
 

 

 

 

Security considerations around the usage of 

client-side storage APIs 

 

 

 

 

Stefano Belloro (BBC) 

Alexios Mylonas (Bournemouth University) 

 

 

Technical Report No. BUCSR-2018-01 

 

 

 

 

 

 

 

 

January 12 2018 

 

  



ABSTRACT 
 

Web Storage, Indexed Database API and Web SQL Database are primitives that allow 
web browsers to store information in the client in a much more advanced way compared to 

other techniques such as HTTP Cookies. They were originally introduced with the goal of 

enhancing the capabilities of websites, however, they are often exploited as a way of tracking 

users across multiple sessions and websites.  

This work is divided in two parts. First, it quantifies the usage of these three primitives in 

the context of user tracking. This is done by performing a large-scale analysis on the usage of 
these techniques in the wild. The results highlight that code snippets belonging to those 

primitives can be found in tracking scripts at a surprising high rate, suggesting that user 

tracking is a major use case of these technologies. 

 The second part reviews of the effectiveness of the removal of client-side storage data in 

modern browsers. A web application, built for specifically for this study, is used to highlight 

that it is often extremely hard, if not impossible, for users to remove personal data stored 
using the three primitives considered. This finding has significant implications, because those 

techniques are often uses as vector for cookie resurrection. 
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1. INTRODUCTION 
 

The first webpage ever created was made up purely of hypertext. Nothing complex: no 
colours, no pictures, and no animations. Just simple text and, here and there, occasional 

references to other pages that the user can browse at will. One could argue that it was 

hypertext in its simplest form. Fast-forward to our time and the experience is very different. 

The web now looks nicer but, worryingly, it often seems to know a lot about its users. This is 
because, over the years, a few techniques to store information on the client have been 

developed. 

This work will focus on three client-side persistence storage primitives: Web Storage, 

Indexed Database API and WebSQL Database and their usage in the context of user tracking. 

Chapter 2 provides an historical and technical contextualisation of those three client-
side storage mechanisms. This section will mainly focus on the characteristics of the 

primitives considered, studying the documents provided by the two principal bodies 

responsible for the definition of the specifications: the World Wide Web Consortium (W3C) 
and the Web Hypertext Application Technology Working Group (WHATWG). A brief 

overview of other similar techniques will also be given, starting from the very first 

mechanism for client-side data storage, HTTP cookies. The chapter will also give an 

historical overview of the circumstances that led to the specification of those primitives. 

Chapter 3 lists a selection of relevant studies from the literature. They focus on three 

main themes: confidentially and integrity of the data, user tracking and preventive 

measures against it. While Chapter 2 describes the features of the primitives and mechanisms 

for client-side data storage, this chapter focus on studies and analysis on how those 

techniques have been used in the wild. 

Chapter 4 presents an audit on the usage of Web Storage, Indexed Database API and 

WebSQL Database in the wild and presents a way of quantifying the adoption of these 

storage mechanisms by user-tracking agents. To the best of the writer’s knowledge, this is the 
first large-scale study that considers the usage of those three storage systems and quantifies 

the use case of user tracking. This section will show that adoption of these techniques by 

trackers is much higher that what previous studies have found and that tracking agents are 
indeed a major employer of those techniques. 

Chapter 5 presents an analysis on the control that users have over data stored locally on 

their devices. In particular, this section will show that the task of removing personal data can 
be tricky, if not impossible, on some browsers. Moreover, it will show a few idiosyncrasies in 

the way certain browsers implement private browsing mode. These findings are important 

because they highlight that users of mobile devices are at higher risks of being tracked against 
their will. 

Chapter 6 recapitulates the key findings of this work, especially in the context of similar 

works mentioned in Chapter 3. It also provides a few suggestions for further work. 

  



2. BACKGROUND 
 

HTTP is a stateless protocol (Fielding et al, 1999). This means that once a client-server 
transaction ends, the server will not retain session information or status about any of the 

clients involved. Nonetheless, the web is nowadays a very customised ecosystem. This is the 

result of an evolution that spanned through several years. The following paragraphs will 

discuss a series of techniques for persistent data storage in the client. 

2.1. COOKIES 

HTTP cookies are the first technique that was developed to allow browsers to link 

together a series of stateless HTTP requests with stateful information (Barth, 2011a). An 

HTTP cookie is a short piece of data that a website sends to a visiting client, either via HTTP 
response headers or by using client-side scripting. The client is then expected to save this 

information and send it back to the server when making subsequent HTTP requests. HTTP 

cookies are a technology that was proposed, and later patented, by Montulli (1995) while he 
was working at Netscape Communications. He borrowed the term ‘cookie’, and part of the 

logic behind them, from Unix’s ‘magic cookies’ (McIlroy and Kernighan, 1979). The 

information stored in a HTTP cookie is in the form of a string, which can be used by the 

server to identify a certain session id, certain user preferences, or a certain user. 

While the idea behind HTTP cookies was not entirely novel, the quick adoption of this 

technology by browser vendors revolutionised the web. It allowed websites to easily support 
features that entailed advanced customisation, such as virtual shopping carts and token-based 

user authentication. Each cookie is associated to an origin, which is a combination of the 

hostname, the port number and the protocol used by the web application (Barth, 2011b). This 

is based on a concept known as ‘same-origin policy’, which has been the cornerstone of 
browser security since the early days of the web (Shepherd, 2017). The same-origin policy 

regulates and restricts how a document or a script from one origin can interact with a resource 

loaded from another origin.  

However, since a webpage can contain resources from multiple origins, HTTP cookies 

are often used to identify and track users, not only across different browsing sessions, but also 

across different websites. Over the years, both Internet users and legislators have become 
more aware of the privacy implications of third-party tracking (Kristol, 2001), also thanks to 

the interested generated by the popular press (Etzioni, 1999). Modern web browsers allow 

users to remove HTTP cookies or to disable them completely. Moreover, in some 
jurisdictions, web sites are requested to proactively ask for consent in order to save and 

process personal data. 

It should to be noted that, despite being so impactful and ubiquitous, this technology has 
got its limitations. For example, one of the limits of storing data through HTTP cookies is in 

the amount of information that can actually be stored. Web browsers tend to limit the size of 

cookies to a few thousands characters. Contrary to what a few papers in the literature seem to 
imply, this limitation is not imposed by the specification written by Kristol and Montulli 

(2009). In fact, that document recommends that user agents should not impose fixed limits to 

the size and amounts of cookie they support. 

Web browsers, however, not only limit the length of HTTP cookies, but they also apply 

constraints to their quantity, allowing only a few dozens of them per origin. Several studies 

can be found online providing an overall view of the limits that different vendors set to HTTP 
cookies (Manico, 2009; Roberts, 2013). 



Limiting the size and the amount of HTTP cookies that a web page can set is a reasonable 

implementation decision, considering the performance implications that come with their 
usage. Indeed, cookies are not an ideal way of transferring large amounts of data, mainly 

because they are transmitted through HTTP requests. 

Larger cookies, if they were at all possible, would bloat the size of the HTTP requests, 
resulting in slower client-server transactions. This would eventually mean slower webpages. 

Moreover, they would also be problematic for web servers. Constantin (2016) demonstrated 

that most web servers would not be able to cope with very large HTTP cookies. He estimated 
that the capacity of the average web server is limited to 3 cookies of size 4096 bytes. 

As the web evolved, the desire for different and more capacious ways for storing 

structured data on the client started to emerge. Over the years, several client-based storage 
technologies appeared. Most of them, such as Local Shared object of Adobe Flash (Adobe 

Systems, 2012), Oracle Java (Oracle 2017), Microsoft Silverlight (Microsoft, 2017) and 

Google Gears (Google Code, 2008), were made available through browser plug-ins. Others, 
like Internet Explorer’s UserData (Microsoft Developer Network, 2011) were vendor-specific 

technologies, only available on a single browser. 

Towards the end of the noughties, the web community witnessed a great leap forward in 
terms of capabilities of front-end technologies (Anthes, 2012). Web developers were putting a 

lot of effort into making the web experience more ‘app-like’ and browser vendors were keen 

on supporting functionalities that could replace third-party plug-ins, such as Adobe Flash 
(Jobs, 2010). A new version of HTML was in the process of being drafted (Hickson and 

Hyatt, 2008) in a joint effort of the World Wide Web Consortium (W3C) and the Web 

Hypertext Application Technology Working Group (WHATWG). Even though the work on 
the specification was still in progress, the new standard, often refereed to as HTML5, quickly 

obtained industry-wide recognition (Cox, 2011). In this context a few new proposals for 

persistent data storage in the client stared to take shape. These include Web Storage, Web 

SQL Database and Indexed Database API, which are described in the next subsections. 

 

2.2. WEB STORAGE 

Web storage (WHATWG, 2017) is a specification that allows web applications to create a 
persistent key-value store in the browser, the content of which is maintained either until the 

end of a session (Session Storage), or beyond (Local Storage). With this technology, web 

applications can store a much greater amount of data compared to HTTP cookies. The storage 

capacity provided by web storage varies from 5MB to 25MB, depending on the browser. 

The specification also includes a client-side JavaScript API, known as the Web storage 

API, which is needed in order to manage the data store and its content. An innovative feature 
of this technology is that a web application can use this API to retrieve locally stored 

information even when the browser is offline. 

Web storage is a technology that is completely based on client-side scripting. Unlike 
HTTP cookies, data cannot be sent via HTTP headers. The web storage API is the only way 

in which a web application can access the data in web storage.  

Similarly to HTTP cookies, the security model of web storage is also based the same-

origin policy. This means that each origin has a unique storage object assigned to it. For this 

reason, the specification does not recommended using this technology on websites that are 

using a shared host name. Moreover, it recommends treating persistently stored data as 
potentially sensitive, as it could contain information such as email addresses or calendar 

appointments. It also recommends using Web Storage on website that are served over 



HTTPS, in order to avoid information leakage or spoofing, in case, for example, of DNS 

spoofing attacks. 

 As in the case of HTTP cookies, a third-party tracking agent could use Web Storage to 

profile users across multiple sessions (WHATWG, 2017). The specification recommends 

browser vendors to treat web storage content in the same manner as they treat HTTP cookies. 
In particular, vendors are encouraged to organise the user interfaces for clearing data in a way 

that allows users to clear all different types of persistent data simultaneously. 

While Web Storage is a much lesser known technology than HTTP cookies, its usage is 

not exempt from regulations around personal user data. 

 

2.3. WEB SQL DATABASE 

Web SQL database (Hickson, 2009) is a specification that allows web applications to 

store large amounts of data in the browser, using client-side transactional databases that can 

be queried using SQL. The specification is based on SQLite, a relational database 
management system developed by D. Richard Hipp. The peculiarity of SQLite is in the fact 

that it is an embedded database system, meaning that it is not built using the usual client-

server pattern, but it is instead part of the client application (Owens 2006).  

Since the beginning of 2010 a few browser vendors started implementing experimental 

versions of the Web SQL database API (Chromium Blog, 2010). However, this was not a 

complete novelty for some of them. Web SQL Database stores data in a very similar way to 
Google Gears, and both technologies are based on SQLite. Other browser vendors, instead, 

decided to avoid Web SQL database completely. Mozilla, in fact, refused to implement this 

technology in Firefox, explaining the reasoning behind this choice in a blog post by 
Ranganathan (2010). 

The main concerns raised by Ranganathan lied in the de facto adherence of Web SQL 

Database with SQLite. He argued that it was not appropriate to derive a speciation from an 
already shipped technology. For example, since SQLite did not implement a clearly defined 

version on SQL, drafting a specification around it would mean having to refer directly to the 

SQLite manual. Ranganathan was also concerned that web developers and browser vendors 
would end up being bounded to a third-party technology that could evolve independently 

from the HTML standards. He advocated for the adoption of a “web native” JavaScript API 

that could act as an abstraction between the web application and the underlying technology 

used by the browser to store data. 

In November 2010, the W3C followed suit and announced the decision to abandon the 

Web SQL Database draft, citing that that “all interested implementers have used the same 
SQL backend (SQLite)”, and lamenting the lack of multiple independent implementations 

(Hickson, 2010). Web SQL Database was deprecated in favour of Indexed Database API. 

Despite the deprecation by the W3C, three major browser vendors (Chrome, Safari and 
Opera) have continued supporting Web SQL Database and have not yet announced any plan 

of discontinuing it. 

  



2.4. INDEXED DATABASE API 

The first draft of this specification was initially published under the name of 

WebSimpleDB API (Mehta, 2009) and it was renamed to Indexed Database API the 

following year (Mehta 2010). It defines a JavaScript-based interface for an embedded 
transactional database system. Similarly to Web Storage and Web SQL database, IndexedDB 

allows storing structured information in the browser and the API provided is the only 

interface a web application needs to access and manipulate data. The main difference in 
comparison to Web Storage is in the scale and structure of the data that can be stored. In fact, 

Web Storage provides a basic key-value store that can be useful when dealing with simple 

datasets. On the other hand, Indexed Database API allows storing larger amounts of 

structured data and it provides advanced features such as in-order retrieval of keys and 
storage of duplicate values for a key. 

In the context of Indexed Database API, a database is made of one or more object stores, 
which are the elements responsible for holding the data. Databases are identified by the origin 

they are associated with, by a name and by a version number. An object store is the primary 

storage mechanism for storing data in a database. It comprises of a list of records and each 

record consists of a key and a value. Object stores are identified by a name, which is unique 
in the context of the database. An index allows looking up records in an object store using 

properties of the values. When a new database is created, it is empty, meaning that it does not 

contain any object store. A database version change is required in order to change the set of 
object stores. In order to efficiently retrieve records stored in an indexed database, each 

record is organized according to its key. Operations such writing and reading data are 

performed using requests, each of them need to placed against a transaction. Transactions are 
responsible for interacting with the data in a database and execute requests (Alabbas and Bell, 

2017). 

 

Figure 1 – Representation of client-side stored data provided by the console of Chrome. 



Figure 1 shows the content of IndexedDB data, alongside content saved by other client-

side storage mechanisms, as shown from the console of Chrome. It can be noted that 
IndexedDB can store data in a much more structured manner compared to HTTP cookies or 

Web Storage. In fact, the screenshot shows that several databases are associated to the same 

origin. Each database has one or more object stores and the content of each can be sorted 

through one or multiple keys  

Unlike WebSQL Database, IndexedDB is an object-oriented database. The interface for 

adding and retrieving data does not use SQL queries but keys and indexes instead. 
Nonetheless, one of the principles that were considered while designing the IndexedDB API, 

was to allow it to be easily wrapped by JavaScript libraries built on top of it (Ranganathan 

and Wilsher 2010). This means that the primitives of IndexedDB could be used to create a 
CouchDB-style API or even an SQL-based API. 

The security recommendations for the usage of Indexed Database API are not different to 

those for Web Storage. The security model of IndexedDB still gravitates around the principles 
of the same-origin policy. This means that browsers assign a set of databases to each 

requesting origin, based on a combination of the hostname, the port number and the protocol 

used by the web application. A web application is allowed to access locally stored data as 
long as the origin of the request matches the origin of the local database. Unlike HTTP 

cookies, a maximum storage duration does not have to be specified.  

The screenshot displayed in Figure 2 shows how unencrypted IndexedDB content can be 
easily accessed using a browser’s default debugging tool. This example is taken from a major 

news publisher and it is particularly interesting as the content displayed on the console is 

supposed to be hidden behind a pay wall. While the usual user interface (on the left-hand 
side) successfully blocks non-paying users from reading the article (labelled as ‘premium’), 

its content can be read via the console on the right-hand side. 

 

Figure 2 – Example of restricted data that can be accessed via the application console -  
Retrieved in July 2017. 

 



3. LITERATURE REVIEW 
Security concerns around in-browser data storage systems have been raised since the 

early days of HTML5. This chapter summarises a selection of papers that focused on Web 

Storage, Web SQL Database and Indexed Database API from a cybersecurity prospective. 
The reader will note that some of the issues highlighted in these works pre-exist these three 

technologies and have, in fact, been around since the introduction of HTTP cookies. 

However, it is clear that the enhanced capacities of these new client-side storage systems have 

broadened the scope of the security risks associated to web applications dealing with user 
data. 

There seem to be three main themes around which the literature has focused its attention 
so far. The first focuses on the integrity and the confidentiality of user data stored in browser. 

The works relate to questions such as “how can an attacker get hold of personal information” 

or “can users and developers trust this technology, especially in the context of the same origin 
policy?” The second theme is around client-side storage used as a vector to track users across 

different websites and sessions. Compared to the first theme, the difference is that the focus is 

not on preventing an attacker from stealing sensitive information, but rather on monitoring 

how third-party trackers operate in the wild. The third theme is intimately related to the 
second, and focuses on preventing tracking agents from identifying users and collecting 

personal information against their will. 

The following paragraphs will discuss a selection of papers that touch upon those three 

themes, putting particular attention to those studies that cover Web Storage, Web SQL 

Database and Indexed Database API. Some essential works that relate to adjacent 

technologies such as HTTP cookies will also be covered. 

 

3.1. CONFIDENTIALITY AND INTEGRITY OF LOCALLY-STORED CONTENT 

Hanna et al. (2010) performed a real-world study of client-side storage mechanisms. In 
their work, they analysed several web applications that make use of primitives for client-side 

storage and they highlighted the risks of persistent client-site cross-site scripting attacks. They 

discovered that the data saved in client-side storage systems is frequently used by the web 

application without being sanitised. The authors list several examples of this practice 
occurring in major websites. The lack of sanitisation opens the gates to the possibility of a 

new type of attack, which is persistent in its nature. Indeed, an attacker could manage to insert 

a malicious payload into a client-side storage system through well-known attack channels, 
such as a transient cross-site vulnerability or by modifying the packets destined to the victim 

over the network. When the compromised local data is used by the web application in any 

code evaluation construct, the payload has all the potentials of a malicious script hosted in the 
local database. The script would be able to remain in the local database until the data store is 

cleared, an event that in most cases happens very rarely. In this scenario, an attacker would 

only need to access the storage system once and be able to compromise a client application 

over a prolonged period of time. Furthermore, the authors also pointed out that the server is 
likely to remain unaware that the attack ever occurred. The types of client-side storage 

primitives that Hanna et al. (2010) considered are localStorage (part of Web Storage), Web 

SQL Database and Google Gear (both now deprecated). In order to mitigate the risks of a 
stored XSS attack, they suggested that bowsers should “automatically remove any potentially 

executable script constructs inside database values before returning them”. 

Similarly, Tump (2011) provides an example of how a persistent client-side XSS attack 
can be performed using Web SQL. Taking advantage of poor input validation an attacker 

could insert a malicious script into a client-side database, and get it to execute every time the 

data is retrieved. In the same work, the author also discusses other common risks related to 



client-side data storage. While, according to Tump (2011), the risk of client site SQL 

injection seems to be negligible, there are some other security issues that might arise. The 
author mentions the risk of client-side data corruption and data leakage, which can occur 

when an attacker gets hold of the user’s file system. The author also highlights the risks 

associated in relying on the same origin policy. First, browsers often fail to properly enforce 

the same origin policy. Second, sometimes web application developers fail to specify the 
origin correctly, for example ignoring the possibility that the same policy can apply to third 

level domains they do not control. Third, a DNS poisoning attack allows an attacker to bypass 

the same origin policy and access all the personal information stored in the browser for a 
given origin. 

Shah (2012) listed WebSQL in the to 10 security threats introduced by HTML5. The 
author reiterates the argument that if a web application is vulnerable to cross-site scripting 

attacks, an attacker could retrieve information from the in-browser database and transfer it 

across domains. The paper also demonstrates that this type of exploit can be achieved even 

without any prior information about the database schema. 

Lekies and Johns (2012) discuss some security issues related to the usage of Web 

Storage as a method for caching fragments of mark-up or client-side scripts. They describe 
three possible attack scenarios that could facilitate the insertion of a malicious payload in 

Web Storage: cross-site scripting, man-in-the-middle attack and the usage of shared browsers. 

The authors also perform an analysis on the usage of Web Storage in the wild, by crawling 

the front pages of the Alexa top 500,000 websites and analysing them with the Web testing 
framework HTMLUnit. They found that about 4% of the sites analysed make use of Web 

Storage. Among them, the authors discovered that Web Storage is used in a potentially 

unsecure way in at least 5% of the cases. Finally, the authors propose a mitigation mechanism 
that relies on verifying the integrity of the data stored in Web Storage, before adding its 

content to the DOM. This approach is then evaluated in the context of the three attack 

scenarios mentioned above. 

Preuveneersa et al. (2013) discuss the feasibility of HTML5 web applications in the 

context of e-health. Whilst the potential benefit of persistent storage techniques such as Web 

SQL Database and Web Storage is acknowledged, one of the main concerns raised is the lack 
of data encryption. 

Jemel and Serhrouchni (2014) propose a system to encrypt content stored using 

localStorage in which each user is assigned to a specific storage space. In their model, users 
are prompted to specify an identifier and a password in order to access the data stores. Those 

credentials are then used to encrypt personal data. The advantage of this approach is that it 

could allow sharing information that relate to the same user across multiple machines, in a 
format that is encrypted on the client. 

Englehardt et al. (2015) study the possibility of passive eavesdropping related to the 
usage of third-party tracking cookies. They show that an attacker could observe the value of 

HTTP cookies in transit and use them to reconstruct a significant amount of the user’s 

browsing history. This is possible because most web pages contain a variety of third-party 

cookies, which allow identifying a given user regardless of their IP address. In particular, the 
work shows that an adversary could reconstruct between 62% and 73% of a user’s browsing 

history. The authors suggest that this practice is likely to be used as tool of mass surveillance 

by state-level intelligence agencies such as the National Security Agency (NSA) and the 
Government Communication Headquarters (GCHQ). 

Kimak (2016) argues that Indexed Database API, in its current state, is “unavoidably 

insecure” due to its design. Similarly to other studies, the main concern raised is that data is 
stored in unencrypted format and therefore vulnerable to attacks such as cross-site scripting. 

The author also proved that personal data could be retrieved using forensic tools, even after a 



user requests its deletion via the browser’s user interface. Despite the security concerns, the 

author acknowledges the advantages of IndexedDB, especially in terms of performance. The 
work proposes a security model that relies on the usage of encryption and multi-factor 

authentication. The suggestion is to always encrypt data in the database with a key that is 

stored on a remote server. If the client wants to access the local data, it would have to make a 

server-side request to decrypt it. Before releasing a session key identifier, the server will have 
to authenticate the user via multi-factor authentication. This approach can provide a greater 

level of data protection, however, one of its limitations is that it requires an Internet 

connection in order to decrypt the data, thus losing off-line support, which is one of the key 
features of IndexedDB. 

Sendiang et al. (2016) documented a case study of a PHP-based web application 
showcasing few server-side techniques to reduce the risk on SQL injections. The web 

application makes use of Indexed Database API to store sanitised user information before 

sending it to the server. While they seem to suggest that the usage of IndexedDB is mostly 

advantageous from a performance point of view, it is also worth noting that their work can be 
seen as an example of how a client side database might act as a buffer between the user and 

the server. The presence of IndexedDB between the mark-up and the server can, in fact, help 

enforcing input validation and data sanitation, protecting the server from interacting with 
malformed data. 

On a similar note, an earlier paper, written at the time when the specifications were still 

being drafted, seem to provide a much more positive outlook on the usage of client-side 
storage. Hsu and Chen (2009) suggest that, despite the well-know concerns, storing 

information in the browser not only provides a performance advantage, but also allows users 

to have greater control over their data. Equally, since data are not stored in a centralised data 
centre, the scope for data breaches can be narrower, compared to a traditional web 

application. Moreover, the authors note that, since technologies such as Web Storage 

(localStorage) do not require data to be sent via HTTP headers, the possibility for a packet 

sniffing attack is reduced, compared to the case of HTTP cookies. 

More recently, Tsalis et al. (2017) conducted a study that evaluates the protection offered 

by private browsing mode. The authors analyzed four major desktop browsers and uncovered 
instances of privacy violations that contradict the browsers’ own documentation. In particular, 

they discovered that all of the browsers analyzed leave traces of user activity in the file 

system, even after a private browsing session is concluded. This means that a malicious party 
that takes control of a user’s machine could retrieve sensitive information related to previous 

private browsing sessions. The situation is aggravated by the fact that this type of information 

is stored in the same folders used for other type of browsing data storage and caching. This 

makes the process of retrieving data related to private sessions a trivial task, which could be 
performed even by a malicious party who is oblivious of the potentials of digital forensic 

tools. Moreover, the authors point out that the documentation provided by browser vendors 

suggests that all data will be discarded at end of the private browsing session. This could 
generate in the user a false sense of privacy protection. The paper also proposes and evaluates 

a mitigation measure that entails storing information in a virtual file system, based on volatile 

memory rather that on a hard drive. The authors demonstrate that off-the-shelf software can 

be used to create a virtual file system, which can guarantee data deletion at the end of the 
browsing session. Moreover, they show that it can be combined with file-shredding software 

to allow a more granular selection of the content to discard. 

  



3.2. CLIENT-SIDE STORAGE SYSTEMS AS TRACKING VECTORS 

Krishnamurthy and Wills (2009) conducted a study on the diffusion of private user 

information performed by third-party trackers that use a combination of HTTP cookies and 

other elements of the DOM. The authors looked for the presence of requests to third-party 
domains on a selection of 1200 popular websites and collected statistical data over a period of 

four years. One key aspect of the methodology used is that, in order to identify third-party 

requests, the authors verify the domain name and compare the authoritative DNS servers used 
by both the third-party resource and the page that hosts it. This approach allows to correctly 

classify cases in which code belonging to the same tracking provider is served over different 

endpoints using various DNS CNAME hosts or via a content delivery network. The results 

showed that the collection of user data increased over time, in particular the latest period 
analysed (September 2008) showed a penetration of 70%. This trend was also noticed in 

‘fiduciary sites’, in which the user is expected to provide confidential information such as 

medical or financial details. Moreover, they noted that 52% of the websites considered 
contained code from at least two third-party tracking entities. In contrast, it was noticed that 

data collection was performed by an ever-decreasing number of actors. In fact, during the 

period considered, several company acquisitions occurred in the tracking industry, allowing a 

small number of companies to significantly expand their reach. This allowed them to easily 
track the user’s activities across the majority of the popular websites. This work is also 

significant because it highlights that, in the wild, the boundaries between first-party and third-

party tracking code are often not clear. This is due to the emergence of tracking techniques 
that entail a combination of first-party cookies and third-party JavaScript libraries. The 

authors suggest that this approach seems to be primarily used by sites involved in analytics, 

meaning that those trackers would not necessarily create cross-site browsing profiles. 
However, they do not exclude that trackers involved in behavioural tracking might also resort 

in using a similar approach. 

Soltani et al. (2009) conducted a study on the usage of Flash Local Shared Object as a 
tracking vector, which is often referred to as ‘Flash cookies’. They analysed the top 100 

domains ranked by QuantCast. On 31 of them, they found at least a case of data overlap 

between HTTP cookies and Flash cookies, meaning that a same value was appearing on the 
data stored in both systems. Moreover, they witnessed several occurrences of what they 

defined as “cookie respawning”, in which the value of a deleted HTTP cookie is restored in 

the background, taken from a Flash cookie that keeps a back-up copy of it. On a follow-up 

study, Ayenson et al. (2011) observed the emerging usage of Web Storage (localStorage) as a 
tracking vector. While they did not find that this storage system was directly employed as part 

of respawning mechanisms, they noticed several cases of matching values among HTTP 

cookies and Web Storage data, which they named ‘HTML5 cookies’. 

“Evercookie” is a technique presented by Kamkar (2010) that significantly increases the 

resilience of tracking HTTP cookies. The author describes evercookies as “cookies that won’t 
go away”. The mechanism consists of a client-side API that replicates the HTTP cookie data 

across several types of client-side storage systems. The documentation lists more than a dozen 

of them, including Flash Local Shared Object (Flash cookies), Web Storage (mentioned as 

HTML5 Session Storage, HTML5 Local Storage and HTML5 Global Storage), Web SQL 
Database and Indexed Database API. This multi-tier approach allows personal information to 

remain in the browser even after a user manually removes HTTP cookies. In fact, once the 

evercookie API detects that a HTTP cookie has been deleted, it can recreate it in the 
background, using the information stored in any of the other vectors available. As long as the 

information is maintained in at least one of the many storage systems used, the evercookie 

API is able to restore it in all the others. The result is a zombie cookie that is extremely hard 

to remove even for advanced users. Moreover, the Evercookie API can also synchronise 
tracking data across different browsers, through plug-ins such as Flash (via Local Shared 

Object), Silverlight (via Isolated Storage) or Java (via JNLP PersistenceService or the CVE-

2013-0422 exploit documented in Oracle, 2013). 



Roesner el al. (2012) presented an in-depth investigation of web tracking performed by 

third-party actors. The work analysed a corpus of around 1000 websites, spanning from very 
popular to lesser-used websites, and found the presence of over 500 unique trackers. The 

authors propose a classification of trackers that goes beyond the usual notion of first-party 

and third-party trackers. Instead, they propose a classification system based on the tracking 

behaviour that is observable from the client (Table 1). This system also challenges the 
significance of classifying cookies as either third-party or first-party. In fact, all cookies are 

first-party in the context of their own origins and often users visit those origins as ‘first-party 

clients’, such as in the case of social networks. For this reason, the authors suggest the usage 
of the terms like “tracker-owned” cookies and “site-owned” cookies. 

Table 1 - Classification of trackers proposed by Roesner et al. (2012) 

Class Description Type of cookies Notes 

Third-Party 

Analytics 

Provides an analytics library to 

individual websites 

Site-owned Site-owned cookie value 

is leaked to tracker’s 

domain for collection 

Third-Party 

Advertising 

User tracking for the purpose of 

targeted advertising 

Tracker-owned User never visits 

tracker’s domain directly 

Third-Party 

Advertising 

with Popups 

Similar to third-party tracking, but 

using a popup window as a 

mechanism to circumvent third-

party cookie blocking 

Tracker-owned User is forced to visit the 

tracker’s site by a popup 

window 

Third-Party 

Advertising 

Networks 

Tracking code inserted indirectly by 

another cooperating tracker  

Tracker-owned Relies of information 

passed by the coopering 

tracker  

Third-Party 
Social Widgets 

Tracking code set by social media 
sites users generally have an 

account with 

Tracker-owned User voluntarily creates 
an account with the site  

 

The analysis also documents the occurrence of “cookie leaks”, in which the contents of a 
cookie associated to a given origin are passed as parameters in a request to another origin, 

with the purpose of circumventing the browser’s same-origin policy. Furthermore, the work 

also quantifies the usage of alternatives to HTTP cookies. The authors found ‘remarkably 
little use’ of Web Storage (localStorage). In fact, out of the 524 trackers identified, they found 

that this storage mechanism is used in only 8 cases. Moreover, in only 5 of them it was found 

to contain unique identifies. In all of those 5 cases, the user identifiers were a copy of the 
values found on HTTP cookies. These cases are instances of cookie respawning. Flash LSOs 

were used by 35 trackers, but only on 9 cases duplicate content to HTTP cookies was 

identified. Other aspects of this work will also be discussed on paragraph 3.3 of this 

dissertation. 

Acar et al. (2014) performed a large-scale analysis of a selection of advanced persistent 

tracking mechanisms. They reported the usage of Indexed Database API as a storage 
mechanism of tracking data, albeit in a small number of cases (20 out of the 100 000 analysed 

- 0.02%). Indeed, they found one instance in which IndexedDB data matched the content of a 

Flash Local Stored Object. The authors claimed that this was the first time a research paper 

documented evidence of the usage of IndexedDB as an evercookie vector. 

The specifications of the three storage systems considered in this work all recommend 

browser vendors to represent the different storage systems in a way in which users can 



associate them to HTTP cookies, particularly in terms of data deletion. However, studies such 

as West and Pulimood (2012) reported that on some browser the operation of removing local 
databases is not straightforward.  

Some works in the literature discuss the practice of cookie matching (or cookie syncing), 

a technique that is used in real-time advertising bidding, which allows trackers to associate 
different tracking profiles that relate to the same user. Olejnik et al. (2013) quantifies both 

the frequency and the breadth of data leakage related to cookie matching. They analysed a 

sample of 100 user profiles and found that 91 of them were subject to cookie matching, 
showing instances of trackers leaking 27% of a users’ browsing history. They also prove that 

users with a longer tracking history are more valuable to advertisers than newcomers. 

Moreover, they show that the market value of parts of a users’ browsing history can be as low 
as a fraction of a US dollar cent. 

Englehardt (2014) also discusses cookie-syncing, warning that it can allow sharing of 

personal data between different tracking servers, a practice of which the users have very little 
visibility. Cookie syncing can also further enhance the impact of cookie respawning. In fact, 

while most major trackers do not use mechanisms such as the aforementioned evercookie, 

they might share user information with trackers that do use techniques of cookie resurrection. 
The author warns that the practice of cookie syncing, combined with other sophisticated 

mechanisms used by trackers, makes it almost impossible for a user to start from a completely 

new browsing profile. 

Bujlow et al. (2015) conducted a comprehensive literature review of the tracking 

mechanisms developed in previous years. The three systems analysed in this thesis are 

mentioned in their work as possible tracking vectors, under the category of storage-based 
tracking systems. Amongst their findings, the authors noticed that Safari seems to carry over 

user data from a normal-mode user identity in a private browsing mode, which is an 

undesirable feature, as it does not protect the user from being tracked.  

Derksen et al. (2016) discuss the usage of Web Storage (localStorage) and Indexed 

Database API in the context of tracking. The authors analyzed the behavior of twenty popular 

tracking services on a selection of about a thousand websites. They found that localStorage 
was used by 15% of the trackers analyzed. Moreover, none of the website analyzed showed 

the usage of Indexed Database API as a tracking vector. They nonetheless did not exclude 

that IndexedDB could be used in circumstances different from those considered in their work. 

One of the security concerns they raised, is that expiry dates are not supported by either 
technology, which could lead to private information being stored for longer time compared to 

HTTP cookies. The authors also study the implementation of data deletion and find that the 

browsers analyzed allow the deletion of Web Storage (localStorage) and IndexedDB data via 
the same user action needed to remove cookies. Similarly, Bujlow et al. (2015), seem to 

imply that the content of data stored using these techniques is automatically emptied at the 

time when the cookies are cleared. This dissertation, however, will show that, in a different 
set of major browser, data deletion requires an extra user step in order to include HTML5-

related client-side storage techniques (see Chapter 5). 

Wu et al. (2017) presented an evaluation of private browsing mode in desktop and 
mobile browsers in the context of fingerprinting. The work highlights many inconsistencies in 

the way private mode is implemented across different browsers and also between the desktop 

and mobile versions of the same browser. One of the findings of their study is that all the 
browsers considered, delete all client-side stored data created in private mode after the user 

closes the private session. Derksen et al. (2016) also presented a similar finding in their 

work. In contrast, Chapter 5 of this dissertation will show that this is not always the case on 

all major browser. It will provide a few examples of browsers where data gathered during a 
private session is not deleted after the user terminates the private session. 



Gonzalez et al. (2017) performed a large-scale study on the usage, content and format of 

HTTP cookies in the wild. Their work analyses a large dataset of network data that comprises 
of 5.6 billion HTTP requests. First, they performed an analysis on the reach of cookies, by 

measuring the number of different referrers that originate a HTTP requests to the same 

cookie-setting endpoint. They found that, while the vast majority of cookies relate to a unique 

referrer domain, there is a long tail of cookies whose originating requests come from a 
significantly high number of different domains. This means that the breadth of certain major 

trackers is quite vast. In the dataset considered, the authors noticed the presence 212 cookies 

that could reach more than 10000 domains. The authors also analyzed the usage of cookie 
names in the wild. They found instances of websites that use cookies whose names include a 

unique identifier of the user. The study also considered the content and format of cookies 

used in the wild. It showed that some cookies tend to grow in length as the user visits more 
sites. This is because there are instances in which a single cookie can be used to concatenate 

different type of information, often using complex schemas that deviate from the basic key-

value pair structure (name=value). In a few extreme cases, different data was combined in the 

same cookie value using JSON format. The authors also found that in one third of the cases 
analyzed, the value of cookies contained a datestamp mixed with other information. This 

means that those cookies could contain unique identifiers, despite appearing as different at a 

first sight. The work presented by Gonzalez et al. is significant because it challenges some of 
the assumptions taken in previous works, not only on the current usage of cookies per se but 

also with regards to the methods used to identify tracking cookies. Moreover, the study found 

instances of cookies values containing personal identifiable information such as users’ IP and 
email address, which, of course, represent a serious breach of privacy. 

 

3.3. PREVENTIVE MEASURES AGAINST USER TRACKING 

The client-side storage mechanisms mentioned above can be all used to identify and track 
users across different browsing sessions and webpages. In 2007, several public interest groups 

wrote a letter to the United States Federal Trade Commission expressing their desire to create 

a ‘Do Not Track list’ for online advertisers (Schwartz et al., 2007). The name was chosen 
after the ‘Do Not Call Registry, database maintained by the United States federal government, 

listing the telephone numbers of individuals who have requested that telemarketers not 

contact them (Federal Trade Commision, 2017). The original proposal would have entailed 

that ad provides submit their information to the FTC, which would compile a list of the 
domain names used by trackers. Browser vendors could then subscribe to this list, and give 

their users to effectively block many forms of tracking. 

Two researches, Soghoian and Stamm, implemented a similar feature, albeit following a 

different approach, in which the client communicates the user’s preference with regards to 

tracking via an HTTP header (Soghoian, 2011). According to this approach, tracking agents 

are expected to refrain from identifying users and perform their usual activities according to 
the preference expressed by the DNT header. This proposal was extremely impactful and 

most major browser implemented the ‘Do Not Track’ header by the following year. 

Moreover, in 2015, the W3C started the work of formalising this feature into a web standard 
called Tracking Preference Expression (DNT) (Fielding and Singer, 2017). 

Mylonas et al. (2013) analysed the security controls of several mobile and desktop 

browsers. The work highlights that desktop browsers generally provide better protection, as 
the controls available for desktop users are greater that those available on mobile browsers. 

The analysis found that users of the mobile browsers considered do not have the option to 

opt-out of third-party cookies. The authors also pointed out that support for the ‘Do Not 
Track’ header is unavailable on most of the mobile browsers analysed and found that in some 

cases the user interface that deals with security features can be confusing. Moreover, the 

authors found a number of security issues on two major mobile browsers. 



Mayer (2011) studied a series of technologies developed to protect users from third-party 

trackers. The author found that community-maintained blocklists are the most effective way 
to prevent undesired user tracking. Those lists mainly consist of URL blacklists and they are 

generally used in conjunction with browser extensions, such as AdBlock Plus (eyeo GmbH, 

2017). The author also claims that tracking is often inextricably tangled with third-party 

advertising, therefore often blocking trackers also entails blocking code that provides 
advertisements. 

Similarly, Kontaxis and Chew (2015) describe a tracking protection feature of Mozilla 
Firefox, whose approach is based on the same mechanism used by ad-blocking browser 

extensions such as AdBlock Plus. It analyses all outgoing HTTP requests and matches them 

against a blacklist, which is based on a curated list of tracking origins. Requests to known 
tracking domains are blocked and an icon appearing next to the URL bar notifies the user. 

They evaluated this approach on a dataset consisting on 200 popular news sites. They found 

that this feature blocks at least one unsafe element on 99% of sites tested. An increase in page 

performance was also noticed, thanks to a 44% median reduction in page load time and a 39% 
median reduction in data usage. Furthermore, in a second experiment conducted using data 

sent by Firefox Nightly users, the authors found that 14.1% of page loads contain at least one 

tracking element. 

Blacklists are also a powerful tool to protect users from phishing and malware. Virvilis et 

al. (2015) provide a comparison of the protection measures against rogue sites available on 

desktop and mobile browsers. The work commences by acknowledging that mobile browsers 
often offer a lower level of protection compared to their desktop-based counterparts and in 

some cases they offer no protection at all. The authors propose a browser-agnostic mitigation 

approach that overcomes the technical limitations related to each specific browser and the 
user’s natural inertia in downloading browser extensions or dealing with often confusing 

security settings. This novel strategy, named ‘Secure Proxy’, consists of a HTTP forward 

proxy that operates at network level to filter content before it is transmitted to the user’s 

device. The filtering mechanism is delegated to a third-party service that assesses the 
reliability of the content providers, based on the aggregation of multiple blacklists and 

AntiVirus engines. 

Building from the previous work, Nisioti et al. (2017) revisits the anti-phishing 

mechanisms available for users of mobile browsers of three popular operating systems. The 

study reveals that the protection against rogue websites provided by pre-installed web 
browsers is still very poor and in some cases null. The situation seems a bit better in the case 

of third-party browsers, such as Firefox or Chrome on Android. The authors, however, note 

that installing third-party browsers require an active action from the user. Moreover, in the 

iOS ecosystem, neither the default browser nor third-party browsers offer protection against 
phishing attacks. In this context, the authors discuss an extension of ‘Secure Proxy’ and 

propose TRAWL (TRAnsparent Web protection for alL). Similarly to ‘Secure Proxy’, 

TRAWL is implemented outside the users’ device in order to avoid resource consumption and 
to be usable across different platforms and browsers without requiring any custom 

installation. The tool provides DNS and URL filtering based on a collection of curated 

blacklists, but it does not delegate the filtering mechanism to a third-party service. In fact, in 

this approach the filtering logic is handled locally, which prevents the leaking of user 
information and also overcomes the limitation of usage rate limits. 

The work by Roesner el al. (2012), (mentioned in paragraph 3.2) also reviews the 
defence strategies against user tracking available to browser users. First, they point out that 

blocking third-party cookies is not an effective method because some browsers only block the 

operation of setting a third-party cookie, but not access to its content. This would not prevent 
a tracker from reading the value of a cookie containing user-identifying information, after this 

value was set on a previous visit to social media sites or by advertising popups. Second, the 



authors notice that the ‘Do Not Track’ header does not seem to have any visible effect in 

preventing tracking. Indeed, it is a policy that relies on the goodwill of the tracker. Moreover, 
it appears that many of the parties involved with user tracking argue that their behaviour 

should not be considered tracking as it is defined by the DNT specification, and 

consequentially refuse to implement it. The authors also mention the limitations of private 

browsing mode, noting that it is primarily designed to protect users from attackers with 
physical access to the machine and not necessarily from remote user tracking. As a method of 

protecting users’ privacy, the authors propose ShareMeNot, a browser extension that limits 

third-party tracking code that belongs to social media sites, while making sure that actual 
functionality visible to the user remains unaffected. In practice, the extension allows tracking 

requests to be sent only when the user clicks on an embedded social media button (such as 

Facebook's “Like”). The solution proposed by the authors has been subsequently incorporated 
into another privacy tool named “Privacy Badger”.  

Privacy Badger is a browser extension that follows an alternative approach to curated 

blacklists. It uses algorithmic methods to decide which resource is tracking the user and 
verifies whether scripts that belong to a given domain collect unique identifiers even after 

sending a “Do Not Track” message. If so, it automatically disallows content from that third-

party tracker (Privacy Badger, 2017). 

The practice blocking of user tracking is often strictly related to the blocking of adverting 

content. Nithyanand et al. (2016) performed a study on the counter-blocking mechanisms 

implemented by publishers to prevent the loss of income associated to the usage of ad-
blocking techniques. The authors analysed 5000 popular websites and found that anti-ad-

blocking mechanisms were used in 6.7% of the cases. The anti-ad-blocking techniques that 

can be used generally entail adding bait advertising elements to the DOM and periodically 
verifying their presence or content. If ad-blocking is detected the hosting website would 

return a message to the users asking them to disable any ad-blocking tool and, in some cases, 

prevent the users from further navigating to the site. 

  



4. USAGE OF CLIENT-SIDE STORAGE IN THE WILD 
 

This section discusses the methodology for an investigation on the usage of a selection of 
client-side storage techniques in the wild. The investigation has two main objectives. The first 

objective is to quantify the frequency of the usage of these techniques on a large-scale sample 

of the World Wide Web. This is useful since they all are relatively new techniques and the 

necessity to quantify their usage in the wild has been mentioned on other works in the 
literature (Kimak, 2016). Moreover, it will provide a context for the second objective, which 

is to quantify the pervasiveness of these techniques in the context of third-party tracking code. 

 

4.1. METHODOLOGY 

The analysis is performed by inspecting the content of a large-scale dataset containing 

snapshots of client-side scripts used by websites, representing a significant portion of the 

World Wide Web. In this task, the content of those scripts is parsed, with the purpose of 
finding instances of certain JavaScript constructs that suggest the usage of a certain primitive. 

Figure 3 shows a high-level diagram of the tools and resources that were used, and the 

following sections will provide an in-depth explanation of each one of its parts. 

 

Figure 3 - Architecture diagram of the tools and systems involved 

4.1.1. Tools and resources used 

There are a few open-source tools that can be used in order to perform an extensive audit, 
even with a relatively limited amount of resources. HTTP Archive is a project created by 

Souders (2010). Every fortnight, it crawls a list of webpages and archives information such as 

the payload content and the logging of the interaction between the browser and the crawling 



client. The list of the webpages crawled by HTTP Archive is based on the Alexa Top 

1,000,000 Sites (Alexa Internet, 2017). HTTP Archive also captures the body of the responses 
for each subresource used by the website scanned. The scans are performed with two Chrome 

user agents: one for desktop and one Android (emulated). 

The datasets generated by HTTP Archive can be freely downloaded and they can also be 
used in conjunction with big data tools such as Google BigQuery (Grigorik, 2013). The latter 

is a web service that allows the analysis of large datasets, using SQL. This suits the needs of 

this project, since the size of the datasets generated by HTTP Archive can be of up to several 
hundreds of gigabytes. 

 

4.1.2. Determining the matching rules 

As previously mentioned, the core idea of this investigation is to quantify the presence of 

certain constructs in the dataset provided by HTTP Archive. In order to do so, for each one of 
the primitives considered, a matching rule was been defined by listing some of the constructs 

required to perform basic operations, such as creating a data store, reading and writing data. 

The Web Storage API provides two storage mechanisms, one for handling data within a 
current session (sessionStorage) and another one that lasts beyond the current session 

(localStorage). In this work, only the constructs used by localStorage were considered, as 

sessionStorage would not be relevant due to its transient storage mechanism. Table 1 shows 
the constructs needed in order to read or write data using localStorage. 

Table 2 - Constructs used by Web Storage (localStorage) 

Web Storage (localStorage) constructs  

localStorage Property of the ‘window’ object that needs to be 

used to access the Storage assigned to each origin  

setItem Method of the Web Storage API that adds a new 

item to the storage 

getItem Method of the Web Storage API that retrieves 

item to the storage 

 

The same process was followed for the Indexed Database API. The constructs 
mentioned in Table 2 are part of the steps necessary to create a local database containing an 

object store and to access the store to either read or write data. 

Table 2 - Constructs used by Indexed Database API 

IndexedDB API constructs  

indexedDB Attribute of the ‘window’ object that provides 

applications a mechanism for accessing 

IndexedDB (of type ‘IDBFactory’) 

transaction Method of the IndexedDB API needed to access 

the object store 

objectStore Method of the IndexedDB API that returns an 

object store in the scope of the transaction 



Similarly, table 3 shows the constructs necessary to read and write data using the now 

deprecated Web SQL Database API. 

Table 3 - Constructs used by Web SQL Database (deprecated) 

Web SQL Database (deprecated) constructs  

openDatabase Method that opens a Web SQL database, or 

creates a new one if none is found 

transaction Method of Web SQL API needed to access the 

database 

executeSql Method of the Web SQL API that defines the 

SQL command to perform in a given transaction 

 

The constructs identified above were used to define the matching rules used to query the 

dataset. This approach is based on the assumption that if a webpage contains a certain 
combination of those constructs in any of its subresources, it is likely to use the APIs 

considered to store data locally. For example, a JavaScript snippet that saves data using the 

Indexed Database API needs to contain all three constructs mentioned in table 1 
(‘indexedDB’, ‘transaction’, ‘createObjectStrore’). Similarly, writing or reading data with 

Web Storage (localStorage) requires the ‘localStorage’ construct and either a ‘setItem’ or 

‘getItem’ construct. Table 4 shows the matching rules defined for each primitive. 

Table 4 - Matching rules used for each of the primitives analysed 

Primitive Matching rule 

Indexed Database API “indexedDB” AND “transaction” AND “objectStore” 

Web Storage (localStorage) “localStorage” AND (“setItem” OR “getItem”) 

Web SQL database 

(deprecated) 

“openDatabase” AND “transaction” AND “executeSql” 

 

4.1.3. Querying the dataset  

The rules defined in the section above can be used to create a series of SQL queries, 

which can be run against the HTTP Archive dataset using Google BigQuery. The code 
snippet in example 1 is a simple query that filters all subresources of the dataset according to 

the matching rule defined for the Web Storage API (localStorage). The queries used in this 

work follow the Standard SQL Syntax adopted by Google BigQuery (Google Cloud Platform, 

2017), which is compliant with the SQL:2011 standard (International Organization for 
Standardization, 2011). 

 

SELECT 

 * 

FROM 

 `httparchive.har.2017_09_15_chrome_requests_bodies` 

WHERE 



 REGEXP_CONTAINS (body, r'localStorage') 

 AND (REGEXP_CONTAINS(body, r'setItem') 

  OR REGEXP_CONTAINS(body, r'getItem')) 

Example 1 – Simple query that returns subresources containing Web Storage (localStorage) constructs 

 

4.1.4. Trackers list 

This paragraph discusses the creation of a database of tracking hostnames, based on open-
source blacklists of trackers. The purpose of the database is to help identifying which 

subresources in the HTTP Archive dataset are involved with user tracking. There are several 

curated blacklists of trackers available on the web, the ones considered in this work are: 
Disconnect (2017), No Track (Quidsup, 2017) and Easy List (2017). 

Creating a database of tracking hostnames is necessary because the content of blacklists 

cannot be used in its original format for the purpose of this work. This is due to the fact that 
tracking blacklists are part of third-party software, such as ad-blocking browser extensions. 

They often contain constructs that belong to the browser extension itself, like comments or 

delimiters. Moreover, different blacklists use different schemas. For example, the dataset used 
by Disconnect is in JSON format (Example 2), whereas East List makes use of multiple text 

files combined to form a lengthy regular expression (Example 3). Therefore, to be usable in 

the context of this work, data needs to be sanitised and converted to a consistent format. 

 

"ADP Dealer Services": { 

 "http://www.adpdealerservices.com/": [  

  "admission.net", 

  "adpdealerservices.com", 

  "cobalt.com" 

 ] 

} 

Example 2 – Extract from the tracking blacklist used by Disconnect Me 

 

||audiencerate.com^$third-party 

||auto-ping.com^$third-party 

||autoaffiliatenetwork.com^$third-party 

Example 3 – Extract form the tracking blacklist used by Easy List 

 

Consistency of the data format is not the only issue. Most blacklists often contain 

whitelists too, which are exceptions to the blocking rules that are needed in order to 

workaround specific use cases1. To avoid the occurrence of false positive, it is necessary 

                                                   

1 For example, certain AdBlock rules are too strict for some websites and, if respected, would 

result in loss of core functionalities. 



make sure the content of whitelists is not included in the database. This can be done by cherry 

picking only certain sections of a blacklist list from its open-source repository (Table 4).  

Table 5 - Blacklists considered and relative repositories 

Black list List repository  

Disconnect 

Tracking 
Protection 

https://raw.githubusercontent.com/disconnectme/disconnect-tracking-

protection/master/services.json 

Easy Privacy  

 

https://raw.githubusercontent.com/easylist/easylist/master/easyprivacy/easyprivacy_t

rackingservers.txt 

https://raw.githubusercontent.com/easylist/easylist/master/easyprivacy/easyprivacy_t

rackingservers_international.txt 

No Track https://raw.githubusercontent.com/quidsup/notrack/master/trackers.txt 

 

Since tracking lists are updated on a regular basis, it is important to make sure that the 
trackers database contains data that is relevant to point in time in which the HTTP Archive 

scan considered was generated. To facilitate the process of creating and updating the trackers 

database, an automated tool, “Blacklist-merger”, was developed as part of this work. 
Blacklist-merger extracts the domain names from the lists mentioned in Table 4 and performs 

a process of data sanitisation, which involves removing comments or any construct other than 

the tracking hostname. Once the data is sanitised, it is collected in an array, where duplicates 

are removed. Finally, the array is used to create a comma-separated values file (Figure 4) that 
can be uploaded to Google BigQuery and matched against the HTTP Archive table. 

 

Figure 4 - Example of CSV file generated by 'blacklist-merger' 

 

4.1.5. Workflow 

The final step is to combine all the elements mentioned in the previous sections, and 

query the dataset using the Google BigQuery interface. Appendix 8.1.1 shows the query 
created for this work, which returns a table of statistical data for the HTTP Archive dataset. 

Moreover, a filter that limits the results to the Alexa top 10000 websites was created, with the 

purpose of verifying whether the output of the query would differ if applied to the a smaller 
selection of most popular websites. 



4.1.6. Limitations 

The approach taken in this research has a few limitations, which deserve to be mentioned. 
Some of them are related to the dataset chosen, others to the nature of the methodology itself. 

First, the scanning engine used by HTTP Achieve truncates payloads that are greater than 2 

MBs. This means that if the constructs defined in the matching rules happen to be in the part 

of the payload that HTTP Archive could not capture, they will not be found by the query. 
Payloads greater than 2MBs are, however, a rare occurrence, as highlighted by the percentage 

of truncated subresources, in the results section. 

A further limitation related to the usage of HTTP Archive is that it can only provide 

snapshots of front pages of openly available websites. The scanning engine does not perform 

operations such as user log in or following links on a menu. Considering that primitives such 
as the Indexed Database API are designed to support advanced web applications, it is 

reasonable to assume that there are cases of websites in which those storage techniques are 

used only once the user is logged in. However, this is an accepted limitation, especially 

considering that in order to quantify the usage of client-side storage techniques in the context 
of user tracking, it is far more important to focus on the large-scale adoption of the 

technologies in question rather than specific use cases. 

In addition, HTTP Archive does not contain snapshots from each one of the Alexa Top 

one million sites. The set of websites scanned is loosely based on the Alexa list, but any 

private individual could send a request to HTTP Archive to add or remove sites to the dataset. 

For this reason, the analysis was performed on both the whole dataset and on a selection of it 
that contains only the Alexa top 10000 sites. The actual number of website included in each 

scan is specified in the results section. 

Lastly, this type of analysis verifies the presence of certain given constructs in client-side 

scripts, but it cannot verify the actual usage of the primitives. For example, a website could 

include a JavaScript library that relies on Web Storage, but never execute its code in the 

browser. Moreover, some websites include third-party libraries that perform a set of basic 
operations using a given primitive with the sole purpose of assessing browser capabilities. 

This practice is known as ‘feature detection’ and one of the most well-known libraries used 

for this purpose is Modernizr (Ateş et al., 2017). 

  



4.2. RESULTS  

 

4.2.1. Usage of the primitives considered 

This section presents the results returned by running a set of queries similar to the one 

shown in Appendix 8.1.1, against the dataset provided by HTTP Archive for the 1st of 

December 2017. The HTTP Archive dataset provides data for about half a million websites 

and it contains the payload of more than 16 million subresources, which include HTML 
documents, style sheets and JavaScript files (Table 6). The percentage of truncated 

subresources can be considered as a margin of error, as it represents the subresources on 

which the matching rules are not applicable. 

Table 6 - Characteristics of the dataset used 

Number of websites in the dataset 431851 

Total number of subresources in the 

dataset 

16167545 

Truncated subresources (%) 0.03 

 

Table 7 shows the usage of the primitives considered, on the whole dataset. An 
interesting result is that more than two thirds of the websites analysed contain Web Storage 

related constructs. Another result worth noticing is that the constructs analysed are very often 

found on third party subresources. 

Table 7 - Results for the whole dataset 

 

Websites with construct 

in subresource (%) 

Websites with construct in 

3rd party subresource (%) 

Subresources containing 

matching construct (%) 

Web Storage (localStorage) 70.30 63.91 6.66 

Indexed Database API 5.28 4.91 0.16 

Web SQL Database 1.51 1.23 0.04 

 

The same set of queries can be used, with some small variations (Appendix 8.1.2), to 

filter the scan to the Alexa top 10000 sites. This reduces the scope of the analysis to around 

8,500 websites and approximately 400,000 subresources (Table 8). 

Table 8 – Subset of the dataset including only the Alexa top 10k websites 

Number of Websites in the dataset 8518 

Total number of subresources in the 

dataset 

419009 

Truncated subresources (%) 0.05 

 



Table 9 shows the results for the Alexa’s 10000 sites. It is interesting to notice that, after 

applying the filter, the values for the usage of the Indexed Database API are almost double 
compared to the whole dataset. 

Table 9 – Results for the Alexa top 10K 

 

Websites with construct 

in subresource (%) 

Websites with construct in 

3rd party subresource (%) 

Subresources containing 

matching construct (%) 

Web Storage (localStorage) 82.05 75.64 8.03 

Indexed Database API 10.24 8.96 0.26 

Web SQL Database 2.56 1.96 0.06 

 

4.2.2. Usage of the primitives as a tracking vector 

This section highlights the usage of the same three client-side storage techniques in the 

context of user tracking. As it can be seen in Table 10, there is a high percentage of websites 
containing at least one tracking subresource were constructs that belong to Web Storage 

(localStorage) can be found. The figures are much smaller for Indexed Database API and 

considerably smaller for Web SQL Database. 

Table 10 – Websites and tracking subresources 

Websites with at least one tracking subresource using the primitive considered (%) 

Full 

dataset 

Top 

10k 

Web Storage (localStorage) 55.39 65.20 

Indexed Database API 2.24 4.51 

Web SQL Database 0.84 0.83 

 

Table 11 highlights the usage of the client-side storage techniques in the context for 

tracking from a different angle. It shows the percentage of subresources that belong to 

tracking domain amongst all the subresources containing the constructs for the primitives 
considered. In other words, this table answers the question: “how frequently are those storage 

techniques used as tracking vectors?” In all cases, the figures seem to be surprisingly high, 

starting from around 40% for Indexed Database API to almost 70% for Web Storage 

(localStorage). This is a significant finding because it shows that user tracking is a major use 
case for those primitives. Equally, it is significant to find that this is also the case for a 

deprecated standard such as Web SQL Database. 

Table 11 - Tracking subresources and primitives 

Subresources using the primitive considered that are flagged as ‘tracker’ (%) 

Full 

dataset 

Top 

10k 

Web Storage (localStorage) 69.80 64.18 



Indexed Database API 43.68 45.13 

Web SQL Database 53.50 31.95 

 

  



5. USER CONTROL OVER LOCALLY STORED DATA 

5.1. METHODOLOGY 

This section will try to answer the following questions: What type of control do users 

have over data that is stored in the browser using mechanisms such as Indexed Database API? 

Are web browsers respecting the recommendations and do they make it easy for users to 
delete the content of client-side storage?  

This section also presents Storage Watcher, a lightweight web application created for this 
dissertation project.  The application can be used to verify how web browsers implement Web 

Storage (localStorage), Indexed Database API and Web SQL Database, particularly focusing 

on how effectively a user can clear locally stored data. The application uses the primitives 

mentioned above to create a data store and populates it with some dummy data. 

5.1.1. Architecture 

 

  Figure 5 – High-level architecture of Storage Watcher 

The architecture of the application is presented in Figure 5. Storage Watcher is designed 
to perform two tests: one to verify the level of API support of a given browser, the other to 

verify the effectiveness of data deletion. 

5.1.2. User Interface 

Storage Watcher contains a JavaScript library, written as part of this work, which creates 

three client-side data stores, using the three primitives mentioned above. The library creates 

the data stores and defines their schema. The user interface allows populating the data stores 
with some dummy data and listing the content of the data stores. Table 11 lists the read and 

write operations that can be performed using the user interface. 

Table 12 - Operations performed by Storage Watcher 

Operations Notes 

List all entries Database/storage read. On the app’s default state 

all storage systems should contain no entries 

Add one entry Database/storage write 

 



Using Storage Watcher, it should be possible to notice that the content of the database 

remains consistent across different browsing sessions. The application does not need to be 
online in order to operate. 

5.1.3. Browser support test 

Most browsers broadly support the three client-side storage primitives considered in this 
work. There are, however, a few exceptions. For example, Firefox disables the Indexed 

Database API when a user is browsing in private browsing mode. The desired outcome of this 

task is to provide a comprehensive overview of how different browsers support the primitives 
considered. Storage Watcher can be used to perform a manual test that verifies whether each 

of the API considered is enabled. The test consists of a sequence of simple write and read 

operations and the steps necessary to perform it are described in Table 12. Moreover, on page 
load, Storage Watcher performs a check to verify if the properties of the primitives 

considered are present in the Document Object Model. If they are not, an alert will be 

displayed to the user. In that case performing the write/read test manually will not be 

necessary; as Storage Watcher would have already detected that the API is not supported. 

Table 13 - Browser support test 

Steps Expected behaviour 

1. Click on ‘Add entry’ A pop-up alert should inform the user of the 
success of the write operation. 

2. Click on ‘List all entries’ A series of pop-up alert should list all the 

entries stored. 

 

5.1.4. Effectiveness of data removal 

As mentioned in the previous chapters of this report, the specifications recommend 

browser vendors to treat the data removal of various client-side persistent data features in the 
same way as HTTP cookies. This means that browsers are expected to make it easy for users, 

or at least possible, to remove all locally stored user data. Storage Watcher can be used to 

perform a test that verifies whether and to which extent different browsers respect this 

requirement. Table 13 shows the steps required to perform this test. 

Table 14 – Steps required to perform the data removal test 

Steps Expected behaviour and notes 

1. Click on ‘Add entry’ A pop-up alert should inform the user of the 

success of the write operation. 

2. Close the current tab This is needed to ensure the current session 

is terminated. 

3. Remove personal data This should be done using the user interface 

of the browser (e.g. clicking ‘clear browsing 

data’ in Google Chrome). Note that this step 
is not needed if the test is performed in 

private browsing mode. 

4. Click on ‘List all entries’ No pop-up alerts should be expected. 

 



After deleting all personal data, a returning user should expect the local content related to 

Storage Watcher to be in its default state and to contain no entries. When clicking on ‘List all 
entries’, if any entry can still be found, it means that the local content has not been reset as 

part of the data removal process. 

 

5.2. RESULTS 

This paragraph discusses the results of tests conducted using Storage Watcher. The tests 

were performed in November 2017, on a broad selection of browsers, including Firefox, 

Chrome, Safari, Opera, Edge/Internet Explorer on different platforms. Table 15 and Table 16 
show the full results for each combination of browser, operating system and device 

considered. 

Table 15 – Results for desktop browsers 

 



Table 16 – Results for mobile browsers 

 

5.2.1. API support 

There are a few peculiarities in the way browsers support the client-side storage APIs 

considered that deserve to be highlighted. Firefox and Edge, for example, disable the Indexed 

Database API when used in private browsing mode. In both cases, other storage techniques 
remain available. In contrast, certain versions of iOS WebKit-based browsers (Safari, Chrome 

and Firefox for iOS) and Firefox for Android, seem to do the exact opposite, as they disable 

the Web Storage and Web SQL Database APIs when in private mode, but not the Indexed 
Database API. 

If the reasoning behind disabling certain client-storage APIs is to prevent user tracking, it 

is important to remember that advanced tracking mechanisms, such as the ones mentioned in 
the literature review, employ multi-tier approaches based on a combination of various storage 

vectors. Therefore, blocking certain APIs whilst allowing the usage of others might not 



produce the desired level of privacy. It is, however, worth mentioning that more recent 

versions of iOS-WebKit-based browsers have introduced a more consistent approach on 
which all the three APIs are disabled on private browsing mode. 

Lastly, when running the test on MiuiBrowser 9.1.3, it was noticed that the browser 

carries over the values of Indexed Database API content created while using the application 
on standard browsing mode. Taken in the context of a private browsing session preceded by a 

regular usage of the browser in its standard mode, this browser behaviour could allow a third 

party tracker to resume and recreate tracking values set while the user was browsing on 
previous non-private sessions and identify them even if they are browsing in private mode. 

5.2.2. Effectiveness of data removal 

The right-hand side of Tables 14 and 15 show that the process of removing private data 
from a browser does not always delete information stored in all of the three client-side storage 

techniques considered in this work. In particular, certain versions of iOS-WebKit-based 

browsers (Safari and Chrome for iOS) and some Android browsers (Firefox for Android and 
MiuiBrowser) retain Indexed Database API content even after a user requests data deletion. In 

all the cases considered, the user interface not only does not make clear that Indexed Database 

API content will persist but also give the impression that all ‘offline web site data’ will be 
deleted (Figure 6). Furthermore, in MiuiBrowser 9.1.3, Web Storage (localStorage) content is 

also maintained, after requesting the deletion of private data. 

 

Figure 6 - Firefox 57 on Android 6.0. The user interface suggest that offline data will be removed. 

At least in the case of iOS browsers, this issue seems to be resolved in the latest version 

of the software considered in this work. However, this behaviour can still be seen on other 

recent browsers (Firefox 57 on Android 7.0). 



It is also worth pointing out that some browsers require the user to perform an extra 

action in order to include Indexed Database API content to the process of clearing private 
data. As a matter of fact, on all the desktop versions of Firefox considered, whilst the user 

interface allows deleting data stored via Indexed Database API using the same panel used to 

remove HTTP cookies, this option is disabled by default. This means that a users would have 

to expand the ‘details’ dropdown and manually add ‘offline website data’ if they wish to 
remove Indexed Database API content at same time of HTTP cookies. On an earlier version 

of Firefox analysed (Firefox 47 on Windows XP), this was also the case for Web Storage 

(localStorage). This default setting could be misleading for an inexperienced user and give a 
sense of anonymity that cannot be guaranteed, especially considering that, as mentioned 

before, the Indexed Database API could be used as a backdoor to reinstate content of HTTP 

cookies. 

 

Figure 7 – Panel used to remove personal information, including HTTP cookies from Firefox. The option 
to remove content stored using Indexed Database API is disabled by default. 

 

Figure 8 - In order to remove Indexed Database API content users need to manually add it from the 
options list. 

Similarly, Internet Explorer Windows Phone 8.10 by HTC requires a separate action to 
remove Indexed Database API content. In this case, the user needs to navigate to a different 

menu item called "advanced settings" and, from there, choose the option "manage storage". 

5.2.3. Persistence of data across private browsing sessions 

Running this experiment has also highlighted that some browsers do not fully isolate 

client-side stored data when used in private mode. According to the results of this test, Opera 

43 on Android persists data stored using Indexed Database API and Web SQL Database 
across different private browsing sessions. In contrast, the same behaviour was noticed in 

Opera for iOS, but in the case of Web Storage (localStorage). Similarly, it was noticed that 

MiuiBrowser 9.1.3 persists data stored on both Web Storage (localStorage) and Indexed 
Database API across different private browsing session. 

One final note is about Google Chrome guest mode: running this test has shown that 

content stored in each of the three APIs considered is persisted across different windows 
opened in guest mode. This means that a user would need to quit Chrome completely in order 



to discard locally-stored data accumulated in a guest browsing session. This behaviour might 

be misleading for certain users who might assume that simply closing the browsing window 
but not the application, as in the case of a private browsing window, might be enough to 

remove locally-stored private data. 

  



6. CONCLUSIONS & FUTURE WORK 
 

This dissertation analysed three client-side storage techniques that have been part of the 
ecosystem of front-end development for almost a decade. In the first chapters of this report, it 

was shown, through various citations, that the three primitives considered were initially 

designed to enrich the user experience of everyday websites and make them behave like 

native applications without the need of third-party plugins. However, this work has shown 
that user tracking seems now to be a major use case for these technologies. This section 

recapitulates the key findings of the work performed for this dissertation and presents a few 

ideas for further work. 

 

6.1. CLIENT-SIDE STORAGE AS A TRACKING VECTOR 

Section 4 of this work presented a large-scale analysis on the usage of client-side storage 

techniques as tracking vectors in the wild. To the best of the writer’s knowledge, this is the 
first comprehensive study that focuses on the adoption of Web Storage, Indexed Database 

API and WebSQL API, in the context of user tracking. It could be argued that analysing the 

real-world usage of these three primitives, regardless of their usage as tracking vectors, is 
already a significant contribution. Indeed, a previous work lamented the lack of usage 

statistics for browser-based storage systems (Kimak, 2017). The only study found on this 

subject is a much earlier work (Lekies and Johns, 2012), which estimated that the adoption of 
Web Storage (localStorage) is around 5% of the dataset considered. The work proposed in 

this dissertation has provided an up-to-date audit and it showed that the percentage of sites 

congaing constructs that relate to Web Storage (localStorage) is considerably higher than the 

previous study have found (70.30% and 82.05%, respectively for the whole dataset and the 
top 10k sites). The work also showed that the adoption of the three storage systems 

considered is inhomogeneous. In fact, compared to Web Storage (localStorage), the 

percentages of usage for Indexed Database API are much lower (5.28% and 10.24%) and 
closer to its deprecated predecessor Web SQL Database (1.51% and 2.56%). 

With regards to the occurrence of the three storage systems in tracking scripts, this work 

showed that a significant number of websites contain at least one tracking subresource 
containing code construct that belong to Web Storage (localStorage): 55.39% for the whole 

dataset and 65.20% for the top 10k sites. Figures are much lower for both Indexed Database 

API (2.24% and 4.51%) and Web SQL Database (0.84% and 0.83%). More importantly, this 
work has shown that tracking scripts seem to currently be the major employers of the three 

storage primitives considered. Indeed, in all three cases, the subresources that contain the 

construct analysed are often identified as trackers. In the case of Web Storage (localStorage) 
the figures are 69.80% for the whole dataset and 64.18% for the top 10k sites, 43.68% and 

45.13% for Indexed Database API and 53.50% and 31.95% for Web SQL Database. 

Other works, presented in Chapter 3, have analysed the usage of Web Storage 
(localStorage) and Indexed Database API by trackers. To briefly recapitulate, Roesner el al. 

(2012) found that 8 of the 524 trackers analysed make use of Web Storage (localStorage). 

Acar et al. (2014) showed the usage of Indexed Database API as tracking vector, albeit in a 
small fraction of the cases considered (0.02%). Derksen et al. (2016) found that Web Storage 

(localStorage) is used by 15% of the trackers considered, but found no evidence of the usage 

of IndexedDB in the dataset considered. 

However, both the methodology and the findings of this study are different. First, this 

dissertation performs a large-scale analysis covering almost half a million websites. Second, it 

analyses the content of code snippets rather than performing an actual page visit. Third, it 



relies on curated blacklists to identify trackers, as opposed to behavioural analysis. Moreover, 

the prospective of the results provided in this work is novel. Instead of measuring the 
pervasiveness of browser-based storage by comparing its occurrence to adjacent technologies 

such as HTTP cookies, this work quantifies the use case of tracking against the total usage of 

the primitives considered. 

Furthermore, to the best of the writer’s knowledge, no other work quantified the usage of 

Web SQL Database by trackers. This is presumably due to the fact that the technology itself 

is deprecated. Despite this, this work has shown that constructs belonging to this primitive 
can still be found in the wild, albeit at slightly lower rates than its successor, IndexedDB. 

As mentioned in paragraph 4.1.6, one of the limitations of the methodology used is that it 

detects the presence of certain code constructs, but it cannot verify their actual usage. This is 
a limitation of static code analysis of JavaScript and it is due to its dynamic nature. As future 

work, it could be worth developing a methodology to further validate the findings of this 

work. It will be, however, necessary to consider the complexities highlighted in Gonzalez et 
al. (2017), in particular, around the way unique identifies can be bundled in a unique value 

with other data. 

 

6.2. IMPORTANCE OF CONSITENT DATA REMOVAL 

Chapter 5 presented a study that assessed how browsers support the removal of data 

stored using the three storage systems considered in this work. This was done using Storage 

Watcher, a web application that was specifically built for this dissertation. In this analysis, a 
broad range of browsers and devices were considered and it was proved that not all browser 

allow to easily clear data from client-side storage systems. Moreover, this work showed cases 

of data leakage between standard and private browsing mode. These findings are significant 
because they suggest that users of the affected browsers are more exposed than others to the 

risk of undesired tracking. Indeed, to avoid the ‘resuscitation’ of tracking data, browsers need 

to allow users to remove all data at the same time. At the current status this is not easily 

achievable, even on some major browsers. 

Other works, discussed in Chapter 3, have touched on the topic of data deletion. As 

mentioned, Derksen et al. (2016) also analysed data deletion of Web Storage (localStorage) 
and IndexedDB content. The scope of Derksen et al. (2016) is, however, limited to four 

desktop devices. In contrast, a significant finding of this thesis is that data deletion is not fully 

supported on some mobile browsers. 

More recently, Wu et al. (2017) performed an analysis of data persistence in private 

browsing mode and did not find any instance of either Web Storage or IndexedDB data 

preserved across different private browsing sessions. This thesis has, however, considered a 
larger range of devices and has shown that instances of data leakage outside private browsing 

mode can still be found on some major browsers. 

In terms of future work, it would be worth extending the Storage Watcher application in 
order to analyze the case of client-side storage associated to third-party origins. In particular, 

it would be interesting to verify if and how browsers allow users to prevent data being stored 

by third-party domains. Moreover, it could be worth verifying if there is any difference in the 
way data deletion is implemented in the case of first-party and third-party origins. 
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8. APPENDICES 

8.1. APPENDIX D: 

 

8.1.1. Analysing the HTTP Archive dataset with SQL  

This section illustrates a set of SQL queries that can be used to verify the presence of 

code constructs that relate to certain primitives in the HTTP Archive dataset. The example 

given below employs the matching rules defined for Web SQL Database. In this work, similar 

queries were used to verify the presence of the other primitives considered. For each one of 
them, the content of the regular expressions was adjusted in order to reflect the relevant 

matching rules. 

The query presented below returns a table containing statistical data about the dataset 

considered. After verifying the occurrence of certain constructs, it matches the hostnames of 

the resulting subresources against a database of known trackers. The latter was generated 

using ‘blacklist-merger’, a tool, also described in Chapter 5, that aggregates data from a 
selection of curated blacklists of user trackers. Moreover, the query also returns distinct 

statistical data regarding third-party subresources. It also returns the percentage of truncated 

bodies in the dataset. This value can be considered as the margin of error of this methodology, 
because it reflects the amount of subresources that cannot be fully inspected. 

 

WITH 

  matches AS ( 

  SELECT 

    page, 

    url 

  FROM 

    `httparchive.har.2017_09_15_chrome_requests_bodies` 

  WHERE 

    REGEXP_CONTAINS (body, r'openDatabase') 

    AND REGEXP_CONTAINS(body, r'transaction') 

    AND REGEXP_CONTAINS(body, r'executeSql')), 

  third_party_matches AS ( 

  SELECT 

    page, 

    url 

  FROM 

    `httparchive.har.2017_09_15_chrome_requests_bodies` 

  WHERE 

    REGEXP_CONTAINS (body, r'openDatabase') 

    AND REGEXP_CONTAINS(body, r'transaction') 

    AND REGEXP_CONTAINS(body, r'executeSql') 

    AND NET.REG_DOMAIN(page) != NET.REG_DOMAIN(url)), 

  total AS ( 

  SELECT 



    page, 

    url, 

    truncated 

  FROM 

    `httparchive.har.2017_09_15_chrome_requests_bodies` ) 

SELECT 

  *, 

  /*percentages sites 

  */ websites_with_construct_in_subresources / websites_considered * 100 AS 
percentage_of_websites_with_construct_in_subresource, 

  websites_with_construct_in_trd_party_subresources / websites_considered * 
100 AS percentage_of_websites_with_construct_in_trd_party_subresources, 

  sites_with_blacklisted_subresources_with_construct / websites_considered 
* 100 AS percentage_of_sites_with_blacklisted_subresources_with_construct, 

  sites_with_blacklisted_third_party_subresources_containing_construct / 
websites_considered * 100 AS 
percentage_of_sites_with_blacklisted_third_party_subresources_containing_co
nstruct, 

  /*percentages sub 

  */ subresources_with_construct / subresources_analysed * 100 AS 
percentage_of_sub_containing_construct, 

  trd_party_subresources_with_construct / subresources_analysed * 100 AS 
percentage_of_trd_party_sub_containing_construct, 

  blacklisted_subresources_with_construct / subresources_with_construct * 
100 AS blacklisted_perc, 

  blacklisted_third_party_subresources_containing_construct / 
subresources_with_construct * 100 AS 
perc_blacklisted_third_party_subresources_containing_construct, 

  blacklisted_subresources_with_construct / subresources_analysed * 100 AS 
blacklisted_perc_total, 

  /*margin of error 

  */ truncated / subresources_analysed * 100 AS trunc_perc 

FROM ( 

  SELECT 

    /* 

    1. Counts all website in the scrap 

    */( 

    SELECT 

      COUNT(DISTINCT page) 

    FROM 

      total) AS websites_considered, 

    /* 

    2. Counts all subresouces in the scrap 

    */( 

    SELECT 



      COUNT(url) 

    FROM 

      total) AS subresources_analysed, 

    /* 

    3. Counts all websites with at least one src with the construct 

    */( 

    SELECT 

      COUNT(DISTINCT page) 

    FROM 

      matches) AS websites_with_construct_in_subresources, 

    /* 

    4. Counts all websites with at least one 3rd party src with the 
construct 

    */( 

    SELECT 

      COUNT(DISTINCT page) 

    FROM 

      third_party_matches) AS 
websites_with_construct_in_trd_party_subresources, 

    /* 

    5. Counts all subresources with the construct  

    */ ( 

    SELECT 

      COUNT(url) 

    FROM 

      matches) AS subresources_with_construct, 

    /* 

    6. Counts all 3rd party subresources with the construct  

    */ ( 

    SELECT 

      COUNT(url) 

    FROM 

      third_party_matches) AS trd_party_subresources_with_construct, 

    /* 

    7. Counts all trucated bodies 

    */( 

    SELECT 

      SUM(CAST( truncated AS INT64)) AS number_of_truncated_bodies 

    FROM 

      total) AS truncated, 

    /* 

    8. Counts all blacklisted subresources with the construct 



    */( 

    SELECT 

      COUNT(url) AS number 

    FROM 

      matches 

    INNER JOIN 

      `pacta-96bd2.TrackersList.notrack` AS blacklist 

    ON 

      NET.REG_DOMAIN(matches.url) = blacklist.domain) AS 
blacklisted_subresources_with_construct, 

    /* 

    9. Counts all websites with blacklisted subresources with the construct 

    */ ( 

    SELECT 

      COUNT(DISTINCT page) AS number 

    FROM 

      matches 

    INNER JOIN 

      `pacta-96bd2.TrackersList.notrack` AS blacklist 

    ON 

      NET.REG_DOMAIN(matches.url) = blacklist.domain) AS 
sites_with_blacklisted_subresources_with_construct, 

    /* 

    10. Counts all 3rd party blacklisted subresources containing the 
construct 

    */ ( 

    SELECT 

      COUNT(url) AS number 

    FROM 

      third_party_matches 

    INNER JOIN 

      `pacta-96bd2.TrackersList.notrack` AS blacklist 

    ON 

      NET.REG_DOMAIN(third_party_matches.url) = blacklist.domain) AS 
blacklisted_third_party_subresources_containing_construct, 

    /* 

    11. Counts all websites with 3rd party blacklisted subresources 
containing the construct 

    */( 

    SELECT 

      COUNT(DISTINCT page) AS number 

    FROM 

      third_party_matches 



    INNER JOIN 

      `pacta-96bd2.TrackersList.notrack` AS blacklist 

    ON 

      NET.REG_DOMAIN(third_party_matches.url) = blacklist.domain) AS 
sites_with_blacklisted_third_party_subresources_containing_construct) 

 

8.1.2. Targeting the analysis to the Alexa Top 10000 sites 

The queries presented below can be used to analyse a subset of the HTTP Archive dataset 

that only contains data relating to websites that score 10000 or above in the Alexa ranking. 

Since the ranking is not included in the main dataset used by the previous query, it is 

necessary to retrieve it from another table offered by the HTTP Archive project. This can be 
done by first creating a table that lists the domain names of sites whose ranking is 10000 or 

higher. 

SELECT 

  * 

FROM 

  `httparchive.runs.2017_09_15_pages` 

WHERE 

  rank < 10001 

 

The following step entails using the table created above to filter the whole dataset, by 
performing an inner join operation on the domain name. 

 

SELECT 

  full_list.* 

FROM 

  `httparchive.har.2017_09_15_chrome_requests_bodies` AS full_list 

INNER JOIN 

  `pacta-96bd2.September.15_top_10000_pages` AS top10k 

ON 

  full_list.page = top10k.url  

 

The query outputs a new table that follows the same schema of the main HTTP Archive 
dataset and can, therefore, be passed to the query presented on paragraph 9.4.1. As mentioned 

in Chapter 5, it is important to make sure that the dates of the datasets used are consistent. In 

this example, for instance, it is necessary verify that the Alexa ranking values used reflects 
the actual ranking of the sites at the point in time in which the HTTP Archive scan was 

performed. 

 


