carefully designed before data is collected; 5) Data are in the form of

numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms;

6) Can be used to generalize concepts more widely, predict future results, or investigate

underlying relationships.

The results of quantitative research may be statistically significant but are often humanly

inapt. Some specific drawbacks associated with using quantitative methods to study

research problems in the social sciences include (Berg 2004): 1) Quantitative data may lack

contextual detail; 2) Results provide less detail on behaviour, attitudes, and motivation.

Thus, the answers may not effectively convey how people feel about a topic or issue and in

some cases, might just be the closest match to the predetermined hypothesis; 3) Results

provide numerical descriptions and thus generally provide less deep explanations of human

opinions; 4) The research is often carried out in an unrealistic environment so that a level of

control can be applied to the exercise, and thus, leading to lab results instead of realistic

results that could be applied in the real world.

3.1.3 Mixed Methods Research Approach

Finally, the Mixed Methods Research (Creswell 2013) is an approach encompassing the

collection of both quantitative and qualitative data, integrating the two forms of data, and

using distinct designs that may involve hypothetical assumptions and theoretical structures.

Page | 54

By mixing both quantitative and qualitative approaches, design and methods, the researcher

gains in breadth and depth of understanding and validation, while offsetting the weaknesses

incorporated to using each approach by itself. Yet, the researcher must make a decision

regarding the implementation sequence of data collection methods.

Mixed methods research is specifically suited when the researcher wants to (Creswell

2013): 1) validate the results obtained from other methods; 2) needs to expand, clarify, or

build on findings from other methods; 3) look at a research question from different angles,

and clarify unexpected findings and/or potential contradictions; or 4) to generalize findings

from qualitative research.

However, there are several disadvantages associated with undertaking a mixed method

approach to research, which includes (Creswell 2013): 1) the research design can be very

complex and expensive; 2) It may be time consuming and require many resources to plan

and conduct this type of research; 3) may be difficult to link or plan a one method based on

the results obtained from another; 4) it may be unclear how to resolve the inconsistencies

that occur during the analysis and interpretation of the findings.

3.1.4 The Adopted Research Approach

A qualitative approach was chosen to this research. Firstly, the research objective was to

study the readiness and willingness of end-users to take a more active role in feedback

acquisition, modelling, and also interfacing in the sense of how they expect a tool support

for such purpose to be like. Conventional software engineering processes lack a common

theory for the collective involvement of users and their communities. There was no solid

background in the literature about this area to base the research upon. Thus, an exploration

about the end-user involvement perspectives related to their roles, behaviours, knowledge,

and personal experiences, and also their issues and concerns was needed. This initial

study led to the evolvement of a set of themes (i.e. topics to consider) regarding the

investigated research area, where each could be further examined and studied from

different angles.

Secondly, it was considered for the best interest of this research to conduct more in-depth

study of the feedback structure and its constituents, which was one or the main concluded

themes in the initial study, in order to develop a solid foundation that will enable this

research to move forward towards inventing a novel software engineering process for

feedback acquisition and modelling. Thus, more exploration was needed in order to gather

insights on how the end-users in the communities of business software provide and respond

to feedback, and utilize it in resolving similar issues or situations. A novel classification of

feedback, their constituents and relations was reached.

Since this research aim was to acquire and make use of the end-users’ feedback at during

Page | 55

the software maintenance and support phase while the software is in use, it was intended to

involve the role of software engineers, as they will be reviewing the end-users’ feedback in

order to plan for updates or next versions of the software. Thus, a further investigation was

needed to examine from their perspective the current feedback communication handling

methods with end-users in the evolution process and its associated problems. Also, to

explore from the engineers’ perspective the usefulness of the novel classification of

feedback, their constituents and relations that was reached, and how it could be utilized to

inform the evolution process tasks, and extract requirements information updates.

At the final stage of this research there was a need to integrate the concluded phenomena

from the previous studies to design the intended outcome of this research. That is to design

and develop a software engineering process for feedback acquisition, communication, and

documentation. The Participatory design research, which is considered a qualitative

research methodology option, was chosen to achieve this part of the research. It involved

both actual end-users and software engineers in the design process, and helped the

researcher observe how the prototypes were practically used by them. Also, participants

were active in making informed decisions throughout all aspects of the research process.

This helped validate the designed outcome in practice as it evolved from participants’ needs

and opinions.

3.2 The Research Design

The researcher not only selects a qualitative, quantitative, or mixed methods approach to

undertake, but also decides on a type of study within these three choices. Research designs

are types of inquiry within an approach that provide specific direction for procedures in a

research design.

3.2.1 Qualitative Research Designs

Since it was explained in the previous section that a qualitative approach was chosen for

this research, this section will focus on the qualitative research designs. And justify the

selected design for this research. There are five main qualitative research designs, which

are categorized as follows (Creswell 2007) (Lazar, Feng et al. 2010):

1) Narrative: In depth investigation of someone’s story in order to gather data about

what the story means and the lessons learned from it.

2) Phenomenology: Studying participants’ experience about phenomena in a certain

context that they lived to generate explanations.

3) Grounded Theory: investigates individuals’ interactions and views of the problem

rather on depending on prior hypotheses with the goal of developing a theory.

4) Ethnography: is an in-depth description of a people group done through participant’s

Page | 56

observation to discover a “cultural” phenomenon or pattern. It is then recorded in

the language of the host society under investigation.

5) Case study: The most common type of qualitative research, a case study looks at

irregular events in a certain context. The overall purpose is generally to explain

“how” by explanation.

3.2.2 The Adopted Research Design

The Grounded Theory was one of the most appropriate approaches to take. Grounded

Theory is an inductive methodology, meaning that it allows researchers to discover as much

as possible variations in people’s behaviours, issues and/or concerns about the problem to

generate new theories from data rather than depending on prior hypotheses (Lazar, Feng et

al. 2010).

Therefore, it can be defined as the systematic generation of theory from systematic

research. It is a set of rigorous research procedures leading to the emergence of

conceptual categories. These concepts/categories are related to each other as a theoretical

explanation of the action(s) that continually resolves the main concern of the participants in

a substantive area.

Since the Grounded Theory (Creswell 2013) approach is being adopted in this research

then the 4 –stage Grounded Theory analysis method will be undertaken in this research.

Once the data is collected, a series of Codes will be created from this data (i.e. user quotes

or observations by the researcher) to allow the key points of the data to be gathered. Codes

with similar content will be then grouped into Concepts to make the data more meaningful

and workable. Finally, broad groups of similar concepts will be grouped into Categories

which will be used to generate theory which is a collection of explanations that explains our

subject of research.

This research design specifically suited this research area and topic, because it was a green

area where research ideas were still evolving and considered from different angels. And

thus there was no solid background to build upon or derive hypotheses. Accordingly, more

exploration was needed to generate ideas that could help direct and narrow down this

research, and to obtain more data about behaviours, concerns and issues of both end-users

and engineers to help in devising new methods for feedback acquisition, communication,

and requirements extraction that could help each in his side/role.

3.3 The Designated Research Methods

In this section the research design process will be discussed along with the research

methods that were used to conduct the studies.

Page | 57

3.3.1 Thinking about Users and Design

“There is no direct path between the designer’s intention and the outcome. As you work a

problem, you are continually in the process of developing a path into it, forming new

appreciations and understandings as you make new moves.” (Charlotte Magnusson 2009)

It was thought that since the end-users were centres of this research, meeting real users

and exploring real situations, will have a major impact on the way the work will be carried

out and evolve. Moreover, another important role in this research was the software

engineers, who will judge whether the results reached from the end-users perspectives are

meaningful and useful to inform their maintenance tasks and decisions. So meeting with

them was also essential for this research design too, as the aim was to capture both

perspectives and include them in the design.

There are three basic components in any design process (Charlotte Magnusson 2009):

1) Idea generation: Ideas should be generated, selected and visualized (articulated).

This was done through a two-stage study from users’ perspective, where the first

study was carried out to generate ideas about end-users needs, issues and

concerns regarding feedback acquisition and communication, which helped narrow

down the research path. The ideas (themes) were visualized using thematic maps

which represented the core themes surrounding the main idea and the inner

categories and concepts regarding each theme. The second study was carried out

where one of the initial themes was selected and more examination was needed to

capture the core feedback types, their constituents, and relations. Detailed

explanation of the research methods and study results is made in chapter 4.

2) Know the user, usage and context. You should try to discover user needs, how the

user performs the same set of tasks today, how the user will use the proposed

artefact, and how this fits into the context.

Partially this was achieved in the first two-staged study process explained in the

previous step which focused on the end-user perspective. Furthermore, this was

achieved through a third study that was conducted with software engineers in a

business software house. Software engineers were also targeted users in this

research. Thus, an investigation of their current issues while communicating with

end-user using feedback and how this affects their maintenance tasks and

decisions was needed. Also capturing their needs, and expectations regarding the

utilization of the developed feedback structures in the communication, maintenance

tasks, and requirements updating was essential. Detailed explanation of the

research method and study results is made in chapter 5.

3) Evaluate. Ideas, concepts, models, prototypes need to be evaluated.

A fourth and final study was conducted, where ideas, concepts, models, and

Page | 58

prototypes were materialized and put into practice with both the end-users and

engineer. An in-depth study was conducted were a feedback acquisition prototype

was designed, and an initial design for feedback acquisition and communication

engineering process was designed too. Both designs were put into practice by

immersing the participants in fictional scenarios that imitate real situations to help

them evaluate and evolve the designs. Furthermore, another method was designed

with engineer participants to handle the updating of the utilized feature models, and

create/ update feature specification documents. Detailed explanation of the

research method and study results is made in chapter 6.

These activities are not strictly separable. To be able to visualize or articulate the researcher

needs to know the users (types and roles) and their usage. And information about the

needed user and the usage involved in the research may result from the evaluation of

visualized ideas or concepts.

3.3.2 Choosing and Combining Techniques

In the previous section the research studies were discussed from the perspective of why

they were needed and how they were used to achieve the research aims of this research.

However, no details about the research methods used for data collection and interaction

with the decided users and/roles of this research were mentioned or discussed. In this

subsection, a brief walkthrough the methods will be made without going into much details

which are explained in a separate chapter of each study (chapters 4,5 and 6).

No single technique will be appropriate for all needs and situations. Because of this a

researcher needs to discover and plan a suitable set of techniques that will go well together.

The basic factor to consider is what kind of input is needed, that is to decide what needs to

be achieved. For example, whether ideas are being explored, or design being evaluated.

After this start looking at which techniques that can be expected to help in achieving the

intended goals. There are some techniques more suitable for idea generation, while others

are more targeted at evaluation (Charlotte Magnusson 2009).

In this research the first conducted study employed the focus groups technique (Berg 2004)

(Lazar, Feng et al. 2010) where two focus groups were conducted with 15 end-user

representatives. Focus groups are a well suited research technique for ideas generation to

provide valuable input early in the design process, due to the high degree of user interaction

and brainstorming. However, it needs to be considered that usually the study takes place

out of realistic context.

Thus, a forums’ analysis study (Marra, Moore et al. 2004) was conducted in order to analyse

how users provide feedback in actual contexts. Three online forums for business software

were chosen, representative active feedback threads were selected and analysed. This

Page | 59

study was planned with a more in-depth perspective, which is trying to examine real end-

users’ feedback to come up with a more concrete description of feedback, its components,

and interrelations.

Moreover, for exploring the software engineers’ perspective a study was conducted in a

business software house, where 10 participants from 4 different roles were interviewed

(Lazar, Feng et al. 2010). The aim of the study was to explore with them how they carry out

the change management an evolution tasks, what are the current challenges they encounter

that hinder their ability to efficiently perform their tasks and take decisions, and how they

could utilize the novel feedback classifications. Interviews are one of the most traditional

techniques for exploring requirements. Even if the general procedure for doing interviews

(Berg 2004) is rather straightforward, there are many techniques that are useful to learn to

carry out the interviews in a professional, efficient and in a context scientific way. This was

ensured through conducting an initial introductory session where the topic was introduced,

the results reached so far, and the purpose of the study. For the research results, prepared

materials with the feedback types list and examples from the forums threads to illustrate

how they were derived were presented to the participants. This was to help them

understand the results better from real cases similar to what they encounter in their work,

and conceive an idea about how the results could be utilized. Furthermore, for pragmatic

reasons a confirmatory interviews study was conducted with five other participants who

come from different back grounds. This is to confirm the results reached with them and

share their perceptions about any particular situations or gaps they determine.

In this research a qualitative “bottom-up” research approach was taken, which means that

concepts, needs, and challenges all evolved from actual stakeholders in the research

studies. That is why a need for a separate validation study will be waived. Instead, at the

end, the proposed approach will be verified and validated by applying it in practice through a

participatory design method conducted with both end-users and engineers to 1) investigate

the use of the novel feedback types in practice and whether they are easy-to-use by end-

users. 2) Also, to investigate whether they are successful means in providing engineers with

useful/ meaningful information that could help them in accomplishing the evolution tasks and

taking decisions through the new proposed approach for feedback acquisition and

communication. 3) And to design with the engineers how the stored communication threads

could inform the requirements extraction and updating method.

A participatory design method (Kensing and Blomberg 1998, Spinuzzi 2005, Foth and Axup

2006) was chosen in order to assist in designing the intended approaches which are 1) the

design of feedback acquisition, communication and requirements updating method and

evolve the initial process designs and tool prototypes with their intended audience (i.e. the

end-users and the software engineers) (Kanstrup 2012). Thus, a verified design outcome is

ensured; 2) and to design with the engineers (i.e. the intended users of the approach) a

Page | 60

method for extracting requirements information and updating the feature model and

specification.

Furthermore, triangulation (Jick 1979) is a method used in qualitative research that involves

cross-checking multiple data sources and collection procedures, which is the case in this

research as several studies were conducted using different methods, so evaluating the

extent to which all evidence converges was necessary. Qualitative analysis of text is often

supplemented with other sources of information to satisfy the principle of triangulation and

increase trust in the validity of the studies’ conclusions. This was also one of the motives

and advantages for choosing the participatory design method in the final study of this

research. Figure 5 shows the mapping between the research objectives and the research

methodologies used to achieve them.

Page | 61

Figure 5. The Mapping of the Research Objectives, the Research Process and the Adopted
Research Methodologies

3.4 Thematic Analysis and Content Analysis

In this section the two main qualitative data analysis techniques will be discussed, which are

content analysis and thematic analysis (Vaismoradi, Turunen et al. 2013) (Joffe and Yardley

2004). The definitions and usages for both techniques will also be explained. Then the

Page | 62

adopted thematic analysis approach will be discussed.

3.4.1 Thematic Analysis

Thematic analysis is often seen as a poorly branded method (Vaismoradi, Turunen et al.

2013), in that it does not appear to exist as a named method of analysis in the same way

that content analysis does. Thematic analysis as an independent qualitative descriptive

approach is mainly described as “a method for identifying, analysing and reporting patterns

(themes) within data” (Braun and Clarke 2006).

A main question to deal with in terms of coding is what is considered a pattern/theme? The

answer is “A theme captures something important about the data in relation to the research

question, and represents some level of patterned response or meaning within the data set.”

Themes or patterns within data can be recognized in one of two fundamental ways in

thematic analysis: in an inductive or “bottom up‟ way, or in a theoretical or deductive or “top

down‟ way (Boyatzis 1998) (Fereday and Muir-Cochrane 2006).

On one hand, an inductive approach means the themes identified are strongly linked to the

data themselves (as such, this form of thematic analysis bears some similarity to grounded

theory). Inductive analysis is a process of coding the data without trying to fit it into a pre-

existing coding frame (Braun and Clarke 2006), or the researcher’s analytic preconceptions.

In this sense, this form of thematic analysis is data driven. As mentioned in this chapter the

researcher had no preconceived idea about the

On the other hand, a “theoretical‟ thematic analysis would tend to be driven by the

researcher’s theoretical or analytic interest in the area, and is thus more explicitly analyst-

driven. This form of thematic analysis tends to provide less a rich description of the data

overall, and more a detailed analysis of some aspect of the data.

From the advantages of using thematic analysis approach (Braun and Clarke 2006): 1) It

has a large margin of flexibility for researchers; 2) Useful method for working within

participatory research paradigm, with participants as collaborators; 3) Can usefully

summarise key features of a large body of data; 4) Manageable to researchers with little or

no experience of qualitative research; 5) Can draw attention to similarities and differences

across the data set.

3.4.2 Content Analysis

There are various definitions of content analysis. (Stemler 2001) summarized previous work

and stated that content analysis is “a systematic, replicable technique for compressing many

words of text into fewer content categories based on explicit rules of coding”. This is a

narrow definition as it limits content analysis to the textual information domain. A broader

Page | 63

definition was proposed by (Holsti 1969) which states that content analysis is “any technique

for making inferences by objectively and systematically identifying specified characteristics

of messages”. According to this definition content analysis data can come in different forms

such as books, pictures, ideas, music or videos.

“Content analysis is normally an in depth analysis that searches for theoretical

interpretations that may generate new knowledge” (Lazar, Feng et al. 2010). It refers to a

data analysis technique used in both quantitative and qualitative research. This technique

assists the researcher to identify important data from a data corpus. The aim of the

researcher is to analyse the content of each data item. In most content analyses,

researchers use coding systems to identify and categorize various data items.

When studying data analysis in conducting research, content analysis and thematic analysis

are the most two types of analyses used in research. For most researchers, sometimes the

difference between content and thematic analysis can be rather confusing as both include

going across the data to identify patterns and themes. However, it is important to emphasize

that the key distinction between them is that in the content analysis, the researcher can

focus more on the frequency of occurrence of various categories, while in the thematic

analysis, it is more about identifying themes and structuring the analysis in the most

consistent and organized manner. This is why content analysis is now vastly used in

communication and media.

Some practical applications of content analysis (Stemler 2001) are: 1) determining

authorship by compiling a list of suspected authors, examine their prior writings, and

correlate the frequency of nouns or function words to help build a case for the probability of

each person's authorship of the data of interest; 2) Content analysis is also useful for

examining trends and patterns in documents; 3) content analysis provides an empirical

basis for monitoring shifts in public opinion.

3.4.3 The Adopted Analysis Technique

This work has been based on “good quality‟ data corpuses and data sets. This could be

judged by a specific set of criteria regarding what, why, and how they were collected, and

offer rich, detailed and complex interpretations of the topic. Good data do not just provide a

shallow overview of the topic of interest, or simply repeat a common-sense explanation.

The studies conducted in this research were all with potential users (whether customers or

software engineers), who deal with the research problems in their daily work. This research

used “bottom-up” approach in thematic data analysis, as there was no preconceived idea

about the depth and levels of details that the participants were going to provide and thus the

analysis was entirely data-driven.

http://www.differencebetween.com/difference-between-methods-and-vs-techniques/
http://www.differencebetween.com/difference-between-qualitative-and-vs-quantitative-research/
http://www.differencebetween.com/difference-between-theory-and-vs-research/
http://www.differencebetween.com/difference-between-scientist-and-vs-researcher/

Page | 64

Thematic analysis was seen as the most suited technique to analyse the collected data in

this research as it has a margin for flexibility (Braun and Clarke 2006). Moreover, this

research has resulted in introducing new concepts and engineering methods to the area.

This evolved through the staged studies that were conducted though this research, and

therefore it was necessary to use an analysis technique that will assist in providing rich

descriptions emphasizing context (rather than quantifiable results) to help term the new

concepts and introduce novel methods.

3.4.4 Qualitative Research Analysis Tool

“NVivo is software that supports qualitative and mixed methods research. It’s designed to

help researchers organize, analyse and find insights in unstructured or qualitative data like:

interviews, open-ended survey responses, articles, social media and web content.”

(International Copyright © 1999-2014)

Without tool support working with qualitative data will be more time consuming, difficult to

manage, and hard to traverse. Essentially, completing this kind of research without tool

support can make it very hard to determine connections in the data and find new insights.

NVivo can be also used to provide tools that allow researchers to ask questions of their data

in a more efficient way. On example, is that it can be used in coding comparison to compare

the degree of agreement and disagreement between the analysis content of two different

researchers.

3.5 Ethics in the Research

There are a number of key phrases that describe the system of ethical protections that were

created to try to protect better the rights of the research participants (Orb, Eisenhauer et al.

2001). The principle of voluntary participation requires that people not be forced into

participating in research. Closely related to the notion of voluntary participation is the

requirement of informed consent. Essentially, this means that potential research participants

must be fully notified about the procedures and risks involved in research and must give

their consent to participate. Ethical standards also necessitate that researchers not put

participants in a situation where they might be at risk of harm as a result of their participation

(Berg 2004). Harm can be defined as both physical and psychological. There are two

standards that are applied in order to aid in protecting the privacy of research participants.

Almost all research guarantees the participants’ confidentiality -- they are guaranteed that

identifying information will not be made available to anyone who is not directly involved in

the study. The stricter standard is the principle of anonymity which essentially means that

the participant will remain anonymous throughout the study. Clearly, the anonymity standard

is a stronger guarantee of privacy.

https://en.wikipedia.org/wiki/Qualitative_research

Page | 65

Even when clear ethical standards and principles exist, there will be times when the need to

do accurate research runs up against the rights of potential participants. No set of standards

can possibly anticipate every ethical circumstance. Furthermore, there needs to be a

procedure that assures that researchers will consider all relevant ethical issues in

formulating research plans. To address such needs most institutions and organizations have

formulated an Institutional Review Board (IRB), a panel of persons who reviews grant

proposals with respect to ethical implications and decides whether additional actions need

to be taken to assure the safety and rights of participants. By reviewing proposals for

research, IRBs also help to protect both the organization and the researcher against

potential legal implications of neglecting to address important ethical issues of participants.

In this research, two research ethics submissions were sent to The Bournemouth University

Research Ethics Committee (UREC). UREC considers ethical issues related to research

and research-related activities brought to its attention by Academic Schools, researchers

and the wider university community (University 2017). The first ethics submission covered

the focus groups study with end-users, the forums analysis, and the interviews study with

software engineers, while the second ethics submissions covered the participatory design

study with both the end-users and the software engineers. Both ethical submissions were

approved by UREC.

Besides the required ethics checklists two main documents were prepared and submitted

for each study. The first is the participant agreement form, which was used in the studies to

obtain the participants’ signed consent to be involved in the study. The second is the

participant information sheet, which briefly introduces the topic to the participants, explains

the purpose of the study, clarifies to the participants why they have been chosen, what does

taking part of the study involve, and what are the possible advantages, disadvantages, or

risks of being involved in the study, also it describes the type of information sought from

them. Samples of both documents are available in Appendix 1.

3.6 Summary

In this chapter the three approaches to research were explained, along with details

regarding the reasons for choosing adopted research approach, design and methods, and

analysis techniques. In the next chapter the first two studies that attempt to achieve the

research aims and objectives and introduced. The adopted research methods are explained

in more detail, and the results are illustrated and described.

Page | 66

4. Exploring Feedback Structure - User View Point

This chapter explains the two user studies that were conducted in order to explore and

observe the structure of users’ feedbacks and other aspects related to feedback acquisition.

The chapter explains the research methods that were followed in both studies and the

results reached from each study. These results act as the foundation for our next steps in

the research by providing illustrated results from actual users’ opinions and feedbacks.

In this chapter the research methods used to conduct a two phase empirical study are

explained. A qualitative approach is adopted (Berg 2004). The study consists of two phases

including two focus groups in the first phase and three forums’ analysis in the second. Each

study will be described, its goals, research questions, and data analysis method, and the

themes resulting from each study.

4.1 First Phase Study (Focus Groups)

A qualitative approach was adopted to explore and understand how users provide feedback

and their preferences on the acquisition process (Creswell 2013). The study had two

phases. In the first phase study a two sessions focus group study was conducted, which is a

popular technique of qualitative research in software engineering (Kontio, Lehtola et al.

2004). Focus groups can provide valuable input early in the research process as it is a

discussion and demonstration of artefacts (Lazar, Feng et al. 2010). The main advantages

of focus groups are: 1) they are useful to obtain detailed information about personal and

group perceptions and opinions about the researched topic; 2) identify changes in users’

behaviour, how these changes are triggered, and why; 3) they can provide a broader range

of information and investigate the use, effectiveness and usefulness of particular services;

4) they offer the opportunity to seek clarification to deepen understanding. The results of the

focus groups was analysed using the thematic mapping approach (Braun and Clarke 2006),

which is a flexible method for working within participatory research paradigm, with

participants as collaborators.

The study goal was to collect some insights and ideas from users who have actually given

feedback before, in order to provide us with opinions from their own experience (for more

details see Appendix 2). This contributed to our research by providing a set of themes, each

that can be further investigated and researched. The main areas to explore were:

1) To explore the ways users would like feedback to look like, and the criteria that

judge whether the feedback is meaningful and useful

2) To understand how software users give feedback and how they think a good

feedback should be structured.

Page | 67

3) To explore the way users would like to be involved in the process of providing

feedback, and what encourages them to act as evaluators

4) To understand how users could benefit from the experience of other users’

feedback structures and reuse them to answer similar cases or problems.

The focus group consisted of two separate sessions. A same set of questions were used in

each session with different combinations and focuses as summarized in Table 1. The

purpose of the study was not to point out the differences between end-users and engineers.

But instead to capture a balanced set of concepts that capture the whole picture depending

on their roles and experience.

Table 1. Focus group session settings

Sessions Participants Purposes

1
Developers who gathered user feedback or got

involved in feedback gathering in the past

Channels, forms,

expectations

2
Regular software users who provided feedback

in the past

Channels, motivations,

concerns, experiences

Both junior and senior software developers were invited to join the first session where the

emphasis of this session was to understand how software developers normally gather user

feedback, how they think a good feedback should be structured and how they collaborate

and communicate with users in the development as this could inform the way we design

feedback requests. The second session was conducted with regular software users who are

used to providing feedback. The emphasis of this session was to explore the ways that

users would like feedback requests to look like, what drives them to provide feedback and

their concerns for not getting involved enough and also for being involved more than what

they expect. This session was also used to investigate their motivations to take part in

projects and learn their experience from that participation.

A total of 15 volunteers, 8 males and 7 females aged between 18 and 40, were invited to

participate in the two focus group studies. There were 8 participants in the first session (2

females and 6 males) and 7 participants in the second session (5 females and 2 males).

These participants mainly came from Egypt and UK with various backgrounds ranging from

management, student, research and IT and had different experiences in using software and

providing feedback.

It should be noted that most user participants were already familiar with feedback whether

they have given their feedback before on a software or product, or used feedback as a way

to reach solutions or reuse other experiences. For example, they used feedback for simple

Page | 68

tasks such as collecting the notes for lectures, programming forums to get solutions for

certain coding and debugging problems, etc. In addition, it was ensured that all are familiar

with the concept by showing demos and discussing main concepts.

Participants of each session were recruited separately following a pre-selection process to

ensure they have similar characteristics. For example, for those engineers volunteered for

the study, they had to have the experience of gathering user feedback or getting involved in

such activities in the past. Similar pre-selection processes were also used in recruiting

software users who provided feedback in the past. The same moderator was used for both

sessions. The moderator followed a specially designed interview to balance the need for

natural conversation and focused discussion when conducting the focus groups.

Each session lasted two hours. All conversations were audio recorded and transcribed with

consent from participants. They were aggregated and analysed by using thematic analysis

method.

The Focus group was small scale study, so only one researcher acted as the sessions’

moderator and primary analyst of the data. Acting as the sessions’ moderator, this analyst

had full understanding of the data gathered. Furthermore, another researcher looked at the

codes to revise them and check if there is any ambiguity. Thus, credibility of the findings

was ensured and maximized by the inter-coder agreement and academic advisor’s auditing

(Miles and Huberman 1994, Creswell 2012).

4.2 Focus Groups Study Results

Following the recommendation of six stages of analysis (Braun and Clarke 2006), four

thematic areas were formed and 15 themes were identified from the analysis. The four

thematic areas are: subject, structure, engagement and involvement (Sherief, Jiang et al.

2014) . The endpoint is the reporting of the content and meaning of patterns (themes) in the

data, where “themes are abstract constructs the investigators identify before, during, and

after analysis”. The four thematic areas constituting the final thematic map in Figure 7 are

explained in details in sections 4.2.2 to 4.2.5, each in a section. Section 4.2.1 shows the

initial thematic map.

4.2.1 Initial Thematic Map

Figure 6 shows the initial thematic map that was developed through the first iteration on the

focus groups’ scripts. Using thematic mapping in analysing the focus groups is a recursive

and iterative process, where an analyst can move back and forth as needed throughout the

phases. This means that the more the scripts were read the more enhancements,

modifications, and codes evolved until the final thematic map in Figure 7 was developed. In

essence, coding continues to be developed and defined throughout the entire analysis.

Page | 69

Writing is an integral part of analysis, not something that takes place at the end, as it does

with statistical analyses. Basically, codes and categories were analysed, and considering

how different codes may combine to form a principal theme. At this phase it is important to

use visual representations, such as mind maps to help sort the different codes into themes.

Figure 6. The Focus Groups’ Study Initial Thematic Map

Page | 70

4.2.2 Environment Thematic Area

Environment refers to the settings that support users so they feel confident in providing

meaningful evaluation feedback. This includes subject specificity, clarity and feedback

method.

 In detail, participants would like to use a method they prefer to aid them in easily

providing feedback.

 Moreover, they would like to give more detailed feedback explanation when they

reach a clear problem specification. Furthermore, to improve the clarity of

feedbacks, participants pointed out that it is preferable to add reasons and

explanations in feedbacks to help make their viewpoints more comprehensive.

Also, providing structure to the feedback will decrease misinterpretations and

eases the analysis of texts afterwards.

 Subject specificity can be goal-oriented, which means by specifying the quality

attribute in the feedback that concerns the user, such as usability, or reliability. Also,

subject specificity can be influenced by the type of feedback the user would like to

provide, as more users tend to give feedback when they need help or when a

problem occurs.

This informs our research (RQ 1 in section 4.1.1), as the feedback acquisition method

needs to provide users with software-related terms and/or interfaces in a way they can

understand and suits their capabilities, so they feel confident in giving meaningful feedback.

Table 2 provides examples of coded phrases for Subject thematic area.

Table 2. The Environment thematic Area

Theme Codes Sample Coded Phrases

Specificity Quality Attribute “Specify the quality problem that I am giving feedback

about”

“Feedback should measure the quality of the software”

“There should be a rate for every quality aspect of the

feature. For example privacy, reliability, usability”

Feedback Type “Feedback when an error occurs, this makes it more

accurate (specific)”

“Users can report a problem and others can suggested

a solution to it”

“It is better if the user can be able to suggest a solution

to the problem in the feedback, if he has one”

Method Text “Add text option to explain details”

Page | 71

Audio “Voice feedback is fast and an easy way to express

opinions”

Snapshot “It is preferable to be able to take snapshots of the

system in order to specify the steps I did in order to

reach the problem”

Scaling “Scaling is easier in natural language and not

numbers, such as: good, bad, very bad…”

“The user should be able to select a feature and

specify a scale (rating) while submitting the feedback”

Keywords “Use a group of keywords provided by the feedback

tool to the user to express his feedback”

Clarity Structure “Using tags or pre-defined keywords can to ease the

analysis of text feedback”

“The feedback has to be hierarchical (in a tree format),

where the user starts to navigate according to his

answers to questions to reach a specific problem

definition”

“Providing feedback through natural language text can

be misinterpreted”

Comprehensiveness “Giving detailed feedbacks will help in better solution to

the problem ”

“I can give more detailed feedback explanation about

the problem including when the problem occurs; the

alternatives I tried”

“If I gave the feature rate 7, I would like to add why this

rate was given”

4.2.3 Structure Thematic Area

Structure refers to the attributes of a feedback which are favourable to be seen, mainly, by

software engineers. Participants confirmed some common perceptions.

 They thought that feedback would be more useful and accurate if it was feature

oriented.

 It would be useful to be able to correlate feedbacks according to the inter-

relationships between the features, because some features may affect the

functionality of others.

 It is important to provide the possibility of varying levels of detail in the feedback to

ensure a minimum level of meaningful and useful information, and also to put into

consideration other contextual aspects that might affect the users while giving their

feedback.

Page | 72

 Engineers also suggested using simple measurements in a way to aid users in

giving their feedback through and re-using the experiences of others. For example,

users can rate how much others’ feedbacks were meaningful or useful, and

accordingly statistics can appear to users to show other useful feedbacks. Also,

users can give feedback about their experience with new changes in the software to

aid engineers in measuring user satisfaction.

 It is also important to consider the timing of giving the feedback. Users thought that

giving a feedback immediately is important especially in reporting errors or

problems, as it helps giving more accurate feedbacks with detailed explanations,

and therefore would affect the structure of the feedback.

This informs our research (RQ 2 in section 4.1.1), as feedback structure introduces the

challenge of balancing between simplicity and expressiveness of feedback from users who

do not necessarily have a technical background but they are still able to give specific and

measured feedback when provided with the right tools. So translating users’ judgments to

terms and language which are perceivable by users and require minimized facilitation of

moderators is needed. Having a well-structured feedback will also provide benefits towards

a systematic requirements extraction process, and benefiting from other users’ experiences

which informs our research (RQ 4 in section 4.1.1). Table 3 provides examples of coded

phrases for Structure thematic area.

Table 3. The Structure thematic Area

Theme Codes Sample Coded Phrases

Specificity Feature-Oriented “The user choses a component or feature to give

feedback about”

Inter-Relations “Relationships between features should be

considered, because a feedback about one single

feature may affect other features too”

“Each block in software may consist of multiple

features. Therefore, the user has to specify on

which step/feature he is giving his feedback”

Level of Detail Depth “What is the main feedback body and other

additional parts that just explain more about the

feedback”

“Scaling ensures that there is a minimum level of

meaningful information that was entered by the

user”

Page | 73

“if I gave the feature rate 7, I can express why this

rate was given”

Context “Feedback is affected by the time I have for giving

feedback, or the user’s mood while giving the

feedback”

“The device, OS and machine specifications should

be entered as a part of the feedback”

“Feedback should be allowed for users who have

been using the system for a while”

Measurement Statistics “If an old feedback for a software feature states

whether it was good or bad, statistics should occur

to represent how much it was meaningful and

useful or not”

Rating “Bank of feedbacks, where I can view feedbacks.

And rate how much I agree with the feedback or

differ from them”

“The person who posted the problem is the best

one to rate which answer is the best (best resolves

his issue)”

“Rating the review if it helped in solving others’

problems or not”

Satisfaction “If the software introduced a change to the user for

example a change in the user interface, after a

period of usage the user can confirm is it better or

worse than before, and a rate bar occurs to express

that feeling”

Timing Immediate “Giving feedback when an error occurs, makes it

more accurate (specific)”

“from the benefits of giving real-time feedback is

that you can take live snapshots of the problem that

you might not find again later”

Delayed “In groups sometimes users get admin approval to

post after it is too late”

“Opinion feedback types can be provided offline

through an e-mail or form”

4.2.4 Engagement Thematic Area

Engagement refers to the key merits the acquisition process provides to the involved users

that encourage them to take part as evaluators. This includes some key characteristics of

Page | 74

engaged users with the process, and also the qualities that are important to the process.

Participants noted some key characteristics of engaged users with the process:

 Participants mentioned that they would like to be recognized through their

reputation. Reputation may be considered as a component of identity as defined by

others. Reputation is a vital factor in any community where trust is important. Also,

users would take recommendations, and/or solutions into consideration if they are

given from reliable users. The reliability of users increases the weight of their

feedbacks.

 Users like to be valued in a way in the participation. Participants mentioned that

their feedback is valued by knowing that it taken into consideration for further

analysis and leads to software enhancements. Also, the possibility to learn from

others’ experiences provides great value to users as it increases their awareness

by knowing other possible features variations they were no aware about before.

Participants mentioned that channel and transparency are both important to the acquisition

process.

 Channel reflects the way users want to interact through feedback. They would like

the feedback acquisition process to be simple and interactive. Also, after giving

their feedback they would appreciate if they can chat with a human expert or with

the analyst to discuss their feedback.

 It would increase users’ trust if they know the cycle in which their feedback will be

handled and considered. Transparency generally implies openness, which can be

achieved in different ways. The user can be notified through a message that the

feedback will be taken into consideration. Moreover, the user may be notified with

the overall process of processing the feedback. Also, transparency may be

achieved by giving the user an example of other users whom their feedback was

taken into consideration and their issue was resolved.

This thematic area informs our research (RQ 3 in section 4.1.1), in providing an outline of

aspects to consider that increase user willingness to actively participate in such a new role

as evaluators and how to support that by software tools. Table 4 provides examples of

coded phrases for Engagement thematic area.

Table 4. The Engagement thematic area

Theme Codes Sample Coded Phrases

Recognition Reputation “The user’s reputation is important, user’s feedback

with high reputation weighs more as it is more

trustworthy”

http://en.wikipedia.org/wiki/Identity_(social_science)
http://en.wikipedia.org/wiki/Online_community
http://en.wikipedia.org/wiki/Trust_(sociology)

Page | 75

Reliability “If the feedback is recommended from a community of

trusted and reliable users then yes I would take their

recommendations into consideration”

Value Consideration “Users have to be notified that this feedback will be

taken into consideration and that actions will be taken”

Awareness “The bank of statements or software suggestions may

show me features or usages that I was not aware of”

“If there are other variations of the same feature then I

will not care much about ratings and/or opinions”

“If the user kept using a certain feature without

exploring any other ways, the system can increase his

awareness by giving him a list of friends’ experiences

with features”

Channel Interactivity “The interactions should be very simple and include

natural language processing”

Chatting “Suggests that there could be a community to collect

feedback from the users and discuss it with them, and

that is to encourage them and show them how

valuable their feedback is”

“Meet analysts to discuss with them problems or

enhancements”

“Solutions in the feedback can be the key to criteria to

choose these users for open discussions with the

analysts”

Transparency Process “I should know what will be done with my feedback”

“it would increase the users’ trust and willingness to

give feedback if they know the cycle of how their

feedback will be used”

Notifications “When the user submits the feedback, he/she is

notified that it will be reviewed”

“Tell the user that he/she will be notified soon, for

example, within 24 hours, so the user knows that

within this period an action will be taken”

Exemplification “Increase users trust by giving them examples of users

who gave negative feedback and the issue was

resolved”

Page | 76

4.2.5 Involvement Thematic Area

Involvement refers to a variety of “environmental” aspects that motivate users to participate

in the process of feedback acquisition and can directly influence the decisions and activities

in using/evaluating the software, which informs our research (RQ 3 in section 4.1.1). Table 5

provides examples of coded phrases for Engagement thematic area.

 Privacy issues were raised by participants. Participants differentiated between two

aspects in privacy, the privacy of their identity “would like to stay anonymous”, and

the privacy of the content they provide (i.e. their feedback) “it is important if the

user can control who is able to see his feedback”.

 Participants were particularly interested in the rewards mechanism for involvement

whether through implicit or explicit incentives. Implicit incentives are not based on

anything tangible. Social incentives are the most common form of implicit

incentives. These incentives allow the user to feel good as an active member of the

community for example through increasing their reputation. Explicit incentives refer

to tangible rewards, for examples financial.

 The level of support from the feedback system was considered important. Many

suggestions were raised about how a feedback acquisition tool can help them. For

example, the interaction styles “there can be videos to explain to the users what

they can do (in order to provide feedback)”. The ease of use of the feedback

acquisition tool is important. They also suggested that the feedback tool can provide

hints to the users about its capabilities. Moreover, if there is an automated

detection in some steps of providing the feedback, this would further ease their job.

For example if the tool can automatically detect the feature the user is having

trouble with.

 The feedback tool response on feedback was also considered important. Two

characteristics of system response were discussed, which are the speed of

response from the system and the language of response.

Table 5. The Involvement thematic area

Theme Codes Sample Coded Phrases

Privacy Identity “Users would like to stay anonymous (do not specify

any info)”

Content “It is important to ensure privacy of feedback (most

important to control who sees my feedback)”

Rewards Implicit Incentives “Users who gave feedback that positively helped in

enhancing a feature can be accredited to the user to

increase his reputation”

Page | 77

Explicit Incentives “If the user has a page for his business and he gave

a very good feedback that helped enhance the

system. Then we can offer to take care of his

business page for free”

“On freelancing websites, I could award the

developers who gave good feedback, by suggesting

them to business owners who need softwares”

“Free trials are to use applications and give

feedbacks on the application features”

Support Interaction Style “The feedback can be interactive that is users can

explain how they can add to the software to enhance

it”

“Use of drag and drop components will be easy”

Hints “Give him hints or a template if the user doesn’t

know how to give feedback”

Automation “Try to monitor or record what are the frequent tasks

that the users do and their sequence so I can

provide shortcuts to them (adaptive and

customizable)”

“For example, the components are used through

drag and drop and whenever there is a problem or

error in the components connection, the software

automatically suggests other ways or components”

Response Speed “the Software’s speed of response to my feedback

affects my willingness to give feedback ”

Language “The language of confirming with the user should be

friendly (e.g. thank you for your valuable feedback)”

“The way of asking for feedback should be friendly

and not obligatory”

Page | 78

Figure 7. The Focus Groups’ Study Final Thematic Map (Sherief, Abdelmoez et al. 2015)

4.3 Second Phase Study (Forums Analysis)

Our research aims entail building a more concrete description for feedback structures. The

focus groups allowed us to get a starting point to that and in order to get the elaborated

view. Another study was conducted that involved the analysis of three actual online forums

(Marra, Moore et al. 2004) that share the same domain where users give feedback on

business software. 200 feedbacks were analysed from different threads found on Microsoft’s

TechNet, WordPress, and SAP forums.

RQ1) What are the concepts that constitute the feedback structure?

RQ2) What are the relationships/ patterns between feedback concepts?

Page | 79

Forums are a feedback medium where any user can provide their feedback about a product

or service (Charlotte Magnusson 2009). Users can also view other users’ feedbacks and/or

reuse other users’ feedbacks and edit feedbacks that they already posted. In this sense,

forums gather a variety of user judgements, experiences and practices. For this reason,

forums may be a rich source for user problems and user experience with a particular

product or service.

Other options were considered such as end-user feedback from the AppStore. A study

conducted by (Pagano and Maalej 2013) to study the types of end-user feedback in the

AppStore was also examined and studied. Their study shows interesting results on the

categorization level of different types of feedback found on the AppStore, without getting

into details of what are the constituents of each type. Also, based on their analysis of 1100

user feedbacks on the AppStore, 77.82% of users tend to provide rating feedback type,

which is a kind of feedback where users answer static predefined questions and do not

elaborate much on their opinions. Thus, extracting the constituents of different feedback

types using content from mobile apps would be less effective and lacking the rich content

that enables the capturing of the needed concepts.

The type of feedback to be captured, which is the objective of feedback in this thesis work,

is the feedback used in the communication between both end-users and engineers while the

software is in use (i.e. in the maintenance phase). This input reflects the end-users’:

opinions about specific features, how the overall software meets their needs and

expectations, help requests, bug reports, enhancements requests, new features requests,

and also other types that could be used by both parties in their communication. This is to

accomplish objective 2 and inform objective 3, which is to provide a systematic manner for

feedback acquisition and communication that employs structured feedback that carries

useful and meaningful information enough to inform the evolution process tasks and

decisions in an accurate and effective manner.

Basically it is intended to undergo a more detailed analysis and observation of users’

feedback about software applications used in business environments. Business software

was targeted to: 1) avoid the noise typically found in general purpose software, as normally

users tend to give a more serious and focused feedback. 2) Also, business users are best

fitted from the motivation perspective, because it has a direct value on their work and

performance. From a practical point of view, forums will allow us to access a large number

of users; take a snap-shot of how users actually give feedback.

Table 6 below shows the software forums used for this analysis study along with a

description of the main function they provide for end-users, and the support forums’ links.

These three forums were chosen in order to target different types of business users with

diverse technical capabilities. First, in the TechNet forums, the feedback threads of office

users will be analysed. Office is a famous desktop application suite, where users with basic

Page | 80

technical skills use in their simple daily tasks.

Table 6. Targeted Forums data

Forum Name Product Description Links

Microsoft’s

TechNet Forums

(Office Suite)

All versions of Office include

software for the things users do

most often, including working on

spreadsheets, or word processing,

and organizing business with clear

view of e-mails, calendars and

contacts.

https://social.technet.microsoft.c

om/Forums/

WordPress

Forums

WordPress is an Open source, and

easy to use software that enables

users to build websites or blogs.

https://wordpress.org/support/

SAP Forums SAP (Systems, Applications and

Products) is a

multinational software corporation

that makes enterprise software to

manage business operations and

customer relations.

http://scn.sap.com/threads

Second, in the word press forums there are different kind of roles (Press 2015) the user

can take, such as:

 Super Admin – somebody with access to the site network administration features

and all other features.

 Administrator – somebody who has access to all the administration features within a

single site.

 Editor – somebody who can publish and manage posts including the posts of other

users.

 Author – somebody who can publish and manage their own posts.

 Contributor – somebody who can write and manage their own posts but cannot

publish them.

 Subscriber – somebody who can only manage their profile.

Therefore, by targeting such a forum a wider range of users who do more complex tasks

and thus have a more mature level of technical competencies are targeted.

Finally, SAP User Groups provide a valuable channel through which SAP gathers feedback

concerning the problems and requirements of its users in all technical and functional areas

https://social.technet.microsoft.com/Forums/
https://social.technet.microsoft.com/Forums/
https://wordpress.org/support/
http://en.wikipedia.org/wiki/Multinational_corporation
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Enterprise_software
http://scn.sap.com/threads
https://codex.wordpress.org/Super_Admin_Menu
https://codex.wordpress.org/Roles_and_Capabilities#Administrator
https://codex.wordpress.org/Roles_and_Capabilities#Editor
https://codex.wordpress.org/Roles_and_Capabilities#Author
https://codex.wordpress.org/Roles_and_Capabilities#Contributor
https://codex.wordpress.org/Roles_and_Capabilities#Subscriber

Page | 81

of interest. This will give us a view of users who use tailored softwares in different industrial

areas, such as Retail, Finance, or Human Resources.

Using software in the data analysis process has been believed to increase consistency

and/or accuracy of qualitative research (Lu and Shulman 2008). Software tools provide a

degree of accessibility and efficiency, enhancing the overall level of organisation of any

qualitative project. Researchers enhance their ability to examine, sort, filter, search, and

think through the identifiable patterns as well as peculiarities in large datasets. In our

research, NVivo 10 (International Copyright © 1999-2014) was used in the data collection

and analysis.

Moreover, multi-coder arrangement (Crawford, Leybourne et al. 2000) is valuable to reduce

subjectivity and bias. Research which uses a single coder to mark themes relies on the

coder’s ability to accurately and consistently recognize examples. Having multiple coders

analysing the text increases the chance of finding all the examples in a text that relate to a

given theme. It helps increase the reliability of the analysis process. Furthermore, multi-

coder arrangement can also serve as an external validity assess for the coded data,

demonstrating that multiple coders can select the same text as relating to a theme. This

helps validate that a theme is not just emerging from a single coder subjective thinking.

Therefore, two researchers performed the coding and analysis of forums. The first

researcher is the PhD student, who is the main member in this research. The second

research participant was engaged to ensure the above benefits are met. This participant

works as a senior software engineer in an International Software house based in Germany.

He has special expertise in engineering enterprise resource planning systems using SAP,

and online stores using Hybris. Also, he has experience in dealing with customer problems

through feedback loops, solution proposals, requirements verification, and software

acceptance. Therefore, both researchers have common knowledge ground, which will lead

to more fruitful discussions.

Both researchers coded the same collection of sources. To start with, the two researchers

both sat and reviewed the initial stages of coding to ensure they have similar interpretation

of the codes, and they started with the same initial template in Figure 8. A node hierarchy

was created for each team member with a definition for each node. Nodes can be themes,

concepts, categories and/or codes. After each team discussion, the members refined,

merged and/or reorganized the nodes. Thus, credibility of the findings was ensured and

maximized by the inter-coder agreement and academic advisor’s auditing (Miles and

Huberman 1994, Creswell 2012, Creswell 2013).

Page | 82

4.4 Forums Analysis Study Results

As a result of the focus groups analysis, the final thematic map in Figure 7 shows broad

results of users’ feedback aspects (Sherief, Abdelmoez et al. 2015). Each thematic area

contributes to the body of knowledge from a different angle. Thematic areas can be viewed

from two different perspectives. In the first perspective, participants gave several insights

regarding the structure of the feedback and what are the characteristics they think makes

their feedback meaningful and useful. These ideas are covered in the environmental and

structure thematic areas. In the second perspective, participants gave their perceptions

regarding what they expect from a feedback tool. How it can support, motivate and value

their feedback. These ideas are covered in the engagement and involvement thematic

areas.

Users’ Feedback can be and has been the driving force in software evolution. The

stakeholders of software include users who utilize the software to reach their needs and

expectations, i.e. requirements. Thus, users’ acceptance and efficient use of the software is

a main goal in software development and evolution. In a dynamic world, users’ acceptance

and view of the software would be also dynamic and would need to be captured throughout

the life time of the software to stay up-to-date.

4.4.1 Initial Template

The template shown in Figure 8 is the initial template for the forums analysis. It is derived

from the final thematic map of the focus groups shown in Figure 7 with a focus on the

environment and Structure thematic areas. This template was edited and enhanced in the

forums analysis process by each researcher. In Section 4.4.2 to 4.4.5 the final results

reached during the analysis process to the same data sources is explained, and the final

thematic map of forums analysis shown in Figure 9 (Sherief, Abdelmoez et al. 2015).

Intermediate results of the forums analysis are shown in Appendix 3.

The thematic mapping analysis technique was used to analyse the forums (Braun and

Clarke 2006). Inductive analysis coding was employed, which is coding the data without

trying to fit it into a pre-existing coding frame, or an analytic preconceptions. In this sense,

this form of thematic analysis is data-driven.

To start with both researchers created the same node hierarchy on NVivo 10, with a clear

description for each node to ensure a common understanding of the nodes meanings and

essence. The coding process started with the TechNet forums. It was chosen to start with,

because users on TechNet have least technical experience compared to the other two other

targeted forums (i.e. WordPress and SAP), and users with minimum technical experience

Page | 83

tend to elaborate more in their feedbacks. This has led to many enhancements in our node

structure.

During the coding process five team discussions were held that led to changes to the initial

node structure in the initial template until the final thematic map was. After each discussion

refinements were made and the node structure was unified, and reorganised to fit in the new

structure. In this section the sequence of intermediate changes made will be described.

Several types of changes were made in the initial thematic map and the intermediate maps,

ranging from adding, removing, moving, and renaming themes and/or codes. These

enhancements and/or changes were deemed necessary after discussions on evolving

thoughts related to what both researchers examined in the forums. The intermediate results

are detailed in Appendix 3.

Figure 8. The Forums’ Analysis Study Initial Template

4.4.2 Feedback Type Thematic Area

The first thematic area that was founded from our analysis to the forums is the novel

classification of feedback types that users provide. Ten distinct feedback types that users

use on forums were reached. In this section definitions for each type of feedback with

exemplification will be provided. Also, some patterns of use for each feedback type will be

concluded. These definitions and observations will serve as a strong base for our next step

in the research, which is building ontology of feedback structure concepts. These definitions

will be translated into rules that uniquely identify each type of feedback and serve in

controlling how users can provide richer, more meaningful and useful feedback.

Page | 84

Before starting to define the meaning of each feedback type, there are two different kinds of

feedback, a simple feedback, and a complex feedback. A simple feedback is a feedback

that consists of a single feedback type that a user provides in his post to express a certain

meaning, while the complex feedback is a structured feedback that consists of several

feedback types that together form a new meaning that can be inferred from its unique

structure. Below if the list of feedback types and subtypes (i.e. cases):

Figure 9. The Forums’ Analysis Study Final Thematic map (Sherief, Abdelmoez el al. 2014)

Page | 85

4.4.2.1 Confirmation/Negation

A Confirmation or Negation is a simple feedback type that the users use to agree or

disagree on problems or opinions of other users. When these feedback types are

unaccompanied with other types in a feedback, it can be inferred as voting for a problem or

a given solution.

For example, if user A posted a problem and user B has the same problem, user B may just

agree on what user A said (i.e. instead of writing a whole feedback with the same meaning,

the user can reference a feedback and adds his confirmation or negation). This adds an

extra vote for the problem. This may be useful to prioritize problems by knowing how many

users are having this same problem. For example: “I have the same problem”, or “We are

facing the same situation described in the original post. The Team Calendar for the approval

process is blank unless there is a pending request to be approved. All other calendars work

correctly.”

Also, they can be used to rate whether a solution/suggestion was able to solve a problem or

not. For example: “Made absolutely no difference. With all due respect, I think you only

skimmed over my post and offered a generic response.”

Observation 1:

From the analysis it can be concluded that: a) Confirmations and Negations can be

used in isolation to rate a problem, or vote for a solution; b) They are two disjoint

feedback types which means that cannot be used together in the same feedback; c)

They can be used in association with other types in the same feedback to convey a

certain meaning or infer a new feedback type.

4.4.2.2 Investigation

An Investigation is a simple feedback type used when a user is asking a question to clarify

something about another feedback posted by another user. A user may ask about some

issues in a problem statement, or unclear steps in a provided solution, or clarify some

contextual information that helps explain the problem more.

For example: “Can you tell me why the (Remove personal information...) option is greyed

out?”, “Which version of Word are you using?”

Another example: “Please tell us how you migrated BPC 10 to 10.1? Have you activated

environment shell in BPC 10.1 before the migration?”

Page | 86

Observation 2:

From the analysis it can be concluded that: Investigation are not used to clarify

Confirmation, or Negations, because mostly these feedback types consists of simple

agreements or disagreements that do not need clarifications.

4.4.2.3 Elaboration

An Elaboration is a simple feedback type where the user gives extra explanation on a

feedback he already posted. There are two cases for giving extra explanations on a

feedback.

4.4.2.3.1 Feedback Elaboration

First case is when a user needs to give more detailed information that he forgot to provide in

his main feedback this can be added separately in the feedback where he elaborates. For

Example, A user can elaborate on a problem he provided by giving explanation on some

trials that he made trying to solve his problem or rephrasing the problem statement.

For example: “[Rephrasing the same problem] I am not able to get data during run of

RSA3 in source system. I am not sure why update mode is F and not D. It is disabled to

change during entering DS name at RSA3 in source system. [Adding explanations of

trials that were made in attempt to resolve the problem] I have tried init without data

transfer and did not get any issue during run of the IP and also I can see delta queue

created in RSA7. When I tried the second Info package i.e. delta update, I got the following

error”

Another case, if a user elaborated more in a mitigation he provided by added some

information about how this Mitigation has to be applied. For example: “Note that the

(Remove personal information...) option gets selected after you have run the Document

Inspector on a document. You have to clear the option manually, or it will be sticky (as you

have noticed).”

Observation 3:

From the analysis it can be concluded that: a) Feedback Elaboration can reference

the types of feedbacks where more explanations may be needed such as Problems,

Mitigation, or Verification; b) Feedback Elaborations do not reference the feedbacks

types where extra explanation is uncommon or not needed such as Confirmations,

Negations, Investigations when they are used in isolation (i.e. unaccompanied with

other feedback types).

Page | 87

4.4.2.3.2 Investigation Elaboration

Second case is when a user simply replies on an Investigation by giving detailed

explanations to answer the posted question(s).

For example: “[Investigation] Please tell us how did you "migrate" BPC 10 to 10.1? Have

you activated environment shell in BPC 10.1 before the migration? [Answer] Yes, the shell

has been activated. Backed up 10.0 ENV using UJBR and restored it in 10.1. It is not

working.”

Observation 4:

It can be concluded that the Feedback Type Investigation Elaboration can only

reference a Feedback Type Investigation as this type acts as an answer to question

type.

4.4.2.4 Justification

A justification is a simple feedback type used when users need to provide reasons to

support their feedback. They may give reasons why they provided a solution/ suggestion, or

it can be used with confirmations or negations to state reasons why a user agrees or

disagrees on a feedback opinion of another user.

For Example: “Because the (Remove personal information...) option is greyed out with the

Document Inspector, this was the trick that fixed it for me.”

Another Example: “No; I can’t repair PowerPivot standalone, because it is embedded with

Excel. It's strange, if you used 64bit office, there seems no 64bit odbc drive now. You'd

better switch to 32bit office.”

Observation 5:

From the analysis it can be concluded that: a) Justifications and Elaborations are two

disjoint Feedback Types that cannot be used in the same feedback; b) Justification

cannot also reference Investigation feedback types, because users do not tend to

give reasons why they are asking a clarification question.

4.4.2.5 Verification

Verification is a complex feedback type where a user gives his opinion on a solution or

suggestion he received on the problem that he posted. As a complex type it means that it

combines several other feedback types in its structure that are mandatory in its definition.

Specifically in order to verify whether a solution or a suggestion was useful or not, this

Page | 88

feedback has to reference a certain Mitigation (i.e. Solution or Suggestion) in which the user

will be giving his opinion to verify whether it solved the issue or not by using Confirmation or

Negation.

For example: “Thanks Ed. That's the type of thing I was thinking. An alternative method

(really just a rephrasing of your concept) would be to generate various powers of the matrix

using mmult, and then to iteratively create higher powers of the matrix.”

Observation 6:

From the analysis it can be concluded that: a) Verification must reference a Mitigation

(i.e. Solution or Suggestion) Feedback Type; b) has to provide a Feedback Type

Confirmation or Negation first to show whether the Verification is an agreement or

disagreement on the provided Mitigation; c) it is desirable that users provide

Justifications on why they are verifying the solution.

4.4.2.6 Problem

This feedback type refers to a certain feature or group of features in the software that the

user is having problem with, and a detailed explanation of the problem. Problems may use

other feedback types such as Investigations to ask users some questions they need

answers for.

However, problems in general cannot occur in the same Feedback post with Mitigations or

Verifications. In general users who post problems are not the same users who post the

Mitigations, and even if this case occurred will not be contained in the same problem post.

Same for Verifications on Mitigations will never occur while posting a problem as there is no

Mitigation yet to be verified. Moreover, a problem post may not come as a reply.

Observation 7:

From the analysis it can be concluded that: a) problems must specify feature(s) in

their definition; b) must provide detailed explanation to increase understand ability;

c) can be accompanied with other Feedback types in the same feedback except

Mitigations and Verifications.

4.4.2.6.1 Topic Definition

Topic definition is a simple feedback type that represents the first posted problem in a

feedback thread where the user is seeking help. Therefore it does not reference any other

feedback in the thread but can be referenced in many other posts.

For example: “[Feature Specified] When I use the Track Changes feature in Word 2013

Page | 89

(running on Windows 8.1), [Detailed Explanation] and I create a new Comment, my name

temporarily appears as the Author, but when I close and re-open the document, it switches

the Author name to "Author" instead of my name. Also, my picture disappears in favour of a

generic icon. [Investigation] What is going on here? [Context Information] FYI, I'm logged

into Windows 8.1 using my Microsoft Account. I'm not sure if that matters. It seems to be

pulling my name and account picture correctly, until I close and re-open the document.”

4.4.2.6.2 Addition

This is a complex feedback type where a user votes (i.e. agrees or disagrees) on any

posted problem, and adds another problem in his feedback, which is not related to the main

problem on which the discussion is held. This means that a feedback thread may contain

multiple problems along with the replies.

From the definition of this feedback type as a complex type, this implies that it must contain

other feedback types in its definition, which in this case are Confirmation or Negations that

must reference another problem. Therefore, it cannot reference a feedback post that

contains Mitigation, because by definition this feedback is used to add a problem to a

problem.

Observation 8:

From the analysis it can be concluded that: a) an Addition requires a Confirmation or

Negation first that references a problem; b) it must include the definition of a new

problem; c) it cannot reference (i.e. come as a response to) a Mitigation Feedback

type.

For example: “[Confirmation on a Problem] I'm having a similar problem. [Addition of a

new Problem and explaining it] For this particular Word file (Word 2013), my name and

time stamp disappear on balloon comments when I reopened it, although new comments

had my name and time stamp. (Of course I don't know what will happen to those new

comments!) Not only this, but when I used the Compare feature to another document, it

would only come in Draft mode. I was unable to unclick the Draft icon. [Investigation] Any

ideas? Thanks in advance!”

4.4.2.6.3 Extension

Is a feedback type that references an existing problem and tries to add an extension to it.

The new introduced problem is related to the existing problem that it references. Unlike the

Addition Feedback Type that adds a new unrelated problem definition to the feedback

thread.

Page | 90

All problem types: Topic Definition, Addition, and Extension are disjoint types, which means

that they cannot occur together in the same feedback post (i.e. the user cannot add a new

Topic and at the same post confirm/negate it and add an unrelated problem, or extend it).

There are two cases for an Extension that is discussed in the next sections.

Observation 9:

From the analysis it can be concluded that: All Problem Types are Disjoint. The main

type is Topic Definition, and the other types occur as a result of discussions.

4.4.2.6.3.1 Problem Extension

This is a complex feedback type where a user tried a Mitigation and it solved part of the

problem, BUT led to another related problem to occur. As a complex type this implies some

restrictions to be put into consideration. In this case the user tried a mitigation that solved

part of his problem, which means that the user is Confirming that he is having the same

problem as the user who posted it (i.e. user rating the problem), and also he tried a solution

or suggestion that were posted to try resolve the problem and adds a Confirmation (i.e.

Agrees) to that Mitigation. However, after trying this mitigation new problems evolved.

Observation 10:

From the analysis it can be concluded that: a) Problem Extensions contain

Confirmations that reference a Problem type; b) Problem Extensions contain

Confirmations that reference Mitigation; c) Problem Extensions introduces new

problems (i.e. the extension that is still unresolved by the Mitigation that was

applied).

For Example: “[Confirmation on existing Problem] Our office has been struggling with a

related problem that maybe you can solve. [Explanation of the new Extended (related)

Problem] Basically, the same person is repeatedly given a different reviewer name as they

work in a document (presumably every time the document is auto saved). For example, if I

work for an hour adding edits or comments on a document by the time I'm ready to share it

will look like five different people made changes. [Confirmation on Mitigation that solved

part of the problem] The Inspect Document fix works great to remove all the extra reviewer

names, but it changes them all to 'Author’”.

Another Example: “[Confirmation on Mitigation that solved part of the problem] Thank

you! Good news and bad. I found the reference to eane in the cert manager, and removed

it. I had been in there before I knew I was looking for eane, so I should have realized to go

back and search again. [Explanation of the new Extended (related) Problem] Anyway,

the user gets into outlook and can send/receive ok but when launching outlook, he gets a

Page | 91

variation of the same security alert. This time, instead of autodiscover.ourdomain.com it

says ourexchangeservername.ourdomain… [Confirmation on existing Problem] I see we

have the chance to install the cert but I don't know where to install to...”

4.4.2.6.3.2 Mitigation Trial Failure

This is a complex feedback type, where a user confirms on a posted problem (i.e. he has

the same problem), AND tried the mitigation that was posted by other users in attempt to

resolve the problem, BUT couldn't try the mitigation (so this is a new problem for him

besides the main one). As a complex type this implies some restrictions to be put into

consideration. Since the user has the same problem, therefore there is a Confirmation on a

posted problem that can have any of the problem types such as Addition, or Topic

Definition. Moreover, the user attempted to try a Mitigation, which he couldn’t apply.

Therefore, he uses a Negation to reference the Mitigation he could not apply.

Observation 11:

From the analysis it can be concluded that: a) Mitigation Trial Failures contain

Confirmations that reference a Problem type; b) Mitigation Trial Failures contain

Negations that reference Mitigation; c) Mitigation Trial Failures introduces new

problems (i.e. the extension that is still unresolved by the Mitigation, because the

Mitigation couldn’t be applied).

For Example: “[Confirmation on a Problem in the previous posts] I have the same

problem here! [Negation on a suggested Mitigation that the user couldn’t try] Can you tell

me why the "Remove personal information..." option is greyed out and how it could be made

active? I tried using the document inspector but to no avail. [The new extended problem is

how to try the Mitigation] How do I ungrey it?”

4.4.2.7 Mitigation

Mitigation is a complex feedback type that represents a solution or a suggestion that may

help a user resolve the problem(s) he has. Since this type is intended to resolve a problem,

therefore it has to reference that problem in the solution or suggestion for specificity. Also,

for every Mitigation it is always expected that the user who posted the problem will Verify

that Mitigation. There are two types of Mitigations:

4.4.2.7.1 Solution

A solution is a well-known procedure or steps that when followed can resolve the problem or

issue. For Example: “Do the following to start the Document Inspector in Word 2013: Click

File | Info | Check for Issues | Inspect Document. In the list of content, make sure that

"Document Properties and Personal Information" is checked and then click the Inspect

Page | 92

button. Click Remove All (next to the "Document Properties..." item). Save, close and

reopen the document. From then on, your user name will be replaced with "Author" each

time you reopen the document.”

4.4.2.7.2 Suggestion

A suggestion is a recommendation that a user provides for another user as a trial to resolve

his problem. This suggestion may or may not solve the problem. This needs Verification

from the problem owner (i.e. the user who posted the problem).

For example: “[The user tries to explain more about the feature] OK - the idea of find

disputes it to filter by the selection parameters (you can define these) the idea of "my

disputes" is to display where your user ID is the processor, co- coordinator or person

responsible. [The user starts to use conditions and suggestion trial for each condition,

which indicates that the user is not sure whether this will solve the problem or not or

he does not understand the problem precisely] If you are working in a dev system - you

might assign all disputes to yourself and therefore you will be the processor for all disputes.

If you amend the processor to someone else, and then try and find it in the my dispute - it

should not be there (if you are sorting by processor) If it still appears - you have an error

with your build”

Observation 12:

From the analysis it can be concluded that: a) Mitigation should reference problems

they are trying to resolve; b) There are two types of Mitigations, Suggestions and

Solutions, which both differ in the way users describe their statements and also on

whether users are precise or not.

4.4.2.8 Correction

A correction is used is used when a user corrects the understanding of another user. There

are two cases for this feedback type.

4.4.2.8.1 Problem Correction

Problem correction is a complex feedback type. It occurs when the user corrects the

problem of another user. In a problem definition a user must refer to a feature(s) that he is

having a problem with. Sometimes the user is using a feature which is not intended for the

type of task he is doing, simply due to a lack of understanding of the job a feature should

perform. Consequently, other users can provide corrections to this misunderstanding.

Page | 93

For Example:

“[Problem] is it possible to change the templates that are shown by default when a user

clicks 'File', 'New'? My organization would like the default template to have a corporate

header and footer by default on new docs.”

“[Problem Correction starts with Negation on the problem statement made above] the

default template is the normal template; it should not have headers or footers. [Problem

Correction Explained] However, you can set Word up to use a different template for new

documents and upon start-up. Download the examples on my Add-Ins section. Specifically,

look at the Letterhead Add-Ins and the Easy New Document Template package.”

Another Example:

“[Problem] I need to display all Dispute Cases via SCASE --> Find Dispute Case Option.

However, when setting up UDM_SP_CASE_LOCATOR I can see that both

UDM_SPS_CASE_LOCATOR and UDM_SPS_MY_CASES have connection parameter

values "MY_CASES_ONLY".”

“[Problem Correction starts with Negation on the problem statement made above]

Sorry - you are wrong. [Problem Correction Explained]It is possible to use

UDM_DISPUTE to display all disputes cases and check its progress. That would be done

via the "find dispute" option. If you don’t want them to - that is a business reason and not a

functional constraint.”

Observation 13:

From the analysis it can be concluded that: a) Problem Corrections must contain

some Negation that references a Feedback Type Problem statement; b) Problem

Corrections adds explanation for feature usages, and increases users’ awareness of

unknown features; c) Problem Corrections and Mitigations are disjoint Feedback

types that do not occur in the feedback.

4.4.2.8.2 Mitigation Correction

Mitigation Correction is a complex feedback type. This type of feedback may occur when a

user is trying to correct a Mitigation that was provided for a certain problem. Errors in

Mitigations may occur due to the lack of contextual information about the tasks the user is

doing or environmental information about the softwares or hardware used while applying

Mitigation.

Page | 94

For example:

“[Suggestion] That page shows this at the bottom:

<! -- Dynamic page generated in 0.754 seconds. -->

<! -- Cached page generated by WP-Super-Cache on 2013-09-29 11:36:32 -->

Try clearing the Super Cache plugin.”

“[Mitigation Correction] I use W3 Total Cache not Super Cache, [Mitigation Correction

contains disagreement (i.e. Negations) on Solutions/Suggestions] but in any case I've

both cleared all caches and the page cache several times with no effect.”

Observation 14:

From the analysis it can be concluded that: a) Mitigation Corrections must contain

some Negation; b) Mitigation Corrections must reference a Feedback Type Solution

or Suggestion; b) Mitigation Correction, Problem Corrections, and Problems are

disjoint feedback Types that do not occur in the same feedback

4.4.3 Level of Detail Thematic Area

The second thematic area that was reached from the forums analysis is the Level of Detail.

Level of Detail represents how much information the user provides in their feedback to

express their opinions or problems. The information users provide have two major

categories: Depth and Context. A single feedback can contain a mix of contextual

information and several kinds of Depths.

Depth means how detailed the user is in expressing their feedbacks. There are seven novel

categories of detail types the user can use while providing his feedback. However, some

patterns were concluded for: use of these categories, as their usage differs according to the

feedback type the user is providing.

Context means the information the user may provide about the settings of his use to the

software or while providing his feedback, which may affect the problems, mitigations, other

users’ responses. Therefore, this thematic area is considered a complementary area to the

feedback types explained in section 4.4.2, as it adds more clarity to the feedback

descriptions.

Page | 95

4.4.3.1 Depth

4.4.3.1.1 Concise

The first category of Depth is Concise. By literal meaning it is used when users provide very

short feedback types with no explanations or details. From the analysis it was noticed that it

is used mostly, when users tend to confirm or negate by just expressing their agreement or

disagreement on a feedback. Moreover, it was never used in problem statements or

mitigations, since by nature these specific feedback types need explanation to be

meaningful.

 Observation 19:

From the analysis it can be concluded that: a) Concise is a short description for a

feedback type, which can be used with Confirmations, Negations, or Verifications; b)

Concise can never be used to detail a Problem, Mitigation, Elaboration where users

are expected to provide more details and be clear enough.

For Example: “[Negation that is used to Verify Mitigation as unable to resolve the

problem] I'm having a similar problem and the above solution didn't work.”

Another Example: “[Confirmation that is used to Verify Mitigation as able to resolve the

problem] Thanks to you! I was able to find the flag and correct the problem.”

4.4.3.1.2 Explanation

Explanation is the opposite of concise, as in this depth category the user is expected to

provide as much details in his feedback to make it meaningful for other users. There is no

restriction on the use of this depth category with any feedback type, because it is always

acceptable to give more details especially in forums. However and as explained in the

Concise section, it is obligatory to use explanations when explaining Problems, Mitigations,

or Elaborations.

For Example:

“[Problem] we’ve got one end-user out of 65 getting a certificate error when starting outlook

2010. He launches it, gets the security alert error saying "autodiscover.ourdomain.com

Information you exchange with this site cannot be viewed or changed by others. However,

there is a problem with the site's security certificate". Any ideas would be appreciated!

Thanks!”

Page | 96

4.4.3.1.3 Exemplification

Exemplification is a Depth category that is utilized when the users need to provide examples

within this text. In the forums’ threads that were analysed examples are always given within

explanations especially problem explanations.

For example: “…and when I change my VBA to skip the element if that cell is empty, the

resulting XML shows errors in VS2013 that the data is incomplete. [Exemplification] For

example, VS2013 highlights that ArrearsStartDate is missing even though I can clearly see

the below in the XSD file (crazy!).”

Another Example: “We force Excel to close, and the source Excel file is gone! We find there

are two files that were created. One with a .tmp file extension, the other has no file

extension. [Exemplification] For example, in one case the files were named 3F04D520 and

31545502.tmp.”

4.4.3.1.4 Trials

Trials is a Depth category used closely with problem description where the problem owner

who is explaining the problem, shows that he made many attempts to resolve the problem

but have failed to reach a Solution. The user posts these trials as a kind of extra explanation

of the problem and how it occurs, and also to avoid getting suggestions from other users

with same trials that he already made.

For Example: “Researching on the web, I found a few things to try such as deleting the

certificates key in the registry (Yes I exported it first), adding the line 127.0.0.1 localhost to

the hosts file.”

Another Example: “I am using Microsoft Office Pro Plus 2013 on Windows 7, 64-bit version.

I have tried reinstalling Microsoft SQL Compact Edition 2005 and reinstalling Office 2013. I

have run out of ideas and am a loss what to do next?”

4.4.3.1.5 Scenario

Scenario is a Depth category which the user uses to explain text in a list. A solution can be

explained in steps. These steps if verified by the problem owner can be used as a solution

scenario to solve similar problems to other users. Moreover, other users may list the

problems they have in the problems statement. Other may suggest mitigation to other users

in a form of a list of possible actions to try; sometimes it matters to be in a certain order.

For example: “[Suggestion] Hi, 1. Please check the postings are done are not 2. Check

whether they struck Ed in Inbound or Outbound. 3. Check in SM58 any TRFC's”

Page | 97

Another Example: “[Problem] I am doing environment migration from BPC 10.0 NW to BPC

10.1 (Classic). Migration was successful, but I have the following issues: 1. Migrated BPF

templates are not accessible in 10.1. It is not allowing me to create new template as well. 2.

Not able to open migrated reports in 10.1 - Nothing is coming out. 3. Migrated logic scripts

are not getting copied to 10.1 Classis - they are empty in 10.1(I can still manage this by

manually copying script from old one!) Pls. help to fix the above.”

A Further Example: “[Solution] 1. Please go to Review Tab, 2. Click the icon in right-

bottom of tracking section, 3. Check and tick the box of "Pictures by Comments" to solve the

problem.”

4.4.3.1.6 Feature Definition

This is a depth category which the users use to define their perception of the usage of a

certain feature. This description is sometimes used in problem statements, which helps

other users understand why the user is having a problem (i.e. sometimes users have wrong

understanding of the usages of a feature). Moreover, users who provide Mitigation may use

it a form to document how they use a feature with certain types of tasks. Finally, it is mostly

used when users provide Feedback Type: Correction, specifically Problem Correction,

where the user corrects the misunderstanding of another user by providing the correct

feature definitions to features referenced in the problem statement.

For example: “However, when setting up UDM_SP_CASE_LOCATOR I can see that both

UDM_SPS_CASE_LOCATOR and UDM_SPS_MY_CASES have connection parameter

values "MY_CASES_ONLY". [Feature Definition] I think this is what restricting display of

all dispute cases is. Users can only see what is assigned to them.

Another example: “[Feature Definition] Excel can perform matrix multiplication (e.g. A1:B2

times A3:B4) by the mmult function”

Further example: “[Feature Definition] MBOX is a standard plain text file format for storing

email messages on hard drive. In my opinion, there is no manual method for transferring

entire emails of Apple Mail into MS Outlook PST format”

Observation 20:

From the analysis it can be concluded that: Feature Definitions use with Problem

Corrections is mandatory. By definition of problem correction, it is only possible

when a user doubts the understanding of the problem owner’s perception of a feature

usage. There is no restriction on using feature definitions with other feedback types.

Page | 98

4.4.3.1.7 Question

Question is a simple depth category that is used with Investigations to indicate the

question(s) posted for clarification.

For example: “Based on your description, when your users tried to save the excel file, it

crashed and even lost this file. [Investigations] Could you tell me where did you open and

save the excel file? From local computer or network? If they open the same Excel file or

random files?”

It can be used sometimes in problem statements where the user asks for help, but this does

not add any valuable details to the feedback thread, just a way for the user to confirm that

he needs help and waiting for suggestions. On the other hand, it cannot be used with

Mitigations.

Observation 21:

From the analysis it can be concluded that: a) Questions is a short description textual

Depth Category used for Investigations; b) Questions can never be used to detail a

Mitigation, Elaboration, Corrections, or Justifications where users are expected to

provide more details and be clear enough.

4.4.3.2 Context

Contextual information can carry valuable information that can help make the feedback

more understandable or useful. There are five main categories of contextual information that

were captured in the forums analysis that map to (Krogstie, Lyytinen et al. 2004).

4.4.3.2.1 Task

It captures what the user is doing. This is specifically important when the user is describing

a Problem feedback type, because it gives to the other users an idea about the context in

which the problem occurred, or describing the frequent jobs that the user is involved in in his

daily work which helps give an idea to other users about the importance the feature the user

is having problem with.

For example: “[Task: the user describes frequent task in his job to add importance] I

work on long documents over many days and need to be able to make and edits in a

continuous track session.”

OR “[Task: the user describes frequent task in his job to add importance] I am in

Outlook all day long and any steps that can save me 30 seconds of having to click to a

different screen and back again, adds up very fast”

Page | 99

Another Example: “[Task: the user describes what he was doing when the problem

occurred] I am attempting to replace the older iView (leave request approver and team

calendar) with the newer iView (approve leave request) which seems to combine the two

functions. [Problem] When implementing the approve leave request iView, I get the

following message "No Team setup for the user in the selection period. Contact

Administrator."

4.4.3.2.2 Spatio-Temporal

In this kind of context the user specifies information related to place and time. From our

forums analysis an angle was found where such information may play useful role. Cases are

when users try to explain the timing relationship between two tasks (i.e. two tasks

happening together, or one feature corrupts when a user does a certain action). For

Example: “When I close the document then open it and change text that I had inserted and

tracked in my last session, it shows the change as mark-up on mark- up.”

Another Case is when users try to specify some information about a problem in relation to

where it occurs in software for example in a certain interface, or when using a certain

module. For example: “I recently moved my site to a new host and [Spatio Temporal] now

the Media Library only shows a couple dozen images (out of hundreds). The images appear

on the posts and pages, but not in the library.” A Further Example: “It was so long time ago

I designed the site. I would never have found it. Big thanks Very hard to edit I must say. You

might wonder why no edit button exit, taking you to widgets in the normal interface.”

4.4.3.2.3 Personal

In this kind of context users express their emotional judgments, stress, or information about

their expertise, which is repeated mainly with Negation feedbacks.

For example: “[Personal] I am an unhappy outlook user, as an IT professional who has to

support over 300 people, I am making it very clear to my staff and co-workers that this is a

limitation with no acceptable solution”

Another example: “[Personal User expertise] I'm not good at cert issues because they

don't come up very often”, and “This is really frustrating”. Or “This is absolutely

unconscionable. I have been in this business of software development for 40+ years and

never seen anything so rigidly pretentious.”

4.4.3.2.4 Social

Social means context information related to a user’s role at work, information about co-

workers…etc. For example: “I work for different bosses. One boss on Monday, Wednesday

and Thursday. I need the out of office option for all other days. So on Saturday, Sunday,

Page | 100

Tuesday and Friday I need to have the OUT OF OFFICE setting in Outlook and NO I do not

want to configure a rule for this”

Another example: “We've got one end-user out of 65 getting a certificate error when starting

outlook 2010.”

A further example: “[Social] I have seen this with 4 users in the last day. [Task] They are

working and saving occasionally. At some point when they save, Excel stops responding.”

4.4.3.2.5 Environmental

Environmental context means context information related to a software or hardware specs,

versions, architectures…etc. Users can provide these kinds of information in a problem

statement to specify the software version they are using which may differ in the feature with

problem from older or newer ones. Therefore, this adds specificity and usefulness to add

such information. Moreover, users can add also environmental context in Mitigations to

specify that the suggestion or solution works on a certain version, or works well with a

certain hardware configuration.

For Example: “Environment is exchange 2010 with outlook 2010, by the way.”, or “When I

use the Track Changes feature in Word 2013 (running on Windows 8.1)”

Another Example: “We are also experiencing the "EXCEL.EXE version 14.0.7151.5001

stopped interacting with Windows and was closed" error on Windows 7 SP1 32bit, but the

behaviour is a bit different for the user.”

4.4.4 Method Thematic Area

In the forums analysis, it was noted that users use four different methods to provide

feedback, which are: text, code snippets, snapshots and links. It was notable that some

methods were frequently associated with a certain feedback types. The text method is the

most commonly used method in all feedbacks, and even it is used with other methods such

as links or snapshots. However, it is important to note that most users use text written in

natural language, which leads to lots of misinterpretations. This motivates our goal in

creating a new feedback modelling language that utilizes the same methods the users are

used to provide their feedbacks with, but in a patterned way and with the aid of textual

keywords. Therefore, this thematic area is considered a complementary area to the

feedback types explained in the section 4.4.2, as it adds more expressiveness to the

feedback descriptions.

Example of a textual feedback: “Hi, Installing objects form content is same for any module. If

you know the required objects then go to BW, RSA1--> BI content, from middle pane, find

your object, grouping options as only necessary, drag the selected objects into right side

Page | 101

pane. Choose install in background. There are more documents about bi content

installations, please search and help yourself. Thanks”

Code snippets shown in Figure 10 are used to show fragments of code that have problems,

or fragments of code to illustrate mitigation, and same for Snapshots shown in Figure 11.

For example:

Figure 10. A Sample Feedback described by Code Snippet

Figure 11. A Sample Feedback described by Snapshot

Finally, a further method used by users to express details in forums, is Links. Links are very

useful in providing Mitigations whether solutions or suggestions. Users use them to provide

all the information they need by referencing the page that contains manuals or illustration

the may help the problem owner. They can also, provide extra notes or explanations in their

feedback besides the Link.

Page | 102

For example: “Install the certificate to trusted root certification authorities as introduced in

this: http://www.slipstick.com/outlook/security-certificate-not-from-trusted-certifying-authority/

-Jeff”

4.4.5 Measurement Thematic Area

Finally, this fourth thematic area concluded derived from this study is measurement.

Measurement means measuring problem occurrence frequency or voting for mitigations’

usefulness. This can simply be done through confirmations and negations that reference

Problems or Mitigation feedback Types as we have mentioned in section 4.4.2.

The measurement concept is a very useful premise when it comes to making use of all the

feedbacks gathered from users. By gathering such relationships between different users’

feedbacks, it will allow the system to a) prioritize the problems according to its rate of

occurrence and number of users; b) Also, it may help in evaluating the overall quality of the

system, as it will provide a quantitative value of the system resolved and unresolved

problems, which will assist in the comparison, and decision- making; c) Finally, when the

system arrives to a good Mitigation action, the feedback causing this Mitigation could be

reused in similar cases.

4.4.5.1 Problem Rates

It was observed that at times users may reply on others’ feedbacks by stating how much

they agree or disagree with the problem, for example: “Agreed - The contrast in office 2013

is horrendous…”, or whether this problem has occurred to them before or not, for example:

“We are facing the same situation described in the original post.”

4.4.5.2 Mitigation Votes

At times users may reply on others’ feedbacks by stating how much they agree or disagree

on the helpfulness of a Solution or a Suggestion. For example: “[Confirmation on another

user’s Mitigation: adding a Vote] Rich has answered your question as well as can be

done. This has always been the way Track Changes works.”, or “[Negation on another

user’s Mitigation: adding a Vote] In terms of work around …This isn't a real work around”

4.5 Threats to validity

Although the principles in conducting qualitative methods approach were followed carefully,

this study still has five main threats to validity:

1) In the focus groups study users were students, researchers, and engineers

recruited from Egypt and UK, which might produce a population bias;

Page | 103

2) A common threat to validity in focus groups study is whether all the participants

perceived the questions as intended. This issue was addressed by providing scripts

which went through iterative revisions and modifications by two research members

to ensure clarity;

3) While the analysis of forums was effective in identifying and describing concepts

that construct users’ feedback, it is possible that it did not identify all the important

aspects and factors that can affect and influence their behaviour in this regard;

4) The number of analysed feedbacks from the three different forums (200 feedbacks)

could be found medium considering that numerous number of threads available

online, analysis was stopped when no new further concepts were distinguished,

however a bigger number of feedbacks might produce new concepts that were not

identified;

5) In the forums analysis, forums where business users provide feedback were

targeted; future research would further investigate general purpose forums (e.g.

products, social media) to come with common concepts and more general results.

4.6 Summary

In this chapter the first two studies that attempt to achieve the research aims and objectives

are introduced. The adopted research methods were explained in details, and the results

are illustrated and described. The main contribution from the forum’s analysis study was the

new classification and definitions of feedback types and their constituents. In the next

chapter, another study will be explained that explores the engineers’ perspective to the

utilization of feedback to accomplish evolution tasks.

Page | 104

5. Exploring Feedback Utilization - Engineer View Point

This chapter explains the study conducted with engineers in order to explore and observe

the problems caused by using ad-hoc feedback structures in the communication between

end-users and engineers during the maintenance and support phase. The chapter explains

the detailed purpose of the study, the research method that was followed, and the results

reached. This study serves as a link between the previous results reached concerning the

structuring of feedback, and the next step of the research that is providing an engineering

approach for feedback acquisition and utilization.

5.1 Purpose of the study

Users’ feedback serves as a communication method between engineers and users at during

the maintenance and support phase, where users can provide relevant information to guide

engineers in accomplishing several software change identification and evolution tasks

starting from interpreting the users’ feedback to understand the problem and trying to

reproduce it followed by estimation, prioritization, and planning. However, engineers and

developers spend considerable effort trying to collect useful information needed from users

that can help them in accomplishing these tasks both successfully and in a timely manner.

This study purpose is to investigate what are the problems in the maintenance phase that

are triggered by both the lack of information from end-users and miscommunication

between both the end-users and the software engineers. Another purpose is also trying to

find the associations between the problems, causes, and types of missing information that

affects the tasks’ achievement, delays it, and causes extensive communication effort

between the two parties to reach their aim. This will also assist in gaining a deep

understanding of how the instances of formalized feedbacks entered by the end-users can

be utilized to resolve communication, and evolution tasks problems.

This builds upon what the results reached from previous studies, as the analysis and

querying of classified structured feedback will provide the engineers with important

knowledge that can inform the evolution process and help keep requirements information

up-to-date. The goal is to design a novel workflow that combines both concrete and formal

instances of inter-related feedback, and systemized formal steps that can help engineers in

resolving problems they meet and supporting them in different decision-making situations

they encounter in the maintenance phase.

Page | 105

5.2 Research Method

Direct feedback from interested and concerned individuals is fundamental to achieve this

part of the research. The interviewing technique will be used to gather information from

engineers (Berg 2004) (Lazar, Feng et al. 2010). There are three fundamental types of

research interviews: structured, semi-structured and unstructured. Structured interviews are,

fundamentally, verbally managed questionnaires, in which a list of prearranged questions is

asked, with small or no adaptation and with no scope for follow-up questions that permit

additional elaboration. On the contrary, unstructured interviews do not reveal any

predetermined theories or ideas and are performed with little or no organisation. Such an

interview may simply start with an opening question and will then progress based upon the

initial response.

Semi-structured interviews (Lazar, Feng et al. 2010) consist of several key questions that

help to define the areas to be explored, but also allows the interviewer or interviewee to

diverge in order to follow an idea or response in more detail. This interview format was used

in our study, as it provides participants with some guidance on what to talk about. The

flexibility of this approach, particularly compared to structured interviews, also allows for the

discovery or elaboration of information that is important to participants but may not have

previously been thought of as relevant by the research team.

The ability to go deep is perhaps the strongest argument in favour of semi-structured

interviewing. By asking questions on a wide range of concerns and giving the interviewees

the freedom to provide detailed responses is one way to gather data that would be very hard

to capture otherwise. Also, ambiguities can be clarified and incomplete answers followed up.

However, there are also disadvantages for interviews, which are: 1) they can be very time-

consuming: setting up, interviewing, transcribing, analysing, feedback, reporting; 2) they can

be costly; 3) different interviewers may understand and transcribe interviews in different

ways. For the transcription process, one researcher conducted the interviews on-site and

made the transcription process, and another researcher revised the transcripts and made

any needed updates to avoid any bias or misunderstanding.

5.3 Software Company

Participants were recruited from a company that has been firmly established in e-business

for more than 20 years. They provide services and specialize in software solutions for

industrial customers and public administration. They provide variety solutions such as:

 E-commerce systems: they create shop systems for customers that include the

entire process, from supplier integration to sales channels. So customers can

market their products successfully and provide better services.

Page | 106

 E-procurement: efficient catalogues are the basis for innovative e-procurement

systems. They automate general procurement of C-class articles, services and

complex product groups for customers and help their projects to succeed in the

SAP environment. This makes the procurement processes simpler and more

profitable.

 Public Administration: they provide simple and reliable tailor-made management

programs for vastly complex data required by government agencies and

administrators. From practical experience they understand the language of public

administration and know the special requirements, rules and standards that concern

when managing data.

Since founded it has produced more than 1200 success stories with a large variety of

International customers. A few of the company types they work with include: industrial

digitalization companies, universities, international airports. Also, companies that design and

operate online shops, Internet-based customer acquisition, internet marketing, developing

partner networks and complex, highly efficient product picking and distribution logistics.

Moreover, they work with wholesale companies for connecting and fastening technology. In

addition to its broad product portfolio, the company also offers innovative logistics systems

for the automotive, industrial, railway and trades industries.

For this research all the above mentioned experience in the software domain makes it a

very resourceful candidate to perform the study in. They have large experience and real-

case problems that happen in the maintenance phase, especially when communicating with

their customers. Also, since it will be explored how the miscommunication of customers’

opinions and problems through feedback affects the maintenance / evolution tasks, so

interviewing several roles that are involved in the evolution process is needed. 10 consented

interviews were conducted in the Alexandria branch with participants from 4 different roles,

which are: consultants, software engineers, team leaders, managers both program and

technical.

5.4 Interview Process

An eight stage process was followed for the preparation and analysis of the interviews,

which is explained below in detail (eVALUEd 2006):

5.4.1 Determine the purpose of the study and what information is required

Below in Table 7 is the main list of questions that were prepared for the interviews. Mainly,

these questions were designed to understand the problem situations that the participants

meet during the maintenance phase, the relationships between the problems (i.e. how the

problems they face affect other tasks or evolves other problems), and the kinds of missing

Page | 107

information that affects the evolution process tasks completion, delays it, or leads it to

failure.

The themes that to explore are:

1) What are the problems that software engineers meet when receiving feedbacks

from customers both from acquisition perspective and interpretation problems?

2) How do these problems impact the tasks they perform in the evolution process such

as the identification, estimation, impact analysis, planning, and solution design?

3) What are the problems that result from lack of organized and systematic means of

communicating with end-users using feedback, and other proper inputs such as

requirements models?

Table 7. Interview Questions mapped to the themes explored in the study

No. Interview Question The Theme it links to

1 What is your current role? This question relates to theme 2, as it is

important to know the role in order to

know the tasks related to the role. And

thus be able to know when and how they

are involved in the maintenance phase.

And when problems are discussed it

could be related to tasks and/or roles.

2 How do customers request modification

or report problems?

This question relates to theme 1, as

participants are expected to provide

explanations to the current methods of

feedback acquisition and their problems.

3 What are problems that occur during

the perception of customer requests?

How do you handle these problems?

This question relates to theme 1 and 3,

as participants are supposed to provide

explanation of the current methods or

tools used in feedback analysis and their

drawbacks. Also, problems in the

feedback content itself, and how to they

communicate with end-users to acquire

the inputs they need.

4 What are the problems that occur in the

estimation tasks? What kind of

information from users that can inform

your task estimation decisions?

This question relates to theme 1 and 2,

because it tries to capture information

about the type of details that end-user

feedback should contain and how the

lack of this information affects and

propagates other evolution process

tasks.

Page | 108

5 What are the approaches you use in

order to identify the impact of a change

on the system?

This question relates to theme 2 and 3,

because this question tries to find if the

needed information that should be

communicated from the end-users or

existing RE models that could help the

engineers better identify the impact of a

change.

6 What are the customer-to-engineer

communication problems that affect

your design decisions and the way you

approach the problem?

This question relates to theme 2 and 3,

because this question tries to find if the

needed information that should be

communicated from the end-users that

could help the engineer to design a

solution and hand it over to the end-users

for discussion and/or approval.

7 As a software engineer, from your

observations what are the criteria that

customers put into consideration while

prioritizing their problems?

These questions relate to theme 1, 2, and

3, because these questions try to find

how engineer expect end-users to

communicate prioritization issues in their

feedback. Also, if there are conflicts how

are they resolved and what kind of

information is necessary in the

negotiations.

8 What are the types of conflicts that you

encounter while negotiating with

customers on priorities?

9 What kind of information that can

support you in your negotiations and

persuasion of customers?

This question covers theme 3 because

the feedback as a tool for both end-users

and engineers to communicate with each

other was to be designed. So there was a

need to investigate how engineers would

use it too and types of details they would

use to negotiate problematic situations

with end-users.

10 Do you have any comments,

suggestions or advice about our work

that you would like to share?

This question covers all themes as it is

open for participants to add comments on

any of the topics discussed.

5.4.2 Decide on the method of data collection and the audience for the

interviews

Ten face-to-face interviews were conducted in the company. The interviews were held in a

meeting room to avoid disturbances and have more flexibility and space for discussion. The

interviews were audio recorded with consent from the participants, which led to more

Page | 109

flexibility during the interview time because all the time was dedicated to the questions and

elaborations with no need write all details. Also, it helped a lot in the transcription process

and providing the possibility to be reviewed by other researchers. Each interview lasted

average of 30 minutes.

Four different roles were interviewed, which are:

 Consultants: this was one of the most important targeted roles in our study

because their position responsibilities involve working closely with customers, which

include: 1) meeting with customers to determine requirements; 2) clarifying a client's

system specifications, understanding their work practices and the nature of their

business; 3) communicating with staff at all levels of a customer’s organisation; 4)

developing agreed solutions and implementing new systems; 5) preparing

documentation and presenting progress reports to customers; 6) organising training

for users;

All these responsibilities are core communication tasks with the customers and

contain all important inputs for the whole software process and are a main source of

problems especially in the maintenance and support phase as it discloses several

types of miscommunication and missing information. They also understand different

levels of customer’s experience, knowledge and problems that could accordingly

evolve.

 Software Engineers: their work responsibilities include: 1) investigating current

applications; 2) communicating with users; 3) producing specifications; 4) ensure

that products and enhancements operate satisfactorily; 5) handling support and

feedback.

This role is important in the study mainly because they analyse the customers’

feedback and try to resolve their issues based on the input they provide, and thus

they are the most affected by the weak feedback structures and acquisition

methods. Thus they can provide us with more details of the problems and how they

affect the evolution process tasks.

 Team Leaders: 1) although the responsibilities are primarily technical, team leaders

also serve as an interface between the developers and management, have

ownership of development plans; 2) Team leaders also serve as technical advisers

to management and provide programming perspective on requirements.

Most importantly team leaders were interviewed to provide insights about how the

evolution process tasks that are affected by the lack of information from end-users

and the lack of requirements model employment during the evolution process tasks.

Technical team leaders can provide more details about the hidden problems that

Page | 110

customers do not see but are affected by during the maintenance phase, which

sometimes influence their acceptance of the software.

 Project Manager: 1) They organize, execute, and deploy complex software

development projects ranging from short term client specific deliverables to multi-

year product roadmap realization; 2) Also, they engage in regular, effective

communications with leadership, stakeholders, and internal team members, to

ensure they are constantly apprised of all aspects of their project(s); 3)

Communicate the benefits of the study/project findings and milestones.

Program managers were important to provide us with high level problems that occur

in planning and prioritization, and customers’ business and value understanding. It

is important to understand such problems, because if these inputs are properly

modelled to represent both the functional and non-functional requirements of the

system, and by relating both the structured feedbacks will help them to conclude

different levels of evaluation information that can inform the maintenance decisions.

 Architect: 1) They subdivide a complex application, during the design phase, into

smaller, more manageable pieces; 2) Grasp the functions of each component within

the application; 3) Understand the interactions and dependencies among

components; 4) Communicate these concepts to developers.

Architects were important to interview, because they serve as an important link

between consultants who gather requirements and developers who implement

these requirements. They perform an important task in dividing components and

planning packages which is communicated with the customers. Also, they perform

technical analysis tasks during the maintenance phase like analysing the impact of

changes on the system, and therefore, capturing their opinions about the role of

requirements models in facilitating this task and current issues they have is

essential to this research. Finally, to capture their current practices and issues

regarding how documentation information is captured during the maintenance

phase and how they maintain it up-to-date.

A summary of interviewees’ roles and experience is listed below in Table 8. Also, it is worth

noting that some of the interviewees have multiple roles which is an added value, because

they give different perspectives to the problems and situations that happen during the

maintenance phase, which enriches our findings as it captures more diverse viewpoints.

Page | 111

Table 8. Interviewees' Roles and Experience

Interviewee Role(s) Experience (years)

1 Senior Software Engineer 8 years

2 Architect 10 years

3 Consultant 4 years

4 Project Manager 10 years

5 Consultant / Team Leader 6 years

6 Project Manager 8 years

7 Consultant 3 years

8 Architect 11 years

9 Software Engineer /

Internal Project Manager

5 years

10 Team Leader / Project

Manager

7 years

5.4.3 Prepare the interview schedule, considering content, wording, format,

and structure

For this study an introductory session was performed, where an overview of the research,

the results reached so far and its need for this study, its importance and purpose of the

study was introduced. This also helped in introducing the interviewer to the intended

audience, and also getting to know the participants, their roles, their experience in the

company, and also their scheduling preference for the interview session. After this

introductory session, issues to consider were:

 Can the question be clearly understood?

 Will interviewees be cooperative in providing the information?

 Is the question related to all interviewees?

 Does the question allow interviewees to offer their opinions/expand on basic

answers?

 Will it be uncomplicated to analyse?

After the introductory session presentation, an open discussion was held that helped

deduce judgements to the above concerns. Participants shared their opinions about how the

topic speaks about their daily problems with customers in the maintenance and support

phase. They pointed out that “the questions were organized in a chronological manner

starting from the feedback sent by the end-user, going through its effect on all the different

phases of handling the software change and evolution (i.e. interpretation, analysis, planning,

implementation, and documentation)”. Furthermore, to help organize the content that will be

gathered during the interviews and to ease and improve the analysis of the results that will

Page | 112

be collected, the questions were mapped to an initial set of themes that were identified as

the main goals from this study as shown in Table 7. This facilitates and emphasizes the

identification, examination, and recording patterns (or "themes") within data when

conducting the thematic analysis. The themes become the categories for analysis. This

supports the familiarization with data, eases the generation of initial codes, searching for

detailed themes among codes, reviewing themes, defining and naming themes.

5.4.4 Test the interview with colleagues or potential interviewees and revise

as necessary

A pilot interview was conducted with a software engineer in the company in order to test the

feasibility of the study (Turner III 2010), providing training to the researcher conducting the

interviews, and determine whether the time taken to complete the interview is reasonable or

not. Also, the participant was asked for feedback to identify ambiguities and difficult

questions. Moreover, it helped in assessing whether each question provides an adequate

range of responses or not. The final purpose was to verify that replies can be translated in

terms of the required information and themes. This interview was not analysed and included

in the study results.

After this pilot study actions were taken to improve internal validity. Two main issues that

resulted from the pilot study was that more questions were added to elaborate on important

issues regarding problems in their current data collection tool, and how they utilize and

reuse the feedback they collect to support them in decision making.

Since semi-structured interviews were conducted, extra questions were adjoined to this

main set in some of the interviews especially with the consultants, because they work in

partnership with customers (i.e. end-users), advising them how to use the software or

overcome problems. This was to elaborate on some specific issues regarding the mapping

between the developed structured feedback types and the real situations that engineers

encounter, and also to further investigate how the structured feedback types could be

utilized to deduce useful information that can inform the engineers during the maintenance a

support phase especially when they manage software changes requested by the customers.

Examples are:

1) Does JIRA require minimum information to be entered by customers when they

report issues? Or is it left open depending on the customer?

2) What are the criteria upon which the consultant qualifies whether a defect is valid or

not?

3) Are the problems communicated with the customer in the perception and

reproduction phase?

4) How do you keep track of historical data of problems and solutions?

Page | 113

5) How can duplication happen when you have the same problem posted before with a

response?

6) Did it happen before that you have suggested a solution to a problem and the user

was not able to apply this solution?

7) Do you encounter that users read a feedback thread explaining their same problem

and tried the solution that you provided, but did not resolve their issue?

5.4.5 Conduct the interviews

In the introduction, the interviewer:

 Reiterated the purpose of the research by distributing the participant information

sheet at the start of the interview and clarified any gaps or misunderstandings about

the research topic. The purpose of the study is to gather information about the

problems that face the software engineers during the maintenance and support

stage. From the point of view of software engineering, software maintenance is the

central stage of the software lifespan; for typical successful software, an

overwhelming amount of time and resources are spent in this stage and hence it

merits particular attention of researchers. The evolution process is initiated by

change requests triggered by customers. Our study focuses on identifying the

problems caused by the miscommunication between engineers and customers in

this process. The interviews are intended to gather information about different

problems that the engineers encounter during: gathering information, analysis,

prioritization, estimation and so forth. Information collected from the interviews will

assist in gaining a deep understanding of how the instances of formalized

feedbacks entered by the end-users can be utilized to resolve evolution tasks

problems. Thus, direct feedback from interested and concerned individuals is

fundamental to achieve this part of the research.

 Reiterated the classification of structured feedback types developed in this

research, which is a key aspect in this study, because confirmation is needed from

the interviewees that they cover the essential information they need in their

communication with end-users. And also, how and when they could be utilized in

the change identification and evolution process tasks.

 Recorded interviews with consent from the participants to allow greater interaction

between the interviewer and respondent.

 Confirmed with interviewees that their confidentiality/anonymity will be respected.

Meaning that their names will not be linked with the research materials, and will not

be identified or identifiable in the report(s) that result from the research.

 Confirmed with interviewees that data gathered from the results of the study may be

presented at a conference or published, provided that they cannot be identified.

Page | 114

 Kept the interviews as planned in place and time according to the schedule that was

pre-prepared and agreed upon in the introductory session.

5.4.6 Transcribe interviews

A transcript that contains text that describes the content of audio or video files was prepared

after the interviews were conducted. These transcript copies were used to:

 Make a text copy of all interview discussions

 Divide the audios into sections and make notes about each section

 Record notes about specific ideas or questions

 Make notes about the interview audio in general

All audio files were imported on NVivo 11 for transcription. A transcript consists of the time

span selected from the audio file and associated with the translated text for this time span.

After the transcription of interviews the analyst can:

 Add, delete or edit the text in transcript rows

 Format the text in the Content column

 Code, annotate and link text in the Content column to memos

 Filter the transcript to focus on pertinent content

 Select an entry and play the associated section of media

5.4.7 Analyse the transcripts

The interview transcripts were analysed by using thematic analysis method. Thematic

analysis is used in qualitative research and focuses on investigating themes within

data. This method highlights organization and rich description of the data set. Thematic

analysis tries to find implicit and explicit ideas within the data. Coding is the primary process

for developing themes within the raw data by recognizing important phrases in the data. The

justification of these codes can include comparing theme frequencies, recognizing theme

co-occurrence, and graphically displaying relationships between different themes.

The analysis resulted with two thematic maps representing the classification of missing

information that affect the maintenance /evolution tasks shown in Figure 12, and the

classification of problems triggered by the missing information that arise during the

maintenance and support phase shown in Figure 13.

5.4.8 Write up, present and use the findings

The study results will be explained in detail in section 5.5, and how the findings will be used

to achieve the objectives of this research will be explained in section 5.7 of this chapter.

https://en.wikipedia.org/wiki/Coding_(social_sciences)

Page | 115

5.5 Study Results

In this section the study results are described in detail. The results are categorized into the

two main categories: 1) the types of missing information (Section 5.5.1) from the users’ that

can lead to several types of problems during the maintenance phase, which is represented

in the thematic map in Figure 12; 2) the change identification and evolution process tasks’

problems (Section 5.5.2) that engineers meet while handling change requests represented

in the thematic map in Figure 13.

5.5.1 Types of Missing Information

This section explains the types of missing information that were extracted from the

interviews and classified as mandatory and useful information necessary for proper

execution of the evolution process tasks. Improper representation and utilization of these

information categories hinders the engineers’ capability in resolving continuous rising issues

during the evolution process and decision making.

Figure 12. Interviews’ Study Final Thematic Map for the Types of Missing Information

5.5.1.1 Requirements Representation

Successful projects engage users early and then discover and attain closure on their

requirements by using analysis models -- representations of user requirements. Despite of

its importance, there is lack of formalized method and frameworks that aid software

engineers in integrating these models with evolution tasks. This thematic area incited in the

Page | 116

interviews as a main concern during the evolution process tasks, because consultants and

customers depend heavily on it in validating issues, also in narrowing down problem

scopes, and in determining the impact of a change when deciding on new enhancements or

features. Therefore, the need for formal, organized usage of updated requirements’

representations is classified as mandatory in this research.

5.5.1.1.1 Requirements Specification

Requirements Specification captures the need for proper specification and the need for

keeping specifications up-to-date along the maintenance and support phase for accurate

handling of software changes. Specifications are important to determine the features’

definition, scope, and behaviour. This information is an important input for the identification

task in which the engineer determines whether the feedback is a help request, a change

request, a new feature request, or a bug fix.

For example, sometimes due to the customer’s inexperience with the system, he may

request a feature that already exists. So engineers need “customers to link the reported

defect to one of the requirements that are already written in the requirements specification,

because this helps us analyse the use and revise its scenario to evaluate whether this is a

valid defect or not.” Engineers also explained how specifications could be used to determine

new change requests “If the customer relates the problem to a feature in the requirements

document then it's a defect. If not then it is a change request. Also, change requests can

relate to a feature in a requirements document but with a different behavior.” Another

example: “After we revise the specs written in the file concept, if we do not find the

requested functionality then we can convert it to change request and make an offer to the

customer including costs.”

5.5.1.1.2 Requirements Dependencies

Requirements Dependencies emphasises the need for a proper capture, storage and

representation of dependencies between requirements. Requirements and/or feature

dependencies are very important in the analysis task especially that they are the main input

for studying the impact of a change, because “if we can locate the requirement/feature that

requires the change then it can be examined whether the related requirement(s)/feature(s)

will be also affected or not”. It also helps in producing better estimates by the software

engineers during the planning tasks.

In the study interviewees confirmed that this task depends on several team members’

experiences and is done through manual inspection “The consultant who is aware of the

impact of changes, because he knows the requirements and the relationships between

them, and the developer, because he knows where a function could be usable from several

places in the code.” That is sometimes error-prone and inaccurate especially if the team

Page | 117

members are new to the project and unexperienced with the code as stated by a team

leader participant: “Usually this problem occurs with junior software engineers, because they

try to resolve exactly what the customer needs, without looking in different areas to provide

a complete clean solution.”

5.5.1.1.3 Business Goals

Business goals representation can help engineers relate requirements and features in a

meaningful way without losing the big picture overview. It can help management team

members gain a clear picture of customers’ goals and priorities. Lack of business goals

representation may inhibit ideas about future possibilities for change requests, especially in

systems operating in highly variable contexts. A project manager participant explained that

“Sometimes changes are very important to users and they do not cost us much, and the

opposite way around, sometimes less important features may cost much effort.”

Currently interviewees have pointed that communicating new change requests is dependent

on the project managers’ experience and also to the consultants’ knowledge with the

customer and history of similar cases related to him subject to manual research. “Technical

estimates are given to the consultant to revise the history of previous change requests to

that customer, and the requirements document to be able to estimate its value to the

customer.”

5.5.1.2 Feedback Descriptions

Feedback descriptions constitute a thematic area in which the essential components of

feedback is captured and explained. The need for software maintenance and evolution is

triggered by end-users’ changing needs and/or problems that are communicated through

feedback while the software is in use. Therefore, the better descriptions they provide the

better the problem or change request is communicated and interpreted leading to successful

implementations and closure.

In this study it was also explained that feedback is not only used by end-users to

communicate their issues, but also by engineers in communicating with end-users and/or in

resolving their issues. Thus, feedback is used as a communication method. This highlights

the importance of providing enough details to ensure the feedback conveys useful and

meaningful information.

5.5.1.2.1 Execution Steps

As concluded from the forums analysis study that explaining through steps is a powerful tool

when describing both problems and solutions. From an end-user side, when a Problem

feedback type is provided, a Trial level of detail could be used to describe the steps that the

Page | 118

end-user has gone through in performing a certain task. A trial level of detail should be

explained using steps to provide engineers with guidelines that enable them to interpret and

reproduce the end-user’s problem: “Examples of problems that can occur are that users do

not write a complete scenario (steps) to the problem so I do not understand how the

problem occurred to him.” Also, “Detailed processes can become confusing if conveyed in

paragraph form. Writing in an ordered list instead, makes following directions much more

clearly to the engineer.” The customer can also quickly identify where they ran into trouble in

a process. “For example, "Step three gave me error 33."

From an engineer side, when a Mitigation feedback type is provided, then it should contain a

Usage scenario level of detail that explains the solution in steps to enable the customer to

try the solution easily and locate any problems accurately.

5.5.1.2.2 Unspecified Failure Step

Explaining the Problem feedback type in a form of Trial steps was pointed by different team

members as an important factor of understanding a reproducing the customer’s problem.

However, in some situations this is not enough it also has to be accompanied by exactly

specifying the step in which the problem occurs. An example from what consultants has

explained: “We start getting into more details with the customers…So he starts explaining a

scenario including details about the task, and when exactly does the problem occur.”

Lack of this type of information can lead to the inability to design a proper configuration and

solution. For example: “Say a feature is not working, and it can be reached through several

ways in the application, which way or scenario was the customer using and when the error

has occurred is important information. This lack of information is also misleading

sometimes”

5.5.1.2.3 Task Descriptions

It captures what the user was doing when the problem occurred. This is specifically

important when the user is describing a problem, because it gives the consultants and

software engineers an idea about the context in which the problem occurred, or describing

the frequent jobs that the user is involved in in his daily work. For example, “A customer

gives feedback saying that he was doing an import and import failed.” This problem lacks

task description that describes the job the end-user he was trying to accomplish. “So we

start asking him more questions like: which type of import was he using, why was he using

it…” This information helps in “better understanding the problem and in narrowing down the

scope and deciding where and when the feature simulates a problematic situation”

Page | 119

5.5.1.2.4 Screen Shots

The text method is the most commonly used description method in all feedback types.

However, sometimes there are problems that users find hard to explain using textual

information alone, and they use other supporting methods such as screen shots.

“Sometimes customers provide very brief descriptions that become more understandable

when providing supplementary materials such as a screenshot”. Screen may help in

illustrating “the feature he has been using, the task he has been performing, and/or the error

message that occurred to him”. However, using screen shots alone are not enough to

convey all information about a problem without explanation. “The error alone is not enough,

because he has to provide other descriptions and other information such as the data he was

working on.”

5.5.1.2.5 Required Test Data

Test data is a new level of detail that was discovered from this study. It is an important input

that customers can provide especially when the problem is related to data-oriented features,

such as exports and imports. “If a customer reports that a problem occurred while importing

data from a certain file, then he might be asked to provide the file for us to try on.”

Lack of this information may lead to inability to identify or reproduce problems, because “If

the customer did not provide such file the consultant may try to create some mock data and

try it on the system for testing. Of course the mock data may not reproduce the same

problem as the real data.”

Also, sometimes engineers “cannot make accurate expectations of the numeric results that

will occur. And sometimes when they resolve an issue and correct values occur, “customers

start reporting that the next step doesn't provide correct calculations.” Thus, providing an

actual set of data used will help save time and effort that would be spent by the engineers to

produce mock data to make trials and try to reproduce the same sequence of errors that

occur at the customer’s site. “Inconsistency between the data may make the solution

inoperable”.

5.5.1.2.6 Environmental Context

Environmental context category is a level of detail that captures context information related

to a software or hardware specs, versions, configurations…etc. Participants elaborated that

“end-users can provide these kinds of information in a problem statement to specify the

software version they are using, which may differ in the problematic feature from older or

newer versions.” Therefore, this adds specificity and usefulness to add such information.

Page | 120

Also, participants pointed out that when they provide solution to the end-users too this is

very important information that has to be clearly stated, because “It might happen that the

user cannot try the solution we gave. This can be because we were not considering an

aspect in their environment.”

5.5.1.2.7 Customers’ Roles and Responsibilities

This conveys context information related to a user’s role at work, information about co-

workers…etc. This was already identified in the forums analysis study as a context category

named Social context. Participants in this study elaborated on its use and importance such

as “Which user role was used (logged in) during the import operation? As the problem might

be in the user rights that doesn’t allow them to perform certain tasks on the software”

Therefore, this information is important to determine which action should be taken in the

solution design.

Also, another use of information on roles and responsibilities is: “Sometimes customers

specify the number end-user roles getting a certain error when using a feature in the

application to emphasize the importance of resolving it, and giving it a high priority.”

5.5.1.3 Historical Information

Historical information is a thematic area that refers to any information encompassing

resources that may be employed by a project team and/or a project team leader for the

purposes of gathering as much information as possible about projects, activities, or events

that had taken place in previous time periods for the same project with the intentions of

delivering sufficient insight and background to the team when making decisions that will

eventually affect the resolving of current issues on hand.

5.5.1.3.1 Feedback History

Using stored structured feedback threads containing the feedback types that were utilized in

the communication between end-users and engineers to resolve an issue, enhancement or

new feature that took place along the project “could help provide future insights in other

issues during the same project or any future similar projects”.

The lack of feedback storage and feedback linking hinders the engineer’s search

capabilities in the historical information of the project. Thus there can be no historical

information reuse, and problems such as duplicates cannot be systematically detected, as

consultants rely on their experience and knowledge “As a consultant if I am involved in-

depth within the project, then I can easily identify duplicates.”

Page | 121

5.5.1.3.2 Feature Change History

Feature change history expresses the necessity of keeping requirements information up-to-

date and keeping track of feature changes, how, and why they occurred. “Keeping this

information up-to-date is mandatory when applied in the context of change impact analysis

to produce accurate results when analyzing future changes.”

Participants also pointed out that “keeping track of the changes that occurred on a certain

feature can be useful when analyzed in future improvements suggested by the software

development team to determine its value to the customer”, which will provide better support

for decision making. However, this is currently performed manually with no information

support for the consultants: “Technical estimates are given to the consultant to examine the

history of previous change requests for that customer, and the requirements documentation

to be able to estimate its value to the customer.”

5.5.1.4 Progress Tracking Information

Tracking information is important in any software project because it helps team members

stay focused. Many project team members often get overwhelmed when faced with big

tasks. The perfect corrective action is to track the project tasks. Results from each task or

step should also be tracked. After that, it can be just a matter of concentrating on the tasks

that yield better results.

This thematic area does not capture the types of information that could be found in

feedback, but it contains types of information that can be deduced from feedback responses

(i.e. threads), or are stored explicitly by engineers. Lack of this category of information can

affect some of the software evolution tasks such as planning and adversely influence the

communication between the end-users and engineers.

5.5.1.4.1 Resolution Workflow

One of the important tracking information is the resolution workflow, which captures the

steps that was followed by the software engineers in order to resolve an issue reported by

the customer. Lack of capturing and storing this information can cause deviation from

settled targets, and communication problems with customers that can often lead to

customer dissatisfaction.

Participants explained “We store all problems and their workflow on JIRA: whether they are

qualified problems or not, their status, description, the action that was taken for this

problem, resolved state, and customers’ acceptance whether it is resolved or not.” In large

projects this helps in “providing accurate plans for updating customers with correct and

Page | 122

exact decisions/ results that were reached”. And can be “further used in project

documentation”.

5.5.1.4.2 Resolution Status

Resolution is an evaluation case that indicates whether a problem posted in a feedback

thread was resolved or not. “Unresolved problems mean that the customer did not verify the

suggested solution and therefore, the issue will still be open waiting for a workaround or

solution. If the customer is satisfied then the issue is closed and proper documentation is

provided. Also, resolved issues can be re-opened for further enhancements”.

This case is captured, because interviewees have explained how this is done on the JIRA

tool that they use. However, if a formalized acquisition and communication method will be

developed for both customers and engineers, “this information could be deduced

automatically by monitoring feedback Topics and feedback Response types”. It can also be

used as “success/fail measurement of project or releases”.

5.5.1.4.3 Task Status

Effective task management requires managing all aspects of a task, including its status.

One of the primary concerns of the project manager during the maintenance phase is

keeping the issues handled on schedule “Because customers care much about the due

dates in this phase, as they need them to meet certain needs or tasks. In order to do this,

managers must identify those tasks that aren’t getting completed on time”. Also, it can be

used as base data to infer useful information about “project success/fail rate and measure

customer satisfaction”.

5.5.1.4.4 Effort Estimate

Effort estimation is the method of identifying the most realistic utilization of effort required to

resolve a customer issue. The estimates of the effort might be used as input to project

plans, determining the budget and other important procedure required for the successful

completion of tasks and releases. Good effort estimation is the one that can be explainable

in each and every step.

For example, “if the customer requests a new feature to be delivered in one week, but due

to lack of information in the problem statement we have to investigate more. This sometimes

leads to major changes in the feature and transforms it to another different specification with

a totally different estimate due to the addition of tasks”. This is an example of a problem

case that occurs that makes it a necessity to communicate estimates with customers.

Page | 123

5.5.2 Maintenance Phase Problems

The thematic map in Figure 13 represents the problems related to the evolution process

tasks starting from engineers receiving change requests and how they are handled until

change acceptance and closure. Also, miscommunication between end-users and

engineers was identified as a one key problematic area during the maintenance phase as it

captures all the interaction problems and their causes. The problems captured in this

thematic area are all consequences of the different types of missing information explained in

the previous section 5.5.1 as concluded from the interviews. That is why it is important to

summarise these problems, because this research focuses on the capturing and

formalization of feedback to utilize it in communication and evolution tasks execution.

Figure 13. Interviews’ Study Final Thematic Map for Maintenance Problems

Page | 124

5.5.2.1 Change Identification and Evolution Tasks Problems

The evolution process is normally triggered by a change request sent by the customer

followed by a group of tasks that the engineers perform to manage a change till reaching a

successful closure with the customers. Participants stressed on three main consecutive

tasks for managing a change after it is received, which are identification, analysis and

planning. These tasks are dependent on the utilization of end-user input (i.e. feedback),

requirements documentation and modelling. Normally, their successful completion would

lead to a successful change implementation and closure.

5.5.2.1.1 Identification Problems

The First thematic area in the evolution problems is the change identification phase. This

theme encompasses all categories of problems that relate to the incapability of engineers to

understand the end-user feedback, specify the issue type, or reproduce the problem to

confirm its validity and proceed in the process to reach a suitable solution. This mainly

relates to the lack of sufficient information or model representations that can aid engineers

in their tasks.

5.5.2.1.1.1 Customer Request Misunderstanding

Communicating clearly with the customers can be challenging, especially if your interaction

reaches into the technical details of your product. This problem is related to a category of

missing information named Feedback Description explained in section 5.5.1.2 which is the

core reason for customer request misunderstanding.

The core idea is that there are no guidelines for end-users to follow while providing the

feedback. Therefore, it is left to the customer’s ability to express, which most of the time as

reported by the interviewees is very weak, due to the lack of technical background, and

sometimes inexperience with the system. “Sometimes a customer's request can be a bit

mystifying. Consultants might make assumptions too quickly about what a customer means

and end up trying to solve the wrong problem.”

There are types of details that are preferable to be used in feedback descriptions. When

used correctly with enough information, to provide a useful and meaningful input for

engineers can lead to better understanding of the problem, examples include:

“Screenshots are a great thing to request from customers. A screenshot can quickly clear up

a misunderstanding that might otherwise take two or three emails to clarify in text.”

“Detailed processes can become confusing if conveyed in paragraph form.” “Try using an

ordered list instead. This makes following directions much more clear.” The engineer can

Page | 125

also quickly identify where end-users ran into trouble in a process. For example, "Step three

gave me error 33."

5.5.2.1.1.2 Inability to Specify Task Type

There are several types of tasks that customers report to engineers either defects,

enhancements, or new feature. First task the consultants do in the evolution process is

trying to identify the task type or trying to verify whether the task type that the customer

specified in the feedback is correct or not.

The inability to specify task type may be due to several reasons either the customer

provided a misleading type due to lack of experience or conflict in understanding the

existing software features “This usually occurs in the beginning of their usage, as users are

still not experienced on doing tasks using the software. So they cannot judge whether it is

the correct behaviour or it is a mistake in the application.”

Furthermore, insufficient information can hinder the engineers’ capability to specify the

correct task type. “We continuously ask customers to link the defect to one of the

requirements (i.e. use cases) that are already written in the requirements specification. This

helps us analyse the use and revise its scenario to evaluate whether this is a valid defect or

not.”

5.5.2.1.1.3 Inability to Reproduce Problems

Reproducing problems means the defect/bug reappears at the development environment

then engineers can resolve and fix the Bug. However, “if the bug is not reproducible at the

development environment then more investigations are sent to customers to gather

sufficient and/ or correct information”. This is the first step in a problem

identification/validation.

“Sometimes users do not give enough description to the problem, and they only give a

screen shot. Also, they do not describe the scenario and context in which the problem

occurred.” Thus, the user's problem is not reproducible locally in our environment, and is

only reproducible on his system. “Mapping between our configuration and his becomes

hard”. This Lack of information in customers’ feedback is a main cause for unsuccessful

reproducing of problems, which can be very time consuming for engineers, and can affect

the subsequent tasks in the evolution process causing higher costs if identified later.

5.5.2.1.2 Analysis Problems

The evolution process includes fundamental activities of change analysis, release planning,

system implementation and releasing a system to customers. The cost and impact of these

changes are assessed to see how much of the system is affected by the change and how

Page | 126

much it might cost to implement the change. If the proposed changes are accepted a new

release of the system is planned.

5.5.2.1.2.1 Difficulty in Identifying Modification Scope

This is an issue that engineers encounter during the analysis task of any new issue. That is

how the change is going to propagate and affect other features and/or requirements in the

system. This is a key task in the evolution process and that is dependent on the category of

missing information identified in section 5.5.1.1 named “Requirements Representation”.

Therefore, it must be kept up to date with enough information and descriptions for each

requirement and its related features for the engineer to be able to use it as an accurate

reference in analysis tasks. Engineers suggested that this could be linked to end-user

feedback by “Asking The user to reference the components of the software in his feedback

to determine from the user's point of view in which component the bug exists. This also

helps us determine the scope of the bug and the type of modifications needed”

This also helps engineer to analyse whether the issue is a bug or a change in the functional

definition of the feature, its behaviour. Participants provided insights on the important of

linking the feedback to specification to be able to trace the issue and analyse it “We have

included a field for the chapter in the requirements specification that includes the issue. This

is because many times there are conflicts between us and the users on whether what they

are requesting was already in the specs (therefore it is a bug) or not.”

5.5.2.1.2.2 Inability to Identify Task Impact

Task impact is identifying how the customer request will affect other parts in the system.

Participants said that two main roles are responsible for examining the impact of a change

“the consultant who is aware of the impact of changes because he knows the requirements

and the relationships between them”; and “the developer who is aware through the

implementation of the modules where a function could be usable from several places in the

code.”

However, this task is done manually and depends on the consultants’ and developers’

memory and experience “During the estimation time, the one who was doing the estimate

should have an overall view of the system, and he should be given enough time to analyze

and determine an accurate impact.” Also, this task is dependent on the Ability to identify the

modification scope correctly, because if the engineer locates the requirement that needs

modification, trough requirements and feature dependencies the impact could be identified

more accurately producing better estimates.

Page | 127

5.5.2.1.2.3 Customer Value Misunderstanding

The most prevalent misunderstanding of the customer value concept is that “value means

low price, or minimizing its scope to obeying what customers want, being nice to them, or

delivering outputs as fast as possible.” However, managers pointed out that it is as much

about being proactive in coming up with new products/services/experiences that they

believe will create value for customers.

“The role of the good consultant is to find this "sweet spot" of providing to the customers

what they want without great deal of IT effort. So if a conclusion was reached with what the

customer needs is very high in cost, which is impossible for him to accept, “then we start

suggesting alternatives with some functional limitations, restrictions or workarounds. And

while negotiating with the customer we start understanding its importance and value from

him.”

However, this depends on the consultants’ and managers’ experiences and knowledge with

the customer’s needs, goals, and domain. “So it is given to the consultant to revise the

history of previous change requests for that customer, and the requirements document to be

able to estimate its value to the customer.” Lack of historical information about feedback

history in dealing with customers’ change requests and the representation of the customer’s

goals related to the requirements and feature affects the big picture summary, which is

important in understanding customer value and decision making.

5.5.2.1.2.4 Efforts to Analyse Similarity

This is a very important issue that specifically concerns consultants who are responsible for

validating customers’ reported feedback. After a period of time in a project the number of

feedback from customers and responses may increase a lot, making the analysis or search

task much more complex and time consuming especially if it is done manually or with very

limited capabilities. Consultants mentioned that they “link similar issues together manually. If

we find a similar resolved problem we refer to it by replying see issue number X, and the

new issue is closed as a duplicate.”

The lack of proper linking between feedbacks and depending on human capabilities in

handling similarity analysis “The feedback is analysed and if the consultant realized that this

issue is repeated we report that it is a duplicate and he refers to the older issue number”

This might lead to error-prone results, such as inability to identify duplicate problems, which

leads to duplicated effort. “The problem is if he does not remember we will go through the

whole process again until it is resolved with this user.”

Page | 128

5.5.2.1.3 Planning Problems

Before the actual task(s) implementation begins, team members must make sure that the

work is properly understood and agreed to by the team members and the customers.

Planning is one of the most important project management and time management

approaches. Planning is preparing a sequence of action steps to accomplish some specific

goal. Putting a plan requires team members to put an initial solution design and break it into

smaller tasks with priorities, and make estimates of time and cost. If team members follow it

effectively, they can reduce much the necessary time and effort of achieving the goal. When

following a plan, engineers can see how much they have progressed towards the project/

task goal and how far they are from their submission.

5.5.2.1.3.1 Priority Misjudgement

The lack of engagement with customers, learning from their work usage habits, and

previous problems or needs may cause disagreements and misjudgements about priority

“Usually customers enter the issues in the order they would like us to address them.

However, if we are not convinced with their way in prioritization, then we ask them for more

information.”

Sometimes they request issue that seem simple or unimportant with high priority therefore

more background information is important to justify, why they are requesting the issues in

that order. “For example, sometimes they have an audit from an external company X, and

they will lose a license if there are certain defects in the outputs from the software.” Also,

customers can set false priorities on the problems or changes they request “due to lack of

experience and knowledge with the system and its related functionalities”

A team leader interviewee also mentioned that “Priority also depends on the Importance or

the urgency of the problems.” For example: “A customer is in a central organization with

many end-users that work on an application that we have developed. Once they were

generating a certain report, and errors occurred, so they reported to me the errors with

details”. There was lack of information about the Requirements specification and its

dependencies “from which we can estimate the roles that use these requirements and the

estimate of the number of affected users and the estimate of its frequency of occurrence

from the technical design”.

And thus all this lack of information may cause the priority misjudgements and inability to

identify an accurate impact and also failure to communicate that impact with the customer,

and waiting for the problem to evolve at the customer's site, as “The more users that report

that they have the same problem, the more the issue took a higher weight, because it

affects the quality of the produced reports.”

Page | 129

5.5.2.1.3.2 Unforeseen Priority Shifting

One of the most problematic issues about priority lists are they seem to grow and mutate

constantly. At some point during a project a customer is likely to make a demand that shifts

priorities; or, another team member’s work is delayed and that affects the flow of the plan.

Unforeseen priority shifting can be caused by “lack of information in new change requests

that comes in from the customers about its urgency or importance, which leaves it to the

engineer to prioritize it according to the settled plans and available time and resources”.

Also, “lack of information representation about customer’s goals related with requirements

specifications that can help engineers identify the value of a change can lead to false priority

judgements and thus leads to future shifting in plans and less customer satisfaction”.

Other Factors that obstruct our plans include: “we do not have much available time, bugs

that occurred are more than expected, or requirements change...etc. So in these cases we

need to re-prioritize our plans. If not this extends the deadlines a lot, which puts much

emphasis on the prioritization of issues.”

5.5.2.1.3.3 Additional Tasks Affecting Milestones

An additional task affecting the milestones is a result of other planning problems, whether

prioritization misjudgements, design and/or deployment constraints, or unpredicted priority

shifts. All these problems will definitely lead in the end the state of updating the project plan

and affecting milestones. For example: “Sometimes the customer reports an urgent issue so

we spend time and effort to give him a temporary workaround that might affect the current

plan. Then we explain to him that in order to provide a better solution other feature(s) need

update first so we have to delay it to another release if possible”

To avoid the ad-hoc changes in the plan, the interviews pointed out this this is mainly due to

miscommunication of rising problems with the customers. Pinpointing the consequences of

a problem is important to help us avoid these situations and resolve its causes. Sometimes

tasks in the evolution process take longer than expected “even if we provided the fix in a

timely manner. But in the end there are some steps that we cannot eliminate.”

Engineers do not make definitive decisions, but instead they support the customer with

information (resources, deadlines...) and concerns. For example, “in order to update the

production system we have to shut it down and we cannot do this while the end-users are

working, so we have to choose an appropriate down time, after having this permission even

if it is at night while they are not working on the system.”

Page | 130

5.5.2.1.3.4 Misused Effort

All of the above problems that were discussed end up as tasks that engineers have to

perform, the more problems that occur in these evolution tasks the more the wasted effort.

An example of misused effort is the effort spent on investigations due to lack of adequate

description from customers. Examples include: “Customers do not give lots of information in

their feedbacks and thus the communication time is longer and consequently the estimation

task.”

Another example of misused effort is the effort spent in implementing workarounds that will

be changed due to unforeseen priorities. “There are clean solution and workarounds. Some

situations may lead us to do workarounds especially when the problem is a blocker for

example in a production system and we have to solve it immediately.” By the code below it

is meant that there is effort wasted in designing crooked workarounds for example in blocker

situations and then spending more effort in designing and implementing a clean solution in

the future. “Usually after this kind of workaround we must find and implement a clean

solution. Sometimes problems are solved through workarounds that require a change in the

workflow of the task.”

The following case was coded under misused effort, because the interviewee said that

instead of asking customers several times for the same information and trying to narrow

down the problem with him, they start in making several trials which is a waste of effort. “For

example, “a user reports that an error occurred when he entered certain data. He has to

provide the data that he entered, because some problems are data-specific. Sometimes he

provides missing data, old data, and/or wrong input data.”

5.5.2.1.3.5 Unclear Progress Status

One of the key factors of why projects fail is related to visibility. All team members need

access to the right level of information at the right time to be able to successfully manage

their tasks and communicate with customers when needed. There is a lack of systematic

tools and process for handling these issues “We substitute the lack of formality with

consultant's experience with the functionality, and the technical knowledge of the architects

and their experience with the code and its updates.”

There is extra effort wasted in communicating information between team members.

“Internally, we make weekly meetings to discuss the issues and their progress, their

implementation and how it was done and the updates. These meetings are the best time for

the tester or the consultant to know which parts exactly are affected with the updates and

needs testing.” Also, sometime by the time the team members call for a meeting, “some

members are working on past issues that have changed scope or evolved due to continued

update requests.” Therefore, devising a communication means that enables every customer

Page | 131

update to be documented, and related to the feedback thread for a main issue is important

to keep information linked and accessible for team members working on the issue and/or

project.

5.5.2.1.3.6 Solution Design Constraints

Covering design inputs in solution design is very important; design inputs are Requirements,

Constraints, Assumptions and Risks. It’s important to classify design Inputs, and that is why

these codes were captured from interviewees answers that pinpoint the important

information that has to be communicated from customers or other team members to

produce better solution alternatives to customers. Examples of information the end-users

should provide in their feedback are: Priority and Severeness of an issue. “For example, if

the customer reports a blocker problem and he needs to resolve it maximum tomorrow.

Therefore, we will do a workaround until a clean solution can be made.”

Also, the budget is an important factor “whether the customer has no budget or not willing to

pay for a clean solution, or we have no resources on the project to make a clean solution.

Out of honesty we inform the customer that there is a clean solution, but due to budget

issues we will make him the workaround.”

Moreover, Quality is an important factor; “if we have to consider quality then we have to go

for a clean solution. If we will not consider the quality because it is an unimportant feature

that is used annually then we can make a workaround.”

Furthermore, knowledge about the roles that will use a certain feature or module is

important “to design the entrance points from different parts in the software. We might also

want to know the number of users to handle performance if there will be a large number of

concurrent using the feature at the same time.”

5.5.2.2 Communication Problems

By communication means the reporting or exchanging of information between the engineers

(the software company) and the customers (end-users). This category encompasses

miscommunication categories from both sides either they

communicate mistakenly, unclearly, or inadequately. Also, the communications problem is

further complicated by the number and diversity of system change requestors.

5.5.2.2.1 Unstructured Feedback

Unstructured feedback refers to the problem that there are no pre-defined rules for the

mandatory components of a feedback that can act as a guideline for end-

users. Unstructured feedback is a core problem as it causes difficulty for engineers in

interpreting them and reaching useful or meaningful information that can inform the

http://www.dictionary.com/browse/communicate

Page | 132

evolution tasks. Also, to resolve this issue a considerable amount of time and effort is spent

in investigation. “Each defect has a summary as short text, and a description as free text to

write what he wants. The JIRA tool allows for the above mentioned details to be entered

however it does not assure that the customer enters a minimum amount of valid

information.”

“Normally, in all our projects we do not set restrictions on the minimum amount or types of

information that the customer should enter.” Although, JIRA allows setting restrictions like

not allowing customers to enter issues without providing descriptions “but we put these

restrictions to customers in form of a gentle agreement to provide this information.”

Also, some of the interviewees provided examples indicating that there is no clear structure

for end-users to follow when providing their feedback. If engineers still do not understand

the problem well, “then we respond by feedback required from the customer. We provide

some questions and or request files” This means that the issues are totally handled case by

case through investigations without any predefined rules to govern the structure “and

customers keep responding until things are clearer then things get back in progress and we

start working on resolving it.”

5.5.2.2.2 Providing Misleading Feedback Types

Misleading Feedback type means that customers tend to give false ideas or impressions

about the type of problem they are describing either deliberately or unintentionally. “Usually

first thing that the users do is that they create an issue on that tool. This issue has a type:

enhancement, defect, feature, or change request. Typically most customers report any

problem they have as a defect, because defects are resolved for free.”

This can be either due to lack of training on what the problems types they can report are

and how they can report each type, or lack of experience with the software.

Also, lack of sufficient descriptions in feedback can mislead engineers in different types of

tasks. Lack of updated requirements information can be misleading especially in

identification tasks “Lack of information especially use cases is a root cause of misleading

engineers.” Say a feature is not working, and it can be reached through several ways in the

application, “which way or scenario was the customer using when the error occurred is

important information. This lack of information is also misleading sometimes, “especially if

we cannot reproduce the issue on our system.”

Software engineer develop effort estimates that are likely to be highly inaccurate and

systematically overoptimistic. “Engineers suggest that the causes of the problem, to some

extent, were due to the influence of irrelevant and misleading information, for example,

information regarding the client’s budget, present in the estimation material.” Also, unclear

Page | 133

progress status information of some tasks can be “misleading in scheduling tasks and

resource allocation.”

5.5.2.2.3 Inability to provide Adequate Descriptions

Inability to provide adequate descriptions refers to the customers’ failure to provide sufficient

information enough to describe the problem they want to communicate with the engineers.

“Sometimes the problem is in the data the customer enters, so providing the data could be

important in identifying the problem.”

The lack of this information makes engineers “unable to reproduce the request that the

customer sent.” On other times, “the user's problem is not reproducible locally in our

environment, and is only reproducible on his system. Mapping between our configuration

and his becomes hard.” So engineers start asking customers more questions like: “which

type of import was he using; provide the import file, which user role was used (logged in)

during the import operation as it might be a problem in the user rights.”

This category contains the codes illustrating the problem existence, and the effects it causes

by evolving other problems, also it contains specific types of missing information that were

captured in more details in section 5.5.1.2.

5.5.2.2.4 Deferred Customers’ Interaction

Delayed Customers’ Responses represents a behavioural task in which customers do not

communicate the adequate description in a timely manner this can lead to problems in the

tasks depending on that input such as the solution design, estimation and planning.

Any change made in further cases will cost more in terms of time and effort. “It happens that

while we are in the middle of the estimation task and after we reached an agreement on a

solution with the user that he starts making changes and adding problems. This may lead to

deviations from the expected solution.” This leads to more effort exerted by engineers in

validating the new added information, analysing its impact, assigning priority, and putting it

into plan.

Other cases include when customers communicate their problems shortly before their

deadline which interferes with the prioritization engineers have in plan. “Mainly they are

influenced by their own deadlines. If they have a deadline and a feature produces an error

making an obstacle for him to meet the deadline, then they put high priority for that issue.”

5.5.2.2.5 Failure to Communicate Work Packages

A work package is a group of related tasks within a project. A work package is the lowest

component in a work breakdown structure (WBS), sometimes called the terminal element of

https://www.smartsheet.com/getting-started-work-breakdown-structures-wbs

Page | 134

a WBS. You create a work package when you decompose a deliverable into components

while creating a work breakdown structure. “A work package is a way to both understand

cost and duration and easily manage those aspects”. A work package should be unique to

the WBS. Without having information about the release work packages, “customers will not be

fully aware about the scope of the release. Consequently, problems would occur during release

planning e.g. conflicts in priorities, and task durations.” Also, The customer plans for

acceptance tests that will be conducted when the release is delivered. So, “without complete

information about work packages they will struggle in designing their test plans, which will

affect their acceptance of the release”.

Completion of work packages can be dependencies for other work packages. “We can

implement parts from several modules but the customer will not be able to benefit from such

release. So it’s not by the number of modules we address in the release, but it should also

be a working part as a whole.” It is important to communicate work packages with

customers, because they understand the software in terms of how it maps to their actual

work process that they perform in their daily work. So they need to understand what the

scenarios that will be delivered in the coming release. Work packages are also planned

according to technical task dependencies which are the engineers’ technical perspective.

5.5.2.2.6 Failure to Communicate Issue Handling Workflow

Failure in communicating issue handling workflow refers to the lack of information about

how the engineer should respond to different type of requests, and what is the necessary

information needed to resolve each case. For example “If the customer did not provide the

import file the consultant may try to create some mock data and try it on the system for

testing.” The mock data may not reproduce the same problem as the real data, which will

waste effort in creating mock-data and will lead to failure to reproduce the problem due to

inconsistency. “If the analyst had made the customer aware that he will need the real data;

this would have helped more in reproducing the bug successfully and saving time and

effort.”

5.5.2.2.7 Failure to Communicate Solution Alternatives

This problem represents the engineer’s inability to find appropriate solution alternatives to

customer requests. Engineers may try to find alternatives due to the impact the change will

pose on parts of the system, “Say for example the customer wants to be able to localize a

page. He can do so by letting me edit in a properties file. This is a simple solution, but each

time he wants to do this task he has to communicate this with me for the editing and update.

Or there is a clean solution; in which we can implement a configurable page to do the task.”

Miscommunication of possible alternatives may lead customers to retreat from their

decisions regarding their need for an enhancement or change.

Page | 135

Inability to identify possible solution alternatives may happen due to the lack of proper

requirements documentation for supporting engineers in understanding the feature usage

and frequency, and understanding of customer’s business goals and needs. “Customers

can choose one of the solutions or they can ask me to estimate both alternatives and they

decide according to the estimation.”

The code below was included as a special case in this node because if the customer

believes that a certain scenario should work in a certain way and he specified that to the

consultant however it was implemented in a different way without communicating that

change with him. Example from a consultant participant who worked on projects for the

public sector: “The users in these projects usually have the approach of: I know exactly what

I am doing but I do not know what's in that system, and I want to do this task and I do not

know how. This affects their feedback, as they assume that they were trying to do a normal

thing but the system is not working correctly.”

5.5.2.2.8 Failure to Communicate Impact

Failure to communicate impact refers to problems related to the miscommunication of the

impact of a change requested by customers on other modules (parts) in the system.

“Sometimes implementing the impact of a change is more than the change itself, and the

customer does not understand why the estimate is that big. This is due to lack of information

from the customer, or the analyst overlooked some aspects or was mistaken.”

Thus this information must be transferred to the customers to increase their understanding

of engineer’s decisions that they do not agree with or think does not support their

expectations. “The main issue is that sometimes customers request changes without being

aware of the cost it imposes on us. Sometimes we agree on a certain scenario with the

customer and after it is implemented he adds some extra requirement modifications thinking

that this is a simple task since the feature (or scenario) is already implemented.”

5.5.2.2.9 Failure to Communicate Technical Task Dependencies

Failure to Communicate Technical Task Dependencies captures problems that result from

miscommunicating technical task dependencies to customers that can sometimes result in

conflicts with customers. Example from what engineer participants said: “we have to

implement base data (tables, lookups) and users first thing in the application. From the

customer's view creating users is not a feature, he thinks that reporting module is more

important, however, in order to do the reports, there is a technical dependency and we have

to create the users first.”

These problems frequently relate to configuration and deployment problems. Definitely,

customers lack this view of the system. So it is the team member’s job to communicate that

Page | 136

with them to avoid any failures and disappointments. For example, “a customer is

requesting g a new feature in a module that has a build error, which means that the

runnable module cannot be built from the source code. Technically if we implemented this

feature it cannot be deployed on the customer’s system. Therefore, the customer will not be

able to use it unless the build problem is resolved first”

5.5.2.2.10 Neglecting End-Users’ Opinions

This node captures the cases related to the collection of feedback from a selected number

of users rather than analysing and communicating from a broad range of users and roles.

Priority is given to customers (as they request and pay for the system), while end users

have a marginal role, despite the fact that they will ultimately experience and benefit from

the system. This is almost the case in most software companies. This causes lost

information due to the high level view they have and their awareness of the goals but not

with the requirements and detailed workflows.

“For one of the projects, we made a system for a certain department for the government

sector. Part of the system is used by them only, and other modules are used by external

users. The real estate module in the system was made public and used by other users from

different departments or any external user.” So consultants and engineers do not deal with

all these users they only deal with the customers to whom they delivered the software,

which in this case are the government representatives.

“Usually, they have hotlines or other communication media, where users can report

problems to them, and they report to us. This may cause problems such as “lost information,

because they communicate the problems from high level point of view, and sometimes they

neglect the low level needs of the end-user who is directly using the system in his daily

workflow.”

5.5.2.3 User Experience Problems

This thematic area refers to a customer’s total experience in using a

particular product, system or service. The first requirement for a great user experience is to

meet the exact needs for the usage of a product or a service. To achieve this, users must

have all necessary information for their task without hindering their experience. However,

engineers do not provide usable supportive means for customers to help them understand

how the system or features perform their tasks. This lack of communication, leads to lack of

user awareness that causes less user acceptance.

https://en.wikipedia.org/wiki/Product_(business)
https://en.wikipedia.org/wiki/System

Page | 137

5.5.2.3.1 Usage Scenario Unawareness

A usage scenario, or scenario for short, describes a practical example of how one or more

users should interact with a system. They describe the steps, events, and/or actions which

occur during the interaction. Scenarios can be very detailed, indicating exactly how

someone works with the user interface, or reasonably high-level describing the critical

business actions but not the indicating how they're performed. “Problems that may occur

when customers try a solution provided by engineers are that the written scenario is

incorrect or unclear. So we give him feedback with the corrections (e.g. missing steps)”

Lack of proper documentation of usage scenarios in requirements specification (See section

5.5.1.1.1), or lack of communicating them with the customer will make customers less aware

of the capabilities of the software they using. This leads to less user acceptance, and more

importantly will cause more time and effort in resolving and convincing customers that they

reported invalid problems. “Most customers in the beginning of their system usage report

every problem they encounter as a defect and needs to be fixed. This is due to their

inexperience with the systems that makes them unable to differentiate in some times

between defects and help requests.” It is the consultant’s job to qualify whether the issue is

a valid defect or not. “80 % of the problems are reported as defects at first.”

5.5.2.3.2 System Holistic View Unawareness

One of the problems that usually occur especially in large systems is the customers’ lack of

variability awareness of the system configurations and relationships between tasks or

features. “Customers report issues as bugs and they know it is not a bug, but the real

problem is not usable in the way he has required or imagined.” This also means that

customers are not aware of the possible existing multiple entrance points for a feature.

“Customers may need to know the roles that will use a certain feature or module to be able

to recognize the correct mapping of entrance points from different parts in the software.”

Awareness of all these factors could lead to mitigated customers’ issues as there might be

easier ways to perform a task on hand.

Also, the customers are always not aware of the impact of the changes they request on the

system. “Especially because the system is used by multiple users and each user uses a

specific module (i.e. role) in their daily work so they are not fully aware of all the

functionalities in the system.” For example, “if the user wants to change a certain equation in

the module he uses instead of adding, he wants it to multiply. Mostly, he is unaware that

another user will be affected by this change.” The impact of the changes he requests should

be clearly communicated with him to ensure he understands the workflow of handling the

change request, the technical dependencies, and the priorities.

Page | 138

5.5.2.3.3 Feature Unawareness OR Misunderstanding

Same as Usage scenario unawareness there is the users’ feature unawareness (i.e. they do

not know that a feature exists), or feature functionality misunderstanding (i.e. they know the

feature exists but do not know what does it do, or they are mistaken about its real purpose).

“Usually the way they report problems by simply saying the feature or scenario is not

working. Sometimes the feature or scenario is actually working correctly, but the real

problem is that they do not know how to use it.” Lack of user help, suggestions, training, or

communication causes this level of unawareness. This leads to decreased user acceptance,

and more importantly will cause more time and effort in resolving and corrections.

5.6 Confirmatory Interviews

In this section, the purpose of the confirmatory interviews, the session planning and

participants’ recruitment, the prepared questions and the results are all explained.

5.6.1 Purpose of the Confirmatory Interviews

Confirmatory research (Onwuegbuzie 2003) is where you have a good idea about the

research topic. That is, you have a theory (or several theories), and the objective of the

research is to find out if the theory is supported by the facts.

In this research, an understanding of the maintenance problems that engineers encounter

during the maintenance phase, along with the different categories of missing information

that cause these problems were captured. So, another confirmatory study was planned and

conducted in order to review and verify the previous study results with further number of

participants with different experience and backgrounds. This is to collect their opinions

about the previous study results and provide insights about specific situations or gaps they

discover.

For a confirmatory analysis, any deviation from the pre-specified analysis will be explained

and justified. If a deviation is necessary, results from the originally planned analysis will be

reported, as well as the results with the deviation. Deviations include any data

transformation, adjustment, or exclusion criterion that was not pre-specified.

5.6.2 Confirmatory Interviews’ Sessions and Participants

Five participants were recruited to join this study. The participants have different

backgrounds, roles, and experience levels, as they work in different companies. This helps

reduce any bias and/or subjectivity in the results coming from the exploratory interviews

study that was conducted with participants coming from the same company. Also, their

varying roles will help us verify how the lack of proper feedback acquisition and

Page | 139

communication affects the different phases of the evolution process, which can inform our

design to the new engineering process.

Each interview lasted average 13 minutes. The total timing of the confirmatory interviews

was 68 minutes. Before each interview a 30-minute introductory session was conducted

with the participant to introduce the exploratory study results shown in Figures 8, and 9,

and explain the purpose of the study.

Below in table 9 is the participants list that explains the experience and company

background for each participant recruited in the confirmatory study:

Table 9. Participant's Experience and Company Background

Participant Experience Company Background

1 6 years A female researcher who has an MSc on how to improve the

bug fix time prediction models using several classification

models. She has experience in using bug tools specifically

Bugzilla. During her research she was exposed to the

maintenance/ evolution tasks and gained knowledge about how

end-users report bugs at runtime and how engineers handle

them.

2 3 years A male junior software engineer who works in a global IT

Services firm providing Cloud-based and On-premise solutions

with an emphasis on Advanced Analytics, Enterprise Mobility,

Performance Management, and CRM. The firm has a 20-year

proven track record building award-winning solutions for Telco,

Banking, Manufacturing, Agriculture, and Government. The firm

has global offices in several countries. They are ISO 9001:2008

and CMMi Level 3 Certified.

3 4 years A female analyst at the Information and Documentation Centre

(IDC) that was established in 1983 in an Arab League

Organization that provides educational services. The main

objective of IDC is to develop administrative and management

information systems that help users and managers in different

departments of the Academy to do their work in an easy,

accurate, productive, and compact way.

4 10 years

A female participant who worked as a technical support for

several projects in her company. Her career then moved

towards projects’ infrastructure as she worked as a system

administrator. Then she worked as a DevOps engineer in

several projects. She works in an Egyptian pioneer software

Page | 140

house in the field of TransportAutomation, Integration Solutions

and Business Process Management. The software house

develops local and regional ports in the field of Information

Technology and Communications. Their enterprise modelling

products and solutions enable transport organizations to

visualize, understand, analyse, improve, audit and continually

enhance complex operating processes and IT infrastructures.

5 8 years

A male participant who has an eight year experience in the field

of software development. In the past 3 years he has been

working in a global software house that has been firmly

established in e-business for more than 20 years. They provide

services and specialize in software solutions for industrial

customers and public administration. His main role is a senior

software engineer. However, he is involved in several tasks in

the project such as: project start-up tasks like defining

requirements and gap analysis. Also, in organizing

requirements and estimating its timing, formulating a work

breakdown structure and allocating resources for executing the

tasks. He is also involved in testing tasks and deployment on

customer’s site.

5.6.3 Confirmatory Interviews’ Questions

1) Can you tell me about your practical experience in software development and the

roles you have undertaken?

2) Evolution process tasks are triggered through inputs from end users (i.e. feedback)

where they report problems, or request enhancements and/or new features.

Participants have informed us about the problems in users’ feedback and the

different kinds of missing information that could influence the interpretation of these

feedbacks or affect making best use of it to inform maintenance decisions. Do you

agree/ disagree with the findings? Could you say something more about that? Do

you have further examples of this?

3) Participants have also pointed out on the importance of other inputs besides users’

feedback that could affect the evolution tasks or maintenance decisions, and can

sometimes lead to conflicts such as goals, requirements’ specification, and

requirements’ dependencies, also historical information, and progress tracking

information. Do you agree/ disagree with the findings? Could you say something

more about that? Do you have further examples of this?

4) In our study the problems in the evolution tasks that are triggered by

miscommunication between both the end-users and the software engineers were

Page | 141

also being investigated. This resulted with miscommunication categories from both

sides (end user or software engineer) in which they either

communicated mistakenly, unclearly, or inadequately. Do you agree/ disagree with

the findings? Could you say something more about that? Do you have further

examples of this?

5) Participants also discussed the problems they face due to lack of relevant

information that guide them in accomplishing several change identification and

evolution processes tasks starting from interpreting the users’ feedback to

understand the problem and trying to reproduce it followed by estimation,

prioritization, and planning. Engineers and developers spend considerable effort

trying to collect useful information needed from users that can help them in

accomplishing these tasks both successfully and in a timely manner. Do you agree/

disagree with the findings? Could you say something more about that? Do you have

further examples of this?

6) Do you have any comments, suggestions or advice about our work that you would

like to share?

5.6.4 Confirmatory Interviews’ Results

Participants shared their opinions on the thematic areas developed through the main

exploratory interviews study. They reviewed the classification of missing information and

evolution problem categories. Minor adjustments were suggested for the classification of

the problem categories. They agreed on the results by sharing their own experiences to

emphasize its importance, and show its high coverage to categories of problems that they

are exposed to during the maintenance and support phase.

More importantly they provided many useful insights that can inform our next research

steps. They discussed their expectations about the capabilities of a feedback acquisition

tool that ensures valid entry, storage, and linking of feedback coming from both end-users

and software team. Additionally, they emphasized the importance of utilizing RE models and

its role in keeping requirements information up-to-date. Finally, they discussed the need for

a staged systematic process to govern the communication between end-users and the

software team members to inform the change identification and evolution process.

5.6.3.1 Opinions about Missing Information Classification

Participants agreed on the themes of missing information that was reached from our

exploratory study and were described them as “detailed and holding different perspectives

affecting several roles in the maintenance/evolution process tasks”. For example, low level

information in feedback descriptions is a category that affects the analysts working on

understanding and validating the end-users feedback. Requirements information affects all

http://www.dictionary.com/browse/communicate

Page | 142

different roles like analysts, software engineers, team leaders and managers too. It was also

pointed that “it’s very useful to capture information such as historical information as this

could help that management roles benefit from previous cases and apply them on newly

occurring cases”. Also, “progress tracking affects the analysis and planning phases that are

handled by both team leaders and managers working on current issues on hand, and it may

also affect newly added bugs affecting their estimation and release panning”.

Another participant has worked on projects developed to work on different platforms for

example: mobile, web and desktop where UI is a major concern. So he completely agreed

with the types of missing information in user descriptions and provided further examples to

demonstrate its necessity. For example, “in case of reporting UI problems screenshots are

necessary to visualize exactly the different aspects of the problem like the dislocation of

components, or the colours”. Also, “when working on projects running on different platforms

environmental context information becomes mandatory to be able to reproduce problems in

the same manner they occur to the customer” which will enable engineers to better

understand the problem on hand to later resolve it.

Additionally, another participant after reviewing the results for the classification of missing

information, the engineer added that “it is very important to attach configuration file to any

change request. She also added that “this is the key element for resolving any issue at

maintenance time.”

5.6.3.2 Opinions about Maintenance Problems Classification

Two of the participants commented on the problem themes specifically the communication

problems. They said that “it needs a further detail that differentiates the end-user related

problems from the engineer related problems”. Otherwise, all participants confirmed that the

“problem categories are detailed enough and organized in a way that relates it to the

evolution process phases”.

It was added that further benefit from this categorization could be achieved by “relating

problem categories to types of missing information that causes them, and conclude patterns

of recurring problems and their causes”. This could help in devising targeted solutions or

help engineers to avoid them early in future issues.

An example from another participant regarding the relation between improper requirements

documentation (which is a missing information category) and the maintenance / evolution

problems is that in a project he was asked to refactor a code base. When the project began,

more problems were encountered regarding performance, and platform issues that affects

the proper functioning of the webs application, than those that were reported by the

customer in the beginning. “The major reason for this situation is that the project’s code was

overwritten several times, as it moved from one developer to another who worked on the

Page | 143

same components [without providing proper documentation] to the final requirement or

feature specification”. This led to a state where he was working on malfunctioning

components with no proper documentation. Thus, “lots of adjustments that were not planned

from the beginning were made [adding additional milestones], and [extending the

deadline] for extra 4 months over the original 2 months timing that was spent in

understanding and evaluating the current situation”.

Another example on linking problems to missing information was explained. A participant

worked on a project that was developed using agile methodology. Every two weeks a new

sprint began and a new requirement written by the customer was received. First task when

receiving a new requirement is trying to understand it in order to be able to design and

implement an appropriate solution. However, “deadlines were not met properly due to

[missing information in the customer requests]”. Also, “sometimes there was

[misleading information] too as the [customer depended on textual descriptions

solely], which sometimes could be misinterpreted without providing screenshots or data

files that help in completing the whole picture.”

Furthermore, one of the participants also commented on the problem [Providing

misleading feedback types]. She said that “she would prefer that we have also another

category called providing misleading information, as the causes are different”. For example,

providing misleading feedback type may be “due to lack of user experience so he provides a

feedback as a bug while it is actually a help request”. However, [providing misleading

information] can be “due the customers’ inability to describe the problem properly”.

However, she said that this could be mitigated by providing screenshots or any other

necessary file that could aid the engineer in understanding the problem correctly.

5.6.3.3 Insights for the Feedback Acquisition and Feedback Linking

“Users are not experienced in providing structured feedbacks and this is somehow a

challenging task for them”. Also, it differs from one role to another, as some roles have more

technical abilities than others, and thus can provide more descriptive feedback content. So

“training the end-users and providing them with written guidelines that could further help

them in performing this task is mandatory for a feedback acquisition tool”.

Other participants described how much they value the idea of providing guidelines for the

end-users on how to provide a feedback. This can be ensured by setting a default type of

mandatory information for each feedback type, “while providing descriptions as guidelines

on how to use other levels of detail to provide more information and description they need”.

This can be designed by “providing a definition for each level of detail with an example on

how to use it in a feedback, which the user can use to learn how to use it in a feedback

acquisition tool correctly”.

Page | 144

Also, they added that in the acquisition tool or method “it would be a nice to add a feature

for end-users to link their feedback with features or components in the system”, as this

would help the engineers “narrow down the scope and locate the problem accurately”.

Further participants also thought highly of the idea of linking end-users’ feedback together

and linking them to other models whether requirements models or development models.

One of them explained the benefits of linking feedback to requirements models that could

help requirements engineers identify the functional modifications in the system and its

impact on other system functionalities. Also, it could further help managers query the links

between requirements and business goals to study potential drawbacks and/or

improvements for the customers’ business. Engineers also need to keep track of the

requirements specifications versions with their change history, which could be used to

“examine the changing customer needs and produce better plans, and vending of new

feature enhancements to the customers”.

A participant also suggested integrating end-user feedback with tools such as Jenkins.

Jenkins is an open-source continuous integration software tool for testing and reporting on

isolated changes in a larger code base in real time. The software enables developers to find

and solve defects in a code base rapidly and to automate testing of their builds. So linking

end-user feedback about feature problems can have several benefits including: faster time

to market, improved customer satisfaction, better product quality, more reliable releases,

and improved productivity and efficiency.

To sum up, the continuous customer involvement through feedback acquisition will lead to

better evaluation of the software, provides a base for taking better maintenance and

evolution decisions, and enables engineers to support customers in an, accurate, organized,

and timely manner.

5.6.3.4 Opinions about Communication Methods

Participants argued that the source of communication problems during the evolution process

is due to human factors more than technology factors. A participant explained that the major

problem is that there “is no communication process that allows the software engineer to

investigate with customers, and act as needed in different situations”.

Therefore, there is a need not only to utilize the structured feedback but also to “develop a

staged process that could assist both end-users and team members in communicating

together”. This staged process “should not be in isolation from the evolution process tasks”

to enable engineers to head towards successful tasks completion through involving users as

partners in the process.

http://jenkins-ci.org/
http://searchsoftwarequality.techtarget.com/definition/continuous-integration
https://en.wikipedia.org/wiki/Time_to_market
https://en.wikipedia.org/wiki/Time_to_market

Page | 145

As a suggestion for the next steps, a participant pointed out that she would like to see a

“walkthrough for real case of a reported bug or enhancement provided by end-users as a

feedback and engineers communicating and working on resolving it”. This would help

verifying and evaluating the practical capabilities of the results. It would also help the

participants give insights on possible adjustments for both the feedback acquisition tool and

the communication method.

5.7 Further Study Results

In this section, the study results are explained and linked to the previous research results

and the next research step. The results serve as a foundation step for a holistic approach

for the acquisition, structuring and utilization of users’ feedback for crowdsourced software

evaluation, and provide basis for a new enhanced method for communication and change

management the maintenance phase.

5.7.1 Validating Feedback Types’ Components

In this study, the engineer’s perspective on the role of feedback in informing their

maintenance and evolution tasks and decisions was captured. As a result, we came up with

a classification of sample problems and a classification of sample missing information that

contributes in evolving these problems.

Another, important output of this study is validating the forums analysis results, by revising

the feedback components and mapping them to the information given by the engineers. This

is to confirm that they contain the needed information but still not too restrictive, which

carries both perspectives.

It is important to note that the feedback types components are not only the level of details

used and their methods, their definition also contains how their reference other types.

However, in this study no modifications to the referencing between the feedback types was

made. Mainly they were captured during the forums’ analysis study due to the nature of the

forums, as all feedback are reported in form of threads which makes is easily to deduce the

relationships between them. In this study engineers have focused on giving us their opinion

on the level of details and methods they need to make feedback types more meaningful and

useful.

5.7.1.1 Topic Definition, Investigation, Elaboration Feedback Types

From the interviewees' quotes it was concluded that the mandatory information that were

previously designed for the Topic Definition Feedback Type covers the essential

information that engineers seek in a customer's feedback. Still, after analysing the

interviewees’ quotes, the feedback rule was expanded with the level of details that

Page | 146

customers provide to include extra methods of descriptions, such as snapshots as

“customers like to give snapshots to illustrate what they are saying”. Also, a new method

type named “File” was added to include files that were pointed out to be highly important

such as test data files. “For example, a user reports that an error occurred when he entered

certain data. He has to provide the data that he entered, because some problems are data-

specific”

So instead, the Investigation feedback type was updated to enable the engineer to specify

the level of detail needed from the end-user in a question format. For example, engineers

may ask end-users more questions like: “which type of import was he using, please provide

the import file, which user role was used (logged in) during the import operation as it might

be a problem in the user rights.” This also mandated moving the "Question" from level of

details into a new method type.

Following that, Investigation Elaboration feedback type was restricted to contain the exact

requested level of detail (i.e. the type of detail in the customers answer must be of the same

as the type of detail investigated in the engineer's question). This ensures that “end-users

will have to provide exact information about the level of detail the engineer was investigating

in their question to avoid end-users providing misleading information or answers.”

Additionally, Feedback Elaboration Feedback type means that the customer may elaborate

on a feedback he has already given to “include any type of details needed to be clarified or

added in the ongoing issue because it was not included in the original post or evolved

during the discussions and communication”.

Table 10 shows the rules before modifications, while Table 11 shows the feedback rules

after modifications.

Table 10. Components before Modifications for Feedback Types: Topic Definition, Investigation

and Elaboration

Feedback Type Level Of Details Method

Topic Definition Task Text

Exemplification Text

Investigation Question Text

Investigation Elaboration Explanation Text

Feedback Elaboration Explanation Text

Table 11. Feedback Types: Topic Definition, Investigation and Elaboration after Modifications

Feedback Type Level Of Details Method

Topic Definition Task Text

Exemplification File

Page | 147

Text

Snapshot

Explanation Text

Investigation Level of Detail Question

Investigation Elaboration Level of Detail Text

Snapshot

File

Feedback Elaboration Level of Detail Text

Snapshot

File

5.7.1.2 Problem Correction

From the interviewees' responses about the feedback type Problem correction that by

definition means that a user has given an invalid usage of a feature in his problem definition.

The engineers provided examples of important information that should be included in their

responses in order to resolve this situation, and provide sufficient help for the end-user,

which were mostly covered in our feedback type definition. The only modification made was

that the explanations were expanded to include extra methods beside textual descriptions,

such as providing snapshots or links to documentations that contain descriptions of the

features. “Customers link the defect to one of the requirements (i.e. use cases) that are

already written in the requirements specification”. This helps the Engineers “revise the

feature’s definition and usage to evaluate whether this is a valid defect or not”

Problem Correction feedback type requires providing details about the feature definition

which necessitates “the need for proper utilization of RE models that represent features,

their relations and linkage to specs to manage this response and also for keeping

requirements information up to date”.

Table 12 shows the rule before modifications, while Table 13 shows the feedback rule after

modifications.

Table 12. Components before Modifications for Feedback Type: Problem Correction

Feedback Type Level of Details Method

Problem Correction Feature Definition Text

Explanation Text

Table 13. Modifications for Feedback Type: Problem Correction

Feedback Type Level of Details Method

Problem Correction Feature Definition Text

Page | 148

Explanation Text

Link

Snapshot

5.7.1.3 Mitigation: Solution, Problem Extension and Mitigation Trial Failure

From the analysed interviewees’ quotes the mandatory information that should be included

were deduced. First, feedback type is the Solution that the engineers provide was found

that the rules that govern its use cover the information that engineers need which are the

usage scenarios and enhanced by exemplifications “using Snapshots, links or code snippets

to help customers apply the solution”.

Also, in the analysed problematic scenarios, the interviewees pointed that sometimes

solution are inapplicable by customers. “This is either lack of problem investigations with

end-users to gather the missing information about the problem, which led to partially

resolving it. Or the solution was not correct because we were not considering an aspect in

their environment” which maps to both possible feedback types from customer side which

are: Problem Extension and Mitigation Trial Failure.

First, Problem Extension means that customers tried the solution and it resolved part of

the problem but there are still some issues. From what the interviewees said that most

importantly, they need “environmental information to know the customer's configurations

when the problem occurred or evolved” and this was already covered in the feedback types

rules. However, it was enhanced it to include different methods of description by including a

new type of files called Configuration files, which was also verified in the confirmatory study

too. Also, engineers said they need customers to “explain the failure step and the timing of

the error message”. This can be included the level of detail Explanation (instead of trial) to

include textual description and required test data if needed.

Second, case in customer responses is the Mitigation Trial Failure which means that the

solution did not work at all, so they couldn't try to judge whether it could resolve the problem

or not. This type too has to “include the environmental context information and details about

the trials they did explained by text and/or snapshot” and enhanced it by including a new file

type called the test data file to “show they information they entered during their solution

trials”.

In conclusion, by referring to the designed rules in the forums analysis study it was found

that they cover what the engineers have pointed out in the interviews to be necessary

information. However, two main updates were needed which are: 1) including two file types

as explained above, and 2) updating the Problem Extension and Mitigation Trial Failure

Detail types (Explanation and Trials). Below in Table 14 is a summary for feedback types’

Page | 149

components before the modifications, while Table 15 summarizes the modifications made

after examining the missing information that the interviewees explained.

Table 14. Components before Modifications for Feedback Types: Solution, Problem Extension

and Mitigation Trial Failure

Feedback Type Level Of Details Method

Solution Usage Scenario Text

Exemplification Snapshot

Link

Snippet

Problem Extension Environmental Text

Trial Text

Mitigation Trial Failure Environmental Text

Explanation Text

Table 15. Modifications for Feedback Types: Solution, Problem Extension, and Mitigation Trial

Failure.

Feedback Type Level Of Details Method

Solution Usage Scenario Text

Exemplification Snapshot

Link

Snippet

Problem Extension Environmental Text

Snapshot

Configuration File

Explanation Text

Test Data File

Mitigation Trial Failure Environmental Text

Snapshot

Configuration File

Trial Text

Snapshot

Test Data File

5.7.1.4 Mitigation Correction

From the situations explained, the engineer pointed out the important information that

should be included in the solution corrections sent to the customers, which include detailed

usage scenarios and explanation of the modifications made. However, in the Mitigation

Correction feedback type that was previously designed, only the textual explanation of the

modifications made was included. So it was enhanced it to include the usage scenario as a

mandatory component too, as “it would be easier for customers to apply the new solution

Page | 150

scenarios rather than depending only on textual descriptions of modifications to solution that

already failed”.

Furthermore, they pointed out that the reasons why Solution errors could occur is that there

was “missing information in customer's feedback that were not properly investigated” in the

Acquisition and Analysis phase. After the customer provides a problem extension or

Mitigation trial failure, the investigation starts over to gather any needed missing information.

To illustrate the modifications that were made, below in Table 16 is a summary for feedback

type’s components before the modifications, while Table 17 summarizes the modifications

made. Mainly, the modifications made were tailored to “represent mitigation corrections in a

similar way to which solutions are provided to customers so it could be used as an updated

version of a working solution and can be further used as a reference for updating the

requirements/features specifications.” (i.e. using the same level of details and methods).

Table 16 shows the rule before modifications, while Table 17 shows the feedback rule after

modifications.

Table 16. Components before Modifications for Feedback Type: Mitigation Correction

Feedback Type Level Of Details Method

Mitigation Correction Explanation Text

Table 17. Modifications for Feedback Type: Mitigation Correction.

Feedback Type Level Of Details Method

Mitigation Correction Usage Scenario Text

Snapshot

Link

Snippet

Explanation Text

5.7.2 Utilization of the study Results towards the Next Steps

Analysing the situations that engineers provided to capture the problems and their related

missing information in this study (both the exploratory phase and the confirmatory phase)

served in four different purposes:

1) To determine the types of missing information in users’ feedback that are most

important to engineers, and comparing them to the novel classification of feedback

types and their components that was developed in the forums analysis study. This

helped validate the developed classification and ensure it carries both perspectives

as it was developed from users’ perspective and improved from engineer’s

Page | 151

perspective without requiring extra information from end-users, and hindering their

experience;

2) To determine the types of problems that engineers encounter and their causes.

From the analysis results, an emphasis on the communication problems was made.

This serves two purposes: a) highlighting the need to develop a communication

process to guide both engineers and end-users in their interaction. This will contain

the possible variations of situations they may encounter which can be summarized

from the situations they explained; b) utilizing the new list of updated feedback

types in the communication process to be used as a tool by both the end-users and

engineers to provide structured feedbacks that could be linked to features,

requirements, and goals.

3) It helped in endorsing the need to employ requirements models and use them as a

backbone to link all the feedback to maintenance and evolution tasks to keep the

requirements’ information up-to-date and give a holistic evaluation view of the

system, because it will enable engineers to view two different levels of evaluation:

a) evaluating the features in use and relating problems to them and thus by simple

measurements it can be known which features are more important to users, which

features are more problematic, and how far does a problematic feature affect other

features, or tasks; b) evaluating the goals of the system, because by relating the

feedback to customer goals it can be systematically concluded which goals are

unfulfilled, and would cause stakeholders’ dissatisfaction. Thus, this linking would

help engineers in taking accurate and efficient decisions.

4) An important input to the next research study, which uses the participatory design

approach, is the scenarios that the participants will immerse in. This study was full

of examples of situations that engineers encountered with end-users in different

phases of the evolution process and their causes. This provided insights that will

help in designing the required scenarios for our next study.

The immersion scenarios will be used to engage the engineer and end-user

participants in fictional situations (Buskermolen and Terken 2012). The motivation

for using fictional scenarios that are based on real situations in participatory design

is to invite participants in design to re-think existing practices and imagine what their

practices might be like if established conventions were altered.

5.8 Threats to Validity

This study has three main threats to validity:

1) The first threat is one of the common issues when designing an interview and

relates to ensure whether the questions were understood by all participants as

planned. This threat was addressed through a pilot test that was conducted on a

typical participant (software engineer) then some questions were revised and

Page | 152

modified to ensure clarity as explained in section 5.4.4. The results of this pilot

interview were not included in the study results.

2) Another important thread to validity when conducting interviews specifically,

unstructured interviews is eliciting behaviour or information from the participants

that will be consistent with the researcher’s expectations. This may occur, because

the interviewer is not obligated to follow a standardized script that is used with all

interviewees, the interviewer is free to adapt the questions asked, thus creating

conditions to confirm his or her expectations.

This threat was reduced, as in this research, semi-structured interviews were

conducted with a standard set of questions that will be asked to all participants and

also another set of questions that may be asked to elaborate on certain issues to

cater for the different roles being interviewed. The roles were decided in the design

of this study according to the criteria of whether their job entails communicating and

handling issues with customers and/or end-users during the maintenance phase.

3) A further typical threat relates to participants’ selection. That is the researcher who

recruits the candidates may be the same individual who interviews them and who

makes the final participant appointing decision. The reason why validity is

threatened if the process is not properly controlled is that the interviewer who has

seen the participant’s application material, or has been given information about the

candidate creates an implicit expectation, which he then seek to confirm.

The selection process was controlled by separating the selection function, which

was performed by the academic advisor and the help of fellow researchers who did

not take part of this study.

5.9 Summary

In this chapter, the interviews study with engineers was explained. The aim of the study was

to explore the utilization of the feedback structures developed in the forums analysis study

to accomplish the evolution tasks. The study resulted in two thematic maps of concepts

related to the classification of problems that engineers encounter in the maintenance phase

and their causing problems. These results were the main driver to the study explained in the

next chapter to further evolve the initial designs resulting from the employment of the

previous results, and to confirm their usage in practice with actual end-users and engineer.

Page | 153

6. Designing a Method for Feedback Acquisition,

Communication, and Requirements Updating

As discussed in the previous study (i.e. interviews study) with the engineers that the lack of

structure in the users’ feedback, leads the engineers to spend much time and effort in

communication with users in order to interpret feedback, obtain missing information, analyze

problems and plan the changes. Moreover, the lack of formalism and systematic

approaches to extract requirements changes makes it hard to keep requirements

information up to date along the evolution process.

In this chapter, the purpose of the Participatory Design study (Spinuzzi 2005) is explained

and the results reached from it. This study aimed at: exploring the practical use of structured

feedback developed earlier in this research in the communication between end-users and

engineers; also, evaluating the use of existing requirements engineering models and its role

in representing requirements information to facilitate the engineers’ tasks; furthermore,

devising a new process for feedback acquisition and communication between users and

engineers, which utilizes structured feedback and provide guidelines for a more methodical

communication; and finally, extending this new process for extracting requirements

information, updating feature models and feature specification documents for more accurate

usage when new issues arise along the maintenance phase.

This chapter is organized as follows:

 Section 6.1 the research method is explained, the purpose of the study, the

software that was employed in the fictional immersion scenarios developed and the

participants recruited.

 Section 6.2 explains the two types of sessions that were conducted. First, the

introductory session purpose and handling approach is explained. Second, the

design sessions preparation is explained in full details with all the materials and

tools that were prepared.

 Section 6.3 explained the study results, which is divided to three main parts. The

first part related to the explanation of how the new process for acquisition and

communication evolved and concluded. The second part is mainly related to the

utilization of feedback types and the updates that occurred to their structures.

Another concern was discussed related to the formalization of textual descriptions

through the use of controlled English. Third, the new process for acquisition and

communication was further extended to include the utilization of the gathered

feedback to extract information for updating the software’s feature model, and the

new developed structure for feature specification document.

Page | 154

6.1 Research Method

In this section the adopted research method will be discussed and the motivation behind

choosing it will be justified. The purpose of the study will be stated. Also, the software that

was employed in the design of the immersion scenarios that was used in the design

sessions will be discussed and the goal behind utilizing this kind of software in the study will

be argued. Furthermore, a summary of the participants recruited in the sessions and their

backgrounds will be described.

6.1.1 Participatory Design Method

Researchers can create tools, products or services with lots of brilliant capabilities, but

sometimes are neither usable nor understandable for end-users which lead to its misuse

and/or bad user experience. To overcome this problem many user centered approaches

were developed. However, user centered approaches suggests that users are taken as

centers in the design process, consulting with users heavily, but not allowing users to make

the decisions, nor empowering users with the tools that the experts use (Johnson and

Hyysalo 2012).

On the other hand, Participatory Design (Kensing and Blomberg 1998, Spinuzzi 2005) (PD)

labels inventive activities that are done with end users in order to explore their ideas about a

tool, product or service to ensure that it meets their needs and expectations (Kanstrup

2012). By this the end product is developed hand in hand with the actual intended audience

and thus leads to better results and experiences, as the method can give clear insight into

their vocabulary, priorities, and the things they value.

In this research several studies using different data sources were conducted, different

collection methods and different design to come up with feedback concepts, and rules,

evolution problem categories and their causes. Using the participatory design approach will

facilitate the validation of data through cross verification from different sources; the previous

results will be employed to study the same concepts in practice.

This triangulation is a powerful technique (Jick 1979). In particular, it refers to the application

and combination of several research methods in the study of the same phenomenon. From

the advantages of using this technique: 1) it can be used in qualitative studies for both

validation and inquiry; 2) it is a method-appropriate approach of establishing the credibility of

qualitative analyses; 3) by combining multiple observers, concepts, methods, and

experimental materials, it is expected to overcome the weakness or biases and the

problems that come from single method, single-observer studies.

Also, in the previous studies that were conducted in this research, the techniques used are:

focus groups, forums analysis, and interviews, which are not immersive enough for

Page | 155

participants to give practical solutions, as it does not allow them to speculate what the

solution would look like. This is another purpose why it is desired to use the participatory

design method so that participants could engage in the problem to provide better solutions.

This can be achieved by giving them initial prototypes or mock-ups (Clement, McPhail et al.

2012)of the solution to help them visualize the idea and then provoke them with specific

requests related to the topic.

Finally, participatory design will allow us to get in touch with how interfacing would look like,

not in the sense of graphical user interfaces and visual concepts, but more in the sense of

how they would like this to be presented in form of steps and workflow, which will further

help direct the interfaces according to their inputs. All these dynamics were hard to capture

during interviews. Therefore, the participatory design method will help us come with an

enhanced design of how the solution should look like from user perspective.

6.1.2 Purpose of the Study

The purpose of the study was:

1) To design and evaluate the use and benefits of the feedback types in practice

2) To design and evaluate the use and benefits of Attempto Controlled English in

structuring the end-user feedback

3) To evaluate the use of RE models and its role in facilitating the engineer tasks and

keeping the requirements information up to date

4) To evaluate the new augmented software evolution process and user involvement

practice in the process

5) To design an engineering process for software engineers to use in order to ensure

that requirements are kept up-to-date.

6.1.3 Software Employed

The software that was chosen to be utilized for the study is Moodle (Dougiamas and Taylor

2003), which is a learning platform designed to provide educators, administrators and

learners with a single integrated system to create personalized learning environments.

Moodle users can use it to create courses online, upload materials, manage authentication

and enrolment of courses, and other collaborative features and activities such as grading

and giving comments on uploaded files and assignments.

To explore the design of the intended method the participants need to immerse in fictional

problems (Buskermolen and Terken 2012) of software already in use (i.e. Moodle). The

problematic scenarios that were developed for the study employed the software features as

an example. Also, the software enabled the development of illustrations of domain models

(i.e. feature, and business process models) for participants to explore, and work on.

Page | 156

Moreover, these scenarios helped the moderator control the flow of the design sessions

until the session’s aim was achieved.

6.1.4 Participants Recruited

Two types of targeted participants were recruited for the study: the end-users (i.e.

customers) and the engineers. The plan was to produce a product that will help each on his

side of communication. This is a novel practice, where end-users collaborate and work as

evaluators to the software besides their roles as main stakeholders and source of

requirements. Thus, it is needed to be known from their point of view how they expect such

acquisition method and engineering tool to help them in providing such essential input, and

also how engineers view it as an enhanced method and process (i.e. engineering task).

To conduct the sessions 10 participants were recruited 5 end-users and 5 software

engineers. The end-users participants recruited all work in the educational domain where

their work requires them to use learning management systems (LMS) to handle all aspects

of the learning process. Since it is intended to use such type of software in the study to

provide fictional scenarios that will be used for immersion in problematic situations,

therefore, they were best suited for participation as they can easily understand and

communicate the problems in this domain, because they are aware of it through their daily

work.

Furthermore, the 5 software engineers recruited were from 3 different software companies.

One of the companies is an international company based in Germany, while the other two

companies at national software houses based in Egypt that provide solutions not only to

customers in Egypt but also in the middle east. They are all familiar with learning

management systems’ features, tasks, and environment as they have previously developed

LMS for different universities.

6.2 Sessions’ Plan

First, 2 introductory sessions were held, where all the 5 end-users were combined in an

initial introductory session, and all the 5 engineers were combined in another introductory

session, to introduce the context of interest, the aim of the study, and setting the stage for

discussion. Each introductory session lasted 2 hours.

Then, both types of participants were paired producing 5 pairs of end-user and engineers.

Each pair of participants engaged in a design session separately to fully explore the

concepts and concept design resulting in 5 design sessions that lasted in total 9 hours and 8

minutes. This acknowledges that knowledge comes in many voices, and from this

perspective it equalizes participants in the design process as different contributing, each

Page | 157

with their difference. The total sessions conducted were 7 sessions (2 introductory and 5

design sessions).

6.2.1 Introductory Sessions

In this section it will be described how the introductory session where conducted. These

sessions were conducted in order to introduce the need and purpose for the participatory

design study. This was achieved by introducing to the participants the research problem, the

adopted concepts from existing literature and the results reached so far from this research,

both that will be utilized in the study. The purpose of the study was explicitly stated and

explained. And finally, the tools that will be used by the participants during the sessions

were explained and exemplified through a case study.

6.2.1.1 Concepts Introduced

In each introductory session an introduction of the research problem was made,

summarized in: the issues in the current methods of acquiring users’ input, and feedback

analysis techniques. Also, the challenges that engineers encounter while communicating

with end-users to gather useful information, and ensuring that requirements keep pace with

the changing contexts they operate within were discussed.

Additionally, the adopted concepts that contributed towards building the mockups and initial

version of the feedback acquisition and communication workflow were explained. Some of

these concepts were developed earlier in our research such as the classification of

feedback types (Sherief, Abdelmoez et al. 2015), and the rules that govern their usage,

which will be used by both end-users and engineers to provide structured feedback. The

classification of feedback types, levels of detail used to describe each feedback type, and

the methods of description were all explained to the participants. The rules of Attempto

Controlled English were introduced and the potential of their usage were explained (Fuchs,

Kaljurand et al. 2006). It was also pointed out that these definitions and usages are all

subject to modifications in the design sessions after being utilized in practice by the

participants.

Moreover, the traditional evolution process (Sommerville 2006) for managing software

changes that normally engineers go through during maintenance to handle any change type

reported by the customers was revisited. This software evolution process as seen in Figure

14 does not cater for any communication between end-users and engineers and therefore

communication is left as an improvised task depending on the engineer’s capabilities and

experience with no regulations to ensure how and when information should be gathered.

When such information is collected and handled in an inefficient manner, this is one of the

main causes why keeping requirements information up-to-date is a challenging task.

Page | 158

Figure 14. A simplified overall view of the change identification and evolution tasks process

Furthermore, as concluded from the literature and as gathered from the interviews study,

requirements are always gathered carefully in the initial phases of the software process

(Kotonya and Sommerville 1998). “Gathered carefully” means that there exist methods and

tools for helping the requirements engineers in the requirements elicitation, testing and

organization. However, keeping requirements up-to-date along the software process and

specifically in its last phase of maintenance and support is still a challenging task. In this

research it is argued that feedback while the software is in use is the main source of

requirements during the maintenance phase and therefore, devising new mechanisms for

gathering feedback properly could lead to better communication and also documentation of

these requirements.

Also, the problem of gathering requirements information during the maintenance phase

does not exist only due to that lack of guidance of how and when information should be

gathered, but also due to the lack of guidance and tools on the kind of information that

should be stored about feature specification after changes. Figure 15 shows a sample

feature specification template (Robbins 2004) that was presented to the engineers in order

to illustrate the way of documenting features. It shows by example that documenting the

feature changes descriptions is entirely left to the engineer’s judgement about the suitable

information needed for the documentation and means of describing them, which may hold a

great deal of bias and subjectivity, due to lost information that wasn’t gathered during the

communication.

Page | 159

Figure 15. Sample Feature Specification Document (Robbins 2004)

Finally, the concepts and usage of two types of requirements engineering models were

introduced: the feature model (Kang, Kim et al. 1998, Batory 2005) and the business

process model (Group 2006). It is argued that incorporating them could help produce better

results in the impact analysis tasks made by engineers when handling any change request.

It is claimed that incorporating RE models within the process will also help them narrow

down the change scope, identify impact on other requirements/features, and thus produce

more accurate estimates and better results.

In order to better introduce these concepts and help the participants get a better idea on

how they will be involved during the design session, a sample case study was

demonstrated. This case study used a fictional scenario (Buskermolen and Terken 2012) to

present a problematic situation in the Moodle software. Also, a brief introduction about the

Moodle software and its main features and capabilities was given. Feedback templates

representing each feedback type and its component(s) were designed for the design

sessions. They were also explained in the introductory session, and utilized for the sample

case study to provide an example of how it will be used to provide structured feedback.

Each template contained toolboxes for the levels of detail and Attempto for the participants

to utilize them during the design session if any updates in the feedback templates are

needed.

6.2.1.2 The Introductory Case Study

In this section the first scenario that was used in the introductory sessions is explained. This

scenario is based in features that reside in the Courses module (Moodle 2016). Courses

are the spaces on Moodle where teachers add learning materials and activities for their

students. Courses may be created by admins, course creators or managers. Teachers can

then add the content and reorganize them according to their own needs.

https://docs.moodle.org/31/en/Teacher
https://docs.moodle.org/31/en/Administrator
https://docs.moodle.org/31/en/Course_creator
https://docs.moodle.org/31/en/Manager

Page | 160

The courses module (Moodle 2016) contains a submodule named Adding a New Course.

This submodule contains a group of features as shown in the feature model of this

submodule in Figure 31. In this scenario the feature named Bulk Course Creation is

utilized. This feature enables users to create several courses at once by defining them in a

CSV file. For full details on how to bulk create courses, see submodule: Upload Courses

(Moodle 2016). This submodule belongs to the module Courses, and it contains a feature

named Upload Courses which is explained in the following steps and relates to Figure 16:

 Go to Administration > Site administration > Courses > Upload courses

 Either drag and drop the CSV file or click the 'Choose a file' button and select the

file in the file picker

 Select appropriate import options carefully, and then click the preview button.

The Problem statement for the scenario is: suppose you (i.e. the end-user) created a CSV

file containing a list of new courses you want to add. The course names are written in

German language as shown in Figure 17 below:

Figure 17. A Sample CSV file for Course Upload on Moodle

Figure 16. A Moodle Screen for Upload a Course's CSV file (Moodle 2016)

https://docs.moodle.org/31/en/Upload_courses

Page | 161

After you uploaded the CSV file, and you viewed the uploaded course results, the special

German character “ä” was replaced with incorrect symbols “?”, such as in line 3 shown in

Figure 18 below:

Figure 18. A Sample Upload Courses Results Screen on Moodle (amended from Moodle 2016)

6.2.1.3 Feedback Templates for the Introductory Case Study

The templates mock-ups (Clement, McPhail et al. 2012) were presented to the participants

to illustrate: how they are expected to provide feedback, the utilization of toolboxes (ACE,

Depth, and Context) to provide structured feedbacks, and to demonstrate the undertaken

path in the communication workflow. This would give them an idea of how they would be

involved during the PD design session.

The first template introduced was the Topic Definition that was used to report the problem,

where an explanation to the problem was provided, and the task that was being performed

when the problem occurred was reported, and a snapshot of the CSV file was provided as

shown in Figure 19. This feedback was linked to a specific process and activity in the

business process model and a certain feature in the feature model to further help engineers

in the analysis phase, which will be investigated with engineers during the design sessions.

The second template in this scenario was an investigation template to show the participants

how missing information is Investigated in a structured manner and linked to the initial

feedback provided by the end-user. In this template two questions were asked about thee

encoding option that was used and a snapshot of the results was requested as shown in

Figure 20.

The third template in the thread was an Investigation Elaboration template in which the

user is supposed to provide answers with the same depth and context types that were

asked by the engineer in the Investigation template. This is to make sure that the user

provides the mandatory missing information, which in our case is the answer to the

Page | 162

encoding option used with the created CSV file and an attachment of the snapshot of the

results in Figure 18. This template is shown in Figure 21.

Finally, by this point a reply with the interpretation of the problem was provided, which in this

case was a Problem Correction, meaning that the problem was invalid (i.e. it is not a bug),

instead it is lack of user experience. This was explained by providing a feature definition that

clarifies the correct encoding option to be used when writing a CSV file in German

language. Also, an explanation of the steps that should be followed to perform the task and

a snapshot of the form where the user should perform the task from was provided to

complete the task description and prevent any confusion as shown in Figure 22.

Page | 163

Figure 19. The Topic Definition Template Designed for the Introductory Session Case Study

Page | 164

Figure 20. The Investigation Template Designed for the Introductory Session Case Study

Page | 165

Figure 21. The Investigation Elaboration Template Designed for the Introductory Session Case

Study

Page | 166

Figure 22. The Problem Correction Template Designed for the Introductory Session Case Study

Normally according to our initial design to the feedback acquisition and communication work

flow, when the engineer identifies that the topic definition (i.e. the reported problem)

provided by the end-user is invalid, he writes a problem correction explaining the correct

definition and the communication ends.

Page | 167

6.2.2 Design Sessions

Each design session started by distributing the participant information sheet to both: the

engineer, and the end-user. The sheet explains information about the study, how will the

participants be involved, what kind of information will be sought from them, what are the

advantages and the risks of being involved, will they be recorded and how the records are

going to be used. All this information was explained in the introductory session, after

explaining the adopted concepts and purpose of the study were explained and before

explaining the sample case study. Next, in the design session each participant was given a

consent sheet to sign as an agreement from them on participating the session. Each

consent form was signed off by both the participant and the moderator.

6.2.2.1 Immersion Scenarios

Scenarios are “stories about people and/or their activities”. Scenarios can be presented in

text, story-boards, video mock-ups, scripted prototypes etc. They support envisioning future

work situations to allow the users to experience how emerging designs may affect the work

practice rather than relying on the seemingly esoteric language of software developers.

Using scenarios in participatory design (Buskermolen and Terken 2012) allow discussions

of contexts, needs and requirements and are often the first step in establishing stakeholder

requirements. They can also serve as a communication tool between different stakeholders

with different backgrounds in the design session. Being selective pays off; it is better to work

with a number of scenarios that are very specific than with a few that are general.

Furthermore, open-ended scenarios are good to use early in the design process, while more

closed scenarios may serve better later in the process when, for example, testing a

particular solution.

After having the participants’ consent, the moderator distributed on both participants (the

end-user and the engineer) a fictional scenario, which explained a task that the end-user

should imagine he was doing on the Moodle software. The features used to perform this

task were stated and their usage was explained in the form of a usage scenario as

described in the following sections “Scenario 1” and “Scenario 2” and snapshots of the

Moodle screens that are available in the online documentation of the software. Then a

statement that explained the problematic situation that ought to occur while performing this

task using these features was described. This helped the participants immerse in situations

similar to real situations they encounter in their daily work, and visualize the problems as if

they were real. Additionally, the engineers had an extra section in the distributed scenario,

which is a suggestion of the mitigation to the given situation. This is to help them understand

what should be reached from the discussion with the end-users, and also to save time

thinking in an actual solution to the problem. Instead focus on how it should be written in a

structured and meaningful manner so that customer can understand it easily.

Page | 168

The scenarios used in the design session were different than the one explained in the case

study of the introductory session. In software maintenance end-users may report invalid

problems, help requests, bug fixes, enhancements or new features. The two problematic

scenarios that were designed for the design session were closed ended scenarios that are

supposed to lead to an enhancement in the system. This type was specifically chosen,

because it was intended to immerse both end-users and engineers in multifaceted scenarios

that could help them explore different flows of communication. Depending on how the

problem was triggered from the end-user, the communication workflow took place. The

sessions’ workflows will be explained in section 6.3.1.1 to show how the design evolved to

its final version. All communication was held in the form of feedback going between end-

users and engineers. Hence, the designed scenarios helped us validate each feedback type

used and its components, and also to practice, explore and evaluate the communication

workflow with its intended audience each from his perspective.

Scenario 1

In this section the first scenario that was used in the PD design sessions is described. This

scenario is based on features that reside in the Courses module that was already

introduced in the introductory session. The courses module contains a submodule named

Adding a New Course. This submodule contains a group of features as shown in the

feature model of this submodule in Figure 31. In this scenario the feature named Using an

Existing Course as a Template is utilized (Moodle 2016). To use this feature first, create

or locate on your Moodle the course you wish to use as a template and make a note of its

short name. A template course might for example have common headings or section

summaries or policy agreements used throughout the site for consistency. Note that, only

the content of the template course can be restored but not its settings. Settings are added

separately.

In order to use this feature, the user should follow the following steps:

 Create your csv file. See Upload Courses for accepted fields. (This was shown by

example in the introductory session case study)

 From Site administration>Administration>Courses>Upload courses, add your file as

shown in Figure 16.

 Preview it and scroll down to 'Course process'. In the box 'Restore from this course

after upload', add the short name of your template course as shown in Figure 23.

 If you are creating several courses using the same template and you wish them all

to have the same settings, you can specify these in the Default course values.

 Upload your csv file.

https://docs.moodle.org/31/en/Upload_courses

Page | 169

Figure 23. A Moodle Screen for Creating a Course from an Existing Template (Moodle 2016)

As specified in the feature above that it only copies the content and not the format settings.

However, if the user wishes to set the course format this could be done through a separate

submodule named Course Settings (Moodle 2016) that resides in the Course module as

illustrated in the feature model in Figure 32 using a feature named Course Format.

In order to use this feature, the user should use the following settings as shown in Figure 24

below (These settings are collapsed by default):

Figure 24. A Moodle Screen for Setting a Course Format (Moodle 2016)

The Problem statement for this scenario is: Suppose the user used the feature “Adding a

new course> Course Templates> Using an Existing Course as a Template” to create a new

course. However, as mentioned in the feature description, it only copies the content of the

course and not the format settings. Suppose the user wants to add the same capability for

the “Course Format” feature to enable him to use the same format of the template course

that was used, while creating the new course. Write a feedback reporting that enhancement

to the development team.

As mentioned that beside the scenario documentation explained above a description of the

suggested solution to aid the engineer was also provided. The solution description could be

used when the communication between the end-user and the engineer reaches the solution

stage where the engineer should provide the Mitigation Feedback type.

Page | 170

The suggested solution in this situation will need an update in the Using an Existing

Course as a Template feature that must save a reference of the template course in the

new course to be used in further functionalities. Also, another update will be needed in the

Course Settings > Course Format section. That is to add a new button such as in Figure 25

below that will be enabled only if the user used the course templates in the creation.

Figure 25. The Modified Moodle Screen for Setting a Course Format (amended from Moodle

2016)

Scenario 2

In this section the second scenario that was used in the PD design sessions is described.

This scenario is based on several related features that reside in separate modules. The

summary of this scenario is to assign users to certain roles in a course category. In order to

do so, these roles have to be enabled as assignable. To enable such assignments the user

has to define the context in which he is permitted to assign users to roles, which in this

scenario is Category context. For dependencies between the features used in this scenario

see the feature models in Figures 20, 21, and 22.

The first feature is Assigning Users a Role in a Course Category that exists in the

Course Category submodule part of the main module Courses (Moodle 2016). Course

categories organize courses for all Moodle site participants. The default course category on

a new Moodle site is "Miscellaneous". A Course creator, Administrator or Manager can put

all courses in the miscellaneous category. However, teachers and students will find it easier

to find their classes if they are organized in descriptive categories. The list of courses within

a category by default shows the teachers and the summary of each course. If the number of

courses within a course category exceeds 9, a short list is shown without teachers and

summary.

When using the feature Assigning Users a Role in a Course Category, by default it first

directs users to the module Enrollments, which is responsible for the process of assigning

users to roles in a course. The submodule Category Enrollments (Moodle 2016) is

responsible for allowing users to be enrolled in all courses within a category.

https://docs.moodle.org/31/en/Course_creator
https://docs.moodle.org/31/en/Administrator
https://docs.moodle.org/31/en/Manager

Page | 171

To use Category Enrollments, it must be enabled by an administrator in Site administration

> Plugins > Enrollments > Manage enroll plugins. Then, to use the feature Enrolling Users

to a Category:

1) Go to the category into which you wish to enroll users. Note: You need to have

category rights (manager or administrator)

2) In the Administration block, click Assign roles, which invoke the feature: Enrolling

Users to a category. The list of possible roles you can assign users to will appear

as in Figure 26 below:

Figure 26. A Moodle Screen for Assigning Roles in Categories

3) You should click on the desired role in order to start assigning users for this role

inside this category. The number of user with role in the in Figure 26 above will be

updated automatically after the assignments, using the feature: Assigning

teachers or students to a category, which is a sub-feature of Enrolling Users to

a Category.

NOTE: The roles you see here are roles which have been assigned at the category context

and which you are able to assign i.e. you have to go to the module Roles and Permissions >

Assigning Roles > Context and Roles > Course Category Context.

To use the Feature Context and Roles in the submodule Assigning Roles:

 In Moodle, apart from the site administrator, users do not normally have a global,

site-wide role. In other words, even though you may be a teacher offline, when you

are in Moodle you could have a teacher role in the course you teach in but a student

role in another course where you are studying for a masters or diploma. There are a

few exceptions but this is generally the case.

 Because of the way Moodle works, assigning roles is done for a particular context.

A site and course are examples of two different contexts. When you create a new

Page | 172

role or tweak a pre-existing role, you are asked in which context(s) you want the

role to be assigned as shown in Figure 27.

Figure 27. A Moodle Screen for Context Types where a Role may be Assigned (Moodle 2016)

In the case of this scenario it is needed to assign the role to Course Category context:

 Users may be enrolled in the category to save enrolling them in each individual

course in that category. Used in module: Category enrolments as explained

above.

The Problem statement for this scenario is: Suppose when the end-user uses the feature

Enrolling Users to a Category, the list of roles is empty as shown in Figure 28 below:

Figure 28. A Moodle Screen for an Erroneous Outcome of Assigning Roles in a Category

(amended from Moodle 2016)

The end-user should use feature: Context and Roles > Course Category Context. However,

to do so he will have to go to a different page in a different module. Write a feedback to

request an enhancement, which is adding a permissions link in the Category administration

block to improve the usability, and reduce the navigation steps needed to finish the task.

The suggested solution for this scenario is: In the Erroneous screenshot shown in Figure 28

that the user sent the list of roles is empty, because the user did not define the roles and

allow them to be assignable in the course categories. The user is requesting to be able to

https://docs.moodle.org/31/en/Category_enrolments

Page | 173

do so from the same screen and therefore, a link to the “Permissions” will be added in the

administration block as shown in Figure 29 below:

Figure 29. The Modified Moodle Screen for Assigning Roles in Categories. (Moodle 2016)

By clicking this permissions link will open to the feature “Assigning Roles > Context and

Roles” in the Roles and Permissions module, which as explained in the feature description

above will open the context types where this role is allowed to be assigned as shown above

in Figure 27, where Category Context should be selected.

6.2.2.2 RE Models Utilization

For each scenario distributed in the design sessions, a business process model (Group

2006) and feature model were designed and distributed to both the users and engineers as

shown in Figures 30-35. The intention from using them in the session was to help customers

utilize them in their feedback and relate the problem to a certain activity in the business

process model (BPM) and consequently be able to choose the related feature according to

their activity choice from the BPM. Using the BPM by customers is beneficial, because it is a

formal way to represent their business process yet in an easy to understand manner. They

are aware of the business process through their daily work.

So, instead of searching in a large set of features and their relationships in the feature

model (Kang, Kim et al. 1998), they can select the business process task they were

performing and the narrowed down list of related features will occur. Arguably, this input

from the end-user would help the engineers narrow down the modification scope and easily

determine the impact of a change request reported by the customer.

Also, by relating feedbacks to certain activities in the business process this could help

determine the source of problems in bug fixes. In order to utilize these models in the

communication process, the feedback templates contained dropdown lists with the

components of these models that are updated according to the users’ choice as explained in

the next section.

Page | 174

Furthermore, since it is argued that RE models are important inputs during the analysis of

issues. Therefore, it is important to design with the engineers how the requirements

information can be kept up-to-date. This should be ensured by applying the modifications

that resulted from new features added, enhancements in the system or even bug fixes to the

system’s feature model.

Figure 30. The Business Process Model for the scenarios used in the Design Sessions

Page | 175

Figure 31. A Feature model for “Adding a New Course” Module

Figure 32. A Feature model for “Course Settings” Module

Figure 33. A Feature model for “Course Categories” Module

Page | 176

Figure 34. A Feature model for “Category Enrollments” Module

Figure 35. A Feature model for “Assign Roles” Module

6.2.2.3 Feedback Templates and Toolboxes

Mock-up techniques are ways to make effective use of the users’ experience and

knowledge, as well as ways of experiencing the future and they can be very useful early in

the design process (Clement, McPhail et al. 2012). In the UTOPIA project, mockups

became a central participatory design technique, used for example to envision technology

not yet accessible (and not even heard of by the users) that could support and enhance the

users work situation (Clement, McPhail et al. 2012).

In the participatory design sessions, for each feedback type, a template was designed (as

shown previously in section 6.2.1.3). Each template contained the mandatory components

that conform to the feedback type’s rules that were extracted from the forums analysis study

Page | 177

and implemented as ontology. Yet one of the study purposes was to validate these rules in

practice when used as a method of communication by both the end-users and engineers.

Each session of the design sessions had its own communication flow and whenever the

user or engineer wanted to write a feedback, the moderator suggested the suitable template

and discussed its definition and components. An example of a feedback template for the

feedback type Topic Definition is shown in Figure 36. Also, for each component in the

template the user was given choices for the method(s) to describe this component, which

are: textual descriptions or questions using Attempto Controlled English, screenshots, links

or files. Furthermore, for each feedback the participant was asked to link to RE models as

shown in Figure 36 on the right side, or link to other allowed feedback types to ensure

threading is kept consistent.

The participants were informed that the feedback type definition, scope, components, and

the roles responsible for using the feedback type are all subject to modifications in case they

need to re-design it to better fit their needs. The participants were given a toolbox to help

them in case they needed to re-design the template mock-up. This toolbox contained all the

levels of detail that were developed from the forums analysis study. These levels of detail

consist of two categories: context and depth. These concepts were discussed with the

participants in the introductory session. However, they were not expected to memorize all

these concepts’ definitions and usage. Therefore, toolboxes’ descriptions for Depth,

Context, and Attempto Controlled English were prepared, printed and distributed in the start

of the session to be utilized when needed. Sample Depth Toolbox description is shown in

Figure 37, while the other toolboxes are illustrated in Appendix 4 section 10.4.1. Whenever

participants needed to provide recommendations, all they needed was to add components

into the template body (drag and drop from the toolbox), and insert their descriptions in the

text area using any of the provided methods. Any added component had a name tag above

the text area that contained the component’s name.

Attempto Controlled English (ACE) is a controlled natural language (Fuchs, Kaljurand et al.

2006), i.e. a subset of the Standard English with a restricted syntax and restricted semantics

described by a small set of construction and interpretation rules. ACE can serve

as knowledge representation, specification, and query language, and is intended for

professionals who want to use formal notations and formal methods, but may not be familiar

with them. Though ACE appears perfectly natural – it can be read and understood by any

speaker of English – it is in fact a formal language. ACE and its related tools have been

used in the fields of software specifications, text summaries, ontologies, rules, and querying.

From this perspective ACE is argued to be a good method to formalize the text written

inside the feedback structures without hindering the participants’ experience as it could be

used as normal English that the participants are used to. Also, ACE could provide guidelines

for users who could not express their problems and ideas easily. Furthermore, it has a

https://en.wikipedia.org/wiki/Controlled_natural_language
https://en.wikipedia.org/wiki/English_grammar
https://en.wikipedia.org/wiki/Knowledge_representation
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Requirements_analysis
https://en.wikipedia.org/wiki/Automatic_summarization
https://en.wikipedia.org/wiki/Ontologies

Page | 178

plugin for ontologies that could be used to validate each feedback instance entered in the

ontology’s knowledge base. Finally, utilizing it may well be useful when querying the

ontology knowledgebase to obtain text summaries needed for feature specifications.

Figure 36. A Sample Feedback Template for the Feedback Type Topic Definition

Page | 179

Figure 37. A Toolbox for the Level of Detail: Depth with Examples.

Page | 180

6.2.2.4 Initial Feedback Acquisition and Communication Process

This process resembles the feedback acquisition and communication method that will be

elaborated during the study. However, in order to develop this method an initial design was

developed to some of the main components of this method as shown in Figure 38. The

Feedback Templates will provide guidelines to the customers and engineers while providing

their feedback, and will ensure minimum amount of mandatory information is entered and

validated. These templates bound to the rules defined in ontology to govern their creation,

usage, and validation. Moreover, the Communication Workflows represent the interaction

process that the customers and software engineers undergo during the change

management. The proposed workflows are aligned with the well-established software

evolution process summarized in Figure 14, but with augmented tasks that integrate our

feedback templates, and interactions that include customer involvement.

In this section the process in Figure 38 is going to be explained and compared to the

original process in Figure 14. First in Figure 14 the software evolution process is triggered

by a change request that is sent by the customer to the software engineer. Instead the new

process is initialized by a formalized feedback type named: Topic Definition. In Topic

Definitions, customers can report help requests, bugs, enhancements, or new features.

Furthermore, another entrance point was added to this communication process, which is

Feedback Elaboration, where customers can provide extra information related to a feedback

already given in order to clarify some points, or add extra information that is seen

necessary.

Both feedback types will go to the next phase that is problem identification, where the

software engineer will try to reproduce the problem in order to identify whether it is a valid

problem or not. The original process shown in Figure 14 only shows this task without

catering for the different situations that may occur depending on the output of that task. In

the new process in Figure 38, if it is not a valid problem, meaning that the customer reported

a bug while it is a help request, or reported a bug while in fact there is lack of customer

experience with the features and their usage. In this case, the software engineer corrects

the customer’s understanding by sending him a Problem Correction, and how the task

should be performed and the communication ends. In case it is a valid problem, the

software engineer detects whether there are missing information in the customer’s feedback

that need to be collected or not. If there is extra information necessary to understand the

problem well, then the software engineer sends an Investigation with the levels of detail and

questions that need to be considered. The customer is expected to answer all these

questions in a timely manner using the Investigation Elaboration, as the whole process will

be on hold, and the next phase will not be reached until the information is collected. The

investigation Elaboration template requires from the customer to answer using the same

types of levels of detail to ensure all the engineer’s questions were answered. Otherwise, if

Page | 181

it is a valid problem and all information are sufficient then the software engineer moves to

the next phase, which is the analysis phase.

Figure 38. The Initial Feedback Acquisition and Communication Method

Page | 182

In the analysis phase, the software engineer analyses the problems technically in order to

identify its impact on the other features or modules in the system. This will affect both the

solution design and the estimates, which directly affects the customer’s acceptance to the

solution. In this acquisition and communication process requirements engineering models

were utilized, as they would arguably help the engineers narrow down the modification

scope and identify it correctly. Currently, as investigated from the interviews study that the

engineers rely on their own experience and code reviews, which is a very exhaustive

method and depends completely on the engineers’ knowledge with the code. However, if

the engineer working in the project was no more involved, or the customer requested a

modification in a less frequent module, this could lead to errors in impact analysis. In case

the information gathered from the previous phase, and the RE models employed provided

enough information for the engineer in this phase then the flow moves on to the planning

phase. Otherwise, he will investigate the information needed, and the customer will be

required to provide investigation elaborations for all the questions asked.

In the planning phase, the project manager produces a workable plan including all the

information gathered by the software and requirements engineers in order to produce a

feasible solution within a correct scope and reasonable estimate. If any extra information or

negotiations are needed to be made with the customers for example on the priorities and

release plans updates, they are made in the planning phase through investigations asked by

the project managers and investigation elaborations that provide answers by the customers.

The original process in Figure 14 shown that the Solution is then implemented by the

developers and delivered to the customer, whom in turn tries the solution and reviews it. In

the new process in Figure 38 shows that the engineer should provide Mitigation that

describes the solution and its usage scenario, and explains the updates. In case the

customer tried the solution and it completely resolved the reported issue, then the customer

should provide Verification, and the communication process ends. Otherwise, if the

customer could not try the solution, then he reports a Mitigation Trial Failure, which will

return to the software engineer for analysis, planning and implementation update, and then

a Mitigation Correction should be provided back to the customer with the updated solution.

Else, if the customer tried the solution and it partially resolved the problem, but new issues

evolved, then this situation should be reported as a Problem Extension, where the new

aroused issues will be directed to the identification phase in the beginning of the process to

be treated as a new problem.

In the introductory session the initial draft of the new process was introduced and explained

to the participants. Also, it was contrasted to the original software evolution process as

explained in this section, to criticize the gaps and show the strengths of the new design.

Also, when the sample case study was described in the end of the introductory session, the

undertaken flow was indicated.

Page | 183

6.2.2.5 Feature Specification Template

In this section, the last outcome in the design session is explained, which was related to the

feature specification documentation. After introducing the problems of gathering

requirements and current challenges in the introductory session, the purpose in the design

session was to design a new systematic method for gathering new requirements or

requirements’ updates using the new classification of feedback structures. These structures

are stored in a knowledge base that can be queried to gain any type of specific level of

detail from the feedback thread that is needed to update the feature specification document.

The session’s aim was to: 1) determine the suitable structure for the feature specification

document; 2) decide on the feedback types that provide the needed information to update

the feature specification document; 3) develop a process for acquiring information and

updating the documentation.

Figure 15 provides a sample feature specification document that was the starting template

during the design session (Robbins 2004). Each participant received a copy of the template

and they started to brainstorm all the issues and possible designs for the template and

process. Also, Figure 39 shows a sample feedback thread that was provided to the

participants during the session to help them imagine how feedback types could be related to

form a thread. Also, during the design session they have gone through all the feedback

templates and understand its components. Thus, by the end of the session when they

reached this point they have a holistic view of the types of information stored in the

knowledge base and can provide useful insights on how this information can be utilized to

fulfil such aim and justify their designs.

Figure 39. An Example for an Interrelated Feedback Thread

Page | 184

6.2.2.6 Questions asked

Below is the list of questions that were asked during the design sessions. The questions are

categorized according to the topics that were under investigation/ evaluation in the study.

Templates Question(s):

1) Do you find the provided feedback template components sufficient for providing the

needed information? If yes please justify why, and if no please propose your own

recommendations of other components and provide justifications.

Attempto Controlled English (ACE) Question(s):

2) Do you think using the controlled English hinders your experience in providing

feedback easily? Or do you find it more helpful in structuring your text? Justify your

opinion.

3) What are the components in the ACE toolbox you find more important or useful than

others? What are the components you find unnecessary or hard to use?

RE Models Utilization Question(s):

4) Do you find that the models employed during the process were useful? If yes,

please explain how they improved the task execution. Also, propose your

recommendations of how can the models be kept up-to-date.

Feedback Acquisition and Communication Workflow Question(s):

5) Do you think that the proposed communication process overly expands the time in

which the tasks/ issues are handled? Or do you think that ensure better

communication to save time and effort that were going to be spent afterwards?

Elaborate on the advantages and or possible drawbacks you find in the process.

6) As an end-user, do you think that this process imposes extra obligations in your

involvement? Elaborate on the gained advantages of this involvement and/or

possible difficulties or issues.

Requirements’ Specification Template Question(s):

7) In each task in the evolution process phases: what is the information needed to

update the feature specification document with?

8) For each phase: Which feedback templates and/or RE models will you use to gather

the needed information to update the feature specification document?

9) What are the sections that need to be added or updated to represent the gathered

information in the feature specification document?

Page | 185

Notes and Summary Question(s):

10) Do you have any comments, suggestions or advice about our work that you would

like to share?

6.3 Study Results

In this section the results reached from the participatory design study will be explained. The

results are divided into 3 main categories: 1) updates in the feedback acquisition and

communication process, 2) updates in the feedback types’ classification and/or definitions,

and 3) design of feature specification extraction process. Also, there are results relating to

the participants’ opinions in: 1) end-user involvement in the process, 2) feedback

components restrictions and ACE utilization, 3) RE models utilizations.

6.3.1 Feedback Acquisition and Communication Process Updates

The feedback acquisition and communication process was updated according to the

workflow that the end-users and software engineers went through during the design

process. They were led through that flow according to their own feedback inputs and

communication during the session. For example, some users started the communication

thread by reporting the problem in the form of a help request (i.e. they want to perform a

certain task and don’t know how). Others reported it as a bug that needs to be fixed, as they

do not understand the output that occurred when performing the task, or they were

expecting a different output to occur. However, in these cases and after communication with

the engineers they realized that the feature already exists in the software, but they want it

modified to fit in the task they were doing. Other users directly reported it as a change

request as they know a workaround for performing the task, but they want it re-implemented

in a different manner.

A sample real thread of feedback communication is illustrated using figures in Appendix 4,

Section 10.4.2. Also, the updated acquisition and communication method’s workflow is

shown in the same section, along with a feature specification document with the

participant’s suggested updates.

6.3.1.1 Sample Design Sessions Threads

In this section examples from the PD design session threads are illustrated to show how the

communication between end-users and engineers took place. This communication took

place through the designed feedback templates for each feedback type as shown in Figure

36 and explained in section 6.2.2.3. As a result the feedback acquisition and communication

process evolved and the essential amendments were made. Before the amendments are

Page | 186

explained in the next section 6.3.1.2, the key sessions that led to these adjustments are

shown here.

As mentioned before two fictional scenarios were used in the PD design session to immerse

the participants in a problematic situation that could lead to enhancements in the current

system software. In this section, three distinctive design session threads are detailed, where

thread 1 and 2 used scenario 1, while thread 3 used scenario 2. The other two sessions

were not presented, because they shared common decisions that were made in the other

sessions.

6.3.1.1.1 Communication Thread Sample 1

1) The end-user provided a Topic Definition explaining the enhancement she wants

to make to the system. Relating the feedback template the business process, and

business activity and the feature that needs to be enhanced.

2) The end-user then provided extra information that she did not provide in the Topic

Definition. So she provided a Feedback Elaboration that related to the Topic

already defined, specified the level of detail that needs to be provided, and wrote

the feedback.

3) The engineer identified the feedback as valid problem, but still she needed to

confirm the new requirement with the end-user. The Investigation template was

used where a textual explanation of the perceived information was provided and

then a concise question was given asking the end-user to confirm. Also, it related to

the Topic.

4) The end-user provided an Investigation Elaboration where a concise level of

detail was used (same as the level of detail used in the Investigation template). The

end-user also related to the Topic and Investigation.

5) The end-user then provided a Feedback Elaboration to add extra information that

was triggered from the communication. In the template a feature definition level of

detail was chosen, and a textual description was added. Also, the template was

related to the Topic.

In the initial draft of the new method shown in Figure 38 it was suggested that in each of the

main phases a loop of investigations could take place in case the software engineer needs

to collect further information needed to identify, analyze, or plan the issue. In order to

ensure information are gathered in an accurate manner, the engineer can send questions in

an Investigation on any level of detail he wants to ask about, while it is restricted that the

feedback type Investigation Elaboration provided by the end-users must contain only

answers to the same type of level of detail.

However, during actual communication as shown in this communication thread 1, it

happened that during the investigation loop end-users needed to communicate extra

Page | 187

information about the requirements that they did not put in the main Topic Definition, or the

Investigations asked by the engineers raised further concerns/ constraints that they felt they

need to communicate. This was not catered for in the original process and therefore they

suggested that “there should be an extra step for end-users to provide the extra information

they want at any time”. The participants suggested “using the Feedback Elaboration

template as it is most generic feedback type for that purpose”. Also, the engineer

participants suggested that since these extra information could affect the feature definition,

scope, and/or add extra details, therefore “they should be reviewed by the software

engineer and directed to the identification phase” to determine whether it fits or contradicts

the existing definition, and decide whether it will affect the solution design, and whether it

will be handled in the current situation or planned for in next releases.

The modification was settled on adding a decision whether the end-user would like to add

extra information after providing each investigation elaboration at any of the main phases of

identification, analysis, or planning (i.e. before the implementation of the actual solution

begins). If the end-user decision was yes then they will use the Feedback Elaboration to add

information and it will be directed and studied in the identification phase. If not then the

decision will be directed back to the same process phase it was in before the investigation

started. This is shown in the final process documentation in Figure 40.

Also, the session moderator asked the participants whether it possible that the end-users

could add extra information during the implementation and the engineers answered “yes

they could, but anyway it will be catered for in another version, as it will be treated as a new

issue but related to an existing problem, and therefore it should enter the maintenance cycle

from the beginning”. This is shown in step 11 in this sample communication thread.

6) The engineer then started to investigate the newly added information. An

Investigation template was provided carrying several questions of the same level

of detail that is feature definition. Also, the engineer related that to the Topic.

7) The end-user provided an Investigation Elaboration template to answer the

questions that the engineer asked using same type of level of detail (i.e. feature

definition), related the feedback template to both the Topic and the Investigation it

answers.

8) The engineer used the RE models to determine the problem scope, analyze the

problem, and think of the possible solution to the enhancement and what possible

modifications it will make to RE models. Initial plans and solution design were

made. As mentioned in section 6.2.2.1 that a suggested solution was provided to

the engineer to be used in the Solution templates. However, the engineer

suggested that a Proposal phase and template should be added before the

Solution.

Page | 188

The engineer agreed that “a Proposal to the solution has to be made first before we proceed

to the actual implementation especially in case of enhancements or new features in order to

discuss it with the customer first”. However, in case of bug fixes a proposal might be not

necessary “for example if it a problem in the UI where the indentation is reported then

obviously the fix will resolve that matter without a need to propose first”.

Therefore, a new activity was added to the final version of the new method, shown in Figure

40, named Add a Proposal to provide such output and it employs a new feedback type

named Proposal, which is a subtype of the Mitigation. This activity can be performed

optionally when needed after the planning phase, where the engineers provide an initial

suggestion of the solution design and plan. If this proposal was acceptable then a

Confirmation should be provided. The engineer used the same types of levels of detail of

the Solution template and related it to the Topic feedback.

9) The end-user provided a Confirmation to positively verify the suggested proposal

that was detailed by a concise description and personal context. It was also related

to the Proposal.

10) The engineer then provided a Solution template that mainly carried same details of

the proposal since it was confirmed by the customer. And the engineer suggested

that it should be related to the Proposal feedback type.

The engineer suggested that “since the Solution feedback template contains a usage

scenario level of detail to explain the solution usage in steps; these steps could contain

information for linking the enhancement to other existing features in the feature model”.

The solution template is provided to end-users as part of the documentation used when they

are trying the solution, and therefore, this could help them understand the feature usage

better. Same as in the Moodle documentation shown in section 6.2.2.1, where some

features relate to others in a different module so a link was provided that directed the user

accordingly.

11) The end-user then decided to provide extra information that adds new modifications

to the recently implemented enhancement. So she provided a Feedback

Elaboration detailed by textual explanation, social context and Spatio-temporal

context.

12) The engineer decided that this modification will be handled as a new enhancement

and will go through the same process.

6.3.1.1.2 Communication Thread Sample 2

1) The end-user wrote a Topic Definition explaining his problem, and questioning

whether this is an existing feature that fulfills his request. This template was related

Page | 189

to the BPM process and activity and accordingly to the feature the end-user was

using.

2) The engineer provided an Investigation asking him several questions with the aim

to clarify the feature definition of the requested enhancement and related it to the

Topic.

3) The end-user provided an Investigation Elaboration where he answered the

questions using the same level of detail feature definition, and related the template

to the Topic and the Investigation templates.

4) At this point the engineer has understood the problem and the Identification phase

ended. Followed by an exploration of the RE models provided to analyse the

modification scope and suggest a possible solution. In this session the engineer

also suggested that a solution Proposal should be presented to the end-user to

demonstrate the solution usage scenario and screenshots to exemplify how the

solution would look like.

As suggested by participants in the previous thread, if the end-user accepts the Proposal

then a Confirmation should be provided. This was suggested in this session too. This

Confirmation is suggested to “go back to the planning phase to complete the plan with

finalized estimates and resource planning then the actual implementation can proceed.”

Moreover, in this session the engineer discussed the other possible outputs from the

proposal phase. If the proposal was not acceptable, the engineer suggested that a new

feedback type could be designed named Negative Verification, which end-users can use

to negate Proposals only and provide textual justifications explaining their reasons for the

rejection. Moreover, the participants explained that after a Negative Verification “it could

happen that the customer totally rejects the proposal for example for financial reasons then

the process ends”. Else, “the customer may choose to propose an alternative solution or

make modifications”, and in this case the process directs them to the Feedback Elaboration

template (as this is the most generic template where end-users can specify any level of

detail the provide their feedback) in the start of the process where they add the information

they want to an existing problem and the engineer starts handling it through identification,

analysis and planning.

Finally, a minor change was made to the process to generalize the results. Since, the

Feedback type Confirmation will be used to represent positive verification; therefore, the

final method version in Figure 40 was also updated. The verification after a Problem

Correction and after the Solution is also made through a Confirmation feedback type,

followed by an end-state to show that this is a final acceptance by the end-user.

5) In this step and after the end-user received the Proposal from the engineer, he

provided a Negative Verification, where he rejected the proposal and used

Page | 190

personal context description and justified that he wants to make some modifications

in the usage scenario provided in the Proposal.

6) The end-user then provided a Feedback Elaboration with a usage scenario level of

detail explaining the modified steps he wants the feature to work according. The

end-user related the feedback to the Negative Verification.

7) The engineer then identified, and analyzed the modification and found it valid and

feasible. Then she provided a Solution with the modifications applied to the usage

scenario and a screen shot exemplifying the solution. The engineer also related this

feedback template to the Topic Definition feedback.

8) Finally, the end-user made a Confirmation on the solution to verify that he made

his final acceptance. He detailed his confirmation by textual concise description.

6.3.1.1.3 Communication Thread Sample 3

1) The end-user provided a Topic Definition, however he did not explain his problem

as an enhancement, but instead he wrote his feedback as a bug report. The end-

user user the explanation level of detail and used a screenshot to exemplify the

erroneous output.

2) The engineer provided a Problem Correction feedback type in order to clarify that

this is not a bug in the system as the feature exists. The engineer provided a textual

feature definition for the feature in the system that could be used to fulfil the task,

and also he linked it to the feature specification document for that feature (this was

provided in the scenario 2 description as shown in section 6.2.2.1). Also, he detailed

his feedback with textual explanation of how the feature should be used and

provided a screenshot for the part of the system the user should be configuring to

manage the task correctly. Then he linked the feedback to the provided Topic.

The engineer then recommended that he “would like to use more than one method to

describe the feedback type”.

3) When the engineer clarified that what he is requesting already exists, the end-user

replied that he wants an update in the feature and he wants it to be accessible on

the screen he was performing the task on, which means he was requesting and

change in the workflow’s behaviour and also, a change in the feature’s scope.

In the feedback types’ definitions developed in this research (Sherief, Abdelmoez et al.

2015), there exists a feedback type named Addition that could be used in such case,

because by definition this feedback was used to add a problem to a problem. However, from

the forums analysis that was conducted in this research the original definition of Addition

was used when end-users added problems not related to the main problem on which the

discussion is held. That is why; this feedback type was not employed in the initial draft for

Page | 191

the process, because such flow was thought to appear in online forums where

communication is less organized and loose, but not in business context. However, to use

this feedback type in the new communication process, a more refined definition was needed

that was: a feedback that the end-user can use to add a new enhancement after a Problem

Correction was provided, meaning that “the feature definition and scope is no longer

suitable for the end-user and needs modification” as mentioned by the end-user. Also, both

the end-users and engineers in all the PD design sessions agreed that “even if the Problem

Correction was a satisfactory answer to the end-user, a Confirmation should be provided to

confirm the end of thread” as mentioned by the engineer. Finally, this new change reported

in the Addition feedback type, would be treated as a new problem and the flow moves on to

the identification phase where any needed investigations are made and so on.

4) After the Identification phase the, the engineer started to analyze the situation by

examining the RE models to determine the modification scope and how will the

proposed solution affect the RE model.

5) After that the engineer was ready to provide the solution, however as in the

previous communication threads he suggested that a Proposal phase and

feedback type should be added before the solution to discuss the suggested

solution with the customer and have his feedback. The engineer provided a

Proposal feedback type detailed by textual usage scenario and exemplification

described by screenshot containing the suggested UI for the solution. The proposal

was related to the Addition feedback.

The planning phase was overlooked during the design session as this is supposed to

contain management tasks (time planning, cost planning, resource allocations…), and since

this is fictional scenario so these details are ignored. However, in all the PD design sessions

the engineers agreed that “initial planning should be made before the proposal phase, but

are finalized after a confirmation is received from the end-user, because there is no need to

spend effort on making a complete plan, while the proposal can still be rejected or modified”

as mentioned by the engineer.

6) The end-user then provided a Confirmation detailed by concise textual description,

and he related the confirmation template to the proposal.

7) The engineer then provided a Solution template that was detailed by usage

scenario that was detailed by text and link method and an exemplification using

screenshot to the final solution UI was also provided same as in the proposal

template.

The engineer was engrossed by the idea that the feedback acquisition and communication

process specifies that RE models should be used as an input in the analysis phase to

provide accurate inputs during the impact analysis and scope definition. Hence, he raised a

Page | 192

concern about how to keep the feature model up-to-date specially that an enhancement was

made, so that these models can lead to accurate results when used in future system

changes. Accordingly, the engineer started providing ideas to cater for designing such task.

First he discussed that “Proposal and Solution templates should be used to document how

the feature model will be updated”. Furthermore, the engineer suggested that “the

modifications should be specified in the usage scenario in the Mitigation templates as part of

the solution steps that reference new features. He also clarified that “If there were no

changes in the Proposal usage scenario then it could be used as it is in the Solution

template. However, if an update happened according to modifications communicated by the

end-user then a new usage scenario will be specified in the Solution template and the latest

version will be used to modify the feature model”.

The engineer also emphasized on the importance of providing information about the feature

models updates during the Proposal task. This is because the Proposal template is used

during the negotiation with end-users, and sometimes important feature model updates

need to be discussed with customers too. “For example, in a scenario where the end-user

reported that he needs a feature for a new type of report that includes specific attributes.

Then the engineer proposed a solution design where a more generalized feature will be

implemented, by which the end-user can define the attributes that he needs to report

instead of making several static types of reports. This will lead to the addition of a new

parent to a list of features. Also, these sub-features will require new relationships or cross-

tree constraints in the feature model.”

Moreover, the engineer also discussed that “the existing feature model notation (i.e.

relationships and cross-tree constraints) can be used in the usage scenario” to describe the

links in the feature model. This would help make the modification of the feature model “more

accurate and systematic during the actual updates”. As a result, the Mitigation template will

contain information about how the feature model will be updated according to the

modification(s) that will be/ was implemented in the system. This can result in “adding new

feature(s) and relating them to existing feature(s), or relating two existing features together,

or relating two new features together where one of them is related to an existing feature” as

specified by the engineer.

8) The end-user then provided a Confirmation detailed by concise textual description,

and he related the confirmation template to the Solution.

6.3.1.2 Integration of the Suggested Enhancements

In this section a completed view of the novel feedback acquisition, communication and

requirements update method is provided in Figure 40. The key modifications that were

made to modify and enhance the process are also summarized in this section.

Page | 193

First, the process was modified to improve the Problem Correction workflow which occurred

as one of the paths after the Identification phase. Two modifications were made which are

adding a Confirmation after the Problem Correction and adding an Addition feedback Types

in case the end-user wants to add an enhancement.

Second, the Investigation tasks were always directed to the Investigation Elaborations which

are strictly answers to the questions asked by the engineers that is then re-directed to same

phase from which it originated. This was enhanced by adding a possibility to add extra

information to the requirement (problem) at any time during the communication, which would

then be redirected back to the Identification phase so that the engineer could study whether

it is a valid addition or not.

Third a new feedback type named Proposal was suggested by all engineers in all the design

sessions. This was demanded so that the communication process conveys the actual

situations that happen in real situations, which is discussing the proposed solution with an

initial plan with the customers before actual implementation takes place. Moreover, this was

further enhanced by engineers in a particular design session (as shown in section 6.3.1.1.2)

to add different outputs to the proposal task. The task could results in: a) end-users

accepting the proposal thus a Confirmation task was added; b) end-users totally rejecting

the proposal thus a Negative Verification feedback type and task were added; c) end-users

rejecting the proposal with modifications thus a Negative Verification would be directed to a

Feedback Elaboration task to add the needed information.

Fourth, an enhancement to the Mitigation feedback templates was suggested so that

engineers are obligated to specify the feature model updates during the Mitigation task (i.e.

Proposal and Solution). The engineer suggested the scenario should be detailed more and

divided into multiple steps and that the feature model notation (i.e. relationships and cross-

tree constraints) should be used in those steps to specify how features and/or links could be

added to the existing feature model.

Since the engineer suggested modifications in the feedback template, and how it could be

enriched to carry important information that could support the engineers in later stages

when the models and documentation are actually being updated. Therefore, it was

considered necessary to further update the feedback acquisition and communication

process to enforce the preparation of the feature model updates, and also to inform them

how to perform this task.

From the analysis results and after putting all the engineer’s ideas into consideration the

process was modified by transforming the “Add a Proposal” and “Add a Solution” tasks into

sub processes, where a sub process was designed to guide the engineers through the steps

needed to complete that task of documenting the updates of the feature model. Similarly, it

was found that the “Correct the Solution” task should also be transformed to a sub process.

Page | 194

This task originally, was designed so that the engineers could provide a Mitigation

Correction to a Solution previously provided to the end-users, but did not work properly

(Mitigation Trial Failure), or another problem evolved after applying it (Problem Extension).

The Mitigation Correction feedback type is detailed by a usage scenario where the corrected

steps of the Solution are provided. These steps may contain modifications to the

documented feature models updates. Thus, the Proposal, Solution, and Mitigation

Correction tasks were all transformed to sub processes.

The sub process in Figure 41 was designed to work on the feedback types’ details in order

to help engineers complete their details, while putting into consideration the feature models

modifications. First, the engineer starts by the main level of detail, which is the usage

scenario. So in first task in the process the engineer is asked to “Add a usage scenario

step”. This step is then evaluated, if it needs to include feature model linking then the

engineer should “Specify the Link type”. In the task of specifying the link type, the

engineer should choose from the feature model notation the suitable relationship type

(Mandatory, Optional, Or, Xor), and/or cross-tree constraints (requires, excludes) that he

wants to use. Next a decision should be made whether he wants to “Link to an existing

implemented feature” or “Link to a new proposed feature”.

After specifying the link type and the feature type it will be linked to, two possible paths

could be taken, either to go back to the “Add usage Scenario step” again to complete the

usage scenario description, or go to another task “Complete the Feedback Description”,

then the process ends. The task “Complete the feedback description” depends on which

type of feedback the engineer was providing. If the engineer was providing a Proposal or a

Solution then after providing the usage scenario he should provide an exemplification, for

example a screen shot of how the solution would look like. If the engineer was providing a

Mitigation Correction then after providing the usage scenario he should provide an

explanation of why the modifications were made and/or how they were made should be

given.

If the evaluation after the “Add a usage scenario step” task did not lead to the need to make

linking to the feature model, then two other possible paths could be made. Either to go to

the same task again which is adding another step in the usage scenario, or go to the

“Complete the feedback description” task and end the process.

Page | 195

Figure 40. The Final Feedback Acquisition, Communication, and Requirements Updating

Method

Page | 196

Figure 41. The Proposal, Solution, and Mitigation Correction Internal Sub Tasks that Link their

Scenario Steps to Features.

6.3.1.3 Results Concerning Participants’ Involvement in the Process

In this section the modifications made to the feedback acquisition and communication

process were explained and justified from participants designs. Still, other questions were

asked to the participants concerning their involvement in the process as seen in section

6.2.2.6 (questions 5 and 6). The engineer participants agreed that from the advantages of

this process is that it “aligns with the normal software evolution process they already

perform”. This makes it easy to understand and use, because the main phases and tasks

are already there and in the same order. But, it “adds definition and guidance to the

communication tasks that were performed in an-hoc manner”, and concerning the feedback

acquisition “regulations are enforced on both end-users and engineers through feedback

types, which ensures useful and meaningful information is being collected”.

In all PD design sessions, the participants agreed that even if this is a longer process but

“still it was performed anyway, but under stress when communication problems occur”.

When issue handling is made when communication problems accumulate, “makes it harder

to handle and documentation becomes a burden, as all what we concentrate on is to resolve

issues quickly and not through a methodical manner” as mentioned by engineers. This

causes requirements information to be lost, poorer documentations and less customer

acceptance. Thus, both types of participants confirmed that “it would be better to have a

more organized process where each role knows his responsibilities and scope for

involvement”. From the customers’ side, this makes them “feel safer to be more involved

and know how things are handled”. Also, the engineers confirmed that this would definitely

“lead to handling of issues in an efficient and timely manner”. Also, the idea of

communicating through feedback will “provide better justifications to them especially in case

of disputes with customers and project closures, where explanations need to be provided of

how and why certain things were done”.

Page | 197

Finally, the employment of RE models during the evolution process was examined. This part

was tested in two different ways. First, the feedback templates provided to the participants

contained section for linking the feedback to a certain Process and Activity in the business

process and accordingly the features were generated to choose from them as shown in

Figure 36. This helped the customers locate problems in a more precise manner, which was

argued to help engineers in tasks such as impact analysis of issues. Second, in the PD

design sessions, engineers had a pre-prepared sample feature model and business process

model for the Moodle that models the business activities and relationships between them

and with other features in the system as shown in Figures 30-35. Engineers found the

models utilization is “useful in narrowing down the modification scope”, as it helps locate the

problematic areas in the activities carried out in the business, which is easy for the end-user

to specify, and therefore “it clarifies accurately which features may be affected by the

modification”. Helping engineers in narrowing down the scope “helps in validating the issues

reported by end-users and reduces the effort spent being misled due to lack of sufficient

descriptions and customer experience issues”. Furthermore, the engineers in PD design

session 2 and 3 suggested that this a promising step that could help provide a base for

further analysis that may be done on the links between feedbacks and RE models to obtain

useful reports for example on “which are more problematic features”, or “features where

more costs were spent on enhancements changes”, and more importantly “maintain the

requirements and feature specifications up-to-date and linked to the latest software

updates”.

6.3.2 Feedback Types Updates

This section explains the updates that occurred during the PD design sessions regarding

the feedback types’ templates and the utilization of ACE (Fuchs, Kaljurand et al. 2006) to

provide structured feedback. As explained in section 6.2.2.3, a feedback template was

designed for each type of feedback. These templates conform to the rules that were defined

earlier in the research (Sherief, Abdelmoez et al. 2015). However, the purpose was to

validate them in practice during the design sessions. Moreover, to help participants employ

the ACE structures a toolbox was provided and explained with examples.

Since the designed mock-ups were used in the sessions were paper-based and not

computerized, it was suggested that participants should use small stickers to tag each

sentence with the sentence type they want to write and provide the input. However,

whenever the participants needed to structure the sentences using ACE they “just assume

that the component was dragged and dropped in the text area”, and the appropriate

sentence was written. This is the way they “prefer if this was implemented in reality”, as they

clarified during the design sessions, especially that this “labelling could be hard-coded in the

program” as suggested by the engineers participants. “This would be easier when providing

the feedback” as agreed by both end-user and engineer participants.

Page | 198

For the practice of using ACE, participants had different opinions. In the design session 1

both the engineer and end-user were not keen on the idea of “being obliged to use a certain

way in writing their textual descriptions”. They said that “this might block them from fluently

explaining their feedback especially that they always have in mind an idea of what they want

to say”. However, they pointed out that “this depends on the type of personality for the

person writing the feedback especially the end-user, because end-users trigger the

communication, and not all end-users are very expressive to their problems’. So if the end-

user had an expressive personality type, his experience should not be hindered while

providing such essential input. While, if the user was not expressive enough, then an ACE

tool could have great benefit to him. Putting into consideration the benefits of having

structured feedback, the engineer in this session agreed that having ACE is of good value

especially if further analysis was to be done. Therefore, it was suggested to be put as a

validation step meaning that “after the feedback is written it could be validated against the

ACE construction rules where problems are highlighted for refinements, and that it should

not block users from submitting their feedback”.

The suggestion of having the ACE as a validation step was also suggested in both sessions

2 and 5, where participants found it as a helpful way for providing feedback, as it provides

guidelines of how a textual description could be structured and/or written. But still they did

not want it to be an obligatory step, “feedback submission should not be bound to writing in

a specific way” as they explained.

On the other hand in sessions 3 and 4, the end-users in the sessions found it a necessary

tool for providing feedback. Both participants during the session verbally discussed their

problems (i.e. problem related to the fictional scenario provided) easily, however when it

came to expressing it as a written description, it wasn’t an easy task. They didn’t know “how

to start”, “how to write things correctly” to be “clear, meaningful and easily understood”.

Thus, they found ACE as an “effective tool for providing guides and instructions on how to

structure text”, especially that the toolbox provided examples for each sentence structure.

In conclusion, ACE utilization was positively received by all participants, but they had

different perceptions and conditions on how it should be used as discussed in this section.

This was included in an initial architectural design for structured feedback modelling

(Sherief, Abdelmoez et al. 2015), which was validated in this study. The architecture was

redesigned as shown in Figure 42 to switch the phases of Feedback Structure Validation,

and Sentence Structure Validation, so that the former comes first in the design, to ensure

the latter is an optional stage put for refinements, before the actual storage of the feedback

in the knowledge base. However, given there is a tool (i.e. in future work) that utilizes such

concept it would be left for users to write using ACE from the beginning or not, and in all

cases it will be validated before actual storage. Furthermore, the architectural design was

modified to show that the ontology knowledge base stores the feedback types’ classification,

Page | 199

the rules that govern their usage and the final validated instances. Also, an input flow from

the ontology to the reasoner was added to show that it uses the defined structures and rules

to validate the end-user feedback. And finally, shows that the engineer role also uses the

ontology knowledge base to read the structured feedback instances and use it in the

evolution process tasks as explained in section 6.3.1.

Figure 42. An Architectural Design for Structured Feedback Modelling

Concerning the Feedback Types and their components, during the design sessions

whenever the participants needed to provide a feedback they mapped the input they wanted

to give to the feedback definitions already existing in our classification. If it mapped to one of

the feedback types, then they started analysing whether its components were suitable for

providing useful descriptions or not. On the other hand, if it didn’t map to a feedback type,

then adding a new type was discussed and designed.

It is worthy to mention that before the PD study, feedback types were defined using a set of

rules derived from the forums analysis study and formalized using ontological definitions.

These definitions enabled the users to enter their feedbacks, which were mapped to the

rules in order to identify the feedback type and therefore validate its structure. This initial

way of working with feedback was based on usage of feedback in online forums where

users may not tend to specify the types of feedback they are giving, especially that there is

no process to ensure how users communicate with the support teams of large software

suites developed for mass usage. Therefore, our idea was to provide simple structures that

users could use to provide useful descriptions, and ensure minimum mandatory content.

However, this research has evolved after the conduction of the interviews study with

software engineers towards applying the feedback structures in business context of

software companies that develop customized software to their customers. These customers

tend to be more motivated, and methodical practices could be followed. This resulted in a

Page | 200

change in the perspective in which feedback types are handled. Instead of using the

ontology to detect the feedback type and validate it, it will be used as a flexible and

extendible tool for feedback structuring, validation and storage (i.e. users understand the

feedback type’s meaning and usage and choose to provide a certain feedback according to

the situation and need). Using ontologies also enables utilization of ACE plugins easily, and

further querying of the stored feedback threads as discussed in the following section.

Consequently, in the PD study the templates were designed that conform to the rules that

were previously designed, but a toolbox with the types of level of details was provided for

flexible customization of each feedback type. It is the ontology’s role to ensure that the

minimum amount of information is met, and that the extended components (if any) are not

disallowed for that feedback type, and store it in a structured interrelated manner for further

querying.

Below is a detailed list of the comments and recommendations made for each feedback

type to show how the feedback types’ updates were derived from participants’ quotes:

Topic Definition: this feedback type was detailed by Explanation and Task Context. In all

design sessions both types of participants agreed that these details are enough as initial

mandatory information. They did not want to add extra mandatory levels of detail in order

not to hinder the end-users’ experience. Also, extra components are dependent on the

problem and therefore may vary from one case to another. Moreover, they can be

systematically investigated by engineers when needed, and linked to the feedback thread.

Since Variations are possible, an example that occurred in one of the design sessions is

that engineers recommended Social Context as an essential component in the topic

definition “especially in new features and enhancements, because it helps understand the

customers’ roles, restrictions, with whom and how they interact, which are essential

information that directly affect the solution design and requirement fulfilment”. So the end-

user dragged the component from the toolbox and dropped it in the feedback template and

described it. In this case the Topic Definition was detailed by Explanation, Task Context,

and Social Context.

Therefore, the specified levels of detail are the mandatory ones, but any other level of detail

can be associated for a richer feedback, unless explicitly specified that they could not be

used.

Investigations: This feedback type allows engineers to write a textual question about the

level of detail they want to inquire about. The template they were given allowed the

engineers to ask using any level of detail except Concise and Feature Definition that were

disabled in the toolbox as shown in Figure 43. However, during the PD design sessions,

Page | 201

engineers recommended that they should be enabled especially feature definitions when

adding new features on enhancements.

For example, given a topic definition that the end-user explained, and a feedback

elaboration that she provided afterwards, the engineer gave an explanation for her

understanding of the new requirement and asked a Concise Question “Can you please

confirm that this is the requirement scope?”

Another Example, the engineer needed to ask about a specific aspect of a new feature, so

she sent an investigation template to request more information about that aspect in the

Feature’s Definition “I’m concerned with the accessibility of this feature. Will the staff

members be able to clone formats from only their own courses or everyone’s?”

Figure 43. A Level of Detail Toolbox showing disabled content

Therefore, the Investigation rule will be modified to include any possible inquiry on one or

more type of Levels of detail. Also, it is worth to note that Investigations may include other

level of details besides the investigated one. For example, an engineer may provide

explanation of his understanding of the requirement and then ask question(s).

Addition: as explained in section 6.3.1.1.3 that this type emerged during the design

sessions. By definition an Addition occurs when the engineer clarifies that the reported

problem is a help request and that there exists a feature that resolves that issue (using the

feedback type Problem Correction). However, the end-user decides to modify this feature

definition’s scope, for example, by enhancing its accessibility (which happened in design

session 4).

Therefore, the Addition feedback type will be modified accordingly, as it always means an

enhancement to an existing feature. So the minimum needed mandatory information is the

new Feature Definition, and references a Problem Correction feedback type.

Page | 202

Mitigation: In our definition the mitigation feedback type means providing a solution to the

topic definition on which the thread is held. In the design sessions this feedback type was

logically divided into two different subtypes: Solution and Proposal.

All participants confirmed that the Scenario is a mandatory level of detail for both types

(Solution and Proposal) as it will be used a baseline for the next situations that could occur.

For example, a “usage scenario in a Proposal can be used as it is in the Solution if the

proposal was accepted”. Moreover, Exemplifications were confirmed as a mandatory

component in both Proposal and Solution Templates, and engineers confirmed that “it is

helpful especially if there are changes in the UI that requires screenshots”. They also added

that they would like to ensure that “the scenario is given in steps in not as textual

paragraphs”. This would “improve the readability of the solutions, and reduce the effort that

end-users will spend in applying them”. Also, to “help link each step (if needed) to other

feature(s) that it utilizes, which will help maintain the feature model”, as mentioned in the

feedback acquisition and communication process updates.

The difference between them is a logical difference that is clarified in the communication

process between engineers and end-users explained in section 6.3.1.2, where in some

straight forward cases of bug fixes there is no need for proposals (so it could be skipped).

While, in other cases it could be used to make agreements with end-users on a planned

solution, so that no effort is spent on an implementation that could be rejected.

Page | 203

Therefore, a new feedback type Proposal will be added that carries the same definition as

the Solution. Both will be subtypes of the Mitigation feedback type as shown in Figure 44.

Problem Extension: is a feedback type used after trying a solution that partially resolved

the issue. This type was originally detailed by Explanation and Environmental Context in

the provided template. However, both engineer and end-user participants agreed that

“Explanation is best level of detail to be used to describe the new emerged problem, same

as used with Topic Definitions”. However, there is no need to mention the Task Context as

in the Topic Definition, because this could be deduced from the feedback thread, but if

needed it could be specified explicitly. Also, in both scenarios used in the PD design

sessions there was no need for the Environmental Context information, and therefore it was

recommended to be left optional for end-users to add according to the case.

Therefore, the final rule definition for Problem Extension is detailed by Explanation, and

references Mitigation, or Mitigation Corrections. Also, the distributed template mandated this

type to be accompanied by a Confirmation that references Mitigation and another

Confirmation that references the Problem from which the extension evolved. This is to

confirm that the provided solution partially resolved some of the issue, and to confirm that

the problem still exists and did not close.

Mitigation Trial Failure: is a feedback type used after failing to try the provided Solution.

This type was originally detailed Trial and Environmental Context. However, engineers

pointed out that only the Trials that the customer made should be mandatory information to

show the steps that the customer made to try the usage scenario provided in the Solution “It

helps the engineer to walkthrough the steps the customer made to further understand the

problem”. Moreover, in both scenarios used in the PD design sessions there was no need

for the Environmental Context information, and therefore it was recommended to be left

optional for end-users to add according to the case.

Therefore, the final rule definition for Mitigation Trial Failure is detailed by Trial, and

references Mitigation, or Mitigation Corrections. Also, the distributed template mandated this

type to be accompanied by a Negation that references Mitigation and another

Confirmation that references the Problem from which the extension evolved. This is to

negate that the provided solution resolved the issue, and to confirm that the problem still

exists and did not close.

Negative Verification: this feedback type references Proposals feedback only to add

Negation to them detailed by Concise or Personal Context, and provide justifications

detailed by Context and Explanations.

As explained in section 6.3.1, end-users could reject a proposal and end the communication

by providing Negative Verification. Or, they can provide a negative verification explaining

Page | 204

why they do not agree on the proposal; however they still need a solution. So, they will

explain their modification in a feedback Elaboration to be considered as new requirement

information that should be considered. This also, modifies the Feedback Elaboration rule to

include the possibility to reference a Negative Verification.

Therefore, the rule definition for Negative Verification is to provide Explanations of why the

proposal is not accepted, and using Context information to support that. Furthermore, a

Negation is associated with that type to reference the Proposal.

Further enhancements to the levels of detail is that engineer participants suggested that

each level of detail can be explained using multiple methods. For example, and Problem

Correction feedback type is detailed by Feature Definition “that could be explained both

textually and by providing a link to the specification document that contains that definition”.

Also, Question is a specific method that is used only with Investigation feedback types.

Investigations should contain at least one Question.

Figure 44 represents the final classification of feedback types after the PD study. Also,

Table 18 summarizes the components updates and put the all the feedback types in their

finalized form:

Figure 44. The Participatory Design’s Study Final Classification of Feedback Types

Table 18. A Finalized List of Feedback Types and their Components

Feedback Type Rule

Topic Definition Detailed by Explanation

Detailed by Task

Investigation Detailed by Level of Detail that is Described by Question

References Type(s) Problem , Elaboration, Negative

Verification

Page | 205

Investigation

Elaboration

Detailed by Level of Detail

References Type Investigation

Feedback Elaboration Detailed by Level of Detail Except Concise

References Type(s) Problem, Negative Verification

Problem Correction Detailed by Feature Definition

Detailed by Explanation

References Type(s) Topic Definition, Problem Extension,

Addition

Addition Detailed by Feature Definition

References Type(s) Problem Correction

Mitigation

(Proposal & Solution)

Detailed by Scenario that is illustrated by Scenario Step(s)

Detailed by Exemplification

References Type(s) Topic Definition, Addition, Problem

Extension

Mitigation Correction Detailed by Scenario that is illustrated by Scenario Step(s)

Detailed by Explanation

References Type(s) Solution AND Extension

Problem Extension Detailed by Explanation

Has Type Confirmation References Type Solution

Has Type Confirmation References Type Problem

References Type(s) Solution, Mitigation Correction

Mitigation Trial

Failure

Detailed by Trial

Has Type Negation References Type Solution

Has Type Confirmation References Type Problem

References Type(s) Solution, Mitigation Correction

Negative Verification Detailed by Context

Detailed by Explanation except Concise, Usage Scenario

Has Type Negation References Type Proposal

Confirmation Detailed by Concise or Personal Context ONLY that is

Described by Text ONLY

References Type(s) Mitigation, Correction

Negation Detailed by Concise or Personal Context ONLY that is

Described by Text ONLY

References Type(s) Mitigation, Correction

Finally, all these feedback types’ modifications will be improved in the ontology classification

and rules definitions (explained in details in the next chapter). This is to provide formalism to

our research. Formal methods helps us to avoid overlooking critical issues, provides a

standard means to record various assumptions and decisions, and forms a basis for

consistency among many related activities. Also, this will validate the architecture in Figure

Page | 206

42 that was proposed in (Sherief, Abdelmoez et al. 2015) and help demonstrate the

integration of its components together, and the outcomes they produce, which are essential

inputs to the feature specification extraction process explained in the next section.

6.3.3 Feature Model and Feature Specification Evolution process

This section explains the results regarding the issues related with features specification

documentation. As discussed with the participants in the introductory sessions that there are

two main issues that are focused on regarding the requirements documentation. The first

problem is related to the description’s content, while the other is related to the lack of

systemized process for extracting information and keeping the documentation up-to-date.

The first problem is prompted, because requirements gathered during the maintenance

phase are typically gathered through unstructured end-users’ feedback and a series of

unguided communication between both the end-users and the engineers. This causes

information loss, because there are no guidelines for how this communication should

happen and how information exchange during this communication should be documented.

Therefore, the task of updating the documentation and putting important details into

consideration is left untraced, as it is then very hard to remember all the detailed

descriptions when documenting feature specification updates. So it would be left to the

engineers’ understanding and experience to write down the documentation, which may in

turn contain a great deal subjectivity.

Furthermore, the second problem mainly occurs in the maintenance phase where there is

an initial specification document that is not updated with each issue reported by the

customer (de Souza, Anquetil et al. 2005, Kajko-Mattsson 2005, Leotta, Ricca et al. 2013).

As gathered from the interviews study conducted earlier in this research, is that engineers

are not keen on that task because of the effort and time it takes. Also, the lack of facilitating

methods and guidelines for the documentation process is what makes it an ad-hoc task that

is difficult to manage.

Thus it was our aim in this study is design with the engineers 1) a more detailed structure for

the feature specification documentation; 2) how feedback structures could be used as a

validated and formal source to provide input for the documentation; 3) what is the main

steps that the engineers could follow to provide a systematic means for the information

extraction and documentation process.

In the PD design sessions, engineers were given a draft for the feature specification

template shown in Figure 15, along with an example of a feedback thread shown in Figure

39 to help them visualize how feedback could be related to form a thread of interrelated

information. Also, the communication flow during the session with end-user using the design

Page | 207

feedback templates gave them an idea about the content available in each feedback in the

thread.

Designing how the description could be extended with more details containing more

sections for organization, each engineer provided insights regarding how to divide the

description section. Each one provided advice according to his opinion, experience and

preference. The common two main sections were the Description section and the

Scenario Section. The content of the Scenario section can be extracted from the feedback

thread as “we have a usage scenario for each Solution and if this scenario was updated for

example in a Mitigation Correction, then it could be updated accordingly”.

On the other hand participants agreed to keep the Description section as it is, but add

subsections with more precise levels of detail according to the case. For example, there are

engineers who mentioned that context information is important, but “we cannot be sure

which type we may need, in enhancements and new feature, usually social context

information is essential, while in bug fixes we might need task context or environmental

context.” So it was concluded that it should be left to the engineers to extract the needed

information from the feedback thread, but provide the suitable guidelines and tools to inform

that task.

Thus, the need for designing such process was triggered. Having the stored feedback

thread engineers suggested that they “could retrieve it and view it” in order to start “marking

the suitable Levels of Detail (LODs)” that will be used to update the existing Feature

Specification Document (FSD). Given that in this a definition of the classification of feedback

types and their components in ontology was developed. Thus, the actual instances of

feedback will be stored in the Ontology knowledge base and therefore can be queried using

SPARQL querying language that could retrieve the needed information for such purpose.

In Figure 40 the last sub-process “Update the Feature Model and Feature Specification

Document” is triggered after the customer provides a Confirmation either after trying the

solution that successfully resolved his issue, or after receiving a Problem Correction for the

help request or issue he has raised. When a confirmation is received after a successful

solution trial the engineer should go through a process of documenting the modifications

made to the related feature and update the feature model according to the scenario

provided in the solution. Also, when a confirmation is received after a problem correction the

engineer may need to update the feature description in the feature’s documentation in order

to cover the gaps in the description that led to the customer’s misunderstanding. This could

be directly extracted from the new feature definition with detailed description that was

provided in the feedback description.

The sub process in Figure 40 is detailed in Figure 45 where all the steps needed to update

the documentation and feature model are detailed. The engineer starts by “Marking the

Page | 208

Levels of detail (LODs) that he needs to update the documentation with”. A discussion

was held with the participants on the feedback types from which information could be

extracted which is summarized in Table 19 below. The types they referred to as the allowed

list of feedback types to extract from was: Topic Definitions, Addition, Elaborations,

Mitigations, and Corrections. On one hand, they supported with argumentation why each

type could be needed. “Topic Definitions and Additions contain important explanations for

features and task context information that can be used to provide descriptions of the feature

usage in certain contexts”. Moreover, “Elaborations whether they were answers to questions

or provided by end-user to complete important information can be used to complete the

descriptions of features like: feature definitions, contextual information, exemplifications”.

Additionally, “Mitigations are the main source for describing the solution through usage

scenarios, while Mitigation Corrections (if any) can update that description to ensure

updated solution are stored”. Finally, “Problem Corrections can be used to re-define or

refine feature definitions, especially after being misunderstood by end-users”.

Page | 209

Figure 45. The Feature Specification and Feature Model Update Process

Page | 210

On the other hand, there were feedback types that were used during the session that were

found unnecessary to use during documentation update such as Investigations, Mitigation

Trial Failures, and Problem Extensions. They argued that “there is no need to store the

questions asked instead the answers provided. Storing questions in the document will make

it look like a dialogue which is not needed in documentations’ updates that will be used as a

reference in future updates”. Also, “Mitigation Trial Failures and Problem Extensions report

the problems in the solution, while only documentations of working solutions are needed in

their final version”, and after these two types normally engineers are requested to provide

Mitigation Correction, which can be used to fulfil such purpose as mentioned above.

Table 19. The Allowed List of Feedback Types and Levels of Detail that can be used to fill the

FSD Sections

FSD Section Allowed Level of Detail Allowed Feedback Types

Description Context Topic Definition, Addition,

Elaboration (Investigation

Elaboration, Feedback

Elaboration), Problem

Correction

Any Depth except: Concise,

Scenario

Topic Definition, Addition,

Elaboration (Investigation

Elaboration, Feedback

Elaboration), Problem

Correction

Scenario Scenario Mitigation (Proposal,

Solution), Mitigation

Correction

Feature Relation Scenario Step containing

Feature link

Mitigation (Proposal,

Solution), Mitigation

Correction

Afterwards, the engineer “Decides in which section the selected LOD will be added”. It

is assumed that there exists an initial feature specification document (FSD) designed in the

original project and that it contains the two main sections feature Description and Solution.

Therefore, in the process shown in Figure 45, the engineer is asked in which section the

level of detail he chose from the thread will be added. This step requires reading the

document structure to identify the existing sections and subsections. If he marked that he

would like to “Add the LOD in the Description section” then he would start deciding in

which subsection inside the document the LOD will be added. After having the document

structure read the next question is “Whether a subsection inside the Description section

exists or not”. If yes, then the existing subsection will be used, but if no, then a subsection

will be created. Next, the engineer will be asked whether he would like to insert the text from

Page | 211

the level of detail as it is or summarize and rephrase. Whatever the choice was the FSD will

be updated and the process ends.

This process is iterative as indicated in the Figure 40; therefore, the same process in Figure

45 can be used again to update the different sections of the FSD, only it will follow a

different path. Alternatively, if the selected LOD was a Usage scenario, then the only option

is to “Add the usage scenario in the Scenario section” of the FSD. However, as

mentioned in the sub process of documenting the proposal, solution, and/or mitigation

correction usage scenario shown in Figure 41 that the scenario may contain links to features

that are used to document how the feature model should be maintained. Therefore, in this

process when the selected LOD is a usage scenario it should be “Reviewed to identify if it

contains feature links” and use them in the actual documentation and updating the feature

model.

When a link is found a scenario step then the next task is to “Identify whether the link is

to an existing feature” or a new proposed feature. If the link is to an existing feature then

the engineer will “Review whether the link already existed in the feature model” or not

(i.e. between the feature in the scenario step and the feedback focus feature). If the link

already existed, then “the Feature Relation Section in the FSD will be updated” with the

feature name from the scenario step. If the link did not exist in the feature model then “the

feature model will be updated by adding the link” specified in the scenario step between

the two features, and then the affected features section will also be updated.

On the other hand, if the scenario step contained a link to a new feature that does not exist

in the feature model. Then first “a feature specification document for this new feature

will be created” and “the feature will be created in the feature model”. Then the feature

model will be updated by linking this new feature to it using the link type specified in the

scenario step. Finally, the affected features Section in the FSD will be updated with the new

added feature. The final novel updated structure for the feature specification document is

shown in Figure 46 below.

Figure 46. A New Feature Specification Document Structure (amended from Robbins 2004)

Page | 212

6.4 Threats to Validity

There are three main threats to validity in this study:

1) In this study, the participants were given the classification of feedback structures,

the deigned tool boxes that contained examples of the levels of detail usage in

feedback, along with an initial draft to the feedback acquisition and communication

method that they should follow in the maintenance phase. This could have

influenced the quality of the participants’ response especially in the area regarding

the utilization of feedback structures and their components in the acquisition and

communication process. For example, they could have follow or adopt to a large

extent the ideas, information, and process paths represented by the examples and

models. To minimize this effect, the study moderator constantly advised the

participants to think out of box and generate their own ideas. As a proof of that is

the new feedback types that evolved from the sessions, and the new paths that

evolved the initial method draft to its final version.

2) The time limit given to the participants was tight and could affect the quality of their

performance as raised by some of them. However, highly experienced engineer

participants felt comfortable with the time limit and believed that it would not cause

any harmful effect to the quality their outcome. However, in two sessions the end-

user role participants took more than the specified time to the tasks (specifically the

feedback acquisition tasks), but they and the engineer participants of these

sessions were flexible with the duration and agreed to stay longer.

3) Some of the end-user roles participants involved in the study actually had minor

experience as software engineers (fresh-graduates). This could have affected how

they involved in the process. For example, they sometimes forgot that they are

involved as end-users and started discussing the modelling parts (RE models

utilization and feature specification structure, requirements extraction process). To

minimize this effect, the study moderator kept monitoring the discussion between

the clients and the engineers, and emphasizing that each one should concentrate

on playing his role.

6.5 Summary

In this chapter the fourth and final study conducted in this research was explained. From this

study the main contributions of this research evolved. Before this study there was the

classification of feedback and its constituents that were further confirmed and evolved with

engineers. The engineer study highlighted the need for a new method of feedback

acquisition and communication that could be used during the maintenance phase to inform

their tasks and decisions. Thus an initial design was made. In this chapter, all the results

were employed in practice that resulted in: a new updated list of feedback type, a new

Page | 213

method for feedback acquisition and communication method that also caters for the

extraction and updating of requirements information. Finally, a new structure for the feature

specification documentation was constructed in this study. In the next chapter the models

designs will be explained. The models will be implemented using ontology structure.

Page | 214

7. Formalization of Feedback Structures and its Utilization

In the previous chapters, two user studies were presented; the second user study was

conducted by analysing forums that contained real users’ feedbacks on selected software

products. Concepts evolved from the forums analysis and were represented as a thematic

map that explained in details the concepts of a feedback structure. This was further

validated from engineer’s perspective. Additionally, a PD study was conducted to design

with both the end-user and engineer a feedback acquisition and communication method that

utilizes the developed feedback structures. Finally, a new engineering process was

developed for updating the new structure for feature specifications and software’s feature

models after changes that occur in the maintenance phase.

In this chapter, an ontology design that employs the reached results from the previous

studies will be developed. The concepts will be arranged in a taxonomic (subclass–

superclass) hierarchy, defining the object properties and the restrictions for each property,

and providing formal definitions (i.e. rules) for each concept that governs its usage. This is

to provide formalization for the results, to demonstrate how the feedback structures and

threads resulting from the communication are stored as instances in the ontology’s

knowledge base. Also, to support the developed theoretical concepts with the possibility for

automated reasoning through implementing a running demonstration that illustrates the

utilization of feedback structures in the updating of feature models and the new structure of

feature specification.

7.1 Introduction

Ontologies define a common vocabulary for researchers who need to share information in a

domain (Noy and McGuinness 2001). It includes machine-interpretable definitions of basic

concepts in the domain and relationships among them. Our objective is to build ontology of

feedback concepts in order to reach a common definition of the structure of feedback and

the rules and relationships that govern its use. Also, to define the structures of feature

models (that already exist in the literature), and feature specifications that was renovated in

this research to support the engineering process for feedback acquisition, communication,

and keeping requirements information up-to-date during the maintenance phase.

The reasons why it is needed to develop the ontology are (Noy and McGuinness 2001):

 To share common understanding of the concepts that constitutes the structure

of feedback. This will enable users to describe their feedback into discrete and well

defined pieces that can be understood easily and thus makes the feedback more

meaningful, useful, and manageable for further knowledge extraction. Moreover, a

well-defined structure eliminates subjectivity in interpreting users’ feedback, as one

Page | 215

analyst may interpret it in a way, while another one may expose a totally different

interpretation.

 To make domain assumptions explicit. Specifications of domain knowledge are

useful for new users who must learn what terms in the domain mean. Also, this way

they are easier to validate and change. Also, they help to join information that

normally resides isolated in several separate component descriptions, and it

provides background knowledge that allows non-experts to query from their point of

view.

 Analysing domain knowledge is possible once a declarative specification of the

terms is available. Formal analysis of terms is extremely valuable when both

attempting to reuse the ontologies and expanding them. Often the ontology of the

domain is not an objective in itself. Developing ontology is like defining a set of data

and their structure for other platforms to use. In our research the ontology will

enable the formal definition, validation and storage of formal feedback instances

that could be further queried to provide the needed inputs for the engineering

process developed to aid engineers in keeping requirements information and

models up-to-date.

 To enable reuse of domain knowledge. This is a very important advantage in

building ontologies. The ontology when filled with user feedback instances will

create a knowledge base that can be utilized for other tasks. For example,

evaluation knowledge in the knowledge base can be reused to recommend to a

user that they may try a suggestion/ solution of other users in a way similar to

collaborative filtering.

In general there is no definitive correct way for building ontologies. The ontology is a model

of reality of the world, and the concepts in the ontology must imitate this reality. After an

initial version of the ontology is designed, it can be evaluate and debugged by using it in

applications or problem-solving methods or by discussing it with experts in the field, or both.

As a result, the initial ontology will almost certainly need to be revised. This process of

iterative design will likely continue through the entire lifecycle of the ontology.

In this research, after the initial version of the ontology was developed (in the forums

analysis study) the feedback structures rules were discussed with engineers in the

interviews study. That was to validate it from their industrial perspective and their needs,

and also to gain knowledge about how it could be utilized to help them during the tasks they

perform in the maintenance phase.

This process of iterative design was continued through the entire lifecycle of the ontology

development in this research. The final version of the ontology design was reached

following the PD study where participants have validated the feedback structures and

practically used them in designing the feedback acquisition, communication, and

Page | 216

requirements’ updating. To further validate the ontology implementation, this application was

tested using instances of feedback threads that took place in the PD design sessions.

7.2 The Ontology Development Process

In the ontology development the seven step process defined in (Noy and McGuinness 2001)

will be followed. The process is summarized as follows:

1) Determine the domain and scope of the ontology

2) Consider reusing existing ontologies

3) Enumerate important terms in the ontology

4) Define the classes and the class hierarchy

5) Define the properties of classes—slots

6) Define the facets of the slots

7) Create instances

First step is to start defining the domain and scope of the ontology. To start, one way to

define the scope of the ontology is by defining a set of competency questions. These are the

questions that the knowledge base based on the ontology should be able to answer. These

questions will be used to make a judgment about whether the ontology is acceptable: Does

the ontology contain enough information to answer these types of questions? Do the

answers require a particular level of detail or representation of a particular area?

In the domain of User-Driven Feedback Modelling for Supporting Software Evolution, the

following are possible initial set of competency questions (Noy and McGuinness 2001):

1) What are the mandatory attributes of a certain feedback type?

2) What are the levels of details that can be used for each feedback type?

3) What are the methods that can be used for each level of detail when associated

with feedback types?

4) Can a verification feedback type belong in the same feedback with a feedback type:

Problem? (i.e. possible feedback types combinations in the same feedback)

5) Can a mitigation correction feedback type reference a feedback type: Problem? (i.e.

possible relationships between feedback types belonging to different feedbacks)

6) Can a feedback that includes a mitigation feedback type reference another

feedback that has type only Confirmation? (i.e. the existence of some types within

feedbacks restricts their referencing to other feedbacks)

7) What ae the feedbacks related to the same feedback thread?

8) What are the referenced features in a problem?

9) What is the existing list of unresolved problems?

10) What is the existing list of mitigation trials on an unresolved problem?

11) What are newly introduced features to the feature model?

Page | 217

12) What are newly added relations between existing features in the feature model?

13) What are the levels of detail that can be used to update a feature specification?

14) What are the newly added sections/ items in a feature specification?

Being able to provide answers to these questions validates the ontology and formalizes the

results from this research, which are: the definitions of feedback structures, the rules that

govern their usage (the levels of details and methods that could be used), the possible

referencing between feedback forming threads of communications, and finally extracting

information from stored feedback types to update the feature models and feature

specifications.

The second step is considering reusing present ontologies. It is always worth considering

what other researchers and/or practitioners have done, and checking if it can be refined and

extended for a particular domain and task. Reusing existing ontologies may be a

requirement if the system needs to interact with other applications that have already

committed to particular ontologies or controlled vocabularies. However, in this research

there was no need for that because the foundation for this research is built on the fact that

feedback are acquired and communicated in an ad-hoc manner, and therefore there does

not exist any pre-defined structures or methods to define feedback components. Also, for

the rest of the research, the outputs are based on the utilization of the newly developed

feedback structures, and therefore there was no need for further utilization of any existing

ontologies.

The ontology development process steps 3 to 6 (Noy and McGuinness 2001) are explained

in detail in section 7.3, where: the important concepts were termed and explained, the

classes and class hierarchies are defined, the object properties that link classes together

are described, and finally the rules that governs each class usage and utilizes the object

proprieties are explained.

The last step in the ontology development process which is creating the instances will be

explained in detail in section 7.4, where feedback instances for one of the PD design

sessions will be entered and validated through checking its conformance to the rules. Also

an instance for the feature models for one of the scenarios used in the PD session will be

entered in the ontology where the feature classes and object properties will be used to

define the feature model hierarchy. The feedback thread and the feature model will be

stored in the ontology knowledge base for further querying using SPARQL language to

generate the necessary information needed to update the feature model and the feature

specification.

Page | 218

7.3 The Ontology Design and Structure

In this section the design of the structure of the ontology will be explained. In the first

subsection the 8 main classes of the ontology that were derived from the forums analysis

and the participatory design studies that were conducted in this research will be described.

Then, in the second subsection the object property hierarchy will be explained, which

contains the different types of relationships between the classes in the ontology. Finally, in

the third subsection the use of each class will be explained by defining the rules that

classifies the class.

7.3.1 Class Hierarchy

Figure 47 shows the eight main classes of the ontology (Horridge, Knublauch et al. 2004).

These classes are mainly derived from the results reached from the forums’ analysis and

the participatory design studies that were conducted and explained its results in the

previous chapters (chapter 4 and 6). In this section, provides design descriptions for each

class.

Figure 47. A Collapsed View of the Ontology Class Hierarchy.

7.3.1.1 Feedback Class

The Feedback class represents the single feedback that the users provide, which can be a

start of a feedback thread representing the first problem in the thread or a response on

others’ feedbacks.

7.3.1.2 Feedback Type Class

A Feedback may contain one or more Type from the list shown in Figure 48. For example,

a user can provide a feedback that contains only a single feedback type such as a problem

that he wants to explain, or he can provide a feedback such as Mitigation Trial Failure that

consist of multiple types such as Confirmation referencing Problems and Negations

Page | 219

referencing Mitigations. The hierarchy of this class and subclasses is derived from the novel

classification of feedback types reached from the forums’ analysis explained in section

4.4.2, then validated and confirmed in the interviews study and the PD study. The final list of

feedback type’s definitions is explained in detail in section 6.3.2 and summarized in table

18. And thus their definitions will not be repeated again.

Figure 48. A Detailed View for the Feedback Types Class.

7.3.1.3 Level of Detail Class

The Level of Detail class represents the different kinds of details (i.e. feedback

components) that the user can provide about the feedback type as shown in Figure 49. This

class is divided into two subclasses of information that users provide: Context and Depth.

The user can add one or more level of detail in his feedback type in order to better provide

meaningful feedbacks. The subclasses of the context and Depth classes completely adhere

to the classification concluded from the forums analysis study explained in section 4.4.3,

and thus their definitions will not be repeated again.

However, in the PD study a new Depth type was designed with the participants named

Scenario Step. This level of detail is a smaller grain than the Scenario, which is designed to

hold each step of the scenario that the engineer provides in his Proposal, Solution, and

Mitigation Correction Feedback Types. This will support the linking of each scenario step to

the feature it utilizes whether this is an existing feature in the current specification, or a

newly added feature suggested as part of the solution. Also, this will further enable the easy

querying of these steps to get the information needed to update the feature model.

Page | 220

Figure 49. A Detailed View for the Level of Detail Subclasses

7.3.1.4 Method Class

The Method class provides the different ways of description that users can make use of

while expressing their feedbacks, which is shown in Figure 50. These methods were initially

defined as: text, snapshots, code snippets, or links. Details and explanation of the meaning

of each method and its association with feedback types could be found in section 4.4.4.

These methods were extended in the interviews study with the engineers, and the hierarchy

was extended to include the File and Questions methods as explained in sections 5.7.1.1

and 5.7.1.3. Thus, their definitions will not be repeated again.

Still, the new subclass “Feature Link” that was devised during the participatory design study

will be explained. As mentioned in the above section, a Feature link is a method used to

describe if a scenario step needs to utilize other features than the subject feature of the

feedback. Whether the link is to an existing feature in the feature model or a new proposed

feature suggested as a part of the solution. In both cases a relation type between the two

features will be specified (i.e. the subject feature of the feedback and the feature mentioned

in the step).

Figure 50. A Detailed View for the Methods Class.

The relationships between the four classes explained above can be described as: each

feedback may contain one or more feedback types, where each type can be detailed by one

or more context and/or depth categories, where each detail can be described by a method.

Page | 221

7.3.1.5 Feature Class

The Feature class, shown in Figure 51, serves two purposes. First, it is used to construct

the feature model. In order to be able to represent feature models on the ontology,

instances of the feature class must be defined, while the dependencies and cross-tree

constraints will be defined as object properties connecting the features’ instances together.

Representing the feature model in the ontology will enable the engineers to utilize the

features in their scenario descriptions, and update the feature model with newly added

features and/or relationships. Afterwards, querying these scenarios will help keep the

feature model updated.

Second, the feature class is also used to represent a feedback’s subject feature. A subject

feature is the problematic feature that the end-user reported an issue about. It is important

that the feedback is related to a specific subject feature in order to help engineers narrow

down the modification scope and accurately determine the impact of a change. Also,

engineers will be able to utilize other features in their scenario steps using feature links.

There are two subclasses in the feature class, an Implemented Feature, and a Proposed

Feature. The Implemented Feature represents features that exist in the feature model when

the problem was reported. Therefore, when linking to an Implemented feature in the

scenario step that is to emphasize or create the relationship between it and the subject

feature.

In a scenario step engineers may link to a new proposed feature that does not exist in the

feature model, because it was created as a part of the solution. This updates the feature

model by adding a new feature and a new relationship with the subject feature. This

distinction between the feature types is needed to identify how the feature model will be

updated.

Figure 51. A Detailed View for the Feature Class

7.3.1.6 Feature Specification Class

The Feature Specification Class is used to define a new structure for documenting feature

specifications that was devised from the PD Study and is shown in Figure 46. This structure

combines several new sections that the engineers will use to update the document with the

necessary feature information after each change. There are three types of sections, which

are: 1) Description, 2) Scenario, and 3) Related Features, and they will be explained in the

following section below.

Page | 222

7.3.1.7 Feature Specification Section Class

The Feature Specification Section class, shown in Figure 52, is the core component of the

Feature Specification. The section types are: 1) the description section that is used to group

levels of details that are used to describe the feature; 2) the Scenario section that is used to

group the scenario levels of details, which is used to describe the usage of the feature in

possible scenarios or tasks; 3) the Related Features section that is used to group the sub-

features that are utilized by the scenario steps through feature links. Each feature link will be

evaluated to see if the link existed or not and whether the link is to a new proposed feature

or an existing implemented feature. Accordingly, the list of related feature to the main

subject feature will be updated.

Figure 52. A Detailed View for the Feature Specification Section, and the Feature Specification

Section Item Classes.

7.3.1.8 Feature Specification Section Item Class

This class represents the component that constitutes each section in the feature

specification. Each item could include one or more levels of detail. It is the engineer’s

decision to choose the strategy he wishes to document the feature specification section

with. One way, is to create an item for each level of detail in the description section, for

example, creating an item that holds the feature’s definition, an item for illustrating the UI

exemplifications, or an item for contextual information that govern the feature’s usage.

If the feature can have different usages when used in different tasks, therefore, the engineer

will need to select the needed levels of details, for instance the feature definition, with its

associated context information to be the item.

7.3.2 Object Properties

In this subsection the design of the object property hierarchy (Horridge, Knublauch et al.

2004) of the feedback structure ontology shown in Figure 53 will be explained. The classes

alone will not provide enough information to answer the competency questions defined in

section 7.2. Besides the taxonomy, a set of object properties where designed to describe

the relation between the classes which are used to create the rules that governs the

constitution of each class. Also, they are useful joins in query processing.

Page | 223

Figure 53. A Detailed View for the Object Properties Hierarchy

Web Ontology Language (OWL) Properties represent relationships between two classes.

Properties may have a domain and a range specified. Properties link classes from the

domain to classes from the range. It is important to realize that in OWL domains and ranges

should not be viewed as constraints to be checked. They are used as `axioms' in reasoning.

In table 20 below is a summary for the domain(s) and range for each object property defined

in the ontology.

Table 20. A Summary of the Object Properties’ Domain and Range

Object Property Domain Range

affects Feedback Feature

belongsTo Feedback Type Feedback

consistsOf Feedback FeedbackType

deducedFrom FeatureRelationItem ScenarioItem

describedBy LevelOfDetail Method

describesFeature FeatureSpecification Feature

detailedBy FeedbackType LevelOfDetail

details LevelOfDetail FeedbackType

hasItem FeatureSpecificationSection FeatureSpecificationSectionItem

hasSection FeatureSpecification FeaturespecificatioSection

illustratedBy Scenario ScenarioStep

linkedTo LevelOfDetail LevelOfDetail

references FeedbackType FeedbackType

relatesToFeature Feature, FeatureLink Feature

Page | 224

refersTo FeatureSpecificationSectionItem Level of Detail

repliesTo Feedback Feedback

uses ScenarioStep FeatureLink

Below is a list of examples representing the utilization of object properties as relationships

between the domain and range classes. The examples are in the same order of the property

list in table 20.

 A Feedback affects a Feature.

 A FeedbackType belongsTo a Feedback.

 A Feedback consistsOf FeedbackType(s). [consistsOf is InverseOf belongsTo]

 A FeatureRelationItem is deducedfrom a ScenarioItem.

 A LevelOfDetail is describedBy a Method.

 A FeatureSpecification describes a Feature.

 A FeedbcakType is detailedBy a LevelOfDetail.

 A LevelOfDetail details a FeedbackType. [details is InverseOf detailedBy]

 A FeatureSpecificationSection hasItem a FeatureSpecificationSectionItem.

 A FearureSpecification hasSection a FeatureSpecificationSection.

 A Scenario is illustratedBy ScenarioStep(s).

 A LevelOfDetail is linkedTo LevelOfDetail(s).

 A Feature or FeatureLink relatesTo a Feature.

 A FeedbackType references A FeedbackType

 A FeatureSpecificationSectionItem refersTo a LevelofDetail

 A Feedback repliesTo a Feedback.

 A ScenarioStep uses a FeatureLink.

The relatesToFeature, shown in Figure 49, is the object property that is used to: 1) relate

features together to construct the feature model, or 2) relate a feature link to a feature in a

scenario step to update the feature model by adding links and/or features.

This object property has 6 sub-properties that represent the relationships and cross-tree

constraints in the feature model notation. The sub-properties have the same domain and

range as the relatesToFeature. They are defined in table 21 as follows:

Page | 225

Table 21. The “relatesToFeature” Sub-Properties List and its Correspondence to the Feature

Model Notation.

Sub-

Property

Example Correspondence to feature Model

Notation

alternates A Feature alternates Feature(s) The “Alternative (XOR)” relationship

between a parent feature and its child

features (or sub features), where one of

the sub-features must be selected.

excludes A Feature excludes Feature(s) A cross-tree constraint, where A and B

cannot be part of the same product.

extends A Feature extends Feature(s) The “Or” relationship between a parent

feature and its child features (or sub

features), where at least one of the sub-

features must be selected.

mandates A Feature mandates Feature(s) The “Mandatory” relationship between

a parent feature and its child features

(or sub features), where the child

feature is required.

options A Feature options Feature(s) The “Optional” relationship between a

parent feature and its child features (or

sub features), where the child feature is

optional.

requires A Feature requires Feature(s) A cross-tree constraint, where The

selection of A in a product implies the

selection of B.

7.3.3 Class Rules

After explaining the class and the object properties hierarchies, in this section their

utilization in defining the rules (Horridge, Knublauch et al. 2004) that govern the class usage

will be explained.

7.3.3.1 Feedback and Feedback Types’ Rules

In this subsection a demonstration for the complete list of rules for the Feedback Class and

all the Feedback Types sub-classes will be presented. Previously, in section 6.3.2 (in the

participatory design study chapter) the final rules were explained and how the updates were

derived from the participants’ usage. The final list was summarized in table 18. Therefore,

they will not be explained again in this section, only the screenshots showing the object

properties and classes utilization will be presented in Figures 54-67. The implementation of

Page | 226

these rules in the ontology design will enable the actual realization of the feedback

acquisition and communication engineering method shown in Figures 40.

Figure 54. The Rule Description for the Feedback Class

Figure 55. The Rule Description for the Topic Feedback Type

Figure 56. The Rule Description for the Addition Feedback Type

Figure 57. The Rule Description for the Problem Extension Feedback Type

Page | 227

Figure 58. The Rule Description for the Mitigation Trial Failure Feedback Type

Figure 59. The Rule Description for the Investigation Feedback Type

Figure 60. The Rule Description for the Investigation Elaboration Feedback Type

Figure 61. The Rule Description for the Feedback Elaboration Feedback Type

Page | 228

Figure 62. The Rule Description for the Mitigation (Proposal, Solution) Feedback Type

Figure 63. The Rule Description for the Problem Correction Feedback Type

Figure 64. The Rule Description for the Mitigation Correction Feedback Type

Figure 65. The Rule Description for the Confirmation Feedback Type

Page | 229

Figure 66. The Rule Description for the Negative Verification Feedback Type

Figure 67. The Rule Description for the Negation Feedback Type

7.3.3.2 Methods and Level of Details Rules

In this subsection the explanation and rules for selected subclasses of Level of Detail and

Method will be presented. A detailed process, shown in Figure 41, was designed in the

participatory design study in order to enable the engineers to provide Scenarios in their

Proposals, Solutions, or Mitigation Corrections in a systematic manner that enables them to

further maintain the feature model and feature specification updated.

The Scenario, Scenario Step, and Feature Link sub-classes were selected as they directly

affect the actual realization of the internal tasks detailed of the above mentioned process

shown in Figure 41, and explained in section 6.3.1.2. The scope in this chapter is show the

design that helped ensure the formalization of the designs reached in the previous studies.

First, the Scenario Level of Detail rule in Figure 68 ensures that the scenario is illustrated by

scenario steps. Second, each Scenario Step may or may not use some Feature Link

Method in its description as shown in Figure 69. Finally, this Feature link (if used) must

relate to some feature instance defined in the ontology knowledge base as shown in Figure

70.

Page | 230

Figure 68. The Rule Description for the Scenario Level of Detail

Figure 69. The Rule Description for the Scenario Step Level of Detail

Figure 70. The Rule Description for the Feature Link Method

7.3.3.3 Feature Specification Rules

In this section the rules for all the classes and sub-classes hierarchy of the feature

specification structure shown in Figure 46 is explained. This novel structure was developed

with the engineers in the PD study. The following rules formalize the mentioned structure by

defining each component of the feature specification, linking them together, and specifying

how they are going to be filled.

In Figure 71, the basic rule for the Feature Specification is defined that ensure that it is

linked to a specific feature (i.e. the subject feature of the feedback thread), and that it is

composed of one or more Section as needed. In Figure 72, the feature specification section

was defined as a class holding one or more item(s). The section can be a Description

Section containing one or more items as specified in Figure 73, a Scenario Section holding

one or more scenario items as specified in Figure 74, or a Feature Relation Section

including one or more Feature Relation Items as specified in Figure 75.

Figure 71. The Rule Description for the Feature Specification Class

Page | 231

Figure 72. The Rule Description for the Feature Specification Section Class

Figure 73. The Rule Description for the Feature Specification Description Section Sub-Class

Figure 74. The Rule Description for the Feature Specification Scenario Section Sub-Class

Figure 75. The Rule Description for the Feature Specification Feature Relation Section Sub-

Class

Each type of Item is connected to one or more Level of Detail that the engineers can use to

fill the feature specification sections as illustrated in Figure 72. Also, some of the feature

section items can be deduced from another item as shown and explained in Figure 76. The

set of allowed level of details was also designed with the engineers in the PD study and

summarized in table 19 and explained in detail in section 6.3.3.

Figure 77 illustrates that engineers can compose the description section from items that

refer to any type of level of detail belonging to a list of allowed feedback types as specified

in the rule. Figure 78 demonstrates that engineers can only fill the Scenario Section with

items connected to a Scenario Level of detail. Figure 79, demonstrates that the Related

Features Section will be filled with items deduced from the Scenario Items that are

connected to a Scenario Level of Detail that contains Scenario Steps Level of Detail, which

uses the Feature Link Method. This also ensures that the Related Features Section is

updated only if the Scenario Section was updated, as it links to the Scenario Item in the

Scenario Section and not directly to the Scenario Level of detail.

Page | 232

Figure 76. The Rule Description for the Feature Specification Section Item Class

Figure 77. The Rule Description for the Feature Specification Section Description Item Sub-

Class

Figure 78. The Rule Description for the Feature Specification Section Scenario Item Sub-Class

Figure 79. The Rule Description for the Feature Specification Section Feature Relation Item

Sub-Class

7.4 Explaining the Feature Specification Implementation

In this section a demonstration for the implementation of the feature specification will be

explained through a running case. In order to realize this implementation there are important

inputs that should be prepared first.

The first input is the feedback thread representing the communication between the end-user

and the engineer. This thread will consist of several feedback instances. Each feedback

consists of one or more feedback types that conform to the rues defined in the ontology.

The second input is the feature model’s features and their relations. These features are also

entered as instances and connected together using the object properties defined in the

ontology. The initial feature model that is entered represents the current implementation of

Page | 233

the software system in use that will be utilized in the Scenarios entered by the engineers in

the Mitigation or Mitigation Correction feedback types. Also, the feature model will be

updated along the maintenance phase where new feature and relations will be added.

A group of queries were designed and implemented using SPARQL Protocol and RDF

Query Language that are used to extract information from the feedback instances to update

the feature model and the feature specification structure.

7.4.1 Sample Feedback Instances

In this subsection, the feedback thread and the feedback instances that constitute the

thread will be illustrated showing their feedback types, levels of detail and methods used.

Figure 80 shows a feedback thread on the ontology, which is one the feedback threads that

resulted from the participatory design sessions. The detailed session sequence showing the

feedback types used is explained in section 6.3.1.1.1. The PD design sessions’ threads

were used as instances for the ontology design and testing, as they already conform to the

rules of feedback types, which was one of the objectives of the study. Only, distinct

samples from this thread will be shown in this section.

For simplification the sequence of the thread will be listed below:

 Feedback_1 is a Topic Definition feedback type provided by the end-user.

 Response_1_ Feedback1 is a Feedback Elaboration feedback type provided by the

end-user.

 Response_2_ Feedback1 is an Investigation feedback type provided by the

engineer to clarify some issues.

 Response_3_ Feedback1 is an Investigation Elaboration feedback type provided by

the end-user that responds to the questions in the previous investigation.

 Response_4_ Feedback1 is a Feedback Elaboration feedback type provided by the

end-user to add some requirements details to the enhancement.

 Response_5_ Feedback1 is an Investigation feedback type provided by the

engineer to clarify some issues about the added details.

 Response_6_ Feedback1 is an Investigation Elaboration feedback type provided by

the end-user that responds to the questions in the previous investigation.

 Response_7_ Feedback1 is a Proposal feedback type provided by the engineer.

 Response_8_ Feedback1 is a Confirmation feedback type provided by the end-user

to accept the proposal.

Page | 234

Figure 80. An illustration of a feedback thread on the ontology.

The end-user started the feedback thread by providing a Topic feedback. As shown in

Figure 81, the Topic was described using the explanation and task context levels of detail,

which are the mandatory components for providing this feedback type. Thus, this is a valid

feedback, as it conforms to the rule defined by the ontology. Also, the end-user added an

extra level of detail, which is personal context.

The feedback content descriptions are stored in each of these levels of detail so by clicking

them, the engineer can view back the feedback content. Also, this will be explained in

section 7.4.3 where the query results will be presented.

Figure 81. The Topic Feedback Type Used In Feedback_1 Showing the Levels of Detail Used In

Its Definition.

Figure 82 shows Response_5 to Feedback_1 which was an Investigation feedback type

reported by the engineer to clarify some issues in the elaborations provided by the end-user.

The engineer asked two questions about the feature definition level of detail.

Figure 82. The Investigation Feedback Type Used in Response_5 to Feedback_1 Showing the

Levels of Detail Used in Its Definition.

It is shown in Figure 83 that the end-user responded in the investigation elaboration with two

feature definition levels of detail. This is because the rule for investigation elaboration

restricts the end-users to provide answers that have the same type of level of detail

Page | 235

specified by the engineer in his investigation (i.e. question). This ensures that the end-user

provides more specific and relevant answers.

Note: There is a naming convention for the instances for tracing purposes.

Figure 83. The Investigation Elaboration Feedback Type Used In Response_6 to Feedback_1

Showing the Levels Of Detail Used In Its Definition.

To further demonstrate how each answer is linked to one of the questions in the

investigation. Figure 84 shows that the end-user provided an answer

Feature_Defintition_4_Investigation_Elaboration_2, which the first response in the

investigation elaboration in Figure 83, and linked it to Feature_Definition_2_Investigation_2,

which is one of the investigation questions in Figure 82, and described it using textual

method.

Figure 84. Investigation Elaborations Answer Showing its Link to a Specific Question in the

Investigation.

Figure 85, illustrates the proposal that engineer provided after gathering all the necessary

information needed to reach an initial plan and a solution design. The proposal was detailed

using: 1) an exemplification that is described using a snapshot containing the UI updates;

and 2) the engineer provided a scenario with the steps that the user should follow in order to

use the new feature scenario. Figure 86 shows the scenario steps that illustrate the scenario

provided in the proposal.

Figure 85. A Proposal Feedback Type and the Levels Of Detail Used to Describe it.

Page | 236

Figure 86. The Scenario Steps Level of Detail Used to Illustrate the Scenario Used in the

Proposal Feedback Type.

Figure 87 show that scenario step 1 is described by two methods: textual description, and

uses a feature in the description. Clicking on the utilized feature in the scenario step

demonstrates how the feature link method is used to link the subject feature with a new

proposed feature, and specifies the parental relationship between them as Optional as

shown in Figure 88.

Figure 87. The Methods Used To Describe The Scenario Step and its Link to Another Feature.

Figure 88. The Relation Used In the Feature Link Method to Link to an Existing Feature in The

Feature Model.

7.4.2 A Feature Model Instance

In this subsection the construction of the feature model will be demonstrated. Feature

models are constructed using the feature class and the object property relateToFeature

along with its sub-property list. First time the feature model is created all the features used

will be instances of the sub-class Implemented Feature. During the maintenance phase any

new feature added will be an instance of the sub-class Proposed Feature.

Figure 31 shown in section 6.2.2.2 demonstrates the feature model for the courses class

used in the PD design session immersion scenarios. The feature model was designed in

order to illustrate the implemented features hierarchy to the engineers to help them in the

impact analysis task, and to design with them how the feature model could be updated after

the requested enhancement.

Figure 89, illustrates the instance for the feature model in Figure 31. It shows that the

Courses module has several sub-modules, where the relationship between the Courses and

its sub-modules is a mandatory relationship. Therefore, the mandates object property was

Page | 237

used. Moreover, Figure 90 shows the “Adding new Course” sub-module and its related

features, where “Bulk Course Creation” and “Course Template” are optional features, and

“Define New Course” is a mandatory feature. Finally, Figure 91 illustrates the graph

representation of the features’ instances, showing distinct colouring for the different object

properties used (brown links for the mandates relation, and yellow links for the optional

relation).

Figure 89. The Course’s Module Feature Model Instance

Figure 90. The Feature Model Instance for "Adding New Course" feature and its Sub-features.

Page | 238

Figure 91. A Graph Representation of the Features’ Instances

7.4.3 SPARQL Queries for Extracting Information

After enhancements or bug fixes that are reported by end-users during the maintenance

phase, the feature specification is likely to be updated. It was one of the main purposes of

the PD study to design with the engineers the structure of the feature specification

documentation, and design the guidelines for extracting the necessary information that will

be used in the update process. As discussed with them that the effort spent in the

documentation could be waived by an automated process that was designed with them and

explained in section 6.3.3. This process utilizes the structured feedback thread that took

place during the communication between end-users and engineers to extract the necessary

information needed to update the feature specification. In this section the queries designed

to extract the needed information to fill up the feature specification with updates are

explained.

The queries conform to the design of the allowed feedback types and levels of detail to fill

the FSD sections, which was set with the participants in the PD study, and summarized in

table 19. Figure 92, shows the implemented query used to extract the information for the

Description Section. Description Sections can be filled with any type of level of detail except

concise or scenario. The feedback thread instances that were queried contained a Topic

Definition, 2 Feedback Elaborations, and 2 Investigation Elaborations. All their content was

extracted to be added in the description section by the engineer as shown in Figure 93.

For the Investigation elaborations in the query results on rows 4 and 5, the question asked

by the engineer was also added beside them, which was shown separately in Figure 94

(due to spacing reasons). Questions should not be included in the description section.

However, this will help the engineer re-phrase the requirements in a more meaningful way.

For example, the Investigation elaboration row appears as “I’d rather have it available all the

Page | 239

time”. However, by displaying the question for the engineer, he will be able to rephrase it to

“Clone setting option will be enabled and available to the users all the time, and not only the

first time have they created the course”

Figure 92. A SPARQL Query for Extracting Description Section Items

Figure 93. The Query Results for the Description Section Items

Figure 94. The Investigations of the Elaborations available in the Query Results

Figure 95 shows the implemented query used to extract the information for the Scenario

Section. Scenario Sections can be filled with scenario levels of detail only, where each

scenario contains several scenario steps. The feedback thread instances that were queried

contained a Proposal feedback type that was detailed by a scenario level of detail that was

explained in 4 scenario steps. All their content was extracted to be added in the scenario

section by the engineer as shown in Figure 96.

Page | 240

Figure 95. A SPARQL Query for extracting Scenario Section Items

Figure 96. The Query Results for the Scenario Section Items

Finally Figure 97 shows the implemented query used to extract the information for the

Feature relation section. Feature relation Sections can be filled with features deduced from

feature links used in the scenario steps that are included in the scenario item. The feedback

thread instances that were queried contained a Proposal feedback type that was detailed by

a scenario level of detail that was explained in 4 scenario steps. Step 1 used an existing

implemented feature, while step 2 used a new feature that was proposed as part of the

solution. The feature names were extracted to be added in the feature relation section by

the engineer as shown in Figure 98. Also, by the query results the engineer could update

the feature model by adding the new proposed feature with its relation.

Figure 97. A SPARQL Query for Extracting the Feature Relation Section Items

Page | 241

Figure 98. The Query Results for the Feature Relation Section Items

Figure 99 represents a sample filled in feature specification. The sections filled are:

Description, Scenario, and Feature Relation. The query results could be directly used as the

section’s item or could be edited to be more useful or meaningful. For example in the FSD

below the engineer edited the Investigation Elaboration to be more meaningful than the

direct answers that were provided by the query.

Figure 99. A Sample FSD Filled with the Feedback Instances Obtained from the Query Results

(amended from Robbins 2004).

7.5 Ontology Validation

One of the key stages of the ontology authoring process is the implementation of the

appropriate specifications to guarantee that the ontology structure and design adheres to a

set of common best practices. Reasoners are useful for automatic checking of the logical

consistency of ontologies, by performing operations such as equivalence and instantiation

checking, but assume that the ontology has been properly structured in the first place in

order to produce valid results.

During the ontology authoring process, a set of conditions should be applied to assure

process validity. These conditions are used to check the degree of completeness of

Page | 242

achievement of the following criteria: concept and property hierarchy, documentation and

visualization, definition of ranges for property values, disjointness restrictions and

adherence to naming conventions.

7.5.1 Internal validity (validity of relations/structure)

This type addresses the quality of the inner structure of a model or a theory (Kehagias,

Papadimitriou et al. 2008). For example, how accurate are the interrelationships between

variables? One way to ensure internal validity of the ontology is the use of reasoners. In this

research HermiT (Shearer, Motik et al. 2008), which is a reasoner for ontologies written

using the Web Ontology Language (OWL) was used. HermiT provides a command-line

interface for common reasoning tasks, including classification and query answering. HermiT

is a reasoner that fully supports the OWL 2 standard: it supports all of the datatypes

specified in the standard, and it correctly reasons about properties as well as about classes.

Although not always the fastest, HermiT exhibits relatively robust performance in the

ontology testing, and as shown in the results, it never failed to classify the feedback type

instances, or to extract the complete information needed to create the feature specification.

Internal validation takes part as a parallel task performed along with the structuring and

enhancements that are made to the ontology. In this research, the feedback types and

feature specification, along with selected levels of detail and methods were implemented

and the reasoner could infer them properly. Object properties were added to add further

controlling on the usage of feedback types, creating and maintaining the feature models,

and in providing more accurate query result to create updated versions of feature

specifications.

A validation case was performed for the ontology that was described in details in section

7.4. A sample feedback thread that took place during one of the PD design sessions was

used to create instances of structured feedback. This is because there are no data sets that

could be used for such purpose, as this is a novel structuring method that hasn’t been used

yet. Also, it was one of the PD study purposes to practically test whether the classification

and rules are useful enough for both end-users and engineers to provide meaningful

feedback without hindering their experience, which was positively appraised during the

study. The feedback components and content conformed accurately to the ontology rules

and thus were successfully validated and stored in the ontology knowledge base as

explained in section 7.4.1.

Furthermore, instances of feature models were created. These models were also developed

and used in the PD sessions by the engineers for impact analysis tasks, and to study how

they could be maintained along the evolution process. The instances were created using the

feature class and detailed object property list developed to link the features together

http://www.w3.org/TR/owl2-overview/

Page | 243

according to the feature model notation. This also validated the use of the object properties

developed for linking purposes and helped in building visual feature models on the ontology.

Finally, the essential step for validating the ontology structure and usage was to show that

the stored instances in the ontology knowledge base are sufficient to produce adequate

query results that could be used to maintain the feature specification structure, which was

explained and shown in details in section 7.4.3.

7.5.2 External validity (scope of applicability)

External validity is related to generalization (El-Diraby 2014). How general is the model?

What limitations are applicable to the model? Under which conditions, can the proposed

model be applied reliably. Typically, statistical methods are used to test the applicability of a

model to its claimed domains. Several techniques are used to ensure external validity of the

developed ontologies. Academic peer review and interviews are common methods for

confirming external validity.

In our research, building the ontology is not itself a goal. Instead it acts as the rule engine

component, which is part of accomplishing a higher level aim of designing an acquisition

method for utilizing structured user feedbacks that could be used to keep requirements’

information up-to-date during maintenance phase. One way to formalize the guidelines that

govern the feedback types, feature models and feature specifications was defining them

using ontology. This adds further advantages to how well it handles the extendibility of its

domain and scope, and it becomes clearer if there are adjustments needed in ontology and

what are they. Therefore, the need to separately validate the ontology was waived, because

mainly it is being used in a very specific and narrow domain. Still, performing validations

using reasoners and competency questions was made to ensure the scope of the ontology

was met.

However, at the final stage of this research the PD study, conducted and explained in

chapter 6, reported how well the acquisition method handles the structuring and storage of

user feedbacks and designed the guidelines for utilizing them in requirements’

documentation. Thus, providing an ontology design that strictly adheres to the study results

and design rubrics provides a validation on how well the ontology performs its intended

tasks.

7.6 A Tool Mock-up for Updating Requirements Information

In this section a tool mock-up for aiding engineers in updating the feature models and the

feature specification structure is demonstrated and explained.

Page | 244

This tool mock-up was developed to help in visualizing how a real software system that

utilize the developed method would look like, and move it from just concepts to reality where

it could be benefited from.

The final phase in the feedback acquisition and communication method is the sub process

for updating feature model and feature specification with information extracted from the

communication thread. This is the ultimate utilization of feedback in this thesis work. This

mock-up uses the same example feedback thread that was used as a feedback instance in

the ontology.

Figure 100. A Mock-Up Screen for Extracting the Feature Specification’s Description Section

The first screen in Figure 100 above is a mock-up screen designed to help engineers extract

the needed information to update the description section. On the header of the screen

appear the step name, which is “Adding a description-Step 1”, and the topic feature of the

feedback thread.

The engineer then specifies the specific customer request (i.e. feedback thread) from which

he wants to extract information from. The button beside the feedback thread is designed to

enable the engineer to view the whole feedback thread when needed.

Next the engineer specifies which section in the feature specification he intends to update.

In this screen he intends to update the description section. The button beside the

description section allows the engineer to view the existing description (if any). This is to

decide whether the new information he intends to extract are contradicting to what exists,

overrides them, or adds to them.

Page | 245

Then a list of all eligible levels of detail that could be used to update the description section

that occurred in the selected feedback thread are displayed. This is to enable the engineer

to select one or more items to form the new description.

Figure 101. A Mock-Up Screen for Updating and Previewing the Feature Specification’s
Description Section

When the engineer clicks on the bottom “Next” button in the screen in Figure 100, the

system navigates to the next step in the description addition process, which is the actual

updating and/or previewing the updates, this next step in demonstrated above in Figure 101.

In that Figure, on the header of the screen appear the step name, which is “Adding a

description-Step 2”, and the topic feature of the feedback thread. Next, the selected levels of

detail from the previous step are displayed. Then, the engineer is given the capability to

update them as they are or edit and summarize them (while preserving the link to the actual

thread and selected levels of detail).

The buttons in the bottom of the screen enables the engineer to go the previous step to re-

select the needed items, to preview the final updates for the description section, to perform

the actual updating in the specification and proceed to the next step, or to cancel.

Page | 246

Figure 102. A Mock-Up Screen for Extracting the Feature Specification’s Scenario Section

Figure 102 above shows a mock-up screen designed to help engineers extract the needed

information to update the scenario section in the feature specification. On the header of the

screen appear the step name, which is “Adding a Scenario”, and the topic feature of the

feedback thread.

Same way as in the description section the engineer is required to specify the feedback

thread he wishes to extract from and selects that he wants to update the scenario section.

Automatically, the tool is designed to extract the scenario from the solution in the thread with

all the steps listed as shown. If a step in the scenario utilizes certain features then they are

displayed beside the step they relate to as shown in Figure 101 in steps 1 and 2.

In the bottom list of buttons the engineer can either choose to preview the scenario before

updating the section, directly updating the scenario section, or cancel.

Page | 247

Figure 103. A Mock-Up Screen for Previewing the Feature Specification’s Scenario and Related
Features Section

Finally, Figure 103 shows the outcome if the engineer choses to preview the feature

specification scenario section, the available scenarios will be previewed in tabs with the

latest addition in the first tab. Several scenarios may exist for a single feature, as a feature

can be used in several contexts differently.

Furthermore, the list of utilized features in the selected scenario occurs in the related feature

section. In this list the feature name along with the step number in the scenario it is used in,

and the type of relationship that connects it to the main topic feature of the thread.

Finally, the icons on the left of the feature names specify the type of feature. For example,

the first feature used in step 1 is an existing feature in the feature model with a mandatory

parent child relation with the topic feature. In step 2 the plus icon is used to indicate that this

is a new proposed feature which should be added to the feature model with an optional

parent child relation with the topic feature. This update could be managed automatically,

since all the necessary information is encapsulated in this step.

7.7 A Framework for Runtime Communication and Requirements

Updating

In this section a framework that illustrates how the processes, methods, and models

developed in this research are employed to achieve the research goals is explained and

illustrated in figure 104.

Page | 248

Figure 104. A Sociotechnical Framework for Runtime Communication and Requirements
Updating

The framework is explained in the following list:

Roles Involved:

 End-user: is involved in this framework to provide feedback about the system’s

quality or change requests.

 Engineer: resolves any software quality issues or change requests. Also, the

engineer utilizes the information gathered in this communication in updating

requirements.

Main Tasks: summarize the main goals that this thesis work focuses on.

 Runtime Communication: the main task that both end-users and engineers

collaborate together in is the runtime communication task. Both roles communicate

through feedback to form feedback threads of communication that could be further

utilized.

 Requirements Updating: One main task that engineers have to perform by the

end of their communication with end-users is keep requirements information up-to-

date.

Page | 249

Workflows: These workflows are the process that was developed in this research shown in

Figure 40 in section 6.3.1.2. This process integrates three main workflows together to

achieve the main tasks, which are:

1) Communication Workflow: these are the steps in the process concerned with the

interaction between end-users and engineers through obtaining their feedback.

From the process in Figure 39 examples are: “Add a New Problem (Topic

Definition)”, and “Add New Information to the Problem (feedback Elaboration)”.

2) Evolution Workflow: these are the steps in the process concerned with the change

identification and evolution tasks. These are well-known tasks were adopted from

the existing processes in the literature as explained in section 2.7.1. From the

process in Figure 40 examples are: “Identify the Problem” and “Analyse the

Problem”.

3) Requirements Documentation Workflow: this is the final step in the developed

process that is responsible for documenting the updates that occurred along the

communication thread. From the process in Figure 40 the sub process name is:

“Update the feature model and feature specification document”. It was modelled as

a sub process because in order to achieve it, there are other internal processes and

decisions that have to be made. Figure 45 in section 6.3.3 shows the internal flow of

the update sub process.

The tasks are numbered in chronological order, where the communication initiates the

collaboration at runtime between the engineers and the end-users. This is followed by the

engineers performing the evolution process tasks. This is repeated until the evolution

process ends with a confirmation from the end-user. After that the requirements

documentation takes place.

Methods: this summarizes the tools that were developed and utilized in this research for the

above name workflows:

 Acquisition method: as mentioned in the communication workflow that the

interaction between the two roles is achieved through obtaining their feedback.

Feedback acquisition is a method that employs the set of feedback types that were

developed at earlier stages of this research. Each feedback type has a meaning

that serves a certain purpose in the communication. Also, each feedback type has a

set of constituents that ensure that minimum useful information is provided. More

elements can be used to provide extra information if needed.

The acquisition method uses the feedback and feature models structure and rules

defined in the ontology to constitute the feedback templates that are used during the

communication workflow to acquire structured feedback.

Page | 250

 Extraction method: In order to support the requirements documentation workflow a

set of rules for extracting information were developed to ensure that adequate levels

of detail are extracted from the qualified list of feedback types as summarized in

table 19 in section 6.3.3. Accordingly, a set of queries were developed for extracting

these levels of detail for each section (description, scenario, and related features) of

the novel structure of the feature specification document. Also, the extracted

information for the related feature section is used to update the feature model by

adding features and/or relationships.

Models: Ontology design was used to build the entities (classes of concepts), relationships

between them (object properties), and the rules that govern their usage. The ontology rules

helped in validating the feedback instances and facilitated the queries’ construction.

 Feedback Model: defines the classification of feedback types, their levels of

details, and the methods used to describe them.

 Feature Model: a basic representation of a feature (implemented or proposed) to

differentiate between existing features, and new ones introduced in change

requests. Also a set of object properties, extracted from existing literature of feature

model notation, were defined to relate features together to constitute feature

models.

 Feature Specification: the novel representation of feature specification structure

that defines the description, scenario, and related features sections and the items

used to fill them.

7.8 Summary

In this chapter three model designs were implemented using ontology structures and rule.

The three models are: the feedback model that represented the final classification of

feedback types and their constituents, the feature model for representing the existing

software features, and the feature specification model that represents the new structure for

documenting features. Furthermore, a case study was introduced to validate the

implementation and show its usage. A sample thread of structured feedback was used as

an instance, validated and stored in the ontology knowledgebase. In addition to that a

sample feature model for existing features of the entered feedback thread was constructed

and stored in the ontology. Both were utilized and queried using SPARQL to obtain the

necessary information to update both the feature model and feature specification

documentation. To further visualize how an application for engineers could help realize the

developed concepts, mock-ups were designed to provide a walkthrough the process.

In the next chapter the contributions of this research are explained and the conclusions

showing the benefits of this work to practitioners and summarizing the research outcomes in

Page | 251

the form of a framework for runtime communication and requirements updating. Finally,

possible extensions to this research are explained.

Page | 252

8. Contributions, Conclusions, and Future Work

To conclude this thesis, this chapter presents the thesis contributions to knowledge,

concludes the thesis, and discusses possible future work.

8.1 Contributions of this Research

This thesis contributes to knowledge as discussed in this section.

Contribution 1 – Identification of the key concepts and challenges for acquiring

crowdsourced software evaluation:

In the first study of this research the potential of crowdsourcing for software evaluation was

advocated. This was the first exploratory study in this research and the aim was to examine

with actual users their needs and expectations on the activity of acquiring evaluation

feedback from the crowd. The collective end-users’ judgements can enrich and keep the

timeliness of the developers’ knowledge about software evaluation via their iterative

feedback. Although this seems promising, crowdsourcing evaluation introduces a new range

of challenges mainly on how to organize the crowd and provide the right platforms to obtain

and process their input.

This work introduced a set of concepts needed for the correct design of acquisition methods

of evaluation feedback. At the same time, the identified concepts (features) make its correct

implementation challenging. Thus, among the various challenges, those informed by the

focus group results and related to obtaining users evaluation feedback were identified and

discussed. This helped in enriching the area of crowdsourcing evaluation by discovering

new dimensions that could help move the field forward and provided design elements for

developing new approaches and platforms for acquiring crowdsourced feedback.

Contribution 2 – Defining the feedback concept, its constituents and the rules that

govern their usage in the business software maintenance domain:

It was concluded from the existing literature, that the definition of feedback lacks the

characterization of its details and behaviour. This hinders the ability of researchers in

utilizing it to develop more formal and systematic techniques for feedback acquisition, which

in turn affects many areas and disciplines such as requirements analysis and extraction,

requirements documentation, software evaluation, maintenance and evolution, and many

others.

This research contributed to the body of knowledge by defining: 1) what is a feedback, 2)

developing a classification of different feedback types that could be used by both end-users

and engineers in their communication during maintenance, 3) defining the set of elements

Page | 253

that constitute the mandatory information for each feedback type and that can also be

utilized to further enrich the definition of any feedback to ensure it provides useful and

meaningful information; 4) finally defining the set of rules that govern the feedback usage

and linking to other feedback types to form threads of communication.

Contribution 3 – Identifying the role of feedback in accomplishing evolution tasks,

and identifying the engineers’ needs and challenges

In this research a study was designed to capture the engineers’ perspective of the role of

feedback in accomplishing evolution tasks. This study captured a group of concepts

regarding the missing information that directly affects the evolution task accomplishment

and decision making, and another group of concepts was captured regarding the problems

that result from these types of missing information and miscommunication in the

maintenance phase.

In this research this study helped deriving the rest of the research outcomes. It confirmed

the effectiveness of the developed feedback structures from the engineers’ perspective. It

highlighted the need for a communication means aligned with the main tasks the engineers

perform in the evolution process. It stressed on the essence and need for updated

requirements information, and captured its effect on all the change management and

evolution tasks.

More results could be obtained from this study that could help develop an enhanced

framework for utilizing feedback. For example, thematic associations could be captured from

analysing the relations between the sets of concepts: problems and missing information, to

form patterns of recurring situations. These situations could guide engineers in the

maintenance phase by providing historical information and lessons that could improve their

decisions (discussed in section 8.3).

Contribution 4 – Developing a new formal systematic method for feedback

acquisition and communication

Based on the classification of feedback types, its constituents and rules that were developed

early in this research, a formal and systematic feedback acquisition method was developed.

This method is formalized through the use of ontology for feedback structuring, validation

and storage. Furthermore, it provides systematic means to capture and communicate the

feedback while performing the normal evolution tasks. Aligning this new process to the well-

established evolution process adds on to its usefulness as it helps inform each task in the

evolution process which leads engineers to produce accurate results, and help users take

more active role in the process.

Page | 254

Moreover, this process employs the use of RE models specifically feature models, which

has several benefits: 1) enables the automatic retrieving of feature naming, types and

relationships to inform tasks such as impact analysis, 2) linking the acquired feedback to

features helps engineers to correctly identify the modification scope, and help keep

requirements information updated depending on the type of change communicated in the

thread.

Contribution 5 – Developing a new systematic method for extracting requirements

information for updating the feature model and specification:

The novel feedback acquisition and communication method that was developed in this

research also ensures that when engineers provide their solution it is well linked to features

in the feature model, and specifying whether the features employed in their solution already

exist or newly proposed. This ensures that RE models’ updates are captured during the

communication process.

Furthermore, the final phase of the communication process “Update the feature model and

feature specification” reassures the importance of keeping the requirements up-to-date for

future changes. A detailed systematic process was developed to guide engineers through

the requirements extraction and updating. This process gathers the information from the

feedback thread acquired during the communication, enables the engineer to filter or

summarize it, and automatically updates the feature specification document.

Moreover, a new structure was developed for feature specification to ensure minimum

amount of useful information that could benefit the end-users in understanding and using

the system, and at the same type help engineers in their identification and analysis of future

changes.

Contribution 6 – Implementing a formal method for validating, storing, and utilizing

feedback and creating tool prototypes:

The ontology design developed in this research provided explicit formal specifications of the

concepts in the domain of feedback definition, its utilization, and relations among them. This

contributed to the research community and software engineers by sharing a common

understanding of this novel feedback classification. This will enable its reuse, modification,

and extendibility to include further related concepts and refinements to enrich its usage.

Furthermore, two types of mock-ups were developed in this research. The first one was for

obtaining feedback and utilizing the feedback elements in the acquisition process to provide

useful and meaningful information. This mock-up tool also showed how feedbacks can be

linked to the business process and features of the system. Toolboxes were also designed to

guide the users and help them in the task. By creating a mock-up, it was possible to sit

Page | 255

down with an imitation of a real version of the product and determine which aspects are

worthwhile and which parts need to be revised or discarded. In this process, it was possible

to find noticeable gaps that, on paper, weren’t noticeable. Additionally, creating a mock-up

allowed the research team to evaluate the idea and test its actual usage.

The second mock-up was designed to further benefit from the ontology implementation

results, which entail the utilization of stored feedback instances to update feature models

and the new structure of feature specification. Just like it is much easier to see if there are

problems with a design by having a mock-up, it also helps to present new ideas or concepts

to potential researchers’ community when they have a mock-up to visualize its interface and

usage. Without mock-ups, the research outcomes are only concepts, which can make it

difficult to get potential researchers or even the industry to commit to the adoption of the

results.

Contribution 7 – Developing a sociotechnical framework for runtime communication

and requirements updating:

A final contribution to the literature is reinforcing the research outcomes with a

sociotechnical framework for runtime communication and requirements updating illustrated

in Figure 104. This engineering framework provides a standard way for both end-users and

engineers to communicate using feedback and benefit from this communication in

requirements documentation updating. This framework shows the basic components and

the relationships between them. It incorporates end-users and engineers, their goals, the

new developed workflows, the methods, and the ontology models used to store, retrieve,

and reuse information. Also, it provides a view of their order, and the dependencies between

them. Finally, it shows the new artefacts that were developed in this thesis, which are the

feedback templates and the feature specification documentation, their constitution and

usage.

8.2 Conclusion and Benefits

This research was motivated by the need for developing a new formal systematic acquisition

and communication method due to the lack of such an approach. Having a formal definition

for feedback structures, their constituents, and the rules that govern their use positively

improve the feedback quality, which consequently affects the communication between end-

users and engineers and the success of the software evolution. Also, the systematic way for

acquiring and communicating feedback enabled the development of systematic means for

keeping requirements information up-to-date during the maintenance phase. To reach the

aim of this thesis, several studies and software engineering processes and paradigms were

conducted/ used to collectively help reaching this aim, and answer the research questions.

There are several benefits to the concepts adopted in this research that is:

Page | 256

 Evaluation in real context, i.e. evaluating software when users are using it in

practice and out of labs.

 Access to a wider and diverse set of users and contexts of use that were

unpredictable by analysts. This approach allows users to act as the actual validators

of the system and give feedback regarding each alternative, enhancing the overall

quality of the system functionality and behaviour. For example, in using cloud

computing services it cannot be certain how users belonging to different

organizations, cultures, expertise, etc. will perceive the software and there is no way

to predict all that variety in the sample of users that would be used in a traditional

usability study.

 Validating highly-variable software, potentially with reduced cost and minimized

time. Iteratively obtaining and processing feedback to support evaluation helps to

accelerate the evolution process. This is particularly true for highly variable systems

with a large number of alternatives. Such validation was done by the designer at the

usability testing, and user centred design. A large number of users were required to

evaluate the entire alternatives. This approach was very expensive, time

consuming, and hardly manageable. Things become even worse when the user

business and IT worlds change so that a re-validation has to be done.

 Informs the software evolution process, e.g. by introducing a more formalized

structure for feedback that enables its systematic usage to provide useful and

meaningful information. Augmenting the evolution process with a communication

workflow to systematically collect information needed to accurately accomplish the

evolution tasks.

 Maintaining the requirements information up-to-date. That is by utilizing

feedback threads to extract new/updated requirements that could accurately help

both end-users and engineers each on his side. Thus, evolving the system in a

more systematic and accurate manner to better meet the users’ needs and

expectations.

8.3 Future Work

This thesis’s future work is discussed in this section.

1) Additional RE models utilization

In the participatory design study that was conducted, the use of Business process models

was introduced to the participants. The purpose was to try to link the feedback to features

and to narrow down the feature selection according to the business process the end-user

was working on when the problem occurred. However, this was practically waived in the

design sessions by all participants, as the used fictional scenarios were all designed to

result in technical enhancements for a specific feature. As a future work, the benefits of this

Page | 257

model could be further evaluated by designing scenarios that should result in process

enhancement, which cross-cut different business modules.

Also, in this research feature models were used to link feedback to a certain feature.

However, a further level of detail could be added by employing goals models as well. Goal

models could help engineers in prioritizing the problems according to goals; also it could

help the managers in marketing new change requests based upon their knowledge with the

customer’s goals, and evolution patterns.

2) Extracting and modelling problem patterns

The interviews’ study with engineers that was conducted in this research could be further

analysed to extract additional information that could help expand and enrich the research

outcomes. The purpose of the analysis will be to extract most frequent problems that

engineers encounter and relate them to the type(s) of missing information that causes them

to form pattern of frequent situations.

A Problem Register model could be developed. This register will contain details about the

frequent problems that engineers encounter during the change management process. The

interviews study that was conducted indeed does not capture every single problem that

occurs during the software maintenance; Therefore, engineers will be given the capability to

enter new problems and categorize them in the problem register under the suitable phase

they were working on (i.e. problems are categorized by the phase they occur in). This is to

provide flexibility and extensibility to the model.

During the investigations the engineers will be asked to link the type of missing information

they are investigating to specific problem that resulted due to lack of this information. Both

the types of missing information and the problems will be stored in the problem register.

This will form a pattern of linked problems that were encountered during a certain phase in

the change management process that can be used in the future to prevent similar cases and

increase engineers’ awareness of potential risks.

3) Extracting and developing history models

A History model carries information about both feedback history and feature change

history. Both types of historical information can be derived from the formal threads of

feedback types stored in the ontology knowledge base.

An issue tracking systems could be integrated with the feedback history model to further

enhance its capabilities. An Issue log is a documentation element that contains a list of

ongoing and closed issues of the project that is stored through issue tracking systems. For

each issue the list of information that was gathered by engineers at different phases of

software change process, which led to better understanding of the issue on hand will be

https://en.wikipedia.org/wiki/Issue_(computers)#Issue

Page | 258

also retrieved and recorded. This information combined together can feed the recommender

system with valuable inputs.

Finally, the feature change log is a subset of the feedback information history but with the

focus on feature changes requested by customers. Customers may report invalid problems,

help requests, bug fixes, enhancements or new features. It is important to keep complete

documentations of feature changes or new features in order to update the requirements

documentation for future usage. The feature change log carries the combined information to

serve that purpose.

4) Recommender Systems Utilization

From the interviews’ study that was conducted, information was gathered regarding

evidence about the types of missing information that hinders the engineers’ capabilities in

accurately performing their tasks, and their ability to deliver proper outputs in a timely

manner. This led to lots of misused efforts in performing repeated tasks and investigations.

In this research it has been argued that recommender systems can play an important role in

reusing the existing information in reducing the human interventions and effort. Example of

cases the can aid both customers and engineers are provided below and will be explored in

the next participatory study.

Solution Reusability: When the user enters a problem, the problem could compare with

other stored problems in the knowledge base using: Feedback Type, Specified Feature,

Business Process, Activity in the Business Process, Problematic Step. The knowledge base

is analysed and relevant cases are retrieved and displayed to the user using the analysis

and query method in the framework. If the user identifies a similar problem and it has a

verified solution then the system helped him in resolving the issue.

Problem’s Prioritization: If the user identified a similar problem with no solution (i.e. an

ongoing issue) then he could be asked to vote that he has a similar problem to increase the

problem’s priority. If the customer did not vote then the retrieved cases with the new

problem could be then displayed to the software engineer whom by turn will vote it as similar

to increase its priority. Also, if the user found a similar problem with its solution and did not

try it then the developer can return it as a duplicate and suggests that the user tries it.

Missing Information Investigation: When a new problem is entered by the customer, the

analysis and query tools could be utilized to start searching the History model (discussed in

the previous point) to obtain previously entered relevant cases that were investigated and

successfully resolved. After retrieving the relevant cases containing: the issue, information

gathered when investigating that issue, and the resolution status, the recommender system

starts to detect similarity between the new entered problem, and the issues in the History

model. When similarity is detected the recommender system starts advising the software

Page | 259

engineer with the types of missing information that he should collect and he decides

whether they are relevant to the new problem or not. This increases the engineer’s

awareness of problems that may occur.

Risk Assessment: Also once the engineer starts the change identification phase and asked

an investigation related to a certain type of missing information and a specific type of

problem from the problem register, this triggers a possible problem pattern to be retrieved.

Therefore, the engineer and other team members working on the issue could be notified

with the potential risks that they may encounter during the analysis, and planning.

5) Integrating with Strategies and Design Principles of Digital Motivation

In this thesis work, end-users play an important role as collaborators within the workflow of

the feedback acquisition and communication method. Their input directly affects the

accuracy of resolving change requests, and informs the software engineers’ evolution tasks

and decisions. Thus, it is important to keep the end-users motivated to play their roles and

accomplish the tasks allocated to them and enhance their efficiency and experience during

their involvement. This could be achieved via software, which incentivizes end-users to

perform their tasks more accurately through designing rewarding systems (Shahri, Hosseini

et al. 2014). Future research entails examination of aspects and concerns of digital

motivation (Shahri, Hosseini et al. 2016), and exploring its integration with the acquisition

and communication method to encourage end-users to provide useful and meaningful

information, commit to their tasks and to be keen to an active involvement in a timely

manner. This could help improve the time taken to resolve issues and change requests, and

the customer satisfaction.

Page | 260

9. References

 Adikari, S. and C. McDonald (2006). User and Usability Modeling for HCI/HMI: A Research

Design. International Conference on Information and Automation, ICIA 2006.

Adomavicius, G. and A. Tuzhilin (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on

Knowledge and Data Engineering, 17(6): 734-749.

Akiki, P., A. Bandara and Y. Yu (2013). Crowdsourcing user interface adaptations for

minimizing the bloat in enterprise applications. Proceedings of the 5th ACM SIGCHI

symposium on Engineering interactive computing systems, ACM.

Ali, R., C. Solis, I. Omoronyia, M. Salehie and B. Nuseibeh (2012). Social adaptation: When

software gives users a voice. 7th International Conference on Evaluation of Novel

Approaches to Software Engineering, Wroclaw, Poland.

Ali, R., C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh and W. Maalej (2011). Social

sensing: when users become monitors. Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of Software Engineering. Szeged,

Hungary, ACM: 476-479.

Almaliki, M. and R. Ali (2016). Persuasive and Culture-Aware Feedback

Acquisition. In International Conference on Persuasive Technology (pp. 27-38). Springer,

Cham.

Almaliki, M., F. Faniyi, R. Bahsoon, K. Phalp and R. Ali (2014). Requirements-Driven Social

Adaptation: Expert Survey. 20th International Working Conference on Requirements

Engineering: Foundation for Software Quality. Essen, Germany , Springer.

Almaliki, M., C. Ncube and R. Ali (2014). The design of adaptive acquisition of users

feedback: An empirical study. IEEE Eighth International Conference on Research

Challenges in Information Science (RCIS). Marrakesh, Morocco, IEEE.

Almaliki, M., C. Ncube and R. Ali (2015). Adaptive software-based Feedback Acquisition: A

Persona-based design. IEEE 9th International Conference on Research Challenges in

Information Science (RCIS). Athens, Greece, IEEE.

Anquetil, N., K. M. Oliveira, A. dos Santos, P. da Silva jr, L. C. de Araujo jr and S. Vieira

(2005). A tool to automate re-documentation. Forum of the CAISE, Conference on

Advanced Information Systems Engineering (CAiSE’05). Porto, Portugal.

Page | 261

Archak, N., A. Ghose and P. G. Ipeirotis (2011). Deriving the pricing power of product

features by mining consumer reviews. Management Science 57(8): 1485-1509.

Bacon, D. F., Y. Chen, D. Parkes and M. Rao (2009). A market-based approach to software

evolution. Proceedings of the 24th ACM SIGPLAN conference companion on Object

Oriented Programming Systems Languages and Applications, ACM.

Banerjee, N., D. Chakraborty, K. Dasgupta, S. Mittal, A. Joshi, S. Nagar, A. Rai and S.

Madan (2009). User interests in social media sites: an exploration with micro-blogs.

Proceedings of the 18th ACM Conference on Information and Knowledge Management,

ACM.

Barone, D., E. Yu, J. Won, L. Jiang and J. Mylopoulos (2010). Enterprise modeling for

business intelligence. The practice of enterprise modeling, Springer: 31-45.

Batory, D. (2005). Feature models, grammars, and propositional formulas. Proceedings of

9
th
 International Conference on Software Product Lines. Rennes, France, Springer.

Bennett, K. H. and V. T. Rajlich (2000). Software maintenance and evolution: a roadmap.

In Proceedings of the Conference on the Future of Software Engineering (pp. 73-87). ACM.

Berg, B. L. (2004). Methods for the social sciences. Pearson Education Inc., United States

of America.

Bougie, G., J. Starke, M.-A. Storey and D. M. German (2011). Towards understanding

twitter use in software engineering: preliminary findings, ongoing challenges and future

questions. Proceedings of the 2nd International Workshop on Web 2.0 for Software

Engineering, ACM.

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code

development, sage.

Brabham, D. C. (2008). Crowdsourcing as a model for problem solving: An introduction and

cases. Convergence 14(1): 75-90.

Braun, V. and V. Clarke (2006). Using thematic analysis in psychology. Qualitative

Research in Psychology 3(2): 77-101.

Buskermolen, D. O. and J. Terken (2012). Co-constructing stories: a participatory design

technique to elicit in-depth user feedback and suggestions about design concepts.

Proceedings of the 12th Participatory Design Conference: Exploratory Papers, Workshop

Descriptions, Industry Cases-Volume 2, ACM.

Page | 262

Cámara, J., G. Moreno and D. Garlan (2015). Reasoning about human participation in self-

adaptive systems. IEEE/ACM 10th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS'15), IEEE.

Castañeda, V., L. Ballejos, M. L. Caliusco and M. R. Galli (2010). The use of ontologies in

requirements engineering. Global Journal of Researches in Engineering 10(6).

Charlotte Magnusson, K. R.-G., Konrad Tollmar, Eileen Deaner (2009). User Study

Guidelines, Hapti Map Consortium Project co-funded by the European Commission within

the Seventh Framework Programme.

Cleland-Huang, J., M. Jarke, L. Liu and K. Lyytinen (2013). Requirements Management–

Novel Perspectives and Challenges. Dagstuhl Reports 2(10): 117-152.

Clement, A., B. McPhail, K. L. Smith and J. Ferenbok (2012). Probing, mocking and

prototyping: participatory approaches to identity infrastructuring. Proceedings of the 12th

Participatory Design Conference: Research Papers-Volume 1, ACM.

Crawford, H. K., M. L. Leybourne and A. Arnott (2000). How we Ensured Rigor from a Multi-

site, Multi-discipline, Multi-researcher Study. In Forum Qualitative Sozialforschung/Forum:

Qualitative Social Research (Vol. 1, No. 1).

Creswell, J. W. (2007). Five qualitative approaches to inquiry. Qualitative inquiry and

research design: Choosing among five approaches 2: 53-80.

Creswell, J. W. (2012). Qualitative Inquiry and Research Design: Choosing Among Five

Approaches, SAGE Publications.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods

approaches, Sage publications.

Dalpiaz, F., R. Snijders, S. Brinkkemper, M. Hosseini, A. Shahri and R. Ali (2017). Engaging

the crowd of stakeholders in requirements engineering via gamification. In Gamification (pp.

123-135). Springer International Publishing.

Dave, K., S. Lawrence and D. M. Pennock (2003). Mining the peanut gallery: Opinion

extraction and semantic classification of product reviews. Proceedings of the 12th

International Conference on World Wide Web, ACM.

de Souza, S. C. B., N. Anquetil and K. M. de Oliveira (2005). A study of the documentation

essential to software maintenance. Proceedings of the 23rd Annual International

Conference on Design of Communication: Documenting & Designing for Pervasive

Information, ACM.

Page | 263

Deterding, S., M. Sicart, L. Nacke, K. O'Hara and D. Dixon (2011). Gamification. using

game-design elements in non-gaming contexts. CHI'11 Extended Abstracts on Human

Factors in Computing Systems, ACM.

Dougiamas, M. and P. Taylor (2003). Moodle: Using learning communities to create an

open source course management system.

Dybå, T. and T. Dingsøyr (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology 50(9–10): 833-859.

Eichhorn, B. R. and O. I. Tukel (2016). A Review of User Involvement in Information System

Projects. Project Management: Concepts, Methodologies, Tools, and Applications:

Concepts, Methodologies, Tools, and Applications: 1.

El-Diraby, T. E. (2014). Validating ontologies in informatics systems: approaches and

lessons learned for AEC. Journal of Information Technology in Construction (ITcon) 19(28):

474-493.

Ernst, N., A. Borgida, I. J. Jureta and J. Mylopoulos (2014). An overview of requirements

evolution. Evolving Software Systems, Springer: 3-32.

Etezadi-Amoli, J. and A. F. Farhoomand (1996). A structural model of end user computing

satisfaction and user performance. Information Management 30(2): 65-73.

eVALUEd Project. (2006). Interview process. Retrieved 15 February 2016, from

http://www.evalued.bcu.ac.uk/tutorial/4c.htm.

Fereday, J. and E. Muir-Cochrane (2006). Demonstrating rigor using thematic analysis: A

hybrid approach of inductive and deductive coding and theme development. International

Journal of Qualitative Methods 5(1): 80-92.

Forward, A. and T. C. Lethbridge (2002). The relevance of software documentation, tools

and technologies: a survey. Proceedings of the 2002 ACM symposium on Document

Engineering, ACM.

Foth, M. and J. Axup (2006). Participatory Design and Action Reseach: Identical Twins or

Synergetic Pair? Proceedings of the Participatory Design Conference.

Fuchs, N. E., K. Kaljurand and G. Schneider (2006). Attempto Controlled English Meets the

Challenges of Knowledge Representation, Reasoning, Interoperability and User Interfaces.

In FLAIRS Conference (Vol. 12, pp. 664-669).

http://www.evalued.bcu.ac.uk/tutorial/4c.htm

Page | 264

Galvis Carreño, L. V. and K. Winbladh (2013). Analysis of user comments: an approach for

software requirements evolution. Proceedings of the 2013 International Conference on

Software Engineering, IEEE Press.

Ghosh, S., N. Sharma, F. Benevenuto, N. Ganguly and K. Gummadi (2012). Cognos:

crowdsourcing search for topic experts in microblogs. Proceedings of the 35th international

ACM SIGIR Conference on Research and Development in Information Retrieval, ACM.

Group, O. (2006). Business Process Modeling Notation (BPMN) Version 1.0. OMG Final

Adopted Specification. Object Management Group.

Happel, H.-J. and S. Seedorf (2006). Applications of ontologies in software engineering.

Proc. of Workshop on Sematic Web Enabled Software Engineering (SWESE) on the ISWC,

Citeseer.

Hoda, R., J. Noble and S. Marshall (2011). The impact of inadequate customer collaboration

on self-organizing Agile teams. Information and Software Technology 53(5): 521-534.

Holsti, O. R. (1969). Content analysis for the social sciences and humanities.

Horridge, M., H. Knublauch, A. Rector, R. Stevens and C. Wroe (2004). A Practical Guide

To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE Tools Edition

1.0." University of Manchester.

Hosseini, M., J. Moore, M. Almaliki, A. Shahri, K. Phalp and R. Ali (2015). Wisdom of the

crowd within enterprises: Practices and challenges. Computer Networks 90: 121-132.

Hosseini, M., K. Phalp, J. Taylor and R. Ali (2014). The four pillars of crowdsourcing: A

reference model. Eighth International Conference on Research Challenges in Information

Science, IEEE.

Hosseini, M., K. Phalp, J. Taylor and R. Ali (2014). Towards crowdsourcing for requirements

engineering.

Hosseini, M., A. Shahri, K. Phalp, J. Taylor, R. Ali and F. Dalpiaz (2015). Configuring

crowdsourcing for requirements elicitation. 9th International Conference on Research

Challenges in Information Science (RCIS), IEEE.

Hu, M. and B. Liu (2004). Mining opinion features in customer reviews. Proceedings of the

19th National Conference on Artifical Intelligence. San Jose, California, AAAI Press: 755-

760.

Page | 265

Huh, J., L. Jones, T. Erickson, W. A. Kellogg, R. K. Bellamy and J. C. Thomas (2007).

BlogCentral: the role of internal blogs at work. CHI'07 extended abstracts on Human Factors

in Computing Systems, ACM.

International, QSR. (Copyright © 1999-2014) . NVivo10-Getting-Started-Guide. Retrieved

20 March 2015, from http://download.qsrinternational.com/Document/NVivo10/NVivo10-

Getting-Started-Guide.pdf.

Jarke, M., P. Loucopoulos, K. Lyytinen, J. Mylopoulos and W. Robinson (2011). The brave

new world of design requirements. Information Systems 36(7): 992-1008.

Jiang, J. J., G. Klein, S. P. Wu and T.-P. Liang (2009). The relation of requirements

uncertainty and stakeholder perception gaps to project management performance. Journal

of Systems and Software 82(5): 801-808.

Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation in action.

Administrative Science Quarterly 24(4): 602-611.

Joffe, H. and L. Yardley (2004). Content and thematic analysis. Research Methods for

Clinical and Health Psychology 56: 68.

Johnson, M. and S. Hyysalo (2012). Lessons for participatory designers of social media:

long-term user involvement strategies in industry. Proceedings of the 12th Participatory

Design Conference: Research Papers-Volume 1, ACM.

Kajko-Mattsson, M. (2005). A survey of documentation practice within corrective

maintenance. Empirical Software Engineering 10(1): 31-55.

Kang, K. C., S. Kim, J. Lee, K. Kim, E. Shin and M. Huh (1998). FORM: A feature- oriented

reuse method with domain- specific reference architectures. Annals of Software Engineering

5(1): 143-168.

Kanstrup, A. M. (2012). A small matter of design: an analysis of end users as designers.

Proceedings of the 12th Participatory Design Conference: Research Papers-Volume 1,

ACM.

Karel Vredenburg, Ji-Ye Mao, Paul W. Smith and T. Carey (2002). A survey of user-

centered design practice. Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. Minneapolis, Minnesota, USA, ACM: 471-478.

Kehagias, D. D., I. Papadimitriou, J. Hois, D. Tzovaras and J. Bateman (2008). A

methodological approach for ontology evaluation and refinement. In ASK-IT Final

Conference.

http://download.qsrinternational.com/Document/NVivo10/NVivo10-Getting-Started-Guide.pdf
http://download.qsrinternational.com/Document/NVivo10/NVivo10-Getting-Started-Guide.pdf

Page | 266

Kensing, F. and J. Blomberg (1998). Participatory design: Issues and concerns. Computer

Supported Cooperative Work (CSCW) 7(3-4): 167-185.

Kitchenham, B. A., S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam

and J. Rosenberg (2002). Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering 28(8): 721-734.

Kittur, A., E. H. Chi and B. Suh (2008). Crowdsourcing user studies with Mechanical Turk.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM.

Kittur, A. and R. E. Kraut (2008). Harnessing the wisdom of crowds in wikipedia: quality

through coordination. Proceedings of the 2008 ACM Conference on Computer Supported

Cooperative Work, ACM.

Knauss, A. (2012). On the usage of context for requirements elicitation: End-user

involvement in IT ecosystems. 20th International Requirements Engineering Conference

(RE), IEEE.

Komarov, S., K. Reinecke and K. Z. Gajos (2013). Crowdsourcing performance evaluations

of user interfaces. Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems. Paris, France, ACM: 207-216.

Kontio, J., L. Lehtola and J. Bragge (2004). Using the focus group method in software

engineering: obtaining practitioner and user experiences. In Proceedings of the International

Symposium on Empirical Software Engineering (ISESE '04). IEEE. , Redondo Beach, CA,

USA.

Kotonya, G. and I. Sommerville (1998). Requirements engineering: processes and

techniques, Wiley Publishing.

Krogstie, J., K. Lyytinen, A. L. Opdahl, B. Pernici, K. Siau and K. Smolander (2004).

Research areas and challenges for mobile information systems. International Journal of

Mobile Communications, 2(3), pp.220-234.

Kuhn, T. (2014). A survey and classification of controlled natural languages. Computational

Linguistics 40(1): 121-170.

Law, E. L.-C. and P. v. Schaik (2010). Editorial: Modelling user experience - An agenda for

research and practice. Interacting with Computers, 22(5), pp.313-322.

Lazar, J., J. H. Feng and H. Hochheiser (2010). Research Methods in Human-Computer

Interaction, John Wiley & Sons.

Page | 267

Leotta, M., F. Ricca, G. Antoniol, V. Garousi, J. Zhi and G. Ruhe (2013). A pilot experiment

to quantify the effect of documentation accuracy on maintenance tasks. 29th International

Conference on Software Maintenance (ICSM), IEEE.

Lientz, B. P. and E. B. Swanson (1981). Problems in application software maintenance.

Communications of the ACM 24(11): 763-769.

Lientz, B. P., E. B. Swanson and G. E. Tompkins (1978). Characteristics of application

software maintenance. Communications of the ACM 21(6): 466-471.

Liu, B., M. Hu and J. Cheng (2005). Opinion observer: analyzing and comparing opinions on

the Web. Proceedings of the 14th international conference on World Wide Web. Chiba,

Japan, ACM: 342-351.

Liu, D., R. G. Bias, M. Lease and R. Kuipers (2012). Crowdsourcing for usability testing.

Proceedings of the American Society for Information Science and Technology 49(1): 1-10.

Lu, C.-J. and S. W. Shulman (2008). Rigor and flexibility in computer-based qualitative

research: Introducing the Coding Analysis Toolkit. International Journal of Multiple Research

Approaches 2(1): 105-117.

Maalej, W., H.-J. Happel and A. Rashid (2009). When users become collaborators: towards

continuous and context-aware user input. Proceedings of the 24th ACM SIGPLAN

conference companion on Object oriented programming systems languages and

applications, ACM.

Maalej, W. and D. Pagano (2011). On the socialness of software. Ninth International

Conference on Dependable, Autonomic and Secure Computing (DASC), IEEE.

Marra, R. M., J. L. Moore and A. K. Klimczak (2004). Content analysis of online discussion

forums: A comparative analysis of protocols. Educational Technology Research and

Development 52(2): 23-40.

Miles, M. B. and A. M. Huberman (1994). Qualitative data analysis: An Expanded

Sourcebook, Sage.

Mistrik, I., N. Ali, R. Kazman, J. Grundy and B. Schmerl (2016). Managing Trade-offs in

Adaptable Software Architectures, Morgan Kaufmann.

Moodle. (2016). Adding a new course. Retrieved 14 November, 2016, from

https://docs.moodle.org/31/en/Adding_a_new_course#Using_an_existing_course_as_a_te

mplate.

Page | 268

Moodle. (2016). Category Enrolments. Retrieved 18 November, 2016, from

https://docs.moodle.org/31/en/Category_enrolments.

Moodle. (2016). Course Settings. Retrieved 14 November, 2016, from

https://docs.moodle.org/31/en/Course_settings.

Moodle. (2016). Moodle Courses. Retrieved 8 November, 2016, from

https://docs.moodle.org/31/en/Courses.

Moodle. (2016). Upload Courses. Retrieved 13 November, 2016, from

https://docs.moodle.org/31/en/Upload_courses.

Noy, N. F. and D. L. McGuinness (2001). Ontology development 101: A guide to creating

your first ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05

and Stanford Medical Informatics Technical Report SMI-2001-0880, Stanford, CA.

Onwuegbuzie, A. J. (2003). Effect sizes in qualitative research: A prolegomenon. Quality

and Quantity 37(4): 393-409.

Orb, A., L. Eisenhauer and D. Wynaden (2001). Ethics in qualitative research. Journal of

Nursing Scholarship 33(1): 93-96.

Pagano, D. (2011). Towards systematic analysis of continuous user input. Proceedings of

the 4th international workshop on Social software engineering. Szeged, Hungary, ACM: 6-

10.

Pagano, D. and B. Brügge (2013). User involvement in software evolution practice: a case

study. Proceedings of the 2013 International Conference on Software Engineering. San

Francisco, CA, USA, IEEE Press: 953-962.

Pagano, D. and W. Maalej (2013). User feedback in the appstore: An empirical study. 21st

International Requirements Engineering Conference (RE), IEEE.

Phalp, K., A. Adlem, S. Jeary, J. Vincent and J. Kanyaru (2011). The role of comprehension

in requirements and implications for use case descriptions. Software Quality Journal 19(2):

461-486.

Pourshahid, A., D. Amyot, L. Peyton, S. Ghanavati, P. Chen, M. Weiss and A. J. Forster

(2009). Business process management with the user requirements notation. Electronic

Commerce Research 9(4): 269-316.

Press, W. (2015). Roles and Capabilities. Retrieved 5 May, 2015, from

https://codex.wordpress.org/Roles_and_Capabilities.

Page | 269

Rajlich, V. (2014). Software evolution and maintenance. Proceedings of the on Future of

Software Engineering, ACM.

Robbins, J. E. (2004). Feature Specifications. Software Tools and Methods Course

Retrieved 15 December 2016, from http://www.jrobbins.org/ics121s04/lesson-feature-

specs.html.

Salehie, M. and L. Tahvildari (2009). Self-adaptive software: Landscape and research

challenges. ACM Transactions on Autonomous and adaptive Systems (TAAS) 4(2): 14.

Schneider, K. (2011). Focusing spontaneous feedback to support system evolution. 19th

IEEE International Requirements Engineering Conference (RE), Trento, Italy.

Schöndienst, V., H. Krasnova, O. Günther and D. Riehle (2011). Micro-Blogging Adoption in

the Enterprise: An Empirical Analysis: 931-940.

Seyff, N., F. Graf and N. Maiden (2010). Using Mobile RE Tools to Give End-Users Their

Own Voice. Proceedings of the 2010 18th IEEE International Requirements Engineering

Conference. Sydney, Australia, IEEE Computer Society: 37-46.

Shahri, A., M. Hosseini, K. Phalp, J. Taylor, and R. Ali (2014). Towards a Code of Ethics for

Gamification at Enterprise. In IFIP Working Conference on The Practice of Enterprise

Modeling (pp.235-245). Springer International Publishing.

Shahri, A., M. Hosseini, K. Phalp, J. Taylor, and R. Ali (2016). Exploring and conceptualising

software-based motivation within enterprise. In IFIP Working Conference on The Practice of

Enterprise Modeling (pp. 241-256). Springer International Publishing

Shearer, R., B. Motik and I. Horrocks (2008). HermiT: A Highly-Efficient OWL Reasoner.

OWLED.

Sherief, N., W. Abdelmoez, K. Phalp and R. Ali (2015). Modelling users feedback in crowd-

based requirements engineering: An empirical study. IFIP Working Conference on The

Practice of Enterprise Modeling, Springer.

Sherief, N., N. Jiang, M. Hosseini, K. Phalp and R. Ali (2014). Crowdsourcing software

evaluation. Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering. London, England, United Kingdom, ACM: 1-4.

Siegemund, K., E. J. Thomas, Y. Zhao, J. Pan and U. Assmann (2011). Towards ontology-

driven requirements engineering. Workshop semantic web enabled software engineering at

10th international semantic web conference (ISWC), Bonn.

http://www.jrobbins.org/ics121s04/lesson-feature-specs.html
http://www.jrobbins.org/ics121s04/lesson-feature-specs.html

Page | 270

Sillito, J., G. C. Murphy and K. De Volder (2006). Questions programmers ask during

software evolution tasks. Proceedings of the 14th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ACM.

Snijders, R., F. Dalpiaz, S. Brinkkemper, M. Hosseini, R. Ali and A. Ozum (2015). REfine: A

gamified platform for participatory requirements engineering. IEEE 1st International

Workshop on Crowd-Based Requirements Engineering (CrowdRE), Aug 25 (pp. 1-6), IEEE.

Snijders, R., F. Dalpiaz, M. Hosseini, A. Shahri and R. Ali (2014). Crowd-Centric

Requirements Engineering. 7th International Conference on Utility and Cloud Computing

(UCC), IEEE.

Sommerville, I. (2006). Software Engineering: (Update) (8th Edition) (International Computer

Science), Addison-Wesley Longman Publishing Co., Inc.

Souza, V. E. S., A. Lapouchnian, K. Angelopoulos and J. Mylopoulos (2013). Requirements-

driven software evolution. Computer Science-Research and Development 28(4): 311-329.

Spinuzzi, C. (2005). The methodology of participatory design. Technical Communication

52(2): 163-174.

Stemler, S. (2001). An overview of content analysis. Practical assessment, research &

evaluation 7(17): 137-146.

Stolee, K. T. and S. Elbaum (2010). Exploring the use of crowdsourcing to support empirical

studies in software engineering. Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement. Bolzano-Bozen, Italy,

ACM: 1-4.

Surowiecki, J. (2005). The wisdom of crowds, Anchor.

Svee, E.-O., C. Giannoulis and J. Zdravkovic (2011). Modeling business strategy: A

consumer value perspective. The Practice of Enterprise Modeling, Springer: 67-81.

Turner III, D. W. (2010). Qualitative interview design: A practical guide for novice

investigators. The Qualitative Report 15(3): 754.

University, Bournemouth. (2017). BU Research Blog | Research Ethics | Bournemouth

University. Retrieved 9 January, 2017, from

http://blogs.bournemouth.ac.uk/research/researcher-toolbox/research-ethics/.

Vaismoradi, M., H. Turunen and T. Bondas (2013). Content analysis and thematic analysis:

Implications for conducting a qualitative descriptive study. Nursing & Health Sciences 15(3):

398-405.

http://blogs.bournemouth.ac.uk/research/researcher-toolbox/research-ethics/

Page | 271

Wang, H., Y. Wang and J. Wang (2014). A participant recruitment framework for

crowdsourcing based software requirement acquisition. 9th International Conference on

Global Software Engineering (ICGSE), IEEE.

Würsch, M., G. Ghezzi, G. Reif and H. C. Gall (2010). Supporting developers with natural

language queries. 32nd International Conference on Software Engineering, 2010, IEEE.

Yeoh, W. and A. Koronios (2010). Critical success factors for business intelligence systems.

Journal of Computer Information Systems 50(3): 23-32.

Yu, E. S. (2009). Social Modeling and i*. Conceptual Modeling: Foundations and

Applications. T. B. Alexander, K. C. Vinay, G. Paolo and S. Y. Eric, Springer-Verlag: 99-121.

Zimmermann, T., A. Zeller, P. Weissgerber and S. Diehl (2005). Mining version histories to

guide software changes. IEEE Transactions on Software Engineering 31(6): 429-445.

Zin, A. M. and N. C. Pa (2009). Measuring communication gap in software requirements

elicitation process. Proceedings of the 8th WSEAS International Conference on Software

engineering, parallel and distributed systems. Cambridge, UK, World Scientific and

Engineering Academy and Society (WSEAS): 66-71.

Page | 272

10. Appendices

10.1 Appendix 1: Sample Ethics Documents

10.1.1 Participant Information Sheet for PD Study

The title of the research project: Designing a Collaborative Framework for Feedback

Acquisition and Communication to Support Software Maintenance

Invitation

You are being invited to take part in this research project conducted by Nada Hany Sherief,

a postgraduate researcher, in the Department of Computing and Informatics, Faculty of

Science & Technology, Bournemouth University, UK. Before you decide, it is important for

you to understand why the research is being done and what it will involve. Please take time

to read the following information carefully and discuss it with others if you wish. Ask us if

there is anything that is not clear or if you would like more information. Take time to decide

whether or not you wish to take part.

What is the purpose of the project?

Our aim is to develop a collaborative feedback framework to systematically support software

engineers at runtime (i.e. while the software is already in use). This includes employing

previously established feedback structures and devising mechanisms that makes it easy for

engineer to interpret the users’ feedback and benefit from it in the software change

management tasks during the maintenance phase. Additionally, this engineering framework

aims at benefiting from the collective structured feedback and incorporating potential

requirements models to link the space of the business to the space of users and their

understanding of the system to keep the requirements information up-to-date, and enables

automated reasoning and traceability to derive essential information.

A Participatory Design approach will be used in order to explore the participants’ ideas

about the facets of the framework. By this, the end product is developed hand in hand with

the actual intended audience and thus leads to better results and experiences, as the

method can give clear insight into their vocabulary, priorities, and the things they value.

Why have I been chosen?

This is an open call that aims to reach those who feel they can contribute to the research by

sharing their experience with technology, utilizing our mechanisms and giving us feedback

on them.

Do I have to take part?

It is up to you to decide whether or not to take part. If you do decide to take part, you will be

given this information sheet to keep (and be asked to sign a participant agreement form).

You can withdraw at any time, up to the point where the data are processed and become

anonymous, so your identity cannot be determined, without it affecting any benefits that you

are entitled to in any way. You do not have to give a reason. Deciding to take part or not will

not adversely affect you.

Page | 273

What would taking part involve?

As a participant in this project, there will be some activities to undertake. First, you will be

asked to attend an introductory session to familiarize you with the project, its aims and the

needed background information that will be used during the study, and it includes research

results reached so far that will be utilized in the study.

Furthermore, during the design session the participants will be provided with aiding tools

such as mock-ups for the acquisition tool components to test how they would utilize the

components to provide meaningful feedback without hindering their experience. Also, they

will be provided with fictional scenarios about software problems to help them immerse in

the task. Finally, they will be asked to give insights by answering sets of questions, to

develop this engineering framework in a manner that makes it useful and informative for

engineers during the maintenance phase.

What are the advantages and possible disadvantages or risks of taking part?

Whilst there are no immediate benefits for those people participating in the project, our goal

is designing a framework that aligns with the software change process tasks and at the

same time gives customers (i.e. end-users) a voice in the continuous runtime evaluation of

software. That is, customers’ evaluation feedback would mainly communicate their opinion

on the role of the system in meeting their requirements leading to better acceptance of the

software. Also, it will provide valuable inputs for engineers that will inform their tasks during

the maintenance phase, which can save much time and effort for them.

Will my taking part in this study be kept confidential?

All the information that we collect about you during the course of the research will be kept

strictly confidential. You will not be able to be identified in any reports or publications. All

data relating to this study will be kept for 5 years on a BU password protected secure

network.

What type of information will be sought from me and why is the collection of this

information relevant for achieving the research project’s objectives?

The data collected are not of a sensitive nature, it covers insights and opinions on the facets

that will be explored, that express their vocabulary, priorities and things they value.

The data that form the basis of the analysis in this study will be:

 Participants designs: photos and recordings of participants’ presentations of

designs

 Participants design conversations: During the design workshops, a tape recorder

was placed at every group and the conversations will be recorded for transcription

and analysis.

Will I be recorded, and how will the recorded media be used?

Yes. The recording will help the research team to capture the information that will be sought

from you during the session. However, you will be given the right to accept or reject

recording the interview. No other use will be made of the recording without your written

permission, and no one outside the research team will be allowed access to the original

recordings. The audio recordings made during this research will be deleted once transcribed

and anonymised. The transcription of the interviews will not include your name or any

identifiable information. Instead, each person will be identified by their code (i.e. #usr1,

#eng3, etc.).

Page | 274

Contact for further information

If you have any queries about this research, please contact Dr. Raian Ali by email on

rali@bournmeouth.ac.uk or by phone on 01202 966682 or by post to:

Dr. Raian Ali
Faculty of Science and Technology
Bournemouth University
BH12 5BB

Complaints

If you have any complaints about this project please contact Professor Christine A. Maggs,
Executive Dean of the Faculty of Science and Technology at Bournemouth University at the
following address:

Professor Christine A. Maggs
Poole House P308, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12
5BB
E-mail: researchgovernance@bournemouth.ac.uk

Thank you for taking the time to read this information sheet, and please do not

hesitate to contact me if you have any queries.

10.1.2 Participant Agreement Form for PD Study

Full title of project: Designing a Collaborative Framework for Feedback Acquisition and

Communication to Support Software Maintenance

Name, position and contact details of researcher: Nada Hany Sherief, Postgraduate

researcher, Department of Computing and Informatics, Faculty of Science & Technology,

Bournemouth University. Email: nsherief@bournmeouth.ac.uk

Supervisor: Dr Raian Ali, Department of Computing and Informatics, Faculty of Science &

Technology. Email: rali@bournemouth.ac.uk

mailto:researchgovernance@bournemouth.ac.uk
https://www1.bournemouth.ac.uk/discover/faculties/faculty-science-technology/our-departments/department-computing-informatics/our-research
mailto:nsherief@bournmeouth.ac.uk
https://www1.bournemouth.ac.uk/discover/faculties/faculty-science-technology/our-departments/department-computing-informatics/our-research
mailto:rali@bournemouth.ac.uk

Page | 275

 Please Initial

 or Tick Here

I have read and understood the participant information sheet for the above

research project.

I confirm that I have had the opportunity to ask questions.

I understand that my participation is voluntary.

I understand that I am free to withdraw up to the point where the data are

processed and become anonymous, so my identity cannot be determined.

During the tasks of the study, I am free to withdraw without giving a reason

and without there being any negative consequences.

Should I not wish to answer any particular question(s), complete a test I

am free to decline.

I give permission for members of the research team to have access to my

anonymised responses. I understand that my name will not be linked with

the research materials, and I will not be identified or identifiable in the

outputs that result from the research.

I understand taking part in the research may include being recorded

(audio) but that these recordings will be deleted once transcribed and

anonymised.

I agree to take part in the above research project.

_________________________ _______________ ___________________________

Name or Initials of the Participant Date Signature

_________________________ _______________ ____________________________

Name or Initials of the Researcher Date Signature

Page | 276

10.2 Appendix 2: Focus Groups Questions

Introduction: This Focus Group is part of a research work we are currently involved in. This

research is related to the idea of allowing users to act as collaborators with the software, by

giving them a way to describe their feedback about the software’s features.

Background: In our work, we are trying to take users’ judgment on the software. By

judgment we mean users’ opinions about the quality of software in reaching their

requirements. This paradigm advocates two principles. First, quality has to be evaluated

iteratively during the systems operation (i.e. at runtime) so that quality evaluation is kept up-

to-date. Second, users are the primary evaluators of quality and their judgment is a primitive

driver of configuration. At runtime, users’ quality feedback is obtained, so that the software

is re-configured to satisfy the users’ community.

Questions:

1) Would you please tell us if there is anything you would like us to clarify about the

background of our discussion?

2) Would you please introduce yourself to the group?

3) Would you state to us, from your point of view, what are the characteristics of a

good feedback? We need you to list (then we’ll discuss each point together) the key

properties that makes a feedback Meaningful or useful?

4) Suppose there is a tool that enables you to express the structure of your feedback

(i.e. the way you would like to give your feedback). As a user, what are your

expectations from such tool?

5) What are the key features that could be included to such a tool to encourage your

willingness to do such a task/job?

6) Suppose you want to give your feedback about your judgment of a feature you are

using in certain software, how would you describe such a feedback? i.e. give an

example of the feedback you would like to provide.

7) How would you describe the contextual information in your feedback? By context

we mean any spacio-temporal, environment, personal, task, or social contexts,

while users were providing their feedback.

8) Suppose you are having troubles with describing your feedback about a feature in

the software, would you rely on other users’ feedback to suggest/provide feedback

that you can use (e.g. from a bank of statements)? How could you benefit from such

a recommendation?

Page | 277

10.3 Appendix 3: Forums Analysis Intermediate Results

In this appendix the development of the Intermediate results (i.e. the maps developed

starting from the initial template till the final thematic map) of the forums analysis are

explained. The initial template is represented in chapter 4, Figure 8, in section 4.4.1, while

the final thematic map is represented in Chapter 4, Figure 9, in section 4.4.2 and explained

in details.

The first modifications that emerged while capturing actual users’ feedback are shown in

figure 105, which were:

 Adding under Subject Methods a “Links” code as a new method that helps

users communicate in feedback. Users tend to use links specially when providing

solutions or suggesting workarounds to other users’ problems.

 Adding under Subject Clarity Understandable an “Explanation” code to

capture the idea that users tend to provide explanations and definitions of features

to increase the understandability of their feedbacks and articulate how they perceive

the functionality of a feature.

 Moving the “Feature” code from Structure Specificity to the Subject Specificity

to identify the feature to which the feedback topic (Subject) is related.

 Moving the “Feedback Type” code from the Subject Specificity to the Structure

Specificity to identify the different feedback types the users are providing in the

actual body (structure) of feedback.

 Removing the Structure “Timing” node with both its child nodes “Immediate”

and “Delayed”, as no phrases where coded there. We have found it not relevant

while capturing actual feedbacks from forums. This is because there were never

indications of whether the user was giving the feedback at runtime immediately

when the problem occurred, or as a delayed feedback. Also, we thought that it

should not be considered as a Structure concept, because timing will not affect the

structure of a feedback, but rather it may only help the user explaining better if he

gave the feedback during the occurrence of the problem.

 Adding under Structure Measurement a “Vote” code as we have observed that

at times users may reply on others’ feedbacks by stating how much they agree or

disagree with them.

 Adding more codes into Structure Level of Detail Depth, which are:

o “Illustrations”: captures the users’ descriptions in their feedback whether

they are textual descriptions of what happened while they were using a

certain feature, or they referenced other supporting documentations that

provide descriptions of the feature they are giving feedback about.

Page | 278

o “Try-out”: captures the explanations of the trails that users have undergone

in order to solve the problem they are facing but did not result in resolving

their issue.

o “Scenario”: represents how users add steps in their feedback responses

that explain a sequence of activities to the users with the problem in order

to reach a solution.

 Adding more codes into Structure Level of Detail Context, which are:

o “Personal”: it captures the user mental aspects. It describes information like

mood, expertise and stress.

o “Task”: it captures what the user is doing, such as describing the tasks that

the user was involved in when a problem occurred.

 Adding more codes into Structure Specificity Feedback Type, which are:

o “Help Request”: captures the most common feedback type in which users

post problems they are having in using a certain feature or resolving a

certain problem that occurs while using the software.

o “Suggestion”: captures the feedback type in which users respond by

providing suggestions to the user with the problem that they think might

help in resolving their issue.

o “Solution”: captures the feedback type in which users respond by providing

definitive solutions to the user with the problem whether through a scenario

they provide or a reference to a link that states these steps.

o “Enhancement”: captures the feedback type in which users post in their

feedback a new feature they would like to have in the software or a change

they wish to have in a feature properties that would better fit their needs.

o “Investigation”: is a response feedback type in which users respond to a

feedback by asking further questions to clarify unclear steps or issues with

the users who posted the main problem.

o “Correction”: is a response feedback type where users correct the

misunderstanding of feature definitions or feature usages to other users.

Page | 279

The second adjustments that emerged after further coding of actual users’ feedback are

shown in figure 106. At this point these adjustments emerged, because we started noticing

a key difference between the template we were working on, which is initially derived from

the focus groups and what is happening in the actual feedback mediums. Mainly, in the

focus groups users were giving insights on what they wish they could see in the feedback

acquisition methods. Many of these insights proved to be important in out forums analysis.

However, in order to reach their level of expectations we have to define what actually

constitutes a feedback. The adjustments are explained below:

 Removing the “Structure” code from Subject Clarity. In the focus groups,

participants expressed that it would increase the clarity of the feedback if the

feedback would have a certain structure. However, this is our main research aim

which is to study common feedback structures and their pillars. So using it as a

code in the template during our forums analysis was redundant, because there is no

defined structure in actual user feedbacks.

Figure 105. Intermediate Thematic Map 1 for Forums Analysis

Page | 280

 Moving the “Explanation” code from Subject Clarity Understandable to

Structure Level of Detail Depth, and renaming it as “Feature Definitions” to

increase the precision of its purpose and narrow down the types of phases coded in

it.

 Removing the “Keywords”, “Scaling”, and “Audio” codes from Subject method,

because they were never used. Mainly because users use forums to seek help, or

requesting new requirement, or asking for changes in existing features, scaling is

rarely used. This method contrasts with the main purpose of forums (i.e. users

expressing themselves freely with details) as it is shallow and doesn’t give much

details. Also, in the feedbacks we have analysed, keywords were never used as a

method because there are no standardized keywords for users to use in their

feedback on any forum. Moreover, we have never encountered audio feedbacks.

 Removing the “Statistics” and “Experience”, as in the feedbacks we have analysed

no numeric statistics on the usefulness of a feedback was used. Also, we have

found no measurements of user experience whether it is better or worse relative to

changes in requirements. This is because these dimensions should be derived from

accumulated users’ feedbacks and should not be left for users’ subjectivity.

 Adding three new codes under Structure Specificity Relationships, which are:

o “Agree”: captures the relationship between feedbacks responses where

users tend to just agree with what others are saying.

o “Disagree”: captures the relationship between feedbacks responses where

users tend to disagree with what others are saying.

o “Extend”: capture the relationship between feedback responses where the

user agrees/disagrees with others but adds more details in his opinion

indicating reasons why he agrees/disagrees, context information, and/or

other related problems that occurred to him.

Page | 281

Figure 106. Intermediate Thematic Map 2 for Forums Analysis

Page | 282

Looking at the intermediate template 2 for forums analysis in figure 106, we discussed and

came into conclusion that we should remove the level of Structure and Subject thematic

areas as shown in Figure 107. These two areas were developed in the final thematic map of

the focus groups, where the questions asked were much broader than what we are focusing

on in the forums analysis. They were formed to differentiate between the characteristics of a

feedback structure (i.e. Structure thematic area), and the context in which users would like

to respond to feedback requests (i.e. the Subject thematic area). However, in the forums

analysis Subject is irrelevant as there are no feedback requests; instead forums are a

community of users seeking help or providing help. Therefore, our main concentration in the

forums analysis is to gather the concepts that form an expressive feedback structure, and

according to that view we have made the following adjustments:

Removing the “Quality Attribute” from SubjectSpecificity. Most users specify clearly the

problems in using features, but adding the detail of which aspect of the feature that

concerns them was uncommon.

 Removing the “Enhancement” from the Specificity Feedback Type. This was done

because users rarely provide a clear definition of enhancements they want in the

system (i.e. new requirements). Instead they tend to explain the problems they are

facing in using the system or performing a certain task.

Figure 107. Intermediate Thematic Map 3 for Forums Analysis

Page | 283

 Moving the “Measurement”, “Level of Detail”, “Method”, and “Specificity” to connect

directly as the main parts of the “User Feedback” node.

 Moving the “Feature” code under User Feedback Specificity. Therefore, this

resulted in a single specificity node that encompasses “feature”, “feedback type”,

and “relationships”.

 Removing the “Subject”, and “Structure” thematic areas that are now empty with no

codes or categories.

 Moving the “Correction” and “Investigation” codes under “Feedback Types” to

“Relationships”. This is because these two codes represent response types to a

main feedback post and NOT as an initial feedback type.

 Renaming the “Rates” code under “Measurement” as “Feature Rates”. This is to

ensure understandability of the code and that it is applied for features only.

 Renaming the “Help Request” code under “Feedback Type” as “Problem”. This is

because it captures the feedbacks that are mainly explaining a problem in detail and

asking for help at the end of the post. So we thought it is clearer to name it this way.

 Renaming “Try-outs” code under Level of Detail Depth as “Trails” for simplicity.

 Adding a “Concise” code under Level of Detail Depth to capture the short

feedback responses that provide no depth and therefore minimum level of detail.

 Adding a “Spatio-Temporal” code as a new context type under Level of Detail

Context that capture the aspects related to the time and the space. It has attributes

like: time, location and place.

Finally, we have reached a more developed thematic map that includes the following

changes, and are shown in Figure 108:

 Adding two different codes under Specificity Feature, which are:

o “Single”: is a code that captures the feedbacks referring to a single feature

of concern.

o “Group”: is a code that captures the feedbacks referring to a group of

related features that work together to perform a certain task.

 Moving the “Relationships” from User Feedback Specificity to emanate directly

from User Feedback. This was done because mainly Relationship types are not

specified by the user within his feedback like features and feedback types. Instead,

the user can provide feedback responses with several relationships with the initial

feedback or other feedbacks along the whole thread.

 Adding several codes to the “Relationships” to capture the different responses and

differentiate on how they relate with each other or with the initial feedback, which

are:

Page | 284

o “Mitigation”: this relationship indicates that the user who reported the

problem found his own solution, or another user gave him a solution or

suggestion that solved his problem.

o “Justification”: this relationship indicates the reasons why a user offered a

certain solution or suggestion in his feedback.

o “Elaboration”: this relationship is used when a user explains more about a

feedback he gave in another post.

o “Addition”: is used when a user replies on a feedback by confirming or

negating the main problem statement in the initial feedback, and adds

another separate problem in his feedback.

o “Verification”: is used when the user who posted the problem gives his

opinion on the solutions or suggestions he received.

 Renaming the “Agree” relationship to “Confirmation”, this still indicates when a user

only agrees on what others post.

 Renaming the “Disagree” relationship to “Negation”, this still indicates when a user

only disagrees on what others post.

 Renaming the “Extend” relationship to “Extension”, and giving a more detailed

definition of the types of information it can capture. This relationship is used if the

user tried a solution and it solved part of his problem, but this solution led to another

dependent problem to emerge.

Page | 285

Figure 108. Intermediate Thematic Map 4 for Forums Analysis

Page | 286

10.4 Appendix 4: Sample PD study Evidence

10.4.1 Toolbox Explanations

In Chapter 6, section 6.2.2.3 a sample toolbox was provided to demonstrate its purpose and

design. The tool box in Figure 37 illustrated the Depth types with examples. However,

toolboxes for Methods in Figure 109, Context Types in Figure 110, and Attempto Controlled

English Rules in Figure 111 were also designed. But to avoid extra elaborations within the

text, they are listed in this appendix:

Figure 109. A Toolbox for the Types of Description Methods with Examples.

Page | 287

Figure 110. A Toolbox for Context Types with Examples.

Page | 288

Figure 111. A Toolbox for Attempto Controlled English with Examples.

Page | 289

10.4.2 A Real Sample of Documents for a PD session

In this section a sample communication thread is shown. This thread was explained in detail

in chapter 6 section 6.3.1.1.3, where in section 6.3.1.1, selected threads that helped the

novel method for feedback acquisition and communication evolve, were explained in detail.

In this section one of the used threads with information filled in from participants (both end-

user and engineer) is represented. In Figures 112-118 the templates used in the thread are

illustrated.

Figure 112. A Real Sample of a Topic Definition Template provided by the End-user Participant

Page | 290

As seen in Figure 112 above that the end-user participant used the screenshot method to

provide a Task level of detail in the Topic Definition template. This screenshot was cut from

the printed scenario description that was distributed in the beginning of the session. Also

sticky notes were used (The pink and green attached notes) to provide extra notes.

Figure 113. A Real Sample of a Problem Correction Template provided by the Engineer
Participant

Page | 291

Also in Figure 113 above that the Engineer participant used both the screenshot and textual

methods to provide an Explanation level of detail in the Problem Correction template. This

screenshot was cut from the printed scenario description that was distributed in the

beginning of the session.

Figure 114. A Real Sample of the New Addition Template provided by the End-user Participant

Page | 292

In figure 114 above, a new feedback type evolved in the session. However, since it is a new

feedback type, there was no pre-prepared template for it, so the participant used an existing

template (Problem Extension), and he started editing it. For example, he changed one of the

default levels of detail and replaced it with a ticket (i.e. tag) to indicate the new type he will

be using (i.e. personal context). Also, he added in the right side that the template should be

linked to Correction feedback to indicate that it is an enhancement.

Figure 115. A Real Sample of the New Proposal Template provided by the Engineer Participant

Page | 293

Figure 116. A Real Sample of the Verification Template (Used as Confirmation) provided by the
End-user Participant

Page | 294

Figure 117. A Real Sample of the Solution Template provided by the Engineer Participant

Page | 295

Figure 118. A Real Sample of the Verification Template (Used for final Confirmation) provided
by the End-user Participant

Page | 296

Figure 119. The Updated Feedback Acquisition and Communication Method

Figure 119 above shows the Feedback Acquisition and Communication method design that

was distributed on the participants in the session. After the communication took place

between them as shown in the above Figures 112-118, they started updating the new

method workflow with the feedback types, and new paths that took place.

Page | 297

Figure 120. The Feature Specification Template (amended from Robbins 2004) with
Participant’s updates

Figure 120 above shows the feature specification template that was distributed on the

participants with their notes on the sections to add, and how to obtain information to fill

these sections.

