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Abstract. For surgeons, the precise anatomy structure and its dynam-
ics are important in the surgery interaction, which is critical for generat-
ing the immersive experience in VR based surgical training applications.
Presently, a normal therapeutic scheme might not be able to be straight-
forwardly applied to a specific patient, because the diagnostic results
are based on averages, which result in a rough solution. Patient Specific
Modeling (PSM), using patient-specific medical image data (e.g. CT,
MRI, or Ultrasound), could deliver a computational anatomical model.
It provides the potential for surgeons to practice the operation proce-
dures for a particular patient, which will improve the accuracy of diag-
nosis and treatment, thus enhance the prophetic ability of VR simulation
framework and raise the patient care. This paper presents a general re-
view based on existing literature of patient specific surgical simulation
on data acquisition, medical image segmentation, computational mesh
generation, and soft tissue real time simulation.

Keywords: Patient Specific Modeling, Surgery Simulation, Virtual Re-
ality.

1 Introduction

Approximately 200,000-injury or death cases come from preventable human med-
ical errors in hospitals annually [15].Undesirable effects caused by human tech-
nique errors during surgeries and the fast development of new approaches (such
as minimally invasive surgery), which requires more complex technical profi-
ciency, have significantly emphasized the importance of surgical skills training
in a secure and reusable environment. With the rapid explosion of Virtual Re-
ality (VR) technology, the VR based surgery simulator provides the solution of
teaching and assessing training skills outside the operation room with high effi-
ciency and low risks [11]. Examples of commercial high-fidelity VR simulators,
including Neuro Touch, LapSim [16], and Lap Mentor [58], are inclusive training
systems consisting of laparoscopic and endoscopic surgery, general surgery, and
bariatric surgery.

Usually, a treatment might not be able to directly applied to a specific pa-
tient due to the fact that the diagnostic results are based on averages, which
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result in a rough solution [32, 52]. PSM could handle medical image data (e.g.
CT, MRI, or Ultrasound), geometry, and material properties by anatomically
accurate means. It presents the potential for surgeons to practice the surgical
procedure preoperatively using VR simulator with the precise anatomy structure
and its dynamics for an individual patient [46]. This concept would improve the
accuracy of diagnosis and treatment, enhance the predictability of VR based
surgery simulation framework, and raise the patient care [4, 40, 44]. In recent
years, several surgical systems in laparoscopic nephrectomy [38], wrist joint [18,
19], hepatectomy and pancreatectomy [17] have combined the patient specific
characteristics into the simulator.

However, it is still challenging for the state of the art algorithms in com-
puter graphics and computer vision fields to bring patient specific modeling into
standard clinical usage concerning too many manual steps involved from data ac-
quisition, segmentation, 3D mesh generation to final surgery simulation [22, 28,
48]. The nonlinearity and complexity of their biomechanical models also cause
extreme challenges to give haptic feedbacks in real-time. Automating existing
manual steps in the workflow (such as soft-tissue segmentation, labelling, and ge-
ometric corrections), identifying the complicated patient-specific material prop-
erties, and creating a reusable and extendable pre-modeled prototype database
are indispensable for the future clinical approval. A general patient-specific work-
flow is shown in Fig.1. This survey focuses on comparing and discussing current
progress in medical image segmentation, mesh generation, and soft tissue simu-
lation.

Fig. 1. General workflow of patient-specific modelling

2 Geometry and Material Properties Acquisition

Patient-specific modeling takes the advantage of personal geometry and mate-
rial properties to generate the accurate computational mesh. There are primarily
two techniques to obtain the necessary parameters for a tissue or an organ. The
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first way is directly extracting the information from 3D medical images, namely
Computed tomography (CT), Magnetic Resonance (MR), three-dimensional ul-
trasound (3D-US), positron emission tomography (PET) and rotational angiog-
raphy (RA) scanners. These kinds of medical images could provide anatomical
information represented as a 3D array of grey scale intensities in Digital Imaging
and Communications in Medicine (DICOM) format [3]. Meshes are first gener-
ated from the image preprocessing and then assigned the material properties to
create the computational model.

3D image segmentation could also be conducted in a top-down fashion by
forming, training, and matching statistic models with shape and appearance
variations. The approach of concentrating on landmark-based shape representa-
tion and variants of Active Shape [14] and Active Appearance [13] models are
known as Statistic shape models (SSM) [26]. Comparing with the first method,
SSM could prevent the risks correlated with CT scans [6], largely save the com-
putational cost for the sake of fewer image preprocessing steps involved, and
the final output model could be put into the pre-model database for the future
application. However, studies in SSM field are still immature and need further
validation, so this review mainly discusses the patient-specific modeling through
the medical image processing.

Although there are different modalities of medical images, this review focuses
on CT and MRI based methods considering they are the most widely accepted
non-invasive radiographic techniques. Comparing with MRI, CT is well suited
for bone injuries, cancer detection, and lung and chest diagnose. Whereas MRI
could produce clearer differences between normal and abnormal tissues, it is
more suitable for soft tissue evolution studies such as brain tumors and spinal
cord injury. Table 1 compares the difference of characteristics between CT and
MRI.

Table 1. Comparison between CT and MRI

Image Types Characteristics Appropriate Study Areas

CT
1. Time and cost efficient 1. Bone injuries
2. Painless 2. Cancer detection
3. Shows up the acute bleed 3. Lung and chest diagnose

MRI

1. No radiation exposure 1. Brian tumors
2. Good resolution 2. Ligament and tendon injuries
3. Clearer differences between 3. Spinal cord injury

normal and abnormal tissues

3 Segmentation

Segmentation, a process of dividing medical images into regions with similar
properties such as color, texture, contrast, and gray level that specifically dis-
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play different tissue structures, organs, or pathologies, is critical for 3D anatom-
ical reconstruction in PSM pipeline [23]. Segmentation has been regarded as the
most tedious step for the reason that human anatomical structures are naturally
complicated and rarely own any linear features. Even the segmentation of bone,
the tissue that is considered as physically and geometrically linear, faces obsta-
cles like the similar intensity with adjacent soft tissues and different grey values
for different bone regions [33]. While various algorithms have been proposed in
recent years, to achieve complete, accurate, and efficient automatic segmenta-
tion is still a tough problem. Medical image segmentation algorithms could be
roughly divided into three categories: edge based segmentation, region based
segmentation, and clustering and classification based segmentation.

3.1 Edge based Segmentation

Edge based segmentation generally applies the derivative operator to search and
identify gradient fields in images. This conventional method separates the objects
boundaries by locating sharp discontinuities in different color or gray level infor-
mation. Prewitt [51] provides the first order derivative edge-detecting operator
to approximate the magnitude and orientation of an image limited in the 3x3
district for eight directions. Second order derivative edge detective introduced by
Marr and Hildreth in 1980 [39] who suggest applying Gaussian smoothing before
Laplacian. Edge based segmentation methods are noise-sensitive. Sometimes the
fake edge and weak edge could not be detected so that they always need to be
combined with the region based segmentation algorithms.

3.2 Region based Segmentation

Compared with the edge-based segmentation that segments images depending
on sharp changes between edges, region-based segmentation partitions images
into homogeneous regions according to predefined rules. They are rather simple
and noise immune.

Region Growing. Starting with a seed region and the stop condition (gray
level intensity, shape, color, texture or model), regions growing by appending
pixels that share similar properties to the seed region, and finally, stop when no
more pixel meets the predefined growing criteria [1].

Region Splitting and Merging. Region splitting and merging [29] the con-
junction of splitting and merging algorithms. The former algorithm sets an initial
region includes the whole image, then iteratively splits regions into sub-regions
referring to similarity criteria, and stops when no more splitting is possible.
Merging algorithm complies with a contrast rule with splitting techniques by re-
peatedly merging similar region with similarity criteria. Region-based approaches
hugely rely on seed regions according to the selection and the similarity princi-
ples, consequently, it might have the chance to over or under segment and waste
computational costs both on time and memory.
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3.3 Clustering and Classification

Supervised learning. In 1993, Pal and Pal [49] predicted that Artificial Neural
Network (ANN) based algorithms would be widely used in image segmentation.
ANN, a self-learning model consists of large number of connected simple units
called Artificial Neurons, could offer real-time automatic medical image segmen-
tation by training classifier using training set (extracting features) in advance.
Latterly, various supervised, semi-supervised, and unsupervised learning algo-
rithms are developed. Recently, Havaei et al. [25] propose an automatic brain
tumor segmentation method based on deep neural networks which achieve very
fast segmentation between 25 seconds to 3 minutes, the sample result is shown
in Figure.2 The biggest problem for all machine learning methods is that the
learning methods are not able to formulate the model far outside the data col-
lected during the training stage, so this made the data capture the crucial part
of the supervised methods.

(a) Saggital View (b) Axial View

Fig. 2. Brain tumor segmentation based on deep neural network [25]

Unsupervised Learning. Unsupervised learning algorithms often target on
building decision boundaries towards unlabeled training set. Clusters are then
formed in the multidimensional feature vectors. K-means Clustering Methods [24]
implement the hard segmentation for a certain number of K clusters while Fuzzy
C-means [35] algorithms produce soft segmentations. It works by assigning the
membership to pixels of the corresponding cluster in which they have maximum
membership coefficients. Despite the advantages such as accuracy, efficiency and
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more image information presented, the final outcomes of unsupervised algorithms
are constrained to the initial cluster matrix and feature extraction.

There is no unique standard segmentation algorithm could be applied to all
the circumstances for all the organs, tissues or tumors. Some hybrid techniques
could achieve better results. For instance, Unsupervised algorithm GA(Genetic
Algorithm) derived from ANN are combined with Self-Organizing Maps (SOM)
to detect the main features in medical images [27]. Table 2 compares the lists of
current open-source tools for medical image segmentation.

Table 2. Segmentation Software Comparison

Name Characteristics Reference

ITK-SNAP
1. Easy to learn and use software

[12]
2. Rely on well-defined boundaries and homogeneous structure

MITK
1. General and Extensible

[45]
2. Less suitable for complicated anatomy structure

3D Slicer
1. Extensible

[20]2. Not time efficient
3. Not appropriate for tissue with ill-boundaries and
inhomogeneous structure

Seg 3D
1. Flexible

[31]
2. Difficult to learn for non-professional user

4 Mesh Generation

In patient-specific modeling, computational mesh representation of anatomical
structure is considered as the most crucial step, which contains discretization of
multidimensional problems into fundamental geometry elements, such as tetra-
hedron or hexahedron [42]. Despite numerous automating algorithms have been
developed, most of them target at engineering design and application, thus, are
normally not suitable for anatomic modeling representation. Generating high
quality three-dimensional computational finite element mesh from the segmented
output for surgical simulation is facing many challenges. A good mesh should be
accurately embodied for multi-material intersection mesh features: corners (none
intersection), edges (1 intersection), and surfaces (2 intersections) [8]. As Vice-
contl et al. [56] identified, four general rules should be followed for segmentation
and mesh generation:

– Automation: Algorithms should be as automatic as possible to serve the
patient-specific pipeline for any input patient data

– Geometrically Accuracy: Computational mesh simulation outcomes would
be applied for the virtual surgery training, so that mesh generation must be
geometric accurate
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– Robustness: Image information from CT or MRI and segmented output
might be inadequate, complicated, or difficult to process. The mesh gen-
eration algorithm need to be robust enough to deal with these kinds of
circumstances

– Generality: Quality mesh should be generated regardless of their geometric
complexity

4.1 Mesh Types

Hexahedral Mesh. One hexahedral mesh needs to be represented by at least
five tetrahedral meshes. The geometry structure of hexahedral mesh is more
accurate, and volumetric locking free. However, it often requires a huge amount
of time and operators even for a single mesh, consequently, by far, there are no
automatic hexahedral mesh generation algorithms for the complicated human
tissue modeling.

Meshless Methods. Finite element methods suffer from several technical lim-
itations, for instance, huge computational cost of soft tissue deformation and
accuracy of calculation relying on the generated mesh quality. Meshless meth-
ods are regarded as one possible solution to solve these technical difficulties.
But in current stage, there is still a long gap before meshless algorithms are
transferred to clinical practice.

Tetrahedral Mesh. Tetrahedral meshes are well accepted for patient-specific
mesh generation because they are relatively easier to express complex geometry
of organs and tissues like brain, heart, blood vessels, bones etc. If given the hu-
man organs or tissues geometric information in a surface manner, the tetrahedral
meshes could be generated automatically. Unfortunately, tetrahedral elements
present artificial stiffness known as volume locking when coping with incom-
pressible materials, especially for brain [41] and soft tissues. Bonet and Burton
proposed the average node pressure (ANP) tetrahedral mesh to achieve better re-
sults for nearly incompressible materials [9]. More recently, Leea et.al [34] present
a robust and efficient form of the smoothed finite element method (SFEM) to
prevent this issue.

4.2 Tetrahedral Mesh Generation Strategy

Tetrahedral elements are still the mainstream for the state of the art patient
subject mesh expression. Mesh Generation strategies could be approximately
divided into three groups: Advancing Front, Octree-based, and Delaunay Trian-
gulations. Basic idea behind Advancing Front is to subdivide element by element
iteratively to reduce the domain with an initial boundary mesh [54]. Mesh quality
hugely relies on surface remeshing, and poor quality meshes are always produced
along boundaries. Octree-based algorithms partition geometric cubes iteratively
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until touching the anticipated resolution [59] where multi-material junction con-
sistency problem could be resolved. Tetrahedral meshes are produced from both
the irregular cells, which is formed along with boundary and internal regular
cells. However, orientation of the meshes changes with the octree cell. Quality
improvements, namely local refinement, local remeshing, and Laplacian smooth-
ing are often needed in the post-processing step.

Among three mesh generation strategies, only Delaunay based techniques of-
fer the quality control and able to deal with arbitrary complexity anatomic tissue
or organ structures Table 2 compares the properties of three mesh generation
algorithms. Delaunay triangulation strategies could be further divided into three
types:Boundary Constrained, Delaunay Refinement, and Voronoi-Delaunay:

Table 3. Three types of mesh generation algorithms applied in medical image

Surface Mesh Preserved Quality Control
Arbitrary Complexity

Input

Advancing Front � × ×
Octree-based × × ×
Delaunay Refinement � � �

Boundary Constrained The goal of boundary constrained is to keep the input
boundary mesh unchanged [57]. In patient-specific solutions, this characteristic
would be typically useful as it could maintain the intrinsic geometry attributes
and save the operations like flips and vertex insertion. However, the complexity
of human anatomy made the boundary-constrained algorithm hard to implement
and can not guarantee the mesh quality.

Voronoi-Delaunay method creates a convex mesh-dependent energy function
to ensure the local or global minimum exists [2]. High quality tetrahedral meshes
with uniform distribution are produced and optimized at the same time, while
the input boundary meshes must be changed, and implementation process is not
computationally and timely efficient.

Delaunay Refinement aims at ensuring the mesh quality that leads the re-
quirement of input boundary mesh modification. One way to achieve this goal
is to keep the boundary elements while meshing the input domain after mesh-
ing or remeshing the input surface boundary. An alternative way is to operate
the surface and volume mesh instantaneously by getting new boundary mesh
through restricted Delaunay triangulation [53], which is a preferred solution for
computational mesh generation.

There are several advantages of this technique. Firstly, instead of conven-
tional mesh generation process who needs to go through a few tedious steps:
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isosurface extraction (usually done by marching cubes [37]), simplification, sur-
face remeshing, merging and volume mesh generation, Delaunay refinement is
an integrated process. Moreover, it gives the size and quality control for the
tetrahedral mesh and approximation of surfaces and sharp features. Whereas
two inevitable problems are also raised: small (dihedral) angles might destroy
the refinement process, and ill-shaped tetrahedral (quasi-degenerate tetrahedral
of special kind named Sliver) might be included in the final outcomes. Fig.3 is a
3D computational model generated from segmented image by CGAL [30]. From
the review of current progress in mesh generation, it can be concluded that gen-
erating the high quality computational mesh and handling the boundary domain
in a reasonable time frame is still very challenging.

Fig. 3. Mesh Generation by Delaunay Refinement [30]

5 Surgery Simulation

Besides from precise anatomical modeling for a specific patient, real time soft
tissue simulation is also a crucial part of the fast surgery simulation system [50].
Due to the fact that most of anatomical parts are soft tissue within the surgery,
the accuracy of soft tissue deformation would enormously influence the perfor-
mance of the whole framework [21]. There are mainly four types of simulation
approaches have been widely used nowadays.

5.1 Force Based Approach

Mass-spring [5, 10, 36], a simple and inexpensive scheme takes Newtons second
law of motion as the theory basis to first compute the velocity from accelerations
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and then the positions from velocities, which is hard to tune the spring constants
to get desired behavior and leads to overshooting problem.

5.2 Structural Based Approaches

Finite element method(FEM) [60] takes the continuum mechanics as the the-
ory basis, which could produce accurate physical behaviors for different types of
elastic material. However the model complexity makes the technique high com-
putational cost, and the sparsity patterns from FEM are highly unstructured in
2D+, thus it could be difficult to efficiently parallelize a FEM code [55].

5.3 Position Based Dynamics

Position Based Dynamics (PBD)[43] is a method works on positions directly in
each simulation step. It is fast, stable, and controllable which makes the simula-
tion process highly efficient, easier, and best suited for the interaction environ-
ment [7]. Even though the behavior of deformable objects can be modeled using
PBD with additional constraints such as shape matching. It cannot accurately
simulate the realistic behavior of soft tissues. The real-world human soft tissues
produce non-linear and anisotropic behaviors or heterogeneous properties that
hugely limits the results for surgery simulation. Although designing the compli-
cated non-linearly constitutive model might solve these kinds of problems, this
could also lead to high computational cost and difficult parameters. Data driven
methods could be a possible solution.

5.4 Data Driven Methods

Geometric Data Driven Simulation [7]. captures the deformation example
and decomposes the large scale geometry (the overall shape of the tissue) and
the fine scale geometric (the details such as wrinkles). They can be represented
as different resolutions, modeled separately, and connected by the subdivision
schemes. Finally, high-resolution output with details is the synthesis of these two
scales geometry, which could follow the position based dynamics method.

Mechanical Data Driven Simulation [47]. Unlike the geometric data driven
methods where the parameter data could be directly measured from the train-
ing sets, mechanical data driven methods require both the deformation and
forces data from the data captured stage, and parameter data are estimated
through the numerical optimization based on physics mechanics (for example,
FEM method)

6 Future Challenges and Conclusion

This paper takes a survey for current progress in virtual reality surgery simu-
lation, particularly, concentrates on patient-specific modeling and real time soft
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tissue simulation. The complexity of human anatomical representation and the
uniqueness for an individual patient and their ailments yield many challenges
yet. Further works in these fields are desired, including accurately analyzing the
geometric and anatomic structures from medical images, transferring the infor-
mation to high quality computation models, and solving technical difficulties
related to realistic soft tissue simulation and high fidelity natural human com-
puter interactions, to present the trainee an immersive surgery environment with
realistic visual and haptic feedback.
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