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Detection of aesthetic highlights is a challenge for understanding the affective processes taking place during
movie watching. In this paper we study spectators’ responses to movie aesthetic stimuli in a social context.
Moreover, we look for uncovering the emotional component of aesthetic highlights in movies. Our assumption
is that synchronized spectators’ physiological and behavioral reactions occur during these highlights because:
(i) aesthetic choices of filmmakers are made to elicit specific emotional reactions (e.g. special effects, empathy
and compassion toward a character, etc.) and (ii) watching a movie together causes spectators’ affective
reactions to be synchronized through emotional contagion. We compare different approaches to estimation
of synchronization among multiple spectators’ signals, such as pairwise, group and overall synchronization
measures to detect aesthetic highlights in movies. The results show that the unsupervised architecture
relying on synchronization measures is able to capture different properties of spectators’ synchronization
and detect aesthetic highlights based on both spectators’ electrodermal and acceleration signals. We discover
that pairwise synchronization measures perform the most accurately independently of the category of the
highlights and movie genres. Moreover, we observe that electrodermal signals have more discriminative power
than acceleration signals for highlight detection.
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1 INTRODUCTION TO AESTHETIC HIGHLIGHTS IN MOVIES
Aesthetic experience is one of the most substantial but also one of the poorly defined concepts in
art. It can be defined as a special kind of relationship between a person and an artistic object in
which a particular object absorbs the person’s mind and overshadows other surrounding objects
and events [56]. Aesthetic experience is also considered as being a subjective part of an artistic
exposure and corresponds to a feeling of being engaged with a piece of art. Aesthetic experience is
intended to be different from the everyday experience [22, 69], and to be a special state of mind in
which attention of a person is focused on an artistic object while all other common objects, events,
and everyday concerns are overshadowed. There are also different concepts of aesthetic experience,
for example, an effortless mental energy flow induced by the awareness of agreement between
incoming information and our goals [19, 20]. Futhermore, the concept of peak experience assumes
that attention is fully focused on a particular object, while the object is seen as separated from its
everyday purpose [57]. The concept of absorption refers to having episodes of amplified attention.
It links the subjects’ mental and executive resources [75]. Also, aesthetic experience is referred
to creative processes occurring in art [47]. The creative action can happens when ambiguous
concepts are assembled into a new whole object, for example, an old bicycle seat is mounted next
to handlebars in the "Bull’s Head" (Pablo Picasso).
An investigation of an inner affective state of a person, who is exposed to an artistic object, can
provide insight into understanding of humans’ engagement with art, humans’ emotions and some
features of artistic objects that affect a personal experience. People can be exposed to different pieces
of art, such as paintings, sculptures, jewelry, images, music, video games, films. Aesthetic emotions
as a part of aesthetic experience are elicited during an exposure to an artistic object and measurable
in physiological and behavioral reactions of a person. Recent work has attempted to establish the
link between aesthetic and everyday emotions [43]. Understanding spectators’ affective responses
to movies with aesthetic values is a challenge [74] and requires to model spectators’ multimodal
responses in a social context of watching movies.
The main focus of this paper is to understand spectators’ responses to aesthetic highlights in
full-length movies which correspond to scenes with high aesthetic values in terms of form and
content. These scenes are constructed on purpose by the moviemakers in order to establish a
connection between the spectators and the movie and to allow spectators to be engaged with the
movie (including a high level of arousal). This research can make contributions to many applica-
tions, such as aesthetic scene detection, aesthetic scene design, video summarization and movie
recommendation systems are able to predict the rating of aesthetic content.
In this paper we investigate spectators’ responses to aesthetic highlights in a social context when
spectators watch a movie together. We assume that spectators can display similar behaviors and
have similar physiological reactions when they are watching a movie together because: (i) aesthetic
choices of filmmakers are made to elicit specific emotional reactions (e.g. special effects, empathy
and compassion toward a character, etc.) and (ii) watching a movie together causes spectators’
affective reactions to be synchronized through emotional contagion [39]. For these reasons we take
on gaining insight into synchronization among multiple spectators.
In order to uncover relations between an occurrence of aesthetic highlights in films and multiple
spectators’ affective states, we address the following research questions:
1. Do aesthetic highlights elicit emotions in movie audiences?
2. Can the level of synchronization among spectators’ reactions be used to detect the dif-
ferent categories of aesthetic highlights?
3. If it is possible, which of these synchronization measures are the most reliable to effi-
ciently detect aesthetic highlights?
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Below we emphasize the main contributions of our paper, highlighting the novelty compared to
our previous work [60]:
- We provide insight on emotional components of aesthetic highlights. We discover the direct link
between emotional dimensions (arousal and valence space) and aesthetic highlights. There has
been no previous work formally addressing the relationship between movie audiences’ emotions
and aesthetic highlights in movies.
- We investigate the relationship between different approaches to synchronization estimation, such
as pairwise, group and overall synchronization measures to gain insight on multiple spectators’
reactions. There have not been comprehensive and comparative studies on synchronization mea-
sures including multiple spectators’ physiological and behavioral responses.
- We use the level of synchronization of movie audiences’ electrodermal and acceleration measure-
ments to detect aesthetic highlights. Then, we find the pairwise approach to synchronization that
performs aesthetic highlight detection very efficiently compared to other measures through several
movie genres.
- We create one of the largest database of aesthetic highlight annotations which will help to study
movie audiences’ responses to aesthetic content. This database consists of 30 full-length movies
derived from 9 movie genres: action, adventure, animation, comedy, documentary, drama, horror,
romance and thriller.
In section 2 we discuss related work and if there is a need to study synchronization measures in
the context of processing of humans’ affective states. In section 3 we detail architecture of our
unsupervised highlight detection system and adaptation of synchronization measures to process
spectators’ physiological and behavioral signals. In section 4 we describe an annotation process
of aesthetic highlights including evaluation of annotations in terms of evoking emotions (arousal
and valence). In section 5 we present the results with their interpretation. In section 6 we provide
discussion on the main results of our studies and the future work.

2 RELATEDWORK
In the area of highlight detection many studies have been focused on analysis of audio-visual fea-
tures of movies and videos. A fuzzy inference system to summarize the content of broadcast soccer
videos using an on-demand feature extraction was implemented in [70]. Besides, a multi-task deep
visual-semantic embedding model that automatically select query-dependent video thumbnails
with regard to visual and side semantic information was developed [55]. An unsupervised learning
of highlights from videos using generic deep learning features was proposed in work [78]. The
approach is computationally efficient and accurate in characterizing both appearance and motion
of objects in videos. Moreover, a pairwise deep ranking model was used to learn the relationship
between highlight and non-highlight segments for video summarization [79]. Furthermore, research
on detection of violent scenes in movies uncovered the relevant features: short time audio energy,
motion component, and shot words rate for violent scene classification [33]. In other studies [12] the
face, blood and motion information was integrated successfully to determine whether action scenes
have violent content or not. Also, in recent work [28, 62] audio event and voice activity detection in
movies were investigated using Bayesian networks and Long Short Term Memory recurrent neural
networks, respectively. However, there are no studies have focused on the detection of aesthetic
highlights in movies.
More than a decade ago, an initial attempt to detect affective events in video data applying Hidden
Markov Models (HMMs) to color, motion and shot cut rate features was discussed [44]. Also, HMMs
were used for detection of video affective content and audio emotional events in [77]. Furthermore,
Support Vector Machine classifiers were applied to low-level audio-visual features to build a clas-
sification system of affective scene in movies [76]. Besides, affective video content was mapped
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into an arousal-valence space using low level features from video data [38]. From the affective
computing point of view, deep learning and transfer learning were applied in the context of emotion
prediction in movies [3]. In [74], the authors carried out baseline studies on modeling a relation
between a large set of low-level computational features (i.e., visual, auditory, and temporal) and
perceptual stylistic, aesthetic and affective attributes of selected movie clips. Nevertheless, they did
not investigate affective and aesthetic characteristics of full-length movies. This did not allow them
to take into account the structure and the context of movie shots and scenes made on purpose by
filmmakers.
In the meantime, another researchers have attempted to investigate emotion recognition in re-
sponses to multimedia content using electroencephalography (EEG) signals, peripheral physi-
ological signals and facial expressions [52, 71] or movie genre was identified based on magne-
toencephalography (MEG) signal recorded in a control environment [31]. In [72], the authors
investigated affective ranking of movie scenes using physiological signals and content analysis,
separately. However, they did not study fusion or integration of physiological or behavioral signals
of multiple spectators.
In [54], the authors introduced a weighted mean galvanic skin response profile among spectators.
Some efforts were made to create an affective profile of people who are exposed to movie content
using a single modality, such as electro-dermal activity [30] or facial expression of viewers [42]. In
[14], the authors also proposed to apply a physiological linkage to spectators’ signals for deter-
mining highlights in movie scenes. Movie audiences could not interact among themselves because
they were separately watching a movie without any social context. However recent studies on
individuals’ emotional responses and their physiological signals in the social context reported that
emotional experiences are shared during watching emotional movies together [34].
Most recent work on aesthetic highlight detection in movies defined and estimated a reaction profile
of spectators for identification and interpretation of aesthetic scenes [49], or estimated physiological
and behavioral changes of spectators exposed to aesthetic content using the dynamic time warping
[48, 50]. Furthermore, the manifold representation of multiple spectators’ physiological signals
was proposed to measure a level of synchronization among them [59], and the periodicity score
was applied to physiological and behavioral signals to establish synchronization among groups of
spectators [60]. Moreover, synchronization measurement has become an important tool for affec-
tive multimedia content analysis. It decodes information included in humans’ physiological and
behavioral signals [14, 31, 52, 54]. However, there is a lack of comparative study on synchronization
measures for analysis of social interactions and highlight detection.

3 DETECTION OF AESTHETICS HIGHLIGHTS IN MOVIES
In this work we assume that physiological and behavioral responses of spectators in the context
of watching movies together can be used to detect aesthetic highlights in movies. Electrodermal
activity and acceleration measurements are selected because of two factors: (i) the utility and
suitability of these signals for emotion and behavior assessments [30, 48, 54] (ii) the limitation of
available resources (running a large scale experiments constrains the number of modalities that
can be recorded).
In order to detect aesthetic highlights and gain insight on spectators’ responses to aesthetic stimuli,
we propose an unsupervised highlight detection system based on physiological and behavioral
reactions of spectators watching movies together, as shown in Figure 1. It is composed of three
parts: signal preprocessing, a synchronization estimation and detection based on a synchronization
level. Filtering and time windowing are included in the signal preprocessing, while synchronization
measures are used for the synchronization estimation and highlight detection.
We formulate highlight detection as a binary classification problem (highlight and non-highlight
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class) to respond to our second and third research questions (see section 1). There is a possible
overlap between different aesthetic highlights. A movie scene can contain more than one highlight,
for example, spectacular moments and character development [49]. In this paper we focus our work
on detecting the particular type of aesthetic highlights independently of those overlaps. We start

Fig. 1. The scheme of unsupervised highlight detection system based on synchronization among spectators’
physiological or behavioral signals.

with the preprocessing of spectators’ physiological and behavioral signals. Electrodermal activity
and acceleration signals are filtered by a low-pass filter to remove noise and distortions. Then, time
windowing is applied to each signals and a constant time lag between time windows is selected. The
main component of our detection system is an estimator of a synchronization level among spectators
that employs synchronization measures. To compute the amount of synchronization for each time
window, we can use different synchronizationmeasures.We expect that the value of synchronization
increases when spectators jointly react to aesthetic scenes. The choice of a synchronization estimator
is related to the type of analysis of synchronization which we attempt to carry out. We can analyze
synchronization at pairwise (local descriptors), overall (global descriptors) and group (trade-off
between local and global descriptors) levels to capture different patterns in multipule spectators’
responses [23]. The other main limitation comes out with the properties of the aesthetic highlights
(duration) and recorded electrodermal activity and accelerometer measurements.
Aesthetic highlights are determined for each time window based on the value of the estimated
synchronization among spectators. If the value of a synchronization measure is higher (lower) than
a threshold, we assign the time window to highlight (non-highlight) scenes [48, 49, 59]. The crucial
issue of our unsupervised detection system is the choice of a threshold for a given synchronization
measure which should be made with regard to performance of our system. We carry out the analysis
of the receiver operating characteristic (ROC) curves and the areas under the ROC curves (AUC) to
ovecome this and evaluate the overall performance of our system [29].

3.1 Synchronization measures
In this paper we attempt to investigate different synchronization measures with special emphasis
on estimating of physiological and behavioral synchronization. This includes all constraints re-
lated to highlight detection e.g. sampling frequency of physiological and behavioral signals, the
number of signals, the size of time window, the duration of highlights, etc. To understand different
approaches to synchronization estimation for analysis of multiple spectators’ signals, we divide
synchronization measures into 3 classes: pairwise, group and overall measures. Pairwise measures
establish synchronization between pairs of signals. Group measures can analyze clusters of signals
in principle. Overall measures can simultaneously process an arbitrary number of signals. The
obvious disadvantage of group and overall measures is that they are not able to provide local
information on synchronous activities due to their global properties. On the other hand, pairwise
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measures can only be successfully applied when some local activities are identified.
We underline that although we study a large variety of synchronization measures, it is impossi-
ble to include all existing synchronization measures in this paper. Moreover, novel measures are
constantly being developed. Our choice of synchronization measures is supported by our previous
work on this topic. We do not consider the basic pairwise synchronization measures, such as the
correlation, Spearman’s correlation, mutual information, Kolmogorov-Smirnov distance because
they did not provide any plausible results for highlight detection [59, 60]. Also, it is worth pointing
out that we are not able to estimate a covariance matrix by means of some pairwise synchronization
measures, such as the dynamic time warping, the shape distribution distance, the nonlinear inter-
dependence because of their properties. The dynamic time warping is not a normalized measure,
the shape distribution distance and the nonlinear interdependence require distance measurements
to neighbouring time windows.
In this section we briefly review three approaches to synchronization: pairwise, group and overall
measures and we propose to apply them to spectators’ physiological and behavioral signals in order
to detect aesthetic highlights in movies. A level of a synchronization measure should reveal the
synchronized reactions of spectators during watching a movie.
For spectators’ electro-dermal and acceleration signals {xi } we consider time windows {xi (l)} ,
i = 1, ...,M , l = 1, ...,N , where M is a number of spectators’ signals and N is a number of time
windows.

3.2 Pairwise synchronization
The key point of pairwise measures is to measure the amount of synchronization only at the local
level, between two time series. When the number of signals is more than 2, the synchronization
value is obtained by averaging synchronization values of all possible non-overlapping pairs of sig-
nals in a given time. We begin our review with mentioning about the Pearson correlation coefficient
that is perhaps the most common measure for linear interdependence between two signals and the
coherence function quantifies linear correlations in frequency domain (find the details [61]). There
are some attempts to propose an extension of the correlation, such as correntropy coefficient [36],
modifications of the partial coherence [23, 65]. Although the amplitudes of signals are statistically
independent, their instantaneous phases can be strongly synchronized. This refers to phase synchro-
nization [53]. Also, the Granger causality is considered as a part of synchronization measures that
are derived from linear stochastic models of time series which extent linear dependencies between
signals [6, 35]. Also, non-linear extensions of Granger causality have been proposed in [1, 13].
Several synchronization measures come from information theory [18]. The mutual information is
perhaps the most well-known synchronization measures of them. To study nonlinear dependencies
between time series, it has been calculated in time and time-frequency domain [2, 51]. Therefore,
stochastic event synchrony characterizes a family of synchronization measures that quantifies the
similarity between point process extracted from time-frequency representations of signals [24].
We introduce below the following pairwise synchronization measure: the dynamic time warping,
the shape distribution distance and the nonlinear interdependence. In this paper, we use a mean
value of a pairwise synchronization measure over all possible pairs of signals at a given time stamp
l as the value of the synchronization measure [48, 50].

3.2.1 Dynamic time warping. Let us suppose there are two time windows xi (l) and x j (l), where
i, j = 1, ...,M , l = 1, ...,N . In order to align these two signals, we create a matrixDW which contains
the Euclidean distances between pairs of samples from time window xi (l) and x j (l) [58]. A warping
path W between two time windows is a set of matrix elements which creates a mapping between
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them. The warping path W of the length p is defined as follows
W = w1,w2, ...,wP , (1)

wherew1,w2, ...,wp are the elements of the matrix DW .
The total cost cW (xi (l),x j (l)) of the warping path W is expressed by

cW (xi (l),x j (l)) =
P∑
p=1

wp . (2)

The optimal warping path between two time windows xi (l) and x j (l) is a warping pathW ∗ that
has a minimal total cost among all possible warping paths.
The Dynamic Time Warping (DTW) distance between two time windows xi (l) and x j (l) is the total
cost of the warping pathW ∗, as follows [5]

dDTW (xi (l),x j (l)) = cW ∗ (xi (l),x j (l)). (3)
The distance dDTW (xi (l),x j (l)) is computed for each pair of time windows xi (l) and x j (l), where
i, j = 1, ...,M , l = 1, ...,N . The computational cost of the dynamic time warping is O(Nm2M2) and
is bounded by the numberM of signals, the number N and the sizem of time windows.

3.2.2 Shape distribution distance. Time-delay coordinate embedding is used in analysis of
dynamical systems [73]. This method embeds a scalar time series into anm-dimensional space to
reconstruct the state space trajectory of a dynamical system. For each sample xi , i = 1, 2, 3, ...,N
of time series {xi }, a representation of the delay-coordinate embedding can be expressed as the
following vector Xi which consists ofm components

Xi = [xi ,xi+τ ,xi+2τ , ..,xi+(m−1)τ ], (4)
where τ is an index delay andm is an embedding dimension. Theoretical discussion on the choice
of these parameters is out of the scope of our paper. The index delay and the embedding dimension
are selected based on the duration of aesthetic highlights. Diffusion maps of time-delay coordinate
embedding provides a new low dimensional parameterization that is able to capture the changes
in physiological and behavioral signals. When diffusion maps are applied [17], an affinity metric
K(xi ,x j ) is defined between pairs of the samples xi and x j based on their representation in time-
delay coordinateXi andX j , respectively. Then, we only take into account a collectionM of samples
xi to define the following kernel

K(xi ,x j ) = e
−||Xi −Xj | |

ϵ , (5)
where ϵ is a scale parameter of the affinity metric (the parameter is selected based on the mean
distance between points in the m-dimensional space) and i, j = 1, 2, 3, ...,M, M < N . We can
consider the collection M as nodes of an undirected symmetric graph, where two nodes xi and
x j are connected by an edge with the affinity weight K(xi ,x j ). We pursue the construction of a
Markov chain on the graph nodes by normalizing the kernel K(·, ·). Let K be the kernel matrix, and
let P = D−1K be the corresponding transition matrix, where D is a diagonal matrix with elements

Dii =
M∑
j=1

K(xi ,x j ). In sequence, we calculate Pt analogues to P , where P(xi ,x j ) is the probability of

transition in a single step from node xi to node x j . In addition, we define Pt (xi ,x j ) as the transition
probability in t steps from node xi to node x j . This introduces us to a definition of the diffusion
distance Dt (xi ,x j ) between pairs of samples, defined by [17]:

Dt (xi ,x j ) =

√√√
M∑
q=1

(P(xi ,xq) − P(x j ,xq))
2w(xq), (6)
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wherew(xq) is a normalization weight. Intuitively, two points are similar when many short paths
with large weights connect them. It is proven that the diffusion distance Dt (xi ,x j ) can be com-
puted using the eigenvalues {λi }, that tend to 0 and have a modulus strictly less than 1, and the
corresponding eigenvectors {φi } of the transition matrix P [17]. Let Φt (xi ) for some t ≥ 0 be
the diffusion maps of time series samples {xi }, i = 1, 2, 3, ...,M into Euclidean space Rs that is
expressed by

Φt (xi ) = [λ2t1 φ1(xi ), ..., λ
2t
s φs (xi )], (7)

where s ∈ {1, 2, ...,M − 1} is the new space dimensionality.
It is shown that the diffusion distance between samples xi and x j is equal to the Euclidean

distance in the diffusion map space, as follows [17]

Dt (xi ,x j ) = | |Φt (xi ) − Φt (x j )| |. (8)

In this paragraphwe present a geometric frameworkwhich computes the amount of synchronization
between a pair of spectators’ physiological or behavioral signals. The idea is tomeasure the similarity
between local shapes of reconstructed signal manifolds [59]. To capture the unique local geometric
properties of a signal manifold, we introduce the local shape cumulative distribution function Fσxi (δ )
of pairwise diffusion distances for each sample xi and its delay samples xi ,xi+1, ...,xi+σ defined by

Fσxi (δ ) =

∫
1D̃t (xi ,xi+q )≤δdµ, (9)

where q ∈ {1,σ }, µ is a counting measure and 1D̃t (xi ,xi+q ) is an indicator function with respect to a
delay sample on manifolds. Moreover, σ should be chosen to obtain enough a number of samples
required for density estimation (σ = 50). Besides, D̃t (·, ·) is the cosine distance in the diffusion
maps space that can be derived from the Euclidean dot product. Normalization is advantageous to
the local shape distribution, as follows

F σ
xi (δ ) =

Fσxi (δ )

Fσxi (∞)
. (10)

For two time series {xi } and {yi }, the synchronization measure that is named Shape Distribution
Distance (SDD) is derived from computing the Kolmogorov-Smirnov distance between two local
shape distributions of their manifold representations for each time step i that is defined

Sσ (xi ,yi ) = max
δ

|F σ
xi (δ ) − F σ

yi (δ )|. (11)

If two signals are the same Sσ (xi ,yi ) is equal to 0. The complexity of the shape distribution distance
is O(M2N 3) and is bounded by the numberM of signals and the number N of time windows.

3.2.3 Nonlinear Interdependence. The concept of the nonlinear interdependence comes from
studies on generalized synchronization that evaluate the interdependence between signals in a
reconstructed state space domain [67]. The nonlinear interdependence measures the geometrical
similarity between the state space trajectories of two dynamical systems. Time-delay embedding is
applied to two time series {xi } and {yi } i, j = 1, ...,N to reconstruct the trajectories analogous to
shape distribution distance [73]. The mean square Euclidean distance of each sample xi to its K
nearest neighbours xr , r = 1, ...,K in the delay-coordinate embedding is

RK (xi ) =
1
K

K∑
r=1

(Xi − Xr )
2, (12)
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and the mean squared Euclidean distance conditioned by the equal time partners of the K nearest
neighbours of yi is

RK (xi |yi ) =
1
K

K∑
r=1

(Xi − Yr )
2. (13)

The nonlinear interdependence (NI) measure is defined as [66]

SK (xi |yj ) =
RK (xi )

RK (xi |yi )
. (14)

The number of nearest neighbours should be selected to accurately estimate an average distance a
point to its nearest neighbours (K = 50). To make the nonlinear interdependence symmetric, we
consider SK (yi |xi ) and we then average these parameters. When two time series are synchronized
(desynchronized), the value of the nonlinear interdependence is close to 1 (0). Searching K nearest
neighbours of N time windows for calculating the nonlinear interdependence among all possible
pairs of signalsM can be found in O(M2KNloдN ) time.

3.3 Group synchronization
A group measure intends to be a trade-off between pair and overall approaches to synchronization.
It can capture synchronization among groups of signals based on the connectivity of signal clusters.
This approach to synchronization contains a multivariate measure which ascribes a single value to
groups of signals in comparison with pairwise or overall measures [60]. We detail below how we
can adapt the periodicity score to measure synchronization among groups of spectators.

3.3.1 Periodicity Score. Here we detail the usage of the periodicity score to measure synchroniza-
tion of signals [63, 64]. First, we map spectators’ physiological or behavioral signals to a geometric
framework of real Grassmann manifolds by applying the reduced singular value decomposition
(RSVD) to their short time Fourier transform (STFT). We analyze time windows {xi (l)} , i = 1, ...,M ,
l = 1, ...,N of spectators’ signals as a sequence of points encoded on the Grassmann manifold
preserving their intrinsic dependencies. Next, we associate a level of the periodicity score with the
synchronized spectators’ physiological and behavioral signals.

STFT. We apply STFT to given time windows xi (l), i = 1, ...,M , and we yield x i,lt,f in the time
and frequency domain, where t is a time frame index and f is a frequency band index. Each time
window xi (l) is split into segments with an overlap of 50% to apply STFT in this paper. Let S i,lx (t , f )
be the squared magnitude of the STFT, as follows

S i,lx (t , f ) = | |x i,lt,f | |
2
. (15)

RSVD. Then, we map time windows {xi (l)} of all signals on Grassmann manifolds to recover
the intrinsic dependencies among them [15]. The real Grassmann manifoldG(k,n) parametrizes all
k dimensional subspaces of the vector space Rn . A sequence of corresponding matrices S i,lx (t , f ),
i = 1, ...,M can be mapped to the points on the manifold G(k,n) using RSVD. If we compute RSVD
of matrix S i,lx (t , f ), as follows:

S i,lx (t , f ) = U iΣiV iT , (16)
then the columns of the n × k orthogonal matrixU i are a non-unique basis for the column space of
S i,lx (t , f ). Thus,U i can be used to represent the matrix S i,lx (t , f ), and can be identified with a point
on the Grassmann manifold G(k,n). Once the time windows are mapped to a sequence of points
onG(k,n), the pairwise distances between these points can be found using a function of the angles
between subspaces.
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Let U i and U j be two k dimensional subspaces, we measure the similarity dmin(U
i ,U j ) of two

points on the Grassmann manifold G(k,n) by applying the minimum correlation distance [37]

dmin(U
i ,U j ) = sinθk , (17)

where 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θk ≤ π
2 are principle angles between two subspaces.

Periodicity Score. Finally, we introduce the basics of persistent homology: filtrations and
persistence diagrams [32, 63, 64]. Once the sequence of S i,lx (t , f ), i = 1, ...,M matrices is mapped
to G(k,n) and defines a metric space (U = {U 1, ...,UM },dmin(·, ·)), we recall the definition of the
Vietoris-Rips complex Ripsα (U ) as the set of the simplices [U 1, ...,U q] such that dmin(U

i ,U j ) ≤ α
for i, j = 1, ...,q. There is an inclusion of Ripsα (U ) in Ripsβ (U ) for any α ≤ β . The sequences of
inclusions are called filtrations Filtα (U ). Persistence diagrams study the evolution of the topology of
a filtration, and to capture properties of the metric which is used to generate the filtration. Existing
connected components are merged for 0−th homology, when α increases. Persistent homology
tracks the birth (appearance) b and death (disappearance) d of all connected components. The
maximum persistencemp(dдm(xi (l))) of a persistence diagram dдm(xi (l)) is defined as follows [64]

mp(dдm(xi (l))) = max
(b,d )∈dдm(xi (l ))

pers(b,d), (18)

where pers(b,d) = d − b for (b,d) ∈ dдm(xi (l)), and as ∞ otherwise. Finally, we can provide the
periodicity score S(xi (l)) [64]

S(xi (l)) =
mp(dдm(xi (l)))

√
3

. (19)

The normalized maximum persistencemp(dдm(xi (l))) of a persistence diagram dдm(xi (l)) can help
us to quantify synchronization among signals because it is capable of measuring their intrinsic
geometric dependencies. The periodicity score can measure synchronization among groups of
signals based on the connectivity of signal clusters. When S(xi (l)) equals 0, it means that we can
not explore any structure in our data. If a value of S(xi (l)) rises close to 1, we find some strong
connectivity structure of data. The computational complexity of the periodicity score is O(mNM2)

and is bounded by the numberM of signals, the number N and the sizem of time windows.

3.4 Overall synchronization
The overall approach to synchronization measurement simutaneously processes all the time series
and considers them as components of a single interdependent system. This provides us the overall
characterization of signal dependencies. The omega complexity is a synchronization measure which
is derived from applying the principle component analysis to a covariance matrix [68]. GivenM
signals, the multivariate time series is viewed as a series of temporary maps whose sequence over
time defines a trajectory of a dynamical system in aM dimensional space. The omega complexity
evaluates in particular the complexity of a trajectory by means of examining its shape along the
principle dimensions. S-estimators are an extension of omega complexity based on Shannon entropy.
[40]. We detail below the concept of the family of the S-estimators with different estimators of a
covariance matrix.

3.4.1 S-estimators. All signals can be viewed as the representation of a trajectory that can be
modeled in a high-dimensional state-space. The dimensionality of the trajectory in the state-space
can be assessed based on the principle component analysis of an estimated covariance matrix. The
minimum entropy characterizes the situtation when a few normalized eigenvalues only are nonzero
showing the high level of synchronization. Let Cl = (Cl

i j ) be a covariance matrix in which Cl
i j is

cross-dependence between time window xi (l) and x j (l), where i, j = 1, ...,M , l = 1, ...,N , such as
correlation, phase synchronization (phase locking value), synchronization likelihood, windowed
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mutual information, event synchronization, heat kernel, diffusion map and so on [21], [40].
The eigenvalue decomposition of Cl is

Clvlu = λluv
l
u , (20)

where eigenvalues λl1 ≤ λl2 ≤ ... ≤ λlM are in increasing order andvlu ,u = 1, ...,M are corresponding
eigenvectors. As the matrix Cl is a real and symmetric, all eigenvalues are real numbers, and the
trace of Cl is equal to the number of signalsM .
The S-estimator is proposed to measure synchronization among signals by means of the distribution
of the eigenvalues of the covariance matrix Cl , as proposed in [10]

Sl = 1 +

M∑
u=1

λlu
M loд(

λlu
M )

loд(M)
. (21)

When all the signals are synchronized (resp. desynchronized), the value of the S-estimator is close
to 1 (resp. 0). The computational complexity of the S-estimator is O(NM3) and is bounded by the
numberM of signals and the number N of time windows.

4 EXPERIMENT:ANNOTATION OF DATABASE
Our current experiment is the extension of work [48, 49, 59, 60]. The proposed structure of aesthetic
highlights is chosen based on various film theories and experts’ feedback on the annotation process
[4, 7, 11, 25–27] and is shown in Figure 2. We can distinguish two general categories of aesthetic
highlights: Form and Content. Form (highlights H1, H2) corresponds to manners in which subjects
are presented in films e.g., adding special effects and playing music in the background. Content
(highlights H3, H4, H5) covers the subjects presented in the films, such as developments of main
characters’ emotions, dialogues that motivate actions and tensions among characters as well as a
specific theme development in a movie e.g., occurrence of events or conversations that result in
mental or emotional strains of characters.
The "LIRIS" movie database was selected to be annotated with respect to aesthetic highlights, as

Fig. 2. Five categories of aesthetic highlights in movies [49, 50].

shown in Figure 2, because:
(i) There is a large amount of emotional and aesthetic scenes in these movies which affect spectators’
affective states.
(ii) The movies in this dataset represent different movie genres, such as Action, Adventure, Anima-
tion, Comedy, Documentary, Drama, Horror, Romance and Thriller which effect differently various
aesthetic experiences of spectators.
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(iii) The physiological and behavioral reactions of 13 spectators watching the movies (30 movies,
the total duration of the movies is 7 hours, 22 minutes and 5 seconds) in a darkened air-conditioned
amphitheatre were collected using the Bodymedia armband sensors attached to their fingers [54].
Aesthetic highlights in the "LIRIS" database were annotated by an expert supported by one person

(a) (b)

Fig. 3. Statistical analysis of aesthetic highlights annotated in the "LIRIS" database, the distribution of : a) the
numbers of the particular highlight category per movie. b) the duration of the particular highlight category
per movie.

with regard to form and content using an open-source annotation software [45], similarly to the
previous work [49]. The annotations represent the objective assessment of the movies including
5 categories of aesthetic highlights as presented in Figure 2. We selected scenes with high levels
of aesthetic values and emotions are constructed by moviemakers in a manner to establish the
engagement between spectators and movies. The structure of the scenes enriches the enjoyment of
watching the whole movie. A strong aesthetic experience can evoke the specific affective states of
spectators. Figure 3 plots the distributions of the number of the aesthetic highlights per movies and
the percentage of movie duration in the "LIRIS" dataset. We observe that there are no more than 25
highlights of a given type in a movie. The duration of these highlights is not longer than 20 % of a
movie duration. That means that only particular scenes are considered as aesthetic highlights.

5 RESULTS
5.1 Emotional Component of Aesthetic Highlights
In the "LIRIS" database, contiguous emotional annotations were collected from 10 French partici-
pants (7 female and 3 male). The continuous arousal/valence annotations were down-sampled by
averaging over windows of 10 seconds with 1 second overlap to remove the noise and distortions.
Then, these post-processed continuous annotations of arousal/valence were averaged again to
create one signal, so called, "the mean of the arousal/valence self-assessments" [54].
Previous studies have confirmed that physiological signals of spectators are linked with their
emotional states [46, 80]. In our studies we attempt to prove that there are emotional components
of aesthetic highlights and aesthetic scenes are able to influence on the affective states of spectators.
In order to evaluate it, we use meta analysis [8]. We relate the occurrence of these highlights in
movies to felt emotions (level of arousal and valence) by the spectators for the "LIRIS" database.
We consider the "LIRIS" database as a set of empirical experiments about the given topic: the
level of emotions (arousal/valence) while watching aesthetic highlights in movies [8]. Effect-size
indices are calculated over individual movies. The effect size is standardized mean difference that
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is defined as the difference between mean values of continuous emotion annotations of highlight
and non-highlight intervals divided by their pooled standard deviation. Positive values indicate
a higher level of arousal/valence of highlight scenes in comparison with non-highlight scenes,
whereas negative values of the effect size indicate a lower level.
To integrate the experiment results, statistical analysis demands the weighting of each effect size
estimate as a function of its precision assuming a fixed-effect model [8]. In our studies we follow
Cohen’s benchmarks [16] for the interpretation of the practical significance of a weighted average
effect size. We assume that the values around 0.2, 0.5, 0.8 can be interpreted as reflecting the effect of
small, medium and large magnitude, receptively. The weighted average effect size of arousal/valence
for the "LIRIS" dataset is reported in Table 1. The medium positive effect sizes (>0.5) of arousal is
found for spectacular highlights H1, character development highlights H3 and theme development
highlights H5. Also, the medium negative effect sizes (<-0.5) of valence is observed for spectacular
highlights H1 and character development highlights H3.

Table 1. Theweighted average effect size (fixed-effectmodel) of arousal and valence during aesthetic highlights
over all the "LIRIS" database.

Emotions \Highlights H1 H2 H3 H4 H5
Arousal 0.76 -0.23 0.70 0.04 0.53
Valence -0.64 -0.11 -0.55 0.11 -0.22

To investigate a relationship between movie genres and the emotional component of the aesthetic
highlights, we carry out the same meta analysis for each 9 movie genres. We infer that the direction
and the power of the average effect size strongly depends on the movie genre for both arousal and
valence, as shown in Tables 2 and 3. Strong emotional reactions are expected to be associated with
spectacular highlights H1, such as using special effects, increasing saturation of colors, playing
with lightening and camera location. The results from Tables 2 and 3 confirm our hypothesis. We
observe the medium positive effect size (the high level) of arousal for drama, action, romance,
adventure and large positive effect for horror. Moreover, we identify the large positive and negative
effects of valence for documentary and horror movies, respectively.
Slow movements of cameras, lightening, shadowing and playing music in the background during
subtle highlights H2 do not evoke strong emotional reactions among spectators, there is the medium
negative effect size of arousal for action movies. Furthermore, the medium positive effect size of
valence is only reported for horrors, unlike action and romance movies.
Following the main characters’ development and tensions among them (character development
highlights H3) can affect the emotional and physiological states of spectators. We find the medium
positive effect size of arousal for comedy, adventure, documentary movies and the large positive
effect size for the horror and animation movies. Also, we observe the high level of negative valence
for animations (medium negative effect), and thriller, romance and horror movies (large negative
effects), as illustrated in Tables 2 and 3.

Dialogues among main characters (highlights H4) in some specific movie genres are only able to
elicit emotions. We indicate the low level of arousal in dramas (medium negative effect size) and the
high level of arousal in comedies (large positive effect size) as well as the medium negative effect of
valence for animation movies in Tables 2 and 3. We infer that dialogues carry the emotional tone of
the genre. There are the low level of arousal (sad) for dramas and the high level of arousal (joy) for
comedies. It may be caused by long duration of dialogues and spectators’ emotions fade over time.
Also, the main character are frequently ambiguous movie characters who could stimulate different
reactions across the audience during the whole movies, as shown in Tables 2 and 3.
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Table 2. The weighted average effect size (fixed-effect model) of arousal during aesthetic highlights calcuated
per movie genre.

H \Genre Drama Animat. Thrill. Action Comed. Roman. Advent. Docum. Horror
H1 0.73 0.49 0.22 0.57 0.34 0.53 0.57 -0.30 1.06
H2 -0.02 -0.18 -0.13 -0.58 -0.46 -0.38 0.11 -0.49 -0.42
H3 0.01 0.92 0.14 0.11 0.65 -0.04 0.56 0.72 1.03
H4 -0.74 0.10 0.25 -0.13 0.92 -0.26 0.15 - -0.27
H5 0.32 0.78 0.62 -0.01 0.76 -0.16 0.19 -0.19 0.65

Table 3. The weighted average effect size (fixed-effect model) of valence during aesthetic highlights calculated
per movie genre.

H \Genre Drama Animat. Thrill. Action Comed. Roman. Advent. Docum. Horror
H1 -0.10 0.14 -1.04 0.19 0.13 -0.13 -0.48 1.20 -1.13
H2 -0.15 -0.10 -0.38 -0.75 -0.28 -0.71 0.08 0.23 0.60
H3 -0.16 -0.75 -0.80 -0.20 0.27 -0.92 0.11 0.45 -1.01
H4 0.07 -0.55 0.41 -0.02 -0.01 0.35 -0.43 - 0.39
H5 0.07 -0.17 -1.02 -0.40 0.56 -0.01 -0.11 -0.69 -0.48

Theme development highlights H5 incompletely overlap with the other types of aesthetic highlights,
such as spectacular highlights H1 and character development highlights H3 because the develop-
ment of a specific theme is often conjugated with the emotion development of main characters as
their responses to dramatic events presented in a sublime manner. Also, we observe the medium
positive effect size of arousal for the following movies genres: animation, thriller, comedy and
horror, as presented in Table 2. In terms of valence, we remark the medium positive effect size for
comedies and medium and large negative for thriller and documentary movies, as shown in Table 3.

5.2 Dependencies between Synchronization Measures
In order to find dependencies between different approaches to synchronization and evaluate
their detection performance, we select the following synchronization measures: the nonlinear
interdependence (NI), dynamic time wrapping (DTW), periodicity score (PS), shape distribution
distance (SDD), S-estimators with different covariance matrices, such as correlation (S-COR),
phase locking value (S-PLV), windowed mutual information (S-WMI), heat kernel (S-HK) and
diffusion map (S-DM). To run all the synchronization measures over the "LIRIS" database, we use
the following experimental settings. Physiological and behavioral signals of spectators are filtered
by a third order lowpass Butterworth filter with cutoff frequency 0.3 Hz, and they are segmented
into overlapping time windows with a time step and a window length equal 1 s and 5 s, respectively
(some physiological signals are discarded due to the amount of artifacts). The values of all the
mentioned synchronization measures are computed for each time window.
We calculate the Pearson correlation coefficient between those measures to gain insight into
the dependencies between them [23, 41]. Statistical analysis requires to weight all correlation
coefficients between all pairs of the synchronization measures over the different movies from the
"LIRIS" database. To integrate the results and obtain the weighted average effect size (Pearson
correlation coefficient), we utilize a fixed-effect model [8]. To interpret the practical significance
of a weighted average effect size for the Pearson correlation coefficient, we assume that values
around 0.1, 0.3, 0.5 can be interpreted as reflecting the effect of small, medium and large magnitude,
respectively [16]. The values of thresholds are different in comparison to the standardized mean
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(a) (b)

Fig. 4. The weighted average Pearson correlation effect size between the synchronization measures (red and
blue color indicate strong correlation and anti-correlation, respectively). The synchronization measures are
computed over spectators’ a) electrodermal signals, b) acceleration signals.

difference effect size (see section 5.1).
As seen in Figure 4, we find that some synchronization measures are strongly correlated with
each other independently of the processed modality (electrodermal and acceleration signals).
Moreover, we can distinguish three families of synchronization measures: pairwise, group and
overall measures. It becomes clear that all the S-estimators with the different estimators of the
covariance matrix are dependent on one another (medium and large positive effect). Futhermore,
we can emphasize the strong relations (small, medium and large positive effect) between all three
pairwise synchronization measures: the NI, the DTW and the SDD. Interestingly, the PS measure
seems to be mutually uncorrelated with the other measures. These results are in line with the
other studies on synchronization applied to electroencephalograph signals for early diagnosis of
Alzheimer’s disease [23]. We find as well that some measures (pairwise measures or S-estimators)
are strongly correlated or anti-correlated.

5.3 Aesthetic Highlight Detection
In this section we provide the results of aesthetic highlight detection per movie genre using the
different approaches to synchronization estimation which are described in section 3. We detect
the given category of aesthetic highlights (H1, H2, H3, H4, H5) based on the level of the estimated
synchronization. If the value of the synchronization measure for a given sliding window is higher
(lower) than a changing threshold, we assign the time window to the highlight class.
Since the presented synchronization measures capture different dependences among signals, we
decide to take an advantage of it. We follow a feature fusion approach and combine all the syn-
chronization measure at a given time into one vector. Then, we use clustering based Gaussian
mixture models to compute a probability of belonging to the highlight class (resp. non-highlight)
for each window. If the probability for a given sliding window is higher (resp. lower) than a chang-
ing threshold, we assign the time window to the highlight class. Combining multiple measures
and clustering them is named the CMMC approach. Identified labels are referred to the collected
annotations (ground truth) and the true positive and false positive ratio are calculated to obtain the
overall performance measured by the area under the constructed ROC curve (AUC).
In order to investigate the statistical significance of the results, we use the following validation.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:16 M. Muszynski et al.

Table 4. Performance (AUC) of our highlight detection system evaluated per category of aesthetic highlights
and movie genre, different synchronization measures are applied to electrodermal signals of spectators. ⋆
stand for p-value < 0.05, † for p-value < 0.01 and ‡ for p-value < 0.001. We report p-value when we refer the
performance of a measure to a random classifier (upper index of AUC performance) and when we find the
groups of synchronization measures in the ranking significantly different in terms of perfomance (the upper
index of an ordinal number of measure groups)

Gen. \H H1 H2 H3 H4 H5

Drama
1. DTW (0.57) †

CMMC (0.56)†
1. CMMC (0.56)⋆

NI (0.55) ⋆
1. SDD (0.58)‡

NI (0.57)‡

1. CMMC (0.61)‡

SDD (0.59)‡

DTW (0.58)‡

S-WMI (0.56)†
S-HK (0.55)⋆
NI (0.55)⋆

S-DM (0.55)⋆

1. NI (0.58)‡

DTW (0.57)‡

CMMC (0.56)†

Animat.

1.S-DM (0.59)‡

S-HK (0.59)‡

S-WMI (0.58)‡
S-COR (0.55)⋆ 1.⋆ DTW (0.70)‡ 1.‡SDD (0.72)‡ 1.‡ CMMC (0.84)‡

1. NI (0.59)‡

DTW (0.59)‡

Thrill. 1. SDD (0.62)‡

1. SDD (0.62)‡

CMMC (0.62)‡

DTW (0.61)†

S-HK (0.60)†
S-WMI (0.57)⋆
S-DM (0.57)⋆

1. S-DM (0.70)‡

S-HK (0.68)‡

S-WMI (0.66)‡

CMMC (0.65)‡

DTW (0.64)‡

S-COR (0.63)†
S-PLV (0.59)⋆ SDD (0.74)‡

1. S-WMI (0.60)†

S-HK (0.59)†
S-COR (0.58)⋆
S-DM (0.58)⋆
S-PLV (0.58)⋆

Action

1.S-WMI (0.59)‡

NI (0.58)†

S-HK (0.57)†
S-DM (0.56)⋆
DTW (0.56)⋆
CMMC (0.56)⋆

1. S-HK (0.58)⋆
NI (0.58)⋆

1. DTW (0.57)†

CMMC (0.57)†
SDD (0.55)⋆ 1. SDD (0.61)‡

1. DTW (0.58)†

CMMC (0.58)†
NI (0.56)⋆

Comed.
1. DTW (0.63)‡

CMMC (0.63)‡

1. DTW (0.58)‡

CMMC (0.56)†
S-DM (0.54)⋆ 1.⋆SDD (0.62)‡

1. S-HK (0.56)‡

S-WMI (0.56)‡

SDD (0.56)‡

S-DM (0.54)†
S-PLV (0.54)⋆ 1.†SDD (0.63)‡

Roman. 1.‡SDD (0.82)‡

1. DTW (0.60)‡

CMMC (0.59)†
NI (0.57)⋆

1. DTW (0.65)‡

CMMC (0.62)‡

NI (0.60)‡
SDD (0.57)⋆

1.‡DTW (0.77)‡

CMMC (0.77)‡

1. NI (0.60)‡
SDD (0.56)⋆
S-COR (0.56)⋆

Advent.
1.⋆DTW (0.70)‡

CMMC (0.70)‡

1. DTW (0.58)†

CMMC (0.58)†

SDD (0.57)†
NI (0.57)⋆

1. SDD (0.64)‡

CMMC (0.62)‡

DTW (0.61)‡
1. SDD (0.60)‡

NI (0.56)† 1.⋆SDD (0.67)‡

Docum.

1. CMMC (0.83)†
DTW (0.75)⋆
S-HK (0.72)⋆
S-WMI (0.71)⋆ -

1. CMMC (0.97)‡

SDD (0.83)†

DTW (0.81)†
NI (0.78)⋆ - Any Measures

Horror
1.⋆DTW (0.69)‡

CMMC (0.69)‡

1. SDD (0.67)‡

CMMC (0.62)†
DTW (0.62)⋆

1.‡DTW (0.75)‡

CMMC (0.74)‡

1. SDD (0.61)‡

NI (0.59)‡

S-HK (0.57)†

S-DM (0.57)†

S-WMI (0.56)†

1. DTW (0.60)‡

CMMC (0.60)‡

NI (0.55)†
S-HK (0.55)⋆
S-WMI (0.54)⋆
S-DM (0.54)⋆
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Table 5. Performance (AUC) of our highlight detection system evaluated per category of aesthetic highlights
and movie genre, different synchronization measures are applied to acceleration signals of spectators. ⋆
stand for p-value < 0.05, † for p-value < 0.01 and ‡ for p-value < 0.001. We report p-value when we refer the
performance of a measure to a random classifier (upper index of AUC performance) and when we find the
groups of synchronization measures in the ranking significantly different in terms of perfomance (the upper
index of an ordinal number of the measure groups).

Gen. \H H1 H2 H3 H4 H5

Drama Any Measures 1.⋆SDD (0.63)‡

1. CMMC (0.57)‡

DTW (0.56)†

NI (0.56)†
1.⋆DTW (0.62)‡

CMMC (0.59)‡ 1.⋆NI (0.61)‡

Animat.

1. SDD (0.58)‡
NI (0.55)⋆

CMMC (0.55)⋆ 1.⋆SDD (0.74)‡
1. SDD (0.60)‡

NI (0.57)†

1. DTW (0.68)‡

CMMC (0.67)‡

SDD (0.64)‡

1. NI (0.64)‡

DTW (0.62)‡

SDD (0.61)‡

CMMC (0.59)‡

Thrill.
1. MCCM (0.61)†
DTW (0.58)⋆ Any Measures

1. SDD (0.59)⋆
S-WMI (0.59)⋆

1.⋆CMMC (0.70)‡

DTW (0.68)‡

1. SDD (0.66)‡

DTW (0.65)‡

CMMC (0.64)‡

NI (0.59)†

Action

1. SDD (0.63)‡

S-DM (0.58)†

S-HK (0.57)†
S-COR (0.56)⋆
S-WMI (0.56)⋆

1. S-WMI (0.59)⋆
CMMC (0.58)⋆ 1. DTW (0.55)⋆ 1. DTW (0.55)⋆ 1. SDD (0.60)‡

Comed.

1. SDD (0.61)‡

CMMC (0.58)‡

NI (0.57)† Any Measures

1. CMMC (0.56)‡

NI (0.55)†
SDD (0.53)⋆ 1. CMMC (0.56)‡ 1.‡SDD (0.63)‡

Roman. 1.⋆SDD (0.70)‡

1. DTW (0.63)‡

CMMC (0.62)‡

SDD (0.59)†
NI (0.57)⋆

1. NI (0.63)‡

DTW (0.59)† 1. S-COR (0.59)⋆

1. DTW (0.60)‡

CMMC (0.58)†
NI (0.56)⋆

Advent.
1. SDD (0.58)†
CMMC (0.56)⋆ Any Measures

1. DTW (0.63)‡

NI (0.61)‡

SDD (0.58)†

CMMC (0.58)†

1. DTW (0.63)‡

CMMC (0.63)‡

SDD (0.60)‡ 1. S-WMI (0.55)⋆

Docum. 1. SDD (0.81)† -

1. SDD (0.78)⋆
NI (0.77)⋆

S-PLV(0.74)⋆ - 1. SDD (0.95)‡

Horror 1.‡SDD (0.62)‡

1. DTW (0.64)‡

SDD (0.64)†

CMMC (0.64)† 1.†SDD (0.63)‡

1. DTW (0.57)‡

NI (0.57)†
CMMC (0.55)⋆ 1. SDD (0.58)‡

Firstly, we compute the areas under ROC curves (AUC) to evaluate the performance of our system,
as well as the synchronization measures. Furthermore, we refer the performance of our system to
the performance of a random classifier (AUC=0.5). Secondly, the synchronization measures that do
not perform randomly are placed in rank order for each movie genre. Thirdly, multiple comparisons
are made to find groups of measures that perform significantly better than others , such as 1st (the
highest performance), 2nd and 3rd group of measures. All the statistical comparisons are made

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:18 M. Muszynski et al.

using the two sided Bradley test at the significance level α = 0.05 [9]. Low p-values indicate that
there are large differences in the performance of the synchronization measures. Tables 4 and 5 show
the detection performance (AUC) of all the synchronization measures are applied to spectators’
physiological and behavioral signals. We only report the first group of synchronization measures
that obtain significantly the best performance for the given category of the aesthetic highlights
and movie genre.
In Table 4 the results illustrate the discriminative power of the synchronization measures to detect
aesthetic highlights in movies based on spectators’ electrodermal activity signals. Generally, we
observe that the pairwise synchronization measures obtain the best performance in comparison
with the group or overall approaches.
The DTW measure achieves the highest of performance for the following movie genre: animation,
action, romance, documentary and horror, as well as the SDD measure reaches the best results
for thriller, comedy, romance and adventure movies. Also, the NI measure could indicate these
highlights with the highest performance in drama, action and romance movies. Moreover, the
pairwise synchronization measures appear to have also the most discriminative power for detecting
the particular type of aesthetic highlights. The DTW measure can be used to detect highlights H1,
H2 and H3 unlike the DDS measure indicates highlights H3, H4 with the best performance. Besides,
the NI measure can be applied to predict highlights H5.
Table 5 presents the detection performance, when synchronization measures are applied to the
acceleration signals. We infer that the pairwise synchronization measures, especially the SDD,
reach the best performance per movie genre and the type of aesthetic highlights. Moreover, the
SDD measure obtains the best results for the movie genres: animation, action, comedy, adventure,
documentary and horror, as well as, in terms of highlight type: highlights H1, H2, H3 and H5.
The DTW measure performs the best for drama, thriller, action, romance movies, as well as for
highlights H4. The NI can be used interchangeably with the DTW to detect these highlights in
the specific movie genres, such as drama or romance, respectively. Also, it can replace the SDD to
identify highlights H3.
Detection of highlights H4 in animations and comedies only benefits from the basic combining
multiple synchronization measures applied to spectators’ electrodermal activity and accelera-
tion signals, respectively. Generally, clustering concatenated synchronization measures does not
outperform aesthetic highlight detection based on any single synchronization measures.

6 DISCUSSION AND CONCLUSIONS
In this work we extend our primary experiment [49]. It is conducted on a different database
("LIRIS") including 30 movies to gain insight into spectators’ reactions to aesthetic highlights across
different movie genres. Regarding our first research question we uncover that these highlights
evoke some amount of emotions (arousal and valence level) that is strictly related to movie genres.
Moreover, we propose an unsupervised architecture which is able to detect the aesthetic highlights
in movies based on spectators’ physiological and behavioral reactions. We investigate which
approach to synchronization estimation, such as pairwise, group, overall measures obtains the best
performance. In response to our second research question, the obtained results prove that the
level of synchronization among spectators’ electrodermal and acceleration signals in social settings
has the discriminative power to detect the different categories of aesthetic highlights independently
of movie genre and recorded modalities. Nevertheless, a general statement can not be made for
different movie genres because of the small number of movies per genre and different movie
duration. Furthermore, we infer from our analysis that all the pairwise synchronization measures
are correlated with each other. Also, that is the case for all the overall synchronization measures.
To study synchronization, we find that it is enough to evaluate a few measures derived from the
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different families of synchronization measures instead of using all of them. Overall, we observe
that the pairwise synchronization measures, such as the SDD (shape distribution distance) and
the DTW (dynamic time warping) perform the best for the aesthetic highlight detection in movies
independently of movie genre and highlight type, responding to our third research question.
The group and overall estimation of synchronization perform unexpectedly at the lowest level. Also,
the choice of covariance matrix estimator, such as the min correlation distance, correlation, phase
locking value, windowed mutual information, heat kernel and diffusion map does not influence
on performance. When rapid physiological and behavioral reactions are evoked, all the pairwise
synchronization measures (the SDD and the NI) seem to take the advantage of including information
on neighboring time windows unlike the estimation of covariance matrix. Moreover, the DTW
is able to average the temporal reactions of spectators which vary in speed. These features of
estimation allow them to suppress the oscillations of the values from one time window to another.
In addition, we suppose that considering all spectators signals like one dynamic system suffers from
rapid changes of social interactions among spectators through the whole movie, and may result in
unstable behaviors of the dynamical system. Analysis of synchronization at the level of pairs could
benefit from uncovering stables pairs of spectators through the majority part of a movie.
The electrodermal activity measurements appear to be more indicative for aesthetic highlight
detection in the social context in comparison with the acceleration measurements as far as the
signals are concerned. The main reason can be that aesthetic experience is associated with a high
level of arousal with is depicted in physiological reactions of spectators. That is coherent with
our finding that the annotated scenes contain a large amount of emotions (high level of arousal
and valence) across the whole "LIRIS" database. Spontaneous rapid behavioral reactions could be
expected to be evoked when spectators are exposed to very intensive stimuli e.g. spectacular killing
people in a horror movie.
Generally, we observe that pairwise, group and overall synchronization measures are able to
estimate synchronization among spectators’ physiological signals when they are exposed to different
aesthetic highlights that elicit the high level of arousal and valence, e.g. romance, action, adventure,
horror movies, etc. This is not the case for the estimation of synchronization based on acceleration
measurements, the pairwise synchronization measures only are plausibly capable of estimating the
level of synchronization among behavioral responses of spectators.
Combining multiple synchronization measures into one vector does not significantly improve
the performance of aesthetic highlight detection. There is a need to study fusion of multiple
synchronization measures since they are defined in different manners and measure different
nonlinear dependences between signals. This can be considered as one of the future directions of
research on synchronization measures.
The main limitation of our work corresponds to the amount of available annotated data and the
feasibility of running a large scale experiment in a cinema theater and using unobstructive and
reliable sensors. In our studies we uncover that the estimation of synchronization among spectators
from their physiological signals results in better performance of highlight detection than from
their acceleration signals. However, this conclusion can be biased by the placement of sensors.
The sensors were attached to spectators’ hands when the experiment was conducted. Generally,
spectators do not often make limb moves when they watch a movie.
Future work includes collecting more multimodal data in order to propose general architecture of a
detection system. That allows us to apply more complex synchronization measures also between
different modalities. In the future, we will possibly have access to cost-effective sensors that are
capable of capturing the currently unavailable modalities, such as audio-video recording of movie
audiences in a darkened cinema theater and spectators’ physiological and behavioral signals. A
comprehensive approach to understanding aesthetic experience also requires to explore movie

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:20 M. Muszynski et al.

content combined with spectators’ reactions. We will investigate integration of audio-visual movie
attributes with spectators’ physiological and behavioral signals. This can be beneficial for affective
understanding of movies and aesthetic highlight detection.
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