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Abstract

Causality analysis remains a fundamental research question and the ultimate objec-

tive for many scientific studies. Alongside the increasing speed of data science and

technological advancements, as well as the overwhelming existence of complex sys-

tems in social science and economics studies, causality analysis has become more

complex than ever. The drawbacks of the existing empirical methods (parametric

and limited nonparametric approaches) are gradually revealed through implementa-

tions. There are increasing number of proofs that the existing methods are limited

and fail to catch up the rapid progress of the causality analysis study. Therefore, it is

both crucial and time-sensitive to establish the advancements of causality analysis

methods by embracing the advanced time series analysis techniques.

Subspace-based techniques adopted in this thesis include Singular Value Decom-

position (SVD), Singular Spectrum Analysis (SSA) and Convergent Cross Mapping

(CCM). These subspace-based techniques have been proved powerful nonparamet-

ric time series analysis techniques with promising performances on various fields,

for instance, time series denoising, filtering, forecasting, signal extraction, image

processing, etc. This thesis aims to expand the multivariate extension of subspace-

based techniques on causality analysis and brings novel contributions to not only

the theoretical advancements of causality analysis methods but also broadening the

horizon of the corresponding applications in complex systems like climate change,

economics and genetic science.
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This research project focuses on, but is not limited to the causality detection test.

In particular, the thesis initially proposed four novel multivariate analysis methods

based on the study of subspace-based techniques: the similarity measure based on

eigenvalue distribution; the mutual association measure based on eigenvalue-based

criterion; the causality detection method based on multivariate SSA forecasting ac-

curacy; the hybrid causality detection approach by combining SSA and CCM. More-

over, this thesis also introduces CCM in details and expands its implementations in

climate change, oil-tourism study, and gene regulatory role detection. The advan-

tages of these methods are that they are nonparametric approaches, assumption free,

only two key variables needed, no limitations to nonlinearity or complex dynamics,

signal and noise together as a whole as the research object. Both simulations and a

number of successful implementations are conducted for the critical evaluation of

the proposed advancements with promising robust performances. Specifically, the

novel similarity measure overcomes the difficulties of empirical similarity measures

through identifying the comparable criterion, and it is proved robust among various

types of series. The novel mutual association measure has no restriction on non-

linearity, it performs well with various generated linear and nonlinear association

patterns, as well as real data from oil-stock market and oil-tourism studies. SSA

causality test, CCM causality and the SSA-CCM hybrid causality tests are compre-

hensively evaluated by comparing with empirical Granger approaches respectively

and with two key variables considered, the results of applications significantly re-

flect their advantages on nonlinear dynamics and causality detection in complex

systems.

In general, this thesis contributes on offering novel solutions to the crucial ques-

tion of causality analysis. However, causality analysis contains a broad range of

integrated disciplines, and it has the characteristics of cross discipline, strong practi-

cality and intimate connection with other academic fields. It is such a broad subject

that no study can independently comprise all. Therefore, this research attempts
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to provide evidence of successful applications in a possibly wide range of subject-

s rather than one subject only so to initially evident on the applicability of these

novel methods. The applications have covered studies of climate change, oil-stock

market, oil-tourism relationship, gene regulatory role detection to date and more

future works are in progress. These novel approaches are self-contained to address

the corresponding advancements, therefore, they are not comparable between each

other, but all contribute differently to the development of causality analysis in a

broad sense. These newly proposed approaches offer the interested parties a differ-

ent angle to resolve the causality analysis questions in a reduced form, data-oriented

perspective. It is also expected to open up the research opportunities of nonparamet-

ric multivariate analysis through the advanced, inclusive subspace-based techniques

that show strong adaptability and capability in the study of complex systems.
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Chapter 1

Introduction

This chapter is aimed at clarifying the motivations behind this research and the main

aims of the study. The first section introduces the motivation and aim from broad

aspects, followed by the research framework including both fundamental philoso-

phy and detailed blueprint of this research. Eventually, the research contributions

are summarized in the third section.

1.1 Motivation and Aim

Alongside the consistent exploration of causes since the beginning of human his-

tory, which is driven by the instinctive desire of knowledge, causality analysis has

been one of the fundamental areas of study regardless of the research area (Wold,

1954). In line with the rapid developments of society and technology over the past

decades, causality analysis has been extensively exploited on a tremendous amoun-

t of subjects that cover almost all aspect of research (Clark et al., 2015; Granger,

1969; Hassani et al., 2010c; Hsiao, 1979; Sugihara et al., 2012). Scholars have

been persistently pursuing the truth of changes and relationships, which indicates

one of the ultimate purposes of researches – seeking the better understanding of the

complexity and answering the WHY question.
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On this basis, this study focuses on the time series analysis perspective due to

the wide scope of causality analysis. Time series analysis has been widely used by

researchers to investigate the dependence relationship, mostly linear, among factors

in a complex system. Using time series methods enables researchers to evaluate

what happened in the past, and to make current year comparisons among factors,

as well as new insights into the future. This will provide the flexibility to address

important questions, such as whether the changes of one factor have relationship

with the changes of another factor in the current sequence or after specific lag of

time.

Another question that frequently arises in various academic disciplines is whether

one time series can help in analysing/predicting another. One way to address this

question was proposed by Granger (1969) and various related researches have been

conducted based on this. However, the definition given by Granger on causality is

based on classical time series analysis approaches which are extremely limited by

several restrictive assumptions. Firstly, not all relationships can be explained by lin-

ear based models. The corresponding revolutions of nonlinear applicability have no

significant breakthrough as it is only expended to limited number of nonlinear rela-

tionships. Secondly, it is build on the assumption of a particular type of relationship

based on a few selected factors, it is even fixed before the actual analysis starts. It is

not convincing and satisfying enough to explain these existing relationships in a far

more complex system than the assumed model. Moreover, it assumes separability

between the variables which can be eliminated from the overall system, and this

assumption is often not satisfied for complex systems (Sugihara et al., 2012). In

this case, these models are inappropriate for a research that studies the causes in a

complex system that generally exists nowadays, let alone achieving accurate analy-

sis on the possible complex nonlinearity where these linear or restricted nonlinear

models fail to achieve.
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For the past decades, along with the enhancements of knowledge on time series,

there have been various developments on time series analysis techniques, among

which, the sub-space based techniques have shown remarkable performance and

has made significant contributions in terms of incorporating complex circumstance

like non-linearity. The representative sub-space based techniques include Singular

Value Decomposition (SVD), Singular Spectrum Analysis (SSA) and Convergent

Cross Mapping (CCM), which are also the key techniques that this study considers.

They have been proved powerful and robust techniques on time series decomposing,

filtering, denoising, forecasting as well as multivariate analysis (Alter et al., 2000;

Deyle et al., 2013; Hassani et al., 2013b; Rajwade et al., 2013; Silva et al., 2017;

Sugihara et al., 2012; Vautard et al., 1992a; Ye et al., 2015).

This study aims at theoretical advancements of causality analysis methods by

embracing the advanced subspace-based techniques, consequently, to propose suffi-

cient novel approaches for causality analysis that not only overcome the shortages

of empirical methods, but also has no restrictions on linearity with sufficient perfor-

mance on nonlinear dynamics. The development of a method which is both practical

and theoretically robust is of paramount importance in time series analysis. Thus,

this study offers critical evaluations through comprehensive simulations as well as

sufficient amount of applications that covers diverse disciplines.

1.2 Research Framework

This section addresses the framework of this research following the classical re-

search process of philosophy, literature review, methodology and application. Fur-

thermore, this section aims to provide the overall view of this research and clarify

the significant internal connections and relationships among all components of this

study.
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1.2.1 Fundamental Philosophy

The fundamental philosophy of this research is the philosophy of causes by Aris-

totle (384-322 B.C.) in the Physics and in the Metaphysics, detailed introduction

and summary can be found in the work of Falcon (2015), which is also followed

as the main reference in this subsection to provide brief information on philoso-

phy of cause. As stated by Falcon (2015), answering the "why" question as the

first step of comprehensive understanding of a thing now is considered as a request

of explanation. Aristotle claimed to answer the questions that how many kinds of

causes exist and what is the definition of cause, so to explain changes in the world.

Two types of causes defined by Aristotle are adopted by this research for the de-

velopment of novel causality analysis methods: the formal cause and the efficient

cause. Specifically, they can be distinguished as follows based on what Aristotle

claimed in Physics, Book ii:

The Formal Cause is "the account of what-it-is-to-be", or "what makes a thing one

thing rather than many things".

The Efficient Cause is "the primary source of the change or rest", or simply as

"initiator of the movement".

Aristotle claimed to offer systematic method of better "learning and understand-

ing things", also in the meantime Aristotle accepts "their lacking of complete un-

derstanding of the range of possible causes and their systematic interrelations". As

a topic as complex as "causes" existing in the current intricate phenomena of soci-

ety, also considering the ranges of literature in causality analysis studies, in order

to present clear and reliable research process and achievements, these two types

of causes are referred as the principles of investigating "causes" and understanding

causal relationships based on subspace-based technique in the rest of this study with

evidences of both simulation and real world data implementations. As specifically
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detailed in Fig. 1.1, studies of similarity and association aspects are classified ac-

cordingly as the formal cause. In accordance with the concept of philosophy in

efficient cause, it contains the empirical causality analysis methods that are based

on linear models and also serves as the fundamental philosophy for the newly de-

veloped causality detection methods in this research.

Fig. 1.1 Framework of Research Philosophy.

1.2.2 Framework of Study

This research contains both the theoretical advancements of causality analysis meth-

ods and corresponding broad implementations from the time series analysis aspect.

As the initial inspiration of this research, the advanced subspace-based techniques

that are adopted in this research are firstly introduced in Chapter 2. Specifically,

each subspace-based technique is presented in detail including literature of develop-

ment history, theoretical formulation, selective review of applications.

The main contributions of this research are introduced respectively in Chapter

3-7. To date, four causality analysis methods are initially proposed, which are the
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novel similarity measure by eigenvalues distribution, the novel mutual association

measure by eigenvalue-based distance, the SSA causality test by forecasting accu-

racy and finally the SSA-CCM hybrid causality test. Two newly proposed methods

in Chapter 3 and Chapter 4 are built on the fundamentals of similarity and asso-

ciation studies from formal cause philosophy respectively combining with the SVD

technique. Chapter 5 introduces an innovative modification of currently well ac-

cepted causality analysis approaches that are based on linear model. It adopts the

SSA technique in a multivariate system and address to answer the question that

whether one variable can be helpful to analyse or forecast the others. In terms of

Chapter 6, the CCM causality test, which was firstly introduced by Sugihara et al.

(2012), is adopted and addressed here due to its subspace-based feature and inno-

vative information theory concept of reverse engineering to distinguish causality.

Moreover, it acts as the fundamental introduction and comparison for the novel hy-

brid method in Chapter 7, where the SSA and CCM techniques are combined to

contribute on the causality analysis advancement for complex systems.

Each chapter is self-contained to highlight the corresponding advancement and

its satisfying performance in applications. In order to evaluate the performances of

proposed methods, following critical evaluations and robust performances of pro-

posed methods by simulation, implementations of different subjects are also sum-

marised by representative data. Moreover, both comparison with corresponding

empirical approaches and cross-chapter comparison are achieved to emphasise the

significance of each advancement respectively. Finally, the conclusion and discus-

sions of future research are presented in Chapter 8.

1.3 Contributions of Research

This research focuses on the advanced and relatively new subspace-based tech-

niques while keeping pace with the developments of causality analysis techniques
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for time series. Considering the amount of subspace-based techniques adopted, the

comprehensive theoretical improvements made regarding different format of caus-

es, and the wide range of applications this thesis attempted to cover, here in this

section, the contributions of this research are briefly introduced in detail as follows:

1. In the interest of combining the advanced subspace-based techniques so to of-

fer both theoretical and practical advancements on causality analysis. To my

knowledge, this study is the first attempt that extends subspace-based tech-

niques into complex multivariate systems from the causality analysis perspec-

tive. It brings significant contributes on present literature of subspace-based

techniques as well as causality analysis.

2. In terms of causality analysis, this research is not limited to causality detec-

tion only. Instead, it explores the causality analysis through different format

of causes. It is the first time to my knowledge that a study extends subspace-

based techniques to such a comprehensive system of causality analysis, in-

volving similarity measure, association measure, and causality detection. It

presents provisional insights into the better understanding of causality in a

complex multivariate system, which is ubiquitous nowadays alongside the ad-

vancements of technology and developments of human society. Moreover,

this initial study not only reflects one step further development to work with

multivariate system, but also a significant advancement on causality analysis,

not to mention the difficulties due to the complexities of the data, dynamical

system and intricate cross relationships, etc.

3. This research further discovers the significant potentials of these subspace-

based techniques on causality analysis due to their advantages of being as-

sumption free, being broad applicable and being sensitive to nonlinear dynam-

ics. The advantages of these subspace-based techniques are preserved while

the shortages of empirical causality analysis methods are eliminated. More
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specifically, Chapter 3 introduces the novel similarity measure by eigenval-

ue distribution, this overcomes the difficulties of empirical similarity measure

through identifying the comparable criterion that has no limitations of nonlin-

earity. The novel association measure by eigenvalue-based distance in Chap-

ter 4 has no restriction on detecting nonlinear or complex associations, also

it maintains impressive ability on basic linear association detection. Chap-

ter 5 proposes a nonparametric SSA causality test that has no assumptions of

any linear or specific nonlinear models prior or during the test, such that it is

capable of distinguishing any possible relationships, even complex unknown

patterns that previous tests cannot achieve. Moreover, in Chapter 6, another

nonparametric causality test CCM, which also has no prior model assump-

tions, incorporates information theory and reverse engineering framework to

provide a refreshing insight of causality analysis in dynamical systems. The

final theoretical development in Chapter 7 combines SSA and CCM to for-

mulate a hybrid causality test that not only maintains all the advantages above,

but also reveals more information of the data itself for assisting the discovery

of causal relationship.

4. This research focuses on the aspect of causality analysis for time series only

regardless of subjects and how complex the systems and data can be. For em-

pirical researches, it is crucial to recognise significant relevant indicators and

factors among all possibilities in a complex system like economics and social

science. Hence, it is necessary to draw lessons from previous references as

supportive evidences but it also aggravates its limitations in the same time. N-

evertheless, the ability to discover new relevant indicators is equivalently sig-

nificant especially in a complex dynamical system with limited reference or

some emerging research areas that are newly discovered with immeasurable

prospects. Therefore, this research contributes on offering the data driven, re-
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duced form methods for conducting causality analysis with no limitations of

subjects in a robust and efficient manner. Moreover, it aims to allow the data

speaks for itself and simplify the causality analysis process starting from the

essential two factors required.

5. The developments of all novel methods in this research satisfy the require-

ments of being suitable for broader implementations. Any possible causal

links that this research succeeded to firstly identify represent important achieve-

ments and practical significance on contributing to causality analysis study up

to date and possibly assisting and guiding policy making forward according-

ly. Additionally, in terms of the future research, more valuable contributions

can be expected through successful implementations on a wider range of sub-

jects, especially for applications of proposed methods on areas that causality

analysis is an emerging need but the system itself is relatively new and too

complex to be model by traditional methods. This research can offer consid-

erable opportunity of ‘impact’ as the success of this research will contribute

to the wider community of economics and social science, more importantly,

it will attract more interests from various areas.





Chapter 2

Subspace-based Techniques

This chapter introduces the subspace-based techniques that are adopted in this re-

search. Three key techniques considered include SVD, SSA and CCM. These meth-

ods either factorize the high dimensional data into true dimensionality determinate

and subspaces or share the identical component of origins in delay embedding theo-

rem by Takens (1981), which is called the Takens’ Theorem. Takens (1981) present-

ed that an attractor to describe the dynamics of a system can be reconstructed by a

time series through the delay embedding. For instance, consider a time series Yt of

length n at discrete time t, so the reconstructed multidimensional state with a time

delay of τ is St = (Yt ,Yt−τ ,Yt−2τ , ...,Yt−(E−1)τ), where E is the embedding dimen-

sion accordingly. Apart form the shared elements of subspace concept and delay

embedding origin, there are also varying degrees of emphases among these tech-

niques that make one method different from another. Thus, this chapter focuses on

the theoretical introduction of these techniques so to provide a critical overall view

of these subspace-based techniques themselves together with selective literature re-

view of applications respectively. Moreover, this chapter provides the fundamental

knowledge for the advancements forward and novel methods that will be explicated

in detail in the following chapters.



12 Subspace-based Techniques

2.1 Singular Value Decomposition (SVD)

2.1.1 Definitions and Algorithms

SVD is a well known common technique for matrix decomposition in linear algebra

that was firstly introduced by Beltrami and Jordan in the 1870’s. It was presented

as the generalised principal axis transformation for Hermitian matrices1 and firstly

proved for rectangular and complex matrices by Eckart and Young (1936). From

then on, SVD has been extensively studied and applied due to its interesting and

attractive algebraic properties along with the significant geometrical and theoretical

insights it brings regarding linear transformations (Kalman, 1996). Note that more

details of SVD can be found in (Kalman, 1996; Klema and Laub, 1980; Van Loan,

1976). A brief early history of SVD was summarized by Stewart (1993), which is

not reproduced here in this research since it is not the key focus. However, it is of

note that SVD is a key step of SSA, which will be comprehensively introduced in

the next section. The calculations related to SVD in this research are obtained by R

and the following algorithms are mainly based on the work of Stewart (1993).

For a random given matrix X that has the dimension of K×L, where K > L, the

SVD of the matrix can then be written as:

X = UΣVT , (2.1)

1Hermitain matrix is a complex square matrix that is identical to its own conjugate transpose that

X = XT or xi j = x ji, where X indicates a random Hermitian matrix while xi j is the element in the
i-th row and j-th column of matrix X.
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or

X =
[
u1 u2 · · · uK

]




σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 0 σL







vt
1

vt
2
...

vt
L



, (2.2)

where the matrix X is factorized into the product that is made of an K×L matrix U,

an diagonal matrix Σ with dimension of L×L, and another L×L matrix VT . More

specifically, the singular values are the non-negative elements on the diagonal of

matrix Σ, which are σ1,σ2, ...,σL and arranged in descending order of magnitude;

for U and VT , the columns of U are the left singular vectors, while the rows of

VT indicates the right singular vectors. Note that according to linear algebra, the

singular values of a K×L matrix X are the square roots of the eigenvalues of the

L×L matrix XXT , which will be again addressed in the following section of SSA

that containing SVD as a key step. Moreover, rarely in the case of X is a real

symmetric square matrix positive definite (where K = L), the singular values is

equivalent to the eigenvalues, as well as the left and right eigenvectors / singular

vectors.

2.1.2 Selective Review of Illustrative Applications

As a well known matrix decomposition technique, SVD is extensively adopted to

compute the representations for various subspaces and maps that arise in linear alge-

bra (Klema and Laub, 1980). As it is impossible to cover the full implications and

review the whole history of developments of SVD, nevertheless, a few landmarks

are summarized below to give a brief flavor of its significance.

One of the most significant application of SVD is the least squares solution, for

which, the full potential of SVD is realized in the analysis of non-square, possibly

rank-deficient matrices (Klema and Laub, 1980) (more details and algorithms can
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be found in (Arun et al., 1987; Golub and Reinsch, 1970; Lawson and Hanson, 1974;

Van Loan, 1976), thus it is not reproduced here in this research).

SVD is also a key element of Principal Component Analysis (PCA) and SSA

(more details see (Hassani, 2007; Shlens, 2014; Wall et al., 2003) due to the fact that

it can reveal comprehensive information of a matrix to give better understanding

of the matrix itself). According to Shlens (2014), SVD and PCA are intimately

related while SVD is a more general method of understanding change of basis. The

direct relation between PCA and SVD is in the case where principal components

are computed from the covariance matrix while SVD performs on the centered data

matrix (Shlens, 2014). SVD serves as an important step of SSA, which will be

explicated in the following section regarding SSA.

Moreover, SVD uncovers the numerical determination of the true rank of a ma-

trix, which has significant role in data dimensionality reduction (Wall et al., 2003).

The singular values that revealed by SVD can help to identify the most important

information that a matrix contains, thus these numerical determinations can then be

selected and processed so to reduce the size of the original matrix while still capture

most of the important features. Due to the fact that SVD can provide the reliable

computation for relatively accurate approximation along with much more efficient

calculation, it has been widely employed in the studies of dimensionality reduction

like image denoising (Demirel et al., 2010; Rajwade et al., 2013; Zhang et al., 2015),

clustering (Drineas et al., 2004; Savas and Eldén, 2007), complex data preprocess-

ing (Jha and Yadava, 2011; Konstantinides et al., 1997; Wallace et al., 1992), digital

image watermarking (Bao and Ma, 2005; Chandra, 2002; Lai and Tsai, 2010), etc.

SVD also has advantages in its sensitivity and capability regarding weak sig-

nals retrieval (Wall et al., 2003), thus it has been extensively adopted in various

signal processing studies (see (Kanjilal et al., 1997; Le Bihan and Mars, 2004; Van

Der Veen et al., 1993)).
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2.2 Univariate/Multivariate Singular Spectrum Anal-

ysis (SSA/MSSA)

2.2.1 Literature Review

SSA is a relatively new technique known for both time series analysis and forecast-

ing. It has been widely applied in a range of different fields and a multitude of fairly

precise results has proven it to be a powerful and applicable technique. A concise

short description of SSA technique is stated in Hassani (2007) as a nonparametric

technique of time series analysis incorporating the elements of classical time series

analysis, multivariate statistics, multivariate geometry, dynamical systems, and sig-

nal processing. In brief, SSA firstly decomposes a time series into the sum of a

small number of independent and interpretable components such as a slowly vary-

ing trend, periodic or quasi-periodic components and noise, which is followed by a

reconstruction of the original series (Hassani et al., 2009). Note that more coherent

and detailed theoretical explanation of SSA technique can be found in (Golyandina

et al., 2001; Sanei and Hassani, 2015).

The relative history of SSA can be tracked back to the papers of Broomhead

and King (1986), in which the authors reviewed the embedding theorem of Takens

(1981) and introduced the singular system analysis and its implementation of non-

linear phenomena in time series analysis. Fraedrich (1986) independently applied

the technique and expanded the research of nonlinear dynamics with weather and

climate attractors. Since then, the initial idea of SSA has been independently de-

veloped in Russia, UK and US by several groups of researchers respectively. In

that period, more literature that exploited the methodological aspects and applica-

tions of SSA are further conducted (some representative literature see (Danilov and

Zhigljavsky, 1997; Elsner and Tsonis, 1996; Vautard and Ghil, 1989; Vautard et al.,
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1992b)). Furthermore, Golyandina et al. (2001) presented a comprehensive descrip-

tion of the theoretical and practical foundations of SSA along with several examples

of applications. It is of note that the fundamental knowledge of this research is sig-

nificantly built upon the studies of Golyandina et al. (2001) and their relevant post

literature to date: methodology and comparison (Hassani, 2007), forecasting with

missing value (Golyandina and Osipov, 2007), minimum variance estimator (Has-

sani, 2010), multivariate extension and causality detection (Hassani and Mahmoud-

vand, 2013; Hassani et al., 2010c), separability and window length (Hassani et al.,

2011), through description (Golyandina and Zhigljavsky, 2013; Sanei and Hassani,

2015), determining the number of eigenvalues (Alharbi and Hassani, 2016).

The SSA technique has also been extensively applied to a broad range of subject-

s that include but not limited to: industrial production forecasting in EU (Hassani

et al., 2009) and UK (Hassani et al., 2013b), analysing Iranian national accounts da-

ta (Hassani and Zhigljavsky, 2009), economics and financial market analysis (Has-

sani et al., 2010a, 2013a; Hassani and Thomakos, 2010; Menezes et al., 2012), daily

exchange rate prediction (Hassani et al., 2010b), electrocardiogram (ECG) signal

extraction (Ghodsi et al., 2010), inflation forecasting (Hassani et al., 2013c), elec-

tricity price (Miranian et al., 2013), gene expression (Ghodsi et al., 2015c; Hassani

and Ghodsi, 2014), gold price prediction (Hassani et al., 2015b), US trade forecast-

ing (Silva and Hassani, 2015), US and EU tourist arrivals (Hassani et al., 2017b,

2015c).

In general, SSA has been extensively exploited and proved a powerful tech-

nique for time series analysis. The mainstream capabilities of SSA focus on the

areas of signal extraction from different resolution, time series smoothing and filter-

ing, specific component extraction from original series, forecasting, change point

detection. Nevertheless, SSA is still a developing technique with immeasurable po-

tentials. This research aims to further fulfil SSA regarding the causality analysis as-

pect so to contribute to the literature of both theoretical developments and practical
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applications. In the following sections, the theoretical descriptions are summarized

with details for both univariate and multivariate SSA.

2.2.2 Univariate SSA

The SSA technique is performed in two stages, which are known as decomposition

and reconstruction. Embedding and SVD are included in the first stage of decom-

position, while the second stage of reconstruction contains grouping and diagonal

averaging(see the SSA framework in Fig. 2.1). Note that the brief introduction of

univariate SSA below mainly follows Hassani (2007) (more information see (Elsner

and Tsonis, 1996; Golyandina et al., 2001; Golyandina and Zhigljavsky, 2013)).

Fig. 2.1 Framework of Singular Spectrum Analysis Technique.

Stage One – Decomposition

The main purpose of SSA is to decompose the original series into a sum of series,

so that each component in this sum can be identified as either a trend, periodic or
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quasi-periodic component, or noise (Hassani, 2007). The decomposition stage in-

cludes two steps: embedding and SVD2.

1st Step: Embedding

Consider the real-valued nonzero time series YN = (y1, ...,yN) of sufficient length

N. Let K = N−L+ 1, the embedding step transfers this one-dimensional time se-

ries YN into the multi-dimensional matrix X = [X1, ...,XK] with the lagged vectors

Xi = (yi, ...,yi+L−1) that is based on the Takens’ theorem. The single setting of the

embedding is an integer L, which meet the condition of 2≤ L≤ N/2 and is named

the window length3. Thereafter, a trajectory matrix below is obtained while the

window length is sufficiently large:

X = [X1, ...,XK] = (xi j)
L,K
i,j=1 =




y1 y2 y3 · · · yK

y2 y3 y4 · · · yK+1

...
...

...
. . .

...

yL yL+1 yL+2 · · · yN




.

Note that the trajectory matrix X is a Hankel matrix, where all the elements along

the diagonal i+ j = constant are equivalent. It is worthy to be addressed again that

the embedding step adopts the delay embedding theorem by Takens (1981), which

is the fundamental knowledge of time series embedding that also have been incor-

porated for many advance time series analysis techniques.

2ed Step: SVD

The second step of decomposition stage is performing the SVD of the matrix X

that is achieved in the last embedding step. In brief, the trajectory matrix is fac-

torized into a sum of rank-one bi-orthogonal elementary matrices. The numerical

2Note that the detailed introduction of SVD can be found in section 2.1 of Chapter 2.
3According to Hassani (2007), the window length L should generally be proportional to the peri-

odicity of the series, also it has to be large enough to be able to retrieve sufficient enough information
of the data while satisfying the condition 2≤ L≤N/2 due to the natural feature of a trajectory matrix
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determinants are extracted through SVD, and comprehensively represent the whole

information of the matrix can possibly contain. More details can be found in section

2.1 of Chapter 2.

Denote λ1, ...,λL as the eigenvalues of S = XXT in decreasing order of mag-

nitude (λ1 ≥ ...λL ≥ 0) and U1, ...,UL the corresponding orthogonal system of the

corresponding eigenvectors Vi. Thus, if Vi = XTUi/
√

λi, then the SVD of the trajec-

tory matrix can be written as

X = X1 + · · ·+Xd, (2.3)

Xi =
√

λiUiV
T
i (i = 1, ...,d), (2.4)

where d = max(i, such that λi > 0) = rankX. Note that
√

λi are the corresponding

singular value, (
√

λi,Ui,Vi) is the i-th eigentriple and the set of {
√

λi} is named

the spectrum. Note that this terminology also indicates the reason of the name SSA,

which is decomposing the original time series so to retrieve and analyse the spec-

trum of singular values for the aims of denoising, preprocessing, signal extracting,

forecasting, etc.

The matrices Xi have rank 1 and the SVD of the trajectory matrix is optimal in

the sense that among all the matrices of rank q < d, the matrix ∑q
i=1 Xi provides the

best approximation to the matrix X, so that ‖ X−X(q) ‖ is a minimum.

Stage Two – Reconstruction

As the series has been decomposed in the first stage, a new selectively reconstruct-

ed series is obtained accordingly in the second stage. Note that according to the

different requirements of studies aiming at diverse objectives, this reconstruction

can be noise free, containing specific level of noise, or even just a component or
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combination of components of particular feature(s) of the original series.

1st Step: Grouping

In the grouping step, the elementary matrices is divided into a range of groups

and those divided groups are summarised to be matrices within each group. The

grouping process can also be interpreted as the grouping of the eigentriples due to

the fact that the eigentriple is the only determinant for each matrix component.

Let I = i1, ..., ip be a group of indices i1, ..., ip. Then the matrix XI corresponds

to the group I is defined as

XI = Xi1 + · · ·+Xip. (2.5)

Thus, by splitting the set of indices 1, ...,d into disjoint subsets I1,...,Ig, grouping is

then named of the process of choosing the sets I1, ..., Ig, which corresponds to:

X = XI1 + · · ·+XIg, (2.6)

in which the contribution of the component XI in a given group is measured by the

share of the corresponding eigenvalues: ∑i∈I λi/∑d
i=1 λi.

2ed Step: Diagonal Averaging

For the last step, it is aimed to transform the grouped product from the step above

back to a time series. In order to do so, the regrouped matrix has to be transformed

to a Hankel matrix first due to the common matrix algebra fact that a Hankel matrix

can be subsequently converted to a time series.

To introduce the diagonal averaging process in brief, consider zab stands for the

a-th row, b-th column element of a matrix Z, then the c-th term of the resulting time

series is obtained by averaging zab over all a,b such that a+ b = c+ 1. Thus, by
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performing the diagonal averaging of all matrix components in the expansion of X

above, another expansion is obtained below:

X = X̃I1 + X̃I j
+ · · ·+ X̃Ig , (2.7)

where X̃I j
is the diagonalized version of the matrix XI j

. From another point of view,

this is actually equivalent to the decomposition of the initial series YN = (y1, ...,yN)

into a sum of g series

yn =
g

∑
j=1

ỹ
( j)
n , (2.8)

where Ỹ
( j)
N = (ỹ

( j)
1 , ..., ỹ

( j)
N ) corresponds to the matrix X̃I j

. Note that the only setting

for the second stage of SSA is the number of eigenvalues r4, so that in what follows

in general, two groups of indices I1 = {1, ...,r} and I2 = {r+1, ...,L} are used and

associated the group I = I1 with the signal component and the group I2 with noise.

2.2.3 MSSA

In brief, MSSA is the multivariate extension of univariate SSA. There is still two

stages containing four steps in total for the whole MSSA process while the key

difference is that the form of how the trajectory matrix for each time series get or-

ganized to be a block trajectory matrix. Therefore, two types of MSSA is presented

based on the form of combining the matrices either horizontally or vertically. The

following brief theoretical introduction of MSSA mainly follows Sanei and Has-

sani (2015) (more information can be found in (Hassani et al., 2013b; Hassani and

Mahmoudvand, 2013; Patterson et al., 2011)).

4Note that for each specific window length L, there are L− 1 choices of numbers of eigenvalues
r. The general approach of seeking the optimal setting is based on the evaluations of reconstruction
or forecasting performances where all possible L and r combinations are evaluated.
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Vertical Form

Stage One – Decomposition

Consider M time series with different series length Ni: Y
(i)
Ni

= (y
(i)
1 , ...,y

(i)
Ni
)(i =

1, ...,M). In this case, the standard univariate form can be acquired by setting M = 1.

1st Step: Embedding

The one-dimensional time series Y
(i)
Ni

is firstly transformed into a multidimensional

matrix [X
(i)
1 , ...,X

(i)
Ki
] with vectors X

(i)
j that equals to (y

(i)
j , ...,y

(i)
j+Li−1)

T ∈RLi , where

Li(2 ≤ Li ≤ Ni/2) is the window length for each series with length Ni and Ki =

Ni−Li +1, respectively. The trajectory matrix that is produced after this step is

X(i) = [X
(i)
1 , ...,X

(i)
Ki
] = (xab)

Li,Ki

a,b=1. (2.9)

The above procedure is implied for each series separately, which provides M differ-

ent Li×Ki trajectory matrices X(i)(i = 1, ...,M). Note that in order to form a new

block Hankel matrix in a vertical form, it is required to have K1 = · · ·=KM =K. Ac-

cordingly, this version enables various window length Li and different series length

Ni, but equivalent Ki for all series. Therefore, the result of this step is the following

block Hankel trajectory matrix:

XV =




X(1)

...

X(M)


.

Note that XV indicates that the output of the first step is a block Hankel trajectory

matrix formed vertically.

2st Step: SVD

The SVD of matrix XV is then performed in the second step. Denote λV1, ...,λVLsum
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as the eigenvalues of XV XT
V , arranged in decreasing order (λV1 ≥ ·· · ≥ λVLsum

≥ 0),

where Lsum = ∑M
i=1 Li. The structure of the matrix XV XT

V is as follows:

XV XT
V =




X(1)X(1)T X(1)X(2)T · · · X(1)X(M)T

X(2)X(1)T X(2)X(2)T · · · X(2)X(M)T

...
...

. . .
...

X(M)X(1)T X(M)X(2)T · · · X(M)X(M)T




.

The structure of the matrix XV XT
V is similar to the variance-covariance matrix in

the classical multivariate statistical analysis literature. The matrix X(i)X(i)T for the

series Y
(i)
Ni

, appears along the main diagonal and the products of two Hankel matrices

X(i)X( j)T (i 6= j), which are related to the series Y
(i)
Ni

and Y
( j)
N j

, appears in the off-

diagonal.

Moreover, let the UV1, ...,UVLsum
be the orthogonal system of the corresponding

eigenvectors WV1, ...,WVLsum
. The SVD of XV can be written as

XV = XV1 + · · ·+XVLsum
, (2.10)

where XVi
=

√
λVi

UVi
W T

Vi
and WVi

= XT
VUVi

/
√

λVi
(XVi

= 0 if λVi
= 0).

Stage Two – Reconstruction

1st Step: Grouping

Relatively equivalent to the univariate SSA case, the grouping step splits the ma-

trices XV1 , · · ·,XVLsum
into several disjoint groups and summing the matrices within

each group. For instance, the spilt of the set of indices {1, · · ·,Lsum} into disjoint

subsets I1, · · ·, Ig corresponds to the representation

Xv = XI1 + · · ·+XIg . (2.11)
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Thus, for an ideal simple case where only signal and noise two components exist,

two groups of indices are separated by numbers of eigenvalues index r, which are

I1 = {1, · · ·,r} and I2 = {r+1, · · ·,Lsum} and associate the group I = I1 with signal

component and the group I2 with noise.

2st Step: Diagonal Averaging

Here in this step, the reconstructed matrix X̂Vi
is transformed to the form of a Han-

kel matrix, which can be subsequently converted to a time series. Let X̃
(i)

be the

approximation of X(i) obtained from the diagonal averaging step. If x̃
(i)
ab stands for

the a-th row, b-th column element of a matrix X̃
(i)

, then the j-th term of the recon-

structed series Ỹ
(i)
Ni

= (ỹ
(i)
1 , · · ·, ỹ(i)j , · · ·, ỹ(i)Ni

) is achieved by arithmetic averaging x̃
(i)
ab

over all (a,b) such that a+b−1 = j.

Horizontal Form

The key difference of the horizontal MSSA is in the first step, where the structure of

the block Hankel matrix is horizontally organized. The rest of the horizontal form

algorithms are very similar to those provided above for the vertical form, therefore,

only the differences are addressed below without reproducing the identical process-

es.

Equivalently, donate M different Li×Ki trajectory matrices X(i)(i = 1, ...,M) as

the results after the embedding step for M time series with different series length

Ni: Y
(i)
Ni

= (y
(i)
1 , ...,y

(i)
Ni
)(i = 1, ...,M). To construct a block Hankel matrix in the

horizontal form, it is necessary to have L1 = L2 = ...= LM = L. Accordingly, there

are different values of Ki and series length Ni, but similar Li. The result of this step

is

XH = [X(1) : X(2) : · · · : X(M)]. (2.12)
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Hence, the structure of the matrix XHXT
H is as follows:

XHXT
H = X(1)X(1)T

+ · · ·+X(M)X(M)T

. (2.13)

Regarding the structure of the matrix XHXT
H , there are not any cross-product be-

tween Hankel matrices X (i) and X ( j). Thus, in this format, the sum of X(i)X(i)T

pro-

vides the new block Hankel matrix. Nevertheless, performing the SVD of XH yields

L eigenvalues, whilst Lsum = ∑M
i=1 Li eigenvalues are obtained in vertical MSSA.

2.2.4 Forecasting with SSA/MSSA

SSA forecasting techniques can be applied on time series that approximately sat-

isfy linear recurrent formula (LRF) (Golyandina et al., 2001). The class of time

series governed by LRF is rather wide; it includes harmonics, polynomials and ex-

ponential time series and is closed under term-by-term addition and multiplication

(Hassani, 2007). There are two types of SSA/MSSA forecasting including the re-

current and vector approaches (Hassani and Mahmoudvand, 2013), while the MSSA

also have both horizontal and vertical forms. Thus, it leads to two different univari-

ate SSA forecasting algorithms and accordingly four different MSSA forecasting

algorithms as listed below:





SSA





RecurrectSSAForecasting

VectorSSAForecasting

MSSA





VMSSA





RecurrentVMSSAForecasting

VectorVMSSAForecasting

HMSSA





RecurrentHMSSAForecasting

VectorHMSSAForecasting
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Consider a time series YT = Y
(1)
T +Y

(2)
T that is ideally formed by signal Y

(1)
T and

noise Y
(2)
T , the forecasting aims to predict the signal in the presence of a noise.

There are two main assumptions: the signal series admits a recurrent continuation

with the assistant of the LRF of a relatively small dimension d; and the existence of

a specific window length L so that the signal and noise can be properly separated.

The SSA recurrent forecasting algorithm is briefly introduced here by following

(Hassani, 2007). Donate the time series YT satisfies an LRF of order d if there are

numbers α1, ...,αd so that

yi+d =
d

∑
k=1

αkyi+d−k, (2.14)

in which 1 ≤ i ≤ T −d. The coefficient α1, ...,αd can be achieved based on eigen-

vectors obtained from the SVD step so to further proceed to the forecasting.

Note that since the forecasting capability of SSA/MSSA is not the main focus of

this research except being briefly adopted for part of the implementation of the novel

method in Chapter 5, the full version of algorithms and proofs that have been clearly

presented in literature are therefore not reproduced here in the main text. However,

the algorithms of forecasting with SSA/MSSA are still briefly summarized in the

Appendix A as in Golyandina et al. (2001), Hassani and Mahmoudvand (2013) and

Sanei and Hassani (2015) for reference.

2.3 Convergent Cross Mapping (CCM)

2.3.1 Literature Review

CCM was firstly introduced by Sugihara et al. (2012) that aimed at identifying the

causality among time series in complex systems. It was based on nonlinear state

space reconstruction (more details see (Casdagli et al., 1991)) and was seeking to

provide a better understanding of dynamical systems that are not covered by other
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well established methods such as Granger causality (GC), thus, it contributes as an

alternative approach rather than a competition to extend causality analysis especially

on complex dynamic systems that is non-separable weakly connected (Sugihara

et al., 2012).

As the primary advancement of the causality analysis, GC by Granger (1969)

distinguishes causal effect based on that the predictability of the effect variable is

weakened due to the exclusion of the expected cause variable of the defined mod-

el. It also incorporated the lagged coordinator so to reflect the causal effect from

the past on present. However, it is highly model restricted and assumes that the

information of the cause variable is independent and unique with no more related

information existing in the model/system, which according to Sugihara et al. (2012),

it ignores the fact that the cause factor will be redundantly present in the effect vari-

able itself according to the dynamical system theory in (Deyle and Sugihara, 2011;

Dixon et al., 1999; Takens, 1981).

As a relatively new technique, CCM has proven to be an advanced non-parametric

technique for distinguishing causality in a dynamical system by implementations in

a number of subjects. It was applied on the ecological data by Sugihara et al. (2012)

where CCM was also initially introduced, in which, the results confirms that the

sea surface temperature influences sardine and anchovy population size along with

more supporting evidences by other fishery-independent data.

Regarding the climate change studies, Fan et al. (2014) adopted CCM and iden-

tified a unidirectional causality from vegetation green-up to spring dust storms in

Inner Mongolia, Northern China. Ye et al. (2015) applied CCM to CO2 and temper-

ature from the Vostok ice core, in which, the bidirectional causality was identified

so to confirm the positive feedback between temperature and greenhouse gases. Ad-

ditionally, the long term time series of chlorophyll-a and sea surface temperature

are also exploited by Ye et al. (2015) and a unidirectional causality from the sea

surface temperature on chlorophyll-a is detected. Moreover, the causality between



28 Subspace-based Techniques

galactic cosmic rays and global temperature was exploited by Tsonis et al. (2015)

using CCM, no measurable causality was found between cosmic rays and the over-

all global warming trend while significant causal effect of cosmic ray on short term

year to year variation in global temperature was identified for better understanding

of the factors of climate changes.

Clark et al. (2015) combined the existing CCM technique and incorporated

the dewdrop regression to establish the multispatial CCM test that aimed to detect

causality from short time series. This significantly extended the capability of causal-

ity analysis of nonlinear dynamical systems with very small number of observations

or complex systems where experiments are difficult to perform. In total, ten differ-

ent real world experiments are conducted to evident the performance of this novel

method, which cover a diverse range of subjects including soil nitrate and invading

plant species, nitrogen addition and plant species composition, competition plots on

a soil gradient, plant biomass in old fields, etc. Similarly, the long term causal link

between increasing dryness and the grassland dynamics is detected by using CCM

in (Brookshire and Weaver, 2015).

CCM has also been applied to biomedical study, McBride et al. (2015) firstly ap-

plied CCM for capturing characteristic changes in Electroencephalography (EEG)

activity due to cognitive deficits and demonstrate the capability of detecting early

stage Alheimer’s disease. Moreover, CCM is applied by Margolis et al. (2016) as an

alternative approach to detect causality and clarify the directionality of interactions

between species in human micro biome studies. A few more implementations have

covered the causality analysis studies in social media (Luo et al., 2014), marketing

(Dost, 2015), PM2.5 pollution and meteorological factors (Chen et al., 2017), etc.
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2.3.2 Theoretical Formulation

According to Sugihara and May (1990) and Sugihara et al. (1990), the time series

from the same dynamical system are causally linked, which indicates that each vari-

able can identify the state of the others. Moreover, the information of the cause

factor will be contained by the effect factor so to be reconstructed by the effect fac-

tor while the effect factor cannot be recovered by the cause factor (Sugihara et al.,

2012). Note that in this section, CCM is briefly introduced by following primarily

Sugihara et al. (2012).

Assume there are two variables Xt and Yt such that Xt has a causal effect on

Yt , where t = 1,2, ...,N and N is the total number of observations of two variables.

CCM will test the causality by evaluating whether the historical record of Yt can

be used to get reliable reconstructions of Xt . Given a library set of n points that

are not necessarily equal to the total number of observations N, t = 1,2, ...,n, the

lagged coordinates (lag=τ)5 are adopted to generate an E-dimensional embedding

state space based on Takens (1981) and Sugihara and May (1990), in which the

points are the library vector Xt and prediction vector Yt

Xt : {xt ,xt−τ ,xt−2τ , · · · ,xt−(E−1)τ}, (2.15)

Yt : {yt ,yt−τ ,yt−2τ , · · · ,yt−(E−1)τ}, (2.16)

The E + 1 neighbors of Yt from the library set Xt will be selected, which actually

form the smallest simplex that contains Yt as an interior point6. Accordingly, the

forecast is then conducted by the nearest-neighbour forecasting algorithm of sim-

plex projection as listed below by following Sugihara and May (1990) and Sugihara

(1994).

5More details that explicitly discuss the time lags for CCM can be found in (Ye et al., 2015).
6Note that the optimal E will be evaluated and selected based on the forward performances of

these nearby points in an embedding state space.
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Assume an observed time series Xt ∈ Rm+1 and donate the time series value Tp

time steps forward be Xt+Tp(1) = Yt , so the forecast at Tp is

Ŷt =
m

∑
j=1

Ct( j)Xt( j). (2.17)

The SVD solution for C is obtained by historical points from the fitting set or library

set i by B = AC, where

Bi = ω(‖Xi−Xt‖)Yi, (2.18)

Ai j = ω(‖Xi−Xt‖)Xi( j), (2.19)

ω(d) = eθd/d̄ , (2.20)

where θ ≥ 0, d is the distance between the predictee and the neighbour vector, the

scale factor d̄ is the average distance between neighbours.

Therefore, by adopting the essential concept of empirical dynamic modeling and

generalized Takens’ Theorem (Takens, 1981), two manifolds are conducted based

on the lagged coordinates of the two variables under evaluation, which are the at-

tractor manifold MY constructed by Yt and respectively, the manifold MX by Xt . The

causation will then be identified accordingly if the nearby points on MY can be em-

ployed for reconstructing observed Xt . Note that the correlation coefficient ρ is used

for the estimates of cross map skill due to its widely acceptance and understand-

ing, additionally, leave-one-out cross-validation is considered a more conservative

method and adopted for all evaluations in CCM.
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Fig. 2.2 Manifolds of Convergent Cross Mapping Test.





Chapter 3

Novel Similarity Measure by

Eigenvalue Distribution

Following the “Formal Cause" that was clearly stated in Chapter 1, section 1.2.1,

the Formal Cause is “the account of what-it-is-to-be", or “what makes a thing one

thing rather than many things" (Falcon, 2015). This chapter specifically exploits the

similarity measure aspect of the causality analysis by employing the subspace-based

technique. In brief, a novel similarity measure is proposed here that is fundamental-

ly built upon the criterion of eigenvalue distribution, and the relevant subspace based

technique adopted here is primarily SVD. Specifically, this chapter is organized as

follows: Section 1 contains a brief introduction and reviews of the landmark lit-

erature of similarity measure study; Section 2 presents the theoretical formulation

of the proposed novel similarity measure; The review of some empirical tests em-

ployed as part of the similarity measure are listed in Section 3; Section 4 evaluates

the proposed novel method by simulations, as well as the real case scenarios in

Section 5; Finally, the discussion and conclusion are summarised in Section 6.
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3.1 Introduction

The studies of similarity have been overwhelmingly explored and applied in var-

ious disciplines on many different formats, for example, numerical values (Hung

and Yang, 2004; Mitchell, 2003), images (Roche et al., 1998; Yang et al., 2005),

genes (Balasubramaniyan et al., 2005; Daub et al., 2004; Lord et al., 2003), chemi-

cal subjects (Barnard and Downs, 1992; Carbó et al., 1980; Nikolova and Jaworska,

2003), words (Huang, 2008; Sahami and Heilman, 2006) and so on. According to

Serra and Arcos (2014), the similarity measure is the most essential core element of

time series classification and clustering. Therefore, the development of better sim-

ilarity measure can significantly assist the improvement of data analysis efficiency.

As stated by Cha (2007), the similarity measure is closely related to the distance

measure, as the distance is defined as a quantitative degree of how far apart two

objects are. Consequently, studies of distance and similarity are significantly con-

nected and crucial in terms of solving many pattern recognition related problems,

such as clustering technique (Davies and Bouldin, 1979; Jarvis and Patrick, 1973),

Taxonomy (Lin et al., 1998; Resnik, 1995), image registration (Penney et al., 1998;

Roche et al., 1998), etc.

As one of the crucial difficulties in similarity measure is that the different types

of features are not comparable, to overcome this, the corresponding distribution of

extracted eigenvalues is considered as the “formal" criterion for developing a novel

similarity measure. It is inspired by the subspace-based technique that incorporates

the dynamical approach and embedding theorem to transform a one dimensional

time series to a multidimensional Hankel matrix. Hankel matrix have many fea-

tures as a square matrix, where gives a sequence of the one dimensional time series,

also defines the dynamical state-space. The explorations of the significance of the

empirical distribution of the eigenvalues of the Hankel matrix can be found in (Gh-

odsi et al., 2015a; Hassani et al., 2014, 2015a).
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To my knowledge, this research is the initial attempt of adopting eigenvalue

distribution into formulating a similarity measure in the multivariate system. The

successful implementation of this novel similarity measure can overcome the limita-

tions of nonlinear dynamic, complex fluctuations and the possibility of distinguish-

ing similarity for particular or selected features. Note that time series under evalua-

tion are embedded into multidimensional matrices and combined either vertically or

horizontally to be transformed into a Hankel matrix, where the eigenvalues can be

extracted by SVD technique accordingly. Moreover, in order to evaluate the relia-

bility of eigenvalue distribution as the similarity measure, three empirical statistical

tests together with the real case scenario are overwhelmingly evaluated. Possible

circumstances during the formulation process of the new measure are comprehen-

sively validated with brief introductions and comparisons in following sections.

3.2 Theoretical Formulation

3.2.1 Eigenvalue Distribution

To overcome the difficulty of existing diverse and incomparable features, the novel

similarity measure extracts the corresponding eigenvalue distributions as the formal

criterion by considering the elements of time series as a whole without removing

any nonlinear or complex features. It is of note that the structures of construct-

ing Hankel matrix containing multiple variables differ, including both horizontal

and vertical forms (the corresponding details of constructing Hankel matrix can be

found in Chapter 2, section 2.2.3, while the algorithm of extracting eigenvalues can

be found in Chapter 2, section 2.1). Thus, a simple example of two time series case

is summarized below for reference.
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Consider two time series X and Y with different series length NX and NY :

X = (x1,x2, . . . ,xNX
),

Y = (y1,y2, . . . ,yNY
).

Firstly, transfer the one-dimensional time series X and Y in to multidimensional

matrix respectively: [X1, ...,XKX
] with vectors X j that equals to (x j, ...,x j+LX−1)

T ∈
RLX ; [Y1, ...,YKY

] with vectors Yi that equals to (yi, ...,yi+LY−1)
T ∈ RLY . For which,

LX(2≤ LX ≤NX/2) and LY (2≤ LY ≤NY/2) are the window lengths for each series

and generally K = N−L+1.

Then two trajectory matrices are constructed:

X = [X1, ...,XKX
] = (xmn)

LX ,KX

m,n=1,

Y = [Y1, ...,YKY
] = (ypq)

LY ,KY

p,q=1.

In order to construct a block Hankel matrix in the vertical form, thus KX =

KY = K. Accordingly, this version enables various window length for different

series length, but identical K for all series. The result of this step is the following

matrix:

MV =


X

Y


.

Note that MV indicates that the output of the first step is a block Hankel trajectory

matrix formed in a vertical form.

Then, the SVD of MV is performed in the following step. Denote λV1 , ...,λVLX+LY

as the eigenvalues of MV MT
V , arranged in decreasing order (λV1 ≥ ...λVLX+LY

≥ 0)

and UV1 , ...,UVLX+LY
, the corresponding eigenvectors. Note also that the structure of

the matrix MV MT
V is as follows:
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MV MT
V =


XXT XYT

YXT YYT


.

The SVD of MV can be written as MV = MV1 + · · ·+ MVLX+LY
, where MVg =√

λVgUVgV
T

Vg
and VVg = MT

VUVg/
√

λVg (g = 1, ...,LX +LY and MVg = 0 if λVg = 0).

On the other hand, the horizontal form block Hankel matrix requires LX = LY =

L and enables various K for different series length so to construct the matrix MH =

[X : Y]. Thus, the structure of the matrix MHMT
H is as follows:

MHMT
H = XXT +YYT .

The SVD of MH can then yield L eigenvalues: MH = MH1 + · · ·+MHL
, where

MHg =
√

λHgUHgV
T
Hg

and VHg = MT
HUHg/

√
λHg (g = 1, ...,L and MHg = 0 if λHg =

0).

Note that the horizontal form decomposition is proved to produce more reliable

and consistent information of eigenvalue distributions, which is evident by the care-

ful consideration and comparison of eigenvalue distributions by both vertically and

horizontally formed techniques (the detailed comparisons are available in Appendix

B). Hence, all tests in the following sections are based on eigenvalues conducted by

decomposition stage of the horizontal form.

3.2.2 Novel Similarity Measure

By setting the eigenvalue distribution as the similarity measure criterion, the hy-

potheses of the novel similarity measure are stated as below:

Null hypothesis (H0): there is no significant difference between the eigenvalue dis-

tributions of matrices by two tested series.

Alternative hypothesis (Ha): there is a significant difference between the eigenval-

ue distributions of matrices by two tested series.
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The null hypothesis is rejected when the p-value is less than the 5% significance

level, and therefore it is concluded that the set of eigenvalues are not similar and

consequently two test series are different. While if the p-value is very close to

or equal to 1, the two tested series are similar as they share very similar or even

identical eigenvalue distributions.

As the proposing method of measuring similarity based on eigenvalue distribu-

tion is considering a possible implementation of detecting “Formal Cause", different

benchmarks of comparison will lead to different results. Consider two random vari-

ables X and Y , “how similar is X to Y " and “how similar is Y to X" are two different

questions depending on which element is set as the benchmark. However, even it is

not expected to receive exactly identical results between comparing X to Y and Y to

X , the expected final outcomes that define “similar" or “different" should not vary.

Furthermore, even it is the same question to be tested, there are also two types

of circumstances determined by with or without the premise of multivariate sys-

tem. For instance, if the principle is to answer the question of how similar is Y

to X , the eigenvalue distribution by corresponding matrix XXH will be considered

as the “benchmark" for further evaluation to compare with eigenvalue distribution

extracted by: YYH if it is without the premise of multivariate system; XYH with

the premise of multivariate system. Hence, if the eigenvalue distribution is statisti-

cally similar with the “benchmark" eigenvalue distribution, Y will then concluded

as similar with X . Note that the detailed test results of simulations with and without

the premise scenarios will be separately presented in the following sections.

A flowchart is provided in Fig. 3.1 that briefly summarizes the formulation and

evaluation process of this proposing similarity measure. Note that in terms of sim-

ulation, corresponding process is repeated 1000 times respectively, and the popu-

lation of tested series are generated by involving random white noises that being

maintained at about 10% of the range of tested series. As stated in the flowchart,

it is worth to be addressed that the empirical tests that are adopted here for pro-
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viding statistical measurement on the eigenvalue distributions are Chi-squared Test,

Log-likelihood Goodness of Fit Test and Kolmogorov-Smirnov Test, which will be

specifically reviewed in the next section.

Fig. 3.1 The Flowchart of The Novel Similarity Measure by Eigenvalue Distribu-
tion.

Moreover, in order to ensure the consistency and comparability, the default win-

dow length is set as about 1/10 of the time series length. This will be fair number to

include almost all significant eigenvalues without containing too much unimportant

ones. With a relatively larger window length, the information will be split either

flatly or partly flatly by more eigenvalues, and the differences will be split to be less

significant to be identified; in contrast, a smaller window length will result in the

fewer amount of eigenvalues with more significant differences for all or some of the

eigenvalues. Without considering the consistency to be comparable, the most proper

window length will be selected heavily depends on the feature of the series being an-

alyzed with the principle of relatively maximizing the significant information with

possibly small number of eigenvalues.
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3.3 Empirical Methods of Comparing Distribution Sim-

ilarity

In order to evaluate whether the extracted eigenvalues are similar or not to con-

clude the similarity between two tested series, three empirical statistical tests (Chi-

squared Test, Log-likelihood Goodness of Fit Test and Kolmogorov-Smirnov Test)

are adopted (note that various distance and similarity measures are comprehensively

reviewed and categorized by Cha (2007) for more information). In general, coor-

dinates and the cumulative distribution function (CDF) are the most generally ac-

cepted concepts to represent the examined subject. Since the proposed similarity

measure is expected to have no assumption or limitation on measuring tested se-

ries with only the empirical distributions, some tests that are commonly used to

evaluate the consistency with the empirical distributions can not be properly suit-

able here (i.e. Shapiro-Wilk Test (Shapiro and Wilk, 1965), Hellinger Distance

(Bhattacharyya, 1946), Kullback Leibler Divergence (Kullback and Leibler, 1951),

Anderson-Darling Test (Anderson and Darling, 1952)). Therefore, only brief in-

troductions of several important and dominant measurements that are referred for

formulating the novel similarity measure due to the special feature of eigenvalue

distribution are listed respectively as follows.

3.3.1 Chi-squared Test

As an improved distance measure comparing to Euclidean distance, the Chi-squared

statistic can be simply considered as the summation of squared Euclidean distances

of two vectors (by considering them in a n dimensional space domain, where n is

the number of observations for both vectors) over the corresponding “coordinates"

of the domain vector. The Chi-squared distribution (also known as Helmertian dis-

tribution) (Helmert, 1876) is one of the most significantly applied probability dis-
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tributions, and it is most commonly accepted for measuring the distance or simi-

larity level between two probability distributions. Pearson (1900) adopted the Chi-

squared distribution in the goodness of fit domain and conducted the Chi-squared

test, which statistically evaluates the observed data about its goodness of fit level

and consistency with an expected distribution. Here in this chapter, it is adopted for

comparing the eigenvalue distributions as evidence of similarity. The Chi-squared

statistic formula is:

χ2(C,E) =
Z

∑
i=1

(Ci−Ei)
2

Ei
, (3.1)

where Z is the number of levels of categories; C is the observed frequency and E is

the expected count.

Therefore, in terms of Chi-squared test between two tested variables, assume

ZA and ZB are the number of levels of categorized variables A and B, so the de-

gree of freedom can be calculated by d f = (ZA − 1)× (ZB − 1). The expected

counts/frequencies is computed by

EZA,B = (CZA
×CZB

)/n, (3.2)

where CZ refers to observed counts at specific level of category and n indicates the

total observation number. Consequently, the corresponding Chi-squared statistics

is:

χ2(A,B) = ∑
(CZA,B−EZA,B)

2

EZA,B

. (3.3)

3.3.2 Log-likelihood Goodness of Fit Test

The Log-likelihood Goodness of Fit Test is actually based on the commonly used

Chi-squared test statistics in Pearson (1900). According to Sokal Robert and James
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(1981), the Log-likelihood statistic formula is:

G = 2∑
i

fi · ln(
fi

qi
), (3.4)

where the fi refers to the observed frequency, whilst qi indicates the expected fre-

quency. More specifically, the test is adopted for evaluating whether the eigenval-

ue distribution of the examined series fit well to the eigenvalue distribution of the

benchmark series.

3.3.3 Kolmogorov-Smirnov Test

The Kolmogoriv-Smirnov Test (K-S Test) was firstly proposed by Kolmogorov

(1933). As a non-parametric statistical test, it quantifies the distance based on the

CDF with no assumption about the distribution of data. It can be adopted to examine

the similarity level of one distribution to empirical distribution, more importantly, K-

S test is also applicable for evaluating the similarity of distributions of two random

samples. The K-S test statistic is defined as below, which mainly follows (Hassani

and Silva, 2015):

Dn = supx|Fn(x)−F(x)|, (3.5)

where F refers to the theoretical cumulative distribution function, Fn represents the

cumulative distribution up to n observations, supx indicates the supremum of the set

of distances, and Dn refers to the supremum distance reached up to n observations.

In terms of the two-sample case of K-S Test, the corresponding test statistic formula

is:

Dn,n′i = supx|F1,n(x)−F2,n′(x)|, (3.6)

note that F1,n and F2,n′ are the corresponding distribution function for two tested

samples respectively.
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Specifically for the proposed similarity measure method based on eigenvalue

distribution, two-sample K-S Test is adopted to determine whether the “benchmark"

populations created by the dominate series has consistent eigenvalue distribution as

the other series.

3.4 Simulation Performance

In order to evaluate the performance of the proposed similarity measure by eigenval-

ue distribution, various types of simulated series are tested by being separated into

two groups of circumstances: the similar group and the different group, additionally

the different choices of “benchmark" are also considered in each group. The initials

of various types of generated series are listed below for the sake of simplifying the

expressions:

1. W N White Noise.

2. UD[0,1] Uniform Distribution Series [0, 1].

3. UD[−1,1] Uniform Distribution Series [-1, 1].

4. EP[1] Exponential Distribution Series rate 1.

5. SINE[−1,1] Sine Wave Series [-1, 1].
The robustness of accepting eigenvalue distribution as similarity measure cri-

terion are preliminarily examined in this section, specifically, the test results are

summarized in Tables 3.1 and 3.2 by each empirical statistical method adopted as

follows.

3.4.1 On the Premise of Multivariate System Scenario

Regarding the scenario of with the premise of multivariate system, the similarity

of eigenvalue distributions extracted from the matrices XYH and XXH (or YYH

determined by which series is considered as the benchmark series) are evaluated,

respectively. Note that XYH is created from two time series XN and YN simultane-
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ously, and XXH (or YYH ) is formed by XN (or YN) with itself respectively. The

corresponding test results of eigenvalue distributions as novel similarity measure by

adopting three different empirical methods are summarized in Table 3.1. Note that

the bold number indicates the best performance option in corresponding comparable

level.

The Chi-squared test results show positive outcomes as expected for the “sim-

ilar" group on both numbers of observations scenarios, whilst in terms of the “d-

ifferent" group, the tests can perform better for longer series. However, there are

still significantly unexpected results (p-value is close to 1) for the UD[0,1] & EP[1]

and UD[-1,1] & SINE[-1,1] combinations, especially the results vary greatly for

the UD[0,1] & SINE[-1,1] and EP[1] & SINE[-1,1] cases. As mentioned earlier,

the population for comparison is created by the “benchmark" series, therefore dif-

ferences are expected when switching the “benchmark" series, however, opposite

results for the same pair of series are not robust as expected, and it is even worse

than the cases of indicating “similar" for the groups that are expected to be “differ-

ent".

In terms of the log-likelihood goodness of fit test results, expected results for the

“similar" group are confirmed in accordance with the simulation results. P-values

are equal to 1, which indicate that it is almost 100% sure to accept the null hypoth-

esis, therefor very similar or identical eigenvalue distributions prove the expected

conclusion of “similar". Regarding the expected to be “different" group, both long

and short series length, 1000 and 100 observations, show generally consistent sig-

nificant results, except the UD[0,1] & EP[1] combination. Since UD[0,1] and EP[1]

indeed show similar eigenvalue distributions (more information can be found in Ap-

pendix B) and the differences are between the tails, the log-likelihood goodness of

fit test is not sensitive for detecting differences of distributions with flat tails. How-

ever, the advantage of this test can be noticed in the shorter length of observation
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scenario; the results are almost stable and consistent with the expected results of

highly significant statistics.

K-S test show positive results as expected for the “similar" group on both num-

bers of observations scenarios. In terms of N = 100 case for “different" group of

combinations, only the UD[0,1] & UD[-1,1] combination can be detected with 10%

of significance level, however, the differences between switching dominant series

to create “benchmark" populations are not significant. Comparing to the results of

previous tests, the inconsistency is worse than less sensitivity of accurate detection,

it has to be noticed that the two sample K-S test shows great performance on con-

sistency and stability, even in the quite unstable and greatly varied scenarios that

other tests can not even provide uniformed results. In addition, for the “different"

group with N = 1000 case, almost all results are as expected to be significant (ma-

jority is under 5%, only a few are under 10%). Note that the EP[1] & SINE[-1,1]

combination is the only one that K-S test could not detect significantly, and this is

mostly because that K-S test is not that much sensitive to the differences at tail, also

the natural character of eigenvalue distribution for both types of series vary at the

tail part with increasing differences when the window length of structuring matrix

increases.



4
6

N
ovelS

im
ilarity

M
easure

by
E

igenvalue
D

istribution

Table 3.1 Similarity Measure Evaluation by Three Different Tests on Simulated Groups of Series on the Premise of Multivariate
System Scenario.

Chi-squared Test Log-likelihood GOF Test K-S Test

N=100 N=1000 N=100 N=1000 N=100 N=1000
L=10 L=100 L=10 L=100 L=10 L=100

Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y Y→X X→Y
X Y p-value p-value p-value p-value p-value p-value

Similar

UD[0,1] UD[0,1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

UD[-1,1] UD[-1,1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EP[1] EP[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SINE[-1,1] SINE[-1,1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Different

UD[0,1] UD[-1,1] 0.14 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.07 0.05 0.00 0.00

UD[0,1] EP[1] 0.76 0.98 0.88 1.00 0.81 1.00 0.99 1.00 0.77 0.65 0.01 0.01

UD[0,1] SINE[-1,1] 0.98 0.35 1.00 0.00 0.00 0.00 0.00 0.00 0.76 0.89 0.02 0.01
UD[-1,1] EP[1] 0.01 0.88 0.00 0.01 0.05 0.35 0.00 0.00 0.49 0.65 0.00 0.00

UD[-1,1] SINE[-1,1] 1.00 1.00 1.00 0.99 0.00 0.00 0.00 0.00 0.11 0.41 0.10 0.10
EP[1] SINE[-1,1] 1.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00 0.45 0.60 0.56 0.53
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3.4.2 Without the Premise of Multivariate System Scenario

In terms of the scenario without the premise of multivariate system, the similarity

measure is performed on the eigenvalue distributions extracted from the matrices

XXH and YYH respectively. To be consistent with the previous evaluation process,

the following tests consider both similar and different groups of series and evaluate

the performance of similarity measure by 1000 time simulations. Note that this time

there is no premise of a multivariate system, therefore, the evaluation by simulated

series will have no assumption on benchmark series. Hence, for each pair of series,

there is only one test statistic conducted. The default number of observation is 1000

and default window length is 100. All statistical tests results are listed in Table 3.2.

Note that the bold number indicates the best performance option in corresponding

comparable level.

Table 3.2 Similarity Measure Evaluation by Three Different Tests on Simulated
Groups of Series Without the Premise of Multivariate System Scenario.

Chi-squared Test Log-likelihood K-S Test

GOF Test

N=100 N=1000 N=100 N=1000 N=100 N=1000

L=10 L=100 L=10 L=100 L=10 L=100

X Y p-value p-value p-value p-value p-value p-value

Similar

UD[0,1] UD[0,1] 0.99 1.00 0.99 1.00 0.99 0.99

UD[-1,1] UD[-1,1] 0.99 1.00 0.99 1.00 0.99 0.98

EP[1] EP[1] 0.99 1.00 0.99 1.00 0.98 0.93

SINE[-1,1] SINE[-1,1] 0.99 1.00 0.99 1.00 0.99 0.99

Different

UD[0,1] UD[-1,1] 0.01 0.00 0.01 0.00 0.03 0.00

UD[0,1] EP[1] 0.72 0.73 0.72 0.64 0.61 0.00

UD[0,1] SINE[-1,1] 0.52 0.45 0.54 0.49 0.76 0.01

UD[-1,1] EP[1] 0.22 0.00 0.18 0.00 0.23 0.00

UD[-1,1] SINE[-1,1] 0.96 0.46 0.96 0.50 0.98 0.03

EP[1] SINE[-1,1] 0.58 0.49 0.59 0.50 0.99 0.57

It is worth to be noted that due to the algorithm of applying Chi-square test and

Log-likelihood goodness of fit test for two sample test, it is necessary to define one
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of the tested series as dominant series and re-scale the assumption of distribution

in the first place for the further tests. Consequently, for the scenario of without the

premise of multivariate system, the simulations of 1000 times are equally shared by

both series in one pair of tested series. Therefore, both series have same quantity of

chances to be the dominant series to re-scale the assumption distribution. K-S test

do not have assumptions on any distribution, hence simulations for two sample test

of K-S test here do not have significant difference comparing to the corresponding

process of previous scenario on the premise of multivariate system.

According to Table 3.2, all statistical tests provide consistent results on both

short and long series for the similar group, which overwhelmingly show p-value

nearly equal or identical to 1. Consequently, it indicates significantly similar eigen-

value distributions and then the similarity between tested series. However, in terms

of the different group, both Chi-squared test and Log-likelihood goodness of fit test

could not detect most of the differences properly except the UD[0,1] & UD[-1,1]

and UD[-1,1] & EP[1] combinations. It is mostly because of the variation and in-

stability caused by switching dominant series for re-scale distribution assumption.

Even for the longer series case, most of the results get smaller p-values (which in-

dicates different eigenvalue distributions), they are still not significant enough as

expected for the generated different group. K-S test is proved to outperform the

other two tests for the long series case, also it can accurately detect the similarity

or differences for both simulated groups. Even for the short series case, the results

of K-S test are fairly close to the results of the other tests. Unlike the previous test

results of log-likelihood goodness of fit test, it does not show good performance on

short series this time.

In general, by considering the scenario without the premise of a multivariate

system, the K-S test is confirmed as the most proper statistics to be adopted for

the new similarity measure based on eigenvalue distribution. Moreover, for both

scenarios, it is promising to obtain consistent results as simulative expectations,
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which convincingly prove the satisfying robust performances of this novel similarity

measure on several different types of simulated series.

3.5 Evaluation in Real Case Scenario

Following the previous evaluations by simulations, it can be summarized that the

eigenvalue distribution can be considered as a proper criterion of measure similarity

by adopting suitable statistical test; K-S test outperforms others in the large data

size domain with consistent results as simultaneously expected.

Considering the real case scenario, data can be ideally assumed to be formed

by signal and noise. Therefore, it is not applicable to simulate noises to form and

produce the population of dominate series as the benchmark to measure similarity.

Consequently, bootstrap re-sampling technique (Efron, 1979) is adopted to conduct

the population of dominate series with specific confidence level and evaluate how

similar the other tested variable is to the benchmark population under the specific

confidence level circumstance. Note that the newly proposed method can certainly

be performed without any re-sampling process if there are already clear informa-

tion of its population. The corresponding population will only be generated by

re-sampling for obtaining the information of its population. Due to the nature of

similarity that is discussed previously, the similarity level of X to Y and Y to X are

two different questions regarding the differences of the benchmark. Therefore, the

re-sampling process will consider two different cases by choosing different original

series to create the population.

A flowchart is provided in Fig. 3.2 that briefly summarizes the formulation pro-

cess under the simultaneous real case scenario by bootstrap re-sampling. For in-

stance, when the principle is to obtain the population of benchmark series X , thus,

the population of λXXHXXT
H

(determined by with or without the premise of multi-

variate system) is conducted, which is formed by eigenvalues distributions within
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specific confidence interval of K-S statistics. Therefore, if the confidence level is

fixed as 95%, the population of eigenvalue distributions will then be conducted that

indicate significantly 95% similarity level with benchmark series. To this end, the

other series can be evaluated by comparing its corresponding K-S statistics with

the range of K-S statistics by the population. Therefore, different similarity levels

can be identified respectively with necessary adjustment of confidence level in the

bootstrap re-sampling stage.

Fig. 3.2 The Flowchart of The Simultaneous Real Case Scenario by Bootstrap Re-
sampling.

The results by representative simultaneous groups of series are provided in Ta-

ble 3.3. In terms of the similar group, the similar group shows consistent results

for both short and long series, in which, 95% significant level indicates tested se-

ries share at least 95% of similarity based on the eigenvalue distributions from the

corresponding matrices. According to the previous evaluations of K-S test on short

and long series for different group, here it is only considered to evaluate the perfor-

mance on long series in accordance to its previous promising results in simulations

(symbol \ for short series in Table 3.3). The 5% significant level refers to that the



3.6 Discussion 51

test statistics does not fit even when the confidence level of bootstrap re-sampling is

set as 5%. This significantly indicates that tested series can be considered different

as they are not similar even for 5% significant level.

Table 3.3 Simultaneous Real Case Similarity Measure Results by Bootstrap Re-
sampling.

N=100 L=10 N=1000 L=100

Y to X X to Y Y to X X to Y

X Y Y/N Sig Level Y/N Sig Level Y/N Sig Level Y/N Sig Level

Similar

UD[0,1] UD[0,1] X 95% X 95% X 95% X 95%

UD[-1,1] UD[-1,1] X 95% X 95% X 95% X 95%

EP[1] EP[1] X 95% X 95% X 95% X 95%

Different

UD[0,1] UD[-1,1] \ \ \ \ X 5% X 5%

UD[0,1] EP[1] \ \ \ \ X 5% X 5%

UD[-1,1] EP[1] \ \ \ \ X 5% X 5%

Note: X indicates the result is correctly proved by the measure.

3.6 Discussion

Although as a novel similarity measure based on eigenvalue distribution with proven

robustness and consistent performances, it is also certain that it is still the beginning

of developing this new measure. The types of series in simulations are relatively

limited, and there are still numerous choices of more complex series or combina-

tions of series haven not been explored. The bootstrap re-sampling by K-S statistics

for some real data (especially large size of data that is much longer than the de-

fault 1000 observations in simulation) may take a longer time of calculation, which

makes it crucial to find a more straight forward process to identify the population

information as the benchmark. Also, the performance in short series is not as good

as its effort on long series. However, there are also numerous possibilities to im-

prove this novel measure further as the second stage of this research: evaluating

more representative data patterns; involving more types of noises with different lev-
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els of variations and more options of window lengths; in terms of time series with

different frequencies, it can also provide possible solution by adopting SSA tech-

nique with specific modification accordingly; one significant implementation area

of similarity measure is classification, therefore, the future research can also focus

on the evaluations of its performances on classification tasks of time series, images,

gene expressions, etc.

In general, by overcoming the difficulties of empirical similarity measures through

identifying the comparable criterion, this chapter proposes a novel similarity mea-

sure based on eigenvalue distribution by incorporating the SVD technique, which

is the initial attempt of adopting this technique in terms of the similarity measure

development. The evaluation results are promising and robust as this research have

considered many possible circumstances in the formulation process. The robust-

ness of adopting eigenvalue distribution as proper criterion of measuring similarity

have been examined; additionally, it is found that K-S test outperforms others in

the large data size domain with consistent results as simultaneously expected. Fur-

thermore, the simultaneous real case scenario is evaluated by adopting the bootstrap

re-sampling technique to prevent the possible impacts during the process of creat-

ing benchmark population. Consistent results are achieved in the simultaneous real

case scenario indicating the robust performance of distinguishing various “similar"

or “different" groups of series.

This novel similarity measure can work properly on long series, and it does not

require any assumption of distributions during the measuring process. The com-

putation is reasonably efficient and can be easily employed by modifying currently

available R packages. By considering eigenvalue distribution as the criterion of sim-

ilarity measure, the amount of computation is significantly reduced for large data

set. More importantly, this novel similarity measure can work with time series with

different lengths and still identify the significant features for evaluations. In brief,

this novel similarity measure contributes to providing a measurement that has no
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limitations of series length, series with nonlinear features or complex fluctuations,

series sharing both signal and noises as similarities, etc. It is absolutely worth look-

ing forward to its developments and implementations on various disciplines in the

close future.





Chapter 4

Novel Mutual Association Measure

by Eigenvalue-based Distance

This chapter explores the association measure aspect of the causality analysis by

incorporating the subspace-based technique. A novel association measure based on

eigenvalue-based distance is developed and comprehensively evaluated. Specifical-

ly, this chapter is formed as follows. A brief introduction of association study is

provided in Section 1. Section 2 reviews several well established association mea-

sures that are used in linear or nonlinear association detection respectively. The

development and formulation process of the novel mutual association measure is

presented in Section 3. Section 4 concludes the evaluations of both empirical and

novel association measures by simulations. The real data applications are conduct-

ed and evaluated in Section 5, and finally the conclusion is summarized in Section

6.

4.1 Introduction

Association can be briefly explained as the representation of any relationships, or

measurement of independency between tested subjects. Studies of association from
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a statistical aspect can be tracked back to over one century ago. As one of the

domain subjects in the study of multivariate system, the study of association, or

identically named correlation analysis has been developed and applied across sub-

jects on various disciplines, for example, economics (Filis et al., 2011), social sci-

ence (Hajian and Movahed, 2010), chemistry (Chapman, 2012), biology (George

et al., 2014), etc. To date, there are several established association measures with

advantages in either linear or nonlinear association detection, for instances, Pearson

(Pearson, 1895), Spearman (Spearman, 1904), Kendall (Abdi, 2007; Kendall, 1938),

Hoeffding’s D (Hoeffding, 1948), Distance Correlation (Székely et al., 2007), Mutu-

al Information (Dionisio et al., 2004) and Maximal Information Coefficient (Reshef

et al., 2011). However, there are still numerous possibilities for further improve-

ments as none of these measures can master significant performances for the detec-

tion of all possible relationships in a broad sense.

This chapter develops a novel association measure that is more sensitive on de-

tecting nonlinear or complex associations without losing the ability on basic linear

association detection. This development is inspired by the subspace-based tech-

niques: SVD and SSA, which have been applied and proved with promising per-

formances on time series analysis, forecasting, denoising and multivariate analysis

across various disciplines (more details can be found in Chapter 2, section 2.1 and

2.2). This research is the first attempt of incorporating the subspace-based technique

with association study from a multivariate system aspect. More specifically, the

concept of eigenvalue-based distance (Rodrıguez-Aragón and Zhigljavsky, 2010) is

adopted as the criterion of measurement to assist on the development of the novel

mutual association measure.

Note that in order to evaluate the reliability of this novel association measure,

a few well established association measures are summarized and overwhelmingly

considered as comparison. The performances of both empirical and novelly pro-

posed association measures are evaluated by comprehensive simulations involving
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representative linear and nonlinear relationships. Furthermore, the real data imple-

mentations are conducted to evident on the robust performance of the novel mutual

association measure in actual application scenario.

4.2 Benchmark Empirical Methods

This section briefly summarizes a few empirical association measures that are gen-

erally accepted and well established in literature by classifying them into linear and

nonlinear domains as follows.

4.2.1 Linear Correlation

Pearson Correlation Coefficient

The Pearson correlation coefficient (Pearson, 1895) has been generally accepted as

the most significant and well known measurement index to examine the correlation

relationship between tested variables. The calculation process is easy and it has

been applied for the majority of practical implementations in terms of association

study. The Pearson correlation coefficient, ρ , between two random variables X and

Y each containing n observations is defined as:

ρ =
Cov(X,Y)

σXσY
=

E[(X−µX)(Y−µY)]

σXσY
, (4.1)

where E is the expected value operator, µX, σX and µX, σY are expected value and

standard deviation of random variables X and Y, respectively.

Consequently, under null hypothesis circumstance, the Pearson correlation co-

efficient ρ computed by the formula above follows the t-distribution with degree of
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freedom of n−2. The t statistic is calculated by:

t =
ρ(X ,Y )

√
n−2√

1−ρ2(X ,Y )
. (4.2)

Pearson correlation coefficient ρ satisfies −1 ≤ ρ ≤ 1 with the special cases of

perfect linear dependence that equals to -1 or 1. It measures the direction and the

dependence level between two tested variables in a linear domain. However, if two

variables cannot be identified correlation by Pearson correlation, one cannot deny

the possibility that they are associated in a nonlinear domain.

Spearman Rank Correlation

Spearman rank correlation (Spearman, 1904) is another well accepted measure of

correlation relationship between two variables. It is a nonparametric test and used

ranked values to evaluate the association level based on the underlying assumption

of a monotonic relationship. The monotonic relationship assumption is the major

difference comparing to Pearson correlation, which is built on satisfying the much

restrictive linear relationship. Therefore, assume that two variables Xi and Yi are the

original variables expecting to be evaluated, where i is the paired score and i∈ [1,n]
as n is the number of observations for each variable. In addition, xi and yi are their

corresponding ranked values. As a reminder, the Spearman rank correlation s is

calculated by the formula listed below:

s = 1− 6∑(xi− yi)
2

n(n2−1)
, (4.3)

where n is the number observations.

Therefore, under the null hypothesis circumstance, the Spearman correlation

coefficient can be estimated by the t-distribution with degree of freedom of n− 2.
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The t statistics is then calculated by:

t =
s
√

n−2√
1− s2

. (4.4)

The Spearman correlation coefficient has the values that satisfy −1 ≤ s ≤ 1,

where values -1 and 1 refer to perfect monotonic relationship, whilst s = 0 indicates

monotonically independent random variables. It has been a significant improvement

that the Spearman rank correlation coefficient extends the restriction of linearity to

monotonic relationship. However, it is less sensitive to outliers and the results of

"independent" tendency still cannot reject the possibility of nonlinear association.

Kendall τ Rank Correlation Coefficient

Kendall correlation is firstly proposed by Kendall (1938) as an updated version of

rank correlation measure. It considered the possible differences of ranking orders

corresponding to random observers and developed the index τ to represent the new

rank correlation coefficient as below by following (Kendall, 1938):

τ =
actual score

maximum possible score
, (4.5)

where, in terms of n observations, the actual score is the number of different pairs

between these two ordered sets, called the symmetric difference distance (Abdi,

2007).

Therefore, the maximum possible score can be calculated by

maximum possible score = (n−1)+(n−2)+ · · ·+1 =
n(n−1)

2
. (4.6)

As an alternative rank correlation measure comparing to Spearman rank correla-

tion, the Kendall rank correlation can also detect possible monotonic relationships.

As the standard deviation of τ can be computed by στ =
1
3

√
2(2n+5)
n(n−1) , therefore, the
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null hypothesis test process of obtaining significant test statistics is introduced be-

low by following (Abdi, 2007):

Zτ =
τ

στ
, (4.7)

where Zτ is a normal distributed statistics, also satisfies mean of 0 and standard de-

viation of 1. Kendall rank correlation directly illustrates the identical and different

pairs and generally it indicates similar interpretations as the Spearman rank correla-

tion. However, it is less sensitive to error and shows better performance with smaller

sample size. Moreover, it is still not applicable to nonlinear association detection.

4.2.2 Nonlinear Association

Hoeffding’s D Test

Hoeffding’s D test is another nonparametric test of independence between two ran-

dom variables proposed and named after Hoeffding (Hoeffding, 1948). The ma-

jor difference between Hoeffding’s D test and classical linear association measure

methods like Pearson and Spearman is that it can detect some level of nonlinearity

beyond the monotonic association relationship. It is based on ranked value similar

as Spearman, however, the difference is that it measures the joint ranked values of

two examined variables together.

As a reminder, assume two random variables X and Y with n observations each,

in which xi and yi have the ranks representing as RXi and RYi respectively (i ∈
[1,n]). Additionally, Qi refers to the number of points with both x and y values less

than their corresponding ith point. Therefore, Qi = ∑n
j=1 φ(x j,xi)φ(y j,yi) and the

Hoeffding’s D statistic can be calculated as the formula listed below:

D =
A−2(n−2)B+(n−2)(n−3)C

n(n−1)(n−2)(n−3)(n−4)
, (4.8)
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in which by setting as follows:

A =
n

∑
i=1

(RXi−1)(RXi−2)(RYi−1)(RYi−2)

B =
n

∑
i=1

(RXi−2)(RYi−2)Qi.

C =
n

∑
i=1

Qi(Qi−1)

(4.9)

Distance Correlation

Distance correlation is proposed by Székely et al. (2007) as a new measure of de-

pendence between random vectors, which also claimed to be designed for detecting

nonlinearity. It adopted the empirical concept of Euclidian distance together with

sample moments. It is stated by Székely et al. (2009) that it is easy to calculate

and can be apply to sample sizes n ≥ 2 without restrictions on matrix inversion or

estimation of parameters.

Assume two random variables X and Y with n observations each, for which the

pairwise Euclidean distances ai j and bi j (where i, j = 1, . . . ,n) can be calculated by:

ai j = |xi− x j|

bi j = |yi− y j|.
(4.10)

Therefore, transformed distance matrices Ai j and Bi j can be defined by:

Ai j = ai j−
1

n

n

∑
i=1

ai j−
1

n

n

∑
j=1

ai j +
1

n2

n

∑
i=1

n

∑
j=1

ai j

Bi j = bi j−
1

n

n

∑
i=1

bi j−
1

n

n

∑
j=1

bi j +
1

n2

n

∑
i=1

n

∑
j=1

bi j.

(4.11)
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Then the distance covariance can be calculated by following

V 2
xy =

1

n2

n

∑
i, j=1

Ai jBi j, (4.12)

and the distance correlation can be computed by

R2 =
V 2

xy

VxVy
, (4.13)

which satisfies 0 ≤ R ≤ 1 and is employed to measure the correlation between X

and Y . Another significant difference of distance correlation is that R = 0 indicates

independence unlike the other tests, and the index cannot be negative.

Mutual Information

According to Hassani et al. (2010a), the mutual information (MI) are applied to

measure the information that two tested variables S and W share with each other, or

the same concept that to measure how much knowing one of these variables reduces

the uncertainty about the other. The MI can be expressed as the following formula

in accordance with (Hassani et al., 2010a):

I(S;W) = H(S)−H(S|W) = H(W)−H(W|S) = H(S)+H(W)−H(S,W). (4.14)

where H(S) and H(W) are the marginal entropies, H(S|W) and H(W|S) are the con-

ditional entropies, and H(S, W) is the joint entropy of S and W. The MI defined

above takes a value between 0 and infinity, 0 ≤ I(S, W) ≤ +∞, which makes the

comparisons difficult between different samples (Hassani et al., 2010a). In this con-

text, Dionisio et al. (2004) among others, defined and used a standard measure for

the MI:

λ = (1− exp[−2I(S, W)])
1
2 . (4.15)
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Note that λ captures the overall dependence, both linear and nonlinear, between S

and W.

Additionally, Hassani et al. (2010a) defined the MI of two continuous random

variables S and W as below:

I(S;W) =
∫

S

∫

W
P(s,w)log

( P(s,w)

P(s)P(w)

)
dwds, (4.16)

where P(s,w) is the joint probability distribution function of S and W, and P(s) and

P(w) are the marginal probability distribution functions of S and W, respectively.

In brief, the MI is more general concept of measuring the mutual association level

comparing to other correlation coefficients, and it certainly has no restrictions of

nonlinearity. However, as stated by Hassani et al. (2010a), the comparisons are

extremely difficult due to the fact that it does not have a uniformed range of values

as the criterion for the index to be comparable across different groups of variables.

Maximal Information Coefficient

According to Reshef et al. (2011), Maximal Information Coefficient (MIC) is a re-

cently proposed measure of association based on the MI which measures that if a

relationship between two random variables exists, a grid can be drawn on the scat-

ter plot of the two variables for partitioning the data points and encapsulating this

relationship. The details of definition and calculation of MIC are listed as follows,

which here mainly follows (Reshef et al., 2011).

Specifically, for a give finite set C of ordered pairs, the x and y values of C are

partitioned into x and y bins respectively, which is defined as an x−by− y grid. As

C|G refers to the distribution induced by the points in C on the cells of G, the MI of

C|G can be expressed as I(C|G). Therefore, the MIC of a set C of two variables X
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and Y with n observations each can be computed by:

MIC(X ,Y) = max|X ||Y |<B

maxI(C|G)
log(min(|X ||Y |)) , (4.17)

where |X | and |Y | are the number of bins for each variable respectively, and default

setting of B = n0.6 provides the upper bound of the size of the grids. The MIC

measure of association will result in a coefficient in the range of [0,1], which plays

better criterion of association measure than MI. Furthermore, it has no restrictions

of applicability on linear or nonlinear association relationships. However, as a rela-

tively new method, it was challenged regarding the weaker performances on small

size of samples and its inconsistent power for functional relationships at identical

noise level (Gorfine et al., 2012; Simon and Tibshirani, 2014).

4.3 Theoretical Formulation

In this section, a new mutual association measure, which is built on the eigenvalue-

based distance, is introduced with detailed formulation process. Note that the rel-

ative subspace-based techniques that have been adopted here are SVD and SSA,

which have been introduced with details in Chapter 2, section 2.1 and 2.2, therefore,

it is not reproduced here in this section.

4.3.1 Eigenvalue-based Distance

Eigenvalue-based approach is combined with image processing by considering dig-

ital image as matrix of grey level or color values (Rodrıguez-Aragón and Zhigl-

javsky, 2010). In which, the authors proposed the relatively new method for image

denoising by combining MSSA technique and modified Frobenius distance formu-

la based on eigenvalues. One of their significant research outcomes that is adopt

here is the concept of eigenvalue-based distances between images. The eigenvalue-
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based distance for image processing proved with promising performances in image

denoising and can be widely applied for face recognition and verification as another

competitive approach (Rodrıguez-Aragón and Zhigljavsky, 2010). The theoretical

formula of eigenvalue-based distance is listed below accordingly based on the work

of Rodrıguez-Aragón and Zhigljavsky (2010).

Briefly, the eigenvalue-based distance introduced by Rodrıguez-Aragón and Zhigl-

javsky (2010) is built on the trajectory matrices of the images and their SVD expan-

sions. Assume there are two trajectory matrices X(1) and X(2) of size g×q, which

are associated with two corresponding images I(1) and I(2) of the same size h×w. In

order to compare with uniform standard, these two matrices are firstly normalized

by the formulation process below:

Y1 = X(1)/

√
tr(X(1)(X(1))T )

Y2 = X(2)/

√
tr(X(2)(X(2))T ).

(4.18)

Then the corresponding eigenvalues of matrices Y1YT
1 and Y2YT

2 (where both

of them are nonnegative definite) can be obtained by SVD, that are represented by

λ1 ≥ ·· · ≥ λg and µ1 ≥ ·· · ≥ µg respectively. Note that tr(Y1YT
1 ) = tr(Y2YT

2 ) = 1,

consequently, for all i, ∑g
i=1 λi = ∑g

i=1 µi = 1 and corresponding eigenvalues satisfy

λi ≥ 0,µi ≥ 0.

A joint trajectory matrix based on Y =
(

Y1
Y2

)
is created to analyze two images

simultaneously by:

YYT =

(
Y1

Y2

)
(Y1Y2) =


Y1YT

1 Y1YT
2

Y2YT
1 Y2YT

2


 . (4.19)

Consequently, the eigenvalues of the joint trajectory matrix above can be donat-

ed as υ1 ≥ ·· · ≥ υ2g ≥ 0, where υ satisfy ∑2g
i=1 υi = 2 in accordance of tr(YYT ) =

tr(Y1YT
1 )+ tr(Y2YT

2 ) = 2.
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As Thompson and Therianos (1972) proved that for any matrix of joint form like

YYT , there exists the following relationship between corresponding eigenvalues for

any positive integer k:
k

∑
j=1

λ j +
k

∑
j=1

µ j ≥
k

∑
j=1

υ j. (4.20)

By defining the cumulative distribution function on the integers {1, . . . ,g} or

{1, . . . ,2g} respectively, so to have

F1(t) =
[t]

∑
j=1

λ j

F2(t) =
[t]

∑
j=1

µ j,

F(t) =
1

2

[t]

∑
j=1

υ j

(4.21)

which indicate the inequality F1(t)+F2(t)− 2F(t) ≥ 0 for all t ≥ 0. Finally the

distance based on eigenvalue can be formulated as:

G(t) = F1(t)+F2(t)−2F(t). (4.22)

More specifically, the natural definition of the eigenvalue-based distance be-

tween two images I(1) and I(2) can be expressed by:

d1(I
(1),I(2)) =

∫ k

0
G(t)dt =

k

∑
j=1

(λ j +µ j−υ j). (4.23)

4.3.2 Novel Mutual Association Measure

The new mutual association measure is then obtained based on the fundamental

concept of eigenvalue-based distance. Assume there are two random series X and

Y , which have the same number of observations n. Firstly, these two random series
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X and Y are transformed into two dimensional trajectory matrices MX and MY by

multiplying their transpose series respectively, which can be expressed as:

MX = XXT

MY = YY T .
(4.24)

Considering the concept is built on the relationships between eigenvalues, those

two trajectory matrices are normalized before further formulation, which followed

the normalization algorithm below:

NMX = MX/
√

tr(MXMT
X)

NMY = MY/
√

tr(MYMT
Y).

(4.25)

Therefore, the joint matrix NM is created by combining NMX and NMY:

NM =

(
NMX

NMY

)
. (4.26)

Note that in terms of forming this joint matrix, horizontally and vertically formed

structures do not have difference for the next step of transforming to trajectory ma-

trices as they will show symmetric feature and provide identical eigenvalues.

The joint matrix NM then get transformed into trajectory matrix by multiplying

its transpose matrix:

TM = NM ·NMT, (4.27)

where ξ1 ≥ ξ2 ≥ . . .≥ ξn ≥ 0 donate the corresponding eigenvalues of TM.

In fact by combining the two random series X and Y , the final joint trajectory

matrix will provide two significant eigenvalues ξ1 and ξ2, which are the first two in

order. The identical (or closely associated) features will be able to presented by the

first eigenvalue ξ1 without any information left. In other words, the second eigenval-

ue ξ2 indicates the information of "distance" between these two series, which also
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represents the not associated information between these two series. More specifi-

cally, if the two random series are identical, the eigenvalues of the joint matrix TM

will show ξ1 = 2 and ξ2 = · · · = ξn = 0. Additionally, on the contrary of the per-

fectly identical scenario, meaning if these two series are not associated at all, the

corresponding ξ1 and ξ2 of TM will be both extremely close or equal to 1.

In summary, denote ϕ(X ,Y ) as the mutual association index between two ran-

dom variables X and Y . The definition formula of ϕ(X ,Y ) is written accordingly

as

ϕ(X ,Y ) = 1−ξ2, (4.28)

in which ϕ(X ,Y ) satisfies 0 ≤ ϕ(X ,Y ) ≤ 1. Specifically, ϕ(X ,Y ) = 1 indicates X

and Y are most significantly associated (identical); ϕ(X ,Y ) = 0 refers that there is

almost no association between X and Y .

4.4 Simulation Performance

The performances of both empirical and newly proposed association measures are

summarized below by simulations, in which different representative linear and non-

linear relationships or patterns are simulated for investigation and comparison. For

each specific relationship (linear or nonlinear), a group of series with 200 observa-

tions for each specific population correlation values are generated and then repeated

this process 1000 times. All statistics results are summarized and listed for compar-

ison in Table 4.1, where 2.5% and 97.5% quartile, mean and standard deviation of

test statistics from corresponding simulations are provided. Note that all simulation-

s are obtained by R program with corresponding packages, in which representative

nonlinear patterns are adopted by referring to the codes in (Boigelot, 2011).

According to the results in Table 4.1 by simulations of representative groups

of series, the results obtained are in line with those previous literature of Reshef
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et al. (2011) and Clark (2013). In more details, Pearson and Spearman coefficients

work properly on simulated linear group as usual with promising results and small

standard deviation, while it is noticed that the standard deviation of both Pearson

and Spearman correlation coefficients slightly increase when the population correla-

tion coefficients converge to 0; Kendall coefficient provides coefficients with higher

variations comparing to corresponding populations and the standard deviations are

higher than both Spearman and Pearson with the same slight increasing trend as pop-

ulation coefficients converging to 0; in terms of the simulated nonlinear groups, all

three linear measures cannot pick up any relationships, which provide coefficients

equal or very close to 0.

In terms of the empirical nonlinear association measures, Hoeffding’ s D test,

MI and MIC cannot provide proper association indices for simulated linear groups

comparing to other measures, whilst Distance Correlation is the only one can pos-

sibly measure the association by providing relatively closer indices if one takes no

account of the direction of correlation. These results also confirm the findings by

Clark (2013) that the Hoeffding’s D and MIC appeared to get more differences away

from the defined level of population whilst the Distance Correlation got much less.

It is also noticed that for Hoeffding’s D test, MI and MIC, conversely, their stan-

dard deviations show tendency of slight decreasing when the population correlation

coefficients converge to 0, which may indicate that these association measures do

detect some level of linear relationship, while the consistency and accuracy level

are not stable as the other measures. Regarding the results of simulated nonlinear

groups: Hoeffding’ s D test shows very limited capacity of detecting any possible

relationships; Distance Correlation is relatively more sensitive on nonlinear pattern-

s; MI and MIC detect different levels of association for different linear patterns, in

which, MI shows relatively significant estimates for quadratic and cross patterns,

additionally, due to its algorithm of discrediting data for calculation, it give same
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value for the cluster pattern, whilst MIC gives significant estimates for wave and

provides relatively significant indices for quadratic, cross and circle patterns.

Considering the performance of the novel mutual association measure proposed

here in this chapter, it is worth to be noted that for the simulated linear group, the

novel mutual association measure achieves solid and consistent indices with corre-

sponding standard deviations extremely close to 0, which indicates that the results

are almost precisely identical to the absolute values of corresponding generated

population correlation coefficients. As a mutual association measure built on the

eigenvalue-based distance, the brief concept of this measure is identifying the infor-

mation shifted to the second eigenvalue of a matrix formed by a multivariate system.

Therefore, the mutual association measure does not consider the direction of effec-

t. Actually, in general, the direction of effect can easily be noticed by a simple

time series diagram. Comparing to the other widely accepted association measures,

the novel mutual association measure provides consistent and satisfying results for

1000 times of simulations with extremely low variations.

Regarding the performance of novel mutual association on nonlinear patterns,

it is noticed that only trapezoid pattern can be detected with relatively significant

statistics. It cannot provide more significant evidences for other nonlinear patterns,

whilst considering the other empirical linear association measures, the novel mutual

association measure is relatively more sensitive than Hoeffding’s D Test, with fairly

less significant results for quadratic and cross. It is also of note that in terms of the

trapezoid pattern, it has not been significantly detected by any other listed measures

except the novel mutual association method.

In general, according to the evaluations of all listed association measures, there

is no measure that can well perform for detecting both linear and nonlinear relation-

ships with also relatively accurate estimates. The highlight point for novel mutual

association measure is that it does not get effected by noise and shows consistent

and precise estimates for all linear simulations with very close to 0 variation, and it
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can detect the trapezoid pattern with significant estimates that all previously listed

measure could not achieve.
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Table 4.1 Evaluations of Association Measures by Simulated Groups of Series.

Mutual Association Pearson Spearman Kendall

Population 2.5% mean 97.5% St.D 2.5% mean 97.5% St.D 2.5% mean 97.5% St.D 2.5% mean 97.5% St.D

Linear

0.80 0.80 0.80 0.80 0 0.78 0.79 0.82 0.01 0.76 0.78 0.81 0.01 0.51 0.59 0.67 0.04

0.60 0.60 0.60 0.60 0.00 0.56 0.60 0.64 0.02 0.54 0.58 0.62 0.02 0.30 0.41 0.51 0.05

0.40 0.40 0.40 0.40 0.00 0.34 0.39 0.45 0.03 0.33 0.38 0.44 0.03 0.14 0.26 0.37 0.06

0.00 0.00 0.00 0.00 0.00 -0.06 0 0.06 0.03 -0.06 0.00 0.06 0.03 -0.14 0.00 0.12 0.07

-0.40 0.40 0.40 0.40 0.00 -0.45 -0.40 -0.34 0.03 -0.44 -0.38 -0.33 0.03 -0.38 -0.26 -0.14 0.06

-0.60 0.60 0.60 0.60 0.00 -0.64 -0.60 -0.56 0.02 -0.62 -0.58 -0.54 0.02 -0.51 -0.41 -0.30 0.06

-0.80 0.80 0.80 0.80 0.00 -0.82 -0.79 -0.77 0.01 -0.81 -0.79 -0.76 0.01 -0.67 -0.59 -0.51 0.04

Non-linear

wave 0.01 0.07 0.16 0.04 -0.06 0.00 0.06 0.03 -0.06 0.00 0.07 0.03 -0.16 0.00 0.17 0.08

trapezoid 0.52 0.63 0.71 0.05 -0.06 0.00 0.05 0.03 -0.06 0.00 0.05 0.03 -0.11 0.00 0.10 0.06

diamond 0.01 0.05 0.14 0.04 -0.04 0.00 0.04 0.02 -0.05 0.00 0.05 0.02 -0.11 0.00 0.12 0.06

quadratic 0.01 0.12 0.33 0.09 -0.07 0.00 0.08 0.04 -0.08 0.00 0.08 0.04 -0.20 0.00 0.19 0.11

cross 0.01 0.12 0.33 0.09 -0.09 0.00 0.08 0.05 -0.08 0.00 0.07 0.04 -0.21 0.00 0.23 0.12

circle 0.01 0.08 0.23 0.06 -0.04 0.00 0.04 0.02 -0.03 0.00 0.03 0.01 -0.14 0.00 0.13 0.07

cluster 0.01 0.04 0.10 0.03 -0.02 0.00 0.01 0.01 -0.05 0.00 0.04 0.02 -0.09 0.00 0.09 0.05

Hoeffding’s D Test Distance Correlation Mutual Information MIC

Population 2.5% mean 97.5% St.D 2.5% mean 97.5% St.D 2.5% mean 97.5% St.D 2.5% mean 97.5% St.D

Linear

0.80 0.23 0.26 0.28 0.02 0.73 0.75 0.78 0.01 0.30 0.39 0.48 0.05 0.47 0.51 0.56 0.03

0.60 0.09 0.11 0.14 0.01 0.51 0.55 0.59 0.02 0.14 0.21 0.28 0.04 0.28 0.32 0.37 0.02

0.40 0.03 0.04 0.06 0.01 0.31 0.36 0.42 0.03 0.06 0.11 0.17 0.03 0.18 0.21 0.24 0.02

0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.08 0.01 0.01 0.04 0.09 0.02 0.12 0.13 0.15 0.01

-0.40 0.03 0.04 0.06 0.00 0.31 0.36 0.41 0.03 0.06 0.11 0.17 0.03 0.18 0.21 0.24 0.02

-0.60 0.09 0.11 0.14 0.01 0.51 0.55 0.60 0.02 0.13 0.21 0.29 0.04 0.28 0.32 0.36 0.02

-0.80 0.23 0.25 0.28 0.01 0.73 0.76 0.78 0.01 0.29 0.39 0.49 0.05 0.47 0.51 0.56 0.02

Non-linear

wave 0.01 0.01 0.02 0.00 0.33 0.40 0.48 0.04 0.22 0.37 0.51 0.08 0.96 0.99 1.00 0.01

trapezoid 0.00 0.00 0.00 0.00 0.15 0.20 0.27 0.03 0.03 0.08 0.14 0.03 0.17 0.19 0.22 0.01

diamond 0.00 0.00 0.00 0.00 0.15 0.20 0.28 0.03 0.06 0.12 0.19 0.04 0.13 0.15 0.17 0.01

quadratic 0.09 0.10 0.11 0.00 0.46 0.51 0.56 0.03 0.71 0.78 0.86 0.04 0.64 0.69 0.74 0.03

cross 0.04 0.05 0.05 0.00 0.30 0.36 0.45 0.04 0.59 0.76 0.91 0.09 0.55 0.57 0.58 0.01

circle 0.03 0.04 0.05 0.00 0.12 0.17 0.26 0.04 0.02 0.04 0.07 0.02 0.55 0.56 0.57 0.01

cluster 0.00 0.00 0.00 0.00 0.07 0.10 0.14 0.02 1.38 1.38 1.38 0 0.12 0.13 0.14 0.01
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4.5 Evaluation by Applications

Considering the complexity of real data and the restricted nonlinear relationships

simulations can offer for evaluation, here in this section two cases of real data are

considered for further investigation and comparison. Note that all preconditions

of each measure are satisfied respectively. It is also worth to be highlighted that

no assumptions or models are made on data that are undertaking tests as the aim

of this chapter is proposing a novel association measure and evaluating the perfor-

mances by comparing to empirical linear and nonlinear association measures from

the statistical data analysis point of view.

4.5.1 Oil Prices and Stock Markets

Economists have shown great interests to the investigations or analyses on relation-

ship between stock market and oil prices for the recent decades due to the significant

role of crude oil on impacting economy worldwide. Economists have extended the

research on different representative variables or its transformations, like stock mar-

ket returns and changes in oil prices (Kilian and Park, 2009), oil supply and demand

shocks (Jung and Park, 2011), etc. Moreover, the research of relationship between

stock market and oil prices has extended from focusing on the U.S. market itself to

a world wide range of countries or regions.

The data employed here are the monthly stock indices and Brent crude oil prices

(BRT) in dollars (per barrel) respectively1. The Brent crude oil prices data is avail-

able at FRED (2015) which is noted with the resource of U.S. Energy Information

Administration. Both the oil-importing and oil-exporting countries are considered

with corresponding stock market indices respectively (see Table 4.2). The selection

of countries are based on the choices of relative literatures and the principle of be-

1The West Texas Intermediate (WTI) oil price index is also considered for all tests and the results
are very close with minor differences under 0.01 level.
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ing comparable within the group and the availability from the database. It contains

10 oil-importing countries including USA (DJIA), Japan (NIKKEI 225), Germany

(DAX), France (CAC 40), UK (FTSE 100), Italy (FTSE MIB), China (SHCOM-

P), Korea (KOSPI), India (BSE Sensex) and Netherlands (AEX General); and 9

oil-exporting countries are included, which are Saudi Arabia (Tadawul All Share),

Kuwait (KWSEIDX), Mexico (MXICP 35), Noway (OSEAX), Russia (MICEX),

Indonesia (JKSE), Brazil (Bovespa), Venezuela (IBVC) and Canada (S&P/TSX 60).

All stock market indices are monthly data 2 from CEIC (2015) and note that the time

ranges for each group of countries are also decided based on the principle of being

comparable within the group and the availability from the database.

According to the performances of association measures in Table 4.2, three linear

association measures (Pearson, Spearman and Kendall) generally provide diverse

significant coefficients across countries under evaluation. The results of Pearson

and Spearman are not always similar, while Kendall generally provides much less

significant results. More specifically, oil-exporting countries show positive relation-

ship in general, which is also applicable for oil-importing countries except Japan

and Italy.

In terms of empirical nonlinear association measures, which do not consider di-

rection of effect in general and focus on the level of association only, it is noticed

that the results of Hoeffding’ s D Test in general show the lowest levels of associa-

tion comparing to other measures. The rest of the nonlinear measures are sensitive

enough to identify the possible association regardless of countries with more signif-

icant results even comparing to general linear association measures. Additionally,

the results of DisCorr and MIC are very similar that further indicate the existence

of association between evaluated variables.

2Note that adopting monthly data instead of daily sequence (which is primarily used by firm-
level analysis) aims to cover relatively longer time range across a number of countries for a general
evaluation while maintaining sufficient frequency to reflect the fluctuations.
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Table 4.2 Comparison of Association Measures on Analyses of Stock Market and Oil Prices Data.

Stock Market and Oil Prices Data Association Measures

Country Stock Index Time Range Pearson Spearman Kendall HoefD DisCorr MI MIC Mutual

Association

Oil-importing

USA DJIA 1987.06 - 2015.07 0.74*** 0.79*** 0.57*** 0.29*** 0.75 1.52 0.73 0.91

Japan NIKKEI 225 1987.06 - 2015.07 -0.49*** -0.61*** -0.39*** 0.14*** 0.53 1.38 0.54 0.63

Germany DAX 1987.06 - 2015.07 0.73*** 0.74*** 0.53*** 0.25*** 0.76 1.53 0.71 0.91

France CAC 40 1988.01 - 2015.07 0.43*** 0.54*** 0.35*** 0.12*** 0.55 1.45 0.57 0.84

UK FTSE 100 1987.06 - 2015.07 0.62*** 0.61*** 0.44*** 0.17*** 0.64 1.44 0.62 0.87

Italy FTSE MIB 2003.09 - 2015.07 -0.42*** -0.47*** -0.31*** 0.10*** 0.51 1.78 0.45 0.85

China SHCOMP 1990.12 - 2015.07 0.65*** 0.78*** 0.53*** 0.24*** 0.75 1.59 0.68 0.89

Korea KOSPI 1987.06 - 2015.07 0.91*** 0.73*** 0.53*** 0.26*** 0.92 1.48 0.84 0.96

India BSE Sensex 1990.01 - 2015.07 0.86*** 0.81*** 0.60*** 0.39*** 0.93 1.57 0.94 0.94

Netherlands AEX General 2002.11 - 2015.07 0.11 0.12 0.07 0.02*** 0.29 1.93 0.40 0.92

Oil-exporting

Saudi Arabia Tadawul All Share 2007.01 - 2015.07 0.27*** 0.22** 0.16** 0.03*** 0.29 1.46 0.32 0.96

Kuwait KWSEIDX 2002.05 - 2015.07 0.39*** 0.32*** 0.23*** 0.08*** 0.47 1.44 0.64 0.92

Mexico MXICP 35 1987.06 - 2015.07 0.93*** 0.86*** 0.67*** 0.47*** 0.95 1.72 0.94 0.96

Noway OSEAX 2002.05 - 2015.07 0.71*** 0.69*** 0.53*** 0.29*** 0.77 1.39 0.73 0.96

Russia MICEX 2002.05 - 2015.07 0.78*** 0.70*** 0.54*** 0.27*** 0.79 1.31 0.74 0.96

Indonesia JKSE 1987.06 - 2015.07 0.88*** 0.80*** 0.60*** 0.36*** 0.92 1.59 0.93 0.93

Brazil Bovespa 1987.06 - 2015.07 0.92*** 0.87*** 0.67*** 0.48*** 0.94 1.72 0.99 0.96

Venezuela IBVC 2007.01 - 2015.07 0.21** 0.23** 0.16** 0.08*** 0.31 1.67 0.87 0.33

Canada S&P/TSX 60 2002.05 - 2015.07 0.76*** 0.70*** 0.54*** 0.29*** 0.78 1.31 0.76 0.96

Note: ***, ** and * refer to the significant level of 1%, 5% and 10% respectively (not applicable for DisCorr, MI, MIC and Mutual Association).
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It is worth highlighting that the novel mutual association measure identifies

strong association across countries which other measures cannot or only partly

achieve, especially for the cases of Netherlands, Italy and France. For example,

Netherlands shows the highest MI statistics and minimum coefficients for HoefD,

DisCorr and MIC respectively. Additionally, it is the only country to have no signifi-

cant association detected by all three linear association measures, whilst the mutual

association measure detects 0.92 significance level of association, which cannot be

successfully identified (or only be partly achieved) by any other nonlinear associa-

tion.

In general, the mutual association measure is proved to be a reliable method that

offers alternative approach of conducting association analysis between stock market

and oil prices in a complex economics system environment. The attempt of gather-

ing these association measures and conducting the evaluations can help in providing

a broad view of understanding the possible association between stock market and

oil prices from the statistically data oriented aspect. It can also be a significant help

when considering the process of establishing a relatively more suitable model for

relationship investigation and data prediction.

4.5.2 Oil Prices and Tourist Arrivals

The emerging concerns of oil price and its impacts on diverse aspects of economy

have been studies by numerous researchers recent decades with well established

scientific literatures (Hamilton, 1996). Among which, the relationship between oil

price and tourism has drawn significant attentions. A critical review of the studies

of tourism and oil can be found in the work of Becken (2011).

The data used here are at monthly frequency covering the period from January

1996 to December 2015 of both US and nine European countries, including Austria,

Italy, Germany, Greece, Netherland, Portugal, Spain, Sweden, and the UK. In terms
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of the data, US tourist arrivals were obtained from the US Department of Commerce,

National Travel & Tourism Office, while data of European countries were obtained

from Eurostat. Data of oil prices containing both WTI crude oil spot price and

Europe BRT spot price (note that both in the unit of dollars per barrel) were obtained

from the EIA (2016). Fig. 4.1 shows the time series plot of the monthly oil prices,

whilst, Fig. 4.2 presents the time series plots of the monthly tourist arrivals. It can

be observed that the tourist arrivals for the ten countries considered clearly shows

significant feature of cycle with possible existing trend.
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Fig. 4.1 Monthly Oil Price Data (BRT and WTI) from 1996 to 2015.
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Fig. 4.2 Monthly Tourists Arrivals from 1996 to 2015 by Countries.
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Table 4.3 summarizes the results of both empirical and novel association mea-

sures adopted. It is observed that the empirical methods show much less significant

results whilst the novel measure achieves significant evidences regardless of the

countries and type of oil price index.

Table 4.3 Comparison of Association Measures on Analyses of Oil Prices and
Tourist Arrivals by Countries.

Country Association Measures by Oil Prices

Mutual Association Pearson Spearman Kendall

BRT WTI BRT WTI BRT WTI BRT WTI

Austria 0.869 0.882 0.384*** 0.371*** 0.394*** 0.388*** 0.271*** 0.269***

Germany 0.905 0.916 0.596*** 0.586*** 0.640*** 0.624*** 0.447*** 0.436***

Greece 0.720 0.728 0.270*** 0.267*** 0.223*** 0.218*** 0.149*** 0.147***

Italy 0.839 0.852 0.344*** 0.343*** 0.357*** 0.349*** 0.249*** 0.245***

Netherland 0.871 0.886 0.391*** 0.387*** 0.398*** 0.388*** 0.273*** 0.269***

Portugal 0.853 0.866 0.382*** 0.381*** 0.383*** 0.377*** 0.264*** 0.262***

Spain 0.874 0.887 0.474*** 0.478*** 0.511*** 0.502*** 0.358*** 0.354***

Sweden 0.750 0.763 0.268*** 0.278*** 0.474*** 0.464*** 0.332*** 0.324***

UK 0.851 0.868 0.286*** 0.287*** 0.275*** 0.268*** 0.188*** 0.183***

US 0.919 0.929 0.699*** 0.681*** 0.728*** 0.716*** 0.511*** 0.501***

HoefD DisCorr MI MIC

BRT WTI BRT WTI BRT WTI BRT WTI

Austria 0.053*** 0.052*** 0.382 0.371 0.156 0.146 0.329 0.281

Germany 0.141*** 0.132*** 0.601 0.589 0.328 0.314 0.459 0.462

Greece 0.017*** 0.016*** 0.285 0.277 0.145 0.136 0.341 0.324

Italy 0.043*** 0.040*** 0.332 0.327 0.219 0.238 0.388 0.384

Netherland 0.048*** 0.046*** 0.375 0.367 0.126 0.139 0.324 0.330

Portugal 0.049*** 0.047*** 0.379 0.371 0.142 0.147 0.328 0.331

Spain 0.086*** 0.083*** 0.447 0.445 0.221 0.224 0.429 0.428

Sweden 0.087*** 0.082*** 0.310 0.311 0.257 0.259 0.463 0.463

UK 0.023*** 0.021*** 0.272 0.265 0.072 0.065 0.278 0.286

US 0.219*** 0.203*** 0.737 0.721 0.426 0.429 0.604 0.608

Note: *,**,*** indicate the significance of 1%,5%,10% respectively.

Specifically, the results are very similar between BRT and WTI, also the coeffi-

cients of Pearson and Spearman show close levels of association. Kendall correla-
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tion, Distance Correlation, MI and MIC in general reflect similar levels of signifi-

cance, whilst Hoeffding’s D Test has generally the lowest level of sensitivity across

countries and types of oil price index. The novel mutual association measure, on the

other hand, can detect the possible association and provide consistent and significan-

t results for all countries considered. It greatly outperforms the empirical methods

and indicates the significant mutual association between tourist arrivals and oil price

with evidences of nine European countries and US. More specifically, US shows the

highest level of mutual association, followed by Germany, Spain, Netherland, Aus-

tria, UK, Portugal, Italy, Sweden, then Greece in descending order. The initially

adopted novel mutual association measure successfully proves the advantage on

nonlinear association detection in complex system like oil-tourism studies. It is sen-

sitive enough to confirm the crucial relationship between the tourist arrivals and oil

prices by relatively less amount of data so to contribute to the existing literature

regarding the association study of the complex economical systems.

4.6 Discussion

Considering the crucial importance of association study in better understanding mul-

tivariate systems across various disciplines, this chapter proposed a novel mutual

association measure by combing the subspace-based techniques. The performance

of the novel association measure was evaluated with comparisons by simulation-

s as well as the cases of real data. The performances achieved are significantly

promising and it has to be highlighted that it has valuable potentials on nonlinear

association studies in complex systems across numerous subjects.

This research is the first attempt of incorporating eigenvalue-based distance con-

cept with a multivariate system into the development of an alternative or better per-

formed association measure. The mutual association measure currently may not

master on identifying all simulated nonlinear patterns, whilst it gives highest sig-
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nificant reaction for trapezoid nonlinear pattern without losing the ability on linear

association detection that other measures cannot achieve. Considering the appli-

cations on real data cases, it is evidenced that the novelly developed association

measure is a reliable, sensitive, assumption free approach that can outperform or at

least being alternative method comparing to the empirical measures in the study of a

complex economical system. Moreover, considering the limited nonlinear patterns

that the simulation covers and the complexity of real data that researchers frequent-

ly encounter, it is possible that the novel mutual association measure has not been

able to fully present its advantages on complex data, large size of data, data with

complex noise, etc., which it inherits from the advanced subspace-based techniques.

In general, researchers never stop on perusing the better solutions. There also

should not be a restriction of one specific association measure due to the fact that the

advantages of different measures vary significantly. The variety of measurements

with their own strength also offers more options for the association analysis of ran-

dom groups of series in a complex system like economics and social science. This

research succeeds satisfying evidences from both simulations and real cases that this

novel method can identify complex associations which empirical methods may fail

to detect. The advantage of this method is that it does not restrict on the domain of

either linearity or nonlinearity, but consider the associated information of the series

as a whole. Additionally, the calculations are very efficient and convenient even for

large size data computation. However, this chapter is still considered a temporary

summary about the beginning of this development. There will be many possibilities

for further improvements as the next stage of this particular study, for example, ex-

panding the nonlinear associations or combinations of linearity and nonlinearity for

simulated evaluation, developing the direction of association into the current index

outcome, decomposing the data into representative components for comprehensive

association measure by specific elements, etc.





Chapter 5

SSA Causality Test based on

Forecasting Performance

Following the research philosophy in Chapter 1, section 1.2.1, the "Efficient Cause"

by Aristotle is briefly claimed as the "primary source of the change" or simply as

"initiator of the movement". Like the nature of "Efficient Cause", a question that

frequently arise in time series analysis is whether one variable can help in analyz-

ing and predicting another variable. In this chapter an innovative modification is

proposed on the currently well established causality analysis approach which is pri-

marily based on linear models. Specifically, the SSA forecasting performance is

adopted to form the frame of SSA causality test so to address and answer the ques-

tion that whether one variable can be helpful to analyse or forecast the others.

This chapter is organized as follows: Section 1 presents the theoretical formula-

tion of SSA causality test; a brief review of benchmark empirical methods is sum-

marized in Section 2; Section 3 evaluates and compares the performances by real

data application; Finally, the discussion is concluded in Section 4.
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5.1 Theoretical Formulation

Granger (1969) formalized the causality concept and claimed causality if the elim-

ination of one variable from a system is harmful for explaining the other variable.

Similarity, in terms of this research that forms causality analysis based on SSA fore-

casting performance, the criterion is defined as the improvement of out-of-sample

forecasting by multivariate system comparing to univariate scenario. Specifically,

the causality analysis is obtained by comparing the forecast values obtained by the

univariate procedure–SSA and multivariate process–MSSA (see Fig. 5.1). Conse-

quently, if the forecasting errors using MSSA are significantly smaller than those of

univariate SSA, it is concluded that there is a causal relationship detected between

these series. As a nonparametric technique, the SSA causality test is able to capture

possible nonlinearities using a data-driven approach without specifying any known

functional nonlinear model to the relationship, which in turn, could be incorrectly

specified in the first place. Detailed introduction is presented below which mainly

follows Hassani et al. (2010c). Note that the theoretical introduction of SSA, MSSA

and corresponding forecasting algorithms can be found in Chapter 2, section 2.2 and

Appendix A.

Fig. 5.1 Flowchart of Cause Detection based on SSA Forecasting Accuracy.
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Let us consider the procedure for constructing vectors of forecasting error for

out-of-sample tests in a two variable case XN and YN by both univariate and mul-

tivariate SSA techniques respectively. Firstly, the series XN = (x1, ...,xN) is di-

vided into two separate subseries XR and XF that satisfy XN = (XR,XF), where

XR = (x1, ...,xR) and XF = (xR+1, ...,xN). Same procedure is also conducted for

YN . The subseries XR and YR are used in the reconstruction step to provide the

noise-free series X̃R and ỸR. The noise-free series are then used for forecasting the

subseries XF and YF with the help of the forecasting algorithms (see Appendix A)

of SSA and MSSA respectively. For variable XN, two different forecasting values

of X̂F = (x̂R+1, ..., x̂N) by SSA and MSSA are then used for computing the fore-

casting errors accordingly, which will be the same process in terms of variable YN .

Therefore, in a multivariate system like this, the vectors of forecasts obtained can be

used in computing the forecasting accuracy and therefore conducting the causality

analysis between the two variables.

The length of out-of-sample does not have specific limitation, generally con-

sidering the simulation scenario, the length of time series for reconstruction will

take 2/3 of the whole series and the rest 1/3 is considered as out-of-sample for con-

structing forecasting error. The separate point to define the out-of-sample size for

different series can be chosen respectively, whilst it is important that when it goes to

comparing the performances of different techniques based on constructed forecast-

ing error of one specific series, the sizes of reconstruction and out-of-sample for all

techniques should be identical. In addition, the choices of window length L and the

referring options of numbers of eigenvalues r should also be carefully evaluated in

practice of SSA causality test respectively. Considering this as the first attempt of

application, also in order to conduct the most accurate results, all the possibilities

of L and its referring choices of r should be applied for both univariate SSA and

MSSA processes, then the optimal ones with best performance of forecasting will

be chosen to construct the finally cause detection procedure.
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Consequently, define the criterion FX |Y = ∆XF |Y/∆XF (where ∆XF and ∆XF |Y
indicate the RMSE of out-of-sample forecasting XF without and with Y ) correspond-

ing to the forecast of the series XN in the presence of the series YN . Specifically, if

FX |Y is small, then having information obtained from the series Y can help to achieve

better forecasts of the series X . If FX |Y < 1, it is concluded that the information pro-

vided by the series Y can be regarded as useful or supportive for forecasting the

series X . Alternatively, if the values of FX |Y ≥ 1, then either there is no detectable

causality between X and Y or the performance of the univariate SSA is better than

of the MSSA (this may happen, for example, when the series Y has structural breaks

misdirecting the forecasts of X ).

5.2 Benchmark Empirical Methods

5.2.1 Time Domain Granger Causality Test

GC (Granger, 1969) is the most widely accepted approach for causality analysis and

is extensively used in a number of disciplines1. The regression formulation of GC

states that vector Xi is the cause of vector Yi if the past values of Xi are helpful in

predicting the future value of Yi, two regressions are considered as follows:

Yi =
T

∑
t=1

αtYi−t + ε1i, (5.1)

Yi =
T

∑
t=1

αtYi−t +
T

∑
t=1

βtXi−t + ε2i, (5.2)

where i = 1,2, · · · ,N (N is the number of observations), T is the maximal time lag,

α and β are vectors of coefficients, ε is the error term. The first regression is the

model that predicts Yi by using the history of Yi only, while the second regression

1Note that a brief review of its development process can be found in Appendix C for your refer-
ence.
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represents the model of Yi is predicted by the past information of both Xi and Yi.

Therefore, if the second model is a significantly better model than the first one,

existence of causality is concluded.

5.2.2 Frequency Domain Causality Test

The frequency domain causality test is the extension of time domain GC test that

identifies the causality between different variables for each frequency. It is firstly

proposed by Geweke (1982), and it permits to investigate causality dynamics at d-

ifferent frequencies rather than relying on a single statistics as is in the case with

the conventional time domain analysis (Ciner, 2011). Breitung and Candelon (2006)

improved this approach by calculating the GC for each individual frequency compo-

nent separately instead of computing a single GC measure for the entire relationship,

which make it possible to determine whether the predictive power is concentrated at

the quickly fluctuating components or at the slowly fluctuating components (Croux

and Reusens, 2013). A brief introduction of this test is summarized below mainly

following the work of Ciner (2011); Geweke (1982).

It is assumed that two dimensional vector containing Xi and Yi (where i= 1,2, · · · ,N
and N is the number of observations) with a finite-order Vector Autoregression Mod-

el (VAR) representative of order p,

Θ(R)


 Yi

Xi


=


 Θ11(R) Θ12(R)

Θ21(R) Θ22(R)




 Yi

Xi


+Ei, (5.3)

where Θ(R) = I−Θ1R− ...−ΘpRp is a 2× 2 lag polynomial and Θ1, ...,Θp are

2× 2 autoregressive parameter matrices, with RkXi = Xi−k and RkYi = Yi−k. The

error vector E is white noise with zero mean, and E(EiE
′
i ) = Z, where Z is positive
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definite matrix. The moving average (MA) representative of the system is


 Yi

Xi


= Ψ(R)ηi =


 Ψ11(R) Ψ12(R)

Ψ21(R) Ψ22(R)




 η1i

η2i


 , (5.4)

with Ψ(R) = Θ(R)−1G−1 and G is the lower triangular matrix of the Cholesky

decomposition G′G = Z−1, such that E(ηtη ′t ) = I and ηi = GEi. The causality test

developed by Geweke (1982) can be written as:

CX⇒Y (γ) = log

[
1+
|Ψ12(e

−iγ)|2
|Ψ11(e−iγ)|2

]
. (5.5)

However, according to this framework, no Granger causality from Xi to Yi at fre-

quency γ corresponds to the condition |Ψ12(e
−iγ)|= 0, this condition leads to

|Θ12(e
−iγ)|= |Σp

k=1Θk,12 cos(kγ)− iΣp
k=1Θk,12 sin(kγ)|= 0, (5.6)

where Θk,1,2 is the (1,2)th element of Θk, such that a sufficient set of conditions for

no causality is given by Breitung and Candelon (2006) as follows:

Σp
k=1Θk,1,2 cos(kγ) = 0

Σp
k=1Θk,1,2 sin(kγ) = 0

. (5.7)

Hence, the null hypothesis of no causality at frequency γ can be tested by using

a standard F-test for the linear restrictions in (5.7), which follows an F(2,B− 2p)

distribution, for every γ between 0 and π , with B begin the number of observations

in the series.
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5.2.3 Limitations of Granger Causality

In spite of the tremendous amount of implementations of GC on a broad range of

subjects, it was mainly developed for linear stochastic systems. The limitation is

significant considering the fact that not all relationships can be explained by linear

based models. Even the revolutions of nonlinear applicability have been continuous-

ly exploited, there are still just limited types of nonlinearity can be so far included

for analysis. Nevertheless, it still builds on the assumption of a particular type of

relationship that is even fixed before the actual studies start.

Moreover, it is questionable to build a model based on a few selected factors so

to expect a satisfying explanation of a phenomenon in a system that is actually far

more complex. It again made the assumption of including only these key influential

factors based on particular judgements. The way to form this model may lead to

outcomes that vary significantly, which can be considered an important limitation

that affects the level of reliability.

Another limitation is that by eliminating this variable out of the model, which

will be used to determine causality based on whether it is harmful for the analysis

or forecasting of the others, GC assumes that this particular variable is separable

from this system. Therefore, any possibly existing underlying causality will affect

the outcome of the analysis. Not to mention that the issue of separability is often

not satisfied especially in deterministic dynamical system (Sugihara et al., 2012).

5.3 Evaluation by Real Data Application

5.3.1 Global Temperature and Sunspot Number

Global warming has been one of the most crucial subjects of research that has both

short and long term environmental and economic implications. As a result, there is
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growing interest among scientists worldwide to identify the factors that affect the

rate of change in global temperature, as it not only allows us to predict global warm-

ing, but also takes measures to control it. The connection between solar activity and

global warming has been well established in the scientific literature (for example,

see (Eichler et al., 2009; Ineson et al., 2011; Lean and Rind, 1998; Lockwood, 2012;

Scafetta, 2009, 2014; Scafetta and West, 2005)).

An indication of solar activity is given by the sunspot number (SS), which ap-

pear as dark spots on the surface of the Sun. Temperatures in the dark centers of

sunspots drop to about 3700 K (compared to 5700 K for the surrounding photo-

sphere). They are magnetic regions on the Sun, with the strength of a magnetic

field which is thousands of times stronger than the Earth’s magnetic field. Sunspots

typically last for several days, although very large ones may live for several weeks2.

The causality between SS and global temperature (GT) has been explored in many

scientific work using different causality detection techniques. A recent paper of

Gupta et al. (2015) analyzed whether sunspot numbers cause global temperatures

based on monthly data covering the period 1880:1-2013:9. The authors find that s-

tandard time domain GC test fails whilst the frequency domain causality test detects

emergence of causality running from SS to GT only recently.

Since the data of SS and GT contain many complex dynamic fluctuations, also

there is a high possibility of the existence of non-stationary features, this poses

difficulty in deriving convincing results on causality using parametric techniques.

However, it makes a great application to evaluate the performance of the novel SSA

causality test3.

2Further details can be found at: http://solarscience.msfc.nasa.gov/feature1.shtml.
3A cautionary note that the Earth’s climate is regulated by anthropogenic emissions like CO2,

volcanoes and other greenhouse gases, which need to be factored in as well to properly identify the
contribution of solar activity (Scafetta, 2014). Ignoring these issues could also lead to spurious, in
other words, more significant influence from SS on GT. However, data on CO2 emissions were only
available at annual frequency, in the case here in this research, the objective was extending the work
of Gupta et al. (2015) over the up to date sample period to evaluate the performance of the reduced
form, data driven, newly proposed technique. In addition, while this is only analyzing causality
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5.3.2 Data and Unit Root Test

The GT and SS data are at monthly frequency covering the period from January

1880 to May 2015, with the start and up to date end points being updated based on

the paper of Gupta et al. (2015). The data for GT were obtained from the Goddard

Institute for Space Studies (GISS) (GISS, 2015) and the SS data were obtained from

the Solar Influences Data Analysis Centre (SIDC) (SIDC, 2015). Fig. 5.2 presents

the time series plots of the original variables, in which it can be observed that the

existence of the possible trend in GT which is further addressed with details in

Chapter 74.
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Fig. 5.2 Monthly SS and GT from 1880M01 to 2015M05.

By following the work of Gupta et al. (2015) with updated data, different u-

nit root tests were conducted to verify the stationarity of the series in Table 5.1.

Additionally, structural breaks were detected in the full sample at 1936M03 and

1986M12 by the test proposed by Bai and Perron (2003), whereby the break test

was applied to the GT equation of the VAR comprising GT and SS. The test will

and not correlation between SS and GT, the evidence of causality between SS and GT should not
be associated with positive correlation between these two variables. The sign of this relationship is
beyond the scope of this application.

4Note that the trend and its effects on causality analysis is comprehensively studied in Chapter 7.
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not be reproduced here since it is not the key focus of this research (please refer to

the paper of Gupta et al. (2015) for more details). Note that all the tests included in

this and the following sections/chapters will apply for the full sample as well as all

sub-samples for comparison.

Based on the results from the Kwiatkowski-Phillips-Schmidt-Shin (KPSS), aug-

mented Dickey-Fuller (ADF), Dickey-Fuller test with Generalised Least Squares

detrended residuals (DF-GLS), Phillips and Perron (PP), and Ng and Perron (NP)

unit root tests, the null of a unit root is overwhelmingly rejected (except for KPSS

test the null of being stationary, it cannot be overwhelmingly rejected), for the to-

tal sample of SS. However, for total sample of GT, while all the tests support that

the variable is trend-stationary, the ADF and DF-GLS test tends to suggest non-

stationarity of the series when the unit root test-equation has only a constant (or

neither a constant and trend in case of the ADF test). The PP and the NP tests,

though, indicate stationarity even under the assumption of constant only (and nei-

ther a constant and trend in case of the PP test). Given the nature of GT, it is evident

that the unit root equation should in fact include a trend. In general, for sub-sample

A and sub-sample B, overwhelming evidences of stationary have been obtained (es-

pecially based on the results of NP test, which have stronger power compared to the

other tests (Gupta et al., 2015)). For sample C, while GT is found to be stationary in

general at 1% level, the evidence of stationarity, is slightly weaker for SS, barring

the PP and NP tests, at 5% level of significance. In summary, for the full sample
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and all sub-samples, it can be concluded that both series are stationary, whilst GT

in general is trend-stationary, especially for sub-sample C.

Table 5.1 Unit Root Test Results of Original Data of SS and GT.

Sample Size Series Methods
None Intercept Intercept and Trend

Level Decision Level Decision Level Decision

Total Sample

(1625 Obs)

1880:1-2015:5

GT

KPSS ———– ———– 4.234*** (31) I(1) 0.686***(30) I(1)

ADF -1.301 (17) I(1) -1.296 (17) I(1) -3.443** (24) I(0)

PP -5.966*** (12) I(0) -5.964*** (12) I(0) -18.499*** (23) I(0)

DF-GLS ———– ———– -1.315 (6) I(1) -6.639***(3) I(0)

NP ———– ———– -31.142***(12) I(0) -516.032*** (23) I(0)

SS

KPSS ———– ———– 0.464**(15) I(1) 0.101 (15) I(0)

ADF -2.499**(3) I(0) -4.055***(3) I(0) -4.109***(3) I(0)

PP -2.526** (14) I(0) -3.189** (12) I(0) -4.027*** (0) I(0)

DF-GLS ———– ———– -3.383***(3) I(0) -6.879***(3) I(0)

NP ———– ———– -47.323***(14) I(0) -71.585***(14) I(0)

Sub-sample A

(674 Obs)

1880:1-1936:2

GT

KPSS ———– ———– 0.455*(19) I(1) 0.430***(19) I(0)

ADF -2.710***(3) I(0) -7.207***(2) I(0) -7.228***(2) I(0)

PP -4.313***(2) I(0) -13.397***(14) I(0) -13.424***(14) I(0)

DF-GLS ———– ———– -6.325***(2) I(0) -7.076***(2) I(0)

NP ———– ———– -234.149***(14) I(0) -275.304***(14) I(0)

SS

KPSS ———– ———– 0.053(21) I(0) 0.051(21) I(0)

ADF -1.819*(3) I(1) -3.451***(3) I(0) -3.447**(3) I(0)

PP -3.226***(18) I(0) -6.075***(8) I(0) -6.075***(8) I(0)

DF-GLS ———– ———– -3.043***(3) I(0) -3.322**(3) I(0)

NP ———– ———– -52.499***(8) I(0) -57.985***(8) I(0)

Sub-sample B

(609 Obs)

1936:3-1986:11

GT

KPSS ———– ———– 0.794***(17) I(1) 0.321***(16) I(1)

ADF -7.121***(1) I(0) -7.211***(1) I(0) -7.515***(1) I(0)

PP -12.979***(13) I(0) -13.102***(13) I(0) -13.678***(13) I(0)

DF-GLS ———– ———– -3.287***(2) I(0) -6.454***(1) I(0)

NP ———– ———– -92.270***(13) I(0) -229.775***(13) I(0)

SS

KPSS ———– ———– 0.061(18) I(0) 0.052(18) I(0)

ADF -1.690*(2) I(1) -2.720*(2) I(1) -2.741(2) I(1)

PP -1.932*(11) I(1) -3.600***(2) I(0) -3.614**(2) I(0)

DF-GLS ———– ———– -2.718***(2) I(0) -2.754*(2) I(1)

NP ———– ———– -24.056***(2) I(0) -24.089***(2) I(0)

Sub-sample C

(342 Obs)

1986:12-2015:5

GT

KPSS ———– ———– 1.835*** (14) I(1) 0.083 (13) I(0)

ADF -0.475 (3) I(1) -3.410**(3) I(0) -7.064***(1) I(0)

PP -1.063 (22) I(1) -6.518***(8) I(0) -10.546***(9) I(0)

DF-GLS ———– ———– -0.899 (3) I(1) -5.899***(1) I(0)

NP ———– ———– -15.362***(8) I(0) -121.714***(9) I(0)

SS

KPSS ———– ———– 0.464**(15) I(1) 0.101 (15) I(0)

ADF -0.960 (3) I(1) -1.870 (3) I(1) -2.229 (3) I(1)

PP -1.526(14) I(1) -2.898**(2) I(0) -4.027***(0) I(0)

DF-GLS ———– ———– -1.174(3) I(1) -1.427(3) I(1)

NP ———– ———– -8.847**(2) I(0) -11.959 (1) I(1)

a The *, ** and *** indicate significance at the 10%, 5% and 1% respectively.

b The critical values are as follows:(1)None: -2.566, -1.941 and -1.616 for ADF and PP at 1%, 5% and 10% level of significance, respectively;

(2)Intercept: -3.434, -2.863 and -2.567 (-2.566, 1.941, 1.617) [-13.8, -8.1 and -5.7] {0.739, 0.463, 0.347} for ADF and PP (DF-GLS) [NP] {KPSS}

at 1%, 5% and 10% level of significance, respectively;(3)Intercept and Trend: -3.963, -3.412 and -3.128 (3.48, 2.89, 2.57) [-23.80, -17.3 and -14.2]

{0.216, 0.146, 0.119} for ADF and PP (DF-GLS) [NP] {KPSS} at 1%, 5% and 10% level of significance respectively.

c Numbers in parentheses for ADF, PP and DF-GLS tests indicates lag-lengths selected based on the Schwarz Information Criterion (SIC). For the NP

test and the KPSS test, based on the Bartlett kernel spectral estimation method, the corresponding numbers are the Newey-West bandwidth.
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5.3.3 Time Domain Causality Test Results

Given the significant and empirical role of time domain GC test, here the corre-

sponding tests are conducted for total sample as well as three sub-samples. Note

that all tests satisfy the preconditions of time domain GC test with results by the op-

timal lag respectively. According to the results in Table 5.2, the null hypothesis that

SS does not Granger cause GT cannot be rejected for both full and sub-samples,

which confirm the statements by Gupta et al. (2015). The full sample causality

cannot be relied upon due to structural breaks, as GC test assumes constancy of

parameters during the sub-sample, which is of course not the case with structural

breaks. In summary, the empirical time domain GC test fails to identify any causal

links between SS and GT despite the significant connections evident by literature5.

Table 5.2 Time Domain GC Test Results of Original SS and GT.

Sample and Number of Observations Total sample (1625 Obs) Subsample A (674 Obs) Subsample B (609 Obs) Subsample C (342 Obs)

Referring periods 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Causality direction SS→ GT SS→ GT SS→ GT SS→ GT

F p-value F p-value F p-value F p-value

Original series 1.011 0.364 0.947 0.388 1.137 0.321 1.587 0.206

5.3.4 Frequency Domain Causality Test Results

The frequency domain causality results for the original series of SS and GT are

listed below in Fig. 5.3. Note that the optimal lag-structures are maintained for

all tests and the test statistics (blue) along with the corresponding 5% critical values

(red) for each particular frequencies are adopted to evaluate the possible causal links

from SS to GT. Therefore, when the test statistics (blue) is above or very close to

the 5% critical value (red), the causality is detected for that particular (range of)

5Note that given the weak evidence of stationarity for SS for sub-sample C, the GC test is re-
peated with first differences of SS and GT. The null of non-causality still continued to hold with
p-value of 0.728. In order to be robust to the non-normal errors of Holmes and Hutton (1990), the
nonparametric rank GC test is also considered with the null of non-causality cannot be rejected.
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frequency. The horizontal axis gives the parameter ω to calculate the corresponding

frequency f by f = 2π/ω .
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(b) sub-sample A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Incremental Rsquared GC−test

frequency

In
cr

e
m

e
n
ta

l R
−

sq
u
a
re

d

(c) sub-sample B
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(d) sub-sample C

Fig. 5.3 Frequency Domain Causality Result for Original SS and GT.

For the full sample, significant causal link is confirmed for frequency that is

greater than 2.45 corresponding to a cycle length between 2 and 2.6 months. Whilst,

in terms of the sub-samples, no significant causality can be identified for any fre-

quency and the frequency domain test fails to prove that SS has any significant

causal effects on GT in the sub-samples.

5.3.5 SSA Causality Test Results

Against this background of lack of evidence of causality in the time and frequency

domains, it is now focused on identifying the causality by the SSA-based approach.

As previously mentioned in section 5.1, in order to conduct the SSA causality test

for the SS and GT data, the out-of-sample size for each sub-sample series is 1/3

of the whole series. In addition, before the last step which determines causality by

causality criterion FGT |SS as clarified in section 5.1, all the forecasting results of both

SSA and MSSA steps are the optimal choice chosen respectively after considering

all the possibilities of window length L and its corresponding choices of number of

eigenvalues r.

Table 5.3 summarizes the results of SSA causality test. As what is mentioned

in section 5.1, if the causality criterion FGT |SS ≥ 1, then either there is no detectable
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causality between GT and SS or the performance of the univariate SSA is better

than of the MSSA, this may happen, for example, when one of the series has struc-

tural breaks misdirecting the forecasts; If FGT |SS < 1, then it is concluded that the

information provided by SS can be regarded as useful or supportive for forecasting

GT.

Table 5.3 SSA Causality Test Results of Original SS and GT.

Sample and Number of Observations Total sample (1625 Obs) Subsample A (674 Obs) Subsample B (609 Obs) Subsample C (342 Obs)

Referring periods 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Test statistics FGT |SS FGT |SS FGT |SS FGT |SS

Original Series 0.998 0.284 0.399 0.308

According to the results in Table 5.3, when the whole sample is considered, the

test statistics is very close to 1 and could not provide strong information to deter-

mine the causality between GT and SS. This is possibly affected by the structural

breaks that were detected in GT, which misleads the forecasts. Comparing with the

empirical evidence of Gupta et al. (2015), whereby the authors detected causality

only in for the full-sample, the SSA causality test provides strong evidence of causal-

ity for all the sub-samples as well, to go on with the weak evidence of causality for

the full-sample. In more details, sub-sample A show the strongest effect comparing

to other sub-samples followed by sub-sample C with slightly weaker causal effect

from SS to GT and the weakest causal effect holds for sub-sample B.

In summary, the SSA causality test show that SS has predictive ability for GT

for the all three sub-samples, over and above the full-sample, even if the latter result

can be ignored due to structural instability. SSA causality test is able to capture pos-

sible nonlinearities that could exist in the data generating processes of the GT and

SS, but also, in the relationship between GT and sunspot activity, for instance due

to the structural breaks. It outperforms both time domain and frequency domain GC

test and more importantly, highlights that SS has always been important in under-

standing the emerging trend of global warming. In other words, researchers working
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on global warming need to rely on a nonlinear data-driven, i.e., nonparametric ap-

proach while seeking the better understanding of the driven factors of global climate

change.

5.4 Discussion

SSA causality test is primarily inspired by the framework of the well established

causality analysis approach. Instead of building a linear or restricted nonlinear mod-

el, the innovative advancement adopts the SSA and MSSA forecasting performance

to address whether including another variable is beneficial for analysing or predict-

ing the other variable. It initially set the out-of-sample forecasting as the determi-

nate criterion and all steps only proceed with the optimal performances achieved for

the evaluation.

It is a nonparametric technique and has no assumptions of any linear or specific

nonlinear models prior or during the test. Therefore, it is capable of distinguishing

possible nonlinear relationships that other empirical tests cannot achieve, even for

complex unknown nonlinearities. To date, SSA causality test is initially designed

as a reduced form, data driven test that seeks better understanding of the causality

relationship between a network that is as simple as only two variables included. It

does not require a complex model that contains a number of factors. Moreover,

there is no restriction of the same length of tested variables. In general, it can

overcome many drawbacks that the currently established approaches fall short at,

with straightforward way of thinking and implementing.

However, this is only the beginning of the development of this method and there

are a number of aspects that will need further intensive researches so to get im-

proved. Firstly, it is undoubtable that researchers who have been masterful on the

empirical approaches will feel difficult to embrace the data driven technique. How-

ever, with the rapid advancements of technology and information science, there is



98 SSA Causality Test based on Forecasting Performance

no doubt that this type of method will be at least alternative way of causality anal-

ysis, especially at the circumstance of more frequently researchers have to work

with a complex system containing large volume of complex data. Regarding the

test itself, there is a concern about minor difference outcomes, which is due to the

fact that the corresponding optimal performances are selected for every step of fore-

casting. The comparisons between optimal forecasting performances do not have

a shared ground such as a same window length or identical number of eigenvalues.

Finding a critical ground rule of comparison so to measure the level of assistance the

other variable can bring along will be beneficial future research direction. However,

it is worth to be highlighted that, with this significantly strict criterion to clarify

causality, even very minor improvement of forecasting can possibly indicate a sig-

nificant causality considering the complexity of the system and the extremely simple

straightforward way of conducting this causality analysis with only two variables.



Chapter 6

CCM Causality Test

6.1 Introduction

Following the theoretical formulation and literature review of CCM in Chapter 2

section 2.3, In this chapter a few real data applications are conducted for the per-

formance evaluation of this sub-space based technique on causality analysis. It

is worth highlighting that the significant advantages of embracing this novel non-

parametric technique are that no prior model assumptions are made; this technique

is initially designed for better understanding of causal relationships in complex dy-

namical system; it can distinguish statistically significant causality by considering

only two key variables instead of building a complex model by incorporating many

possible influential variables based on regression modelling; CCM has remarkable

sensitivity at detecting causal links within complex systems whilst not being limited

to linearity or nonlinearity; and the calculation itself is efficient and comparatively

straight forward. Note that this technique serves as an alternative approach rather

than a competition to contribute on the literature of causality analysis studies. More-

over, another advancement of CCM on causality analysis is its reverse engineering

framework. Instead of evaluating the influences of the cause on the effect factor,
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causality is determined by a good reconstruction of the cause from the effect factor

as CCM believes that there must be information left behind in the effect factor from

its cause.

In the following sections, a diverse collection of real data about climate change,

energy and tourism, and gene regulatory role are adopted for the evaluation of C-

CM, respectively. This chapter intends to reflect the inherent efficiency and power

of CCM in relation to empirical tests so as to promote its use in future including but

not limited to the areas of listed implementations. Note that all the test results are

obtained by the corresponding optimal embedding dimension, which specifically is

determined by the nearest neighbor forecasting performance; range of library sizes

are set identical within one corresponding data case for the sake of further com-

parisons; leave-one-out cross validation is applied for the best choice with optimal

performance at specific library size. These conditions apply for all CCM causality

tests in this thesis and there will be no more repetitive specification unless there are

exceptional circumstances.

6.2 Evaluation by Real Data Applications

6.2.1 Global Temperature and Sunspot Number

Following the applications of GC and SSA causality tests in Chapter 5 section 5.3,

a further extension of the causality analysis between SS and GT is obtained here by

CCM. In brief, the same data set of GT and SS are adopted, with monthly frequency

covering the period from 1880:01 to 2015:05. Equivalently, the sub-samples divided

based on the structural breaks are also considered for all following tests. Note that

more details of the data as well as the unit root tests results can be found in Chapter

5 section 5.3, thus, they are not reproduced here in this section.
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The results of CCM causality tests between SS and GT on the total sample and

all sub-samples respectively are listed as follows in Fig. 6.1.
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(c) sub-sample B
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(d) sub-sample C

Fig. 6.1 CCM Result for SS and GT.

The cross map skill index reflects the reconstruction ability of the fact factor

to the cause factor for both directions respectively. Therefore, according to the

results in Fig. 6.1, CCM indicates significant ability of cross mapping considering

the total sample, in which, positive outcome reflects identified causal link from SS

to GT. However, regarding each sub-sample, sub-sample A cannot detect obvious

causation from SS to GT; sub-sample B shows opposite causation from GT to SS,

which is considered misleading results due to the nature of the data; sub-sample C

reflects significant causation from SS to GT1. Note that due to the long time span

of the data and the wide scale of library size considered for more comprehensive

analyses and comparisons, the increasing significance level along with larger library

size is reasonable as more information is adopted for cross validation test and then

for cross mapping.

Comparing to the results of SSA causality test in Chapter 5, the satisfying aspect-

s are that CCM identifies significant causality for total sample and latest sub-sample

C. It requires less calculation and is very sensitive to possible causal relationships

in a complex system even with long time span and possible structural breaks. Also,

there is no need to define window length and number of eigenvalues for a ground

1It possibly contains the influence of trend, which will be comprehensively discussed in Chapter
7.
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rule of comparison like SSA causality test. However, the misleading results for sub-

sample B reflects that the CCM outcome of causality can be significantly influenced

by trend or complex noise due to the fact that a misleading direction of causality is

much worse than no (or very weak) causality detected with the correct direction.

6.2.2 Oil Price and Tourist Arrivals

Given the energy-intensive nature of the tourism industry, the harmful effects of

oil price fluctuations on transportation, production costs, economic uncertainty and

disposable income have long been discussed (Becken, 2008). For countries that are

heavily reliant on the tourism industry (the third largest industry in the world, after

oil and automobiles) and unevenly exposed to sudden fluctuations in oil prices, the

relationship between oil prices and tourist arrivals remains an important research

topic which has drawn significant attention (Becken and Lennox, 2012).

The accurate detection of causality between oil prices and tourist arrivals can

help the tourism planning process and aid in improving the quality and accuracy of

tourist arrival forecasts and related managerial decisions (Goh, 2012). Literature in-

dicates negative effects between oil price and tourism evidenced overwhelmingly by

factors like inflation, consumer price indices, oil production, tourism income, and

industrial production indices (Becken and Lennox, 2012). A considerable amount

of recent causality analysis applications relating to tourist arrivals reflect that GC

approach continues to remain a key method for assessing causality between tourist

arrivals and influential variables (more details see (Antonakakis et al., 2015; Mas-

sidda and Mattana, 2013; Pérez-Rodríguez et al., 2015; Tang and Abosedra, 2016;

Tang and Tan, 2013, 2015; Tsui and Fung, 2016)). However, it is pertinent to note

again few drawbacks underlying the GC approach. Firstly, these tests continue to

be initially conducted based on a complex model involving many variables, and the

principle theory underlying the model has not been improved much from the simple
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linear or some assumed specific regressions. Secondly, the conclusion of causali-

ty is only obtained by following a certain order of tests which are all restricted by

various assumptions, this makes the process extremely unreliable under real world

conditions.

This section further evaluates the oil-tourism relationship and efficiently inves-

tigates the existence of causal links with an advanced non-parametric space-based

method CCM. Accordingly, a reduced form, data-driven investigation is conducted

to find significant evidences of oil-tourism causal relationships on a global scale by

involving only the two key variables - oil price and tourist arrivals. To the best of

my knowledge, the literature shows that CCM is yet to be exploited for evaluating

causality between tourism and related variables, and this research marks the intro-

ductory and successful adoption of CCM for identifying causality between oil price

and tourist arrivals.

Data and Descriptive Analysis

Following the novel mutual association measure introduced in Chapter 4, section

4.5.2 adopted the oil prices and tourist arrivals data as real data application to eval-

uate its performance. Here in this section, the same groups of data are considered

for the causality analysis by CCM along with the comparisons by the empirical GC

approaches. In brief, the data of tourist arrivals and oil prices (both BRT and WTI)

(EIA, 2016) are at monthly frequency covering the period from January 1996 to

December 2015 of both US and nine European countries (including Austria, Italy,

Germany, Greece, Netherland, Portugal, Spain, Sweden, UK). Note that the full de-

tails of the data can be found in Chapter 4 section 4.5.2, which are not reproduced

here.

The summary of descriptive statistics are listed in Table 6.1, which confirms the

similarity between BRT and WTI oil prices data. In terms of tourist arrivals, all
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countries generally show quite close level of Skewness and Kurtosis except Sweden

is relevantly higher.

Table 6.1 Descriptive Statistics of Oil Price and Tourist Arrivals.

Oil Prices

Obs Mean Median Max Min Std. Dev. Skewness Kurtosis

BRT 240 56.41 49.22 132.72 9.82 35.24 0.47 1.85

WTI 240 54.78 49.06 133.88 11.35 31.19 0.40 1.89

Tourist Arrivals

Obs Mean Median Max Min Std. Dev. Skewness Kurtosis

Austria 240 1481894 1434455 3205966 446240 504448 0.39 3.21

Germany 240 1918394 1788583 4401682 747141 724552 0.75 3.29

Greece 240 765847 564523 3107955 29856 710611 1.11 3.66

Italy 240 3343953 3277084 8084209 907367 1709118 0.50 2.45

Netherland 240 870900 864200 1745779 275000 284180 0.34 2.79

Portugal 240 539796 522395 1359284 155438 256280 0.70 3.03

Spain 240 3229314 2934373 7443749 671109 1533209 0.51 2.42

Sweden 240 357927 239902 1428207 98357 289081 1.93 5.97

UK 240 1668020 1541000 3390515 692120 582239 0.59 2.64

US 240 4325374 4222034 8364940 2094287 1292787 0.59 2.88

In order to evaluate the stationarity of data, three different unit root tests includ-

ing KPSS, ADF and PP are conducted and summarized in Table 6.2. The results

are overwhelmingly suggesting trend stationary for all variables, whilst, the PP test

indicates stationary for a few countries regarding tourist arrivals data. In general,

the variables are concluded non-stationary with one unit root.
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Table 6.2 Unit Root Test Results of Oil Price and Tourist Arrivals.

Variables Series Methods
None Intercept Intercept and Trend

Level Decision Level Decision Level Decision

Oil Prices

(240 Obs)

1996:1-2015:12

BRT

KPSS ———– ———– 1.675***(11) I(1) 0.139*(11) I(0)

ADF -10.284***(0) I(1) -10.264***(0) I(1) -10.294***(0) I(1)

PP -10.279***(4) I(1) -10.258***(4) I(1) -10.283***(4) I(1)

WTI

KPSS ———– ———– 1.663***(11) I(1) 0.166**(11) I(1)

ADF -10.104***(0) I(1) -10.083***(0) I(1) -10.109***(0) I(1)

PP -10.104***(0) I(1) -10.083***(0) I(1) -10.109***(0) I(1)

Tourists Arrivals

(240 Obs)

1996:1-2015:12

Austria

KPSS ———– ———– 1.458***(15) I(1) 0.144*(27) I(0)

ADF -3.938***(14) I(1) -16.637***(11) I(1) -17.093***(11) I(0)

PP -49.801***(23) I(1) -9.945***(31) I(0) -10.345***(24) I(0)

Germany

KPSS ———– ———– 2.305***(9) I(1) 0.115 (1) I(0)

ADF -2.524***(13) I(1) -3.581***(13) I(1) -3.825***(13) I(1)

PP -12.185***(16) I(1) -4.832***(5) I(0) -5.169***(0) I(0)

Greece

KPSS ———– ———– 0.755***(3) I(1) 0.058(2) I(0)

ADF -4.411***(11) I(1) -4.791***(11) I(1) -4.985***(11) I(1)

PP -4.056***(5) I(0) -5.414***(6) I(0) -5.529***(6) I(0)

Italy

KPSS ———– ———– 1.079***(5) I(1) 0.014(2) I(0)

ADF -3.527***(13) I(1) -4.403***(13) I(1) -4.527***(13) I(1)

PP -2.828***(3) I(0) -6.291***(4) I(0) -6.604***(4) I(0)

Netherland

KPSS ———– ———– 1.744***(8) I(1) 0.084(4) I(0)

ADF -2.976***(13) I(1) -3.496***(13) I(1) -3.503***(13) I(1)

PP -14.361***(3) I(1) -5.952***(2) I(0) -6.548***(1) I(0)

Portugal

KPSS ———– ———– 1.653***(7) I(1) 0.111(1) I(0)

ADF -4.077***(12) I(1) -4.658***(12) I(1) -4.848***(12) I(1)

PP -2.101**(6) I(0) -5.731***(5) I(0) -5.672***(6) I(0)

Spain

KPSS ———– ———– 1.991***(8) I(1) 0.071(1) I(0)

ADF -2.353**(12) I(1) -2.857*(12) I(0) -3.469**(13) I(0)

PP -2.306**(4) I(0) -5.646***(4) I(0) -6.118***(5) I(0)

Sweden

KPSS ———– ———– 1.052***(2) I(1) 0.161**(9) I(1)

ADF -5.708***(13) I(1) -6.117***(13) I(1) -6.104***(13) I(1)

PP -3.940***(14) I(0) -5.961***(19) I(0) -5.794***(24) I(0)

UK

KPSS ———– ———– 0.818***(5) I(1) 0.090(3) I(0)

ADF -4.889***(12) I(1) -4.981***(12) I(1) -5.196***(12) I(1)

PP -10.446***(4) I(1) -5.821***(1) I(0) -6.387***(2) I(0)

US

KPSS ———– ———– 1.825***(11) I(1) 0.392***(9) I(1)

ADF -3.591***(12) I(1) -3.928***(12) I(1) -4.074***(12) I(1)

PP -19.331***(6) I(1) -3.796***(8) I(0) -7.063***(8) I(0)

a The *, ** and *** indicate significance at the 10%, 5% and 1% respectively.

b The critical values are as follows:(1)None: -2.574, -1.942 and -1.616 for ADF and PP at 1%, 5% and 10% level of significance, respectively; (2)Intercept:

-3.457, -2.873 and -2.573 {0.739, 0.463, 0.347} for ADF and PP {KPSS} at 1%, 5% and 10% level of significance, respectively;(3)Intercept and Trend:

-3.996, -3.428 and -3.137 {0.216, 0.146, 0.119} for ADF and PP{KPSS} at 1%, 5% and 10% level of significance respectively.

c Numbers in parentheses for ADF and PP tests indicates lag-lengths selected based on the SIC. For the KPSS test, based on the Bartlett kernel spectral

estimation method, the corresponding numbers are the Newey-West bandwidth.
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Causality Tests Results

Here in this section, the causality tests are conducted for tourist arrivals and both

BRT and WTI oil prices respectively for each country. Corresponding results are

summarized in Table 6.3 by different causality detection techniques.

Table 6.3 Summary of Causality Tests Results on Oil Price and Tourist Arrivals.

Method Country Oil Prices

BRT WTI

→ ← → ←
Yes/No Yes/No Yes/No Yes/No

Time Domain

Austria No(0.68) No(0.56) No(0.81) No(0.34)
Germany No(0.52) No(0.27) No(0.29) No(0.17)
Greece No(0.54) No(0.36) No(0.46) No(0.44)
Italy No(0.60) No(0.98) No(0.67) No(0.74)
Netherland No(0.30) No(0.83) No(0.29) No(0.65)
Portugal No(0.38) No(0.41) No(0.72) No(0.31)
Spain No(0.62) No(0.24) No(0.54) No(0.12)
Sweden No(0.21) No(0.55) No(0.14) No(0.93)
UK No(0.63) No(0.95) No(0.53) No(0.82)
US No(0.48) No(0.85) No(0.53) No(0.48)

Frequency Domain

Austria No No No No
Germany No No No No
Greece No No No No
Italy No No No No
Netherland No No No No
Portugal No No No No
Spain No No No No
Sweden No No No No
UK No No No No
US No No No No

CCM

Austria No Yes No Yes
Germany No Yes No Yes
Greece No Yes No Yes
Italy No Yes No Yes
Netherland No Yes No Yes
Portugal No Yes No Yes
Spain No Yes No Yes
Sweden No Yes No Yes
UK No Yes No Yes
US No Yes No Yes

Notes: → indicates tourist arrivals causes oil price;
← indicates oil price causes tourist arrivals;

numbers in () indicate P-values.

Regarding the time domain GC test, note that all tests conducted satisfy the

preconditions of the test with results by the corresponding optimal lag. The results

indicate that no causal link can be detected regardless of countries and types of

oil price index (the null of non-causality still cannot be rejected at 10% significant
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level for all countries considered). In brief, time domain GC test fails to detect

any causality between tourist arrivals and oil prices for both US and nine European

countries.

The frequency domain GC test furthermore evaluates the possible causality at

specific frequencies with corresponding optimal lag-structures maintained for all

tests. No significant causality can be identified for any frequency2, and the frequen-

cy domain test also fails to prove the causal links between tourist arrivals and oil

prices regardless of the countries and types of oil price index.

Finally, the non-parametric subspace-based technique - CCM shows the exis-

tence of one-directional causality from oil prices to tourist arrivals for all countries

when the empirical methods fail to detect same. The results of CCM tests between

tourist arrivals and oil prices (BRT) of US and UK are listed in Fig. 6.3, and the

details of the rest of the test results can be found in Appendix D.2. As the ini-

tial attempt of incorporating CCM in oil-tourism causality studies, this application

establishes a reduced form, data-driven investigation and contributes to existing lit-

erature through the successful and introductory application of an advanced method,

and via the uncovering of significant causal links from oil prices to tourist arrivals in

US and nine European countries, alongside the comparison of empirical and novel

methods.

2A full detailed frequency domain GC test results can be found in Appendix D.1.
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Notes: The cross map skill index reflects the reconstruction ability of the fact factor to the cause

factor for both directions respectively; the blue line above the red line indicates significant

cross map skill of tourist arrivals on oil price, which means causality from oil price to tourist

arrivals.

Fig. 6.3 CCM Causality Results of Tourists Arrivals and Oil Prices (BRT) for UK
and US.

6.2.3 Gene Regulatory Role

Here in this section, the implementation of CCM is extended to the gene regulatory

role study.

Introduction

Segmentation in Drosophila melanogaster is a particularly well studied process

which highlights the role of gene regulatory network (GRN) in the earliest stage

of development (Lewis, 1978). There have been considerable attempts to portrait

a picture of the interactions presented between regulators in this GRN (see (Baird-

Titus et al., 2006; Berleth et al., 1988; Karlebach and Shamir, 2008; Liu and Jack,
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1992; Lopes et al., 2012; Niessing et al., 2002)). Recently, the availability of more

data on molecular mechanisms of regulatory interactions has made it possible to

study these interactions in more quantitative depth. Hence, for the first time to the

best of my knowledge, this section seeks to evaluate the dynamical interactions of

this system from a statistical causality point of view so to further contribute on the

literature of both gene regulatory role and causality analysis. Specifically, as an

advanced non-parametric method that is designed for a dynamical system involv-

ing complex interactions, CCM is adopted for the analysis along with the empirical

GC approaches for comparisons. It is of note that the detected regulatory link can

be either inductive (i.e. increasing the protein concentration of one gene raises the

protein concentration of the other gene), or inhibitory (i.e. increasing the protein

concentration of one gene decreases the protein concentration of the other gene).

Any efforts at identifying the nature of the detected interaction would require more

extensive research and that objective is beyond the mandate of this implementation

(Davidson and Levin, 2005).

As the best-studied transcriptional network in Drosophila development, segmen-

tation GRN contains three fundamental types of genes which play a crucial role in

Drosophila development: maternal effect genes, gap genes and pair rule genes (Biel-

er et al., 2011). Among them, the maternal effect genes including bicoid (bcd) 3 and

caudal (cad) must be addressed as the most important factors since they respective-

ly determine most aspects of anterior and posterior axis of an adult fruit fly and

more importantly, they commence the sequential activation of segmentation GRN

(Berleth et al., 1988; Bieler et al., 2011; Copf et al., 2004). It is imperative to note

that since providing robust genetic evidence is an important step in reporting genetic

causality, among all the interactions between regulators in segmentation GRN, this

application has been narrowed down to the interactions between bcd and cad, bcd

3In what follows, the italic lower-case bcd represents either the gene or mRNA and Bcd refers
to protein. This can be applied for all other genes mentioned in this section (for example, cad and
Cad).
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and Kruppel (kr) and cad and kr genes which their interactions have been previous-

ly accredited via laboratory experimental evidences. Accordingly, extracting these

links using CCM will provide the credit to step further and apply these methods to

find the unknown regulatory links between other genes.

Data

The quantitative bcd, cad and kr gene expression profiles representing the protein

concentrations of these genes in wild-type Drosophila embryos are achieved using

the confocal scanning microscopy of fixed embryos immunostained for segmenta-

tion proteins and is available via FlyEx database4. The applied antibody allows

the visualisation of the proteins under study. Note that such quantification relies

on the assumption that the actual protein concentrations detected by the antibodies

and the fluorescence intensities are linearly related to the embryo’s natural protein

concentration (Pisarev et al., 2009; Poustelnikova et al., 2004).

To this aim, a 1024× 1024 pixel confocal image with 8 bits of fluorescence

data was obtained for each embryo which then transformed into an American Stan-

dard Code for Information Interchange (ASCII) table. The ASCII table contains the

fluorescence intensity levels attributed to each nucleus in the 10% of longitudinal

strips (i.e. only the nuclei correspondents to the central 10% strip consists of the

45–55% of the dorsoventral (D–V) axis are selected) along the Anterior-Posterior

(A-P) axis and is unprocessed for any noise reduction methods. By adopting from

Surkova et al. (2008), Fig. 6.5 shows an example of a confocal image with the 10%

longitudinal strip, in which the white horizontal lines depict the 10% strip utilised

to collect data from. Fig. 6.6 presents a typical example profile achieved by flouro-

cence antibodies technique containing noisy Bcd, Cad and Kr for a specific embryo

at time class 14(1), in which the x-axis shows the position of the nuclei along the

4Available at: http://urchin.spbcas.ru/flyex/
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Anterior-Posterior (A-P) axis of the embryo and y-axis shows the fluorescence in-

tensity levels5.

Fig. 6.5 Confocal Image of An Embryo at Time Class 14(1) with 10% Longitudinal
Strip.
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Fig. 6.6 A Typical Example of Noisy Bcd, Cad and Kr for Embryo ms26 at Time
Class 14(1).

Since the segment determination starts from cleavage cycle 10 and lasts until

the end of cleavage cycle 14A (when proteins synthesised from maternal transcripts

5Note that the data is highly volatile and there is significantly high possibility that it will influence
the successful identification of a cause-and-effect relationship. Chapter 7 will further extend the
research on this aspect.
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begin to appear up to the onset of gastrulation) the data has been categorised to five

main cycles of 10 to 14A. Additionally, as the cleavage cycle 14A is considerably

longer in time, to facilitate the analysis, temporal classes 1 to 8 have been considered

as the subgroups of this cleavage cycle (Pisarev et al., 2009; Poustelnikova et al.,

2004). It should also be noted that each class of data contains a different number

of embryos. Table 6.4 presents the summary of the number of embryos studied per

each time class (TC). Note that the expression profile of each embryo has a different

length of data where the length in this table reports the average.

Table 6.4 Different Time Classes and Embryos Studied Per Each Time Class.

Time Class (TC) N Length SD

10 5 127 18.83

11 12 276 25.83

12 15 489 97.18

13 47 1224 78.56

14(1) 28 2318 143.87

14(2) 15 2315 86.83

14(3) 20 2367 141.05

14(4) 17 2309 119.16

14(5) 14 2301 126.96

14(6) 18 2347 103.74

14(7) 13 2007 229.61

14(8) 12 1600 311.21

Note: N = Number of embryos studied per each time class; Length = The average length

of data of expression profiles; SD= Standard deviation of length of data.

Causality Test Results

A summary of the causality test results by CCM and the empirical GC approaches

is listed in Table 6.5 that illustrates the findings of the causality analysis on Bcd
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and Cad profiles. Note that for all evaluations, the corresponding requirements for

each test are satisfied, also the optimal outcomes are selected. More specifically,

differentiations are taken accordingly for stationarity prior to the tests. The co-

integration test is also conducted for those groups of variables having equivalent

one unit root. Note that none of the tested groups showed significant results in

indicating co-integration, thus the results are not reproduced here as it is not the

main focus of this research. Moreover, the corresponding optimal lag is selected

for obtaining the test result for each group of profiles; the p-values reported for

time domain GC test are the average p-values attained for embryos studied each

corresponding time class.

Table 6.5 Causality Tests Results for Bcd on Cad Profiles.

Time Class (TC) Time Domain GC Frequency Domain GC CCM

YES/NO p-value YES/NO YES/NO

10 NO 0.68 NO YES

11 NO 0.71 NO YES

12 NO 0.89 NO YES

13 NO 0.89 NO YES

14(1) NO 0.95 NO YES

14(2) NO 0.98 NO YES

14(3) NO 0.98 NO YES

14(4) NO 0.94 NO YES

14(5) NO 0.95 NO YES

14(6) NO 0.96 NO YES

14(7) NO 0.81 NO YES

14(8) NO 0.79 NO YES

Note: "Yes" stands for the detected regulatory link and "No" means the regulatory link

could not be detected by the adopted test.

According to the results in Table 6.5, the regulatory link between Bcd and Cad

can be detected by neither time domain nor frequency domain GC tests. Since

the length of the data under study vary between different time classes, specifically,

time class 10 to 13 and 14(7-8) have shorter lengths comparing to the time classes
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14(1-6), which may be the reason of getting slightly smaller p-values for time class

11 to 13 and 14(8) comparing to the rest of the sub classes of time class 14. The

frequency domain test shows less sensitivity to the data length possibly because

this method focuses on each individual frequency component rather than the entire

series. Nevertheless, CCM accomplished to overwhelmingly identify the regulatory

relationship between Bcd and Cad in expression profiles despite the various length

and highly volatile feature of the data.

In addition, Table 6.6 and Table 6.7 summarise the causality test results of iden-

tifying the regulatory link between Bcd and Kr profiles and Cad and Kr profiles,

respectively. Similar to the results reported in Table 6.5, CCM efficiently identify

the regulatory relationship whilst the empirical GC approaches both fail to detect.

Table 6.6 Causality Tests Results for Bcd on Kr Profiles.

Time Class (TC) Time Domain GC Frequency Domain GC CCM

YES/NO p-value YES/NO YES/NO

12 NO 0.71 NO YES

13 NO 0.66 NO YES

14(1) NO 0.89 NO YES

14(2) NO 0.93 NO YES

14(3) NO 0.97 NO YES

14(4) NO 0.94 NO YES

14(5) NO 0.95 NO YES

14(6) NO 0.92 NO YES

14(7) NO 0.81 NO YES

Note: "Yes" stands for the detected regulatory link and "No" means the regulatory link

could not be detected by the adopted test.
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Table 6.7 Causality Tests Results for Cad on Kr Profiles.

Time Class Time Domain GC Frequency Domain GC CCM

YES/NO p-value YES/NO YES/NO

12 NO 0.39 NO YES

13 NO 0.78 NO YES

14(1) NO 0.84 NO YES

14(2) NO 0.89 NO YES

14(3) NO 0.94 NO YES

14(4) NO 0.91 NO YES

14(5) NO 0.87 NO YES

14(6) NO 0.82 NO YES

14(7) NO 0.75 NO YES

Note: "Yes" stands for the detected regulatory link and "No" means the regulatory link

could not be detected by the adopted test.

Fig. 6.7 depicts an example of the results obtained by frequency domain GC

test for Bcd–Cad, Bcd–Kr and Cad–Kr profile pairs respectively 6. In these figures,

the blue line represents the statistic test of each specific frequency, and the red line

represents the 5% critical value for all the frequencies. The horizontal axis gives the

parameter w to calculate the corresponding frequency f by f = 2π/w. Therefore,

when the test statistics is above or very close to the 5% critical value, the causality is

detected for that corresponding frequency. As the component of each frequency is

considered separately for identifying possible causal link, the impacts of relatively

less information are significantly reduced.

As previously mentioned in the beginning of this chapter, CCM test results are

obtained with the corresponding optimal embedding dimension E for each pair of

gene expression profiles based on the nearest neighbor forecasting performance by

simplex projection. Fig. 6.9 presents the examples of the CCM test result for Bcd–

Cad, Bcd–Kr and Cad–Kr respectively 7. In general, the higher ability of factor X

6The frequency domain GC test results for all considered pairs of genes related to all different
time classes can be found in Appendix D.3.

7The CCM test results for all considered pairs of genes related to all different time classes can be
found in Appendix D.4.
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(c) cad on kr (TC 12)

Note: The blue line represents the statistic test of each specific frequency, and the red line
represents the 5% critical value for all the frequencies.

Fig. 6.7 Example Frequency Domain GC Test Results for Bcd, Cad and Kr.

on reconstructing the attractor reflects more significant causal effects of the attractor

on X . As can be seen, the results of CCM reflect close relationships between Bcd

and Cad, whilst Bcd shows more significant relationship with Kr comparing to Cad.

The crossmap abilities of Bcd and Cad on Kr are fairly similar, however, Kr clearly

indicates higher reconstruction ability on Bcd comparing to Cad.
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Note: For the left(middle)[right] results, the red line indicates the reconstruction ability of
Bcd(Bcd)[Cad] crossmap Cad(Kr)[Kr], while the blue line represents the performance of

Cad(Kr)[Kr] on crossmapping Bcd(Bcd)[Cad].

Fig. 6.9 Example CCM Test Results for Bcd, Cad and Kr.

Even though the regulatory role of bcd on cad, bcd on kr and cad on kr genes

have been previously reported through several genetics experiments, in practice they

have not been validated using any causality detection methods. The CCM method
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established consistent significant evidences to identify the regulatory links between

these expression profiles while the empirical GC approaches both failed to prove

the same. As the initial attempt of extending CCM causality analysis technique on

gene regulatory role studies, this application has provided satisfying performance

of the adopted technique as well as its convincing capability to be further adapted

to explore the regulatory relationships among other challenging GRNs.

6.3 Discussion

This chapter challenges the relatively new subspace-based technique CCM on causal-

ity analysis performance with a diverse range of real data applications. In general,

the consistent and significant evidences presented herewith prove that this advanced

nonparametric and assumption free technique is a robust, solid and efficient method

that can produce reliable evidences of causality with only two key variables, even at

the circumstance of extremely complex and nonlinear scenarios as witnessed in the

above implementations. It shows satisfying performances on seeking the solution

of a complex research question–causality. Moreover, similar to the SSA causali-

ty test introduced in Chapter 5, it is a reduced form, straight forward, data driven

approach that is initially designed as an ideal method for better understanding and

distinguishing causality in complex systems.

Following the literature review of successful CCM applications that are summa-

rized in Chapter 2 section 2.3.1, CCM shows its significant sensitivity, adaptability

and capability as a reliable causality analysis technique through the above imple-

mentations. It is of note that this research incorporates CCM for the first time with

the corresponding areas of causality detection applications in this chapter. As such,

this research also aims to motivate further developments and increased applications

of CCM for other causality analyses whilst assisting policy and decision making in
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a broader range of subjects, where the multivariate analysis of nonlinear or complex

systems can be of utmost importance.

As a relatively new subspace-based technique for causality detection, CCM sure-

ly has the immeasurable potential of further advancements. The possible directions

of future researches may include the extension of panel data applicable version of C-

CM, improving the current cross map skill measure index, etc. Moreover, as briefly

mentioned in the above applications, there are still concerns regarding the possible

influences by trend, complex noise as well as the lower efficiency when works with

very large size of data. Nevertheless, the next chapter of this research will focus on

eliminating the possible influences by trend or complex noise through incorporating

the data preprocessing techniques.



Chapter 7

SSA-CCM Hybrid Causality Test

In relation to the strict evaluations by a diverse range of implementations in Chapter

6, it is of note that the composition/structure of the data can generally lead to widely

different outcomes for causality analysis despite the real information contained by

the data itself, especially for the empirical approaches. The novel techniques in this

research did indeed prove their advantages whilst the possible influences by existing

trend or complex noises should still be exploited and further clarified so to complete

this research. Here in this chapter, a hybrid approach is proposed that incorporates

the data preprocessing technique with CCM so to conduct causality analysis in the

manner of better understanding the data as well as the causality relationship in a

complex system.

7.1 Introduction

The hybrid method that is introduced here is the SSA-CCM hybrid causality test.

More specifically, SSA technique is firstly adopted for the data preprocessing, then

the processed data work as the input of CCM test so to establish a causality analy-

sis. The most important reason of applying SSA for data preprocessing is its full-

featured data processing superiority. As detailed introduced in Chapter 2 section
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2.2, SSA can decompose the data into significant components that represent partic-

ular features respectively. This can assist on the elimination of specific component

of the data that is in relation to the negative influences on accurately identifying ca-

suality. By introducing the preprocessing step into the CCM technique, this allows

CCM to perform its best level without being affected by the insignificant compo-

nents of the data due to the fact that CCM can be too sensitive so to get influenced

and lead to a less accurate reveal of the overall truth.

It is also of note that the data preprocessing is necessary for some particular

areas of research, for instance, among the applications introduced in the previous

chapters of this research, the long time span trend in climate change study, the com-

plex noise in gene expression profiles. Thus, in this chapter, the performance of the

SSA-CCM hybrid causality test is evaluated by the application of these two exam-

ples respectively. In specific, SSA is firstly performed for trend extraction before

the reveal of the causality between SS and GT in section 7.2, the comparisons of a

few empirical trend extraction methods and the empirical GC approaches are also

conducted for the purpose of the comprehensive evaluation. In terms of the gene

expression profiles that contains complex noise, SSA is applied for noise filtering

before proceeding on the causality analysis along with the comparisons with the

empirical GC approaches in section 7.3. Note that each section is self-contained

to address the corresponding advancement of the hybrid causality analysis method

and its satisfying performances.

7.2 Sunspot Number and Global Temperature

As initially introduced in Chapter 5 section 5.3, as well as Chapter 6 section 6.2.1,

here the same group of SS and GT data is adopted for illustrating the advancement

of SSA-CCM hybrid causality approach. It has been previously mentioned that
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the existing trend1 of GT may lead to inaccurate conclusion of causality. In order to

reveal the truth and conduct precise understanding of the causality, the existing trend

is considered misleading information that requires a prior step of data preprocessing.

The following sections compare SSA with 7 more trend extraction methods on their

performances of preparing data for causality analysis by not only CCM, but also the

empirical GC approaches.

7.2.1 Trend Extraction Methods and Extracted Data

Following the detailed introduction of the SS and GT data in Chapter 5 section 5.3,

the detrended GT (DGT) is obtained here aiming to remove the possible misleading

effects of the trend on the causality detection. The SSA-CCM hybird approach

is applied, whilst a few selected and representative trend extraction methods are

adopted and compared in this section by mainly following Alexandrov et al. (2012)2.

In brief, despite the SSA technique that is presented in the original version of the

hybrid approach, the trend extraction methods employed in this section cover almost

all aspects of trend extraction studies to date, including Model Based Approach

(MBA), Empirical Mode Decomposition (EMD), Wavelet (WAV), Local Regression

(LOESS), Henderson Filter (HEN) and Hodrick Prescott Filter (HP).

More specifically, the MBA refers to a family of methods that commonly shar-

ing the reliance upon time series models for the trend estimation; the EMD tech-

nique decomposes the signal into a collection of intrinsic mode functions with a

trend; the SSA technique embeds the data into multidimensional matrix, then ap-

plies SVD technique to decompose the data into representative components; the

WAV technique conducts the wavelet transformation and transfers the time series

into multi-scale decompositions, where the details of scales represents the different

1The detailed unit root test results can be found in Chapter 5 section 5.3.3.
2Note that a comprehensive review and theoretical introductions of the trend extraction methods

can be found in (Alexandrov et al., 2012), thus it is not reproduced here since it is not the primary
objective of this research.
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features of time series for further reconstruction; the LOESS is based on nearest

neighbors weights, where it allows the smoothing with fitted degree of polynomials

considering the weights estimated accordingly based on the neighborhood; the HEN

technique minimize smoothing with respect to a third degree polynomial within the

span of the filter; the HP technique builds up the over long time period framework of

trend and cycle with average 0, in which the measure of the smoothness of the trend

is the sum of the squares of its second difference, while the cycles are deviations

from trend.

Note that the detrended GT by different methods respectively are listed as, for

instance, DGT(MBA), DGT(EMD), etc. Similarly, the trend extracted by differen-

t methods are noted as, for example, Trend(MBA), Trend(EMD), etc. The DGT

series and corresponding extracted trend series are summarized below in Fig. 7.1

and Fig. 7.2 respectively. Note that all detrended series and corresponding extract-

ed trend series will be adopted for CCM and empirical GC tests respectively with

considerations of both total sample (1880:01-2015:05) and sub-samples (1880:01-

1936:03, 1936:03-1986:12, 1986:12-2015:05).

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

DGT_EMD
DGT_HEN
DGT_HP

DGT_LOESS
DGT_MBA

DGT_SSA
DGT_WAV

Year

Fig. 7.1 DGT by Different Trend Extraction Methods.
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1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

T_EMD
T_HEN

T_HP

T_LOESS

T_MBA

T_SSA
T_WAV

Year

Fig. 7.2 Extracted Trend of GT by Different Trend Extraction Methods.

7.2.2 Evaluation of Performances in Causality Analysis

In this section, the causality tests are conducted for the original series, different

detrended series, and extracted trend series respectively. The corresponding results

are summarized below by different causality detection techniques.

Time Domain GC Test Results

Given the significant and empirical role of time domain GC test, here the tests of

SS and different DGT as well as extracted trend series by different techniques are

conducted respectively in Table 7.1. Note that all tests conducted satisfy the precon-

ditions of time domain GC test with results by the corresponding optimal lag. The

null hypothesis that SS does not Granger cause GT in general cannot be rejected

for the sub-sample A except for DGT by HEN. The results also point out that the

null of non-causality still continued to hold at 5% significant level for all trend and

detrended series of sub-sample B and sub-sample C. The overall causality from SS

to GT considering the total sample is proved by DGT(HEN), DGT(LOESS) and

DGT(SSA) at 5% significant level. Therefore, comparing to the insignificant result-



124 SSA-CCM Hybrid Causality Test

s of the original series, the trend extraction is confirmed helpful on time domain

GC test, more specifically, DGT by HEN, LOESS and SSA indicate the significant

causal link from SS to GT at the total sample level.

Table 7.1 Summary of Time Domain GC Test Results by Trend Extraction Tech-
niques.

Tested Series

Total Sample Subsample A Subsample B Subsample C

1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

F p-value F p-value F p-value F p-value

Original 1.0107 0.3642 0.947 0.3884 1.1374 0.3213 1.5871 0.2062

DGT(EMD) 1.9439 0.0842 1.6239 0.1825 1.4771 0.1953 0.6153 0.6055

DGT(HEN) 1.5184 0.0458 1.7268 0.0133 1.2998 0.2023 0.6559 0.5797

DGT(HP) 1.1439 0.1875 1.4968 0.0522 1.1201 0.2956 0.6757 0.5675

DGT(LOESS) 1.6184 0.0298 1.6243 0.1824 2.2294 0.0837 0.6179 0.6039

DGT(MBA) 1.3569 0.2287 1.6244 0.1824 1.4767 0.1955 0.6164 0.6048

DGT(SSA) 1.6201 0.0295 1.5080 0.1981 2.2310 0.0835 0.6188 0.6032

DGT(WAV) 1.9514 0.0831 1.6192 0.1836 1.4557 0.2025 0.9852 0.5374

Trend(EMD) 0.6276 0.9689 0.6934 0.9399 0.9475 0.5892 0.5359 0.9499

Trend(HEN) 0.8384 0.6107 1.2114 0.2983 1.1247 0.3212 1.0686 0.4127

Trend(HP) 1.5676 0.1661 0.9720 0.4432 0.9772 0.4309 0.5552 0.6449

Trend(LOESS) 0.5487 0.9552 0.7468 0.7978 0.6677 0.8723 0.4067 0.9527

Trend(MBA) 0.1212 0.9416 0.4413 0.7235 0.4869 0.6147 0.5125 0.6739

Trend(SSA) 0.6943 0.9624 1.2123 0.1642 1.0918 0.3507 0.5151 0.9986

Trend(WAV) 1.5173 0.0434 1.2843 0.1547 1.4776 0.0646 1.1989 0.3094

Frequency Domain GC Test Results

The following figures present the frequency domain GC test results for DGT by

each trend extraction methods respectively with specific results of all sub-samples.

Identically, for each test, the optimal lag-structure is assured and having greater test

statistics (blue) than the corresponding 5% critical values (red) indicates possible

causal links from SS to GT within corresponding frequency range.
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(b) sub-sample A
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(c) sub-sample B
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(d) sub-sample C

Fig. 7.3 Frequency Domain GC Test Results for DGT(MBA).
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(b) sub-sample A
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(c) sub-sample B
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(d) sub-sample C

Fig. 7.4 Frequency Domain GC Test Results for DGT(EMD).
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(b) sub-sample A
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(c) sub-sample B
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(d) sub-sample C

Fig. 7.5 Frequency Domain GC Test Results for DGT(SSA).
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(c) sub-sample B
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Fig. 7.6 Frequency Domain GC Test Results for DGT(WAV).
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Fig. 7.7 Frequency Domain GC Test Results for DGT(LOESS).
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Fig. 7.8 Frequency Domain GC Test Results for DGT(HEN).
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Fig. 7.9 Frequency Domain GC Test Results for DGT(HP).

The results of DGT by seven different trend extraction methods above could not

reflect significant differences on influencing the frequency domain GC test. In terms

of the total sample, weak causality is identified in general except the cases of DGT

by HP and HEN filter. The test statistics vary for each trend extraction method con-

sidering each sub-sample respectively, however, there are no significant evidences

of showing causality for all sub-samples by different trend extraction methods. In
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general, given the evidences from seven different trend extraction methods adopt-

ed, the possible existing trend of GT do not have significant influence on frequency

domain GC test and detrending cannot assist or affect significantly on frequency do-

main GC test for the research of causal link between SS and GT in climate change

study.

Furthermore, the following figures present the frequency domain GC test results

for trend extracted by each trend extraction methods respectively with specific re-

sults of all sub-samples, followed by the summary of all frequency domain GC test

results that are listed in Table 7.2. It is noticed that in general no causality can be

detected by the extracted trend series regardless of the sub-samples and trend ex-

traction methods, except that the significant causal link at short cycle frequency is

detected at sub-sample B of the trend series extracted by SSA.
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Fig. 7.10 Frequency Domain GC Test Results for Trend(MBA).
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Fig. 7.11 Frequency Domain GC Test Results for Trend(EMD).
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Fig. 7.12 Frequency Domain GC Test Results for Trend(SSA).
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Fig. 7.13 Frequency Domain GC Test Results for Trend(WAV).
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Fig. 7.14 Frequency Domain GC Test Results for Trend(LOESS).
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Fig. 7.15 Frequency Domain GC Test Results for Trend(HEN).
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Fig. 7.16 Frequency Domain GC Test Results for Trend(HP).

Table 7.2 Summary of Frequency Domain GC Test Results by Trend Extraction
Techniques.

Total Sample Sub-sample A Sub-sample B Sub-sample C

Tested Series 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Original YES(short cycle) NO NO NO

DGT(MBA) YES(short cycle) NO NO NO

DGT(EMD) YES(short cycle) NO NO NO

DGT(SSA) YES(short cycle) NO NO NO

DGT(WAV) YES(short cycle) NO NO NO

DGT(LOESS) YES(short cycle) NO NO NO

DGT(HEN) YES(week) NO NO NO

DGT(HP) NO NO NO NO

Trend(MBA) NO NO NO NO

Trend(EMD) NO NO NO NO

Trend(SSA) NO NO YES(short cycle) NO

Trend(WAV) NO NO NO NO

Trend(LOESS) NO NO NO NO

Trend(HEN) NO NO NO NO

Trend(HP) NO NO NO NO

CCM Causality Test Results

Following the CCM test for original series listed in Fig. 6.1 of Chapter 6 section

6.2, the figures listed below present all the CCM test results for DGT by different

trend extraction methods. Identically, all tests are obtained by the optimal embed-

ding dimension respectively; by optimal outcome based on cross validation results;
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with identical library size within one corresponding sample size for the sake of com-

parisons.
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Fig. 7.17 CCM Result for DGT(MBA).
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Fig. 7.18 CCM Result for DGT(EMD).
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(c) sub-sample B
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(d) sub-sample C

Fig. 7.19 CCM Result for DGT(SSA).
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Fig. 7.20 CCM Result for DGT(WAV).
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(d) sub-sample C

Fig. 7.21 CCM Result for DGT(LOESS).
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(d) sub-sample C

Fig. 7.22 CCM Result for DGT(HEN).
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Fig. 7.23 CCM Result for DGT(HP).

Furthermore, the figures listed below show all the CCM test results for trend se-

ries extracted by different trend extraction methods respectively with considerations

of both total sample and sub-samples.
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Fig. 7.24 CCM Result for Trend(MBA).
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Fig. 7.25 CCM Result for Trend(EMD).
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Fig. 7.26 CCM Result for Trend(SSA).
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Fig. 7.27 CCM Result for Trend(WAV).
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(c) sub-sample B
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(d) sub-sample C

Fig. 7.28 CCM Result for Trend(LOESS).
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(d) sub-sample C

Fig. 7.29 CCM Result for Trend(HEN).
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Fig. 7.30 CCM Result for Trend(HP).

If the CCM results of original GT are recalled for comparison, in which, the

total sample and sub-sample C both indicate significant causation from SS to GT,

whilst sub-sample A reflects no causation and sub-sample B shows wrong direction.

In terms of the DGT and trend series in line with the corresponding CCM results

listed above, significant differences are generally obtained among seven different

trend extraction methods. In order to provide further analyses on the correspond-

ing effects of each trend extraction method on CCM causality test, the results are

summarized below in Table 7.3.
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Table 7.3 Summary of CCM Causality Test Results by Trend Extraction Techniques.

Total Sample Sub-sample A Sub-sample B Sub-sample C

Tested Series 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Original YES NO Wrong Direction YES

DGT(MBA) YES(very weak) YES(weak) Wrong Direction YES(weak)

DGT(EMD) YES YES(weak) YES Wrong Direction

DGT(SSA) YES YES(very weak) YES YES

DGT(WAV) YES(very weak) YES Wrong Direction Wrong Direction

DGT(LOESS) NO YES(weak) Wrong Direction Wrong Direction

DGT(HEN) NO YES NO YES(very weak)

DGT(HP) NO YES NO YES(weak)

Trend(MBA) YES(strong) YES(strong) YES(strong) YES(strong)

Trend(EMD) YES(strong) YES(strong) YES(strong) YES(strong)

Trend(SSA) YES(strong) YES(strong) YES(strong) YES(strong)

Trend(WAV) YES(strong) YES(strong) YES(strong) YES

Trend(LOESS) YES(strong) YES YES(strong) YES(strong)

Trend(HEN) YES(week) YES(week) Wrong Direction Wrong Direction

Trend(HP) YES(week) YES(week) Wrong Direction YES(very week)

Evidence of significant causality in general is found in terms of trend series,

which strongly reflect the causal link from SS to the emerging trend of global warm-

ing. Only trend by HP and HEN show relatively weaker causality, while the corre-

sponding DGT by HEN and HP also fail on providing positive results of existing

causal links. However, regarding the total sample that was proved significant by

original series, DGT (as well as trend series) by MBA, EMD, SSA and WAV con-

tinue to hold significant results. Thus, DGT by LOESS, HEN and HP may work

fine on extracting the existing trend, but it will possibly remove or reduce the causal

effects between SS and GT to be captured by CCM.

Regarding the sub-sample A, all CCM results in general show significant evi-

dences of causality, regardless of whether the level of causation is weak or strong.

This is an impressive effect detected as no causal link can be identified when the

original series are considered. It can be concluded that the existing trend series and

DGT together lead to weaken or mislead the results for sub-sample A on causali-
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ty analyses. This can be generally improved to obtain more significant outcomes

by extracting the trend with all representative trend extraction methods listed here

(regardless the level of significance for different methods).

In terms of sub-sample B, which indicated a wrong direction causality in case

of the original series, only DGT by EMD and SSA show positive results indicating

causality. The others fail to detect or, even worse, provide misleading results of

wrong direction of causation.

For the most recent sub-sample C that possibly reflects the most meaningful

conclusion, DGT by SSA manage to hold the significant result that keep the con-

sistency of the results by original series, more importantly, with reasonable level

of significance. The CCM results of DGT by SSA show emerging causality rela-

tionship from SS to GT that also prove the significant predictive ability of SS on

GT.

As an advanced non-parametric subspace-based technique for causality analysis,

CCM outperforms the empirical GC approaches with not only the original series but

also the DGT and extracted trend series. Nevertheless, the existing trend of GT has

also been proved affecting the outcomes of CCM. According to the comparisons of

different trend extraction methods in terms of the study of SS and GT in climate

change, SSA outperforms the others on providing better preprocessed series for C-

CM test with significant causal link detected regardless of the DGT and trend series

for all sub-samples as well as the total sample. More importantly, it indicates the

emerging causal effects from SS to GT, which contributes on explaining the tenden-

cy of global warming recent decades. Therefore, the hybrid SSA-CCM approach is

proved a robust, reliable method that stands out among all considered trend extrac-

tion techniques.
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7.2.3 Data Decomposition by SSA and Corresponding Effects on

Causality Analysis

All previous comparisons are conducted by the original SS together with the trend

and DGT respectively, in line with the SSA technique is found the most appropri-

ate trend extraction method on data preprocessing for causality analyses in climate

change study. In this section, both the SS and GT are further decomposed by SSA

into representative components: trend, cycle and noise. All causality tests are then

obtained by different components respectively to provide further comprehensive un-

derstanding of the causal link between SS and GT, which may contribute on target

the most significant component that dominates the causality analysis in a complex

system like climate changes study.

Data Decompositions by SSA

As can be seen in Fig. 7.31 and Fig. 7.32, the original GT and SS are decomposed

by SSA into the representative components of trend, cycle and noise respectively.

Note that the window length is selected as N/2 where N is the number of observa-

tions, combinations of eigenvalues are selected due to the features of representative

components3.

3All operations are conducted by R with the corresponding package (RSSA), there are also dif-
ferent alternative packages available in R, as well as another software CaterpillarSSA.
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Fig. 7.31 Decompositions of GT by SSA (1880M01 to 2015M05) .
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Fig. 7.32 Decompositions of SS by SSA (1880M01 to 2015M05) .

Causality Test Results of the Data Decompositions by SSA

The causality tests are conducted on each group of components respectively with

considerations of not only the total sample but also all sub-samples. The detailed

results of frequency domain and CCM tests are listed below, followed by the brief

summary of causality test results by components in Table 7.4.
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(c) sub-sample B
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(d) sub-sample C

Fig. 7.33 Frequency Domain Causality Result for Trends.
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(c) sub-sample B
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Fig. 7.34 Frequency Domain Causality Result for Cycles.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Incremental Rsquared GC−test

frequency

In
cr

e
m

e
n
ta

l R
−

sq
u
a
re

d

(d) sub-sample C

Fig. 7.35 Frequency Domain Causality Result for Noises.
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Fig. 7.36 CCM Causality Result for Trends.
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Fig. 7.37 CCM Causality Result for Cycles.
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Fig. 7.38 CCM Causality Result for Noises.

Table 7.4 Summary of Causality Tests Results of Data Decompositions by SSA.

Total Sample Sub-sample A Sub-sample B Sub-sample C
Decomposition 1880:1-2015:5 1880:1-1936:2 1936:3-1986:11 1986:12-2015:5

Time Domain
Trend YES(5.2009***) YES(8.5674***) YES(4.4397***) YES(3.3258***)
Cycle YES(11.5135***) YES(7.6866***) NO(0.9371) YES(9.7739***)
Noise NO(1.7220) NO(0.9646) NO(1.5214) NO(0.4616)

Frequency Domain
Trend YES YES YES YES
Cycle NO YES YES YES
Noise NO NO NO NO

CCM
Trend YES(week) Wrong Direction YES(week) YES
Cycle YES YES YES YES
Noise NO Wrong Direction YES(week) NO

For the data decompositions that different components represent representative

features, it is of note that even the generally accepted parametric method – time

domain GC test – achieves the significant results for both trend and cycle series

(except for the sub-sample B of the cycle component). For the frequency domain

GC and CCM causality tests, the causal link is generally proved significant for both

the trend and cycle series. Only the total sample of cycle fails to be detected by
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frequency domain GC test, and sub-sample A of trend component shows misleading

results of opposite direction of causation by CCM. The causality is overwhelmingly

rejected for the noise component by both time domain and frequency domain GC

tests, except the sub-sample B by CCM test. In case of the trend component, the

overall significant results indicate the long term causal effect from SS to GT, while

the CCM results provide comprehensive analyses that the predictive ability from the

other direction is also relatively strong. This is due to the feature of the component

and it is worth highlighting that the results by CCM (considering the gap between

two cross mapping skill indices) reflect the wrong direction - very weak SS to GT

- slightly stronger SS to GT across the sub-samples in line with week causation

detected over the total sample.

In terms of the cycle component, the results by different causality tests are gen-

erally significant. It is found that no causality can be detected by time domain GC

test in sub-sample B. The corresponding results by frequency domain GC test is also

weak (only in limited range of long cycle). CCM is the most sensitive technique that

shows the highly significant causality of sub-sample B comparing to the other tests.

It is worthwhile to note that the week causality detected by CCM on the noise com-

ponent at sub-sample B. This possibly indicates some irregular or nonlinear patterns

of causal relationships that is also successfully captured by CCM. More importantly,

in case of the CCM results of the cycle component across the time scale, it again

proves that the emerging causal effects of SS on GT. This indicates the tendency of

global warming due to sunspot activity, especially for the recent decades.

In general, by decomposing the data into representative components with S-

SA technique, even the applicability of the basic parametric method (time domain

GC test) is significantly improved. The causality conclusion is overwhelmingly ob-

tained, while the CCM shows the strongest ability of capturing the possible causal

effects regardless of the time scale and components. The data preprocessing is a-

gain proved absolutely necessary for the causality analyses of the complex system
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like climate change, and the clear evidence here in this research indicate that da-

ta preprocessing is able to significantly improve the performances of generally all

causality tests, whilst the SSA-CCM hybrid approach stands the strongest position

among all combinations with proved remarkable capabilities on causality analysis.

7.2.4 Discussion

Chapter 5 and 6 illustrate that these non-parametric subspace-based methods out-

performed the generally accepted techniques when investigating the causal link be-

tween SS and GT. Section 7.2 here further extends this literature by considering the

possible effects of the existing trend on causality detection technique performances.

As the initial attempt to my best knowledge, 7 different mainstream well-established

trend extraction methods are incorporated and evaluated for comprehensive analysis

of the effects of trend on causality analysis by both empirical and advanced tech-

niques. Moreover, for the first time, the data is further decomposed by SSA into

representative components of trend, cycle and noise for obtaining the most detailed

knowledge of the relationship between data components and causality analysis tech-

niques.

This section successfully answers a crucial question that the existing trend has

impacts on the causality analyses outcomes, even for the advanced non-parametric

techniques that already outperformed the generally accepted methods with signifi-

cant advantages. It is also confirmed that trend extraction will absolutely contribute

on assisting the causality analyses in climate change study, whilst the causality

analyses will still lead to conclusions with great contrast by using different trend

extraction methods. Among which, the SSA trend extraction is identified as the

most reliable method for data preprocessing, while CCM shows outstanding per-

formance among all causality tests adopted. The emerging causal effects from SS

to GT, especially for recent decades, are overwhelmingly proved, which reflects
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the better understanding of the tendency of global warming. Broadly, this research

proves to contribute on the current literature of causality analysis with the most

detailed causality analysis by trend extraction techniques as well as representative

components. Nevertheless, this research verifies and demonstrates the powerful

SSA-CCM hybrid approach that shows outstanding capabilities in causality analy-

sis due to its robust performances on not only the dominating components like trend

and cycle but also the less important component of noise.

7.3 Gene Regulatory Role

Following the application of gene regulatory role in Chapter 6 section 6.2.3, CCM

has been proved a satisfying causality analysis tool on identifying the regulatory

links between original gene expression profiles whilst the empirical approaches

fail to detect. Considering the fact that gene expression profiles are exceedingly

noisy (Golyandina et al., 2012), there are still no misleading conclusions of causal-

ity demonstrated by CCM. However, it has been noted that some of the levels of

significance are relatively small. Therefore, here in this section, the SSA-CCM hy-

brid approach is again applied. Specifically, SSA works as the data preprocessing

technique to filter the noise before the causality analysis step is conducted by CCM.

Both empirical GC approaches are also considered for causality detection by the cor-

responding filtered series as contextual comparisons. This section of research aims

to further validate the SSA-CCM hybrid approach and its performance on causality

analysis for data containing complex noise. Moreover, broadly, it contributes on

the literature of causality analysis through the better understanding of the effect of

noise on causality detection by the example of gene regulatory role detection.
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7.3.1 Data and Noise Filtering

Note that the details of brief literature review and data can be found in section 6.2.3

in Chapter 6, which is therefore not reproduced here. Also, the identical groups of

data are adopted here in this section along with the comparisons of the empirical GC

approaches. As it has been shown in Fig. 6.6, the profile achieved by flourocence

antibodies technique is highly volatile4 and in such cases, establishing a cause-and-

effect relationship is more challenging and demands applying a noise filtering step

prior to causality analysis, for which, SSA is applied here to produce noise filtered

series, and a few more gene expression signal extraction examples by SSA can be

found in (Ghodsi et al., 2015b,c; Hassani and Ghodsi, 2014; Holloway et al., 2006).

Fig. 7.39 illustrates the output of signal extraction from the original noise data

by SSA5. Note that the x-axis shows the position of the nuclei along the A-P axis

of the embryo and y-axis shows the fluorescence intensity level. It has been evident

that the SSA method provides a relatively smooth signal line with correlation below

0.10 which credits the satisfactory level of separation between noise and signal

using SSA (Ghodsi et al., 2015b).

4Although confocal scanning microscopy is a generally employed technique for measuring the
gene expression profiles, its use in systems biology studies presents a number of challenges such as
the considerable amount of noise entering data after quantifying the fluorescence intensity. Possible
errors in instrument functionality, sample preparation and mathematical treatment of data have been
considered as the most common sources of noise (Myasnikova et al., 2009).

5The optimal noise filtering by SSA on these gene expression profiles follow the method pro-
posed by Alharbi and Hassani (2016) and Alharbi et al. (2016), where the optimal number of eigen-
values are selected based on the skewness, coefficient of variation and correlation coefficient between
eigenvalues.
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Fig. 7.39 A Typical Example of Bcd, Cad and Kr for Embryo ms26 at Time Class
14(1) with Extracted Signals in Red.

7.3.2 Causality Test Results

This section provides a summary of the CCM causality test before and after filtering

the expression profiles using SSA, along with the contextual comparisons of the

empirical GC approaches. Table 7.5 illustrates the findings of the causality detection

analysis on Bcd and Cad profiles. As previously clarified in Chapter 6, note that for

all evaluations, the corresponding requirements for each test are satisfied, also the

optimal outcomes are selected. Moreover, the corresponding optimal lag is selected

for obtaining the test result for each group of profiles; the p-values reported for

time domain GC test are the average p-values attained for embryos studied each

corresponding time class. It is of note that even the test results for original series

have been listed in Chapter 6, which are still reproduced here for the sake of clear

and convenient comparison.
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Table 7.5 Causality Tests Results for Noisy and Filtered Bcd on Cad Profiles.

Time Domain GC Frequency Domain GC CCM

Time

Class

Noisy Series Filtered Series Noisy Series Filtered Series Noisy Series Filtered Series

YES/NO p-value YES/NO p-value YES/NO YES/NO YES/NO YES/NO

10 NO 0.68 NO 0.45 NO YES YES YES

11 NO 0.71 NO 0.33 NO YES YES YES

12 NO 0.89 NO 0.32 NO YES YES YES

13 NO 0.89 NO 0.24 NO YES YES YES

14(1) NO 0.95 YES 0.05 NO YES YES YES

14(2) NO 0.98 YES 0.04 NO YES YES YES

14(3) NO 0.98 YES 0.01 NO YES YES YES

14(4) NO 0.94 YES 0.01 NO YES YES YES

14(5) NO 0.95 YES 0.00 NO YES YES YES

14(6) NO 0.96 YES 0.00 NO YES YES YES

14(7) NO 0.81 YES 0.00 NO YES YES YES

14(8) NO 0.79 YES 0.04 NO YES YES YES

Note: "Yes" stands for the detected regulatory link and "No" means the regulatory link

could not be detected by the adopted test.

According to Table 7.5, it is evident that there is a significant difference in results

before and after reducing the noise from the profiles. The regulatory link between

Bcd and Cad can be detected by neither time domain nor frequency domain tests in

the presence of noise. Accordingly, it is clear that the filtering capability displayed

by SSA is indeed advantageous for causality detection analysis.

Nevertheless, as can be seen, the feasibility of capturing the regulatory link for

CCM method has not been affected by noise and the results achieved by this test

confirm the regulatory relationship between Bcd and Cad in expression profiles with

and without noise. However, regardless of the time class, the index representing the

ability of cross mapping is relatively smaller on average for noisy series than filtered

series.

It is of note that the length of the data under study vary between different time

classes. Time class 10 to 13 and 14(7-8) have shorter lengths comparing to the time
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classes 14(1-6), which may be the reason of getting slightly smaller p-values for

time class 11 to 13 and 14(8) comparing to the rest of the sub classes of time class

14. Yet, the frequency domain test shows less sensitivity to the data length possi-

bly because this method identifies the possible regulative link for each individual

frequency component rather than the entire series.

Furthermore, the p-values for both noisy and filtered data of all the embryos in

different time classes are summarised in Fig. 7.40 and Fig. 7.41 as box and whisker

diagram respectively. They follow the standard formate of box plot on displaying

the distribution of the p-values based on maximum, upper quartile, median, lower

quartile, and minimum. Specifically, circle refers to corresponding outlier that is

more/less than 1.5 times of upper/lower quartile; the central rectangle spans the

upper quartile to the lower quartile; the segment inside the rectangle indicates the

median; whiskers above and below the box refer to the maximum and minimum. A

close look at Fig. 7.40 and Fig. 7.41 suggests that the time domain GC test cannot

detect any regulatory link in the presence of noise, while the results for filtered series

are significant and more consistent especially for those time classes after 14(1).

Comparing the p-values illustrated in Fig. 7.40 and Fig. 7.41, it is evident that the

length of the series and level of intensities have more effect on the result of the noisy

data than the filtered one as the p-values in Fig. 7.40 are getting more insignificant

for the final subclasses of time class 14, where there is a decreasing pattern for

these two parameters in the expression profiles. Likewise, for the frequency domain

GC test, the links have been detected for all the filtered series, whilst there is no

regulatory relationship detected for non-filtered ones.
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Fig. 7.40 Box Plots of Time Domain GC Test P-values for Noisy Series.
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Fig. 7.41 Box Plots of Time Domain GC Test P-values for Filtered Series.

Table 7.6 and Table 7.7 present the results of the conducted analysis to detect the

regulatory link between Bcd and Kr profiles and Cad and Kr profiles respectively.

As can be seen, reducing the noise level is an essential step in detecting the regula-

tory link using the time domain and frequency domain tests. Similar to the results

reported in Table 7.5, CCM method can again efficiently identify the regulatory

relationship even in the presence of noise.
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Table 7.6 Causality Tests Results for Noisy and Filtered Bcd on Kr Profiles.

Time Domain GC Frequency Domain GC CCM

Time

Class

Noisy Series Filtered Series Noisy Series Filtered Series Noisy Series Filtered Series

YES/NO p-value YES/NO p-value YES/NO YES/NO YES/NO YES/NO

12 NO 0.71 NO 0.15 NO YES YES YES

13 NO 0.66 YES 0.04 NO YES YES YES

14(1) NO 0.89 YES 0.03 NO YES YES YES

14(2) NO 0.93 YES 0.01 NO YES YES YES

14(3) NO 0.97 YES 0.01 NO YES YES YES

14(4) NO 0.94 YES 0.00 NO YES YES YES

14(5) NO 0.95 YES 0.00 NO YES YES YES

14(6) NO 0.92 YES 0.00 NO YES YES YES

14(7) NO 0.81 YES 0.00 NO YES YES YES

Note: "Yes" stands for the detected regulatory link and "No" means the regulatory link

could not be detected by the adopted test.

Table 7.7 Causality Tests Results for Noisy and Filtered Cad on Kr Profiles.

Time Domain GC Frequency Domain GC CCM

Time

Class

Noisy Series Filtered Series Noisy Series Filtered Series Noisy Series Filtered Series

YES/NO p-value YES/NO p-value YES/NO YES/NO YES/NO YES/NO

12 NO 0.39 NO 0.25 NO YES YES YES

13 NO 0.78 NO 0.11 NO YES YES YES

14(1) NO 0.84 YES 0.05 NO YES YES YES

14(2) NO 0.89 YES 0.03 NO YES YES YES

14(3) NO 0.94 YES 0.01 NO YES YES YES

14(4) NO 0.91 YES 0.01 NO YES YES YES

14(5) NO 0.87 YES 0.00 NO YES YES YES

14(6) NO 0.82 YES 0.00 NO YES YES YES

14(7) NO 0.75 YES 0.00 NO YES YES YES

Note: "Yes" stands for the detected regulatory link and "No" means the regulatory link

could not be detected by the adopted test.

Fig. 7.42, Fig. 7.44 and Fig. 7.46 depict an example of the results obtained by fre-

quency domain GC test for Bcd–Cad, Bcd–Kr and Cad–Kr profile pairs respectively
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6. As the component of each frequency is considered separately for identifying pos-

sible causal link, the impacts of relatively less information are significantly reduced.

However, there are overwhelming evidences of filtered series showing minor dif-

ferences between the test statistics and the 5% critical value, which consequently

indicate causality.
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Note: The blue line represents the statistic test of each specific frequency, and the red line

represents the 5% critical value for all the frequencies.

Fig. 7.42 Example Frequency Domain GC Test Results for Noisy and Filtered Bcd
and Cad (TC 11).

6The frequency domain GC test results for all considered pairs of filtered genes related to all
different time classes can be found in Appendix D.5
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Note: The blue line represents the statistic test of each specific frequency, and the red line

represents the 5% critical value for all the frequencies.

Fig. 7.44 Example Frequency Domain GC Test Results for Noisy and Filtered Bcd
and Kr (TC 12).
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Note: The blue line represents the statistic test of each specific frequency, and the red line

represents the 5% critical value for all the frequencies.

Fig. 7.46 Example Frequency Domain GC Test Results for Noisy and Filtered Cad
and Kr (TC 12).

Fig. 7.48, Fig. 7.50 and Fig. 7.52 represent the examples of the CCM test re-

sult for Bcd–Cad, Bcd–Kr and Cad–Kr before and after filtering the profiles 7. The

results of CCM reflect close relationships between Bcd and Cad with and without

7The CCM test results for all considered pairs of filtered genes related to all different time classes
can be found in Appendix D.6.
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filtering, whilst Bcd shows more significant relationship with Kr comparing to Cad

for both original and filtered data. The cross-mapping abilities of Bcd and Cad on

Kr are fairly similar, however, Kr clearly indicates higher reconstruction ability on

Bcd comparing to Cad. In more details regarding the relationship between Bcd and

Cad, considering the average reconstruction ability represented by ρ , it is suggested

that CCM is not affected by the smaller length of the series related to the initial time.

However, the increasing pattern of the average level of cross-mapping ability up to

time class 14(3), which follows by a decreasing trend for the rest of the subclass-

es, indicates less accuracy of the results for higher time classes. The approximate

average value of ρ over 0.5 for noisy series indicates significant cross-mapping (or

reconstruction) ability to identify the causal links. Correspondingly, a average is

found to be approximately over 0.8, which reflects stronger causal links detected

between Bcd and Cad after filtering. In terms of the relationships between Bcd

and Kr, the filtered series can be beneficial for identifying slightly more significant

causality relationship and both original and filtered series indicate stronger cross-

mapping ability from Kr to Bcd, which means that Bcd shows much stronger causal

effect on Kr than the other way around. Regarding the Cad and Kr, the causality

relationship identified are less significant comparing to the other pairs studied, and

it still confirms the stronger performance of the filtered series with a average about

0.4 comparing to the average of 0.2 for original series.
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represents the performance of Cad on crossmapping Bcd.

Fig. 7.48 Example CCM Test Results for Noisy and Filtered Bcd and Cad (TC
14(8)).
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Note: The red line indicates the reconstruction ability of Bcd crossmap Kr, while the blue line

represents the performance of Kr on crossmapping Bcd.

Fig. 7.50 Example CCM Test Results for Noisy and Filtered Bcd and Kr (TC 14(7)).
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represents the performance of Kr on crossmapping Cad.

Fig. 7.52 Example CCM Test Results for Noisy and Filtered Cad and Kr (TC 14(5)).

7.3.3 Discussion

This section further extend the CCM implementation on gene regulatory role detec-

tion in Chapter 6 through the SSA-CCM hybrid approach that considers the data

preprocessing step prior to the causality analysis so to eliminate the possible in-

fluences of complex noise. This research is the first attempt of incorporating gene

regulatory role detection with the advanced subspace-based causality detection tech-

niques. Satisfying performances are achieved by the original data alone with CCM,

and further improvements are established by introducing the SSA-CCM hybrid ap-

proach. In general, it proves that the existing complex noise can influent the causal-

ity analysis outcome, even the advanced subspace-based technique shows relatively

low index that reflecting level of causality. It is also confirmed that noise filtering

will absolutely contribute on assisting the causality analyses in gene regulatory role

study, even the empirical approaches can benefit from the filtered series so to con-

duct relatively improved conclusions. The data preprocessing is evident necessary

procedure for causality analysis in gene regulatory role study, and the SSA-CCM
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hybrid causality test is proved the reliable and well-thought-out approach for causal-

ity analysis in complex systems like GRN.

This application further challenges the SSA-CCM hybrid approach and the sig-

nificant performances again assure the capability of this hybrid approach. Broadly,

this research contributes on the current literature of causality analysis of data con-

tain complex noise as well as the collaboration of quantitative causality analysis

technique and the studies of GRN. Nevertheless, this can be easily adapted to the

other pairs of genes and is also applicable to a wider range of GRNs to infer the

regulatory interactions presented among the genes of that network.

7.4 Conclusion

This chapter introduces the SSA-CCM hybrid causality test through the implemen-

tations and validations by two representative case studies. The performance of

subspace-based causality detection techniques introduced in previous chapters have

shown remarkable performances and achieved satisfying outcomes comparing to the

empirical approaches in a diverse range of applications. In order to further complete

this research, this chapter considers the effects of the existing trend of the climate

change data and the complex noise of the gene expression profiles as the focuses

to conduct more comprehensive causality analysis. By introducing the data prepro-

cessing procedure, CCM is significantly improved further and even the empirical

approaches are significantly more applicable. The complex data are decomposed

and/or filtered to achieve the causality analysis that is more accurate and less influ-

enced by insignificant components. By overcoming the data and model complexity,

possible existing nonlinearity and restrictions of parametric approaches, along with

its progressive features as a reduced form, data driven, straight forward approach,

there is no doubt that the SSA-CCM hybrid causality test can be incorporated with
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more broad range of subjects and bring valuable contributions in causality analysis

of complex systems.





Chapter 8

Conclusion and Future Research

This thesis aims at the theoretical advancements of causality analysis methods by

incorporating the advanced subspace-based techniques. It achieves a few novel de-

velopments of the quantitative methods in relation to causality analysis along with

critical evaluations by simulations as well as a diverse range of real data applica-

tions. It is also the initial research that comprehensively extend the subspace-based

techniques to different aspects of causality analysis, including similarity measure,

association measure and causality measure. Moreover, for the first time, a few ad-

vanced, relatively new subspace-based techniques are adopted independently or as

combination so to contribute on the theoretical literature of causality analysis as

well as the corresponding subspace-based techniques. This chapter concludes the

significant achievements of the whole research in section 8.1, followed by the crit-

ical summary of research challenges as well as the proposed directions of future

research in section 8.2.

8.1 Discussion

In general, this research has managed to achieve many aspects of contributions,

from the pioneer incorporation of the most advanced subspace-based techniques, to
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the theoretical and practical advancements of the novel causality analysis methods.

The main contributions are summarized and listed in details as follows.

Firstly, it is important to address the significant role of the subspace-based tech-

niques adopted in this research. As relatively new nonparametric techniques for

time series analysis, these subspace-based techniques, including SVD, SSA and C-

CM, have shown remarkable performances in various range of subjects as detailedly

reviewed in Chapter 2. As the first attempt to my knowledge, this research focuses

on these advanced techniques and explores their potentials on causality analysis by

bring their advantages of data decomposition, nonlinearity applicability, no restric-

tions on modelling to the construction of novel causality analysis methods. These

advanced features are the common inheritances that the advancements proposed by

this thesis share with the subspace-based techniques. Moreover, these advanced fea-

tures are the key reasons that the novel causality analysis methods can accomplish

the progresses to contribute to the existing literature.

The most distinct contribution that this thesis offers is that the systematical ad-

vancements of all adopted subspace-based techniques regarding the significant as-

pect of causality analysis. Not only does this research extend these novel techniques

to a multivariate system, it also addresses the crucial and challenging question of

causality. These techniques are all developed to respectively construct novel causal-

ity analysis methods that are proved robust, reliable, as well as superior at overcom-

ing the shortages of the empirical causality analysis approaches.

Another contribution that focuses on the causality aspect is that this research

considers the philosophy of causes by Aristotle (384-322 B.C.) as the fundamental

philosophy, for which, this thesis has incorporated the formal cause with the sim-

ilarity measure and association measure respectively, whilst the efficient cause is

extended as the theoretical basis of the causality measure. To my knowledge, this

is the first research that brings the different aspects of causality to the theoretical
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advancements of causality analysis methods, not to mention, through the subspace-

based techniques that no previous studies have utilized.

More specifically, regarding the specific advancements that this thesis brings,

the novel similarity measure in Chapter 3 overcomes one of the most crucial diffi-

culties in similarity measure that the different type of features are not comparable

by introducing eigenvalue distribution as the "formal" criterion of evaluating simi-

larity for the first time. The novel mutual association measure in Chapter 4 outper-

forms the empirical linear or nonlinear approaches by its sensitivity and improved

capability on nonlinear association or complex association. The SSA causality test

in Chapter 5 makes innovative modification on the linear model based causality

analysis approach through the incorporation of SSA and MSSA forecasting per-

formance. More importantly, this thesis emphasises its data driven approach ori-

entation and addresses the implementations with real data comparisons. Chapter

6 adopts the advanced CCM technique and comprehensively evaluates its perfor-

mance through a diverse range of applications for the first time. It is also acting

as a benchmark comparison for the novel SSA-CCM hybrid method introduced in

Chapter 7. Specifically, SSA contributes to the data preprocessing procedure due

to its full-featured data processing superiority before the causality analysis is con-

ducted by CCM. This study is the first time this hybrid approach is comprehensively

proposed, and the satisfying performances evident by the applications have shown

its significant potential and contribution as an advanced causality analysis technique

to the existing literature.

It is of note that another contribution that this research emphasises is that the

straight forward approach of problem solving and the orientation of reduced form,

data driven quantitative methods. Causality is a broad research subject, while an-

swering the question of causality can be extremely complicated. Instead of trying

to reconstruct the complex system by some restricted models, this research aims to

understand causality by proposing sufficient quantitative tools that only require two
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key variables. The data driven aspect also significantly contributes to the causality

analysis study as it allows researchers to dive into the data itself and even identify

the particular components that determine causality regardless of linear or nonlinear

features. The remarkable performance on nonlinearity and complex systems can-

not be achieved without its advantages on considering the data as a whole without

overlooking any information contained by the data.

The last contribution this thesis achieved is that the diverse range of applica-

tions involved in this research, including climate change study, gene regulatory role

detection, oil-tourism and oil-stock market studies. It is the first attempt of extend-

ing subspace-based causality analysis techniques to the applications in these areas

that also produces consistent, solid, satisfying outcomes comparing to empirical

approaches respectively. These real data applications also represent data from com-

plex systems that may also involve one or combination of long time span trend,

complex noise, etc. Therefore, the proposed methods can be easily applied to other

relative research areas or data that have the similar feature or experience difficulties

with empirical approaches.

8.2 Future Challenges and Directions of Research

Despite the research achievements that are summarized in the above section, one

cannot overlook the fact that this research is a first attempt in many aspects. This

thesis considers three subspace-based techniques and proposes the corresponding

advancements in terms of similarity, association and causality measures through

a few novel causality analysis methods. The wide scope that this research covers

along with the high volume of quantitative methods this thesis develops are making

a significant part of the contribution, whilst this also indicates that the depth of

each measure/technique/novel method can be exploited further, which will be the

main direction of future research. Following the discussion sections of each chapter
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respectively, here in this section, some identified challenges and proposals of future

research are summarized as follows.

The simulations for the similarity measure in Chapter 3 can be extended to in-

volve more types of series, even combinations of series with different levels of vari-

ations or complex noise. The short series have relatively less information to form

the criterion of similarity measure, which is the main reason that longer series show

much better performances. This is due to the feature of the method that reduced the

dimension of information in the first place. Further research can focus on the im-

provement of performance in short series. However, as the rapid advancements of

technology and information, large volume of data are more frequently encountered

nowadays for tremendous amount of subjects (more information can be found in the

published works of Hassani et al. (2016) and Hassani et al. (2017a)), this method

has shown potentials on the capability of working with long and complex time se-

ries. Future research can also investigate on the efficiency of obtaining population

information as benchmark so to significantly speed up the calculation.

Similar to the similarity measure, the evaluation by simulation for the mutual

association measure in Chapter 4 can be expanded to more nonlinear patterns or

combinations of complex patterns. In terms of the SSA causality test in Chapter

5, the minor difference outcomes are the most important concern. Future research

can work on the approach to identify a shared ground of identical window length or

number of eigenvalues between SSA and MSSA operations instead of the current

version that selects the corresponding optimal performances for every step. As a

relatively new subspace-based technique, CCM adopted in Chapter 6 has satisfying

sensitivity and capability in terms of casuality detection, the possible directions of

future research involve the theoretical advancement for panel data, improving the

current cross map skill measure index.

Finally, more applications can be explored and this applies for all proposed

methods. The similarity measure can be further validated by time series classifica-
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tion applications, even implementations like image/text/chemical/gene expression

recognition and classification. The mutual association measure can be easily ap-

plied to any groups of time series, even series with different lengths. Therefore, it

stands as an alternative correlation measure with no restrictions of linearity or non-

linearity, any applications that encounter the correlation analysis can be adopted

for further research. Regarding the SSA causality test, CCM test and SSA-CCM

hybrid causality test, which successfully overcome the data and model complexity,

nonlinearity and model restrictions, a much broader range of subjects can surely

be applied. Some selected topics for future research include rain fall and sea sur-

face temperature study, other pairs of genes in significant GRNs, air pollution and

meteorological/economical factors, neural signal interaction, etc.
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Appendix A

Forecasting Algorithms of

SSA/MSSA

Here in this Appendix, all detailed forecasting algorithms of SSA/MSSA are listed

as in Golyandina et al. (2001), Hassani and Mahmoudvand (2013) and Sanei and

Hassani (2015). Note that these are built above the fundamental knowledge of SSA

and MSSA that has been comprehensively introduced in Chapter 2 section 2.2.

A.1 SSA

A.1.1 Recurrent SSA Forecasting

1. Donate a time series YN = (y1, ...,yN) with lengh of N.

2. Set the window length L.

3. Consider the linear space Lr ⊂ RL of dimension r < L, where assume that

eL /∈ Lr, where eL = (0,0, . . . ,1) ∈ RL.

4. Obtain the trajectory matrix X = [X1, ...,XK] of YN .
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5. Extract the orthonormal basises Ui(i = 1, ...,r) from the SVD of X.

6. Compute matrix X̂ = [X̂1 : . . . : X̂K] = ∑r
i=1UiU

T
i X. The vector X̂i is the or-

thogonal projection of Xi onto the space Lr.

7. Construct the Hankelized matrix X̃ = H X̂ = [X̃1 : . . . : X̃K], where H is a

Hankel operator..

8. Set v2 = π2
1 + . . .+π2

r , where πi is the last component of the vector Ui (i =

1, . . . ,r). Since eL /∈ Lr, so that Lr is not a vertical space, v2 < 1.

9. Determine vector A = (α1, . . . ,αL−1) =
1

1−v2 ∑r
i=1 πiU

▽
i , where U▽ ∈ RL−1 is

the vector consisting of the first L−1 components of the vector U ∈ RL.

10. Obtain the time series YN+h = (y1, . . . ,yN+h) by

yi =





ỹi for i = 1, . . . ,N

∑L−1
j=1 α jyi− j for i = N +1, . . . ,N +h

(A.1)

where ỹi (i = 1, . . . ,N) are the reconstructed series; yN+1, . . . ,yN+h are the

h-step ahead recurrent forecasts.

A.1.2 Vector SSA Forecasting

Consider the following matrix:

Π = V▽(V▽)T +(1− v2)AAT , (A.2)

where V▽ = [U▽
1 , ...,U▽

r ]. Consider the linear operator θ (v) : Lr 7→RL, where

θ (v)U =


 ΠU▽

ATU▽


 . (A.3)



A.2 MSSA 181

Therefore, vector Zi is obtained following:

Zi =





X̃i for i = 1, . . . ,K

θ (v)Zi−1 for i = K +1, . . . ,K+h+L−1
(A.4)

where X̃i indicate the reconstructed columns of the trajectory matrix after grouping

and filtering the noise components. Then, through diagonal averaging on the con-

structed matrix Z = [Z1, ...,ZK+h+L−1], a new series y1, ...,yN+h+L−1 is obtained,

where yN+1, ...,yN+h indicate the h-step ahead vector predictions.

A.2 MSSA

A.2.1 Vertical MSSA

Recurrent VMSSA Forecasting

Let us have M series Y
(i)
Ni

= (y
(i)
1 , . . . ,y

(i)
Ni
) and corresponding window length Li, 1 <

Li < Ni/2, i = 1, . . . ,M. Thus, the h-step ahead VMSSA-R forecasting algorithm is

as follows (Hassani and Mahmoudvand, 2013; Sanei and Hassani, 2015).

1. Construct the trajectory matrix X(i) = [X
(i)
1 , . . . ,X

(i)
K ] = (xmn)

Li,K
m,n=1 for each

single series Y
(i)
Ni

(i = 1, . . . ,M) respectively, where K is a fixed value for all

series.

2. Construct the block trajectory matrix:

XV =




X(1)

...

X(M)


 .
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3. Let UV j
= (U

(1)
j , . . . ,U

(M)
j )T be the jth eigenvector of XV XT

V , where U
(i)
j with

length Li corresponds to the series Y
(i)
Ni

(i = 1, . . . ,M).

4. Consider X̂V = [X̂1 : . . . : X̂K] = ∑r
i=1UVi

UT
Vi

XV as the reconstructed matrix

achieved from r eigentriples:

X̂V =




X̂(1)

...

X̂(M)


 .

5. Consider matrix X̃(i)=H X̂(i) (i= 1, . . . ,M) as the result of the Hankelization

procedure of the matrix X̂(i) obtained from the previous step, where H is a

Hankel operator.

6. Donate U
(i)▽
j the vector of the first Li−1 components of the vector U

(i)
j and

π(i)
j is the last component of the vector U

(i)
j (i = 1, . . . ,M).

7. Select the number of r eigentriples for the reconstruction.

8. Define matrix U▽M =
(
U▽M

1 , . . . ,U▽M
r

)
, where

U▽M
j =




U
(1)▽
j

...

U
(M)▽
j


 .

9. Donate matrix W as follows:

W =




π(1)
1 π(1)

2 · · · π(1)
r

π(2)
1 π(2)

2 · · · π(2)
r

...
... · · · ...

π(M)
1 π(M)

2 · · · π(M)
r



.
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10. If the matrix
(
IM×M−WWT

)−1
exists and r ≤ Lsum −M, then the h-step

ahead VMSSA forecasts are achieved by:





[
ỹ
(1)
j1
, . . . , ỹ

(M)
jM

]
, ji = 1, . . . ,Ni

(
IM×M−WWT

)−1
WU▽MT

Zh , ji = Ni +1, . . . ,Ni +h,

where, Zh =
[
Z
(1)
h , . . . ,Z

(M)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−Li+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i= 1, . . . ,M).

Vector VMSSA Forecasting

On top of the recurrent VMSSA algorithms, consider the matrix:

Π = U▽U
▽T

+R
(
IM×M−WWT

)
R

T , (A.5)

where, R = U▽WT
(
IM×M−WWT

)−1
. The vector VMSSA forecasts algorithms

are listed below by following Hassani and Mahmoudvand (2013).

1. Define vectors Zi as follows:

Zi =





X̃i for i = 1, . . . ,k

P
(ν)Zi−1 for i = k+1, . . . ,k+h+Lmax−1,

(A.6)

where, Lmax = max{L1, . . . ,LM}.

2. Construct the matrix Z = [Z1 : ... : ZK+h+Lmax−1]. The corresponding Hanke-

lization is conducted to obtain ŷ
(i)
1 , . . . , ŷ

(i)
N+h+Lmax

(i = 1, . . . ,M).

3. The numbers ŷ
(i)
Ni+1, . . . , ŷ

(i)
Ni+h (i = 1, . . . ,M) represent the h step ahead vector

VMSSA predictions.
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A.2.2 Horizontal MSSA

Recurrent HMSSA Forecasting

1. Construct the trajectory matrix X(i) = [X
(i)
1 , . . . ,X

(i)
K ] = (xmn)

L,Ki

m,n=1 for each

series Y
(i)
Ni

(i = 1, . . . ,M) respectively with a fixed value of L.

2. Obtain the block trajectory matrix:

XH =
[

X(1) : X(2) : · · · : X(M)
]
.

3. Donate vector UH j
= (u1 j

, . . . ,uL j
)T , with length L, be the jth eigenvector of

XHXT
H .

4. Determine X̂H = ∑r
i=1UHi

UT
Hi

XH as the reconstructed matrix obtained using

r eigentriples that:

XH =
[

X̂(1) : X̂(2) : · · · : X̂(M)
]
.

5. Donate matrix X̃(i) = H X̂(i) (i = 1, . . . ,M) as the Hankelization product of

X̂(i) obtained from the previous step.

6. Let U▽
H j

denotes the vector of the first L− 1 coordinates of the eigenvec-

tors UH j
, and πH j

indicates the last coordinate of the eigenvectors UH j
( j =

1, . . . ,r).

7. Define υ2 =
r

∑
j=1

π2
H j

.

8. Construct the linear coefficients vector R by:

R =
1

1−υ2

r

∑
j=1

πH jU
▽
H j. (A.7)
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9. If υ2 < 1, then the h-step ahead recurrent HMSSA forecasts exist and can be

calculated by:

[
ŷ
(1)
j1
, . . . , ŷ

(M)
jM

]T
=





[
ỹ
(1)
j1
, . . . , ỹ

(M)
jM

]
, ji = 1, . . . ,Ni,

RT Zh, ji = Ni +1, . . . ,Ni +h,

(A.8)

where Zh =
[
Z
(1)
h , . . . ,Z

(M)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i= 1, . . . ,M).

Vector HMSSA Forecasting

Following the items (1)-(7) of recurrent HMSSA forecasting algorithms, donate the

following matrix

Π = U▽U▽T +(1− v2)RRT , (A.9)

where U▽ = [U▽
1 , ...,U▽

r ]. Thus, consider the linear operator P(v) : Lr 7→ R
L that

P
(v)Y =


 ΠY△

RTY△


 , Y ∈ Lr, (A.10)

and Y△ is vector of last L−1 elements of Y .

Define vector Z
(i)
j (i = 1, . . . ,M) as follows:

Z
(i)
j =





X̃
(i)
j for j = 1, . . . ,ki

P(v)Z
(i)
j−1 for j = ki +1, . . . ,ki +h+L−1

(A.11)

where X̃
(i)
j indicate the reconstructed columns of trajectory matrix of the ith se-

ries after grouping and leaving noise components. Through diagonal averaging of

the constructed matrix Z(i) = [Z
(i)
1 , ...,Z

(i)
ki+h+L−1], a new series ŷ

(i)
1 , ..., ŷ

(i)
Ni+h+L−1 is
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achieved, where ŷ
(i)
Ni+1, ..., ŷ

(i)
Ni+h indicate the h-step ahead of vector HMSSA predic-

tions.



Appendix B

Comparison of Eigenvalue

Distributions by Horizontal/Vertical

Techniques

Following the newly proposed similarity measure in Chapter 3, which is firstly built

on a fundamental multivariate system with the benchmark series as the dominan-

t role and uses corresponding eigenvalue distribution information as the similarity

criterion. Section 3.2.1 illustrates the detailed process of extracting the eigenvalue

distribution information from a two series system, while this Appendix is provided

to clarify the comparison between horizontal form and vertical form embedding and

decomposition technique. Similarly, both with and without the premise of multivari-

ate system scenarios are considered and compared respectively as follows.

B.1 With Premise of Multivariate System

In order to evaluate the differences between horizontal and vertical forms, the com-

parisons are set between the Hankel matrix made by a random variable X with itself

and the matrix formed by X and a very similar random variable Y . Consequently,
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the expected results should be that these two Hankel matrices are sharing the similar

distribution of eigenvalues.

The comparisons of results are listed as follows by different types of simulated

variables respectively. Note that the blue line represents the singular values from

the matrix formed by a random variable X with itself, and the red line refers to the

singular values of the Hankel matrix structured by X and a very similar random

variable Y . Identically, as stated in section 3.2.2, the default window length is set as

about 1/10 of the time series length, for which the default length for all tested series

is 1000 and default window length is 100, unless it has been specified and noted.

According to the introduction above, the expecting result is that showing similar

distributions, the singular values of a Hankel matrix formed by random white noise

series X and itself show significantly similar distribution with the singular values

of Hankel matrix formed by two random white noise series X and Y when the ac-

cording matrices are structured in horizontal form. In terms of the vertically formed

matrices, the distributions of two groups of singular values vary greatly especially

for the second half of eigenvalues.
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Fig. B.1 Eigenvalues of Two White Noise by Horizontal (left) and Vertical (right)
SVD

For random uniform distributed series, the empirical distribution of eigenvalues

differ by the specified range of values. For the [0,1] uniform distribution group by
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vertical decomposition, the differences start to be significant only for the second

half of eigenvalues, whilst in terms of the [-1,1] uniform distribution group, signif-

icant differences between singular values can be found since the first component.

However, in general, the horizontally formed matrices still provide much similar

distributions of singular values than the vertically formed group.
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Vertical (right) SVD
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Fig. B.3 Eigenvalues of Two Uniform Distributions [-1,1] by Horizontal (left) and
Vertical (right) SVD

Considering the natural character of eigenvalue distribution of sine waves that

only contain two significant eigenvalues (reflecting information of trend and cycle

respectively), the figures above are partially enlarged at the comparable parts. Also,
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since the differences between distributions of eigenvalues for sine waves can only be

reflected when the window length is relatively small, the second group of figures are

singular values by specifying window length L as 2, in which the minimum window

length is considered and the most significant difference of eigenvalues is shown

between horizontal and vertical decomposition. There are only minor differences

between the horizontally formed and the vertically formed groups when the window

length L is set 100 as default. However, the distributions of eigenvalues vary greatly

when the window length is correspondingly small. Therefore, again in short, the

horizontally formed matrices can provide the results as expected.
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The differences between the horizontally formed and the vertically formed group-

s of exponential distribution series are relatively significant just as previous scenar-

ios. The comparison shows that horizontally formed matrices can better provide the

similar distribution of eigenvalues as simultaneously expected.
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Fig. B.6 Eigenvalues of Two Exponential Distribution by Horizontal (left) and Ver-
tical (right) SVD

In summary, according to the results of different types of simulated series and

scenarios considered, horizontal form of matrices can always present the results as

expected in the first place, therefor horizontal SVD will be the suitable procedure

to produce comparable singular values before examining the distribution of eigen-

values for the proposed novel similarity measure.

B.2 Without Premise of Multivariate System

The previous statement of this new proposed similarity measure is built on a fun-

damental multivariate system of the benchmark series. Instead, here only the X

and Y are considered separately. Consistent with the previous statements, the same

group of different types of series are generated for evaluation. Regarding all simu-

lated series for each type of distribution, it is expected to have similar eigenvalues

distributions between X and Y formed matrices. Similarly, the default number of
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observation for simulated series is 1000 and default window length for embedding

process is 100.

It is worth to be noted that this time two series are considered without premise

of a multivariate system, instead, two system of each series with itself are formed

separately, the corresponding horizontal and vertical form matrices for one series

are symmetric, hence the first 100 eigenvalues are identical while the second half

of eigenvalues for vertical case are nearly identical to 0. Eigenvalues for several

different types of generated series are shown in the following figures, which confirm

our expected results.

As the eigenvalues by horizontal form matrix are identical to the first half of

eigenvalues of vertical form matrix, the 100 eigenvalues will be employed for mea-

suring similarity by comparing its distribution with the eigenvalues from the other

series accordingly.
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Appendix C

Development of Causality Analysis

by Linear Models

Wold (1954) stated that the concept of causality is indispensable and fundamental to

all science. The explorations and investigations of the "why" question have started

and consistently insisted since the very beginning prior to Aristotle. The approaches

of causality analysis vary greatly when the causes are considered from different as-

pects. In this Appendix, as an extension of the review of Granger casuality approach

in Chapter 5, section 5.2, it is aimed to providing a brief review of the developments

of Granger causality approach alongside with corresponding statistical techniques

as follows.

C.1 Simon’s Approach

Simon (1954) proposed the "genuine" correlation as a causal interpretation, in which

he stated the necessity of concluding additional variables and equations to create a

wider system. Therefore, in order to answer the question whether including a third

variable will affect the relationship between two variables, a three variable system
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was introduced by Simon (1954) as follows:

x+a12y+a13z = u1

a21x+ y+a23z = u2

a31x+a32y+ z = u3

(C.1)

where u refers to the error term, therefor A = ‖ai j‖ indicates the coefficient matrix

of the system. Consequently, if some of the elements of the coefficient matrix are

zero, equivalently, not all the variables directly influence all the others. By making

assumptions of time precedence and non-correlation of the error terms, the param-

eters estimated by sufficient assumptions reflect whether the original variable are

causally related, therefore, determine the "genuine" correlation and interpret the

causal relationship. More specifically, one example from Simon (1954) stated that

if one assumes a31 = a32 = a21, the significant results by examining the system e-

quations indicate that y is causally dependent on z and x is causally dependent on

y and z. Therefore, for a12 6= 0 and the assumption of x and y were correlated, one

can then lead to the conclusion of genuine correlation. However, it has to be noted

that the "wider system" by Simon (1954) is assumed on the basis of linearity and

variables included are measured from their respective means.

C.2 Wold’s Approach

Wold (1954) proposed the "causal chain" to specify a recursive structure for a sys-

tem of simultaneous equation. It is briefly introduced below by following the exam-

ple from Wold (1954): Consider the analysis is based on the relationship between

demand (d) and price (p) dt = D(pt), where t is the trend or time index. Addi-

tionally, it is already assumed that the relationship between supply (s) and price is

realistic and far complex to be specified. Therefor the estimates can be built on
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previous development accordingly as follows:

st = S(dt−1,st−1, pt−1,dt−2, · · ·)+ut

pt = P(dt−1,st−1, pt−1, · · ·)+ vt

(C.2)

Wold (1954) stated that each of the relations above allows a causal interpretation

and it will provide the same precise results as the original model of:

dt = D(pt)

st = S(pt−1)

pt = pt−1 + γ(dt−1− st−1)

(C.3)

Malinvaud (1980) proposed that there is a natural analogue in a dynamic system to

Wold’s "causal chain" form for a static econometric model. Sims (1972) stated that

this analogue turns out to be exactly a model in which causation is unidirectional

according to the criterion developed later by Granger (1969); Wold’s form is in gen-

eral not testable in a static context as any multivariate set of data with a specified list

of endogenous variables can be fit by a recursive model. According to Sims (1972),

the dynamic analogue is easily testable: If and only if causality runs one way from

current and past values of some list of exogenous variables to a given endogenous

variable, then in a regression of the endogenous variable on past, current, and fu-

ture values of the exogenous variables, the future value of the exogenous variables

should have zero coefficients.

C.3 Granger’s Approach

Granger (1969) focused on the incremental predictability for answering the question

of definition of causality and he proposed the statistical approach, Granger causality

test, that is the most general and significant method for testing the causality rela-
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tionship between two variables in the linear regression model. Granger suggested

”causality” is tastable using of simple regression or correlation techniques in two-

variable models. In addition, a simple Granger Causality, the instantaneous Granger

Causality and a feedback model are also discussed, where current as well as past

values of x are used to predict yt . If y is related to current or lagged x, but not future

x, x is exogenous relative to y (Schwert, 1979). Details of Granger’s approach to

test causality are listed as follows, which primarily follows Granger (1969):

Assume there are two stationary stochastic time series X and Y , let It be the set

of all the information in the universe accumulated since time t − 1, so the It −Yt

will denote all the information apart from series Yt and let σ 2 be the corresponding

forecast error. Xt represents the set of past values {Xt− j, j = 1,2, ...,∞} and Xt

represents the set of past and present values {Xt− j, j = 0,1,2, ...,∞}. Thus σ 2(X |It)
will be the prediction of X , using all the information from the past, and σ 2(X |It−Yt)

will be the prediction of X , using all the information from the past apart from the

series Y .

• Simple Granger Causality

If the forecast error of X based on all the information I is smaller than the

forecast error of X based on the past information apart from series Y , which

is denoted as σ 2(X |It) < σ 2(X |It−Yt), then Y is causing X . Granger (1969)

stated as ”if we are better able to predict X using all available information

than if the information apart from Y had been used, we say that Y is causing

X”.

• Feedback Model

If the Simple Granger Causality from Y to X is donated as Y ⇒ X , then the

feedback indicates the situation that when X is causing Y and also Y is causing

X , which can be represented as X ⇔ Y , also can be denoted as following:

If σ 2(X |I) = σ 2(X |I−Y ) and σ 2(Y |I) = σ 2(Y |I−X), then we say X ⇔ Y .
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• Instantaneous Granger Causality

The instantaneous causality is indicated if better forecast of current value of

X can be conducted when the present value of Y is considered together than

only considering the set of all the past information. It can be donated as: if

σ 2(X |I,Y ), the instantaneous causality of Yt ⇒ Xt is occurring.

Another significant definition proposed is the ”causality lag” by Granger (1969).

In which, the least value of k such that σ 2(X |I−Y (k)) < σ 2(X |I−Y (k + 1)) is

defined as (integer) causality lag m, which also indicates that the values Yt− j, j =

0,1, ...,m− 1 can provide no additional help in improving the forecast of Xt . The

regression formulation of Granger causality states that a variable X is the cause of

another variable Y if the past values of X are helpful in predicting the future value

of Y, two regressions are considered as follows:

Y(t) =
L

∑
l=1

πlY(t-l)+ ε1,

Y(t) =
L

∑
l=1

πlY(t-l)+
L

∑
l=1

γlX(t-l)+ ε2,

(C.4)

where L is the maximal time lag, π and γ are vectors of coefficients, ε is the pre-

diction error term (Liu and Bahadori, 2012). If the second is a significantly better

model than the first one, one determines that time series X Granger causes time

series Y (Liu and Bahadori, 2012).

C.4 Sims Test

Sims (1972, 1980) provided the vector auto-regressive (VAR) processes to answer

the question that whether some specific time series are generated independently

of the other time series considered. Assume two variables X and Y , Sims (1972)
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proposed the estimate model as:

Yt = a+b−kXt−k + · · ·+b−1Xt−1+b0Xt +b1Xt+1 + · · ·+bmXt+m +ut (C.5)

where a and b are corresponding parameters; k and m are positive integers; t refers

to time index; and ut is the disturbance term.

Therefore, the null hypothesis is H0 : b1 = · · · = bm = 0. Next, calculate the

sum of square error of the model by ordinary least squares (OLS) under the null

hypothesis and note as SSEh; whilst again compute the sum of square error of the

model without the null hypothesis condition by OLS and note it as SSEa. The F

statistic then can be calculated by:

Fsim = (
SSEh−SSEa

k+1
)/(

SSEa

n− k−m−2
) (C.6)

where n is the number of observations. In accordance of the corresponding F statis-

tic, the null hypothesis then can be determined to be rejected or not accordingly.

Consequently, the conclusion can be summarized whether X and Y have causal re-

lationship or not.

According to Sims (1972), the proposed approach is equivalent to the approach

of Granger. However, Chamberlain (1982) extends the Granger and Sims approach-

es by using conditional independence instead of linear predictors, it indicated these

two approaches varies and non-causality is stronger than strict exogeneity. One

drawback of this test is that there might be a third variable Z causing Y , but Z might

be contemporaneously correlated with X . In such circumstances the test would still

show X causing Y leading to a false conclusion.

C.5 Haugh-Pierce Test
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Haugh (1976) firstly stated that causal relations between two time series can also

be characterised by the residuals of their univariate auto-regressive moving average

models. Then in (Pierce and Haugh, 1977), the Haugh-Pierce test was made pop-

ular, by which employs the estimated residuals of the univariate models for X and

Y . Briefly, this proposed two step procedure of causality test is introduced mainly

following (Kirchgässner et al., 2012; Schwert, 1979).

First, the evaluated variables are transformed to x and y by using logarithm or

differentiating to have constant unconditional mean and variance over the sample

period. Followed by the estimations of two univariate autoregressive moving aver-

age (ARMA) models for the transformed variables below (Nelson, 1973):

Φy(L)yt = a+θy(L)ayt

Φx(L)xt = b+θx(L)bxt

(C.7)

where Φ(L) are finite autoregressive polynomials in the lag operator for transformed

variables x and y respectively; whilst θ(L) refers to finite moving average polyno-

mials scenario. Then, the second step is examining cross-correlations between the

residuals of the univariate ARMA models. Based on Kirchgässner et al. (2012), as-

sume the corresponding cross-correlations as ρab(t), then the following statistics is

computed:

S = T ·
t2

∑
t=t1

ρ̂ab(t) (C.8)

Consequently, if the null hypothesis H0 : ρab(t0 = 0 is reject, for t1 = 1∧ t2≥ 1, the

causal relation from x to y can be examined; reversely, for t1 ≤ −1∧ t2 = −1, the

causal relationship from y to x can be tested.

Schwert (1979) mentioned that the power of this procedure, which use corre-

lations, is smaller than the power of the Granger approach which uses regression-

s. What is more, spurious independence might occur (Pierce, 1977), sometimes

caused by omitted variables (Lütkepohl, 1982). Feige and Pearce (1979) stated that
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this test provided deep insight of information, but it might only be a first step to

analyse causal relations between time series; on the other hand, information on the

relations between two time series, which is contained in cross-correlations, can be

useful even if no formal test is applied.

C.6 Hsiao Test

Hsiao (1979) developed another procedure to estimate bivariate models and inter-

pret causal relationships. It is similar to the Granger approach and is also built on au-

toregressive representation. Specifically, Hsiao (1979) suggested that the lag length-

s should be determined with an information criterion – Akaike Criterion (Akaike,

1974) or Schwarz Criterion (Schwarz et al., 1978).

Assume the two evaluated variables in the bivariate model are X and Y , the

procedure of Hsiao test of X "Hsiao causes" Y starts from determining the optimal

lag ly of the univariate autoregressive (AR) of Y . By fixing ly, the optimal lag lx of

X in regression of explaining Y is defined. Next step is fixing lx and re-evaluating

the optimal lag of dependent variable Y , note as lȳ. Therefore, by comparing the

information criterion in the processes of defining lȳ and ly, it can be concluded that

X has significant impact on Y when the last information criterion is larger than the

value in the beginning. Reversely, the test of causal impact from Y to X can be

reproduced by exchanging the positions of X and Y .

Kirchgässner et al. (2012) stated that the Hsiao test only can capture the simple

causal relations between the two variables. Whilst, the correlation between the

residuals can reflect the possible instantaneous relation. It also has to be noticed

that the optimal lag length of the dependent variable and the conditioning variables

must be determined before the optimal lag length of the other independent variable

is fixed.



Appendix D

Detailed Results of Frequency

Domain GC Test and CCM Causality

Test

D.1 Frequency Domain GC Test Results of Oil Prices

and Tourist Arrivals

Note that having greater test statistics (blue) than the corresponding 5% critical

values (red) indicates possible causal links within corresponding frequency range.

Also, the optimal lag-structures are maintained for all tests.
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Fig. D.1 Frequency Causality Results for Austria Tourists Arrivals and Oil Prices.
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Fig. D.2 Frequency Causality Results for Germany Tourists Arrivals and Oil Prices.
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Fig. D.3 Frequency Causality Results for Greece Tourists Arrivals and Oil Prices.
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Fig. D.4 Frequency Causality Results for Italy Tourists Arrivals and Oil Prices.
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Fig. D.5 Frequency Causality Results for Netherland Tourists Arrivals and Oil
Prices.
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Fig. D.6 Frequency Causality Results for Portugal Tourists Arrivals and Oil Prices.
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Fig. D.7 Frequency Causality Results for Spain Tourists Arrivals and Oil Prices.
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Fig. D.8 Frequency Causality Results for Sweden Tourists Arrivals and Oil Prices.
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Fig. D.9 Frequency Causality Results for UK Tourists Arrivals and Oil Prices.
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Fig. D.10 Frequency Causality Results for US Tourists Arrivals and Oil Prices.

D.2 CCM Test Results of Oil Prices and Tourist Ar-

rivals

The cross map skill index reflects the reconstruction ability of the fact factor to

the cause factor for both directions respectively. Here more specifically, the blue

line above red line means significant cross map skill of tourist arrivals on oil price,

which indicates causality from oil price to tourist arrivals.
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Fig. D.11 CCM Causality Results for Austria Tourists Arrivals and Oil Prices.
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Fig. D.12 CCM Causality Results for Germany Tourists Arrivals and Oil Prices.

60 80 100 120 140 160

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

oil price xmap tourists arrivals
tourist arrivals xmap oil price

(a) BRT

60 80 100 120 140 160

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

oil price xmap tourists arrivals
tourist arrivals xmap oil price

(b) WTI

Fig. D.13 CCM Causality Results for Greece Tourists Arrivals and Oil Prices.
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Fig. D.14 CCM Causality Results for Italy Tourists Arrivals and Oil Prices.
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Fig. D.15 CCM Causality Results for Netherland Tourists Arrivals and Oil Prices.
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Fig. D.16 CCM Causality Results for Portugal Tourists Arrivals and Oil Prices.
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Fig. D.17 CCM Causality Results for Spain Tourists Arrivals and Oil Prices.
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Fig. D.18 CCM Causality Results for Sweden Tourists Arrivals and Oil Prices.
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Fig. D.19 CCM Causality Results for UK Tourists Arrivals and Oil Prices.
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Fig. D.20 CCM Causality Results for US Tourists Arrivals and Oil Prices.

D.3 Frequency Domain GC Test Results of Gene Pro-

files

It is of note that having greater test statistics (blue) than the corresponding 5%

critical values (red) indicates possible causal links within corresponding frequen-

cy range. Also, the optimal lag-structures are maintained for all tests.
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Fig. D.21 Frequency Domain GC Test Results for Bcd and Cad (Noisy Series).
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Fig. D.22 Frequency Domain GC Test Results for Bcd and Kr (Noisy Series).
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Fig. D.23 Frequency Domain GC Test Results for Cad and Kr (Noisy Series).

D.4 CCM Test Results of Gene Profiles

The cross map skill index reflects the reconstruction ability of the fact factor to the

cause factor for both directions respectively. For instance, if the blue line represents

the cross map skill index of A on B and the blue line lies above red line, it means

significant cross map skill of A on B, which indicates causality from B to A.
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Fig. D.24 CCM Test Results for Bcd and Cad (Noisy Series).
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Fig. D.25 CCM Test Results for Bcd and Kr (Noisy Series).
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Fig. D.26 CCM Test Results for Cad and Kr (Noisy Series).
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D.5 Frequency Domain GC Test Results of Filtered

Gene Profiles

It is of note that having greater test statistics (blue) than the corresponding 5%

critical values (red) indicates possible causal links within corresponding frequen-

cy range. Also, the optimal lag-structures are maintained for all tests.
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Fig. D.27 Frequency Domain GC Test Results for Bcd and Cad (Filtered Series).
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Fig. D.28 Frequency Domain GC Test Results for Bcd and Kr (Filtered Series).
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Fig. D.29 Frequency Domain GC Test Results for Cad and Kr (Filtered Series).



D.6 CCM Test Results of Filtered Gene Profiles 219

D.6 CCM Test Results of Filtered Gene Profiles

The cross map skill index reflects the reconstruction ability of the fact factor to the

cause factor for both directions respectively. For instance, if the blue line represents

the cross map skill index of A on B and the blue line lies above red line, it means

significant cross map skill of A on B, which indicates causality from B to A.



220 Detailed Results of Frequency Domain GC Test and CCM Causality Test

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(a) Filtered-t10-ccm

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(b) Filtered-t11-ccm

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(c) Filtered-t12-ccm

200 400 600 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(d) Filtered-t13-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(e) Filtered-t14(1)-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(f) Filtered-t14(2)-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p

 S
k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(g) Filtered-t14(3)-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(h) Filtered-t14(4)-ccm

500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(i) Filtered-t14(5)-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(j) Filtered-t14(6)-ccm

500 1000 1500 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(k) Filtered-t14(7)-ccm

400 600 800 1000 1200 1400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Library Size

C
ro

s
s
 M

a
p
 S

k
ill

 (
rh

o
)

bcd xmap cad
cad xmap bcd

(l) Filtered-t14(8)-ccm

Fig. D.30 CCM Test Results for Bcd and Cad (Filtered Series).
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Fig. D.31 CCM Test Results for Bcd and Kr (Filtered Series).
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Fig. D.32 CCM Test Results for Cad and Kr (Filtered Series).
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